

Colin Dean

You knew you were a Computer Science major when…
I had that feeling when, somewhat on a whim, I proposed to Westminster’s
information systems department that they lend me nine new, unused computers
in order to build a Folding@Home cluster in the Unix Lab. They approved, and that
cluster ran 24/7 for about six months. (http://www.cs.westminster.edu/folding/).

One piece of advice for fi rst year students:
Ask questions. Don’t be afraid to virtually inundate a professor with questions.
Remember, it’s your education—get what you want out of it. If a professor is
too busy to help you, fi nd another one to help. Don’t share your code with
classmates—don’t even let them look at it unless you get permission from a
professor: it’s against every school’s academic integrity policies. And fi nally, learn
at least one weird (read: non-major) language like Scheme, Smalltalk, Prolog, or
even Haskell. You never know when it might come in handy.

If you could have dinner with a famous computer scientist, living or dead, who
would you choose?
Tim Berners-Lee, the father of the World Wide Web. His creation has changed
more lives directly than just about any other technology has. It’s enabled
the dissemination of vast amounts of knowledge and enabled collaboration
throughout the world.

What technology blogs do you read on a regular basis?
I fi nd myself on Ars Technica, A List Apart, and The Daily WTF most often, as well as
Engadget and a few politics and technology blogs.

Where do you see yourself in ten years?
I hope to be running my own successful Internet-based company and
contemplating a doctorate, and perhaps holding public offi ce.

Colin Dean of Volant, PA graduated with a B.S. in
Computer Science from Westminster College in
New Wilmington, PA in May 2007. He completed his
M.S. in Business Education in July 2008 at Robert
Morris University and is employed as a developer in
Pittsburgh, PA.

Spotlight on Careers in Computing

http://www.cs.westminster.edu/folding/
www.course.com/coursetechnology

C++ for Engineers and Scientists

Third Edition

Gary J. Bronson

G.J. Borse
Contributing Editor
Lehigh University

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

C++ for Engineers and Scientists, Third
Edition

Gary J. Bronson

Managing Editor: Marie Lee

Acquisitions Editor: Amy Jollymore

Senior Product Manager: Alyssa Pratt

Developmental Editor: Lisa M. Lord

Content Product Manager: Matt Hutchinson

Marketing Manager: Bryant Chrzan

Editorial Assistant: Julia Leroux-Lindsey

Art Director: Marissa Falco

Compositor: GEX Publishing Services

© 2010 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at www.cengage.com/permissions

Further permission questions can be e-mailed to
permissionrequest@cengage.com

ISBN-13: 978-0-324-78643-9

ISBN-10 : 0-324-78643-3

Course Technology
20 Channel Center Street
Boston, Massachusetts 02210

USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit www.cengage.com

Purchase any of our products at your local college store or at our preferred
online store www.ichapters.com

Some of the product names and company names used in this book have
been used for identification purposes only and may be trademarks or regis-
tered trademarks of their respective manufacturers and sellers.

Any fictional data related to persons or companies or URLs used through-
out this book is intended for instructional purposes only. At the time this
book was printed, any such data was fictional and not belonging to any real
persons or companies.

The programs in this book are for instructional purposes only.

They have been tested with care but are not guaranteed for any particular
intent beyond educational purposes. The author and the publisher do not
offer any warranties or representations, nor do they accept any liabilities
with respect to the programs.

Printed in the United States of America

1 2 3 4 5 6 7 14 13 12 11 10

www.cengage.com/permissions
www.cengage.com
www.ichapters.com

BRIEF TABLE OF CONTENTS

Part 1
Fundamentals of C++ Programming 1

Chapter 1
Preliminaries 3

Chapter 2
Problem Solving Using C++ 43

Chapter 3
Assignment, Formatting, and Interactive Input 103

Chapter 4
Selection Structures 177

Chapter 5
Repetition Statements 231

Chapter 6
Modularity Using Functions 293

Chapter 7
Arrays 373

Chapter 8
I/O Streams and Data Files 439

Chapter 9
Completing the Basics 489

Part 2
Object-Oriented Programming 551

Chapter 10
Introduction to Classes 553

Chapter 11
Class Functions and Conversions 597

Brief Table of Contents 3

Part 3
Data Structures 663

Chapter 12
Pointers 665

Chapter 13
Structures 707

Part 4
Additional Topics 749

Chapter 14
Numerical Methods 751

Chapter 15
Bit Operations 787

Appendix A
Operator Precedence Table 801

Appendix B
ASCII Character Codes 803

Appendix C
Floating-Point Number Storage 805

Appendix D
Command-Line Arguments 809

Index 815

4 Brief Table of Contents

CONTENTS

Part 1
Fundamentals of C++ Programming 1

Chapter 1
Preliminaries 3
1.1 Preliminary One: Unit Analysis 4

Engineering and Scientific Units 6
1.2 Preliminary Two: Exponential and Scientific Notations 10

Using Scientific Notation 11
1.3 Preliminary Three: Software Development 14

Phase I: Development and Design 15
Phase II: Documentation 19
Phase III: Maintenance 19
Backup 20

1.4 Preliminary Four: Algorithms 22
1.5 A Closer Look: Software, Hardware, and Computer Storage 28

Machine Language 28
Assembly Languages 28
Low- and High-Level Languages 29
Procedural and Object Orientations 30
Application and System Software 30
The Development of C++ 31
Computer Hardware 33
Computer Storage 34

1.6 Common Programming Errors 37
1.7 Chapter Summary 37

Chapter 2
Problem Solving Using C++ 43
2.1 Introduction to C++ 43

The main() Function 46
The cout Object 48

2.2 Programming Style 53
Comments 55

2.3 Data Types 58
Integer Data Types 59
Determining Storage Size 62
Signed and Unsigned Data Types 64
Floating-Point Types 65

2.4 Arithmetic Operations 68
Expression Types 70
Integer Division 71
Negation 71
Operator Precedence and Associativity 72

2.5 Variables and Declaration Statements 76
Declaration Statements 78
Multiple Declarations 81
Memory Allocation 83
Displaying a Variable’s Address 85

Contents 5

2.6 A Case Study: Radar Speed Traps 90
2.7 Common Programming Errors 94
2.8 Chapter Summary 95

Chapter 3
Assignment, Formatting, and Interactive Input 103
3.1 Assignment Operations 103

Coercion 107
Assignment Variations 108
Accumulating 110
Counting 111

3.2 Formatting Numbers for Program Output 117
3.3 Using Mathematical Library Functions 131

Casts 135
3.4 Program Input Using cin 139

A First Look at User-Input Validation 143
3.5 Symbolic Constants 149

Placement of Statements 151
3.6 A Case Study: Acid Rain 158
3.7 A Closer Look: Programming Errors 164
3.8 Common Programming Errors 167
3.9 Chapter Summary 167

Chapter 4
Selection Structures 177
4.1 Selection Criteria 178

Relational Operators 178
Logical Operators 181
A Numerical Accuracy Problem 183

4.2 The if-else Statement 184
Compound Statements 187
Block Scope 190
One-Way Selection 191
Problems Associated with the if-else Statement 193

4.3 Nested if Statements 199
The if-else Chain 201

4.4 The switch Statement 208
4.5 A Case Study: Solving Quadratic Equations 213
4.6 A Closer Look: Program Testing 220
4.7 Common Programming Errors 222
4.8 Chapter Summary 223

Chapter 5
Repetition Statements 231
5.1 Basic Loop Structures 232

Pretest and Posttest Loops 232
Fixed-Count Versus Variable-Condition Loops 233

5.2 while Loops 234
5.3 Interactive while Loops 245

Sentinels 251
break and continue Statements 253
The Null Statement 254

6 Contents

5.4 for Loops 256
5.5 A Closer Look: Loop Programming Techniques 268

Technique 1: Interactive Input in a Loop 268
Technique 2: Selection in a Loop 269
Technique 3: Evaluating Functions of One Variable 270
Technique 4: Interactive Loop Control 273

5.6 Nested Loops 276
5.7 do while Loops 281

Validity Checks 283
5.8 Common Programming Errors 285
5.9 Chapter Summary 286

Chapter 6
Modularity Using Functions 293
6.1 Function and Parameter Declarations 294

Function Prototypes 295
Calling a Function 296
Defining a Function 297
Placement of Statements 302
Function Stubs 302
Functions with Empty Parameter Lists 303
Default Arguments 305
Reusing Function Names (Overloading) 305
Function Templates 306

6.2 Returning a Single Value 313
Inline Functions 319

6.3 Returning Multiple Values 324
Passing and Using Reference Parameters 324

6.4 A Case Study: Rectangular to Polar Coordinate Conversion 333
6.5 Variable Scope 346

Scope Resolution Operator 349
Misuse of Globals 351

6.6 Variable Storage Categories 354
Local Variable Storage Categories 355
Global Variable Storage Categories 358

6.7 Common Programming Errors 362
6.8 Chapter Summary 364

Chapter 7
Arrays 373
7.1 One-Dimensional Arrays 374

Input and Output of Array Values 378
7.2 Array Initialization 384
7.3 Declaring and Processing Two-Dimensional Arrays 388

Larger Dimensional Arrays 392
7.4 Arrays as Arguments 394

Internal Array Element Location Algorithm 401
7.5 A Case Study: Statistical Analysis 404
7.6 The Standard Template Library (STL) 410
7.7 A Closer Look: Searching and Sorting 418

Search Algorithms 418
Big O Notation 425
Sort Algorithms 426

7Contents

7.8 Common Programming Errors 432
7.9 Chapter Summary 433

Chapter 8
I/O Streams and Data Files 439
8.1 I/O File Stream Objects and Methods 440

Files 440
File Stream Objects 441
File Stream Methods 442

8.2 Reading and Writing Character-Based Files 454
Reading from a Text File 456
Standard Device Files 461
Other Devices 462

8.3 Random File Access 465
8.4 File Streams as Function Arguments 468
8.5 A Case Study: Pollen Count File Update 472
8.6 A Closer Look: The iostream Class Library 479

File Stream Transfer Mechanism 479
Components of the iostream Class Library 480
In-Memory Formatting 482

8.7 Common Programming Errors 483
8.8 Chapter Summary 484

Chapter 9
Completing the Basics 489
9.1 Exception Handling 490
9.2 Exceptions and File Checking 496

Opening Multiple Files 500
9.3 The string Class 504

string Class Functions 505
String Input and Output 507
String Processing 511

9.4 Character Manipulation Functions 522
Character I/O 526
A Second Look at User-Input Validation 531

9.5 Input Data Validation 533
9.6 A Closer Look: Namespaces and Creating a Personal Library 541
9.7 Common Programming Errors 546
9.8 Chapter Summary 546

Part 2
Object-Oriented Programming 551

Chapter 10
Introduction to Classes 553
10.1 Abstract Data Types in C++ (Classes) 553

Abstract Data Types 555
Class Construction 556
Terminology 563

8 Contents

10.2 Constructors 567
Calling Constructors 570
Overloaded and Inline Constructors 570
Destructors 574

10.3 A Case Study: Constructing a Room Object 576
10.4 A Closer Look: Object Identification and the Unified Modeling Language (UML) 582

Representing Problems with Models 583
Class and Object Diagrams 585
Relationships 588

10.5 Common Programming Errors 592
10.6 Chapter Summary 593

Chapter 11
Class Functions and Conversions 597
11.1 Assignment 597

Copy Constructors 602
Base/Member Initialization 605

11.2 Additional Class Features 607
Class Scope 607
Static Class Members 607
Friend Functions 612

11.3 Operator Functions 616
Operator Functions as Friends 623

11.4 Data Type Conversions 625
Built-in to Built-in Conversion 626
Built-in to Class Conversion 626
Class to Built-in Conversion 628
Class to Class Conversion 630

11.5 A Case Study: Random Numbers and Simulations 635
Scaling 636
Elevator Simulation 637

11.6 Class Inheritance 645
Access Specifications 647

11.7 Polymorphism 653
11.8 Common Programming Errors 658
11.9 Chapter Summary 658

Part 3
Data Structures 663

Chapter 12
Pointers 665
12.1 Addresses and Pointers 666

Storing Addresses 667
Using Addresses 667
Declaring Pointers 668
References and Pointers 671

12.2 Array Names as Pointers 677
Dynamic Array Allocation 682

12.3 Pointer Arithmetic 686
Pointer Initialization 689

12.4 Passing Addresses 690
Passing Arrays 695
Advanced Pointer Notation 699

9Contents

12.5 Common Programming Errors 702
12.6 Chapter Summary 704

Chapter 13
Structures 707
13.1 Single Structures 708
13.2 Arrays of Structures 714
13.3 Structures as Function Arguments 718

Passing a Pointer 721
Returning Structures 724

13.4 Linked Lists 727
13.5 Dynamic Data Structure Allocation 735
13.6 Unions 742
13.7 Common Programming Errors 744
13.8 Chapter Summary 745

Part 4
Additional Topics 749

Chapter 14
Numerical Methods 751
14.1 Introduction to Root Finding 751
14.2 The Bisection Method 755
14.3 Refinements to the Bisection Method 761

Regula Falsi Method 762
Modified Regula Falsi Method 764
Summary of the Bisection Methods 769

14.4 The Secant Method 770
14.5 Introduction to Numerical Integration 774
14.6 The Trapezoidal Rule 775

Computational Form of the Trapezoidal Rule Equation 776
Example of a Trapezoidal Rule Calculation 777

14.7 Simpson’s Rule 779
Example of Simpson’s Rule as an Approximation to an Integral 781

14.8 Common Programming Errors 783
14.9 Chapter Summary 783

Chapter 15
Bit Operations 787
15.1 The AND Operator 788
15.2 The Inclusive OR Operator 790
15.3 The Exclusive OR Operator 793
15.4 The Complement Operator 795
15.5 Different-Size Data Items 795
15.6 The Shift Operators 796
15.7 Chapter Summary 799

Appendix A
Operator Precedence Table 801

Appendix B
ASCII Character Codes 803

10 Contents

Appendix C
Floating-Point Number Storage 805

Appendix D
Command-Line Arguments 809

Index 815

11Contents

This page intentionally left blank

PREFACE

The C++ programming language, which includes C as a proper subset, has become the
preeminent programming language in the engineering and scientific fields. For most
engineers and scientists, however, using the full potential of C++, which is a hybrid language
containing both structured and object-oriented features, involves a gradual refinement of
programming skills from a structured approach to an object-oriented one. One reason for this
is that many engineering and scientific problems can be solved efficiently and conveniently
by using only C++’s structured elements.

The refinement approach, from structural to object-oriented programming, is the one
C++ for Engineers and Scientists, Third Edition, takes. Therefore, like the first two editions, this
new edition begins by providing a strong foundation in structured programming. This
foundation is then expanded to a complete object orientation in a pedagogically sound and
achievable progression. Additionally, to keep it current with the current ANSI/ISO C++
standard, this edition has several important changes and added features, including the
following:

• Restructuring Part One to include both arrays and files, which allows using Part One
as the basis for a complete semester course in C++

• Adding more than 40 new engineering and scientific exercises that incorporate the
fields of electrical engineering, mechanical engineering thermodynamics, structural
engineering, numerical applications, physics, heat transfer, chemistry, and fluid
mechanics

• Adding a section on performing a unit analysis
• Adding a new introduction to the Standard Template Library
• Adding a section that introduces the fundamentals of the Unified Modeling

Language (UML)
• Restructuring the case studies throughout the book to emphasize specific engineer-

ing or scientific applications
• Adding end-of chapter programming projects that supplement the exercises at the

end of each section
• Labeling all exercises and programming projects as to application type

The following features have been retained from the second edition:

• Fundamentals of software engineering are discussed from both procedural and
object-oriented viewpoints.

• Common Programming Errors sections have been retained. These sections antici-
pate problems that novice C++ programmers encounter.

• The ANSI/ISO C++ iostream library and namespace mechanism are used in all
programs.

• Exception handling is discussed in a complete section, with practical applications of
exception handling included throughout the book.

• The new C++ string class is covered.
• A thorough discussion is included of input data validation and functions to check the

numerical data type of input items and to allow reentering invalid numerical types.

In practical terms, this book has been written to support both a one- and two-semester
technical C++ programming course; the only prerequisite is that students should be familiar

Preface 13

with fundamental algebra. This book is constructed to be flexible enough so that professors
can mold the book to their preferences for topic presentations. This flexibility is achieved in
the following ways.

Excluding Chapter 1, which includes computer literacy material for those who require
this background, Part One presents the basic structured syntax, flow control, and modularity
topics needed for a thorough understanding of C++’s structural features. With the topics of
arrays (Chapter 7) and files (Chapter 8) having been moved to Part One, this part now
provides a comprehensive one-semester course. As Chapters 7 and 8 have been written
specifically to depend only on Chapters 1 through 6, their order of presentation in the
classroom is entirely up to the professor’s discretion. With time permitting, the basics of
classes, introduced in Chapter 10, can also be covered to complete a one-semester course.
Additionally, depending on time and inclination, the numerical techniques discussed in
Chapter 14 can be presented at any point after Part One has been completed. Figure 1
illustrates this one-semester topic dependency.

An important feature of this book is that Part Two, on object-oriented programming, and
Part Three, on data structures, are interchangeable. So if you want to cover object-oriented
programming early, follow a Part One–Part Two–Part Three progression. On the other hand,
if you want to continue with additional structured programming reinforcement and discuss
object-oriented programming at the end of the course or the start of a second semester, follow
the sequence Part One–Part Three–Part Two. In either case, the material on arrays in
Chapter 7, files in Chapter 8, classes in Chapter 10, and numerical techniques in Chapter 14
can be introduced at any time after covering the first six chapters. Figure 2 shows the topic
dependency chart for the complete book and illustrates the flexibility of introducing different
topics under the umbrella of procedural programming, object-oriented programming, and
data structures.

Part One
Introduction

Chapter 1

Chapters
2 to 6
and 9

Arrays

Chapter 7

Files

Chapter 8

Objects

Chapter 10

Figure 1 Topic dependency for a one-semester course

14 Preface

Distinctive Features of This Book

Writing Style One thing I have found to be essential in my own classes is that after the
professor sets the stage in class, the assigned book must continue to encourage, nurture, and
assist students in acquiring and “owning” the material. To do this, the book must be written
in a manner that makes sense to students. My primary concern, and one of the distinctive
features of this book, is that it has been written for students. Therefore, I believe the writing
style used to convey the concepts is one of the most important aspects of this book.

Modularity To produce readable and maintainable programs, modularity is essential. C++,
by its nature, is a modular language. Therefore, the connection between C++ functions and
modules is made early in Chapter 2 and sustained throughout the book. Similarly, the idea
of parameter passing into modules is discussed early in Chapter 3, using C++’s mathematical
library. Explaining these concepts early introduces students to function and argument passing
as natural programming techniques. With the introduction of object-oriented programming
techniques in Chapter 10, students can build on the basic concept of encapsulating both data
and functions, which strengthens this modular emphasis.

Software Engineering Rather than simply introduce students to programming in C++,
this book introduces students to the fundamentals of software engineering from both a
structured and object-oriented viewpoint. Chapter 1 introduces the software development
procedure, which incorporates one of this book’s main themes: emphasizing problem-solving
techniques. Therefore, the importance of understanding and defining a problem, selecting
and refining a solution, and understanding the relationship between analysis, design, coding,
and testing is stated early and followed through with practical examples in all subsequent
case studies.

Case Studies Starting with Chapter 2, most chapters contain a case study. These case
studies demonstrate and reinforce effective problem solving in the context of the software

Chapter 1
Literacy
Topics

Part One
Procedural

Programming

Part Two
(Chapters 10 and 11)

Object-Oriented
Programming

Part Three
(Chapters 12 and 13)

Data Structures

Part Four
(Chapters 14 and 15)

Figure 2 Topic dependency chart

15Preface

development procedure explained in Chapter 1 and are extended to object-oriented
development when classes are introduced in Chapter 10.

Program Testing Every C++ program in this book has been compiled and run successfully
and has been quality assurance tested with Microsoft Visual C++ .NET. Source code for all
programs can be found on the Course Technology Web site (www.cengage.com/coursetechnology).
Using the source code permits students to experiment with and extend the existing programs
and modify them more easily, as required for a number of end-of-section exercises.

Pedagogical Features
To facilitate the goal of making C++ accessible as a first-level course, the following
pedagogical features have been incorporated into this book.

End-of-Section Exercises Almost every section in the book contains numerous and
diverse skill-building and programming exercises. Each exercise is identified as to type
(practice, desk check, and so forth) or application (such as electrical engineering, heat
transfer, environmental, and so on). Additionally, solutions to all exercises are provided in the
Instructor Downloads section on www.cengage.com/coursetechnology.

End-of-Chapter Programming Projects Each chapter includes several programming
projects that combine all elements of C++ covered in previous sections and chapters. Projects
are identified as to type (practice, desk check, and so forth) or application (electrical
engineering, heat transfer, environmental, and so on).

Common Programming Errors and Chapter Summary Each chapter ends with a sec-
tion on common programming errors and a summary of the main topics covered in the
chapter.

Enrichment Sections Given the many different emphases that can be used in teaching
C++, several chapters include an enrichment section called “A Closer Look.” These sections
allow you to provide varying emphases with different students in C++ classes.

Point of Information Boxes These boxes present additional clarification of commonly
used or difficult concepts, such as abstraction, lvalues and rvalues, values versus
identities, flags, and stream formatting. In addition, many Point of Information boxes explain
alternative and advanced programming techniques, useful technical points, programming
tips, and programming tricks used by professional programmers.

Pseudocode Descriptions Pseudocode is used throughout the book. Flowchart symbols
are introduced but are used only in illustrating flow-of-control constructs.

Engineering and Scientific Disciplines Many chapters have a box at the end with
information on several engineering and scientific fields, such as electrical, chemical, mechani-
cal, and aeronautical engineering.

16 Preface

www.cengage.com/coursetechnology
www.cengage.com/coursetechnology

Appendixes This book includes four appendixes on operator precedence, ASCII character
codes, floating-point number storage, and command-line arguments. Additionally, Course
Technology provides tutorials for using various C++ compilers at www.cengage.com/coursetechnology.

Supplemental Materials
The following supplemental materials are available when this book is used in a classroom
setting:

Electronic Instructor’s Resources. The Instructor’s Resources that accompany this book
include the following:

• Additional instructional material to assist in class preparation, including suggestions
for lecture topics

• Solutions to all the end-of-chapter materials, including the programming projects

ExamView�. This book is accompanied by ExamView, a powerful testing software
package that allows instructors to create and administer printed, computer (LAN-based), and
Internet exams. ExamView includes hundreds of questions that correspond to the topics
covered in this book, enabling students to generate detailed study guides that include page
references for further review. These computer-based and Internet testing components allow
students to take exams at their computers and save instructors time because each exam is
graded automatically. The Test Bank is also available in WebCT and Blackboard formats.

PowerPoint Presentations. This book comes with Microsoft PowerPoint slides for each
chapter. They are included as a teaching aid for classroom presentations, to make available
to students on the network for chapter review, or to be printed for classroom distribution.
Instructors can add their own slides for additional topics they introduce to the class.

Source Code. The source code for this book is available at www.cengage.com/coursetechnology
and is also available on the Teaching Tools CD.

Solution Files. The solution files for all programming exercises and projects are available
at www.cengage.com/coursetechnology and on the Teaching Tools CD.

17Preface

www.cengage.com/coursetechnology
www.cengage.com/coursetechnology
www.cengage.com/coursetechnology

To Rochelle, Jeremy, David, and Matthew Bronson

Acknowledgments
The writing of this third edition is a direct result of the success (and limitations) of the
previous two editions. In this regard, my most heartfelt acknowledgment and appreciation is
to the instructors and students who found the previous editions to be of service in their
quests to teach and learn C++.

Next, I would like to thank Alyssa Pratt, my Senior Product Manager at Course
Technology. In addition to her continuous faith and encouragement, her ideas and partner-
ship were instrumental in creating this book. After the writing process was completed, the
task of turning the final manuscript into a book depended on many people other than myself.
For this, I especially want to thank my developmental editor, Lisa Lord, who provided an
outstanding job. Her editing so dovetailed with both the spirit and idiosyncrasies of my own
writing style that it was an absolute pleasure working with her. She stayed true to what I was
attempting to achieve while patiently going through both the technical and grammatical
content. A truly incredible feat! This editing was supplemented by the equally detailed work
of my colleague, Professor Joan Zucker Hoffman, with structural engineering applications
provided by Professors Andy Gregg and Al Branchi and moral support provided by Dr. John
Becker of the Theology Department. Finally, I would like to thank the testers at Course
Technology’s MQA Department as well as GEX Publishing Services, especially the interior
designer, and Camille Kiolbasa, the copyeditor. The dedication of this team of people was
extremely important to me and I am very grateful to them.

The following reviewers provided extensive, extremely useful, and detailed information and
corrections that made this edition better and more accurate. No matter how careful I was, each
reviewer pointed out something that I missed or could be stated better. I am very thankful to
them. Naturally, all errors rest squarely on my shoulders, but these reviewers made the load
much easier: Hyder Ali, California State University, Northridge, and Robert Baird, Salt Lake
Community College. In addition, I’d like to thank the following instructors who reviewed the
proposal for this edition and offered valuable feedback: Randy Bower, Jacksonville University;
Helen Darcey, Cleveland State Community College; Akira Kawaguchi, The City College of New
York; Cynthia Lester, Tuskegee University; and Sherman Wong, Baruch University.

As with the first edition, special acknowledgement goes to Dr. G.J. Borse of Lehigh
University, who provided material that was adapted for this book. Specifically, his contribu-
tion includes almost all of Chapter 14, which Dr. Borse graciously permitted me to adapt from
his FORTRAN 77 text (copyright held by PWS Publishing). I would also like to acknowl-
edge, with extreme gratitude, the wonderful academic environment for learning and teaching
created at Fairleigh Dickinson University—starting with the President, Dr. Michael Adams,
followed through in the academic departments by the university and campus provosts, Dr.
Joseph Kiernan and Dr. Kenneth Greene, and finally to the direct encouragement and
support provided by my dean, Dr. William Moore, and my chairperson, Dr. Paul Yoon.
Without their support, this book could not have been written.

Finally, I deeply appreciate the patience, understanding, and love provided by my friend,
wife, and partner, Rochelle.

Gary Bronson
2009

18 Preface

Part One
Fundamentals of C++
Programming

1 Preliminaries

2 Problem Solving
Using C++

3 Assignment, Formatting,
and Interactive Input

4 Selection Structures

5 Repetition Statements

6 Modularity Using Functions

7 Arrays

8 I/O Streams and Data Files

9 Completing the Basics

Although C++ is an object-oriented
language, it was developed as an
extension to C, a procedural-oriented
language. As such, C++ is a hybrid
language having both procedural and
object features. Because of this hybrid
nature, not only is it possible to write a
complete C++ program using just
procedural code, but also it’s
impossible to write an object-oriented
program in C++ that doesn’t include
procedural elements. Therefore, a
proper start to learning C++ requires
familiarity with its procedural aspects.

This page intentionally left blank

Chapter 1
Preliminaries

1.1 Preliminary One: Unit Analysis

1.2 Preliminary Two: Exponential
and Scientific Notations

1.3 Preliminary Three: Software
Development

1.4 Preliminary Four: Algorithms

1.5 A Closer Look: Software,
Hardware, and Computer
Storage

1.6 Common Programming Errors

1.7 Chapter Summary

Programming scientific and engineering applications requires a number of basic skills, both in
understanding the underlying applications and in understanding the fundamentals of the programming
process itself. On the applications side, a knowledge of numerical measurements and their corresponding
units, as well as a familiarity with performing calculations, are assumed. Using consistent sets of units
and knowing how to convert between units is a basic prerequisite of these applications.

Additionally, the programming process assumes the programmer starts with a preliminary set of
skills. As you develop your programming abilities in C++, a clear understanding of how programs are
developed, in general, is important. This understanding includes what constitutes a “good” program
and what an algorithm is.

This chapter covers these preliminary requirements and can be used as an introduction or a review.

1.1 Preliminary One: Unit Analysis

In all fields of study, using consistent and correct units when making computations is crucial.
As a simple example, consider calculating the area of a rectangle by using this formula:

Area = length × width [Eq. 1-1]

When using this formula, the units for length and width must be the same. Therefore,
if the length is given as 2 feet and the width as 3 inches, at least one of these units must be
converted to ensure that both length and width are in the same units before the area is
calculated. Converting the length to inches, the rectangle’s area is computed as follows:

Area ft
in
ft

in in=

× =2
12
1

3 36 2 [Eq. 1-1a]

Similarly, if you choose to convert the width from 3 inches to its equivalent feet, the
calculation becomes the following:

Area ft in
ft
in

ft= ×

=2 3
1
12

0 25 2. [Eq. 1-1b]

In the same manner, if one side of the rectangle is given in centimeters and the other in
meters, a conversion is necessary to compute the area.

Notice that in Equations 1-1a and 1-1b, units for both length and width as well as units
for the conversion factor ([12 in/1 ft] in Eq. 1-1a and [1 ft/12 in] in Eq. 1-1b) are included in
the formula. The reason is that the terms for units can be multiplied and divided to provide
the final unit result. In many cases, this technique is a powerful one for selecting a correct
conversion factor and ensuring that a computation is being calculated correctly.

To see why, continue with the area example. Use Eq. 1-1a, but include only the unit
terms, which yields the following:

Area ft
in
ft

in=

× [Eq. 1-1c]

Now a unit of ft divided by a unit of ft is 1. That is, you can cancel the ft units in
Eq. 1-1c as follows, which yields the final units as in multiplied by in, or in2, which is a correct
unit for the area:

Area ft
in
ft

in in= ///

× = 2

Including only the units and conversion factors in an equation, and canceling out
corresponding units in the numerator and denominator, is referred to as performing a unit
analysis. As an example of a unit analysis for selecting a correct form of a conversion factor,
assume you need to convert miles (symbol mi) to kilometers (symbol km), and you have the
information that 1 kilometer = 0.6214 miles. As a conversion factor, this equality can be
written as either of the following fractions:

1
0 6214

0 6214
1

or
km

mi
mi

km.
.

Deciding which conversion factor to use in converting miles to kilometers is easy when
you consider units. To see why, try both factors with miles, canceling the units that occur

4 Preliminaries

in both the numerator and denominator and concerning yourself only with the final
resulting units:

mi
km

mi
km×

=1
0 6214.

and

mi
mi

km
mi
km

×

=0 6214
1

2.
.

Because the first factor (1 km/0.6214 mi) provides the correct final units of kilometers,
it’s the form of the conversion factor that must be applied to convert miles to kilometers.

For a slightly more complicated example of performing a unit analysis for selecting
correct conversion factors, consider converting days to seconds. You can determine the correct
form of each conversion factor easily by including the units with each conversion factor, as
you change days to hours, then hours to minutes, and finally minutes to seconds, performing
each conversion one at a time and canceling units as you proceed with each conversion, as
follows:

24 hr
day

×days

1st conversion:
days to hours

(cross out the days)

The next conversion changes the units of hours to minutes, using the conversion factor
60 min/hr, as follows:

60 min
hr

24 hr
day

×

1st conversion:
days to hours

(cross out the days)

2nd conversion:
hours to minutes
(cross out the hours)

×days

5Chapter 1
Preliminary One: Unit Analysis

The final conversion is used to convert minutes to seconds:

60 min
hr

24 hr
day

×

1st conversion:
days to hours

(cross out the days)

2nd conversion:
hours to minutes
(cross out the hours)

60 sec
min

×

3rd conversion:
minutes to seconds
(cross out the minutes)

= sec×days

In a single line, the complete conversion appears as follows:
60 min

hr
24 hr
day

× 60 sec
min

× = sec×days

Before showing how a unit analysis can help ensure that a complete computation is being
calculated correctly, it’s useful to first summarize the systems of units in common use.

Engineering and Scientific Units
Two unit systems are commonly used in engineering and scientific work: the English
Engineering system and the International System (SI). Both are used in this book. Table 1.1
lists the units used in these two systems.

Table 1.1 Commonly Used Physical Quantities

Quantity Symbol International
System (SI) Units

English
Engineering Units

Conversion
Equalities

Time t seconds (s) seconds (sec)
Length l meters (m) feet (ft) 1 m = 3.2808 ft
Area A sq. meters (m2) sq. feet (ft2) 1 m2 =

10.76 ft2

Volume V cubic meters (m3) cubic feet (ft3) 1 m3 =
35.31 ft3

Mass m kilograms (kg) pounds-mass (lbm) 1 kg = 2.19 lbm
Force F Newton (1 N =

1 kg-m/s2)
pounds-force (lbf =
lbm-ft/sec2)

1 lbf = 4.448 N

Weight W Newton (N) pounds-force (lbf) 1 lbf = 4.448 N
Density � kilograms/cubic

meters (kg/m3)
pounds-mass/cubic
ft (lbm/ft3)

1 lbf/ft3 =
16.02 kg/m3

Velocity v meters/sec (m/s) feet/sec (ft/sec) 1 m/s =
3.2808 ft/sec

Acceleration a meters/sec2 (m/s2) feet/sec2 (ft/sec2) 1 m/s2 =
3.2808 ft/sec2

6 Preliminaries

Table 1.1 Commonly Used Physical Quantities (continued)

Quantity Symbol International
System (SI) Units

English
Engineering Units

Conversion
Equalities

Pressure P Pascal (Pa) (1 Pa =
1 N/m2)

lbf/ft2 1 lbf/ft2 =
47.88 Pa

Heat transfer Q Joules (J) (1 J = 1
N.m)

British Thermal
Unit (BTU)

1 BTU = 1055 J

Heat flux Q Joules/sec (J/s) (1
J/s = 1 Watt)

BTU/sec 1 BTU/sec =
1055 J/s

Work W Joules (J) ft-lbf 1 ft-lbf =
1.356 J

Power W Watts (W) (1 W =
1 J/s)

ft-lbf/sec 1 ft-lbf/sec =
1.356 W

Temperature T degrees Celsius
(C) and degrees
Kelvin (K)

degrees Fahrenheit
(F) and degrees
Rankin (R)

The following conversion formulas show the relationships between the various tempera-
ture scales:
°F = 1.8°C + 32 = 9/5°C + 32
°C = (°F - 32)/1.8 = 5/9 (°F - 32)
°K = °C + 273.15
°R = °F + 459.67
°R = 1.8°K
°C = (°R - 491.67) / 1.8 = 5/9 (°R - 491.67)

Using these conversion formulas provides the equivalent boiling and freezing points of
water for each of the temperature scales listed in the following chart:

°C °F °K °R
Freezing point
of water

0 32 273.15 491.67

Boiling point
of water

100 212 373.15 671.67

As an example, using the conversion equalities in Table 1.1 (last column), consider
calculating Newton’s Second Law for a mass of 5 kilograms and an acceleration of 32.2 ft/sec2.
Newton’s Second Law states that
Force = Mass × Acceleration

Assuming SI units are used, the calculation becomes

Force kg
ft m

ft
= ×

/

=5
32 2 1

3 2808
49 07

2

.
sec .

. kkg m
N

sec
.2 49 07=

7Chapter 1
Preliminary One: Unit Analysis

Notice from the information in Table 1.1 that 1 m = 3.2808 ft is used to create this
conversion factor

1
3 2808

m
ft.

rather than this conversion factor

3 2808
1

. ft
m

because the first form achieves the desired cancelation of units. If you mistakenly use the
second conversion factor, you would end up with the following final units, which immediately
alert you that an incorrect result would occur:

Force kg
ft ft

m
kg ft= ×

=5
32 2 3 2808

12

2. .
sec seec 2 m

Finally, you could also achieve the correct conversion by using the following set of
conversions:

2.54 cm
in

32.2 ft
sec

××Force = 5 kg
1 m

100 cm
× = 49.073 kg m/s212 in

ft
×2

1st conversion:
feet to inches

(cross out the ft)

2nd conversion:
inches to centimeters
(cross out the in)

3rd conversion:
centimeters to meters
(cross out the cm)

Frequently, when you don’t know the final conversion factor, making intermediate
conversions, as in this last calculation, can get you to the correct result easily. Notice that by
applying one conversion factor at a time and canceling units as you go along, you avoid the
common mistake of multiplying or dividing by the wrong conversion factor. If the final units,
by themselves, do not yield the correct resulting units, then the resulting numerical answer
must be incorrect. Correspondingly, if correct conversion factors and correct individual mea-
surements are used, the result will be correct in both numerical and unit terms. Using the
correct units and doing a unit analysis certainly can’t protect you against using incorrect
numbers in a calculation or making calculation errors, but by itself, a unit analysis can ensure
that you’re on the right path to computing a final numerical result correctly.

8 Preliminaries

EXERCISES 1.1

1. (Practice) a. To convert inches (in) to feet (ft), the number of inches should be multi-
plied by which of the following conversion factors?

i. 12 in/1 ft ii. 1 ft/12 in

b. To convert meters (m) to kilometers (km), the number of meters should be multiplied
by which of the following conversion factors?

i. 1000 m/1 km ii. 1 km/1000 m

c. To convert minutes (min) to seconds (sec), the number of minutes should be multi-
plied by which of the following conversion factors?

i. 60 sec/1 min ii. 1 min/60 sec

d. To convert seconds (sec) to minutes (min), the number of seconds should be multi-
plied by which of the following conversion factors?

i. 60 sec/1 min ii. 1 min/60 sec

2. (Practice) a. To convert feet (ft) to meters (m), the number of feet should be multiplied
by which of the following conversion factors?

i. 1 m/3.28 ft ii. 3.28 ft/1 m

b. To convert sq.in to sq.ft, the number of sq.in should be multiplied by which of the
following conversion factors?

i. 144 sq.in/1 sq.ft ii. 1 sq.ft/144 sq.in

c. To convert sq.yd to sq.ft, the number of sq.yd should be multiplied by which of the
following conversion factors?

i. 1 sq.yd/9 sq.ft ii. 9 sq.ft/1 sq.yd

3. (Practice) Determine the final units of the following expression:
9.8 m/s2 × 100 cm/1 m × 1 in/2.54 cm × 1 ft/12 in

4. (Practice) a. Determine the conversion factors that can be used to convert miles per
gallon (mpg = mi/gal) to kilometers per liter (km/liter), given that 1 liter = 0.22 gallons
and 1 kilometer = 0.6214 miles.

b. Using the conversion factors you determined in Exercise 4a, convert 25 mpg into
km/liter.

5. (Automotive) a. An automobile engine’s performance can be determined by monitoring
its rotations per minute (rpm). Determine the conversion factors that can be used to con-
vert rpm to frequency in Hertz (Hz), given that 1 rotation = 1 cycle, 1 minute = 60 sec-
onds, and 1 Hz = 1 cycle/sec.

b. Using the conversion factors you determined in Exercise 5a, convert 2000 rpm into Hertz.

6. (Chemistry) a. Determine the final units of the following expression, which provides the
molecular weight of 1.5 moles of hydrogen peroxide:
1.5 moles × 34.0146 grams/mole

9Chapter 1
Preliminary One: Unit Analysis

b. Determine the final units of the following expression, which provides the molecular
weight of 5.3 moles of water:

5.3 moles × 18 grams/mole

7. (Oceanography) The pressure, P, exerted on an underwater object can be determined
by this formula:

P g h= ρ

ρ is the density of water, which is 100 kg/m3.
g is the acceleration caused by Earth’s gravity, which is 9.8 m/s2.
h is the depth of the object in the water in meters.

a. Determine the units of P by calculating the units resulting from the right side of the
formula. Check that your answer corresponds to the units for pressure listed in Table 1.1.

b. Determine the pressure on a submarine operating at a depth of 500 meters.

8. (Thermodynamics) The work, W, performed by a single piston in an engine can be
determined by this formula:

W F d=

F is the force provided by the piston in Newtons.
d is the distance the piston moves in meters.

a. Determine the units of W by calculating the units resulting from the right side of the
formula. Check that your answer corresponds to the units for work listed in Table 1.1.

b. Determine the work performed by a piston that provides a force of 1000 N over a dis-
tance of 15 centimeters.

1.2 Preliminary Two: Exponential and Scientific Notations

Many engineering and scientific applications require dealing with extremely large and
extremely small numbers. For example, Avogadro’s number, used in chemistry, has the value
602,214,179,000,000,000,000,000; the universal gravitational constant used in aerospace and
rocketry applications has the value 0.0000000000667428. To make entering these numbers in
a computer program easier, they can be written in a more compact form known as exponential
notation. Similarly, in performing hand calculations for verification purposes, an equivalent
representation known as scientific notation is typically used.

The following examples illustrate how numbers with decimals can be expressed in both
exponential and scientific notation:

Decimal Notation Exponential Notation Scientific Notation

1625. 1.625e3 1.625 × 103

63421. 6.3421e4 6.3421 × 104

.00731 7.31e-3 7.31 × 10-3

.000625 6.25e-4 6.25 × 10-4

10 Preliminaries

In exponential notation, the letter e stands for exponent. The number following the e
represents a power of 10 and indicates the number of places the decimal point should be moved
to obtain the standard decimal value. The decimal point is moved to the right if the number after
e is positive, or it’s moved to the left if the number after e is negative. For example, the e3 in
1.625e3 means move the decimal place three places to the right, so the number becomes 1625.
The e-3 in 7.31e-3 means move the decimal point three places to the left, so 7.31e-3 becomes
.00731. Using these representations, Avogadro’s number is written as 6.02214179e23 and
6.02214179 × 1023 in exponential and scientific notation, and the universal gravitational constant
is written as 6.67428e-11 in exponential notation and 6.67428 × 10-11 in scientific notation.

As noted previously, exponential notation is used to enter very large or very small
numbers in a C++ program and will be used in Section 2.6, where very large numbers are
required for the given application.

Using Scientific Notation
An essential part of engineering and scientific programming is understanding what formulas
are to be used and verifying calculations, typically by hand. For evaluating formulas that use
very large or very small numbers, which isn’t uncommon in the applications you’ll be
programming, scientific notation is convenient. The reason is that scientific notation permits
using the following two basic exponential rules, as they apply to the powers of 10:

Rule 1: 10n x 10m = 10n+m for any values, positive or negative, of n and m
Examples: 102 × 105 = 107 (that is, 100 × 100,000 = 10,000,000)

10-2 × 105 = 103 (that is, .01 × 100,000 = 1,000)
102 × 10-5 = 10-3 (that is, 100 × .00001 = .001)
10-2 × 10-5 = 10-7 (that is, .01 × .00001 = .0000001)
10-23 × 1034 = 1011

Rule 2:
1

10
10-n

n= for any positive or negative value of n

Examples:
1

10
102

2
- = (that is,

1
01

100
.

=)

1
10

102
2= -

(that is,
1

100
01= .)

1
10

103
3

- = (that is,
1

001
1000

.
=)

1
10

104
4= -

(that is,
1

10 000
0001

,
.=)

Notice that in scientific notation (as in exponential notation), if the exponent is positive,
it represents the actual number of zeros that follow the 1, but if the exponent is negative, is
represents one less than the number of zeros after the decimal point and before the 1.

After you understand the basic rules of using scientific notation, you can combine them
easily, as shown in this computation:

10 10
10

10
10

10 10 10
2 5

4

7

4
7 4 3× = = × =-

11Chapter 1
Preliminary Two: Exponential and
Scientific Notations

If scientific notation were concerned only with powers of 10, as in the preceding
example, its usefulness would be extremely limited. Fortunately, however, this notation can
be used with any decimal number. For example, take a look at this computation:

236,000 .345 1,345,000× ×
×67 8 000007. .

This computation is calculated more easily by first converting each number to its equivalent
scientific notation, and then combining exponents (using Rules 1 and 2) as follows:

2 36 10 3 45 10 1 345 10
6 78 10 7 0 10

5 1 6

1

. . .
. .

× × × × ×
× × ×

-

--6 =

2 36 3 45 1 345 10
6 78 7 0 10

10

5

. . .
. .

× × ×
× ×

=-

2 36 3 45 1 345 10
6 78 7 0

15. . .
. .

× × ×
×

Finally, the remaining numbers in the numerator can be multiplied and then divided by
the numbers in the denominator to yield a final result of .2307 × 1015 = 2.307 × 1014.

Whenever a formula contains one or more extremely small or large numbers, use the
technique of first, converting the number to scientific notation, and second, dealing with the
exponents and remaining numbers individually. This technique can be of great help in the
final computation. (Note that converting all the numbers isn’t necessary.) You’ll make use of
this technique often in performing hand calculations to validate results during the testing
phase of a program.

Scientific Notational Symbols Certain scientific notations occur frequently enough in
science and engineering applications that they have their own symbols. The most commonly
used are listed in Table 1.2.

Table 1.2 Scientific Notational Symbols

Scientific Notation Symbol Name
10-12 p pico
10-9 n nano
10-6 µ micro
10-3 m milli
103 k kilo
106 M mega
109 G giga
1012 T tera

For example, the storage capacities of computer disks and thumb drives are currently
specified in megabytes (MB) and gigabytes (GB), which means they contain millions (106)
and billions (109) of bytes, respectively. (See Section 1.5 for the definition of a byte.)Similarly,
computer processing speeds are specified in the nanosecond (nsec) range, which means a
billionth (10-9) of a second.

12 Preliminaries

EXERCISES 1.2

1. (Practice) Convert the following numbers from exponential form into standard decimal form:
a. 6.34e5

b. 1.95162e2

c. 8.395e1

d. 2.95e-3

e. 4.623e-4

2. (Practice) Convert the following numbers from scientific notation into standard
decimal form:
a. 2.67 × 103

b. 2.67 × 10-3

c. 1.872 × 109

d. 1.872 × 10-9

e. 2.67 × 103

f. 6.6256 × 10-34 (known as Planck’s constant)

3. (Practice) Write the following decimal numbers using scientific notation:
a. 126

b. 656.23

c. 3426.95

d. 4893.2

e. .321

f. .0123

g. .006789

4. (Practice) Compute the following:
a. 104 × 10-6 × 10-3 × 1012

b.
1

10 10 10 104 -6 -3 12× × ×

c.
10 10 102 7 4× ×
× × ×10 10 10 104 -6 -3 12

d.
10 10 103 7 4× ×

×10 10

- -

-6 -5

5. (Practice) Compute the following:
a. 2.8 × 104 × 1.6 × 10-6 × 3.2 × 10-3

b.
1

4.5 10 1.8 10 6.7 104 -6 -3× × × × ×

c.
1 4 10 2 5 10 5 3102 7 4. . .

3.2 10 1.4

× × × ×
× × 88 10 2.7 10-6 -3× × ×

d.
7 1 10 8 45 10 3 67103 7 4. . .

9.89 10

- -× × × ×
× --6 -56.28 10× ×

13Chapter 1
Preliminary Two: Exponential and
Scientific Notations

6. (Aeronautics) The initial acceleration, a, of a rocket fired from earth, with an initial
thrust, T, is given by this formula:

a
T mg

m
= −

a is the initial acceleration.
T is the thrust in Newtons.
m is the mass in kg.
g is the acceleration caused by gravity in m/s2.

a. Determine the units of the initial acceleration by calculating the units resulting from the
right side of the equation. (Hint: As listed in Table 1.1, a Newton is N = kg – m/s2.)

b. Determine the initial acceleration of a rocket having a mass of 5 × 104 kg and an ini-
tial thrust of 6 × 105 Newtons. The value of g is 9.81 m/s2.

7. (Heat Transfer) The energy radiated from the surface of the sun or a planet in the solar
system can be calculated by using Stephan-Boltzmann’s Law:
E = � T4

E is the energy radiated.
� is Stephan-Boltzmann’s constant (5.6697 × 10-8 Watts/m2K4).
T is the surface temperature in degrees Kelvin (°K = °C + 273).

a. Determine the units of E by calculating the units resulting from the right side of the
formula.

b. Determine the energy radiated from the sun’s surface, given that the sun’s average
temperature is approximately 6,000°K.

1.3 Preliminary Three: Software Development

A computer is a machine, and like other machines, such as an automobile or a lawnmower,
it must be turned on and then driven, or controlled, to perform the task it was meant to do.
In an automobile, for example, control is provided by the driver, who sits inside the car and
directs it. In a computer, the driver is a set of instructions called a program. More formally,
a computer program is a self-contained set of instructions used to operate a computer to
produce a specific result. Another term for a program or set of programs is software, and both
terms are used interchangeably throughout this book.1

At its most basic level, a program is a solution developed to solve a particular problem,
written in a form that can be executed on a computer. Therefore, writing a program is almost
the last step in a process that first determines the problem to be solved and the method to
be used in the solution. Each field of study has its own name for the systematic method of
designing solutions to solve problems. In science and engineering, the approach is referred
to as the scientific method, and in quantitative analysis, the approach is called the systems
approach. Professional software developers use the software development procedure for

1More inclusively, the term “software” is also used to denote both the programs and the data on which programs operate.

14 Preliminaries

understanding the problem to be solved and for creating an effective, appropriate software
solution. This procedure, illustrated in Figure 1.1, consists of three overlapping phases:

1. Development and design
2. Documentation
3. Maintenance

As a discipline, software engineering is concerned with creating readable, efficient,
reliable, and maintainable programs and systems, and it uses the software development
procedure to achieve this goal.

Phase I: Development and Design
Phase I begins with a statement of a problem or a specific request for a program, which is
referred to as a program requirement. After a problem has been stated or a specific request for
a program solution has been made, the development and design phase begins. This phase
consists of four well-defined steps, as illustrated in Figure 1.2.

Request for
a program

Time

Program no
longer used

Maintenance

Documentation

Development
and design

Program
life cycle
stages

Figure 1.1 The three phases of program development

Design

Coding

Testing

Development
and

design
steps

Analysis

Time

Figure 1.2 The development and design steps

15Chapter 1
Preliminary Three: Software Development

Step 1 Analyze the Problem

The analysis of a problem can consist of up to two parts. The first part is a basic analysis that
must be performed on all problems; it consists of extracting the complete input and output
information supplied by the problems. For this analysis, you must

1. Determine and understand the output items the program must produce.
2. Determine the input items.

Together, these two items are referred to as the problem’s input/output (I/O). Only after
determining a problem’s I/O can you select specific steps for transforming inputs into
outputs. At this point, doing a hand calculation to verify that the output(s) can indeed be
obtained from the inputs is sometimes necessary and/or useful. Clearly, if you have a formula
that relates inputs to the output, you can omit this step. If the required inputs are available
and the desired outputs can be produced, the problem is said to be clearly defined and can
be solved.

For a variety of reasons, completing a basic analysis might not be possible. If so, an
extended analysis might be necessary. An extended analysis simply means you must gather
more information about the problem so that you thoroughly understand what’s being asked
for and how to achieve the result. In this book, any additional information required to
understand the problem is supplied along with the problem statement.

Step 2 Develop a Solution

In this step, you select the exact set of steps, called an “algorithm,” to be used to solve the
problem. Typically, you find the solution by a series of refinements, starting with the initial
solution you find in the analysis step, until you have an acceptable and complete solution.
This solution must be checked, if it wasn’t done in the analysis step, to make sure it produces
the required outputs correctly. The check is usually carried out by doing one or more hand
calculations that haven’t been done already.

For small programs, the selected solution might be extremely simple and consist of only
one or more calculations. More typically, you need to refine the initial solution and organize
it into smaller subsystems, with specifications for how the subsystems interface with each
other. To achieve this goal, the solution’s description starts from the highest level (top)
requirement and proceeds downward to the parts that must be constructed to meet this
requirement. To make this explanation more meaningful, consider a computer program that
must track the number of parts in inventory. The required output for this program is a
description of all parts carried in inventory and the number of units of each item in stock; the
given inputs are the initial inventory quantity of each part, the number of items sold, the
number of items returned, and the number of items purchased.

For these specifications, a designer could initially organize the program’s requirements
into the three sections illustrated in Figure 1.3. This figure is referred to as both a top-level
structure diagram and a first-level structure diagram because it represents the first overall
structure of the program the designer has selected.

After an initial structure is developed, it’s refined until the tasks in the boxes are
completely defined. For example, the data entry and report modules shown in Figure 1.3
would be refined further. The data entry module certainly must include provisions for
entering data. Because planning for contingencies and human error is the system designer’s
responsibility, provisions must also be made for changing incorrect data after an entry is made
and for deleting previous entries. Similar subdivisions for the report module can be made.

16 Preliminaries

Figure 1.4 illustrates a second-level structure diagram for an inventory tracking system that
includes these further refinements.

The process of refining a solution continues until the smallest requirement is included.
Notice that the design produces a treelike structure, in which the levels branch out as you
move from the top of the structure to the bottom. When the design is finished, each task
designated in a box is typically coded with separate sets of instructions that are executed as
they’re called on by tasks higher up in the structure.

Step 3 Code the Solution (Write the Program)

This step consists of actually writing a C++ program that corresponds to the solution
developed in Step 2. If the analysis and solution steps have been performed correctly, the
coding step becomes rather mechanical in nature. In a well-designed program, the statements
making up the program, however, conform to certain well-defined patterns or structures that
have been defined in the solution step. These structures control how the program executes
and consist of the following types:

• Sequence
• Selection

Calculation
section

Data
entry

section

Report
section

Inventory
control

program

Figure 1.3 A first-level structure diagram

Calculation
section

Data
entry

section

Report
section

Inventory
control

program

Printer
reports

Screen
reports

Delete
data

Change
data

Enter
data

Figure 1.4 A second-level structure diagram

17Chapter 1
Preliminary Three: Software Development

• Iteration
• Invocation

Sequence defines the order in which the program executes instructions. Specifying which
instruction comes first, which comes second, and so on is essential if the program is to achieve
a well-defined purpose.

Selection provides the capability to make a choice between different operations, depending
on the result of some condition. For example, the value of a number can be checked before a
division is performed: If the number is not zero, it can be used as the denominator of a division
operation; otherwise, the division isn’t performed and the user is issued a warning message.

Iteration, also referred to as “looping” and “repetition,” makes it possible to repeat the
same operation based on the value of a condition. For example, grades might be entered and
added repeatedly until a negative grade is entered. In this case, the entry of a negative grade
is the condition that signifies the end of the repetitive input and addition of grades. At that
point, an average for all grades entered could be calculated.

Invocation involves invoking, or summoning, a set of statements as it’s needed. For example,
computing a person’s net pay involves the tasks of obtaining pay rates and hours worked,
calculating the net pay, and providing a report or check for the required amount. Each task is
typically coded as a separate unit that’s called into execution, or invoked, as it’s needed.

Step 4 Test and Correct the Program

The purpose of testing is to verify that a program works correctly and actually fulfills its
requirements. In theory, testing would reveal all existing program errors. (In computer
terminology, a program error is called a bug.2) In practice, finding all errors would require
checking all possible combinations of statement execution. Because of the time and effort
required, this goal is usually impossible, except for extremely simple programs. (Section 4.8
explains why this goal is generally considered impossible.)

Because exhaustive testing isn’t feasible for most programs, different philosophies and
methods of testing have evolved. At its most basic level, however, testing requires a conscious
effort to make sure a program works correctly and produces meaningful results. This effort means
giving careful thought to what the test is meant to achieve and to the data used in the test. If
testing reveals an error (bug), the process of debugging, which includes locating, correcting, and
verifying the correction, can be initiated. Realize that although testing might reveal the presence
of an error, it doesn’t necessarily indicate the absence of one. Therefore, the fact that a test revealed one
bug does not indicate that another one isn’t lurking somewhere else in the program.

To catch and correct errors in a program, developing a set of test data for determining
whether the program gives correct answers is important. In fact, often an accepted step in
formal software development is to plan test procedures and create meaningful test data before
writing the code. Doing this step first helps you be more objective about what the program
must do because it circumvents the subconscious temptation after coding to avoid test data
that would reveal a problem with your program. The procedures for testing a program should
examine every possible situation in which the program will be used. The program should be
tested with data in a reasonable range as well as at the limits and in areas where the program

2The derivation of this term is rather interesting. When a program stopped running on the Mark I at Harvard University in September 1945,
Grace Hopper traced the malfunction to a dead insect that had gotten into the electrical circuits. She recorded the incident in her logbook as
“Relay #70. . . . (moth) in relay. First actual case of bug being found.”

18 Preliminaries

should tell the user that the data is invalid. Developing good test procedures and data for
sophisticated problems can be more difficult than writing the program code itself.

Table 1.3 lists the comparative amount of effort that’s typically expended on each
development and design step in large commercial programming projects. As this listing
shows, coding is not the major effort in Phase I. Many new programmers have trouble
because they spend the majority of their time writing the program and don’t spend enough
time understanding the problem or designing an appropriate solution. To help you avoid
making the same mistake, remember the programming proverb, “It is impossible to write a
successful program for a problem or application that’s not fully understood.” An equally
valuable proverb is, “The sooner you start coding a program, the longer it usually takes to
complete.”

Table 1.3 Effort Expended in Phase I

Step Effort
Analyze the problem 10%
Develop a solution 20%
Code the solution (write the program) 20%
Test the program 50%

Phase II: Documentation
Because of inadequate documentation, so much work becomes useless or lost and many tasks
must be repeated, so documenting your work is one of the most important steps in problem
solving. Many critical documents are created during the analysis, design, coding, and testing
steps. Completing the documentation phase requires collecting these documents, adding
user-operating material, and presenting documentation in a form that’s most useful to you and
your organization.

Although not everybody classifies them in the same way, there are five main documents
for every problem solution:

• Program description
• Algorithm development and changes
• Well-commented program listing
• Sample test runs
• Users’ manual

Putting yourself in the shoes of a person who might use your work—anyone from
secretaries to programmers/analysts and management—should help you strive to make the
content of important documentation clear. The documentation phase formally begins in the
development and design phase and continues into the maintenance phase.

Phase III: Maintenance
This phase is concerned with the ongoing correction of problems, revisions to meet changing
needs, and addition of new features. Maintenance is often the major effort, the primary
source of revenue, and the longest lasting of the engineering phases. Development might
take days or months, but maintenance could continue for years or decades. The better the
documentation is, the more efficiently maintenance can be performed, and the happier
customers and end users will be.

19Chapter 1
Preliminary Three: Software Development

Backup
Although not part of the formal design process, making and keeping backup copies of the
program at each step of the programming and debugging process are critical. Deleting or
changing a program’s current working version beyond recognition is all too easy. With backup
copies, you can recover the last stage of work with little effort. The final working version of
a useful program should be backed up at least twice. In this regard, another useful
programming proverb is, “Backup is unimportant if you don’t mind starting over again.”

Many organizations keep at least one backup on site, where it can be retrieved easily, and
another backup copy in a fireproof safe or at a remote location.

EXERCISES 1.3

Note: In each of these exercises, a programming problem is given. Read the problem statement first,
and then answer the questions pertaining to the problem. Do not attempt to write a program to
solve the problems. Instead, simply answer the questions following the program specifications.

N
O

T
E

1. (Electrical Eng.) You’ve been asked to write a C++ program to calculate the total resistance
of a series circuit. In this circuit, the total resistance is the sum of all individual resistance
values. The circuit consists of a number of 56-ohm, 33-ohm, and 15-ohm resistors.
a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Determine a formula for converting input items into output items. The number of
56-ohm resistors is m, the number of 33-ohm resistors is n, and the number of 15-ohm
resistors is p.

d. Test the formula written for Exercise 1c, using the following sample data: m = 17,
n = 24, and p = 12.

2. (Physics) You’ve been asked to write a program to calculate the value of distance, in
miles, given this relationship:
distance = rate × elapsed time
a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Determine a formula for converting input items into output items.

d. Test the formula written for Exercise 2c, using the following sample data: rate is 55
miles per hour and elapsed time is 2.5 hours.

e. How must the formula you determined in Exercise 2c be modified if the elapsed time
is given in minutes instead of hours?

20 Preliminaries

3. (Electrical Eng.) You’ve been asked to write a program that outputs the following
specifications:

Voltage amplification: 35
Power output: 2.5 Watts
Bandwidth: 15 KHz

a. For this programming problem, how many lines of output are required?

b. How many inputs does this problem have?

c. Determine a formula for converting input items into output items.

4. (Physics) You’ve been asked to write a C++ program to determine how far a car has traveled
after 10 seconds, assuming the car is initially traveling at 60 mph and the driver applies the
brakes to decelerate at a uniform rate of 12 mi/sec2. Use the following formula:
distance = st - (1/2)dt2

s is the initial speed of the car.
d is the deceleration.
t is the elapsed time.

a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Determine a formula for converting input items into output items.

d. Test the formula written for Exercise 4c, using the data given in the problem.

5. (General Math) Consider the following programming problem: In 1627, Manhattan
Island was sold to Dutch settlers for $24. If the proceeds of that sale had been deposited
in a Dutch bank paying 5% interest, compounded annually, what would the principal bal-
ance be at the end of 2002? The following display is required: “Balance as of December
31, 2002 is: xxxxxx”; xxxxxx is the amount calculated by your program.
a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Determine a formula for converting input items into output items.

d. Test the formula written for Exercise 5c, using the data given in the problem statement.

6. (Electrical Eng.) You’ve been asked to write a program that calculates and displays the
output voltages of two electrical circuits and the sum of the two voltages. The output
voltage for the first circuit is given by this formula:

150
0 38

V
f.

The output voltage for the second circuit is given by this formula:

230

56 0 982 2

V

f+ (.)

V is the input voltage to the circuit.
f is the frequency in Hertz.

21Chapter 1
Preliminary Three: Software Development

a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Determine a formula for converting input items into output items.

d. Test the formula written for Exercise 6c, using the following sample data: The first
circuit is operated with an input voltage of 1.2 volts at a frequency of 144 Hertz, and
the second circuit is operated with an input voltage of 2.3 volts at 100 Hertz.

7. (Statistics) Consider the following programming problem: This is the formula for the
standard normal deviate, z, used in statistical applications:
z = (X - µ)/�

X is a single value.
µ refers to an average value.
� refers to a standard deviation.

Using this formula, you need to write a program that calculates and displays the value of
the standard normal deviate when X = 85.3, µ = 80, and � = 4.
a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Determine a formula for converting input items into output items.

d. Test the formula written for Exercise 7c, using the data given in the problem.

8. (Electrical Eng.) Read the following problem statement: The electrical resistance, r, of a
metal wire, in ohms, is given by this formula:

r
ml
a

=

m is the resistivity of the metal.
l is the length of the wire in feet.
a is the cross-sectional area of the wire in circular mils.

Using this information, you need to write a C++ program to calculate the resistance of a
wire that’s 125 feet long, has a cross-sectional area of 500 circular mils, and is copper. The
resistivity of copper, m, is 10.4.
a. Determine the outputs required of the program.

b. What inputs does the program require?

c. What is the formula for obtaining the outputs from the inputs?

1.4 Preliminary Four: Algorithms

Before a program is written, the programmer must clearly understand what data are to be
used, the desired result, and the procedure used to produce this result. As mentioned
previously, the procedure, or solution, selected is referred to as an algorithm. More precisely,
an algorithm is defined as a step-by-step sequence of instructions that must terminate and
that describe how the data is to be processed to produce the desired outputs. In essence, an
algorithm answers the question “What method will you use to solve this problem?”

22 Preliminaries

Only after you clearly understand the data you’ll be using and select an algorithm (the
specific steps required to produce the desired result) can you code the program. Seen in this
light, programming is the translation of a selected algorithm into a language the computer
can use.

To understand how an algorithm works, consider a simple problem: A program must
calculate the sum of all whole numbers from 1 through 100. Figure 1.5 illustrates three
methods you could use to find the required sum. Each method constitutes an algorithm.

Clearly, most people wouldn’t bother to list the possible alternatives in a detailed step-by-
step manner, as shown in Figure 1.5, and then select one of the algorithms to solve the problem.
Most people, however, don’t think algorithmically; they tend to think heuristically. For example,

Method 1 - Columns: Arrange the numbers from 1 to 100 in a column and add
 them

1
2
3
4
.
.
.

98
99

+100
5050

Method 2 - Groups: Arrange the numbers in groups that sum to 101 and multiply
 the number of groups by 101

1 + 100=101
 2 + 99=101

3 + 98=101
4 + 97=101

49 + 52=101
50 + 51=101

.

.

50 groups

(50 x 101=5050)

Method 3 - Formula: Use the formula

n= number of terms to added (100)
a= first number to be added (1)
b= last number to be added (100)

n(a + b)

2
sum =

.

.

= 5050
100(1 + 100)

2
sum =

where

Figure 1.5 Summing the numbers 1 through 100

23Chapter 1
Preliminary Four: Algorithms

if you have to change a flat tire on your car, you don’t think of all the steps required—you simply
change the tire or call someone else to do the job. This is an example of heuristic thinking.

Unfortunately, computers don’t respond to heuristic commands. A general statement
such as “add the numbers from 1 to 100” means nothing to a computer because it can
respond only to algorithmic commands written in a language it understands, such as C++. To
program a computer successfully, you must understand this difference between algorithmic
and heuristic commands. A computer is an “algorithm-responding” machine; it’s not an
“heuristic-responding” machine. You can’t tell a computer to change a tire or to add the
numbers from 1 through 100. Instead, you must give the computer a detailed, step-by-step
set of instructions that collectively form an algorithm. For example, the following set of
instructions forms a detailed method, or algorithm, for determining the sum of the numbers
from 1 through 100:

Set n equal to 100
Set a = 1
Set b equal to 100
Calculate sum = n(a + b)/2
Print the sum

These instructions are not a computer program. Unlike a program, which must be written in
a language the computer can respond to, an algorithm can be written or described in various
ways. When English-like phrases are used to describe the steps in an algorithm, as in this
example, the description is called pseudocode. When mathematical equations are used, the
description is called a formula. When diagrams with the symbols shown in Figure 1.6 are
used, the description is referred to as a flowchart. Figure 1.7 illustrates using these symbols
to depict an algorithm for determining the average of three numbers.

24 Preliminaries

Terminal

Input/output

Process

Flow lines

Decision

Loop

Predefined process

Connector

Report

Indicates the beginning or end of a program

Indicates an input or output operation

Indicates computation or data manipulation

Used to connect the other flowchart symbols
and indicate the logic flow

Indicates a program branch point

Indicates the initial, limit, and increment
values of a loop

Indicates a predefined process, as in calling
a function

Indicates an entry to, or exit from, another
part of the flowchart or a connection point

Indicates a written output report

Symbol Name Description

Figure 1.6 Flowchart symbols

25Chapter 1
Preliminary Four: Algorithms

Because flowcharts are cumbersome to revise and can support unstructured programming
practices easily, they have fallen out of favor by professional programmers. Using pseudocode
to express the logic of algorithms has gained increasing acceptance. Short English phrases are
used to describe an algorithm with pseudocode. Here’s an example of acceptable pseudocode
for describing the steps to compute the average of three numbers:

Input the three numbers into the computer’s memory
Calculate the average by adding the numbers and dividing the sum by three
Display the average

As stated previously, before you can write an algorithm by using computer-language
statements, you must select an algorithm and understand the required steps. Writing an
algorithm by using computer-language statements is called coding the algorithm, which is the
third step in the program development procedure shown in Figure 1.8. Most of Part One of
this book is devoted to showing you how to develop and code algorithms into C++.

Start

Input
three

values

Calculate
the

average

Display
the

average

End

Figure 1.7 Flowchart for calculating the average of three numbers

Requirements

Select an
algorithm

(step-by-step
procedure)

Translate the
algorithm
into C++
(coding)

Figure 1.8 Coding an algorithm

26 Preliminaries

EXERCISES 1.4

Note: There’s no one correct answer for each task. This exercise is designed is to give you practice
in converting heuristic commands into equivalent algorithms and making the shift between the
processes involved in these two types of thinking.

N
O

T
E

1. (Practice) Determine a step-by-step procedure (list the steps) to do the following tasks:
a. Fix a flat tire.

b. Make a telephone call.

c. Log on to a computer.

d. Roast a turkey.

2. (Practice) Are the procedures you developed for Exercise 1 algorithms? Discuss why or
why not.

3. (Practice) Determine and write an algorithm (list the steps) to interchange the contents
of two cups of liquid. Assume that a third cup is available to hold the contents of either
cup temporarily. Each cup should be rinsed before any new liquid is poured into it.

4. (Electrical Eng.) Write a detailed set of instructions in English to calculate the resis-
tance of the following resistors connected in series: n resistors, each having a resistance of
56 ohms; m resistors, each having a resistance of 33 ohms; and p resistors, each having a
resistance of 15 ohms. Note that the total resistance of resistors connected in series is the
sum of all individual resistances.

5. (Numerical) Write a set of detailed, step-by-step instructions in English to find the
smallest number in a group of three integer numbers.

6. (Numerical) a. Write a set of detailed, step-by-step instructions in English to calculate
the fewest number of dollar bills needed to pay a bill of amount TOTAL. For example,
if TOTAL is $97, the bills would consist of one $50 bill, two $20 bills, one $5 bill, and
two $1 bills. (For this exercise, assume that only $100, $50, $20, $10, $5, and $1 bills are
available.)

b. Repeat Exercise 6a, but assume the bill is to be paid only in $1 bills.

7. (Data Processing) a. Write an algorithm to locate the first occurrence of the name
JEAN in a list of names arranged in random order.

b. Discuss how you could improve your algorithm for Exercise 7a if the list of names
were arranged in alphabetical order.

8. (Data Processing) Determine and write an algorithm to determine the total occurrences
of the letter e in any sentence.

9. (Numerical) Determine and write an algorithm to sort four numbers into ascending
(from lowest to highest) order.

27Chapter 1
Preliminary Four: Algorithms

1.5 A Closer Look: Software, Hardware, and Computer
Storage3

The process of writing a program, or software, is called programming, and the set of
instructions used to construct a program is called a programming language. Programming
languages come in a variety of forms and types.

Machine Language
At their most fundamental level, the only programs that can actually be used to operate a
computer are machine-language programs. These programs, also referred to as executable
programs (executables, for short), consist of a sequence of instructions composed of binary
numbers, such as:4

11000000 000000000001 000000000010
11110000 000000000010 000000000011

Machine-language instructions consist of two parts: an instruction and an address. The
instruction part, referred to as the opcode (short for operation code), is usually the leftmost set of
bits and tells the computer the operation to be performed, such as add, subtract, multiply, and
so on. The rightmost bits specify the memory addresses of the data to be used. For example,
assume that the eight leftmost bits of the first instruction contain the opcode to add, and the next
two groups of 12 bits are the addresses of the two operands to be added. This instruction would
be a command to “add the data in memory location 1 to the data in memory location 2.”
Similarly, assuming that the opcode 11110000 means multiply, the next instruction is a command
to “multiply the data in memory location 2 by the data in location 3.”

Assembly Languages
Because each class of computers—such as IBM, Apple, and Hewlett-Packard—has its own
particular machine language, writing machine-language programs is tedious and time
consuming.5 One of the first advances in programming was substituting word-like symbols,
such as ADD, SUB, and MUL, for binary opcodes and using decimal numbers and labels for
memory addresses. Using these symbols and decimal values for memory addresses, the
previous two machine-language instructions can now be written as follows:

ADD 1, 2
MUL 2, 3

Programming languages using this type of symbolic notation are referred to as assembly
languages. Because computers can execute only machine-language programs, the instructions
in an assembly-language program must be translated into a machine-language program before
they can be executed on a computer (see Figure 1.9). Translator programs that perform this
function for assembly-language programs are known as assemblers.

3This topic can be omitted on first reading without loss of subject continuity.
4Converting binary to decimal numbers is explained at the end of this section.
5In actuality, the machine-level language is defined for the processor around which the computer is constructed.

28 Preliminaries

Low- and High-Level Languages
Both machine-level and assembly languages are classified as low-level languages because they
use instructions that are tied to one type of computer. Therefore, an assembly-language
program is limited to being used only with the specific computer type for which it’s written.
These programs do, however, permit using special features of a particular computer type and
generally execute at the fastest level possible.

In contrast, a high-level language uses instructions resembling written languages, such as
English, and can be run on a variety of computer types. Visual Basic, C, C++, and Java are
examples of high-level languages. Using C++, an instruction to add two numbers and
multiply the sum by a third number can be written as follows:

result = (first + second) * third;

Programs written in a computer language (high- or low-level) are referred to as both
source programs and source code. Like a low-level assembly program, after a program is
written in a high-level language, it must be translated into the machine language of the
computer on which it will run. This translation can be done in two ways.

When each statement in a high-level source program is translated separately and
executed immediately after translation, the programming language is called an interpreted
language, and the program doing the translation is an interpreter.

When all statements in a high-level source program are translated as a complete unit
before any statement is executed, the programming language is called a compiled language.
In this case, the program doing the translation is a compiler. Both compiled and interpreted
versions of a language can exist, although one typically predominates. C++ is predominantly
a compiled language.

Figure 1.10 illustrates the relationship between a C++ source program and its compilation
into a machine-language executable program. As shown, the source program is entered by
using an editor program, which is a word-processing program that’s part of the development
environment the compiler supplies. Remember, however, that you can begin entering code
only after you have analyzed an application and planned the program’s design carefully.

Translating the C++ source program into a machine-language program begins with the
compiler. The output the compiler produces is called an object program, which is a
machine-language version of the source code. Source code almost always makes use of
existing preprogrammed code—code you have written previously or code the compiler
provides, such as mathematical code for finding a square root. Additionally, a large C++
program might be stored in two or more separate program files. Any additional code must be
combined with the object program before the program can be executed. It’s the task of the
linker to perform this step. The result of the linking process is a machine-language
(executable) program that contains all the code your program requires and is ready for
execution. The last step in the process is to load the machine-language program into the
computer’s main memory for actual execution.

An assembly-
language
program

Translation
program

(assembler)

A machine-
language
program

Figure 1.9 Assembly-language programs must be translated

29Chapter 1
A Closer Look: Software, Hardware,
and Computer Storage

Procedural and Object Orientations
In addition to being classified as high- or low-level, programming
languages are classified by orientation—procedural or object
oriented. In a procedural language, the instructions are used to create
self-contained units, referred to as procedures. The purpose of a
procedure is to accept data as input and transform the data in some
manner to produce a specific result as an output. Until the 1990s,
most high-level programming languages were procedural.

Currently, object orientation has taken center stage. One moti-
vation for object-oriented languages was the development of graphical
screens and support for graphical user interfaces (GUIs), capable of
displaying windows containing both graphical shapes and text. In a
GUI environment, each window can be considered an object with
associated characteristics, such as color, position, and size. In an
object-oriented approach, a program must first define the objects it’s
manipulating. This definition includes a description of the objects’
general characteristics, such as initial size, shape, and color. Addi-
tionally, specific code must be supplied to manipulate each object,
such as changing its size and position, and transferring data between
objects. Object-oriented languages have also become more promi-
nent because they support reusing existing code more easily, which
removes the need to revalidate and retest new or modified code.

C++, which is classified as an object-oriented language, contains
features of both procedural and object-oriented languages. In this
book, you design and develop both types of code, which is how most
current C++ programs are written. Because object-oriented C++ code
always contains some procedural code, and many simple C++ pro-
grams are written entirely in procedural code, this type of code is
presented in Part One of this book.

Application and System Software
Two logical categories of computer programs are application software
and system software. Application software consists of programs writ-
ten to perform particular tasks that users require. All the programs in
this book are examples of application software.

System software is the collection of programs that must be
readily available to any computer system for it to operate. In the

computer environments of the 1950s and 1960s, users had to load system software by hand
to prepare the computer to do anything at all. This software was loaded by using rows of
switches on a front panel, and the commands entered by hand were said to “boot” the
computer, an expression derived from “pulling yourself up by your bootstraps.” Today, the
so-called bootstrap loader is a permanent, automatically executed component of a computer’s
system software.

Collectively, the set of system programs used to operate and control a computer is called
the operating system (OS). Tasks handled by modern OSs include memory management;
allocation of CPU time; control of input and output units, such as keyboards, screens, and
printers; and management of secondary storage devices. Many OSs handle large programs as
well as multiple users concurrently by dividing programs into segments that are moved

An
executable
program

Other
object

files
(library)

Linker

The
C++

object
program

Compiler

Editor

Type in
the C++ program

The
C++

source
program

Figure 1.10 Creating an
executable C++ program

30 Preliminaries

between the disk and memory as needed. With these OSs, referred to as multiuser systems,
more than one user can run a program on the computer. Additionally, many OSs, including
most windowed environments, enable each user to run multiple programs and are called
multiprogrammed and multitasking systems.

The Development of C++
The purpose of most application programs is to process data to produce specific results. In
a procedural language, a program is constructed from sets of instructions, with each set
referred to as a procedure, as noted previously. Each procedure moves the data one step
closer to the final desired output along the path shown in Figure 1.11.

The programming process in Figure 1.11 mirrors
the input, processing, and output hardware units used
to construct a computer (discussed later in “Computer
Hardware”). This mirroring isn’t accidental because
early programming languages were designed to match
and to control corresponding hardware units.

The first procedural language, FORTRAN
(derived from FORmula TRANslation), was intro-
duced in 1957 and remained popular until the early

1970s. FORTRAN has algebra-like instructions that concentrate on the processing phase
shown in Figure 1.11. It was developed for scientific and engineering applications that
required high-precision numerical outputs, accurate to many decimal places. For example,
calculating a rocket’s trajectory or the bacterial concentration level in a polluted pond, as
illustrated in Figure 1.12, requires evaluating a mathematical equation to a high degree of
numerical accuracy and is typical of FORTRAN-based applications.

The next important high-level application language was COBOL (COmmon Business-
Oriented Language), which was introduced in the 1960s and remained a major procedural
language throughout the 1980s. This language had features geared toward business applica-
tions, which required simpler mathematical calculations than those for engineering
applications. One of COBOL’s main benefits was providing extensive output formats that
made it easy to create reports containing columns of neatly formatted monetary amounts, as

Process
the
data

Input
data

Output
results

Figure 1.11 Basic procedural
operations

Time

Bacteria growth
in a polluted pond

C
on

ce
nt

ra
tio

n
le

ve
l

Figure 1.12 FORTRAN was developed for scientific and engineering applications

31Chapter 1
A Closer Look: Software, Hardware,
and Computer Storage

illustrated in Figure 1.13. It forced programmers to construct well-defined, structured
procedures that followed a more consistent pattern than was required in FORTRAN.

Another language, BASIC (Beginners All-purpose Symbolic Instruction Code), was
developed at Dartmouth College in the 1960s. BASIC was a scaled-down version of
FORTRAN intended as an introductory language for college students. It was a fairly
straightforward, easy-to-understand language that didn’t require detailed knowledge of a
specific application. Its main drawback was that it didn’t require or enforce a consistent,
structured approach to creating programs.

To remedy this drawback and make understanding and reusing code easier, the Pascal
language (named after the 17th-century mathematician Blaise Pascal) was developed in 1971.
It gave students a firmer foundation in structured programming design than early versions of
BASIC did.

Structured programs are created by using a set of well-defined structures organized into
separate programming sections. Each section performs a specific task that can be tested and
modified without disturbing other program sections. The Pascal language was so rigidly
structured, however, that escapes from the structured sections didn’t exist, even when
escapes would be useful. This limitation was unacceptable for many real-world projects and
is one of the reasons Pascal didn’t become widely accepted in scientific and engineering
fields. Instead, the C language became the dominant engineering applications language of
the 1980s. Ken Thompson, Dennis Ritchie, and Brian Kernighan of AT&T Bell Laboratories
developed this structured, procedural language in the 1970s. C’s extensive capabilities allow
writing programs in a high-level language yet still accessing a computer’s machine-level
features directly.

Finally, C++ was developed in the early 1980s, when Bjarne Stroustrup (also at AT&T)
used his simulation language background to create an object-oriented programming language.
A central feature of simulation languages is that they model real-life situations as objects.
This object orientation, which was ideal for graphical screen objects such as rectangles,
circles, and windows, was combined with existing C features to form the C++ language.
Therefore, C++ retained the extensive structured and procedural capabilities of C but added
its object orientation to become a true general-purpose programming language. C++ can be
used for everything from simple, interactive programs to sophisticated, complex engineering
and scientific programs, within the context of a truly object-oriented structure.

Part No. Description Quantity Price

 12225 #4 Nails, Common 25 boxes 1.09
 12226 #6 Nails, Common 30 boxes 1.09
 12227 #8 Nails, Common 65 boxes 1.29
 12228 #10 Nails, Common 57 boxes 1.35
 12229 #12 Nails, Common 42 boxes 1.09
 12230 #16 Nails, Common 25 boxes 1.09

Figure 1.13 COBOL was developed for business applications

32 Preliminaries

Computer Hardware
All computers, from large supercomputers to desktop PCs, must be capable of at least the
following:

• Accepting input
• Displaying output
• Storing information in a logical, consistent format (traditionally binary)
• Performing arithmetic and logic operations on input or stored data
• Monitoring, controlling, and directing the computer’s overall operation and sequencing

Figure 1.14 illustrates the computer components that support these capabilities and
collectively form a computer’s hardware.

The arithmetic and logic unit (ALU) performs all arithmetic and logic functions, such as
addition and subtraction.

The control unit directs and monitors the computer’s overall operation. It keeps track of
the next instruction’s location in memory, issues the signals for reading data from and writing
data to other units, and controls execution of all instructions.

The memory unit stores information in a logical, consistent format. Typically, both
instructions and data are stored in memory, usually in separate areas.

The input and output (I/O) units provide the interface where peripheral devices, such as
keyboards, monitors, printers, and card readers, are attached.

Because memory in very large quantities is still expensive and volatile (meaning the
information is lost when power is turned off), it’s not practical as a permanent storage area for
programs and data. Secondary (or auxiliary) storage is used for this purpose. Media such as
punched cards were used in the past, but secondary storage is now on magnetic tape,
magnetic disks, USB/flash drives, and CDs/DVDs.

In the first commercially available computers of the 1950s, hardware units were built by
using relays and vacuum tubes. These computers were enormous pieces of equipment
capable of thousands of calculations per second and cost millions of dollars.

Arithmetic
and

logic unit
(ALU)

OutputInput

Memory
Secondary

storage

Control

Central processing unit
(CPU)

Figure 1.14 Basic hardware units of a computer

33Chapter 1
A Closer Look: Software, Hardware,
and Computer Storage

The introduction of transistors in the 1960s reduced the size and cost of computer
hardware. The transistor’s small size—about one-twentieth the size of vacuum tubes—
allowed manufacturers to combine the ALU with the control unit into a single unit called the
central processing unit (CPU). Combining the ALU and control unit made sense because most
control signals that a program generates are directed to the ALU in response to arithmetic
and logic instructions in the program. Combining the ALU with the control unit also
simplified the interface between these two units and improved processing speed.

Integrated circuits (ICs) were introduced in the mid-1960s, which resulted in another
major reduction in the space required to produce a CPU. Initially, ICs were manufactured
with up to 100 transistors on a single square-centimeter chip of silicon and were called
small-scale integrated (SSI) circuits. Current versions of these chips, called very large-scale
integrated (VLSI) chips, can contain more than a million transistors. With VLSI chip
technology, the giant computers of the 1950s could be transformed into today’s desktop and
notebook PCs. Each unit required to form a computer (CPU, memory, and I/O) is now
manufactured on a single VLSI chip, and a single-chip CPU is referred to as a microprocessor.
Figure 1.15 illustrates how these chips are connected internally in current desktop PCs.

Concurrent with the remarkable reduction in hardware size has been a dramatic decrease
in cost and increase in processing speeds. Computer hardware that cost more than a million
dollars in 1950 can now be purchased for less than $100. If the same reductions occurred in
the automobile industry, for example, a Rolls Royce could now be purchased for $10!
Similarly, current computers’ processing speeds have increased by a factor of thousands over
their 1950s predecessors, with computational speeds now being measured in millions of
instructions per second (MIPS) and billions of instructions per second (BIPS).

Computer Storage
The physical components used in manufacturing a computer preclude using the same
symbols people use for numbers and letters. For example, the number 126 isn’t stored with
the symbols 1, 2, and 6, nor is the letter you recognize as an A stored with this symbol. In
this section, you see why and learn how computers store numbers. In Chapter 2, you see how
letters are stored.

Microprocessor
(CPU) Memory Input Output

Figure 1.15 VLSI chip connections for a desktop PC

34 Preliminaries

The smallest and most basic data item in a computer is called a bit. Physically, a bit is
actually a switch that can be open or closed. The convention followed in this book is that the
open position is represented as a 0, and the closed position is represented as a 1.6

A single bit that can represent the values 0 and 1 has limited usefulness. All computers,
therefore, group a set number of bits together for storage and transmission. Grouping 8 bits
to form a larger unit, called a byte, is an almost universal computer standard. A single byte
consisting of 8 bits, with each bit being a 0 or 1, can represent any one of 256 distinct
patterns. These patterns consist of 00000000 (all eight switches open) to 11111111 (all eight
switches closed) and all possible combinations of 0s and 1s in between. Each pattern can be
used to represent a letter of the alphabet, a character (such as a dollar sign or comma), a single
digit, or a number containing more than one digit. The collection of patterns used to
represent letters, single digits, and other characters is called a character code. (One character
code, called ASCII, is discussed in Section 2.1.) The patterns used to store numbers are
called number codes, one of which is explained in the next section.

Twos Complement Numbers The most common number code for storing integer values
in a computer is called the twos complement representation. Using this code, the integer
equivalent of any bit pattern, such as 10001101, is easy to determine and can be found for
positive or negative integers with no change in the conversion method. For convenience,
assume byte-sized bit patterns consisting of 8 bits each, although the procedure carries over
to larger bit patterns.

The easiest way to determine the integer each bit pattern represents is to construct a simple
device called a value box. Figure 1.16 shows a value box for a single byte. Mathematically, each
value in this box represents an increasing power of two. Because twos complement numbers
must be capable of representing both positive and negative integers, the leftmost position, in
addition to having the largest absolute magnitude, has a negative sign.

To convert any binary number, such as 10001101, simply insert the bit pattern into the
value box and add the values having 1s under them. Therefore, as illustrated in Figure 1.17,
the bit pattern 10001101 represents the integer number -115.

The value box can also be used in reverse to convert a base 10 integer number into its
equivalent binary bit pattern. Some conversions, in fact, can be made by inspection. For

6This convention, unfortunately, is rather arbitrary, and you often encounter the reverse, in which the open and closed positions are represented
as 1 and 0, respectively.

-128	ƒ64ƒ	ƒ32ƒ	ƒ16ƒ	ƒƒ8ƒ	ƒƒ4ƒ	ƒƒ2ƒ	ƒƒ1
ƒ |ƒƒƒƒ|ƒƒƒƒ|ƒƒƒƒ|ƒƒƒƒ|ƒƒƒƒ|ƒƒƒƒ|

Figure 1.16 An 8-bit value box

-128ƒ|ƒ64ƒ|ƒ32ƒ|ƒ16ƒ|ƒƒ8ƒ|ƒƒ4ƒ|ƒƒ2ƒ|ƒƒ1
ƒ----|----|----|----|----|----|----|---
 ƒ1ƒ|ƒƒ0ƒ|ƒƒ0ƒ|ƒƒ0ƒ|ƒƒ1ƒ|ƒƒ1ƒ|ƒƒ0ƒ|ƒƒ1
-128ƒ+ƒƒ0ƒ+ƒƒ0ƒ+ƒƒ0ƒ+ƒƒ8ƒ+ƒƒ4ƒ+ƒƒ0ƒ+ƒƒ1ƒ=ƒ-115

Figure 1.17 Converting 10001101 to a base 10 number.

35Chapter 1
A Closer Look: Software, Hardware,
and Computer Storage

example, the base 10 number -125 is obtained by adding 3 to -128. Therefore, the binary
representation of -125 is 10000011, which equals -128 + 2 + 1. Similarly, the twos complement
representation of the number 40 is 00101000, which is 32 + 8.

Although the value box conversion method is deceptively simple, it’s related to the
underlying mathematical basis of twos complement binary numbers. The original name of
the twos complement code was the weighted-sign code, which correlates to the value box. As
the name “weighted sign” implies, each bit position has a weight, or value, of two raised to
a power and a sign. The signs of all bits except the leftmost bit are positive, and the sign of
the leftmost bit is negative.

In reviewing the value box, you can see that any twos complement binary number with
a leading 1 represents a negative number, and any bit pattern with a leading 0 represents a
positive number. Using the value box, it’s easy to determine the most positive and negative
values capable of being stored. The most negative value that can be stored in a single byte
is the decimal number -128, which has the bit pattern 10000000. Any other non-zero bit
simply adds a positive amount to the number. Additionally, a positive number must have a
0 as its leftmost bit. From this, you can see that the largest positive 8-bit twos complement
number is 01111111, or 127.

Words and Addresses One or more bytes can be grouped into larger units, called words,
to facilitate faster and more extensive data access. For example, retrieving a word consisting
of 4 bytes from a computer’s memory results in more information than retrieving a word of
a single byte. This type of retrieval is also faster than four separate 1-byte retrievals.
Achieving this increase in speed and capacity, however, requires increasing the computer’s
cost and complexity.

Early personal computers, such as the Apple IIe and Commodore, stored and transmitted
words consisting of single bytes. The first IBM PCs used word sizes of 2 bytes, and more
current PCs store and process words of 4 to 16 bytes each.

The number of bytes in a word determines the maximum and minimum values the word
can represent. Table 1.4 lists these values for 1-, 2-, and 4-byte words (derived by using 8-,
16-, and 32-bit value boxes, respectively).

Table 1.4 Word Size and Integer Values

Word Size Maximum Integer Value Minimum Integer Value
1 byte 127 -128
2 bytes 32,767 -32,768
4 bytes 2,147,483,647 -2,147,483,648

In addition to representing integer values, computers must also store and transmit numbers
containing decimal points, which are mathematically referred to as real numbers. The codes for
real numbers, which are more complex than those for integers, are in Appendix C.

36 Preliminaries

1.6 Common Programming Errors

The most common errors associated with the material in this chapter are as follows:

1. Forgetting to check that all units for numerical values used in a calculation are
consistent.

2. Using an incorrect form of a conversion factor.
3. Rushing to write and run a program before fully understanding what’s required,

including the algorithms used to produce the required result. A symptom of this
haste to get a program entered into the computer is the lack of any documentation,
even a program outline or a written program. Many problems can be caught by
checking a written copy of the program or even checking a description of the
algorithm written in pseudocode.

4. Not backing up a program. Almost all new programmers make this mistake until they
lose a program that has taken considerable time to code.

5. Not understanding that computers respond only to explicitly defined algorithms.
Telling a computer to add a group of numbers is quite different from telling a friend
to add the numbers. The computer must be given precise instructions in a
programming language to perform the addition.

1.7 Chapter Summary
1. For a calculation to produce a correct and useful numerical value, the units corresponding

to the numerical value must also be correct.

2. To determine correct forms of a conversion factor, perform a unit analysis. This means
multiplying, dividing, and canceling units in the same manner as numerical values are
processed.

3. The programs used to operate a computer are also referred to as software.

4. A computer program is a self-contained unit of instructions and data used to operate a
computer to produce a specific result.

5. As a discipline, software engineering is concerned with creating readable, efficient,
reliable, and maintainable programs and systems.

6. The software development procedure consists of three phases: program development
and design, documentation, and maintenance.

7. The program development and design phase consists of four well-defined steps:

• Analyze the problem.

• Develop a solution.

• Code the solution (write the program).

• Test and correct the solution.

8. An algorithm is a step-by-step procedure that must terminate; it describes how a
computation or task is to be performed.

37Chapter 1
Chapter Summary

9. The four control structures used in coding a program are sequence, selection, iteration,
and invocation.

Preprogramming Projects for Chapter 1

1. (General Math) The volume of a sphere can be determined by using this formula:

V r= 4 3 3π

V is the volume of the sphere.
π is the dimensionless number (no units) having the value 3.1416, accurate to four
decimal places.
r is the radius in centimeters (cm) of the sphere.

a. Determine the units of V by calculating the units resulting from the right side of the
formula. Check that your answer corresponds to the units for work listed in Table 1.1.

b. Determine the volume of a sphere having a radius of 4 cm.

c. If you were required to write a computer program to determine the volume of a
sphere, what inputs, outputs, and algorithm would you use?

2. (Civil Eng.) The stress placed on the fixed end of a symmetrical steel I-beam, shown
in Figure 1.18, can be determined by this formula:

S
L d c

I
=

S is the stress.
L is weight, in lbs, of the load placed on the beam.
I is the beam’s rectangular moment of inertia in units of in4.
d is the distance, in inches, the load is placed from the fixed end of the beam
(technically referred to as the “moment arm”).
c is one half the height, in inches, of a symmetrical beam.

L

h

d

Figure 1.18 Determining the stress on an I-beam

38 Preliminaries

a. Determine the units of stress, S, by calculating the units resulting from the right side
of the formula.

b. For a steel beam having a rectangular moment of inertia of 21.4 in4 and a height of 6
inches, determine the stress for a load of 700 lbs placed 8 feet from the fixed end.

c. If you were required to write a computer program to determine the stress placed on
a symmetrical beam, what inputs, outputs, and algorithm would you use?

3. (Physics) Typically, most objects that radiate heat do so at many different wavelengths
(see the Technical Note in Section 3.5 for a description of wavelength). The wavelength
at which an object emits its maximum heat energy can be found by using Wein’s Law:

�max = W/T
�max is the maximum wavelength.
T is the object’s temperature in °K.
W is Wein’s constant (2897 microns/°K).

a. Determine the units of �max by calculating the units resulting from the right side of
the formula.

b. Determine the maximum heat-radiating wavelength for the sun, assuming a tempera-
ture of 6000°K.

c. If you were required to write a computer program to determine the heat radiated from
a planet, what inputs, outputs, and algorithm would you use?

4. (Physics) The energy, E, of a photon can be determined by using this formula:

E
h c=
λ

E is the energy of the photon.
h is known as Planck’s constant and has the value 6.6256 × 10-34 Joules/sec.
c is the speed of light, which is 299,792,458 m/s.
� is the wavelength of the light in meters.

a. Determine the units of a photon’s energy, E, by calculating the units resulting from
the right side of the formula.

b. Determine the energy of violet light, which has a wavelength of 5.9 × 10-6 meters.

c. If you were required to write a computer program to determine the energy of a photon
of different light wavelengths (such as red, green, and so forth), what inputs, outputs,
and algorithm would you use?

5. (Eng. Mechanics) The minimum radius, r, required of a cylindrical rod, such as that
used on a bicycle pedal (see Figure 1.19), to provide enough support for the pressure
exerted by the rider’s foot, yet not exceed the stress placed on the crank arm’s sprocket
attachment, is determined by this formula:

r
d P

S
3 =

π

r is the radius of the cylindrical rod in inches.

39Chapter 1
Preprogramming Projects

d is the length of the crank arm in inches.
P is the weight placed on the pedal in lbs.
S is the stress in lbs/in2.

a. Determine the value of r for a crank arm that’s 7 inches long, must accommodate a
maximum weight of 300 lbs, and be able to sustain a stress of 10,000 lbs/in2.

b. If you were asked to write a computer program to determine the radius of the
cylindrical rod for a bicycle’s crank arm, what inputs, outputs, and algorithm would
your program require?

6. (Heat Transfer) The following formula is used to determine the heat transferred
through a flat substance, such as a wall, with its two sides maintained at different
temperatures:

q k
T T

d
=

-
-2 1

q is the heat transfer.
k is the thermal conductivity of the substance in Watts/m°C.
T2 is the higher temperature on one side of the substance in °C.
T1 is the lower temperature on the other side of the wall in °C.
d is the thickness of the substance in meters.

a. Determine the units of q by calculating the units resulting from the right side of the
formula.

b. For a glass window with a thickness of 0.5 centimeters, a thermal conductivity of 0.77
Watts/m°C, and outside and inside temperatures of 36.6°C and 22.2°C, respectively,
determine the value of q.

c. If you were asked to write a computer program to determine the heat transfer through
a substance, what inputs, outputs, and algorithm would your program require?

d

Figure 1.19 Determining the radius of a bicycle’s crank arm

40 Preliminaries

Engineering and Scientific Disciplines

Aeronautical/Aerospace Engineering
Among the youngest of the engineering fields, aeronautical/aerospace engineering is
concerned with all aspects of designing, producing, testing, and using vehicles or
devices that fly in air (aeronautical) or space (aerospace), from hang gliders to space
shuttles. Because the science and engineering principles involved are so broad,
aeroengineers usually specialize in a subarea that might overlap with other engineering
fields, such as mechanical, metallurgical/materials, chemical, civil, or electrical
engineering. These subareas include the following:

� Aerodynamics: The study of flight characteristics of various structures or
configurations. Typical considerations are the drag and lift associated with airplane
design or the onset of turbulent flow. A knowledge of fluid dynamics is essential.
Modeling and testing all forms of aircraft are part of this subarea.

� Structural design: Designing, producing, and testing aircraft and spacecraft to
withstand the wide range of in-flight demands on these vehicles, such as
underwater vessels, are in the structural engineer’s province.

� Propulsion systems: The design of internal combustion, jet, and liquid- and
solid-fuel rocket engines and their coordination in the vehicle’s overall design.
Rocket engines, especially, require innovative engineering to accommodate the
extreme temperatures of storing, mixing, and burning fuels such as liquid oxygen.

� Instrumentation and guidance: The aerospace industry has been a leader in
developing and using solid-state electronics in the form of microprocessors to
monitor and adjust the operations of hundreds of aircraft and spacecraft
functions. This field uses the expertise of both electrical engineers and
aeroengineers.

� Navigation: Computing orbits within and outside the atmosphere and determin-
ing the orientation of a vehicle with respect to points on Earth or in space.

41Chapter 1
Preprogramming Projects

This page intentionally left blank

Chapter 2
Problem Solving
Using C++

2.1 Introduction to C++

2.2 Programming Style

2.3 Data Types

2.4 Arithmetic Operations

2.5 Variables and Declaration
Statements

2.6 A Case Study: Radar
Speed Traps

2.7 Common Programming Errors

2.8 Chapter Summary

An integral part of a building’s design is its structure, and the same is true for a program. Constructing
well-designed C++ programs depends on careful planning and execution, if the final design is to ensure
that the completed program accomplishes its intended purpose. A central element of this planning is
using modular program design, which is explained in Section 2.1. In this chapter, you also learn about
different types of data and how to process them in the context of a complete C++ program.

2.1 Introduction to C++

A well-designed program is constructed by using a design philosophy similar to one for
constructing a well-designed building. It doesn’t just happen; it depends on careful planning
and execution, if the final design is to accomplish its intended purpose.

As with buildings, an integral part of designing a program is its structure. Programs with
a structure consisting of interrelated segments (called modules), arranged in a logical, easily
understandable order to form an integrated and complete unit, are referred to as modular

programs (see Figure 2.1). Modular programs are easier to develop, correct, and modify than
programs constructed in some other manner.

Each module is designed and developed to perform a specific task and is actually a small
subprogram. A complete C++ program is constructed by combining as many modules as
necessary to produce the desired result. The advantage of modular construction is that you
can develop the program’s overall design before writing any modules. After finalizing
requirements for each module, you can then program the modules and integrate them into
the overall program as they’re completed.

In C++, modules can be classes or functions. It helps to think of a function as a small
machine that transforms the data it receives into a finished product. For example, Figure 2.2
illustrates a function that accepts two numbers as inputs and multiplies the two numbers to
produce one output. The process of converting inputs to results is encapsulated and hidden
in the function. In this regard, the function can be thought of as a single unit providing a
special-purpose operation.

Module 1

Module 2

Module 4

Module 3

Module 5 Module 6

Figure 2.1 A well-designed program is built by using modules

Result

(a x b)

First
number

Second
number

Figure 2.2 A multiplying function

44 Problem Solving Using C++

A similar analogy is suitable for a class, although it’s a more complicated unit because it
contains both data and functions for manipulating the data. Unlike a function, used to
encapsulate a set of operations, a class encapsulates both data and sets of operations. Each
class contains all the elements required for input, output, and processing its objects and can
be thought of as a small factory containing raw material (the data) and machines (the
functions). In the first part of this book, however, you’re focusing on the more basic function
module. Although you’ll also use capabilities provided by classes, it’s in Part Two that you
learn how to construct and program your own classes.

An important requirement for designing a good function is giving it a name that conveys
some idea of what the function does. The names allowed for functions are also used to name
other elements of the C++ language and are collectively referred to as identifiers. Identifiers
can be made up of any combination of letters, digits, or underscores (_) selected according
to the following rules:

1. The first character of the name must be a letter or an underscore.
2. Only letters, digits, or underscores can follow the first letter. Also, blank spaces aren’t

allowed to separate words in a function name; either use the underscore to separate
words, or capitalize the first letter of words after the first word.

3. A function name can’t be one of the keywords listed in Table 2.1. (A keyword is a
word the language sets aside for a special purpose and can be used only in a specified
manner.1)

4. The maximum number of characters in a function name is 1024.2

Table 2.1 Keywords in C++

auto delete goto public this
break do if register template
case double inline return typedef
catch else int short union
char enum long signed unsigned
class extern new sizeof virtual
const float overload static void
continue for private struct volatile
default friend protected switch while

Examples of valid C++ identifiers are the following:

degToRad intersect addNums slope
bessel1 multTwo findMax density

These are examples of invalid identifiers:

1AB3 Begins with a number, which violates rule 1.
E*6 Contains a special character, which violates rule 2.
while Consists of a keyword, which violates rule 3.

1Keywords in C++ are also reserved words, which means they must be used only for their specified purpose. Attempting to use them for any
other purpose generates an error message.
2The ANSI standard requires that C++ compilers provide at least this number of characters.

45Chapter 2
Introduction to C++

In addition to conforming to C++’s identifier rules, a C++ function name must always be
followed by parentheses. Also, a good function name should be a mnemonic (pronounced
“knee-mon-ic”), which is a word designed as a memory aid. For example, the function name
degToRad() is a mnemonic for a function that converts degrees to radians. The name helps
identify what the function does. Function names that aren’t mnemonics should not be used
because they convey no information about what the function does. Here are some examples
of valid function names that aren’t mnemonics:

easy() c3po() r2d2() theForce() mike()

Function names can also consist of mixed uppercase and lowercase letters, as in
theForce(). This convention is becoming increasingly common in C++, although it’s not
necessary. Identifiers in all uppercase letters are usually reserved for symbolic constants,
covered in Section 3.5.

If you do mix uppercase and lowercase letters, be aware that C++ is a case-sensitive
language, meaning the compiler distinguishes between uppercase and lowercase letters.
Therefore, in C++, the names TOTAL, total, and TotaL are three different identifiers.

The main() Function
As mentioned, a distinct advantage of using functions—and, as you see in Part Two, classes—
is that you can plan the program’s overall structure in advance. You can also test and verify
each function’s operation separately to make sure it meets its objectives.

For functions to be placed and executed in an orderly fashion, each C++ program must have
one, and only one, function named main(). The main() function is referred to as a driver
function because it tells other functions the sequence in which they execute (see Figure 2.3).3

Figure 2.4 shows the main() function’s structure. The first line of the function—in this
case, int main()—is referred to as a function header. This line is always the first line of
a function and contains three pieces of information:

• What type of data, if any, is returned from the function
• The name of the function
• What type of data, if any, is sent to the function

The keyword before the function name defines the type of value the function returns
when it has finished operating. When placed before the function’s name, the keyword int
(listed in Table 2.1) means the function returns an integer value. Similarly, when the
parentheses following the function name are empty, no data is transmitted to the function
when it runs. (Data transmitted to a function at runtime is referred to as arguments of the
function.) The braces, { and }, determine the beginning and end of the function body and
enclose the statements making up the function. The statements inside the braces determine
what the function does, and each statement must end with a semicolon (;).

You’ll be naming and writing many of your own C++ functions. In fact, the rest of Part One
is primarily about the statements required to construct useful functions and how to combine
functions and data into useful classes and programs. Each program, however, must have one and
only one main() function. Until you learn how to pass data to a function and return data from

3Functions executed from main() can, in turn, execute other functions. Each function, however, always returns to the function that initiated
its execution. This is true even for main(), which returns control to the operating system that was in effect when main() was initiated.

46 Problem Solving Using C++

a function (the topics of Chapter 6), the function header shown in Figure 2.4 serves for all the
programs you need to write. For simple programs, the first two lines

int main()
{

simply designate that “the program begins here,” and the last two lines

return 0;
}

designate the end of the program. Fortunately, many useful functions and classes have
already been written for you. Next, you see how to use an object created from one of these
classes to create your first working C++ program.

2nd
module

3rd
module

Last
module

main()
You go first

I’m done

You go second

I’m done

You go third

I’m done

You go last

I’m done

.

.

.

.

.

.

1st
module

Figure 2.3 The main() function directs all other functions

int main()
{

 program statements in here;

 return 0;
}

The function body

Type of returned value

The function name An empty argument list

Figure 2.4 The structure of a main() function

47Chapter 2
Introduction to C++

The cout Object
One of the most versatile and commonly used C++ resources is an object named cout
(pronounced “see out” and derived from console output).4 It’s an output object that sends data
it receives to the standard display device. For most systems, this display device is a computer
screen. For example, if the data Hello there world! is sent to cout, this data is
displayed on your screen. To send the data Hello there world! to the cout object,
enclose the text in quotation marks ("text in here") and place the insertion symbol, <<,
after the object’s name and before the message, as shown in this line:

cout << "Hello there world!";

Now you see how to put all this together into a working C++ program, Program 2.1, that
can be run on your computer.

Program 2.1

#include <iostream>

using namespace std;

int main()

{

cout << "Hello there world!";

return 0;

}

The first line of the program is a preprocessor command that uses the reserved word
include:

#include <iostream>

Preprocessor commands begin with a pound sign (#) and perform some action before the
compiler translates the source program into machine code. Specifically, the #include
preprocessor command causes the contents of the named file—in this case, iostream—to
be inserted wherever the #include command appears in the program. The iostream file
is part of the standard library that contains, among other code, two classes: istream and
ostream. These two classes provide data declarations and methods for data input and
output, respectively. The iostream file is called a header file because a reference to it is
always placed at the top, or head, of a C++ program by using the #include command. You
might be wondering what the iostream file has to do with this simple program. The answer
is that the cout object is created from the ostream class. Therefore, the iostream header
file must be included in all programs using cout. As shown in Program 2.1, preprocessor
commands don’t end with a semicolon.

4The cout object is formally created for the ostream class, which is described in detail in Chapter 8.

48 Problem Solving Using C++

Following the preprocessor #include command is a statement containing the reserved
word using. The following statement, for example, tells the compiler where to look to find
header files in the absence of an explicit designation:

using namespace std;

You can think of a namespace as a section of source code the compiler accesses when it’s
looking for prewritten classes or functions. Because the iostream header file is contained
in a namespace named std (for the standard library), the compiler automatically uses
iostream’s cout object from this namespace whenever cout is referenced. By using
namespaces, you can create your own classes and functions with the same names the standard
library provides and place them in differently named namespaces. You can then tell the
program which class or function to use by specifying the namespace where you want the
compiler to look for the class or function. In Chapter 9, you learn how to create your own
namespaces. For now, you’ll use the classes and functions provided by the std namespace.

The using statement is followed by the start of the program’s main() function, which
begins with the function header described previously. The body of the function, enclosed in
braces, consists of only two statements. The first statement in main() sends one message
to the cout object: the string "Hello there world!".

Because cout is an object of a prewritten class, you don’t have to create it; it’s available
for use just by activating it correctly. Like all C++ objects, cout can perform only certain
well-defined actions. For cout, the action is to assemble data for output display. When a
string of characters is sent to cout, the object makes sure the string is displayed onscreen
correctly, as shown in this output from Program 2.1:

Hello there world!

Point of Information

What Is Syntax?
A programming language’s syntax is the set of rules for formulating statements that
are grammatically correct for the language. In practice, it means a C++ statement with
correct syntax has the proper form specified for the compiler. If statements are in the
proper form, the compiler accepts them and doesn’t generate an error message.

Note, however, that a statement or program can be syntactically correct yet logi-
cally incorrect. In other words, the statement or program is structured correctly but pro-
duces an incorrect result. It’s similar to an English statement that’s grammatically correct
but makes no sense, such as “The tree is a ragged cat.”

49Chapter 2
Introduction to C++

Strings in C++ are any combination of letters, numbers, and special characters enclosed in
quotation marks ("string in here"). The quotation marks delimit (mark) the beginning
and ending of the string and aren’t considered part of the string. Therefore, the string of
characters making up the message sent to cout must be enclosed in quotation marks, as was
done in Program 2.1.

Now examine another program to understand cout’s versatility. Read Program 2.2 to
determine what it does.

Program 2.2

#include <iostream>

using namespace std;

int main()

{

cout << "Computers, computers everywhere";

cout << "\n as far as I can C";

return 0;

}

When Program 2.2 is run, the following is displayed:

Computers, computers everywhere

as far as I can C

You might be wondering why the \n didn’t appear in the output. The characters \ and
n, when used together, are called a newline escape sequence. They tell cout to send
instructions to the display device to move to the beginning of a new line. Otherwise, the
second cout statement would simply append its characters to the previous statement’s
characters; it doesn’t start on a new line by itself. In C++, the backslash (\) character provides
an “escape” from the normal interpretation of the character following it and alters its
meaning—in this case, the n. If the backslash were omitted from the second cout statement
in Program 2.2, the n would be printed as the letter “n” and the program would output the
following:

Computers, computers everywheren as far as I can C

Newline escape sequences can be placed anywhere in the message sent to cout. See
whether you can determine the display Program 2.3 produces.

50 Problem Solving Using C++

Program 2.3

#include <iostream>

using namespace std;

int main()

{

cout << "Computers everywhere\n as far as\n\nI can see";

return 0;

}

This is the output for Program 2.3:

Computers everywhere

as far as

I can see

EXERCISES 2.1

1. (Practice) State whether the following are valid function names and if so, whether
they’re mnemonic names that convey some idea of the function’s purpose. If they are
invalid names, state why.

power density m1234 newamp 1234 abcd
total tangent absval computed b34a 34ab
volts$ a2B3 while minVal sine $sine
cosine speed netdistance sum return stack

2. (Practice) Assume the following functions have been written:

getLength(), getWidth(), calcArea(), displayArea()

a. From the functions’ names, what do you think each function might do?

b. In what order do you think a main() function might execute these functions (based
on their names)?

3. (Practice) Assume the following functions have been written:

speed(), distance(), acceleration()

From the functions’ names, what do you think each function might do?

51Chapter 2
Introduction to C++

4. (Practice) Determine names for functions that do the following:
a. Find the average of a set of numbers.

b. Find the area of a rectangle.

c. Find the minimum value in a set of numbers.

d. Find the density of a steel door.

e. Sort a set of numbers from lowest to highest.

5. (Program) a. Using cout, write a C++ program that displays your name on one line,
your street address on a second line, and your city, state, and zip code on a third line.

b. Run the program you have written for Exercise 5a. (Note: You must understand the
procedures for entering and running a C++ program on the particular computer instal-
lation you’re using.)

6. (Program) a. Write a C++ program to display the following output:

The cosecant of an angle
is equal to one over

the sine of the angle.

b. Compile and run the program you have written for Exercise 6a.

7. (Program) a. How many cout statements would you use to display the following output?

Degrees Radians
0 0.0000
90 1.5708
180 3.1416
270 4.7124
360 6.2832

b. What’s the minimum number of cout statements that could be used to print the out-
put in Exercise 7a?

c. Write a complete C++ program to produce the output shown in Exercise 7a.

d. Run the program you have written for Exercise 7c.

8. (Program) a. Assuming your compiler isn’t case sensitive, determine which of these pro-
gram unit names are equivalent:

AVERAG averag MODE BESSEL Mode
Total besseL TeMp Densty TEMP
denSTY MEAN total mean mode

b. Redo Exercise 8a, assuming a case-sensitive compiler.

Project Structuring Exercises

Most projects, both programming and nonprogramming, can usually be structured into smaller
subtasks or units of activity. These smaller subtasks can often be delegated to different
people so that when all the tasks are finished and integrated, the project or program is
completed. For Exercises 9 through 14, determine a set of subtasks that, performed together,
complete the project. Be aware that each exercise has many possible solutions. The only
requirement is that the set of subtasks, when performed together, complete the required task.

52 Problem Solving Using C++

Note: The purpose of these exercises is to have you consider the different ways that complex tasks
can be structured. Although there’s no one correct solution to these exercises, there are incorrect
solutions and solutions that are better than others. An incorrect solution is one that doesn’t fully
specify the task. One solution is better than another if it more clearly or easily identifies what must
be done.

N
O

T
E

9. (Practice) You’re given the task of wiring and installing lights in your attic. Determine a
set of subtasks to accomplish this task. (Hint: The first subtask is determining the place-
ment of light fixtures.)

10. (Practice) You’re given the job of preparing a complete meal for five people next
weekend. Determine a set of subtasks to accomplish this task. (Hint: One subtask, not
necessarily the first, is buying the food.)

11. (Practice) You’re a sophomore in college and are planning to go to graduate school for a
master’s degree in electrical engineering after you graduate. List a set of major objectives
you must fulfill to meet this goal. (Hint: One subtask is “Determine the correct courses to
take.”)

12. (Practice) You’re given the job of planting a vegetable garden. Determine a set of sub-
tasks to accomplish this task. (Hint: One subtask is planning the garden’s layout.)

13. (Practice) You’re responsible for planning and arranging the family camping trip this
summer. List a set of subtasks to accomplish this task. (Hint: One subtask is selecting the
campsite.)

14. (Data Processing) a. A national medical testing laboratory wants a new computer system
to analyze its test results. The system must be capable of processing each day’s results as
well as retrieving and outputting a printed report of all results meeting certain criteria,
such as all results for a particular doctor or for hospitals in a certain state. Determine
three or four major program units into which this system could be separated. (Hint: One
possible program unit is “Prepare Daily Results” to create each day’s reports.)

b. Suppose someone enters incorrect data for a test result, and the error is discovered
after the system has entered and stored the data. What program unit is needed to cor-
rect this problem? Discuss why such a program unit might or might not be required
by most systems.

c. Assume a program unit exists that allows users to change data that has been entered
and stored incorrectly. Discuss the need for including an “audit trail” that would allow
reconstructing the changes later as well as when they were made and who made them.

2.2 Programming Style

C++ programs start execution at the beginning of the main() function. Because a program
can have only one starting point, every C++ program must contain one and only one main()
function. As you have seen, all the statements making up the main() function are then
included within the braces following the function name. Although the main() function must
be present in every C++ program, C++ doesn’t require placing the word main, the
parentheses, or the braces in any particular form. The form used in the previous section

53Chapter 2
Programming Style

int main()
{

program statements in here;

return 0;
}

was chosen strictly for clarity and ease in reading the program but is not required. For
example, the following general form of a main() function would also work:

int main
(
) { first statement;second statement;

third statement;fourth
statement;
return 0;}

Notice that you can put more than one statement on a line or place a statement on more
than one line. Except for strings, quotation marks, identifiers, and keywords, C++ ignores all
white space. (White space refers to any combination of blank spaces, tabs, or new lines.) For
example, changing the white space in Program 2.1 and making sure not to split the string
Hello there world! across two lines results in the following valid program:

#include <iostream>
using namespace std;
int main
(
){
cout <<
"Hello there world!";

return 0;
}

Although this version of main() does work, it’s an example of poor programming style
because it’s difficult to read and understand. For readability, the main() function should
always be written in this standard form:

int main()
{

program statements in here;

return 0;
}

In this standard form, the function name starts at the left margin (call this column 1) and
is placed with the required parentheses on a line by itself. The opening brace of the function
body follows in column 1 on the next line, directly under the first letter of the line containing
the function’s name. Similarly, the closing function brace is placed by itself in column 1 (lined
up with the opening brace) as the last line of the function. This structure highlights the
function as a single unit.

Within the function, all program statements are indented at least two spaces. Indentation
is another sign of good programming practice, especially if the same indentation is used for
similar groups of statements. Review Program 2.2 to see that the same indentation was used
for both cout statements.

54 Problem Solving Using C++

As you progress in your understanding and mastery of C++, you’ll develop your own
indentation standards. Just keep in mind that the final form of your programs should be
consistent and always aid others in reading and understanding your programs.

Comments
Comments are explanatory remarks made in a program. When used carefully, comments can
be helpful in clarifying the overall program’s purpose, explaining what a group of statements
is meant to accomplish, or explaining what one line is intended to do. C++ supports two types
of comments: line and block. Both types can be placed anywhere in a program and have no
effect on program execution. The compiler ignores all comments—they are there strictly for
the convenience of anyone reading the program.

A line comment begins with two slashes (//) and continues to the end of the line. For
example, the following examples are line comments:

// this is a comment
// this program prints out a message
// this program calculates a square root

The symbols //, with no white space between them, designate the start of the line
comment. The end of the line on which the comment is written designates the end of the
comment. A line comment can be written on a line by itself or at the end of the line
containing a program statement. Program 2.4 shows using line comments in a program.

Program 2.4

// this program displays a message

#include <iostream>

using namespace std;

int main()

{

cout << "Hello there world!"; // this produces the display

return 0;

}

The first comment appears on a line by itself at the top of the program, and this location
is a good one for a comment describing the program’s purpose. If more comments are
required, they can be placed one per line, as with the comment after the cout statement.
When a comment is too long to be contained on one line, it can be separated into two or more
line comments, with each comment preceded by the // symbol. For example, the following
comment generates a C++ error message because the second line doesn’t start with the //
symbol:

// this comment is invalid because it
extends over two lines

55Chapter 2
Programming Style

This comment is correct, written as follows:

// this comment is used to illustrate a
// comment that extends across two lines

Comments that span two or more lines are, however, more conveniently written as
C-type block comments, which begin with the symbols /* and end with the symbols */, as
in this example:

/* This is a block comment that
spans
three lines */

In C++, a program’s structure is intended to make it readable and understandable, so
extensive comments aren’t necessary. This guideline is reinforced by carefully selecting
function names to convey their purpose, as discussed previously. However, if the program
element’s purpose still isn’t clear from its structure, name, or context, include comments
where clarification is needed.

Obscure code with no comments is a sure sign of bad programming, especially when
other people must maintain or read the program. Similarly, excessive comments are a sign of
bad programming because not enough thought was given to making the code self-
explanatory. Typically, any program you write should begin with comments including a short
program description, your name, and the date the program was written or last modified. For
space considerations and because all programs in this book were written by the author, these
initial comments are used only for short program descriptions when they aren’t provided as
part of the accompanying text.

EXERCISES 2.2

1. (Debug) a. Will the following program work?

#include <iostream>
using namespace std;
int main() {cout << "Hello there world!"; return 0;}

b. Even if the program in Exercise 1a works, explain why it’s not a good program.

2. (Modify) Rewrite the following programs to conform to good programming practice and
correct syntax:
a. #include <iostream>

int main(
){
cout <<
"The time has come"
; return 0;}

b. #include <iostream>
using namespace std; int main
(){cout << "Newark is a city\n";cout <<

56 Problem Solving Using C++

"In New Jersey\n"; cout <<
"It is also a city\n"
; cout << "In Delaware\n"
; return 0;}

c. #include <iostream>
using namespace std;
int main() {cout << Reading a program\n";cout <<
"is much easier\n"
; cout << "if a standard form for main is used\n")
; cout
<<"and each statement is written\n";cout
<< "on a line by itself\n")
; return 0;}

d. #include <iostream.h>
using namespace std;
int main
(){ cout << "Every C++ program"
; cout
<<"\nmust have one and only one"
;
cout << "main function"
;
cout <<
"\n the escape sequence of characters")
; cout <<
"\nfor a newline can be placed anywhere"

; cout
<<"\n within the message passed to cout"
; return 0;}

3. (For Thought) a. When used in a message, the backslash character alters the meaning of
the character immediately following it. If you want to print the backslash character, you
have to tell cout to escape from the way it normally interprets the backslash. What char-
acter do you think is used to alter the way a single backslash character is interpreted?

b. Using your answer to Exercise 3a, write the escape sequence for printing a backslash.

4. (For Thought) a. A token of a computer language is any sequence of characters, with
no intervening characters or white space, that taken as a unit has a unique meaning.
Using this definition of a token, determine whether escape sequences, function names,
and the keywords listed in Table 2.1 are tokens of the C++ language.

b. Discuss whether adding white space to a message alters the message and whether
messages can be considered tokens of C++.

c. Using the definition of a token in Exercise 4a, determine whether the following state-
ment is true: “Except for tokens of the language, C++ ignores all white space.”

57Chapter 2
Programming Style

2.3 Data Types

The objective of all programs is to process data, be it numerical, alphabetical, audio, or video.
Central to this objective is classifying data into specific types. For example, calculating a
rocket’s trajectory requires mathematical operations on numerical data, and alphabetizing a
list of names requires comparison operations on character-based data. Additionally, some
operations aren’t applicable to certain types of data. For example, it makes no sense to add
names together. To prevent programmers from attempting to perform an inappropriate
operation, C++ allows performing only certain operations on certain data types.

The types of data permitted and the operations allowed for each type are referred to as
a data type. Formally, a data type is defined as a set of values and a set of operations that can
be applied to these values. For example, the set of all integer (whole) numbers constitutes
a set of values, as does the set of all real numbers (numbers containing a decimal point).
These two sets of numbers, however, don’t constitute a data type until a set of operations is
included—in these examples, mathematical and comparison operations. The combination of
a set of values plus operations becomes a true data type.

C++ categorizes data types in two basic groupings: class data types and built-in data
types. A class data type (referred to as a “class,” for short) is a programmer-created data type,
which means the programmer defines the acceptable values and operations, using C++ code.
This data type is discussed in Part Two.

A built-in data type is provided as part of the C++ compiler and requires no external C++
code. Therefore, a built-in data type can be used without supplementary additions, such as
the iostream header file for the cout object. Built-in data types, also referred to as
primitive types, consist of the basic numerical types shown in Figure 2.5 and the operations
listed in Table 2.2. As shown in this table, most operations for built-in data types are
designated as symbols. For class data types, most operations are provided as functions.

Table 2.2 Built-in Data Type Operations

Built-in Data Type Operations
Integer +, -, *, /, %, =, ==, !=, <=, >=, sizeof(),

and bit operations (see Chapter 15)
Floating point +, -, *, /, =, ==, !=, <=, >=, sizeof()

To introduce C++’s built-in data types, literals are used. A literal is an acceptable value for
a data type. The term “literal” in this context means the value identifies itself. (Another name
for a literal is a literal value or constant.) For example, all numbers, such as 2, 3.6, and -8.2, are
referred to as literal values because they literally display their values. Text, such as "Hello
World!", is also a literal value because the text is displayed. You have been using literal values

Numerical data types

Floating-point
types

Integer types

Figure 2.5 Built-in data types

58 Problem Solving Using C++

throughout your life but have known them as numbers and words. In Section 2.5, you see some
examples of non-literal values—those that don’t display themselves but are stored and accessed
by using identifiers.

Integer Data Types
C++ provides nine built-in integer data types, as shown in Figure 2.6. The essential
difference between these integer data types is the amount of storage used for each type,
which affects the range of values each type is capable of representing. The three most
important and common types used in most applications are int, char, and bool. The other
types were provided to accommodate special situations (such as a small or large range of
numbers) and have been retained for historical reasons. They enabled programmers to
maximize memory usage by selecting the data type using the smallest amount of memory,
consistent with an application’s requirements. When computer memories were small,
compared with today’s computers, and expensive, the amount of memory used was a major
concern. Although no longer a concern for most programs, these types still allow programmers
to optimize memory usage when necessary, typically in special-purpose digital control
systems used in home appliances and automobiles.

The int Data Type The values supported by the int data type are whole numbers,
mathematically known as integers. An integer value consists of digits only and can optionally
be preceded by a plus (+) or minus (-) sign. Therefore, an integer value can be the number
0 or any positive or negative number without a decimal point, as shown in these examples
of valid integers:

0 5 -10 +25 1000 253 -26351 +36

As these examples illustrate, integers can contain a sign. However, no commas, decimal
points, or special symbols, such as the dollar sign, are allowed, as in these examples of invalid
integers:

$255.62 2,523 3. 6,243,892 1,492.89 +6.0

Compilers differ in their internal limits on the largest (most positive) and smallest (most
negative) integer values that can be stored in each data type.5 The most common storage

5The limits imposed by the compiler are found in the limits header file and defined as the hexadecimal constants int_max and int_min.

bool

char

short int

int

long int

unsigned char

unsigned short int

unsigned int

unsigned long int

Integer data types

Figure 2.6 C++ integer data types

59Chapter 2
Data Types

allocation is 4 bytes for the int data type, which restricts the values used to represent
integers from -2,147,483,648 to 2,147,483,647.6

The char Data Type The char data type is used to store single characters, including the
letters of the alphabet (uppercase and lowercase), the digits 0 through 9, and special symbols,
such as + $. , - and !. A character value is any single letter, digit, or special symbol
enclosed by single quotation marks, as shown in these examples:

'A' '$' 'b' '7' 'y' '!' 'M' 'q'

Character values are typically stored in a computer by using ASCII or Unicode codes.
The ASCII (American Standard Code for Information Interchange, pronounced “as-key”)
code provides codes for the English-language character set plus codes for printer and display
control, such as newline and printer paper eject codes. Each character code is contained in
a single byte, which provides 256 distinct codes. Table 2.3 lists the ASCII byte codes for
uppercase letters.

Additionally, C++ provides for the newer Unicode code that uses 2 bytes per character
and can represent 65,536 characters. This code is used for international applications because
it includes character sets for other languages in addition to English. As the first 256 Unicode
codes have the same numerical value as the 256 ASCII codes (the additional byte is coded
with all 0s), you needn’t be concerned with which storage code to use with English-language
characters.

Table 2.3 The ASCII Uppercase Letter Codes

Letter ASCII Code Letter ASCII Code
A 01000001 N 01001111
B 01000010 O 01001110
C 01000011 P 01010000
D 01000100 Q 01010001
E 01000101 R 01010010
F 01000110 S 01010011
G 01000111 T 01010100
H 01001000 U 01010101
I 01001001 V 01010110
J 01001010 W 01010111
K 01001011 X 01011000
L 01001100 Y 01011001
M 01001101 Z 01011010

Using Table 2.3, you can determine how the characters 'B', 'A', 'R', 'T', 'E', and
'R', for example, are stored in a computer by using ASCII codes. This sequence of six
characters requires 6 bytes of storage (1 byte for each letter) and is stored as illustrated in
Figure 2.7.

6The most negative number is always one higher than the most positive number. Effectively, the “lost” positive number is used for the number 0.
(See the twos complement method of integer storage, described in Section 1.6.)

60 Problem Solving Using C++

The Escape Character As you’ve seen in Section 2.1, the backslash (\) has a special
meaning in C++ as the escape character. When a backslash is placed in front of a group of
characters, it tells the compiler to escape from the way these characters are normally
interpreted. The combination of a backslash and these characters is called an escape sequence.
Table 2.4 lists C++’s most common escape sequences.

Table 2.4 Escape Sequences

Escape Sequence Character
Represented

Meaning ASCII Code

\n Newline Move to a new line 00001010
\t Horizontal tab Move to the next

horizontal tab
setting

00001001

\v Vertical tab Move to the next
vertical tab setting

00001011

\b Backspace Move back one
space

00001000

\r Carriage return Move the cursor to
the start of the
current line; used
for overprinting

00001101

\f Form feed Issue a form feed 00001100
\a Alert Issue an alert

(usually a bell
sound)

00000111

\\ Backslash Insert a backslash
character (used to
place an actual
backslash character
in a string)

01011100

\? Question mark Insert a question
mark character

00111111

\' Single quotation Insert a single-
quote character
(used to place an
inner single quote
within a set of
outer single quotes)

00100111

6 bytes of storage

B A R T E R

01000010 01000001 01010010 01010100 01000101 01010010

Figure 2.7 The letters BARTER stored in a computer

61Chapter 2
Data Types

Table 2.4 Escape Sequences (continued)

Escape Sequence Character
Represented

Meaning ASCII Code

\" Double quotation Insert a double-
quote character
(used to place an
inner double quote
within a set of
outer double
quotes)

00100010

\nnn Octal number Consider the
number nnn (n is a
digit) an octal
number

Dependent on nnn

\xhhhh Hexadecimal
number

Consider the
number hhhh (h is
a digit) a
hexadecimal
number

Dependent on
hhhh

\0 Null character Insert the null
character, which is
defined as having
the value 0

00000000

Although each escape sequence in Table 2.4 is made up of two characters, the
combination of these characters, with no intervening white space, causes the compiler to
create the single ASCII code listed in the table.

The bool Data Type In C++, the bool data type is used to represent Boolean (logical)
data, so it’s restricted to one of two values: true or false. This data type is most useful
when a program must examine a condition and take a prescribed course of action, based on
whether the condition is true or false. For example, in a sales application, the condition being
examined might be “is the total purchase for $100 or more.” Only when this condition is true
is a discount applied. Because the bool data type uses an integer storage code, however, it
has useful implications that most professional C++ programmers utilize. The practical uses of
Boolean conditions are covered in Chapter 4, so the bool data type is discussed in more
detail in that chapter.

Determining Storage Size
A unique feature of C++ is that you can see where and how values are stored. As an example,
the C++ operator sizeof() provides the number of bytes used to store values for the data
type named in the parentheses. (Review Section 1.6 if you’re unfamiliar with the concept of
a byte.) This built-in operator doesn’t use an arithmetic symbol to perform its operation.
Program 2.5 uses this operator to determine the amount of storage reserved for the int,
char, and bool data types.

62 Problem Solving Using C++

Program 2.5

#include <iostream>

using namespace std;

int main()

{

cout << "\nData Type Bytes"

<< "\n--------- -----"

<< "\nint " << sizeof(int)

<< "\nchar " << sizeof(char)

<< "\nbool " << sizeof(bool)

<< '\n';

return 0;

}

In reviewing Program 2.5, notice that a single character value is inserted in the display
by cout by enclosing it in single quotation marks, as in the escape sequence '\n' at the
end of the cout statement. In the first five displayed lines, this character is included in each
output string. Each time the compiler encounters the newline escape sequence, as a single
character or as part of a string, it’s translated as a single character that forces the display to
start at the beginning of a new line. Although quotation marks can be used for the final
newline insertion, as "\n", they designate a string. When only a single character is being
transmitted, and to emphasize that single characters are designated by using single quotation
marks, '\n' is used instead of "\n". From a practical standpoint, however, both notations
force a new line in the display.

Point of Information

The Character '\n' and the String "\n"
The compiler recognizes both '\n' and "\n" as containing the newline character. The
difference is in the data type used. Formally, '\n' is a character literal, and "\n" is a
string literal. From a practical standpoint, both cause the same thing to happen: A new
line is forced in the output display. In encountering the character value '\n', however,
the compiler translates it by using the ASCII code 00001010 (see Table 2.4). In encoun-
tering the string value "\n", the compiler translates it by using the correct character
code but also adds an end-of-string character, which is '\0'.

Good programming practice requires ending the last output display with a newline
escape sequence. This practice ensures that the first line of output from one program
doesn’t end up on the last line displayed by the previously executed program.

63Chapter 2
Data Types

The output of Program 2.5 is compiler dependent, meaning each compiler reports the
amount of storage it provides for the data type under consideration. When run on a computer
using Microsoft’s current Visual C++ .NET compiler, for example, the following output is
produced:

Data Type Bytes

--------- -----

int 4

char 1

bool 1

For this output, which is the typical storage almost all current C++ compilers provide,
you can determine the range of values that can be stored in each data type. To do so,
however, requires understanding the difference between a signed and an unsigned data type,
discussed next.

Signed and Unsigned Data Types
A signed data type permits storing negative values in addition to 0 and positive values, so int
is a signed data type. An unsigned data type provides for only non-negative values (that is, 0
and positive values). Some applications require only unsigned numerical values. For example,
many date applications store dates in the numerical form yearmonthday (storing 12/25/2007
as 20071225, for example) and are concerned only with dates after 0 CE. For these
applications, which never require a negative value, an unsigned data type can be used.

All unsigned integer types, such as unsigned int, provide a range of positive values
that, for all practical purposes, is double the range for their signed counterparts. This extra
positive range is made available by using the negative range of its signed version for
additional positive numbers.

With an understanding of the difference between signed and unsigned data types, you
can use Table 2.5 to determine the range of integer values supported by current C++
compilers. As you can see, a long int uses the same amount of storage (4 bytes) as an int.
The only requirement of the ANSI C++ standard is that an int must provide at least as
much storage as a short int, and a long int must provide at least as much storage as
an int. On early desktop computers with a memory capacity limited to thousands of bytes,
a short int typically used 1 byte of storage, an int 2 bytes, and a long int 4 bytes.
This storage limited the range of int values from -32,768 to +32,767 and unsigned int
values from 0 to 65,535, thus doubling the number of possible positive values, which was
significant. With the current range of int values in the -2 to +2 billion range, doubling

Point of Information

Object-Oriented and Procedural Programs
Except for the bool type, all of C++’s built-in data types are direct carryovers from the
C procedural language. Not surprisingly, programs using only built-in data types can’t
be object-oriented programs. Instead, as in Program 2.5, they become procedural pro-
grams, those based primarily on procedures, such as main().

Only when built-in data types are bundled together to form a packet of data,
which becomes an object, can an object-oriented program come into existence.

64 Problem Solving Using C++

positive values is rarely a consideration. Additionally, a long int is unnecessary now
because it is uses the same storage capacity as an int.

Table 2.5 Integer Data Type Storage

Name of Data Type Storage Size Range of Values
char 1 256 characters
bool 1 true (considered as any positive

value) and false (which is a 0)
short int 2 -32,768 to +32,767
unsigned short int 2 0 to 65,535
int 4 -2,147,483,648 to

+2,147,483,647
unsigned int 4 0 to 4,294,967,295
long int 4 -2,147,483,648 to

+2,147,483,647
unsigned long int 4 0 to 4,294,967,295

Floating-Point Types
A floating-point number, more commonly known as a real number, can be the number 0 or any
positive or negative number containing a decimal point, as shown in these examples:

+10.625 5. -6.2 3251.92 0.0 0.33 -6.67 +2.

Therefore, the numbers 5., 0.0, and +2. are classified as floating-point values, but the same
numbers written without a decimal point (5, 0, +2) are integer values. As with integer values,
special symbols such as the dollar sign and comma aren’t permitted in real numbers, as shown
in these examples of invalid real numbers:

5,326.25 24 6,459 $10.29 7.007.645

C++ supports three floating-point data types: float, double, and long double. The
difference between these data types is the amount of storage the compiler uses. Most
compilers use twice the amount of storage for doubles as for floats, which allows a
double to have approximately twice the precision of a float. For this reason, a float
value is sometimes referred to as a single-precision number and a double value as a
double-precision number. The actual storage allocation for each data type, however, depends
on the compiler. The ANSI C++ standard requires only that a double have at least the same
amount of precision as a float, and a long double have at least the same amount of
storage as a double. Currently, most C++ compilers allocate 4 bytes for floats and 8 bytes
for doubles and long doubles, which produces the range of numbers listed in Table 2.6.

Table 2.6 Floating-Point Data Types

Type Storage Absolute Range of Values (+ and -)
float 4 bytes 1.40129846432481707x10-45 to

3.40282346638528860x1038

double and long
double

8 bytes 4.94065645841246544x10-324 to
1.79769313486231570x10308

65Chapter 2
Data Types

In compilers using the same amount of storage for double and long double numbers,
these two data types are identical. (The sizeof() operator in Program 2.5 can always be
used to determine the amount of storage your compiler reserves for these data types.) A
float literal is indicated by appending an f or F to the number, and a long double is
created by appending an l or L to the number. In the absence of these suffixes, a
floating-point number defaults to a double. For example, take a look at the following:

9.234 indicates a double literal
9.234F indicates a float literal
9.234L indicates a long double literal

The only difference in these numbers is the amount of storage the computer can use for
them. Appendix C describes the binary storage format used for floating-point numbers and
its impact on number precision.

EXERCISES 2.3

1. (Practice) Determine data types appropriate for the following data:
a. The average of four grades

b. The number of days in a month

Point of Information

What Is Precision?
In numerical theory, the term precision typically refers to numerical accuracy. In this
context, the statement “This computation is accurate, or precise, to the fifth decimal
place” means the fifth digit after the decimal point has been rounded, and the number
is accurate to within ±0.00005.

In computer programming, “precision” can refer to the accuracy of a number or
the amount of significant digits in the number; significant digits are defined as the
number of clearly correct digits plus 1. For example, if the number 12.6874 has been
rounded to the fourth decimal place, it’s correct to say that this number is precise to
the fourth decimal place. In other words, all digits in the number are accurate except
the fourth decimal digit, which has been rounded. Similarly, this same number has a
precision of six digits, which means the first five digits are correct and the sixth digit
has been rounded. Another way of saying this is that the number 12.6874 has six sig-
nificant digits.

The significant digits in a number need not have any relation to the number of
displayed digits. For example, if the number 687.45678921 has five significant digits,
it’s accurate only to the value 687.46; the last digit is assumed to be rounded. Similarly,
dollar values in large financial applications are often rounded to the nearest hundred
thousand dollars. In these applications, a displayed dollar value of $12,400,000, for
example, isn’t accurate to the closest dollar. If this value is specified as having three
significant digits, it’s accurate only to the hundred-thousand digit.

66 Problem Solving Using C++

c. The length of the Golden Gate Bridge

d. The numbers in a state lottery

e. The distance from Brooklyn, N.Y. to Newark, N.J.

f. The single-character prefix that specifies a component type

2. (Practice) Compile and execute Program 2.5.

3. (Modify) Modify Program 2.5 to determine the storage your compiler uses for all the C++
integer data types.

4. (Practice) Show how the name KINGSLEY is stored in a computer that uses the ASCII
code by drawing a diagram similar to Figure 2.7, shown previously.

5. (Practice) Repeat Exercise 4 using the letters of your own last name.

6. (Modify) Modify Program 2.5 to determine how many bytes your compiler assigns to the
float, double, and long double data types.

7. (For Thought) Because computers use different representations for storing integer,
floating-point, double-precision, and character values, discuss how a program might alert
the computer to the data types of various values it will be using.

8. (For Thought) Although you have concentrated on operations involving integer and
floating-point numbers, C++ allows adding and subtracting characters and integers. (These
operations are possible with characters because they’re integer data types and are stored
by using integer codes.) Therefore, characters and integers can be mixed in arithmetic
expressions. For example, if your computer uses ASCII code, the expression 'a' + 1
equals 'b' and 'z' - 1 equals 'y' is valid. Similarly, 'A' + 1 is 'B' and 'Z' - 1
is 'Y'. With this information as background, determine the character results of the fol-
lowing expressions. (Assume all characters are stored by using ASCII codes.)
a. 'm' - 5

b. 'm' + 5

c. 'G' + 6

d. 'G' - 6

e. 'b' - 'a'

f. 'g' - 'a' + 1

g. 'G' - 'A' + 1

Note: To complete the following exercise, you need to understand basic computer storage
concepts. Specifically, if you’re unfamiliar with the concepts of bytes and words, refer to
Section 1.6 before doing the next exercise.

N
O

T
E

9. (Practice) Although the total number of bytes varies from computer to computer, memory
sizes of 65,536 to more than several million bytes are common. In computer language, the
letter K represents the number 1024, which is 2 raised to the 10th power, and M represents
the number 1,048,576, which is 2 raised to the 20th power. Therefore, a memory size of
640 KB is really 640 times 1024 (655,360 bytes), and a memory size of 4 MB is really 4 times

67Chapter 2
Data Types

1,048,576 (4,194,304 bytes). Using this information, calculate the actual number of bytes in
the following:
a. A memory containing 512 MB

b. A memory consisting of 256 MB words, where each word consists of 2 bytes

c. A memory consisting of 256 MB words, where each word consists of 4 bytes

d. A thumb drive that specifies 2 MB

e. A disk that specifies 250 MB

f. A disk that specifies 8 GB (Hint: See Table 1.2.)

2.4 Arithmetic Operations

The previous section presented the data values corresponding to C++’s built-in data types.
This section explains the arithmetic operations that can be applied to these values.

Integers and real numbers can be added, subtracted, multiplied, and divided. Although
it’s usually better not to mix integers and real numbers when performing arithmetic
operations, you can get predictable results when using different data types in the same
arithmetic expression. Surprisingly, you can add and subtract character data and mix it with
integer data to produce useful results. (For example, 'A' + 1 results in the character 'B'.)
These operations are possible because characters are stored by using integer codes.

The operators used for arithmetic operations are called arithmetic operators and are as
follows:

Operation Operator
Addition +
Subtraction -
Multiplication *
Division /
Modulus division7 %

These operators are also called binary operators, which means the operator requires two
operands to produce a result. An operand can be a literal value or an identifier with an
associated value. A simple binary arithmetic expression consists of a binary operator connecting
two literal values in this form:

literalValue operator literalValue

Examples of simple binary arithmetic expressions are the following:

3 + 7
8 - 3
12.62 + 9.8
0.08 * 12.2
12.6 / 2

7Don’t be concerned at this stage if you do not understand the term “modulus division.” You learn more about this operator later in “Integer
Division.”

68 Problem Solving Using C++

The spaces around arithmetic operators in these examples are inserted strictly for clarity
and can be omitted without affecting the value of the expression. However, an expression in
C++ must be entered in a straight-line form, as shown in these examples. For example, the
C++expression equivalent to 12.6 divided by 2 must be entered as 12.6 / 2, not as the
algebraic expression shown here:

12 6
2
.

You can use cout to display the value of any arithmetic expression onscreen. To do this, the
value must be sent to the object. For example, the following statement yields the display 21:

cout << (6 + 15);

Strictly speaking, the parentheses surrounding the expression 6 + 15 aren’t required to
indicate that the value of the expression (that is, 21) is being displayed.8 In addition to displaying
a numerical value, cout can display a string identifying the output, as was done in Section 2.1.
For example, the following statement sends two pieces of data, a string and a value, to cout:

cout << "The sum of 6 and 15 is " << (6 + 15);

Each set of data sent to cout must be preceded by its own insertion operator, <<. In the
preceding example, the first data sent for display is the string "The sum of 6 and 15
is ", and the second item sent is the value of the expression 6 + 15. This statement
produces the following display:

The sum of 6 and 15 is 21

The space between the word “is” and the number 21 is caused by the space in the string
sent to cout. As far as cout is concerned, its input is a set of characters sent to be displayed
in the order they’re received. Characters from the input are queued, one behind the other,
and sent to the screen for display. Placing a space in the input makes the space part of the
stream of characters that’s displayed. For example, the statement

cout << "The sum of 12.2 and 15.754 is " << (12.2 + 15.754);

yields the following display:

The sum of 12.2 and 15.754 is 27.954

When multiple insertions are sent to cout, the code can be spread across multiple lines.
Only one semicolon, however, must be used, which is placed after the last insertion and
terminates the complete statement. Therefore, the preceding display is also produced by the
following statement, which spans two lines:

cout << "The sum of 12.2 and 15.754 is "
<< (12.2 + 15.754);

However, when you allow a statement to span multiple lines, two rules must be followed:
A string contained in quotation marks can’t be split across lines, and the terminating
semicolon should appear only on the last line. You can always place multiple insertion
symbols in a line.

8The parentheses aren’t required because the + operator has a higher precedence than the << operator; therefore, the addition is performed
before the insertion.

69Chapter 2
Arithmetic Operations

If floating-point numbers have six or fewer decimal digits, they’re displayed with enough
decimal places to accommodate the fractional part of the number. If the number has more
than six decimal digits, the fractional part is rounded to six decimal digits, and if the number
has no decimal digits, neither a decimal point nor any decimal digits are displayed.9

Program 2.6 illustrates using cout to display the results of arithmetic expressions in the
statements of a complete program.

Program 2.6

#include <iostream>

using namespace std;

int main()

{

cout << "15.0 plus 2.0 equals " << (15.0 + 2.0) << endl

<< "15.0 minus 2.0 equals " << (15.0 - 2.0) << endl

<< "15.0 times 2.0 equals " << (15.0 * 2.0) << endl

<< "15.0 divided by 2.0 equals " << (15.0 / 2.0) << endl;

return 0;

}

The output of Program 2.6 is the following:

15.0 plus 2.0 equals 17

15.0 minus 2.0 equals 13

15.0 times 2.0 equals 30

15.0 divided by 2.0 equals 7.5

The only new item used in Program 2.6 is the term endl, which is an example of a C++
manipulator. A manipulator is an item used to change how the output stream of characters is
displayed. In particular, the endl manipulator first causes a newline character ('\n') to be
inserted in the display, and then forces all current insertions to be displayed immediately,
instead of waiting for more data. (Section 3.2 lists the most commonly used manipulators.)

Expression Types
An expression is any combination of operators and operands that can be evaluated to yield a
value. An expression containing only integer values as operands is called an integer
expression, and the result of the expression is an integer value. Similarly, an expression
containing only floating-point values (single-precision and double-precision) as operands is
called a floating-point expression (also referred to as a “real expression”), and the result of the

9None of this output is defined as part of the C++ language. Rather, it’s defined by a set of classes and routines provided with each C++ compiler.

70 Problem Solving Using C++

expression is a floating-point value. An expression containing integer and floating-point
values is called a mixed-mode expression. Although it’s usually better not to mix integer
andfloating-point values in an arithmetic operation, the data type of each operation is
determined by the following rules:

• If both operands are integers, the result of the operation is an integer.
• If one operand is a real value, the result of the operation is a double-precision value.

The result of an arithmetic expression is never a single-precision (float) number. This
is because during execution, a C++ program temporarily converts all single-precision
numbers to double-precision numbers when an arithmetic expression is evaluated.

Integer Division
The division of two integer values can produce rather strange results for the unwary. For
example, the expression 15/2 yields the integer result 7. Because integers can’t contain a
fractional part, a value of 7.5 can’t be obtained. The fractional part resulting when two
integers are divided—the remainder—is always dropped (truncated). Therefore, the value of
9/4 is 2 and 20/3 is 6.

Often, however, you need to retain the remainder of an integer division. To do this, C++
provides the modulus operator (also referred to as the “remainder operator”), which has the
symbol %. This operator captures the remainder when an integer is divided by an integer;
using a non-integer value with the modulus operator results in a compiler error. The
following examples show how the modulus operator is used:

9 % 4 is 1 (the remainder when 9 is divided by 4 is 1)
17 % 3 is 2 (the remainder when 17 is divided by 3 is 2)
15 % 4 is 3 (the remainder when 15 is divided by the 4 is 3)
14 % 2 is 0 (the remainder when 14 is divided by 2 is 0)

Negation
In addition to binary operators, C++ provides unary operators, which operate on a single
operand. One of these unary operators uses the same symbol as binary subtraction (-). With

Point of Information

The endl Manipulator
On many systems, the endl manipulator and the \n escape sequence are processed in
the same way and produce the same effect. The one exception is on systems where
output is accumulated internally until enough characters collect to make it advanta-
geous to display them all in one burst onscreen. In these systems, referred to as “buff-
ered,” the endl manipulator forces all accumulated output to be displayed
immediately, without waiting for additional characters to fill the buffer area before
being printed. As a practical matter, you wouldn’t notice a difference in the final
display. As a general rule, however, use the \n escape sequence whenever it can be
included in an existing string, and use the endl manipulator whenever a \n would
appear by itself or to formally signify the end of a specific group of output.

71Chapter 2
Arithmetic Operations

this unary operator, the minus sign in front of a single numerical value negates (reverses the
sign of) the number.

Table 2.7 summarizes the six arithmetic operations described so far and lists the data
type for the result each operator produces, based on the data type of the operands involved.

Table 2.7 Summary of Arithmetic Operators

Operation Operator
Symbol

Type Operand(s) Result

Addition + Binary Both are integers
One operand is not
an integer

Integer
Double-
precision

Subtraction - Binary Both are integers
One operand is not
an integer

Integer
Double-
precision

Multiplication * Binary Both are integers
One operand is not
an integer

Integer
Double-
precision

Division / Binary Both are integers
One operand is not
an integer

Integer
Double-
precision

Modulus % Binary Both are integers
One operand is not
an integer

Integer
Double-
precision

Negation - Unary Integer or double Same as
operand

Operator Precedence and Associativity
In addition to simple expressions, such as 5 + 12 and .08 * 26.2, you can create more
complex arithmetic expressions. C++, like most other programming languages, requires following
certain rules when writing expressions containing more than one arithmetic operator:

• Two binary operator symbols must never be placed side by side. For example, 5 *
% 6 is invalid because two operators, * and %, are placed next to each other.

• Parentheses can be used to form groupings, and all expressions enclosed in
parentheses are evaluated first. In this way, you can use parentheses to alter the
evaluation to any desired order. For example, in the expression (6 + 4) / (2 +
3), the 6 + 4 and 2 + 3 are evaluated first to yield 10 / 5. The 10 / 5 is then
evaluated to yield 2.

• Parentheses can be enclosed by other parentheses. For example, the expression (2 *
(3 + 7)) / 5 is valid and evaluates to 4. When parentheses are included within
parentheses, expressions in the innermost parentheses are always evaluated first. The
evaluation continues from innermost to outermost parentheses until all expressions in
parentheses have been evaluated. The number of closing parentheses,), must always
equal the number of opening parentheses, (, so that no unpaired sets exist.

72 Problem Solving Using C++

• Parentheses can’t be used to indicate multiplication; instead, the multiplication
operator, *, must be used. For example, the expression (3 + 4) (5 + 1) is
invalid. The correct expression is (3 + 4) * (5 + 1).

Parentheses should specify logical groupings of operands and indicate clearly, to the
compiler and programmers, the intended order of arithmetic operations. Although expres-
sions in parentheses are always evaluated first, expressions containing multiple operators,
whether enclosed in parentheses or not, are evaluated by the priority, or precedence, of the
operators. There are three levels of precedence:

1. P1—All negations are done first.
2. P2—Multiplication, division, and modulus operations are computed next. Expres-

sions containing more than one multiplication, division, or modulus operator are
evaluated from left to right as each operator is encountered. For example, in the
expression 35 / 7 % 3 * 4, all operations have the same priority, so the operations
are performed from left to right as each operator is encountered. The division is done
first, yielding the expression 5 % 3 * 4. The modulus operation, 5 % 3, is
performed next, yielding a result of 2. Finally, the expression 2 * 4 is computed to
yield 8.

3. P3—Addition and subtraction are computed last. Expressions containing more than
one addition or subtraction are evaluated from left to right as each operator is
encountered.

In addition to precedence, operators have an associativity, which is the order in which
operators of the same precedence are evaluated, as described in rule P2. For example, does
the expression 6.0 * 6 / 4 yield 9.0, which is (6.0 * 6) / 4, or 6.0, which is 6.0 *
(6 / 4)? The answer is 9.0 because C++’s operators use the same associativity as in general
mathematics, which evaluates multiplication from left to right, as rule P2 indicates.

Table 2.8 lists the precedence and associativity of the operators discussed in this section.
As you have seen, an operator’s precedence establishes its priority in relation to all other
operators. Operators at the top of Table 2.8 have a higher priority than operators at the
bottom of the table. In expressions with multiple operators of different precedence, the
operator with the higher precedence is used before an operator with lower precedence. For
example, in the expression 6 + 4 / 2 + 3, because the division operator has a higher
precedence (P2) than the addition operator, the division is done first, yielding an interme-
diate result of 6 + 2 + 3. The additions are then performed, left to right, to yield a final
result of 11.

Table 2.8 Operator Precedence and Associativity

Operator Associativity
Unary - Right to left
* / % Left to right
+ - Left to right

Finally, take a look at using Table 2.8 and the precedence rules to evaluate an expression
containing operators of different precedence, such as 8 + 5 * 7 % 2 * 4. Because the
multiplication and modulus operators have a higher precedence than the addition operator,

73Chapter 2
Arithmetic Operations

these two operations are evaluated first (P2), using their left-to-right associativity, before the
addition is evaluated (P3). Therefore, the complete expression is evaluated as the following:

8 + 5 * 7 % 2 * 4 =
8 + 35 % 2 * 4 =

8 + 1 * 4 =
8 + 4 = 12

EXERCISES 2.4

1. (Practice) For the following correct algebraic expressions and corresponding incorrect
C++ expressions, find the errors and write corrected C++ expressions:
Algebra C++ Expression
a. (2)(3) + (4)(5)

b. 6 18
2
+

c. 4 5

12 2 3 1

.

. .-

d. 4.6 (3.0 + 14.9)

e. (12.1 + 18.9) (15.3 - 3.8)

(2)(3) + (4)(5)

6 + 18 / 2

4.5 / 12.2 - 3.1

4.6 (3.0 + 14.9)

(12.1 + 18.9) (15.3 - 3.8)

2. (Practice) Determine the values of the following integer expressions:
a. 3 + 4 * 6

b. 3 * 4 / 6 + 6

c. 2 * 3 / 12 * 8 / 4

d. 10 * (1 + 7 * 3)

e. 50 % 20

f. 20 - 2 / 6 + 3

g. 20 - 2 / (6 + 3)

h. (20 - 2) / 6 + 3

i. (20 - 2) / (6 + 3)

j. (10 + 3) % 4

3. (Practice) Determine the value of the following floating-point expressions:
a. 3.0 + 4.0 * 6.0

b. 3.0 * 4.0 / 6.0 + 6.0

c. 2.0 * 3.0 / 12.0 * 8.0 / 4.0

d. 10.0 * (1.0 + 7.0 * 3.0)

e. 20.0 - 2.0 / 6.0 + 3.0

f. 20.0 - 2.0 / (6.0 + 3.0)

g. (20.0 - 2.0) / 6.0 + 3.0

h. (20.0 - 2.0) / (6.0 + 3.0)

4. (Practice) Evaluate the following mixed-mode expressions and list the data type of the
result. In evaluating the expressions, be aware of the data types of all intermediate
calculations.
a. 10.0 + 15 / 2 + 4.3

74 Problem Solving Using C++

b. 10.0 + 15.0 / 2 + 4.3

c. 3.0 * 4 / 6 + 6

d. 3 * 4.0 / 6 + 6

e. 20.0 - 2 / 6 + 3

f. 10 + 17 * 3 + 4

g. 10 + 17 / 3. + 4

h. 3.0 * 4 % 6 + 6

i. 10 + 17 % 3 + 4

5. (Practice) Assume that amount stores the integer value 1, m stores the integer value 50,
n stores the integer value 10, and p stores the integer value 5. Evaluate the following
expressions:
a. n / p + 3

b. m / p + n - 10 * amount

c. m - 3 * n + 4 * amount

d. amount / 5

e. 18 / p

f. -p * n

g. -m / 20

h. (m + n) / (p + amount)

i. m + n / p + amount

6. (Practice) Repeat Exercise 5, assuming that amount stores the value 1.0, m stores the
value 50.0, n stores the value 10.0, and p stores the value 5.0.

7. (Practice) Enter, compile, and run Program 2.6.

8. (Desk Check) Determine the output of the following program:

#include <iostream>
using namespace std;
int main() // a program illustrating integer truncation
{

cout << "answer1 is the integer " << 9/4;
cout << "\nanswer2 is the integer " << 17/3;

return 0;
}

9. (Desk Check) Determine the output of the following program:

#include <iostream>
using namespace std;
int main() // a program illustrating the % operator
{

cout << "The remainder of 9 divided by 4 is " << 9 % 4;
cout << "\nThe remainder of 17 divided by 3 is " << 17 % 3;

75Chapter 2
Arithmetic Operations

return 0;
}

10. (Program) Write a C++ program that displays the results of the expressions 3.0 * 5.0,
7.1 * 8.3 - 2.2, and 3.2 / (6.1 * 5). Calculate the value of these expressions
manually to verify that the displayed values are correct.

11. (Program) Write a C++ program that displays the results of the expressions 15 / 4, 15
% 4, and 5 * 3 - (6 * 4). Calculate the value of these expressions manually to
verify that the displayed values are correct.

2.5 Variables and Declaration Statements

All integer, floating-point, and other values used in a program are stored and retrieved from
the computer’s memory. Conceptually, locations in memory are arranged like the rooms in a
large hotel. Like room numbers in a hotel, each memory location has a unique address.
Before high-level languages such as C++, memory locations were referenced by their
addresses. For example, storing the integer values 45 and 12 in the memory locations 1652
and 2548 (see Figure 2.8) required instructions equivalent to the following:

Put a 45 in location 1652
Put a 12 in location 2548

To add the two numbers just stored and save the result in another memory location, such
as 3000, you need an instruction such as the following:

Add the contents of location 1652
to the contents of location 2548
and store the result in location 3000

Clearly, this method of storage and retrieval is cumbersome. In high-level languages such
as C++, symbolic names, called variables, are used in place of memory addresses. A variable
is simply a name the programmer assigns to refer to computer storage locations. The term
“variable” is used because the value stored in the memory locations assigned to the variable
can change, or vary. For each name the programmer uses, the computer keeps track of the
memory address corresponding to that name. In the hotel room analogy, it’s equivalent to
putting a name on a room’s door and referring to the room by this name, such as calling it the
Blue Room instead of Room 205.

1652 2548

1245

Memory addresses

Storage for one integer Storage for one integer

Figure 2.8 Enough storage for two integers

76 Problem Solving Using C++

In C++, the selection of variable names is the programmer’s choice, as long as the rules
listed in Section 2.1 for selecting identifier names are observed. These rules are summarized
in the following list:

1. The variable name must begin with a letter or underscore (_) and can contain only
letters, underscores, or digits. It can’t contain blank spaces, commas, or special
symbols, such as () & , $ # . ! \ ?.

2. A variable name can’t be a keyword (see Table 2.1).
3. A variable name can’t consist of more than 1024 characters.

Additionally, variable names should be mnemonics that give some indication of the
variable’s purpose. For a variable used to store a value that’s the total of other values, a good
name is sum or total. Variable names giving no indication of the value stored, such as
r2d2, linda, and getum, shouldn’t be used. As with function names, variable names can
consist of uppercase and lowercase letters.

Assume the first memory location shown in Figure 2.9, which has the address 1652, is
given the name num1. The memory location 2548 is given the variable name num2, and
memory location 3000 is given the variable name total.

Using these variable names, the operation of storing 45 in location 1652, storing 12 in
location 2548, and adding the contents of these two locations is accomplished by these C++
statements:

num1 = 45;
num2 = 12;
total = num1 + num2;

Each of these statements is called an assignment statement because it tells the computer
to assign (store) a value in a variable. Assignment statements always have an equal sign (=)
and one variable name immediately to the left of the =. The value to the right of the equal
sign is determined first; this value is then assigned to the variable to the left of the equal sign.
The blank spaces in assignment statements are inserted for readability. Assignment state-
ments are explained in more detail in Chapter 3, but for now, just know that you can use
them to store values in variables.

A variable name is useful because it frees programmers from having to think about where
data is physically stored in the computer. You simply use the variable name and let the
compiler worry about where in memory the data is actually stored. Before storing a value in

num1

1652 2548 45

num2 total

1245 57

Variable names

Memory addresses

Figure 2.9 Naming storage locations

77Chapter 2
Variables and Declaration Statements

a variable, however, C++ requires clearly declaring the type of data to be stored in it. You
must tell the compiler, in advance, the names of variables used for characters, the names used
for integers, and the names used to store other C++ data types.

Declaration Statements
To name a variable and specify the data type that can be stored in it, you use declaration
statements, which have this general form

dataType variableName;

where dataType designates a valid C++ data type, and variableName is the name you
select for the variable. For example, variables used to hold integer values are declared by
using the keyword int to specify the data type and have this form:

int variableName;

Therefore, the following declaration statement declares sum as the name of a variable
capable of storing an integer value:

int sum;

In addition, the keyword long is used to specify a long integer.10 For example, the
statement

long datenum;

declares datenum as a variable used to store a long integer. When you’re using the long
qualifier, you can also include the keyword int, so the previous declaration can also be
written as follows:

long int datenum;

Variables used to hold single-precision values are declared by using the keyword float,
and variables used to hold double-precision values are declared by using the keyword
double. For example, the statement

float firstnum;

declares firstnum as a variable used to store a single-precision number. Similarly, the
statement

double secnum;

declares that the variable secnum is used to store a double-precision number.
Although declaration statements can be placed anywhere in a function, typically they’re

grouped together and placed after the function’s opening brace. However, a variable must
always be declared before using it, and like all C++ statements, declaration statements must

10Additionally, the keywords unsigned int are used to specify an integer that can store only non-negative numbers, and the keyword short
specifies a short integer.

78 Problem Solving Using C++

end with a semicolon. A simple main() function containing declaration statements right
after the opening function brace has this general form:

#include <iostream>
using namespace std;

int main()
{

// declaration statements;

// other statements;

return 0;
}

Program 2.7 uses this form in declaring and using four double-precision variables, with
the cout object used to display the contents of one of the variables.

Point of Information

Atomic Data
All the variables declared so far have been used to store atomic data values. An atomic
data value is considered a complete entity and can’t be decomposed into a smaller data
type supported by the language. For example, although an integer can be decomposed
into individual digits, C++ doesn’t have a numerical digit type. Instead, each integer is
regarded as a complete value and, therefore, is considered atomic data. Because the inte-
ger data type supports only atomic data values, it’s said to be an atomic data type. As
you might expect, doubles, chars, and bools are atomic data types, too.

79Chapter 2
Variables and Declaration Statements

Program 2.7

#include <iostream>

using namespace std;

int main()

{

double grade1; // declare grade1 as a double variable

double grade2; // declare grade2 as a double variable

double total; // declare total as a double variable

double average; // declare average as a double variable

grade1 = 85.5;

grade2 = 97.0;

total = grade1 + grade2;

average = total/2.0; // divide the total by 2.0

cout << "The average grade is " << average << endl;

return 0;

}

The placement of the declaration statements in Program 2.7 is straightforward, although
you’ll see shortly that these four declarations can be combined into a single declaration.
When Program 2.7 runs, the following output is displayed:

The average grade is 91.25

Notice that when a variable name is inserted in a cout statement, the value stored in
the variable is placed on the output stream and displayed.

Just as integer and real (single-precision, double-precision, and long double) variables
must be declared before they can be used, a variable used to store a single character must also
be declared. Character variables are declared by using the keyword char. For example, the
following declaration specifies that ch is a character variable:

char ch;

Program 2.8 illustrates this declaration and the use of cout to display the value stored
in a character variable.

80 Problem Solving Using C++

Program 2.8

#include <iostream>

using namespace std;

int main()

{

char ch; // this declares a character variable

ch = 'a'; // store the letter a in ch

cout << "The character stored in ch is " << ch << endl;

ch = 'm'; // now store the letter m in ch

cout << "The character now stored in ch is "<< ch << endl;

return 0;

}

When Program 2.8 runs, this output is produced:

The character stored in ch is a

The character now stored in ch is m

Notice in Program 2.8 that the first letter stored in the variable ch is a and the second
letter stored is m. Because a variable can be used to store only one value at a time, assigning
m to the variable overwrites the a value automatically.

Multiple Declarations
Variables of the same data type can always be grouped together and declared by using a
single declaration statement, which has this common form:

dataType variableList;

For example, the four separate declarations used in Program 2.7

double grade1;
double grade2;
double total;
double average;

can be replaced with this single declaration statement:

double grade1, grade2, total, average;

Similarly, the two character declarations

char ch;
char key;

81Chapter 2
Variables and Declaration Statements

can be replaced with this single declaration statement:

char ch, key;

Declaring multiple variables in a single declaration statement requires giving the data
type of variables only once, separating all variable names by commas, and using only one
semicolon to terminate the declaration. The space after each comma is inserted for
readability and isn’t required.

Declaration statements can also be used to store a value in declared variables. For
example, the declaration statement

int num1 = 15;

both declares the variable num1 as an integer variable and sets the value of 15 in the variable.
When a declaration statement is used to store a value in a variable, the variable is said to be
initialized. Therefore, in this example, it’s correct to say the variable num1 has been initialized
to 15. Similarly, the declaration statements

double grade1 = 87.0;
double grade2 = 93.5;
double total;

declare three double-precision variables and initialize two of them. When initializations are
used, good programming practice dictates declaring each initialized variable on a line by
itself. Constants, expressions using only constants (such as 87.0 + 12 - 2), and
expressions using constants and previously initialized variables can be used as initializers for
variables declared within a function. For example, Program 2.7 with declaration initialization
becomes Program 2.7a.

Program 2.7a

#include <iostream>

using namespace std;

int main()

{

double grade1 = 85.5;

double grade2 = 97.0;

double total, average;

total = grade1 + grade2;

average = total/2.0; // divide the total by 2.0

cout << "The average grade is " << average << endl;

return 0;

}

82 Problem Solving Using C++

Notice the blank line after the last declaration statement. Inserting a blank line after
variable declarations placed at the top of a function body is a good programming practice. It
improves a program’s appearance and readability.

An interesting feature of C++ is that variable declarations can be intermixed and even
contained in other statements; the only requirement is that a variable must be declared
before its use. For example, the variable total in Program 2.7a could have been declared
when it was first used with the statement double total = grade1 + grade2. In
restricted situations (such as debugging, described in Section 3.7, or in a for loop, described
in Section 5.4), declaring a variable at its first use can be helpful. In general, however, it’s
preferable not to spread out declarations; instead, group them as concisely and clearly as
possible at the top of each function.

Memory Allocation
The declaration statements you have seen so far have performed both software and hardware
tasks. From a software perspective, declaration statements always provide a list of variables
and their data types. In this software role, variable declarations also help control an otherwise
common and troublesome error caused by misspelling a variable’s name in a program. For
example, a variable named distance is declared and initialized by using this statement:

int distance = 26;

Later in the program, the variable is inadvertently misspelled in this statement:

mpg = distnce / gallons;

In languages that don’t require variable declarations, the program treats distnce as a
new variable and assigns it an initial value of 0 or uses whatever value happens to be in the
variable’s storage area. In either case, a value is calculated and assigned to mpg, and finding
the error or even knowing an error occurred could be difficult. These errors are impossible
in C++, however, because the compiler flags distnce as an undeclared variable. The
compiler can’t, of course, detect when one declared variable is mistakenly typed in place of
another declared variable.

In addition to their software role, declaration statements can also perform a hardware
task. Because each data type has its own storage requirements, the computer can allocate
enough storage for a variable only after knowing the variable’s data type. Variable declarations
provide this information, so they can be used to force the compiler to reserve enough physical
memory storage for each variable. Declaration statements used for this hardware task are also
called definition statements because they define or tell the compiler how much memory is
needed for data storage.

All the declaration statements you have encountered so far have also been definition
statements. Later, you’ll see declaration statements that don’t allocate storage and are used
simply to alert the program to the data types of variables created elsewhere in the program.

Figures 2.10a through 2.10d illustrate the operations set in motion by definition
statements. The figures show that definition statements (or declaration statements that also
allocate memory) “tag” the first byte of each set of reserved bytes with a name. This name
is, of course, the variable’s name, and the computer uses it to locate the starting point of a
variable’s reserved memory area.

After a variable has been declared in a program, typically a programmer uses it to refer
to the variable’s contents (its value). The value’s memory location is generally of little
concern to programmers. The compiler, however, must know where each value is stored and

83Chapter 2
Variables and Declaration Statements

locate each variable correctly. For this task, the compiler uses the variable name to locate the
first byte of storage previously allocated to the variable. Knowing the variable’s data type
then allows the compiler to store or retrieve the correct number of bytes.

Tells the computer to

int total;

Reserve enough room
for an integer number

“Tag” the first byte of
 reserved storage with
 the name total

Tells the computer to

4 bytes

Figure 2.10a Defining the integer variable named total

Tells the computer to

float slope;

Reserve enough room
for a single-precision number

“Tag” the first byte of
 reserved storage with
 the name slope

Tells the computer to

4 bytes

Figure 2.10b Defining the floating-point variable named slope

Tells the computer to

double thrust;

Reserve enough room
for a double-precision number

“Tag” the first byte of
 reserved storage with
 the name thrust

Tells the computer to

8 bytes

Figure 2.10c Defining the double-precision variable named thrust

84 Problem Solving Using C++

Displaying a Variable’s Address11

Every variable has three major items associated with it: its data type, the value stored in it,
and its address. The value stored in the variable is referred to as the variable’s contents, and
the address of the first memory location used for the variable constitutes its address. The
number of locations actually used for the variable, as you have just seen, depends on the
variable’s data type. Figure 2.11 illustrates the relationship between these three items (type,
contents, and location).

Programmers are usually concerned only with the value assigned to a variable (its
contents) and give little attention to where the value is stored (its address). For example, take
a look at Program 2.9.

11This topic can be omitted on first reading without loss of subject continuity.

Tells the computer to

char key;

Reserve enough room
for a character

“Tag” the first byte of
 reserved storage with
 the name key

Tells the computer to

1 byte

Figure 2.10d Defining the character variable named key

Variable
contents

Variable address

One or more bytes in memory

Figure 2.11 A typical variable

85Chapter 2
Variables and Declaration Statements

Program 2.9

#include <iostream>

using namespace std;

int main()

{

int num;

num = 22;

cout << "The value stored in num is " << num << endl;

return 0;

}

The following output is displayed when Program 2.9 is run:

The value stored in num is 22

Program 2.9 merely prints the value 22, which is the contents of the variable num. You
can go further, however, and ask “Where is the number 22 actually stored?” Although the
answer is “in num,” it’s only half the answer. The variable name num is simply a convenient
symbol for actual memory locations, as shown in Figure 2.12.

To determine the address of num, you can use C++’s address operator, &, which means
“the address of.” Except when used in an expression, the address operator placed in front of
a variable’s name refers to the variable’s address.12 For example, &num means “the address
of num.” Program 2.10 shows you an example of using the address operator.

12When used in declaration statements that create a reference variable or reference argument (see Chapter 6), the ampersand refers to the data
type preceding it. Therefore, the declaration double &num is read as “num is the address of a double” or, more commonly, “num is a reference
to a double.”

22

Contents of num

4 bytes of memory

Address of first
byte used by num

x x x x

Figure 2.12 The variable num stored somewhere in memory

86 Problem Solving Using C++

Program 2.10

#include <iostream>

using namespace std;

int main()

{

int num;

num = 22;

cout << "The value stored in num is " << num << endl;

cout << "The address of num = " << &num << endl;

return 0;

}

This is the output of Program 2.10:

The value stored in num is 22

The address of num = 0012FED4

Figure 2.13 illustrates the additional address information provided by Program 2.10’s output.
Clearly, the address output by Program 2.10 depends

on the computer used to run the program. Every time
Program 2.10 runs, however, it displays the address of the
first memory location used to store num. As Program 2.10’s
output shows, the address display is in hexadecimal
notation. This display has no effect on how the program
uses addresses internally; it merely gives you a means of
displaying addresses that’s helpful in understanding them.
As you’ll see in Chapters 6 and 12, using addresses, instead
of just displaying them, is an important and powerful
programming tool.

EXERCISES 2.5

1. (Practice) State whether the following variable names are valid. If they are invalid, state
the reason.

prod_a c1234 abcd _c3 12345
newamp watts $total new$al a1b2c3d4
9ab6 sum.of average volts1 finvolt

22

Contents of num

4 bytes of memory

Address of first
byte used by num

0012FED4

Figure 2.13 A more complete
picture of the variable num

87Chapter 2
Variables and Declaration Statements

2. (Practice) State whether the following variable names are valid. If they are invalid, state
the reason. Also, indicate which of the valid variable names shouldn’t be used because
they convey no information about the variable.

current a243 r2d2 firstnum cc_a1
harry sue c3p0 total sum
maximum okay a awesome goforit
3sum for tot.a1 c$five netpower

3. (Practice) a. Write a declaration statement to declare that the variable count will be
used to store an integer.

b. Write a declaration statement to declare that the variable volt will be used to store a
floating-point number.

c. Write a declaration statement to declare that the variable power will be used to store
a double-precision number.

d. Write a declaration statement to declare that the variable keychar will be used to
store a character.

4. (Practice) Write declaration statements for the following variables:
a. num1, num2, and num3 used to store integer number

b. amps1, amps2, amps3, and amps4 used to store double-precision numbers

c. volts1, volts2, and volts3 used to store double-precision numbers

d. codeA, codeB, codeC, codeD, and codeE used to store characters

5. (Practice) Write declaration statements for the following variables:
a. firstnum and secnum used to store integer

b. speed, acceleration, and distance used to store double-precision numbers

c. thrust used to store a double-precision number

6. (Modify) Rewrite each of these declaration statements as three separate declarations:
a. int month, day = 30, year;

b. double hours, volt, power = 15.62;

c. double price, amount, taxes;

d. char inKey, ch, choice = 'f';

7. (Desk Check) a. Determine what each statement causes to happen in the following
program:

#include <iostream>
using namespace std;

int main()
{

int num1, num2, total;

num1 = 25;

88 Problem Solving Using C++

num2 = 30;
total = num1 + num2;
cout << "The total of " << num1 << " and "

<< num2 << " is " << total << endl;

return 0;
}

b. What output will be printed when the program in Exercise 7a runs?

8. (Practice) What are the three items associated with every variable?

Note for Exercises 9 to 11: Assume that a character requires 1 byte of storage, an integer requires
4 bytes, a single-precision number requires 4 bytes, and a double-precision number requires 8
bytes. Variables are assigned storage in the order they’re declared. (Review Section 1.6 if you’re
unfamiliar with the concept of a byte.) Refer to Figure 2.14 for these exercises.

N
O

T
E

9. (Practice) a. Using Figure 2.14 and assuming the variable name rate is assigned to the
byte at memory address 159, determine the addresses corresponding to each variable
declared in the following statements. Also, fill in the correct number of bytes with the
initialization data included in the declaration statements. (Use letters for the characters,
not the computer codes that would actually be stored.)

float rate;
char ch1 = 'M', ch2 = 'E', ch3 = 'L', ch4 = 'T';
double taxes;
int num, count = 0;

b. Repeat Exercise 9a, but substitute the actual byte patterns that a computer using the
ASCII code would use to store characters in the variables ch1, ch2, ch3, and ch4.
(Hint: Use Appendix B.)

10. (Practice) a. Using Figure 2.14 and assuming the variable named cn1 is assigned to the
byte at memory address 159, determine the addresses corresponding to each variable
declared in the following statements. Also, fill in the correct number of bytes with the
initialization data included in the declaration statements. (Use letters for the characters,
not the computer codes that would actually be stored.)

Addresses

159 160 161 162 163 164 165 166

167 168 169 170 171 172 173 174

175 176 177 178 179 180 181 182

183 184 185 186 187 188 189 190

Figure 2.14 Memory bytes for Exercises 9 to 11

89Chapter 2
Variables and Declaration Statements

char cn1 = 'P', cn2 = 'E', cn3 = 'R', cn4 = 'F', cn5 = 'E';
char cn6 = 'C', cn7 = 'T', key = '\\', sch = '\'', inc = 'A';
char inc1 = 'T';

b. Repeat Exercise 10a, but substitute the actual byte patterns a computer using the ASCII
code would use to store characters in each of the declared variables. (Hint: Use Table 2.3.)

11. (Practice) Using Figure 2.14 and assuming the variable name miles is assigned to the
byte at memory address 159, determine the addresses corresponding to each variable
declared in the following statements:

float miles;
int count, num;
double dist, temp;

2.6 A Case Study: Radar Speed Traps

In this section, the software development procedure explained in Section 1.3 is applied to a
specific programming problem. Although each problem you explore in the case studies in
Part One is different, you’ll see that this software development procedure works for all of
them to produce a complete program. It forms the foundation for all programs developed in
Part One of this book.

A highway-patrol speed detection radar emits a beam of microwaves at a frequency
designated as fe. The beam is reflected off an approaching car, and the radar unit picks up
and analyzes the reflected beam, fr. The reflected beam’s frequency is shifted slightly from
fe to fr because of the car’s motion. The relationship between the speed of the car, v, in miles
per hour (mph), and the two microwave frequencies is

v
f f

f f
mphr e

r e

= ×() +

6 685 108.

-

where the emitted waves have a frequency of fe = 2 × 1010 sec-1. Using the given formula,
you’ll write a C++ program, using the software development procedure, to calculate and
display the speed corresponding to a received frequency of 2.000004 × 1010 sec-1.

Step 1 Analyze the Problem

For this problem, a single output is required: the speed of the car. The input items required
to solve for the speed are the emitted frequency, fe, and the received frequency, fr.

Step 2 Develop a Solution

The algorithm for transforming the three input items into the required output item is given
by the formula v = 6.685 × 108(fr - fe) / (fr + fe). Therefore, the complete algorithm for the
program solution is as follows:

Assign values to fr and fe
Calculate the speed using the formula v = 6.685 × 108(fr - fe) / (fr + fe)
Display the speed

90 Problem Solving Using C++

A hand calculation, using the data fe = 2 × 1010 sec-1 and fr = 2.000004 × 1010 sec-1, yields
a speed of 66.85 mph.

Step 3 Code the Solution

Program 2.11 provides the necessary code.

Program 2.11

#include <iostream>

using namespace std;

int main()

{

double speed, fe, fr;

fe = 2e10;

fr = 2.0000004e10;

speed = 6.685e8 * (fr - fe) / (fr + fe);

cout << "The speed is " << speed << " miles/hour " << endl;

return 0;

}

Program 2.11 begins with an #include preprocessor command followed by a main()
function. The main() function in Program 2.11 contains one declaration statement, three
assignment statements, and one output statement. The assignment statements fe = 2e10;
and fr = 2.0000004e10; are used to initialize the fe and fr variables. The assignment
statement

speed = 6.685e8 * (fr - fe) / (fr + fe);

calculates a value for the variable speed. When Program 2.11 is compiled and executed, the
following output is produced:

The speed is 66.85 miles/hour

Step 4 Test and Correct the Program

The last step in the development procedure is to test the output. Because the single calculation
and displayed value agree with the previous hand calculation, you have verified that the program
operates correctly. Now you can use the program for different values of received frequencies.
Note that if the parentheses weren’t placed correctly in the assignment statement that calculates
a value for speed, the displayed value wouldn’t agree with your previous hand calculation. This
would alert you to the fact that there’s an error in the program.

91Chapter 2
A Case Study: Radar Speed Traps

EXERCISES 2.6

1. (Modify) a. Modify Program 2.11 to calculate the speed of a car whose received radar
frequency is 2.00000035 × 1010 sec-1.

b. Compile and execute the program written for Exercise 1a.

2. (Modify) a. Modify Program 2.11 to determine the frequency returned by a car traveling
at 55 mph. Your program should produce the following display (replacing the underlines
with the values your program calculates):

The returned frequency corresponding to 55 mph is _____

b. Compile and execute the program written for Exercise 2a. Make sure to do a hand
calculation so that you can verify the results your program produces.

c. After verifying the results of the program written in Exercise 2a, modify the program
to calculate the return frequency of a car traveling at 75 mph.

3. (Telephony) In a directly connected telephone network, all telephones are directly con-
nected and don’t require a central switching station to establish calls between two
telephones. The number of lines needed to maintain a directly connected network for n
telephones is given by this formula:

no of lines needed
n n

.
()= - 1

2

For example, directly connecting four telephones requires six separate lines (see Figure 2.15).
Adding a fifth telephone to this network requires an additional 4 lines, for a total of 10 lines.

line 6 line 5

line 4

line 3

line 1

line 2

Telephone
#3

Telephone
#4

Telephone
#2

Telephone
#1

Figure 2.15 Directly connecting four telephones

92 Problem Solving Using C++

a. Using the given formula, write a C++ program that determines the number of lines
required for directly connecting 100 telephones. The input for this problem is the
number of telephones, denoted as n in the formula, and the output is the total num-
ber of lines required to directly connect the input number of telephones.

b. Compile and execute the program written for Exercise 3a.

4. (Modify) Modify the program you wrote for Exercise 3 and include a new variable to
represent the additional number of telephones to be connected to an existing network,
and initialize this variable to 10. For this program, two outputs are required: the number
of direct lines for 100 telephones and the additional number of lines needed when 10
telephones are added to the existing network.

5. (Conversion) a. Design, write, compile, and execute a C++ program to convert tempera-
ture in degrees Fahrenheit to degrees Celsius. This is the equation for this conversion:
Celsius = 5.0/9.0 (Fahrenheit - 32.0)
Have your program convert and display the Celsius temperature corresponding to 98.6
degrees Fahrenheit. Your program should produce the following display (replacing the
underlines with the correct values):

For a Fahrenheit temperature of ___ degrees,
the equivalent Celsius temperature is ___ degrees.

b. Check the values computed by your program by hand. After verifying that your pro-
gram is working correctly, modify it to convert 86.5 degrees Fahrenheit to its equiva-
lent Celsius value.

6. (Electrical Eng.) a. Write, compile, and execute a C++ program to calculate the resis-
tance of a series circuit consisting of twelve 56-ohm, twenty 39-ohm, thirty-two 27-ohm,
and twenty-seven 15-ohm resistors. The total resistance of a series circuit is the sum of all
individual resistances. Your program should produce the following display (replacing the
xxxx with the actual resistance value your program calculates):

The total resistance, in ohms, is xxxx

b. Manually check the values computed by your program. After verifying that your pro-
gram is working correctly, modify it to calculate the resistance of a series circuit con-
sisting of seventeen 39-ohm resistors, nineteen 27-ohm resistors, and forty-two 15-ohm
resistors.

7. (Thermodynamics) a. Design, write, compile, and execute a program that determines
the work performed by a piston engine providing a force of 1000 N over a distance of 15
centimeters. The following formula is used to determine the work, W, performed:

W = F d
F is the force provided by the piston in Newtons.
d is the distance the piston moves in meters.

b. Manually check the values computed by your program. After verifying that your pro-
gram is working correctly, modify it to determine the work performed by six pistons,
each providing a force of 1500 N over a distance of 20 centimeters.

8. (Civil Eng.) a. Design, write, compile, and execute a program that determines the stress on
a steel I-beam having a rectangular moment of inertia of 21.4 in4, and a height of 6 inches,

93Chapter 2
A Case Study: Radar Speed Traps

when a load of 700 lbs is placed 8 feet from the fixed end. The stress placed on the fixed
end of a symmetrical steel I-beam, as shown in Figure 2.16, can be determined by this
formula:

S
L d c

I
=

S is the stress in lbs/in2.
L is the weight, in lbs, of the load placed on the beam.
I is the beam’s rectangular moment of inertia in units of in4.
d is the distance in inches the load is placed from the fixed end of the beam (techni-
cally referred to as the “moment arm”).
c is one-half the height in inches of a symmetrical beam.

b. Check the values computed by your program by hand. After verifying that your pro-
gram is working correctly, modify it to determine the stress when the same load is
placed at the end of an 8-foot 2” x 4” wooden beam, with a rectangular moment of
inertia of 10.67 in4.

2.7 Common Programming Errors

Part of learning any programming language is making the elementary mistakes commonly
encountered when you begin using the language. These mistakes tend to be quite
frustratingbecause each language has its own set of common programming errors waiting for
the unwary. When you start programming in C++, common errors include the following.

1. Omitting the parentheses after main().
2. Omitting or incorrectly typing the opening brace, {, that signifies the start of a

function body.
3. Omitting or incorrectly typing the closing brace, }, that signifies the end of a function.
4. Misspelling the name of an object or function, such as typing cot instead of cout.
5. Forgetting to enclose a string sent to cout with quotation marks.

L

h

d

Figure 2.16 Determining the stress on a symmetrical I-beam

94 Problem Solving Using C++

6. Forgetting to separate data streams sent to cout with an insertion symbol, <<.
7. Omitting the semicolon at the end of each C++ statement.
8. Adding a semicolon at the end of the #include preprocessor command.
9. Forgetting the \n to indicate a new line.

10. Incorrectly typing the letter O for the number 0 or vice versa. Incorrectly typing the
letter l for the number 1 or vice versa.

11. Forgetting to declare all variables used in a program. The compiler detects this error,
and an error message is generated for all undeclared variables.

12. Storing an inappropriate data type in a declared variable. The compiler detects this error,
and the assigned value is converted to the data type of the variable it’s assigned to.

13. Using a variable in an expression before a value has been assigned to the variable.
The value that happens to be in the variable when the variable is used is the value
that’s used when the expression is evaluated. As such, the result of the expression is
meaningless.

14. Dividing integer values incorrectly. This error is usually hidden in a larger expression
and can be troublesome to detect. For example, the expression
3.425 + 2/3 + 7.9

yields the same result as the expression
3.425 + 7.9

because the integer division of 2/3 is 0.
15. Mixing data types in the same expression without clearly understanding the effect.

Because C++ allows expressions with “mixed” data types, understanding the order
of evaluation and the data type of all intermediate calculations is important. As a
general rule, it’s better never to mix data types in an expression unless you want a
specific effect.

Errors 3, 5, 7, 8, and 9 in this list are the most common with beginning programmers, and
even experienced programmers occasionally make error 10. A worthwhile practice is writing
a program and introducing each error, one at a time, to see what error messages, if any, your
compiler produces. When these error messages appear because of inadvertent mistakes,
you’ll have had experience in understanding the messages and correcting the errors.

A major error that all beginning programmers make is rushing to code and running a
program before fully understanding its requirements and the algorithms and procedures used
to produce the desired result. A symptom of this haste is the lack of a written program or
even a program outline. Many problems can be caught just by checking a copy of the program
(handwritten or onscreen) before it’s compiled.

2.8 Chapter Summary
1. A C++ program consists of one or more modules called functions. One of these functions

must be called main(). The main() function identifies the starting point of a C++
program.

2. The simplest C++ program consists of the single function main().

95Chapter 2
Chapter Summary

3. Following the function name, the body of a function has the following general form:

{
All C++ statements in here;

}

4. All C++ statements must be terminated by a semicolon.

5. Four types of data were introduced in this chapter: integer, floating-point, character, and
Boolean. C++ recognizes each of these data types, in addition to other types you learn
about in later chapters.

6. The cout object can be used to display all C++ data types.

7. When the cout object is used in a program, the preprocessor command #include
<iostream> and the statement using namespace std; must be placed at the top
of the program. The #include <iostream> preprocessor command does not end
with a semicolon.

8. Every variable in a C++ program must be declared and the type of value it can store must
be specified. Declaration statements can be placed anywhere in the function, although
a variable can be used only after it’s declared. Variables can also be initialized when they
are declared. Additionally, variables of the same type can be declared with a single
declaration statement. Variable declaration statements have this general form:

dataType variableName(s);

9. A simple C++ program containing declaration statements has this typical form:

#include <iostream>
using namespace std;

int main()
{

// declaration statements;
// other statements;

return 0;
}

10. Declaration statements always play the software role of informing the compiler of a
function’s valid variable names. When a variable declaration also causes the computer to
set aside memory locations for the variable, the declaration statement is called a
definition statement. (All declarations used in this chapter have also been definition
statements.)

11. The sizeof() operator can be used to determine the amount of storage reserved for
variables.

Programming Projects for Chapter 2

1. (General Math) a. Design, write, compile, and execute a C++ program that calculates
and displays the perimeter of a two-dimensional triangle with sides a = 1 in, b = 1.5 in,
and c = 2 in, as shown in Figure 2.17. The perimeter is given by this formula:

perimeter = a + b + c

96 Problem Solving Using C++

b. Manually check the values computed by your program. After verifying that your
program is working correctly, modify it to determine the perimeter of a two-
dimensional triangle with sides a = 1.62 in, b = 2.13 in, and c = 3.2 in.

2. (General Math) a. Design, write, compile, and execute a C++ program that calculates
and displays the area of a two-dimensional triangle, such as the one in Figure 2.17, with
a base of 1 in and a height of 1.5 in. The area is given by this formula:

Area = ½ (base) × (height)

b. Manually check the values computed by your program. After verifying that your
program is working correctly, modify it to determine the area of a two-dimensional
triangle with a base of 2 in and a height of 1.67 in.

3. (General Math) a. Design, write, compile, and execute a C++ program to calculate the
volume of a sphere with a radius, r, of 3 in. The volume is given by this formula:

Volume
r= 4

3

3π

b. Manually check the values computed by your program. After verifying that your
program is working correctly, modify it to determine the volume of a cube with a
radius of 1.67 in.

4. (Physics) a. Design, write, compile, and execute a C++ program to calculate the elapsed
time it takes to make a 183.67 mile trip. This is the formula for computing elapsed time:

elapsed time = total distance / average speed

The average speed during the trip is 58 mph.

b. Manually check the values computed by your program. After verifying that your
program is working correctly, modify it to determine the elapsed time it takes to make
a 372-mile trip at an average speed of 67 mph.

5. (Numerical) a. Design, write, compile, and execute a C++ program to calculate the sum
of the integers from 1 to 100. This is the formula for calculating this sum:

sum = (n/2) (2 × a + (n - 1)d)

n is the number of integers to be added.
a is the first number.

d is the difference between each number.

a c

b

height

base

Figure 2.17 A two-dimensional triangle

97Chapter 2
Programming Projects

b. Manually check the values computed by your program. After verifying that your
program is working correctly, modify it to determine the sum of the integers from 100
to 1000.

6. (Physics and Electrical) The energy, E, of a photon, in Joules, J, is provided by this
formula:

E = P × f

P is 6.6256 × 10-34 Joules/sec (known as Planck’s constant).
f is frequency in Hertz (Hz) of the photon.

a. Given that the photon frequency of visible light is in the 3.84 × 1014 Hz to 7.69 × 1014

Hz range, design, write, compile, and execute a C++ program to calculate the energy
of light with a photon frequency of 5.7 × 1014. Verify the result produced by your
program with a hand calculation.

b. After verifying that your program is working correctly, use it to determine the photon
energy output of a 60 Hz power line.

7. (Physics) a. The weight of an object on Earth is a measurement of the downward force
on the object caused by Earth’s gravity. The formula for this force is determined by using
Newton’s Second Law:

F = M × Ae

F is the object’s weight.
M is the object’s mass.
Ae is the acceleration caused by Earth’s gravity (32.2 ft/sec2 = 9.82 m/s2).

Given this information, design, write, compile, and execute a C++ program to calculate
the weight in lbf of a person having a mass of 4 lbm. Verify the result produced by your
program with a hand calculation.

b. After verifying that your program is working correctly, use it to determine the weight,
on Earth, of a person having a mass of 3.2 lbm.

8. (Physics) a. Rewrite the program you wrote for Exercise 7 to provide the mass of a
person as an output, given his or her weight as an input to the program. Use your program
to determine the mass of a person who weighs 140 lbf on Earth.

b. Modify the program written for Exercise 7a to also output the person’s weight on Mars
and the moon. The pull of gravity on Mars is 12.54 ft/sec2 = 3.728 m/s2, and on the
moon is 5.33 ft/sec2 = 1.625 m/s2.

9. (Civil Eng.) The maximum load that can be placed at the end of a symmetrical wooden
beam, such as the rectangular beam shown in Figure 2.18, can be calculated as the following:

L
S I
d c

= ×
×

L is the maximum weight in lbs of the load placed on the beam.
S is the stress in lbs/in2.
I is the beam’s rectangular moment of inertia in units of in4.

98 Problem Solving Using C++

d is the distance in inches that the load is placed from the fixed end of the beam (the
“moment arm”).
c is one-half the height in inches of the symmetrical beam.

For a 2” x 4” wooden beam, the rectangular moment of inertia is given by this formula:

I
base height= × = × =

3 3

12
2 4

12
10 67.

c = ½(4 in) = 2 in

a. Using this information, design, write, compile, and execute a C++ program that
computes the maximum load in lbs that can be placed at the end of an 8-foot 2” x 4”
wooden beam so that the stress on the fixed end is 3000 lb/in2.

b. Use the program developed in Exercise 9a to determine the maximum load in lbs that
can be placed at the end of a 3” x 6” wooden beam so that the stress on the fixed end
is 3000 lbs/in2.

10. (Civil Eng.) Modify the program written for Exercise 9 to determine the maximum load
that can be placed at the end of an 8-foot I-beam, shown in Figure 2.19, so that the stress
on the fixed end is 20,000 lbs/in2. Use the fact that this beam’s rectangular moment of
inertia is 21.4in4 and the value of c is 3 in.

11. (Mechanical Eng.) The minimum radius required for a cylindrical rod, such as one
supporting a bicycle pedal (see Figure 2.20), to provide enough support for the pressure

h = 4"

d = 8'

Figure 2.18 Calculating a symmetrical wooden beam’s maximum load

99Chapter 2
Programming Projects

exerted by the rider’s foot yet not exceed the stress placed on the crank arm’s sprocket
attachment, is provided by this formula:

r
d P

S
3 = ×

×π

r is the radius of the cylindrical rod in inches.
d is the length of the crank arm in inches.
P is the weight placed on the pedal in lbs.
S is the stress in lbs/in2.

Using this information, design, write, compile, and execute a C++ program that computes
the value of r for a crank arm that is 7 inches long, accommodates a maximum weight of
300 lbs, and is able to sustain a stress of 10,000 lbs/in2.

L

h

d

Figure 2.19 Calculating an I-beam’s maximum load

d

Figure 2.20 Determining the minimum radius of a bicycle’s crank arm

100 Problem Solving Using C++

Engineering and Scientific Disciplines

Thermal Science
Thermal science is the field of engineering that includes both thermodynamics and
heat transfer. Thermodynamics developed as a science, starting in the early 19th cen-
tury, in response to the development of steam engines at that time. The intent was to
understand the physical laws governing these engines in an effort to increase their
efficiency. This led to analyzing and understanding the effects of temperature, pressure,
and volume on steam engines and how heat moved from a hot boiler to a colder con-
denser and the maximum amount of work that could be generated from this flow. It
now constitutes a science that includes four basic laws, known as the 0th, 1st, 2nd,
and 3rd laws of thermodynamics.

Using these four laws, thermodynamics more broadly applies to large-scale systems,
such as a class of engines (diesel, gas turbine, jet, rocket, and so forth) or the complete
solar system. The central concept of these thermodynamic laws is energy, which is the
ability to do work, and the relationship between heat, energy, and work. The fields of
chemistry, chemical engineering, aerospace, mechanical engineering, biomedical engi-
neering, material science, fluid mechanics, and physics make use of thermodynamic
effects.

Heat transfer, a field derived from the 1st and 2nd laws of thermodynamics, is
technically defined as the movement of energy between substances of different
temperatures. Central to heat transfer is the concept of temperature, which is a mea-
surement of the motion of atoms and molecules in a substance. Temperature deter-
mines the direction of heat flow between two objects placed in contact. If no heat
flow occurs, the two objects have the same temperature (a consequence of the 1st
law); otherwise, heat flows from the hotter object to the colder object (a consequence
of the 2nd law). Heat transfer uses these three modes of transfer:

� Conduction is the transfer of heat through a substance caused by molecular
movement in the substance. Examples are the transfer of heat through a metal
rod if one side of the rod is at a higher temperature than the other, and heat loss
through a heated house when the outside temperature is colder than the inside.

� Convection is the transfer of heat by the motion of a heated fluid, such as water
or air. An example is the expansion of hot air into cooler air.

� Radiation is the transfer of heat away from an object emitting electromagnetic
waves. An example is the electromagnetic waves emitted by the sun.

Each transfer occurs over time, so heat transfer calculations are typically concerned
with determining the rate of transfer initially. Given the rate, the total amount of heat
transferred over a fixed interval of time can always be calculated.

101Chapter 2
Programming Projects

This page intentionally left blank

Chapter 3
Assignment,
Formatting, and
Interactive Input

3.1 Assignment Operations

3.2 Formatting Numbers for
Program Output

3.3 Using Mathematical Library
Functions

3.4 Program Input Using cin

3.5 Symbolic Constants

3.6 A Case Study: Acid Rain

3.7 A Closer Look: Programming
Errors

3.8 Common Programming Errors

3.9 Chapter Summary

In Chapter 2, you explored how results are displayed with C++’s cout statement and how numerical
data is stored and processed by using variables and assignment statements. In this chapter, you complete
your introduction to C++ by learning about additional processing and input capabilities.

3.1 Assignment Operations

You learned about simple assignment statements in Chapter 2. An assignment statement is
the most basic C++ statement for assigning values to variables and performing computations.
This statement has the following syntax:

variable = expression;

The simplest expression in C++ is a single constant. In the following assignment
statements, the operand to the right of the equal sign is a constant:

length = 25;
width = 17.5;

In these assignment statements, the value of the constant to the right of the equal sign
is assigned to the variable on the left of the equal sign. Note that the equal sign in C++
doesn’t have the same meaning as an equal sign in algebra. The equal sign in an assignment
statement tells the computer first to determine the value of the operand to the right of the
equal sign, and then to store (or assign) that value in the locations associated with the variable
to the left of the equal sign. For example, the C++ statement length = 25; is read
“length is assigned the value 25.” The blank spaces in the assignment statement are
inserted for readability only.

Recall that a variable can be initialized when it’s declared. If an initialization isn’t done
in the declaration statement, the variable should be assigned a value with an assignment
statement or input operation before it’s used in any computation. Subsequent assignment
statements can, of course, be used to change the value assigned to a variable. For example,
assume the following statements are executed one after another, and slope wasn’t initialized
when it was declared:

slope = 3.7;
slope = 6.28;

The first assignment statement assigns the value of 3.7 to the variable named slope.1
The next assignment statement causes the computer to assign a value of 6.28 to slope. The
3.7 that was in slope is overwritten with the new value of 6.28 because a variable can store
only one value at a time. Sometimes it’s useful to think of the variable to the left of the equal
sign as a temporary parking spot in a huge parking lot. Just as a parking spot can be used by
only one car at a time, each variable can store only one value at a time. “Parking” a new value
in a variable automatically causes the program to remove any value parked there previously.

In addition to being a constant, the operand to the right of the equal sign in an
assignment statement can be a variable or any other valid C++ expression. An expression is
any combination of constants, variables, and function calls that can be evaluated to yield a
result. Therefore, the expression in an assignment statement can be used to perform
calculations by using the arithmetic operators introduced in Section 2.4. The following are
examples of assignment statements using expressions containing these operators:

sum = 3 + 7;
diff = 15 – 6;
product = .05 * 14.6;
tally = count + 1;
newtotal = 18.3 + total;
taxes = .06 * amount;
totalWeight = factor * weight;
average = sum / items;
slope = (y2 - y1) / (x2 - x1);

1Because it’s the first time a value is explicitly assigned to this variable, it’s often referred to as an “initialization.” This term stems from historical
usage that said a variable was initialized the first time a value was assigned to it. Under this usage, it’s correct to say that “slope is initialized
to 3.7.” From an implementation viewpoint, however, this statement is incorrect because the C++ compiler handles an assignment operation
differently from an initialization; an initialization can happen only when a variable is created by a declaration statement. This difference is
important only when using C++’s class features and is explained in detail in Section 10.1.

104 Assignment, Formatting, and Interactive Input

As always in an assignment statement, the program first calculates the value of the
expression to the right of the equal sign, and then stores this value in the variable to the left
of the equal sign. For example, in the assignment statement totalWeight = factor *
weight;, the arithmetic expression factor * weight is evaluated first to yield a result.
This result, which is a number, is then stored in the variable totalWeight.

In writing assignment expressions, you must be aware of two important considerations.
Because the expression to the right of the equal sign is evaluated first, all variables used in
the expression must previously have been given valid values if the result is to make sense.
For example, the assignment statement totalWeight = factor * weight; causes a
valid number to be stored in totalWeight only if the programmer takes care to assign valid
numbers first to factor and then to weight. Therefore, the following sequence of
statements tells you the values used to obtain the result that will be stored in totalWeight:

factor = 1.06;
weight = 155.0;
totalWeight = factor * weight;

Figure 3.1 illustrates the values stored in the variables factor, weight, and
totalWeight.

The second consideration is that because the value of an expression is stored in the
variable to the left of the equal sign, only one variable can be listed in this position. For
example, the assignment statement

amount + 1892 = 1000 + 10 * 5;

is invalid. The expression on the right evaluates to the integer 1050, which can only be stored
in a variable. Because amount + 1892 isn’t a valid variable name, the compiler doesn’t
know where to store the calculated value.

Program 3.1 illustrates using assignment statements to calculate the volume of a cylinder.
As shown in Figure 3.2, the volume of a cylinder is determined by the formula volume = �r 2h,
where r is the radius of the cylinder, h is the height, and � is the constant 3.1416 (accurate
to four decimal places).

1.06 155.0 164.30

factor weight totalWeight

Figure 3.1 Values stored in variables

h = 16

r = 2.5

Figure 3.2 Determining the volume of a cylinder

105Chapter 3
Assignment Operations

Program 3.1

// this program calculates the volume of a cylinder,

// given its radius and height

#include <iostream>

using namespace std;

int main()

{

double radius, height, volume;

radius = 2.5;

height = 16.0;

volume = 3.1416 * radius * radius * height;

cout << "The volume of the cylinder is " << volume << endl;

return 0;

}

When Program 3.1 is compiled and executed, this is the output:

The volume of the cylinder is 314.16

Take a look at the flow of control the computer uses in executing Program 3.1. Program
execution begins with the first statement in the body of the main() function and continues
sequentially, statement by statement, until the closing brace of main() is encountered.

This sequential flow of control is true for all programs. The computer works on one
statement at a time, executing that statement with no knowledge of what the next statement
will be. This sequential execution explains why all operands used in an expression must have
values assigned to them before the expression is evaluated. When the computer executes this
statement in Program 3.1,

volume = 3.1416 * radius * radius * height;

it uses whatever value is stored in the variables radius and height at the time the
assignment statement is executed.2 If no values have been specifically assigned to these
variables before they’re used in the assignment statement, the computer uses whatever
values happen to occupy these variables when they are referenced. (Most C++ compilers
initialize all variables to zero automatically.) The computer doesn’t “look ahead” to see
whether you assign values to these variables later in the program.

In C++, the equal sign, =, used in assignment statements is an operator, which differs
from the way most other high-level languages process this symbol. In C++ (as in C), the =
symbol is called the assignment operator, and an expression using this operator, such as
interest = principal * rate, is an assignment expression. Because the assignment

2Because C++ doesn’t have an exponentiation operator, the square of the radius is obtained by the term radius * radius. Section 3.3
introduces C++’s power function pow(), which allows you to raise a number to a power.

106 Assignment, Formatting, and Interactive Input

operator has a lower precedence than any other arithmetic operator, the value of any
expression to the right of the equal sign is evaluated first, before the assignment.

Like all expressions, an assignment expression has a value, which is the value assigned
to the variable on the left of the assignment operator. For example, the expression a = 5
assigns a value of 5 to the variable a and results in the expression also having a value of 5.
The expression’s value can always be verified by using a statement such as the following:

cout << "The value of the expression is " << (a = 5);

This statement displays the value of the expression, not the contents of the variable a.
Although both the variable’s contents and the expression have the same value, it’s worth
realizing that you’re dealing with two distinct entities.

From a programming perspective, it’s the actual assignment of a value to a variable that’s
important in an assignment expression; the final value of the assignment expression is of little
consequence. However, the fact that assignment expressions have a value has implications
that must be considered when you learn about C++’s relational operators, which are explained
in the next chapter (Section 4.1).

Any expression terminated by a semicolon becomes a C++ statement. The most common
example is the assignment statement, which is simply an assignment expression terminated
with a semicolon. For example, terminating the assignment expression a = 33 with a
semicolon results in the assignment statement a = 33;, which can be used in a program on
a line by itself.

Because the equal sign is an operator in C++, multiple assignments are possible in the
same expression or its equivalent statement. For example, in the expression a = b = c =
25, all the assignment operators have the same precedence. Because the assignment operator
has a right-to-left associativity, the final evaluation proceeds in this sequence:

c = 25
b = c
a = b

This sequence of expressions, which has the effect of assigning the number 25 to each
variable, can be represented as:

a = (b = (c = 25))

Appending a semicolon to the original expression results in this multiple assignment
statement:

a = b = c = 25;

This statement assigns the value 25 to the three variables, equivalent to the following order:

c = 25;
b = 25;
a = 25;

Coercion
When working with assignment statements, keep in mind the data type assigned to values
on both sides of the expression because data type conversions occur across assignment
operators. In other words, the value of the expression to the right of the assignment operator
is converted to the data type of the variable to the left of the assignment operator. This type

107Chapter 3
Assignment Operations

of conversion is called a coercion because the value assigned to the variable on the left side
of the assignment operator is forced into the data type of the variable to which it’s assigned.

An example of a coercion occurs when an integer value is assigned to a real variable; this
assignment causes the integer to be converted to a real value. Similarly, assigning a real value
to an integer variable forces conversion of the real value to an integer, which always results
in losing the fractional part of the number because of truncation. For example, if temp is an
integer variable, the assignment temp = 25.89 causes the integer value 25 to be stored in
the integer variable temp.3

A more complete example of data type conversions, which includes both mixed-mode
and assignment conversion, is the evaluation of the expression

a = b * d

where a and b are integer variables and d is a single-precision variable. When the mixed-mode
expression b * d is evaluated,4 the value of d used in the expression is converted to a
double-precision number for purposes of computation. (The value stored in d remains
a single-precision number.) Because one of the operands is a double-precision variable, the value
of the integer variable b is converted to a double-precision number for the computation. (Again,
the value stored in b remains an integer.) The resulting value of the expression b * d is a
double-precision number. Finally, data type conversion across the assignment operator comes
into play. Because the left side of the assignment operator is an integer variable, the double-
precision value of the expression (b * d) is truncated to an integer value and stored in the
variable a.

Assignment Variations
Although only one variable is allowed immediately to the left of the equal sign in an
assignment expression, the variable to the left of the equal sign can also be used to the right.
For example, the assignment expression sum = sum + 10 is valid. Clearly, as an algebraic
equation, sum could never be equal to itself plus 10. In C++, however, sum = sum + 10
is not an equation—it’s an expression evaluated in two major steps: First, the value of sum

3The correct integer portion is retained only when it’s within the range of integers the compiler allows.
4Review the precedence and associativity rules in Section 2.4 for the evaluation of mixed-mode expressions, if necessary.

Point of Information

lvalues and rvalues

The terms lvalue and rvalue are often used in programming technology. These
terms are language independent and are used to designate the following: An lvalue
can have a value assigned to it, but an rvalue can’t.

In both C and C++, an lvalue can appear on both the left and right sides of an
assignment operator, but an rvalue can appear only to the right of an assignment
operator. All the variables you have encountered can be an lvalue or rvalue, but a
number can be only an rvalue. Not all variables, however, can be lvalues and
rvalues. For example, an array type, introduced in Chapter 7, can’t be an lvalue or
rvalue, but elements in an array can be both.

108 Assignment, Formatting, and Interactive Input

+ 10 is calculated, and second, the computed value is stored in sum. See whether you can
determine the output of Program 3.2.

Program 3.2

#include <iostream>

using namespace std;

int main()

{

int sum;

sum = 25;

cout << "The number stored in sum is " << sum << endl;

sum = sum + 10;

cout << "The number now stored in sum is " << sum << endl;

return 0;

}

In Program 3.2, the assignment statement sum = 25; tells the computer to store the
number 25 in sum, as shown in Figure 3.3.

The first cout statement displays the value stored in sum with the message The number
stored in sum is 25. The second assignment statement, sum = sum + 10;, causes the
program to retrieve the 25 stored in sum and add 10 to this number, yielding 35. The number
35 is then stored in the variable to the left of the equal sign, which is the variable sum. The 25
that was in sum is simply overwritten with the new value of 35 (see Figure 3.4).

25

sum

Figure 3.3 The integer 25 is stored in sum

25

sum New value
(35)

is stored
Old value is
overwritten

Figure 3.4 sum = sum + 10; causes a new value to be stored in sum

109Chapter 3
Assignment Operations

Assignment expressions such as sum = sum + 25, which use the same variable on both
sides of the assignment operator, can be written by using the following shortcut assignment
operators:

+= –= *= /= %=

For example, the expression sum = sum + 10 can be written as sum += 10. Similarly,
the expression price *= rate is equivalent to the expression price = price * rate.
In using these new assignment operators, note that the variable to the left of the assignment
operator is applied to the complete expression on the right. For example, the expression
price *= rate + 1 is equivalent to the expression price = price * (rate + 1),
not price = price * rate + 1.

Accumulating
Assignment expressions, such as sum += 10 or its equivalent, sum = sum + 10, are
common in programming. These expressions are required in accumulating subtotals when
data is entered one number at a time. For example, if you want to add the numbers 96, 70,
85, and 60 in calculator fashion, the following statements could be used:

Statement Value in sum
sum = 0; 0
sum = sum + 96; 96
sum = sum + 70; 166
sum = sum + 85; 251
sum = sum + 60; 311

The first statement initializes sum to 0, which removes any number stored in sum that
would invalidate the final total (a “garbage value”). As each number is added, the value
stored in sum is increased accordingly. After completion of the last statement, sum contains
the total of all the added numbers. Program 3.3 illustrates the effect of these statements by
displaying sum’s contents after each addition.

110 Assignment, Formatting, and Interactive Input

Program 3.3

#include <iostream>

using namespace std;

int main()

{

int sum;

sum = 0;

cout << "The value of sum is initially set to " << sum << endl;

sum = sum + 96;

cout << " sum is now " << sum << endl;

sum = sum + 70;

cout << " sum is now " << sum << endl;

sum = sum + 85;

cout << " sum is now " << sum << endl;

sum = sum + 60;

cout << " The final sum is " << sum << endl;

return 0;

}

Program 3.3 displays this output:

The value of sum is initially set to 0

sum is now 96

sum is now 166

sum is now 251

The final sum is 311

Although Program 3.3 isn’t a practical program (because adding the numbers by hand is
easier), it does illustrate the subtotaling effect of repeated use of statements having this form:

variable = variable + newValue;

This type of statement is called an accumulation statement. You’ll find many uses for
accumulation statements when you become more familiar with the repetition statements
introduced in Chapter 5.

Counting
The counting statement, which is an assignment statement similar to the accumulating
statement, has the following form:

variable = variable + fixedNumber;

111Chapter 3
Assignment Operations

Examples of counting statements are as follows:

i = i + 1;
n = n + 1;
count = count + 1;
j = j + 2;
m = m + 2;
kk = kk + 3;

In these examples, the same variable is used on both sides of the equal sign. After the
statement is executed, the value of the variable is increased by a fixed amount. In the first
three examples, the variables i, n, and count have been increased by one. In the next two
examples, the variables have been increased by two, and in the final example, the variable
kk has been increased by three.

For the case in which a variable is increased or decreased by only one, C++ provides two
unary operators: increment and decrement operators. Using the increment operator,5 ++, the
expression variable = variable + 1 can be replaced by the expression variable++
or the expression ++variable. Here are examples of the increment operator:

Expression Alternative
i = i + 1 i++ or ++i
n = n + 1 n++ or ++n
count = count + 1 count++ or ++count

Program 3.4 illustrates the use of the increment operator.

5As a historical note, the ++ in C++’s name was inspired by the increment operator symbol. It was used to indicate that C++ was the next
increment to the C language.

112 Assignment, Formatting, and Interactive Input

Program 3.4

#include <iostream>

using namespace std;

int main()

{

int count;

count = 0;

cout << "The initial value of count is " << count << endl;

count++;

cout << " count is now " << count << endl;

count++;

cout << " count is now " << count << endl;

count++;

cout << " count is now " << count << endl;

count++;

cout << " count is now " << count << endl;

return 0;

}

This is the output displayed by Program 3.4:

The initial value of count is 0

count is now 1

count is now 2

count is now 3

count is now 4

When the ++ operator appears before a variable, it’s called a prefix increment operator;
when it appears after a variable, it’s called a postfix increment operator. The distinction
between a prefix and postfix increment operator is important when the variable being
incremented is used in an assignment expression. For example, k = ++n, which uses a prefix
increment operator, does two things in one expression: The value of n is incremented by one,
and then the new value of n is assigned to the variable k. Therefore, the statement k =
++n; is equivalent to these two statements:

n = n + 1; // increment n first
k = n; // assign n's value to k

The assignment expression k = n++, which uses a postfix increment operator, reverses
this procedure. A postfix increment operator works after the assignment is completed.
Therefore,the statement k = n++; first assigns the current value of n to k, and then
increments the value of n by one. This process is equivalent to these two statements:

113Chapter 3
Assignment Operations

k = n; // assign n's value to k
n = n + 1; // and then increment n

C++ also provides the decrement operator, --, in prefix and postfix variations. As you
might expect, both the expressions variable-- and --variable are equivalent to the
expression variable = variable - 1. Here are examples of the decrement operator:

Expression Alternative
i = i - 1 i-- or --i
n = n - 1 n-- or --n
count = count - 1 count-- or –-count

When the -- operator appears before a variable, it’s called a prefix decrement operator.
When this operator appears after a variable, it’s called a postfix decrement operator. For
example, both the expressions n-- and --n reduce the value of n by one and are equivalent
to the longer expression n = n - 1.

As with the increment operators, however, the prefix and postfix decrement operators
produce different results when used in assignment expressions. For example, the expression
k = --n first decrements the value of n by one before assigning the value of n to k, and
the expression k = n-- first assigns the current value of n to k, and then reduces the value
of n by one.

EXERCISES 3.1

1. (General Math) Write an assignment statement to calculate the circumference of a circle
having a radius of 3.3 inches. The formula for determining the circumference, c, of a
circle is c = 2�r, where r is the radius and � equals 3.1416.

2. (General Math) Write an assignment statement to calculate the area of a circle. The for-
mula for determining the area, a, of a circle is a = �r2, where r is the radius and
� = 3.1416.

3. (Conversion) Write an assignment statement to convert temperature in degrees Fahrenheit
to degrees Celsius. The formula for this conversion is Celsius = 5/9 (Fahrenheit - 32).

4. (General Math) Write an assignment statement to calculate the round-trip distance, d, in
feet, of a trip that’s s miles long one way.

5. (Physics) Write an assignment statement to calculate the elapsed time, in minutes, it
takes to make a trip. The formula for computing elapsed time is elapsed time = total
distance / average speed. Assume the distance is in miles and the average speed is in miles
per hour (mph).

6. (Numerical) Write an assignment statement to calculate the nth term in an arithmetic
sequence. This is the formula for calculating the value, v, of the nth term:
v = a + (n - 1)d

114 Assignment, Formatting, and Interactive Input

d is the difference between any two numbers in the sequence.
a is the first number in the sequence.

7. (Civil Eng.) Write an assignment statement to calculate the linear expansion in a steel beam
as a function of temperature increase. The formula for linear expansion, l, is as follows:
l = l0[1 + � (Tf - T0)]

l0 is the length of the beam at temperature T0.
� is the coefficient of linear expansion.
Tf is the final temperature of the beam.

8. (Physics) Coulomb’s Law states that the force, F, acting between two electrically charged
spheres is given by this formula:

F
k q q

r
= 1 2

2

q1 is the charge on the first sphere.
q2 is the charge on the second sphere.
r is the distance between the centers of the two spheres.
k is a proportionality constant.

Write an assignment statement to calculate the force, F.

9. (Civil Eng.) Write an assignment statement to determine the maximum bending
moment, M, of a beam, given this formula:

M
X W L X

L
= ()-

X is the distance from the end of the beam that a weight, W, is placed.
L is the length of the beam.

10. (Desk Check) Determine the output of the following program:

#include <iostream>
using namespace std;

int main() // a program illustrating integer truncation
{

int num1, num2;

num1 = 9/2;
num2 = 17/4;
cout << "the first integer displayed is " << num1 << endl;
cout << "the second integer displayed is " << num2 << endl;

return 0;
}

115Chapter 3
Assignment Operations

11. (Debug) Determine and correct the errors in the following programs.
a. #include <iostream>

using namespace std;
int main()
{

width = 15
area = length * width;
cout << "The area is " << area

}

b. #include <iostream>
using namespace std;
int main()
{

int length, width, area;
area = length * width;
length = 20;
width = 15;
cout << "The area is " << area;

return 0;

c. #include <iostream.h>

int main()
{

int length = 20; width = 15, area;
length * width = area;
cout << "The area is " , area;

return 0;
}

12. (Debug) By mistake, a student reordered the statements in Program 3.3 as follows:

#include <iostream>
using namespace std;

int main()
{

int sum;
sum = 0;
sum = sum + 96;
sum = sum + 70;
sum = sum + 85;
sum = sum + 60;
cout << "The value of sum is initially set to " << sum << endl;
cout << " sum is now " << sum << endl;
cout << " sum is now " << sum << endl;
cout << " sum is now " << sum << endl;
cout << " The final sum is " << sum << endl;

return 0;
}

Determine the output this program produces.

116 Assignment, Formatting, and Interactive Input

13. (General Math) Using Program 3.1, complete the following chart by determining the
volume of cylinders having these radii and heights:

Radius (in) Height (in) Volume
1.62 6.23
2.86 7.52
4.26 8.95
8.52 10.86
12.29 15.35

14. (General Math) The area of an ellipse (see Figure 3.5) is given by this formula:
Area = � a b
Using this formula, write a C++ program to calculate the area of an ellipse having a minor
axis, a, of 2.5 inches and a major axis, b, of 6.4 inches.

15. (Modify) Modify Program 3.1 to calculate the weight, in pounds, of the steel cylinder
whose volume was determined in that program. This is the formula for determining the
weight:
weight = 0.28 (�)(r 2)(h)

r is the radius (in inches).
h is the height (in inches) of the cylinder.

3.2 Formatting Numbers for Program Output

Besides displaying correct results, a program should present its results attractively. Most
programs are judged on the perceived ease of data entry and the style and presentation of the
output. For example, displaying a monetary result as 1.897 isn’t in keeping with accepted
report conventions. The display should be $1.90 or $1.89, depending on whether rounding or
truncation is used.

a

b

Figure 3.5 The minor axis, a, and the major axis, b, of an ellipse

117Chapter 3
Formatting Numbers for Program
Output

To control the format of numbers displayed by cout, you can include field width
manipulators in an output stream. Table 3.1 lists the most common stream manipulators for
this purpose.6

Table 3.1 Commonly Used Stream Manipulators

Manipulator Action
setw(n) Set the field width to n.
setprecision(n) Set the floating-point precision to n places. If the fixed

manipulator is designated, n specifies the total number of
displayed digits after the decimal point; otherwise, n specifies
the total number of significant digits displayed (integer plus
fractional digits).

setfill('x') Set the default leading fill character to x. (The default leading
fill character is a space, which is used to fill the beginning of an
output field when the field width is larger than the value being
displayed.)

setiosflags
(flags)

Set the format flags. (See Table 3.3 for flag settings.)

scientific Set the output to display real numbers in scientific notation.
showbase Display the base used for numbers. A leading 0 is displayed for

octal numbers and a leading 0x for hexadecimal numbers.
showpoint Always display six digits total (combination of integer and

fractional parts). Fill with trailing zeros, if necessary. For larger
integer values, revert to scientific notation.

showpos Display all positive numbers with a leading + sign.
boolalpha Display Boolean values as true and false rather than 1 and 0.
dec Set the output for decimal display, which is the default.
endl Output a newline character and display all characters in the buffer.
fixed Always show a decimal point and use a default of six digits after

the decimal point. Fill with trailing zeros, if necessary.
flush Display all characters in the buffer.
left Left-justify all numbers.
hex Set the output for hexadecimal display.
oct Set the output for octal display.
uppercase Display hexadecimal digits and the exponent in scientific notation

in uppercase.
right Right-justify all numbers (the default).
noboolalpha Display Boolean values as 1 and 0 rather than true and false.
noshowbase Don’t display octal numbers with a leading 0 and hexadecimal

numbers with a leading 0x.

6As noted in Chapter 2, the endl manipulator inserts a new line and then forces all current insertions to be displayed immediately, called
“flushing the stream.”

118 Assignment, Formatting, and Interactive Input

Table 3.1 Commonly Used Stream Manipulators (continued)

Manipulator Action
noshowpoint Don’t use a decimal point for real numbers with no fractional

parts, don’t display trailing zeros in the fractional part of a number,
and display a maximum of six decimal digits only.

noshowpos Don’t display leading + signs (the default).
nouppercase Display hexadecimal digits and the exponent in scientific notation

in lowercase.

For example, the statement cout << "The sum of 6 and 15 is" << setw(3)
<< 21; creates this printout:

The sum of 6 and 15 is 21

The setw(3) field width manipulator included in the data stream sent to cout is used
to set the displayed field width. The 3 in this manipulator sets the default field width for the
next number in the stream to be three spaces. This field width setting causes the 21 to
beprinted in a field of three spaces, which includes one blank and the number 21. As shown
in this output, integers are right-justified in the specified field.

Field width manipulators are useful in printing columns of numbers so that the numbers
align correctly in each column. For example, Program 3.5 shows how a column of integers
aligns in the absence of field width manipulators.

Program 3.5

#include <iostream>

using namespace std;

int main()

{

cout << 6 << endl

<< 18 << endl

<< 124 << endl

<< "---\n"

<< (6+18+124) << endl;

return 0;

}

119Chapter 3
Formatting Numbers for Program
Output

The output of Program 3.5 is the following:

6

18

124

148

Because no field width manipulators are used in Program 3.5, cout allocates enough
space for each number as it’s received. Forcing numbers to align on the units digit requires
a field width wide enough for the largest displayed number, which is three for the numbers
in Program 3.5. Program 3.6 shows the use of this field width.

Program 3.6

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

cout << setw(3) << 6 << endl

<< setw(3) << 18 << endl

<< setw(3) << 124 << endl

<< "---\n"

<< (6+18+124) << endl;

return 0;

}

The output of Program 3.6 is as follows:

6

18

124

148

The field width manipulator must be included for each occurrence of a number inserted
in the data stream sent to cout; the manipulator applies only to the next insertion of data
immediately following it, and the other manipulators remain in effect until they’re changed.

When a manipulator requiring an argument is used, the iomanip header file must be
included as part of the program. To do this, you use the preprocessor command #include
<iomanip>, which is the second line in Program 3.6.

120 Assignment, Formatting, and Interactive Input

Formatting floating-point numbers requires using three field width manipulators. The first
manipulator sets the total width of the display, the second manipulator forces the display of a
decimal point, and the third manipulator determines how many significant digits are displayed
to the right of the decimal point. (See the “Point of Information” box in Chapter 2 for a review
of significant digits.) For example, examine the following statement:

cout << "|" << setw(10) << fixed << setprecision(3) << 25.67 << "|";

It causes the following printout:

| 25.670|

The bar symbol, |, in this example is used to delimit (mark) the beginning and end of
the display field. The setw manipulator tells cout to display the number in a total field of
10. (With real numbers, the decimal point takes up one of these field locations.) The fixed
manipulator forces the display of a decimal point and specifies using the setprecision
manipulator to designate the number of digits displayed after the decimal point. In this case,
setprecision specifies a display of three digits after the decimal point. Without the
explicit designation of a decimal point (which can also be designated as
setiosflags(ios::fixed), explained shortly), the setprecision manipulator speci-
fies the total number of displayed digits, which includes the integer and fractional parts of the
number.

For all numbers (integers, single-precision, and double-precision), cout ignores the
setw manipulator specification if the total specified field width is too small, and it allocates
enough space for printing the integer part of the number. The fractional part of single-
precision and double-precision numbers is displayed up to the precision set with the
setprecision manipulator. (In the absence of setprecision, the default precision is
set to six decimal places.) If the fractional part of the number to be displayed contains more
digits than are called for in the setprecision manipulator, the number is rounded to the
indicated number of decimal places; if the fractional part contains fewer digits than specified,
the number is displayed with fewer digits. Table 3.2 shows the effect of several format
manipulator combinations. For clarity, the bar symbol delimits the beginning and end of
output fields.

Table 3.2 Effect of Format Manipulators

Manipulators Number Display Comments
setw(2) 3 | 3| Number fits in the field.
setw(2) 43 |43| Number fits in the field.
setw(2) 143 |143| Field width is ignored.
setw(2) 2.3 |2.3| Field width is ignored.
setw(5) fixed
setprecision(2)

2.366 | 2.37| Field width of five with two decimal
digits.

setw(5) fixed
setprecision(2)

42.3 |42.30| Number fits in the field with the
specified precision. Note that the
decimal point takes up one location
in the field width.

setw(5)
setprecision(2)

142.364 |1.4e+002| Field width is ignored, and scientific
notation is used with the
setprecision manipulator.

121Chapter 3
Formatting Numbers for Program
Output

Table 3.2 Effect of Format Manipulators (continued)

Manipulators Number Display Comments
setw(5) fixed
setprecision(2)

142.364 |142.36| Field width is ignored, but precision
specification is used. The
setprecision manipulator
specifies the number of fractional
digits.

setw(5) fixed
setprecision(2)

142.366 |142.37| Field width is ignored, but precision
specification used. The
setprecision manipulator
specifies the number of fractional
digits. (Note the rounding of the last
decimal digit.)

setw(5) fixed
setprecision(2)

142 | 142| Field width is used; fixed and
setprecision manipulators are
irrelevant because the number is an
integer that specifies the total
number of significant digits (integer
plus fractional digits).

In addition to the setw and setprecision manipulators, a field justification manipu-
lator is available. As you have seen, numbers sent to cout are normally right-justified in the
display field, and strings are left-justified. To alter the default justification for a stream of
data, you use the setiosflags manipulator. For example, the statement

cout << "|" << setw(10) << setiosflags(ios::left) << 142 << "|";

causes the following left-justified display:

|142 |

Because data sent to cout can be continued across multiple lines, the previous display
is also produced by this statement:

cout << "|" << setw(10)
<< setiosflags(ios::left)
<< 142 << "|";

As always, the field width manipulator is in effect only for the next set of data displayed
by cout. To right-justify strings in a stream, you use the setiosflags(ios::right)
manipulator. The letters “ios” in the function name and the ios::right argument come
from the first letters of the words “input output stream.”

In addition to the left and right flags that can be used with setiosflags(), other
flags can be used to affect output. Table 3.3 lists the most commonly used flags for this
manipulator function. The flags in this table provide another way of setting the manipulators
listed in Table 3.1.

122 Assignment, Formatting, and Interactive Input

Table 3.3 Format Flags for Use with setiosflags()

Flag Meaning
ios::fixed Always show the decimal point with six digits after the

decimal point. Fill with trailing zeros after the decimal point,
if necessary. This flag takes precedence if it’s set with the
ios::showpoint flag.

ios::scientific Use exponential display in the output.
ios::showpoint Always display a decimal point and six significant digits total

(combination of integer and fractional parts). Fill with trailing
zeros after the decimal point, if necessary. For larger integer
values, revert to scientific notation unless the ios::fixed
flag is set.

ios::showpos Display a leading + sign when the number is positive.
ios::left Left-justify the output.
ios::right Right-justify the output.

Because the flags in Table 3.3 are used as arguments to setiosflags() and the terms
“argument” and “parameter” are synonymous, another name for a manipulator method that
uses arguments is a parameterized manipulator. The following is an example of a parameter-
ized manipulator method:

cout << setiosflags(ios::showpoint) << setprecision(4);

This statement forces all subsequent floating-point numbers sent to the output stream to
be displayed with a decimal point and four decimal digits. If the number has fewer than four
decimal digits, it’s padded with trailing zeros.

Point of Information

What Is a Flag?
In current programming usage, the term flag refers to an item, such as a variable or
argument, that sets a condition usually considered active or nonactive. Although the
exact origin of this term in programming is unknown, it probably came from using real
flags to signal a condition, such as the Stop, Go, Caution, and Winner flags commonly
used at car races.

In a similar manner, each flag argument for the setiosflags() manipulator
function activates a specific condition. For example, the ios::dec flag sets the display
format to decimal, and the ios::oct flag activates the octal display format. Because
these conditions are mutually exclusive (only one can be active at a time), activating
this type of flag deactivates the other flags automatically.

Flags that aren’t mutually exclusive, such as ios::dec, ios::showpoint, and
ios::fixed, can be set simultaneously. You can do this by using three separate
setiosflag() calls or combining all arguments into one call as follows:

cout << setiosflags(ios::dec | ios::fixed | ios::showpoint);

123Chapter 3
Formatting Numbers for Program
Output

In addition to outputting integers in decimal notation, the oct and hex manipulators are
used for conversions to octal and hexadecimal; Program 3.7 uses these flags. Because decimal
is the default display, the dec manipulator isn’t required in the first output stream.

Program 3.7

// a program that illustrates output conversions

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

cout << "The decimal (base 10) value of 15 is " << 15 << endl;

cout << "The octal (base 8) value of 15 is "

<< showbase << oct << 15 <<endl;

cout << "The hexadecimal (base 16) value of 15 is "

<< showbase << hex << 15 << endl;

return 0;

}

The output produced by Program 3.7 is the following:

The decimal (base 10) value of 15 is 15

The octal (base 8) value of 15 is 017

The hexadecimal (base 16) value of 15 is 0xf

The display of integer values in one of three possible number systems (decimal, octal,
and hexadecimal) doesn’t affect how the number is stored in a computer. All numbers
arestored by using the computer’s internal codes. The manipulators sent to cout tell the
object how to convert the internal code for output display purposes.

Besides displaying integers in octal or hexadecimal form, they can also be written in a
program in these forms. To designate an octal integer, the number must have a leading zero.
The number 023, for example, is an octal number in C++. Hexadecimal numbers are denoted
with a leading 0x. Program 3.8 shows how octal and hexadecimal integer numbers are used
and produces the following output:

The decimal value of 025 is 21

The decimal value of 0x37 is 55

124 Assignment, Formatting, and Interactive Input

Program 3.8

#include <iostream>

using namespace std;

int main()

{

cout << "The decimal value of 025 is " << 025 << endl

<< "The decimal value of 0x37 is "<< 0x37 << endl;

return 0;

}

Point of Information

Formatting cout Stream Data
Floating-point data in a cout output stream can be formatted in precise ways. For
example, a common format requirement is to display monetary amounts with two digits
after the decimal point, such as 123.45. You can do this with the following statement:

cout << setiosflags(ios::fixed)
<< setiosflags(ios::showpoint)
<< setprecision(2);

The first manipulator flag, ios::fixed, forces all floating-point numbers in the
cout stream to be displayed in decimal notation. This flag also prevents using scientific
notation. The next flag, ios::showpoint, tells the stream to always display a deci-
mal point. Finally, the setprecision manipulator tells the stream to always display
two digits after the decimal point. Instead of using manipulators, you can use the
cout stream methods setf() and precision(). For example, the previous format-
ting can also be accomplished with this code:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

Note the syntax: The name of the object, cout, is separated from the method
with a period. This format is the standard way of specifying a method and connecting
it to a specific object.

Additionally, the flags used in both the setf() method and the setiosflags()
manipulator method can be combined by using the bitwise OR operator, | (explained
in Section 15.2). Using this operator, the following two statements are equivalent:

cout << setiosflags(ios::fixed | ios::showpoint);
cout.setf(ios::fixed | ios::showpoint);

The statement you select is a matter of personal preference or a predefined imposed
standard.

125Chapter 3
Formatting Numbers for Program
Output

The relationship between input, storage, and display of integers is illustrated in
Figure 3.6.

Finally, you can set the manipulators listed in Tables 3.1 and 3.2 by using the ostream
class functions listed in Table 3.4.

Table 3.4 ostream Class Functions

Method Comment Example
precision(n) Equivalent to setprecision() cout.precision(2)
fill('x') Equivalent to setfill() cout.fill('*')
setf(ios::fixed) Equivalent to

cout.setf(ios::fixed)
setiosflags(ios::
fixed)

setf(ios::
showpoint)

Equivalent to
cout.setf(ios::showpoint)

setiosflags(ios::
showpoint)

setf(iof::left) Equivalent to left cout.setf(ios::
left)

internal
number

code

convert an
octal number

convert a
decimal
number

convert a
hexadecimal

number

convert to
octal

representation

convert to
decimal

representation

convert to
hexadecimal

representation

cout << dec

cout << oct

cout << hex

Display is octal, decimal,
or hexadecimal

Storage is always
in binary

Input is octal, decimal,
or hexadecimal

Integer
with a

leading 0

Integer
with no

leading 0
or 0X

Integer
with a

leading 0X

Octal
display

Decimal
display

Hexadecimal
display

Figure 3.6 Input, storage, and display of integers

126 Assignment, Formatting, and Interactive Input

Table 3.4 ostream Class Functions (continued)

Method Comment Example
setf(ios::right) Equivalent to right cout.setf(ios::

right)
setf(ios::flush) Equivalent to endl cout.setf(ios::

flush)

In the Example column of Table 3.4, the name of the object, cout, is separated from the
function with a period. As mentioned, this format is the standard way of calling a class function
and providing it with an object to operate on.

EXERCISES 3.2

1. (Desk Check) Determine the output of the following program:

#include <iostream>
using namespace std;

int main() // a program illustrating integer truncation
{

cout << "answer1 is the integer " << 9/4
<< "\nanswer2 is the integer " << 17/3 << endl;

return 0;
}

2. (Desk Check) Determine the output of the following program:

#include <iostream>
using namespace std;
int main() // a program illustrating the % operator
{

cout << "The remainder of 9 divided by 4 is " << 9 % 4
<< "\nThe remainder of 17 divided by 3 is " << 17 % 3 << endl;

return 0;
}

3. (Practice) Write a C++ program that displays the results of the expressions 3.0 * 5.0,
7.1 * 8.3 - 2.2, and 3.2 / (6.1 * 5). Calculate the value of these expressions
manually to verify that the displayed values are correct.

4. (Practice) Write a C++ program that displays the results of the expressions 15 / 4, 15
% 4, and 5 * 3 - (6 * 4). Calculate the value of these expressions manually to
verify that the display your program produces is correct.

127Chapter 3
Formatting Numbers for Program
Output

5. (Debug) Determine the errors in the following statements:
a. cout << "\n << " 15)

b. cout << "setw(4)" << 33;

c. cout << "setprecision(5)" << 526.768;

d. "Hello World!" >> cout;

e. cout << 47 << setw(6);

f. cout << set(10) << 526.768 << setprecision(2);

6. (Desk Check) Determine and write out the display produced by the following
statements:
a. cout << "|" << 5 <<"|";

b. cout << "|" << setw(4) << 5 << "|";

c. cout << "|" << setw(4) << 56829 << "|";

d. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 5.26 << "|";

e. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 5.267 << "|";

f. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 53.264 << "|";

g. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 534.264 << "|";

h. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 534. << "|";

7. (Desk Check) Write out the display produced by the following statements:
a. cout << "The number is " << setw(6) << setiosflags(ios::fixed)

<< setprecision(2) << 26.27 << endl;
cout << "The number is " << setw(6) << setiosflags(ios::fixed)

<< setprecision(2) << 682.3 << endl;
cout << "The number is " << setw(6) << setiosflags(ios::fixed)

<< setprecision(2) << 1.968 << endl;

b. cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 26.27 << endl;

cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 682.3 << endl;

cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 1.968 << endl;

cout << "------\n";
cout << setw(6) << setiosflags(ios::fixed)

<< setprecision(2)
<< 26.27 + 682.3 + 1.968 << endl;

128 Assignment, Formatting, and Interactive Input

c. cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 26.27 << endl;

cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 682.3 << endl;

cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 1.968 << endl;

cout << "-----\n";
cout << setw(5) << setiosflags(ios::fixed)

<< setprecision(2)
<< 26.27 + 682.3 + 1.968 << endl;

d. cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 36.164 << endl;

cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 10.003 << endl;

cout << "-----" << endl;

8. (Desk Check) The following chart lists the equivalent octal and hexadecimal representa-
tions for the decimal numbers 1 through 15:

Decimal: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Octal: 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17

Hexadecimal: 1 2 3 4 5 6 7 8 9 a b c d e f

Using this chart, determine the output of the following program:

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{

cout << "\nThe value of 14 in octal is " << oct << 14
<< "\nThe value of 14 in hexadecimal is " << hex << 14
<< "\nThe value of 0xA in decimal is " << dec << 0xA
<< "\nThe value of 0xA in octal is " << oct << 0xA
<< endl;

return 0;
}

9. (Electrical Eng.) The combined resistance of three resistors connected in parallel, as
shown in Figure 3.7, is given by this formula:

Combined

R R R

resistance =
+ +

1

1 1 1

1 2 3

Using this formula, write a C++ program to calculate and display the combined resistance
when the three resistors R1 = 1000, R2 = 1000, and R3 = 1000 are connected in parallel.
The output should produce this display:

The combined resistance is xxxx.xx ohms

The xxxx.xx denotes placing the calculated value in a field width of seven columns,
with two positions to the right of the decimal point.

129Chapter 3
Formatting Numbers for Program
Output

10. (General Math) Write a C++ program to calculate and display the value of the slope of
the line connecting two points with the coordinates (3,7) and (8,12). Use the fact that the
slope between two points at the coordinates (x1,y1) and (x2,y2) is slope = (y2 - y1) / (x2 -
x1). Your program should produce this display:

The value of the slope is xxx.xx

The xxx.xx denotes placing the calculated value in a field wide enough for three places
to the left of the decimal point and two places to the right of it.

11. (General Math) Write a C++ program to calculate and display the midpoint coordinates
of the line connecting the two points with coordinates of (3,7) and (8,12). Use the fact
that the midpoint coordinates between two points with the coordinates (x1,y1) and (x2,y2)
are ((x1 + x2)/2, (y1 + y2)/2). Your program should produce this display:

The x coordinate of the midpoint is xxx.xx
The y coordinate of the midpoint is xxx.xx

The xxx.xx denotes placing the calculated value in a field wide enough for three places
to the left of the decimal point and two places to the right of it.

12. (Civil Eng.) Write a C++ program to calculate and display the maximum bending
moment, M, of a beam that’s supported on both ends (see Figure 3.8). The formula is M
= XW (L - X) / L, where X is the distance from the end of the beam that a weight, W, is
placed, and L is the length of the beam. Your program should produce this display:

The maximum bending moment is xxxx.xxxx

The xxxx.xxxx denotes placing the calculated value in a field wide enough for four
places to the right and left of the decimal point. For your program, assign the values 1.2,
1.3, and 11.2 to X, W, and L.

R1

R2

R3

Figure 3.7 Three resistors connected in parallel

W
L

X

Figure 3.8 Calculating the maximum bending moment

130 Assignment, Formatting, and Interactive Input

3.3 Using Mathematical Library Functions

As you have seen, assignment statements can be used to perform arithmetic computations.
For example, the following assignment statement multiplies the value in current by the
value in resistance and assigns the resulting value to volts:

volts = resistance * current;

Although addition, subtraction, multiplication, and division are accomplished easily with
C++’s arithmetic operators, no operators exist for raising a number to a power, finding a
number’s square root, or determining trigonometric values. To perform these calcula-
tions,C++ provides standard preprogrammed functions that can be included in a program.
Before using one of C++’s mathematical functions, you need to know the following:

• The name of the mathematical function
• What the mathematical function does
• The type of data the mathematical function requires
• The data type of the result the mathematical function returns
• How to include the mathematical library

To illustrate the use of C++’s mathematical functions, take a look at the mathematical
function sqrt(), which calculates a number’s square root and uses this form:

sqrt(number)

The function’s name, in this case sqrt, is followed by parentheses containing the number
for which the square root should be calculated. The purpose of the parentheses after the
function name is to provide a funnel through which data can be passed to the function (see
Figure 3.9). The items passed to the function through the parentheses are called arguments
of the function and constitute its input data. For example, the following expressions are used
to compute the square root of the arguments 4., 17.0, 25., 1043.29, and 6.4516:

sqrt(4.)
sqrt(17.0)
sqrt(25.)
sqrt(1043.29)
sqrt(6.4516)

Notice that the argument to the sqrt() function must be a real value, which is an
example of C++’s function overloading capabilities. Function overloading permits using the

sqrt() function

sqrt (a value)

Figure 3.9 Passing data to the sqrt() function

131Chapter 3
Using Mathematical Library Functions

same function name for arguments of different data types.7 There are actually three functions
named sqrt()—defined for float, double, and long double arguments. The correct
sqrt() function is called depending on the type of value passed to the function when the
call is made. When one of the functions named sqrt() is called (again, the selection
isautomatic, based on the passed argument), the function determines the square root of its
argument and returns the result as a double. The previous expressions return these values:

Expression Value Returned
sqrt(4.) 2.
sqrt(17.0) 4.12311
sqrt(25.) 5.
sqrt(1043.29) 32.2
sqrt(6.4516) 2.54

In addition to the sqrt() function, Table 3.5 lists commonly used mathematical
functions provided in C++. Accessing these functions in a program requires including the
mathematical header file cmath, which contains declarations for mathematical functions. To
use this header file, place the following preprocessor statement at the top of any program
using a mathematical function:

#include <cmath>

Although some mathematical functions in Table 3.5 require more than one argument, all
functions, by definition, can return at most one value. Additionally, all the functions listed are
overloaded, which means the same function name can be used with integer and real arguments.
Table 3.6 shows the value returned by selected functions, using sample arguments.

Table 3.5 Common C++ Functions

Function Name Description Returned Value
abs(a) absolute value Same data type as

argument
pow(a1,a2) a1 raised to the a2 power Same data type as

argument a1
sqrt(a) square root of a real

number
Double-precision

sin(a) sine of a (a in radians) Double
cos(a) cosine of a (a in radians) Double
tan(a) tangent of a (a in radians) Double

7If it weren’t for overloading, three separate square root functions, each with a different name, would have to be defined—one for each type of
argument.

132 Assignment, Formatting, and Interactive Input

Table 3.5 Common C++ Functions (continued)

Function Name Description Returned Value
log(a) natural logarithm of a Double
log10(a) common log (base 10) of a Double
exp(a) e raised to the a power Double

Table 3.6 Selected Function Examples

Example Returned Value
abs(-7.362) 7.362
abs(-3) 3
pow(2.0,5.0) 32.
pow(10,3) 1000
log(18.697) 2.92836
log10(18.697) 1.27177
exp(-3.2) 0.040762

Each time a mathematical function is used, it’s called into action by giving the name of
the function and passing to it any data in the parentheses following the function’s name (see
Figure 3.10).

The arguments passed to a function need not be single constants. Expressions can also
be arguments, provided the expression can be computed to yield a value of the required data
type. For example, the following arguments are valid for the given functions:

sqrt(4.0 + 5.3 * 4.0) abs(2.3 * 4.6)
sqrt(16.0 * 2.0 - 6.7) sin(theta - phi)
sqrt(x * y - z/3.2) cos(2.0 * omega)

The expressions in parentheses are evaluated first to yield a specific value. Therefore, values
have to be assigned to the variables theta, phi, x, y, z, and omega before their use in the
preceding expressions. After the value of the argument is calculated, it’s passed to the
function.

Functions can also be included as part of larger expressions, as shown in this example:

4 * sqrt(4.5 * 10.0 - 9.0) - 2.0
= 4 * sqrt(36.0) - 2.0
= 4 * 6.0 - 2.0
= 24.0 - 2.0
= 22.0

function-name (data passed to the function);

This passes data to
the function

This identifies
the called
function

Figure 3.10 Using and passing data to a function

133Chapter 3
Using Mathematical Library Functions

The step-by-step evaluation of an expression such as

3.0 * sqrt(5 * 33 - 13.71) / 5

is as follows:

Step Result
1. Perform multiplication in the argument. 3.0 * sqrt(165 - 13.71) / 5
2. Complete the argument calculation. 3.0 * sqrt(151.29) / 5
3. Return a function value. 3.0 * 12.3 / 5
4. Perform the multiplication. 36.9 / 5
5. Perform the division. 7.38

Program 3.9 illustrates using the sqrt() function to determine the time it takes a ball
to hit the ground after it has been dropped from an 800-foot tower. This is the mathematical
formula for calculating the time in seconds it takes to fall a given distance in feet:

time = sqrt(2 × distance / g)

where g is the gravitational constant, equal to 32.2 ft/sec2.

Program 3.9

#include <iostream> // this line can be placed second instead of first

#include <cmath> // this line can be placed first instead of second

using namespace std;

int main()

{

int height;

double time;

height = 800;

time = sqrt(2 * height / 32.2);

cout << "It will take " << time << " seconds to fall "

<< height << " feet.\n";

return 0;

}

Program 3.9 produces this output:

It will take 7.04907 seconds to fall 800 feet.

134 Assignment, Formatting, and Interactive Input

As used in Program 3.9, the value the sqrt() function returns is assigned to the variable
time. In addition to assigning a function’s returned value to a variable, the returned value
can be included in a larger expression or even used as an argument to another function. For
example, the following expression is valid:

sqrt(sin(abs(theta)))

Because parentheses are present, the computation proceeds from the inner to outer pairs
of parentheses. Therefore, the absolute value of theta is computed first and used as
anargument to the sin() function. The value the sin() function returns is then used as
an argument to the sqrt() function.

Note that the arguments of all trigonometric functions (sin(), cos(), and so forth)
must be in radians. Therefore, to calculate the sine of an angle given in degrees, the angle
must be converted to radians first. You can do this easily by multiplying the angle by the term
(3.1416/180.). For example, to obtain the sine of 30 degrees, use the expression sin
(30 * 3.1416/180.).

Casts
You have already seen the conversion of an operand’s data type in mixed-mode arithmetic
expressions (Section 2.4) and with different operators (Section 3.1). In addition to the implicit
data type conversions made automatically in mixed-mode arithmetic and assignment expres-
sions, C++ provides for explicit user-specified type conversions. The operator used to force
converting a value to another type is the cast operator. C++ provides compile-time and
runtime cast operators. The compile-time cast is a unary operator with this syntax:

dataType (expression)

The dataType is the data type to which the expression in parentheses is converted. For
example, the following expression

int (a * b)

converts the value of the expression a * b to an integer value.8
With the introduction of the latest C++ standard, runtime casts are included. In this type

of cast, the requested type conversion is checked at runtime and applied if the conversion
results in a valid value. Although four types of runtime casts are available, the most
commonly used cast and the one corresponding to the compile-time cast has the following
syntax:

staticCast<data-type> (expression)

For example, the runtime cast staticCast<int>(a * b) is equivalent to the compile-
time cast int (a* b).

8The C type cast syntax, in this case (int)(a * b), also works in C++.

135Chapter 3
Using Mathematical Library Functions

EXERCISES 3.3

1. (Practice) Write function calls to determine the following:
a. The square root of 6.37

b. The square root of x - y

c. The sine of 30 degrees

d. The sine of 60 degrees

e. The absolute value of a2 - b2

f. The value of e raised to the third power

2. (Practice) For a = 10.6, b = 13.9, and c = -3.42, determine the following
values:
a. int (a)

b. int (b)

c. int (c)

d. int (a + b)

e. int (a) + b + c

f. int (a + b) + c

g. int (a + b + c)

h. float (int (a)) + b

i. float (int (a + b))

j. abs(a) + abs(b)

k. sqrt(abs(a - b))

3. (Practice) Write C++ statements for the following:
a. b = sin x - cos x

b. b = sin2 x - cos2 x

c. area = (c × b × sin a)/2

d. c a b= +2 2

e. p m n= | |-

f. sum
a r

r

n

=
()-

-

1

1

4. (Numerical) Write, compile, and execute a C++ program that calculates and returns the
fourth root of the number 81.0, which is 3. After verifying that your program works cor-
rectly, use it to determine the fourth root of 1,728.896400. Your program should make use
of the sqrt() function.

136 Assignment, Formatting, and Interactive Input

5. (General Math) Write, compile, and execute a C++ program to calculate the distance
between two points with the coordinates (7, 12) and (3, 9). Use the fact that the distance
between two points with the coordinates (x1, y1) and (x2, y2) is given by this formula:

dis ce x ytan = +()2 2

After verifying that your program works correctly by calculating the distance between the
two points manually, use your program to determine the distance between the points (-12,
-15) and (22, 5).

6. (General Math) If a 20-foot ladder is placed on the side of a building at a 85-degree
angle, as shown in Figure 3.11, the height at which the ladder touches the building can
be calculated as height = 20 × sin 85°. Calculate this height by hand, and then write, com-
pile, and execute a C++ program that determines and displays the value of the height.
After verifying that your program works correctly, use it to determine the height of a
25-foot ladder placed at an angle of 85 degrees.

7. (Physics) The maximum height reached by a ball thrown with an initial velocity, v, in
meters/sec, at an angle of � is given by this formula:
height = (.5 × v2 × sin2 �) / 9.8
Using this formula, write, compile, and execute a C++ program that determines and dis-
plays the maximum height reached when the ball is thrown at 5 mph at an angle of
60 degrees. (Hint: Make sure to convert the initial velocity into the correct units. There
are 1609 meters in a mile.) Calculate the maximum height manually, and verify the result
your program produces. After verifying that your program works correctly, use it to deter-
mine the height reached by a ball thrown at 7 mph at an angle of 45 degrees.

20
'

85°

Figure 3.11 Calculating the height of a ladder against a building

137Chapter 3
Using Mathematical Library Functions

8. (Numerical) For small values of x, the value of sin(x) can be approximated by this power
series:

x
x x x− + − +

3 5 7

3 5 7! ! !
....

As with the sin() function, the value of x must be in radians. Using this power series,
write, compile, and execute a C++ program that approximates the sine of 180/3.1416 degrees,
which equals one radian. Additionally, have your program use the sin() function to calculate
the sine and display both calculated values and the absolute difference of the two results.
Manually verify the approximation your program produces. After verifying that your program
is working correctly, use it to approximate the value of the sine of 62.2 degrees.

9. (Conversion) The polar coordinates of a point consist of the distance, r, from a specified
origin and an angle, �, with respect to the x-axis. The point’s x and y coordinates are
related to its polar coordinates by these formulas:
x = r cos �

y = r sin �

Using these formulas, write a C++ program to calculate the x and y coordinates of a point
with the polar coordinates r = 10 and � = 30 degrees. Verify the results your program pro-
duces by calculating the results manually. After verifying that your program is working
correctly, use it to convert the polar coordinates r = 12.5 and � = 67.8 degrees into rectan-
gular coordinates.

10. (Ecology) A model of worldwide population growth, in billions of people, since 2000 is
given by this formula:
Population = 6.0 e0.02[Year - 2000]

Using this formula, write, compile, and execute a C++ program to estimate the worldwide
population in the year 2012. Verify the result your program produces by calculating the
answer manually. After verifying that your program is working correctly, use it to estimate
the world’s population in the year 2019.

11. (Physics) A model to estimate the number of grams of a radioactive isotope left after
t years is given by this formula:
remaining material = (original material) e-0.00012t

Using this formula, write, compile, and execute a C++ program to determine the amount of
radioactive material remaining after 1000 years, assuming an initial amount of 100 grams.
Verify the display your program produces by using a hand calculation. After verifying that
your program is working correctly, use it to determine the amount of radioactive material
remaining after 275 years, assuming an initial amount of 250 grams.

12. (Physics) The number of years it takes for an isotope of uranium to decay to one-half an
original amount is given by this formula, where �, the decay constant (which is equal to
the inverse of the mean lifetime), equals 0.00012:
half-life = ln(2) / �

Using this formula, write, compile, and execute a C++ program that calculates and dis-
plays the half-life of this uranium isotope. Verify the result your program produces by
using a hand calculation. After verifying that your program is working correctly, use it to
determine the half-life of a uranium isotope with � = 0.00026.

138 Assignment, Formatting, and Interactive Input

3.4 Program Input Using cin

Data for programs that are going to be executed only once can be included in the program.
For example, if you want to multiply the numbers 30.0 and 0.05, you could use Program 3.10.

Program 3.10

#include <iostream>

using namespace std;

int main()

{

double num1, num2, product;

num1 = 30.0;

num2 = 0.05;

product = num1 * num2;

cout << "30.0 times 0.05 is " << product << endl;

return 0;

}

Program 3.10 produces this output:

30.0 times 0.05 is 1.5

Program 3.10 can be shortened, as shown in Program 3.11. Both programs, however,
suffer from the same basic problem: They must be rewritten to multiply different numbers.
Both programs lack the capability to enter different numbers on which to operate.

Program 3.11

#include <iostream>

using namespace std;

int main()

{

cout << "30.0 times 0.05 is " << 30.0 * 0.05 << endl;

return 0;

}

139Chapter 3
Program Input Using cin

Except for the programming practice provided by writing, entering, and running the
program, programs that do the same calculation only once, on the same set of numbers,
clearly aren’t very useful. After all, using a calculator to multiply two numbers is simpler than
entering and running Program 3.10 or 3.11.

This section explains the cin statement, used to enter data in a program while it’s
running. Just as a cout statement displays the value stored in a variable, cin allows users
to enter a value at the keyboard (see Figure 3.12), and then the value is stored in a variable.

When a statement such as cin >> num1; is encountered, the computer stops program
execution and accepts data from the keyboard. When a data value is typed, cin causes the
value to be stored in the variable listed after the extraction (“get from”) operator, >>. The
program then continues execution with the next statement after the cin statement. To see
how cin works, take a look at Program 3.12.

Program 3.12

#include <iostream>

using namespace std;

int main()

{

double num1, num2, product;

cout << "Please type in a number: ";

cin >> num1;

cout << "Please type in another number: ";

cin >> num2;

product = num1 * num2;

cout << num1 << " times " << num2 << " is " << product << endl;

return 0;

}

The first cout statement in Program 3.12 displays a string that tells the person at the
keyboard what should be typed. When an output string is used in this manner, it’s called a
prompt. In this case, the prompt tells the user to type a number. The computer then executes

int main()
{
 cin >>
 cout <<
}

Screen

Keyboard

Figure 3.12 cin is used to enter data; cout is used to display data

140 Assignment, Formatting, and Interactive Input

the next statement, which uses cin. The cin statement puts the computer in a temporary pause
(or wait) state while the user types a value. Then the user signals cin that data entry is finished
by pressing the Enter key. The entered value is stored in the variable to the right of the
extraction operator (num1), and the computer is taken out of its paused state.

Program execution proceeds with the next statement, which in Program 3.12 is another
cout statement that displays a prompt asking the user to type another number. The next
statement uses cin again to put the computer in a temporary wait state while the user types
a second value (stored in the variable num2).

The following sample run was made using Program 3.12:

Please type in a number: 30

Please type in another number: 0.05

30 times 0.05 is 1.5

In Program 3.12, each time cin is invoked, it’s used to store one value in a variable. A
cin statement, however, can be used to enter and store as many values as there are
extraction operators and variables to hold the entered data. For example, the statement

cin >> num1 >> num2;

results in two values being read from the keyboard and assigned to the variables num1 and
num2. If the data entered at the keyboard is

0.052 245.79

the variables num1 and num2 contain the values 0.052 and 245.79, respectively. Notice that
there must be at least one space between numbers when they’re entered to clearly indicate
where one number ends and the next begins. Inserting more than one space between
numbers has no effect on cin.

The same spacing also applies to entering character data; the extraction operator skips
blank spaces and stores the next nonblank character in a character variable. For example, in
response to the statements,

char ch1, ch2, ch3; // declare three character variables
cin >> ch1 >> ch2 >> ch3; // accept three characters

the input

a b c

causes the letter a to be stored in the variable ch1, the letter b to be stored in the variable ch2,
and the letter c to be stored in the variable ch3. Because a character variable can be used to store
only one character, however, the following input, without spaces, can also be used:

abc

You can use any number of cin statements in a program, and any number of values can
be entered with a single cin statement. Program 3.13 shows using a cin statement to input
three numbers from the keyboard. The program then calculates and displays the average of
the entered numbers.

141Chapter 3
Program Input Using cin

Program 3.13

#include <iostream>

using namespace std;

int main()

{

int num1, num2, num3;

double average;

cout << "Enter three integer numbers: ";

cin >> num1 >> num2 >> num3;

average = (num1 + num2 + num3) / 3.0;

cout << "The average of the numbers is " << average << endl;

return 0;

}

The following sample run was made using Program 3.13:

Enter three integer numbers: 22 56 73

The average of the numbers is 50.3333

The data entered at the keyboard for this sample run consists of 22 56 73. In response
to this stream of input, Program 3.13 stores the value 22 in the variable num1, the value 56
in the variable num2, and the value 73 in the variable num3 (see Figure 3.13). Because the
average of three integer numbers can be a floating-point number, the variable average,
used to store the average of all entered numbers, is declared as a floating-point variable (a
double). Note also that parentheses are needed in the assignment statement average =
(num1 + num2 + num3)/3.0;. Without the parentheses, the only value divided by 3
would be the integer in num3 (because division has a higher precedence than addition).

cin >> num1 >> num2 >> num3;

22 56 73

22

56

73

num1

num2

num3

Figure 3.13 Inputting data in the variables num1, num2, and num3

142 Assignment, Formatting, and Interactive Input

The extraction operator, >>, like the insertion operator, <<, is “clever” enough to make a
few data type conversions. For example, if an integer is entered instead of a double-precision
number, the integer is converted to the correct data type.9 Similarly, if a double-precision number
is entered when an integer is expected, only the integer part of the number is used. For example,
assume the following numbers are typed in response to the statement cin >> num1 >> num2
>> num3;, where num1 and num3 have been declared as double-precision variables and num2
is an integer variable:

56 22.879 33.923

The 56 is converted to 56.0 and stored in the variable num1. The extraction operation
continues, extracting data from the input stream and expecting an integer value. As far as the
<< operator is concerned, the decimal point in 22.879 indicates the end of an integer and the
start of a decimal number. Therefore, the number 22 is assigned to num2. Continuing to
process its input stream, the next << operator takes the .879 as the next floating-point
number and assigns it to num3. As far as cin is concerned, 33.923 is extra input and is
ignored. If, however, you don’t enter enough data initially, the insertion operator causes the
computer to pause, waiting until enough data has been entered.

A First Look at User-Input Validation
A well-constructed program should validate user input and ensure that a program doesn’t
crash or produce nonsensical output caused by unexpected input. The term validate means
checking that the entered value matches the data type of the variable it’s assigned to in a cin
statement and checking that the value is within an acceptable range for the application.
Programs that detect and respond effectively to unexpected user input are formally referred
to as robust programs and informally as “bulletproof” programs. One of your goals as a
programmer is to produce robust programs. As written, Programs 3.12 and 3.13 aren’t robust
programs, and in the following discussion, you see why.

The first problem with these programs becomes evident when a user enters a non-
numerical value. For example, examine the following sample run using Program 3.13:

Enter three integer numbers: 10 20.68 20

The average of the numbers is -2.86331e+008

This output occurs because the conversion of the second entered number results in
assigning the integer value 20 to num2 and the value -858993460 to num3.10 The -858993460
value results because an invalid character, the decimal point, is assigned to a variable that
expects an integer. The average of the numbers 10, 20, and -858993460 is computed correctly
as -286331143.3, which is displayed in scientific notation with six significant digits as
-2.86331e+008. Most users, however, would report this result as a program error.

This same problem occurs when a non-integer value is entered for either of the first two
inputs. (It doesn’t occur for any numerical value entered as the third input because the
integer part of the last input is accepted, and the remaining input ignored.) Your first
response might be “The program clearly asks you to enter integer values.” Programmers with
more experience, however, understand that their responsibility is to make sure a program

9Strictly speaking, what comes in from the keyboard isn’t any data type, such as an int or a double, but is simply a sequence of characters.
The extraction operation handles the conversion from the character sequence to a defined data type.
10Some C++ runtime systems accept the .68 as the third input and convert it to the integer value of zero. In all cases, the last value of 20 is
ignored.

143Chapter 3
Program Input Using cin

anticipates and appropriately handles all inputs users might enter. To achieve this goal, think
about what can go wrong with your program as you develop it, and then have another person
or group test the program.

The basic approach to handling invalid data input is called user-input validation, which
means checking the entered data during or immediately after it has been entered, and then
giving users a way to reenter invalid data. User-input validation is an essential part of any
commercially viable program; if done correctly, it protects a program from attempting to
process data that can cause computational problems. You see how to do this type of validation
in Chapters 4 and 5, when you learn about C++’s selection and repetition statements.

EXERCISES 3.4

1. (Practice) For the following declaration statements, write a cin statement that causes
the computer to pause while the user enters the appropriate data:
a. int firstnum;

b. double grade;

c. double secnum;

d. char keyval;

e. int month, years;
double average;

f. char ch;
int num1, num2;
double grade1, grade2;

g. double interest, principal, capital;
double price, yield;

h. char ch, letter1, letter2;
int num1, num2, num3;

i. double temp1, temp2, temp3;
double volts1, volts2;

2. (Practice) a. Write a C++ program that first displays the following prompt:

Enter the temperature in degrees Celsius:

Have your program accept a value entered from the keyboard and convert the tempera-
ture entered to degrees Fahrenheit, using this formula:
Fahrenheit = (9.0 / 5.0) × Celsius + 32.0
Your program should then display the temperature in degrees Fahrenheit with an appro-
priate message.

144 Assignment, Formatting, and Interactive Input

b. Compile and execute the program written for Exercise 2a. To verify your program, use
the following test data and calculate the Fahrenheit equivalents by hand, and then use
your program to see whether you get the same results:

Test data set 1: 0 degrees Celsius
Test data set 2: 50 degrees Celsius
Test data set 3: 100 degrees Celsius

When you’re sure your program is working correctly, use it to complete the following chart:

Celsius Fahrenheit
45
50
55
60
65
70

3. (Practice) Write, compile, and execute a C++ program that displays the following
prompt:

Enter the radius of a circle:

After accepting a value for the radius, your program should calculate and display the area
of the circle. (Hint: Area = 3.1416 × radius2.) For testing purposes, verify your program
byusing an input radius of 3 inches. After manually determining that your program’s result
is correct, use your program to complete the following chart:

Radius (in) Area (sq. in)
1.0
1.5
2.0
2.5
3.0
3.5

4. (Practice) a. Write, compile, and execute a C++ program that displays the following
prompts:

Enter the miles driven:
Enter the gallons of gas used:

After each prompt is displayed, your program should use a cin statement to accept data
from the keyboard for the displayed prompt. After the number for gallons of gas used has
been entered, your program should calculate and display the miles per gallon (mpg). This

145Chapter 3
Program Input Using cin

value should be included in a message and calculated by using the formula miles per gallon
= miles / gallons used. Verify your program by using the following test data:

Test data set 1: miles = 276, gas = 10 gallons
Test data set 2: miles = 200, gas = 15.5 gallons

After finishing your verification, use your program to complete the following chart. (Make
sure to convert the miles driven to kilometers driven and gallons used to liters used, and
then compute the kilometers per liter.)

Miles Driven Gallons Used MPG Km
Driven

Liters
Used

Km/L

250 16.00
275 18.00
312 19.54
296 17.39

b. For the program written for Exercise 4a, determine how many verification runs are
required to make sure the program is working correctly, and give a reason to support
your answer.

5. (Practice) a. Write, compile, and execute a C++ program that displays the following
prompts:

Enter a number:
Enter a second number:
Enter a third number:
Enter a fourth number:

After each prompt is displayed, your program should use a cin statement to accept a
number from the keyboard for the displayed prompt. After the fourth number has been
entered, your program should calculate and display the average of the numbers. The aver-
age should be included in an output message. Check the average your program calculates
by using the following test data:

Test data set 1: 100, 100, 100, 100
Test data set 2: 100, 0, 100, 0

After finishing your verification, use your program to complete the following chart:

Numbers Average
92, 98, 79, 85
86, 84, 75, 86
63, 85, 74, 82

146 Assignment, Formatting, and Interactive Input

b. Repeat Exercise 5a, making sure you use the same variable name, number, for each
number input. Also, use the variable sum for the sum of the numbers. (Hint: To do
this, you can use the statement sum = sum + number after each number is
accepted. Review the material on accumulating in Section 3.1.)

6. (General Math) a. Write, compile, and execute a C++ program to compute and display
the value of the second-order polynomial ax2 + bx + c for any user-entered values of the
coefficients a, b, and c and the variable x. Have your program display a message first to
inform users what the program does, and then display suitable prompts to alert users to
enter the data. (Hint: Use a prompt such as Enter the coefficient of the
x-squared term:.)

b. Check the result of your program written for Exercise 6a by using the following
test data:

Test data set 1: a = 0, b = 0, c = 22, x = 56
Test data set 2: a = 0, b = 22, c = 0, x = 2
Test data set 3: a = 22, b = 0, c = 0, x = 2
Test data set 4: a = 2, b = 4, c = 5, x = 2

After finishing your verification, use your program to complete the following chart:

a b c x Polynomial Value
2.0 17.0 -12.0 1.3
3.2 2.0 15.0 2.5
3.2 2.0 15.0 -2.5
-2.0 10.0 0.0 2.0
-2.0 10.0 0.0 4.0
-2.0 10.0 0.0 5.0
-2.0 10.0 0.0 6.0
5.0 22.0 18.0 8.3
4.2 -16 -20 -5.2

7. (General Math) The roads of Kansas are laid out in a rectangular grid at exactly one-mile
intervals, as shown in Figure 3.14. Pete drives his pickup x miles east and y miles north to
get to his friend Joe’s farm. Both x and y are integer numbers. Using this information, write,
test, and run a C++ program that prompts the user for the values of x and y, and then uses
this formula to find the shortest driving distance across the fields to Joe’s farm:

dis ce x ytan = +()2 2

Round the answer to the nearest integer value before it’s displayed.

8. (Numerical) Write, compile, and execute a program that calculates and displays the
square root value of a user-entered real number. Verify your program by calculating the
square roots of this test data: 25, 16, 0, and 2. After finishing your verification, use your
program to determine the square roots of 32.25, 42, 48, 55, 63, and 79.

147Chapter 3
Program Input Using cin

9. (Numerical) Write, compile, and execute a program to calculate and display the fourth
root of a user-entered number. Recall from elementary algebra that you find the fourth
root of a number by raising the number to the 1/4 power. (Hint: Don’t use integer
division—can you see why?) Verify your program by calculating the fourth roots of this
test data: 81, 16, 1, and 0. When you’re finished, use your program to determine the
fourth roots of 42, 121, 256, 587, 1240, and 16,256.

10. (Electrical Eng.) For the series circuit shown in Figure 3.15, the voltage drop, V2, across
resistor R2 and the power, P2, delivered to this resistor are given by the formulas V2 = I R2
and P2 = I V2, where I = E / (R1 + R2). Using these formulas, write, compile, and execute a
C++ program that prompts users for values of E, R1, and R2; calculates the voltage drop and-
power delivered to R2; and displays the results. Check your program by using the test data E
= 10 volts, R1 = 100 ohms, and R2 = 200 ohms. After finishing your verification, use your pro-
gram to complete the following chart:

E (Volts) R1 (Ohms) R2 (Ohms) Voltage Drop
(Volts)

Power Delivered
(Watts)

10 100 100
10 100 200
10 200 200
20 100 100
20 100 200
20 200 200

Distance

x

y

Pete’s
farm

Joe’s
farm

N

Figure 3.14 Illustration for Exercise 7

148 Assignment, Formatting, and Interactive Input

11. (Data Processing) Program 3.12 prompts users to input two numbers; the first value
entered is stored in num1, and the second value is stored in num2. Using this program as
a starting point, write a program that swaps the values stored in the two variables.

12. (Data Processing) Write a C++ program that prompts users to enter a number. Have
your program accept the number as an integer and display the integer immediately by
using a cout statement. Run your program three times. The first time, enter a valid inte-
ger number; the second time, enter a double-precision number; and the third time, enter
a character. Using the output display, see what number your program actually accepted
from the data you entered.

13. (Data Processing) Repeat Exercise 12, but have your program declare the variable used to
store the number as a double-precision variable. Run the program three times. The first time,
enter an integer; the second time, enter a double-precision number; and the third time, enter
a character. Using the output display, keep track of what number your program actually
accepted from the data you entered. What happened, if anything, and why?

14. (For Thought) a. Why do you think successful programs contain extensive data-input
validity checks? (Hint: Review Exercises 12 and 13.)

b. What do you think is the difference between a data-type check and a data-
reasonableness check?

c. Assume that a program requests users to enter a month, day, and year. What are some
checks that could be made on the data entered?

3.5 Symbolic Constants

Certain constants used in a program have more general meanings that are recognized outside
the program’s context. Examples of these types of constants include the number 3.1416,
which is � accurate to four decimal places; 32.2 ft/sec2, which is the gravitational constant;

R1

R2

I

E

Figure 3.15 Calculating the voltage drop

149Chapter 3
Symbolic Constants

and the number 2.71828, which is Euler’s number accurate to five decimal places. The
following list shows other commonly used scientific and engineering constants:

Avagadro’s number = 6.02214179 × 1023/mole
Boltzmann’s constant = 1.3806 × 10-23 Joules/K
Planck’s constant = 6.6256 × 10-34 Joule/sec
Stephan-Boltzmann’s constant = 5.6697 × 10-8 Watts/m2K4

Universal gas constant = 8.6314472 × 107 Joules/Kmole
Universal gravitational constant = 6.67428 × 10-11 N m2/kg2

Certain other constants in a program are defined in the context of the application being
programmed. For example, in a program determining the weight of different sized objects,
the density of an object’s material takes on a special significance. By themselves, density
numbers are quite ordinary, but in this application, they have a special meaning. Program-
mers sometimes refer to these types of numbers as magic numbers. When a magic number
appears repeatedly in a program, it becomes a potential source of error if it has to be changed.
If just one instance of the magic number is overlooked and not changed, when the program
runs the result will be incorrect, and the source of the error will be difficult to locate.

To avoid the problem of having a magic number occur in many places in a program and
to identify universal constants, such as �, clearly, C++ enables programmers to give these
constants symbolic names. Then the symbolic name, instead of the magic number, can be
used throughout the program.

If the number ever has to be changed, the change need be made only once, where the
symbolic name is equated to the actual numerical value. To equate numbers to symbolic
names,you use the const declaration qualifier, which specifies that the declared identifier is
read-only after it’s initialized; it can’t be changed. Examples of using this qualifier are as follows:

const double PI = 3.1416;
const double PLANCK = 6.6256e-34;
const double DENSITY = 0.238;
const int MAXNUM = 100;

The first declaration statement creates a double-precision constant named PI and
initializes it to 3.1416, and the second declaration statement creates a double-precision
constant named PLANCK and initializes it to Planck’s constant (accurate to four decimal
places). The third declaration statement creates a constant named DENSITY and initializes
it to 0.238. Finally, the fourth declaration creates an integer constant named MAXNUM and
initializes it with the value 100.

After a const identifier is created and initialized, the value stored in it can’t be changed.
For all practical purposes, the name of the constant and its value are linked for the duration
of the program that declares them.

Although the const identifiers have been shown in uppercase letters, lowercase letters
could have been used. In C++, however, it’s common to use uppercase letters for const
identifiers to identify them easily. When programmers see uppercase letters in a program, they
know a symbolic name is being used, and its value can’t be changed later in the program.

150 Assignment, Formatting, and Interactive Input

After it’s declared, a const identifier can be used in any C++ statement in place of the
number it represents. For example, both these assignment statements are valid:

circum = 2 * PI * radius;
weight = DENSITY * volume;

These statements must, of course, appear after the declarations for all their variables.
Because a const declaration equates a constant value to an identifier, and the identifier can be
used as a replacement for its initializing constant, these identifiers are commonly referred to as
symbolic constants, named constants, or simply constants. These terms are used interchangeably
in this book.

Placement of Statements
At this stage, you have been introduced to a variety of statement types. The general rule in
C++ for statement placement is simply that a variable or symbolic constant must be declared
before it can be used. Although this rule permits placing both preprocessor directives and
declaration statements throughout a program, doing so results in a poor program structure.
For good programming form, the following statement ordering should be used:

preprocessor directives

int main()
{

// symbolic constants
// variable declarations

// other executable statements

return value;
}

As new statement types are introduced, this placement structure will be expanded to
accommodate them. Note that comment statements can be intermixed anywhere within this
basic structure. Program 3.14 illustrates this basic structure and uses a symbolic constant to
calculate the weight of a steel cylinder. The density of the steel is 0.284 lb/in3 (= 7.738 ×
103 kg/m-3).

151Chapter 3
Symbolic Constants

Program 3.14

// This program determines the weight of a steel cylinder

// by multiplying the volume of the cylinder times its density.

// The volume of the cylinder is given by the formula PI * pow(radius,2) * height.

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int main()

{

const double PI = 3.1416;

const double DENSITY = 0.284;

double radius, height, weight;

cout << "Enter the radius of the cylinder (in inches): ";

cin >> radius;

cout << "Enter the height of the cylinder (in inches): ";

cin >> height;

weight = DENSITY * PI * pow(radius,2) * height;

cout << setiosflags(ios:: fixed)

<< setiosflags(ios::showpoint)

<< setprecision(4)

<< "The cylinder weighs " << weight << " pounds" << endl;

return 0;

}

Notice in Program 3.14 that two symbolic constants have been defined: PI and
DENSITY. The following run was made to determine the weight of a cylinder with a radius
of 3 inches and a height of 12 inches.

Enter the radius of the cylinder (in inches): 3

Enter the height of the cylinder (in inches): 12

The cylinder weighs 96.3592 pounds

The advantage of using the named constant PI in Program 3.14 is that it clearly
identifies the value of 3.1416 in terms most people recognize. The advantage of using the
named constant DENSITY is that the programmer can change the value of the density for
another material without having to search through the program to see where DENSITY is
used. If, of course, many different materials are used, DENSITY should be changed from a
symbolic constant to a variable. A natural question, then, is asking what the difference is
between symbolic constants and variables.

152 Assignment, Formatting, and Interactive Input

A variable’s value can be altered anywhere in a program. By its nature, a named constant
is a fixed value that must not be altered after it’s defined. Naming a constant rather than
assigning the value to a variable ensures that the value in the constant can’t be altered later.
Whenever a named constant appears in an instruction, it has the same effect as the constant
it represents. Therefore, DENSITY in Program 3.14 is simply another way of representing the
number 0.284. Because DENSITY and the number 0.284 are equivalent, the value of
DENSITY can’t be subsequently changed in the program. After DENSITY has been defined
as a constant, an assignment statement such as

DENSITY = 0.156;

is meaningless and results in an error message because DENSITY is not a variable. Because
DENSITY is only a stand-in for the value 0.284, this statement is equivalent to writing the
invalid expression 0.284 = 0.156.

In addition to using a const statement to name constants, as in Program 3.14, you can
also use this statement to equate the value of a constant expression to a symbolic name. A
constant expression consists of operators and constants only. For example, the statement

const double DEG_TO_RAD = 3.1416/180.0;

equates the value of the constant expression 3.1416/180.0 to the symbolic name DEG_TO_RAD.
The symbolic name, as always, can be used in any statement following its definition. For

example, because the expression 3.1416/180.0 is required for converting degrees to radians,
the symbolic name for this conversion factor can be used conveniently whenever this
conversion is required. For example, in the assignment statement

height = distance * sin(angle * DEG_TO_RAD);

the symbolic constant DEG_TO_RAD is used to convert the value in angle to a radian
measure.

A previously defined named constant can also be used in a subsequent const statement.
For example, the following sequence of statements is valid:

const double PI = 3.1416;
const double DEG_TO_RAD = PI / 180.0;

Because the constant 3.1416 has been equated to the symbolic name PI, it can be used
legitimately in any subsequent definition, even in another const statement. Program 3.15
uses the named constant DEG_TO_RAD to convert a user-entered angle, in degrees, to its
equivalent radian measure for use by the sin() function.

153Chapter 3
Symbolic Constants

Program 3.15

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int main()

{

const double PI = 3.1416;

const double DEG_TO_RAD = PI/180.0;

double angle;

cout << "Enter the angle (in degrees): ";

cin >> angle;

cout << setiosflags(ios:: fixed)

<< setiosflags(ios::showpoint)

<< setprecision(4)

<< "The sine of the angle is " << sin(angle * DEG_TO_RAD)

<< endl;

return 0;

}

The following sample run was made using Program 3.15:

Enter the angle (in degrees): 30

The sine of the angle is 0.5000

Although the const qualifier has been used to construct symbolic constants, you’ll see
this qualifier again in Chapter 6, where you learn it’s useful as a function argument to make
sure the argument isn’t modified in the function.

154 Assignment, Formatting, and Interactive Input

Technical Note

Frequency, Period, and Wavelength
A wave is a repeating pattern in time and space. Examples are sound waves, ocean
waves, and light waves. Figure 3.16 shows a typical wave, which is usually described
with one of these related terms: frequency, period, or wavelength.

Time

A
m

pl
itu

de

T

Figure 3.16 A typical wave

In science and engineering fields, a wave’s frequency is denoted by the letter f, its
period by the letter T, and its wavelength by the Greek letter l (lamda). The frequency
of a wave is the number of repetitions of the wave occurring in one second. For
example, the frequency of the musical note middle C on a piano is 261.64 repetitions
per second, typically denoted as 261.64 cycles/sec. In the SI measurement system, the
synonym for cycles/sec is Hertz (Hz). Therefore, 261.64 cycles/sec = 261.64 Hz, which
means there are 261.64 repetitions of the wave in one second. Audio, radio, and
power line waves are described in terms of their frequencies.

Extremely low frequency waves, such as ocean waves, are typically described by
their period, T, which is the inverse of the wave’s frequency. So mathematically, you
have the following:

T = 1 / f

Therefore, a wave’s period is the time it takes to complete one cycle. For example,
an ocean surface wave with a period of 3 sec/cycle means it takes 3 seconds to com-
plete one wave cycle. What this means is that a person at a fixed location in the ocean
sees a wave crest pass by every 3 seconds. The corresponding frequency of this wave is
1/T, or 1/3 cycles per second, which equals 0.33 Hz.

Extremely high frequency waves, such as light and x-rays, are typically described by
their wavelength. Wavelength, l, and frequency, f, are related by this formula

� = speed of the wave / f

where the speed of the wave is the wave’s velocity in the medium through which it’s
traveling. For light traveling in a vacuum, the speed of a light wave is 299,792,458 m/s �
2.998 × 108 m/s. For sound waves traveling in air, the speed of the wave is 345 m/s.

continued...

155Chapter 3
Symbolic Constants

Technical Note

Frequency, Period, and Wavelength (continued)
Following is a description of waves encountered in science and engineering fields:

Wave Type Frequency or Period Wavelength
Ocean waves Period = 1 to 5

seconds
Not used

European household
current

50 Hz 5.996 × 106 m

American household
current

60 Hz 4.996 × 106 m

Radio frequencies
Low frequency (LF) 3 × 104 to 3 × 105 Hz

(30 to 300 kilohertz, KHz)
104 to 103 m
(10 to 1 km)

Medium
frequency (MF)

3 × 105 to 3 × 106 Hz
(.3 to 3 megahertz, MHz)

103 to 102 m
(1 to .1 km)

High frequency (HF) 3 × 106 to 3 × 107 Hz
(3 to 30 MHz)

100 to 10 m

Very high
frequency (VHF)

3 × 107 to 3 × 109 Hz
(30 to 300 MHz)

10 to 1 m

Ultra high
frequency (UHF)

3 × 109 to 3 × 1012 Hz
(300 to 3000 MHz)

1 to .1 m

Body heat 3 x 1011 Hz 1 × 10-3 m (1 millimeter)
Infrared light 0.04 × 1015 to

.3 × 1015 Hz
750 × 10-9 to
100 × 10-9 nm
(750 to 100 nanometers)

Red visible light 384 × 1012 to
482 × 1012 Hz

78 × 10-9 to
62 × 10-9 nm
(78 to 62 nanometers)

Violet visible light 659 × 1012 to
769 × 1012 Hz

45 × 10-9 to
39.8 × 10-9 nm
(45 to 39 nanometers)

Ultraviolet light 1 × 1015 to
1.5 × 1015 Hz

300 × 10-9 to
200 × 10-9 nm
(300 to 200 nanometers)

X-rays 30 × 1015 to
30 × 1018 Hz

9.9 × 10-9 to
.99 × 10-9 m

156 Assignment, Formatting, and Interactive Input

EXERCISES 3.5

1. (Practice) Modify Program 3.9 to use the named constant GRAV in place of the value
32.2 used in the program. Compile and execute your program to verify that it produces
the same result shown in the text.

2. (Modify) Rewrite the following program to use the named constant FACTOR in place of
the expression (5.0/9.0) used in the program:

#include <iostream>
using namespace std;

int main()
{

double fahren, celsius;
cout << "Enter a temperature in degrees Fahrenheit: ";
cin >> fahren;
celsius = (5.0/9.0) * (fahren - 32.0);
cout << "The equivalent Celsius temperature is "

<< celsius << endl;

return 0;
}

3. (Modify) Rewrite the following program to use the symbolic constant PRIME in place of
the value 0.04 used in the program:

#include <iostream>
using namespace std;

int main()
{

float prime, amount, interest;
prime = 0.04; // prime interest rate
cout << <Enter the amount: ";
cin >> amount;
interest = prime * amount;
cout << "The interest earned is"

<< interest << " dollars" << endl;

return 0;
}

4. (Modify) Rewrite the following program so that the variable volts is changed to a sym-
bolic constant:

#include <iostream>
using namespace std;

int main()
{

double current, resistance, volts;
�

157Chapter 3
Symbolic Constants

volts = 12;
cout << " Enter the resistance: ";
cin >> resistance;
current = volts / resistance;
cout << "The current is " << current << endl;

return 0;
}

5. (Heat Transfer) Typically, all objects radiating heat do so at many different wavelengths.
(See the Technical Note in Section 3.5 for a description of wavelength.) The wavelength
at which an object emits its maximum heat energy can be found by using Wein’s Law:

�max T = W

�max is the maximum wavelength.
T is the object’s temperature in °K.
W is Wein’s constant = 2897 microns/°K.

a. Using Wein’s Law, write a C++ program that accepts an object’s temperature in
degrees Celsius and outputs the wavelength at which the object radiates its maximum
energy. Have your program declare Wein’s constant as the symbolic constant named
WEINCONSTANT.

b. After verifying that your program is working, use it to determine the maximum heat-
radiating wavelength for the sun, Earth, and Mars, with surface temperatures of 5727,
14, and 0.46 degrees Celsius, respectively.

3.6 A Case Study: Acid Rain

The use of coal as the major source of steam power began with the Industrial Revolution.
Currently, coal is one of the principal sources of electrical power generation in many
industrialized countries. Since the middle of the 19th century, it has been known that the
oxygen used in the burning process combines with the carbon and sulfur in coal to produce
carbon dioxide and sulfur dioxide. When these gases are released into the atmosphere, sulfur
dioxide combines with water and oxygen in the air to form sulfuric acid, which is transformed
into separate hydronium ions and sulfates (see Figure 3.17). The hydronium ions in the
atmosphere that fall to Earth as components of rain are what change the acidity levels of lakes
and forests.

The acid level of rain and lakes is measured on a pH scale by using this formula:

pH = - log10 (concentration of hydronium ions)

The concentration of hydronium ions is measured in units of moles/liter. A pH value of
7 indicates a neutral value (neither acidic nor alkaline), whereas levels below 7 indicate the
presence of an acid, and levels above 7 indicate the presence of an alkaline substance. For
example, sulfuric acid has a pH value of approximately 1, lye has a pH value of approximately
13, and distilled water typically has a pH value of 7. Marine life usually can’t survive in water
with a pH level below 4.

158 Assignment, Formatting, and Interactive Input

Using the formula for pH, you’ll write a C++ program, using the software development
procedure described in Chapter 2, that calculates the pH level of a substance based on a user
input value for the concentration of hydronium ions.

Step 1 Analyze the Problem

Although the problem statement provides technical information on the composition of acid
rain, from a programming viewpoint, this problem is rather simple. You have only one
required output (a pH level) and one input (the concentration of hydronium ions).

coal

smokestack

sulfur and carbon dioxide +

=

acid
rain

sulfates

hydronium
ions

sulfuric
acid

water
and

oxygen
in air

Figure 3.17 The formation of acid rain

159Chapter 3
A Case Study: Acid Rain

Step 2 Develop a Solution

The algorithm for transforming the input to the required output is a straightforward use of
the pH formula. The pseudocode representation of the algorithm for entering input data,
processing data to produce the required output, and displaying output is as follows:

Display a prompt to enter an ion concentration level.
Read a value for the concentration level.
Calculate a pH level, using the given formula.
Display the calculated value.

To make sure you understand the formula used in the algorithm, do a hand calculation.
You can then use the result of this calculation to verify the result the program produces.
Assuming a hydronium concentration of 0.0001 (although any value would do), the pH level
is calculated as -log10 10-4. Either by knowing that the logarithm of 10 raised to a power is
the power itself or by using a log table, the value of this expression is -(-4) = 4.

Step 3 Code the Solution

Program 3.16 shows using the algorithm in C++. The variable names were chosen to convey
the variables’ meanings in this application.

Program 3.16

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

double hydron, pHlevel;

cout << "Enter the hydronium ion concentration: ";

cin >> hydron;

pHlevel = -log10(hydron);

cout << "The pH level is " << pHlevel << endl;

return 0;

}

Program 3.16 begins with two #include preprocessor statements, followed by the
main() function. Within main(), a declaration statement declares two floating-point
variables, hydron and pHlevel. The program then displays a prompt requesting input data
from the user. After the prompt is displayed, a cin statement is used to store the entered

160 Assignment, Formatting, and Interactive Input

data in the variable hydron. Finally, a value for pHlevel is calculated, using the logarithmic
library function, and displayed. As always, the program is terminated with a closing brace.

Step 4 Test and Correct the Program

A test run using Program 3.16 produced the following:

Enter the hydronium ion concentration level: 0.0001

The pH level is 4

Because the program performs a single calculation, and the result of this test run agrees
with your previous hand calculation, the calculation portion of the program has been tested
completely. It can now be used to calculate the pH level of other hydronium concentrations
with confidence that the results produced are accurate.

EXERCISES 3.6

1. (Practice) Enter, compile, and run Program 3.16 on your computer system.

2. (General Math) The value of � can be approximated by this series:

4 1
1
3

1
5

1
7

− + − +

....

Using this formula, write a program that calculates and displays the value of �, using 2, 3,
and 4 terms of the series.

3. (General Math) The exponential function ex, where e is known as Euler’s number (and
has the value 2.718281828459045 . . .) appears many times in descriptions of natural
phenomena. For example, radioactive decay, population growth, and the normal (bell-
shaped) curve used in statistical applications can be described by using this function. The
value of ex can be approximated by using this series:

1
1 2 3 4 5 6

2 3 4 5 6

+ + + + + + +x x x x x x
! ! ! ! ! !

...

Using this formula, write a program that calculates and displays the value of Euler’s num-
ber, using 1, 2, 3, and 4 terms of the series.

4. (General Math) The volume of oil stored in an underground 200-foot deep cylindrical
tank is determined by measuring the distance from the top of the tank to the surface of
the oil. Knowing this distance and the radius of the tank, the volume of oil in the tank
can be determined by using this formula:
volume = � radius2 (200 - distance)
Using this information, write, compile, and execute a C++ program that accepts the radius
and distance measurements, calculates the volume of oil in the tank, and displays the two

161Chapter 3
A Case Study: Acid Rain

input values and the calculated volume. Verify the results of your program by doing a
hand calculation using the following test data: radius = 10 feet and distance = 12 feet.

5. (General Math) The circumference of an ellipse (review Figure 3.5) is given by this
formula:
Circumference = +()π a b)2

Using this formula, write a C++ program to calculate the circumference of an ellipse with
a minor radius, a, of 2.5 inches and a major radius, b, of 6.4 inches. (Hint: The square root
can be taken by raising the quantity 2[a2 + b2] to the 0.5 power.)

6. (General Math) The perimeter, approximate surface area, and approximate volume of an
in-ground pool are given by the following formulas:
perimeter = 2(length + width)
volume = length × width × average depth
underground surface area = 2(length + width)average depth + length × width
Using these formulas as a basis, write a C++ program that accepts the length, width, and
average depth measurements, and then calculates the pool’s perimeter, volume, and
underground surface area. In writing your program, make these two calculations immedi-
ately after entering the input data: length × width and length + width. The results of these
two calculations should be used, as needed, in the assignment statements for determining
the perimeter, volume, and underground surface area without recalculating them for each
equation. Verify your program’s results by doing a hand calculation, using the following
test data: length = 25 feet, width = 15 feet, and average depth = 5.5 feet. After verifying that
your program is working, use it to complete the following chart:

Length Width Depth Perimeter Volume Underground
Surface Area

25 10 5.0
25 10 5.5
25 10 6.0
25 10 6.5
30 12 5.0
30 12 5.5
30 12 6.0
30 12 6.5

7. (Heat Transfer) Radiation is the transfer of heat via electromagnetic wave propagation.
Examples of heat transfer are the heat radiated from the sun, the heat radiated from
Earth, and the heat given off in the evening by objects, such as cars and brick walls,
warmed by the sun during the day. The heat radiated by an object can be calculated by
using Stephan-Boltzmann’s Law:
E = e � T4

162 Assignment, Formatting, and Interactive Input

E is the energy radiated per second per square meter of its surface.
e is the emissivity of the substance (a number between 0 and 1).
� is Stephan-Boltzmann’s constant (5.6697 × 10-8 Watts/m2K4).
T is the surface temperature in degrees Kelvin (°K = °C + 273).

An ideal radiator, such as the sun, has an emissivity of 1, and the heat generated from the
sun, with a surface temperature of approximately 6000°K, is as follows:

E = 5.6697 × 10-8 Watts/m2K4 (6 × 103K4)

= 5.6697 × 10-8 Watts/m2K4 (1296 × 1012K4) = 7.3 × 107 Watts/m2

= 73,000,000 Watts/m2

Using the formula and this information, write a C++ program that accepts a planet’s tem-
perature (assuming an emissivity of 1) and provides the heat generated from the planet as
its output. After determining that your program is working correctly (make sure it produces
the correct radiation for the sun), use it to complete the following chart (make sure to use
correct units):

Planet Average Surface
Temperature (°Celsius)

Heat Radiated
(Watts/m2)

Mercury 270
Venus 462
Earth 14
Mars -46
Jupiter -108
Saturn -139
Uranus -197
Neptune -201

8. (Heat Transfer) During the day, heat is absorbed by many objects, such as cars, roofs,
and brick walls. This heat is then radiated back into the environment during the cooler
evening hours. Using Stephan-Boltzmann’s Law, E = e � T4 (see Exercise 7), write a C++
program that determines the amount of radiation for the objects listed in the following
table. Your program should request the object’s average surface temperature and emissiv-
ity, and then calculate and display the heat radiated. Complete the following chart, mak-
ing three runs of the program:

Substance Average Surface
Temperature
(°Celsius)

Emissivity Heat Radiated
(Watts/m2)

Automobile 47 .3
Brick 45 .9
Commercial roof 48 .05

163Chapter 3
A Case Study: Acid Rain

9. (Electrical Eng.) a. Write, compile, and execute a C++ program that calculates and dis-
plays the voltage gain of a three-stage amplifier at a frequency of 1000 Hertz. The volt-
age gains of the stages are as follows:

Stage 1 gain: 23/[2.32 + (0.044f)2]1/2

Stage 2 gain: 12/[6.72 + (0.34f)2]1/2

Stage 3 gain: 17/[1.92 + (0.45f)2]1/2

f is the frequency in Hertz. The voltage gain of the amplifier is the product of the gains
of each stage.

b. Redo Exercise 9a, assuming the frequency will be entered when the program runs.

3.7 A Closer Look: Programming Errors

The ideal in programming is to produce readable, error-free programs that work correctly and can
be modified or changed with a minimum of testing. To achieve this ideal, keep in mind the
different types of errors that can occur, when they’re usually detected, and how to correct them.

You can detect an error at any of the following times:

• Before a program is compiled
• While the program is being compiled
• While the program is running
• After the program has been executed and the output is being examined

The method for detecting errors before a program is compiled is called desk checking
because you’re usually sitting at a desk with the code in front of you. It refers to the process
of examining the source code for mistakes immediately after you type it.

Errors detected while the program is being compiled are called compile-time errors, and
errors that occur while the program is running are called runtime errors. Other names for
compile-time errors are syntax errors and parse errors, terms that emphasize the type of error
the compiler detects.

By now, you have probably encountered numerous compile-time errors. Beginning
programmers tend to be frustrated by them, but experienced programmers understand the
compiler is doing a lot of valuable checking, and correcting errors the compiler does detect
is usually easy. Because these errors occur while the program is being developed, not while
a user is performing an important task, no one but the programmer ever knows they occurred.
You fix them, and they go away.

Runtime errors are more troubling because they occur while a user is running the
program; in most commercial systems, the user isn’t the programmer. Many error types can
cause a runtime error, such as a hardware failure. From a programming standpoint, however,
most runtime errors are referred to as logic errors or faulty logic, which encompasses not
analyzing what the program should do or not anticipating how users can make the program
fail. For example, if a user enters data that results in an attempt to divide a number by zero,
a runtime error occurs.

As a programmer, the only way to protect against runtime errors is to anticipate
everything a person might do to cause errors and submit your program to rigorous testing.
Beginning programmers tend to blame users for an error caused by entering incorrect data,

164 Assignment, Formatting, and Interactive Input

but professionals don’t. They understand that a runtime error is a flaw that can damage the
reputation of the program and programmer.

To prevent compile-time and runtime errors, it’s more fruitful to determine what causes
them. As mentioned, compile-time errors are also called syntax errors: mistakes in the
structure or spelling of a statement. For example, examine the following statements:

cout << "There are four syntax errors here\n
cot " Can you find tem";

They contain the following syntax errors:

1. A closing quotation mark is missing in line 1.
2. A terminating semicolon (;) is missing in line 1.
3. The keyword cout is misspelled in line 2.
4. The insertion operator, <<, is missing in line 2.

When the program is compiled, the compiler detects all these errors because they’re
syntax errors that violate the basic rules of C++. If they aren’t discovered by desk checking,
the compiler detects them and displays an error message.11 Sometimes the error message is
clear and the error is obvious; at other times, understanding the compiler’s error message
takes a little detective work. Because syntax errors are the only error type that can be
detected at compile time, the terms “compile-time errors” and “syntax errors” are used
interchangeably. Strictly speaking, however, compile-time refers to when the error is
detected, and syntax refers to the type of error detected.

The misspelling of “them” in the second statement isn’t a syntax error. Although this
spelling error results in displaying an undesirable output line, it’s not a violation of C++’s
syntax rules. It’s a typographical error, commonly referred to as a “typo.” The compiler
doesn’t catch this type of typographical error.12

Another error the compiler doesn’t catch is a logic error, which can cause a runtime error
or produce incorrect results. These errors are characterized by erroneous, unexpected, or
unintentional output that’s a direct result of some flaw in the program’s logic. These errors
can be detected by desk checking, by program testing, by accident when a user gets
erroneous output while the program is executing, or not at all. If the error is detected while
the program is executing, a runtime error can occur that generates an error message, causes
premature program termination, or both.

The most serious logic error is caused by not fully understanding the program’s
requirements because the logic in a program reflects the logic on which it’s coded. For
example, if a program’s purpose is to calculate the load-bearing strength of a steel beam and
the programmer doesn’t fully understand how to make the calculation, what inputs are
needed to perform the calculation, or what special conditions exist (such as how temperature
affects the beam), a logic error occurs. Because the compiler doesn’t detect these errors and
they often go undetected at runtime, they are always more difficult to detect than syntax
errors.

11They might not, however, be detected at the same time. Frequently, one syntax error masks another error, and the second error is detected
after the first error is corrected.
12The misspelling of a C++ keyword or a declared variable name that results in an undeclared name is caught, however, because it results in a
syntax error or an undeclared variable.

165Chapter 3
A Closer Look: Programming Errors

If logic errors are detected, typically they’re revealed in one of two main ways. First, the
program executes to completion but produces incorrect results, such as the following:

• No output—This result is caused by omitting an output statement or using a
sequence of statements that inadvertently bypasses an output statement.

• Unappealing or misaligned output—This result is caused by an error in an output
statement.

• Incorrect numerical results—This result is caused by assigning incorrect values to
variables in an expression, using an incorrect arithmetic expression, omitting a
statement, making a round-off error, or using an improper sequence of statements.

Second, a runtime error occurs. Examples of logic errors that cause this result are
attempts to divide by zero or take the square root of a negative number.

Plan your program testing carefully to maximize the possibility of locating errors. In
addition, remember that although a single test can reveal the presence of an error, it does not
verify that another error isn’t lurking somewhere else in the program. Furthermore, the fact
that one test revealed no errors does not mean there are no errors.

After you discover an error, however, you must locate where it occurs and fix it. In
computer jargon, a program error is referred to as a bug, and the process of isolating,
correcting, and verifying the correction is called debugging.

Although no hard-and-fast rules exist for isolating the cause of an error, some useful
techniques can be applied. The first is preventive. Often programmers introduce errors in the
rush to code and run a program before understanding what’s required and how to achieve the
result, as you learned in Chapter 2. Many errors can be eliminated by desk checking the
program before entering or compiling it.

A second useful technique is imitating the computer by executing each statement by
hand as the computer would. This technique, called program tracing, involves writing down
each variable, as it’s encountered in the program, and listing the value that should be stored
in the variable as each input and assignment statement is encountered. Doing this sharpens
your programming skills because it helps you understand what each statement in your
program causes to happen.

A third useful technique is including some temporary code in your program that displays
the values of selected variables. If the displayed values are incorrect, you can determine what
part of your program generated them and make the necessary corrections. You could also add
temporary code that displays the values of all input data. This technique, called echo printing,
is useful in establishing that the program is receiving and interpreting input data correctly.

The most powerful technique is using a special program called a debugger. A debugger
program can control the execution of a C++ program, interrupt the C++ program at any point
in its execution, and display the values of all variables at the point of interruption.

Finally, no discussion of debugging is complete without mentioning the main ingredient
needed for isolating and correcting errors successfully: the attitude you bring to the task.
After you write a program, you naturally assume it’s correct. Taking a step back to be
objective about testing and finding errors in your own software is difficult. As a programmer,
you must remind yourself that just because you think your program is correct doesn’t make
it so. Finding errors in your own programs is a sobering experience but one that helps you
become a better programmer. The process can be exciting and fun if you approach it as a
detection problem, with you as the master detective.

166 Assignment, Formatting, and Interactive Input

3.8 Common Programming Errors

When using the material in this chapter, be aware of the following possible errors:

1. Forgetting to assign or initialize values for all variables before using them in an
expression. Values can be assigned by assignment statements, initialized in a
declaration statement, or assigned interactively by entering values with a cin
statement.

2. Using a mathematical library function without including the preprocessor statement
#include <cmath> (and on a UNIX-based system, forgetting to include the -lm
argument on the cc command line).

3. Using a library function without providing the correct number of arguments of the
proper data type.

4. Applying the increment or decrement operator to an expression. For example, the
expression (count + n)++ is incorrect. The increment and decrement operators
can be applied only to variables.

5. Forgetting to use the extraction operator, >>, to separate variables in a cin
statement.

6. A more unusual error occurs when increment and decrement operators are used with
variables appearing more than once in the same expression. This error occurs
because C++ doesn’t specify the order in which operands are accessed in an
expression. For example, the value assigned to result in the following statement
depends on the compiler:
result = i + i++;

If your compiler accesses the first operand (i) first, the preceding statement is
equivalent to
result = 2 * i;

i++;

However, if your compiler accesses the second operand (i++) first, the value of
the first operand is altered before it’s used the second time, and the value 2i + 1
is assigned to result. As a general rule, don’t use the increment or decrement
operator in an expression when the variable it operates on appears more than once
in the expression.

7. Being unwilling to test a program in depth. Being objective about testing your own
software is difficult, but as a programmer, you must remind yourself that just because
you think your program is correct doesn’t make it so.

3.9 Chapter Summary
1. An expression is a sequence of one or more operands separated by operators. An operand

is a constant, a variable, or another expression. A value is associated with an expression.

2. Expressions are evaluated according to the precedence and associativity of the operators
used in the expression.

167Chapter 3
Chapter Summary

3. The assignment operator is the = symbol. Expressions using this operator assign a value
to a variable, and the expression also takes on a value. Because assignment is a C++
operation, the assignment operator can be used more than once in the same expression.

4. The increment operator, ++, adds one to a variable, and the decrement operator, --,
subtracts one from a variable. Both operators can be used as prefixes or postfixes. In a prefix
operation, the variable is incremented (or decremented) before its value is used. In a postfix
operation, the variable is incremented (or decremented) after its value is used.

5. C++ provides library functions for calculating square root, logarithmic, and other
mathematical computations. Programs using a mathematical function must include the
statement #include <cmath> or have a function declaration before calling the
mathematical function.

6. Every mathematical library function operates on its arguments to calculate a single value.
To use a library function effectively, you must know the function name, what the
function does, the number and data types of arguments the function expects, and the
data type of the returned value.

7. Values passed to a function are called arguments of the function. Arguments are passed
to a library function by including each argument, separated by commas, in the
parentheses following the function’s name. Each function has its own requirements for
the number and data types of the arguments that must be provided.

8. Functions can be included in larger expressions.

9. A cin statement is used for data input. cin accepts a stream of data from the keyboard
and assigns the data to variables. This is the general form of a statement
using cin:

cin >> var1 >> var2 . . . >> varn;

The extraction operator, >>, must be used to separate variable names in a cin
statement.

10. When a cin statement is encountered, the computer temporarily suspends further
execution until enough data has been entered for the number of variables in the cin
statement.

11. It’s a good programming practice to display a message before a cin statement that alerts
users to the type and number of data items to be entered. This message is called a
prompt. It’s even a better programming practice to permit only one input variable for
each cin statement.

12. Values can be equated to a single constant by using the const keyword. This keyword
creates a named constant that is read-only after it’s initialized in the declaration
statement. This declaration has the syntax

const dataType SymbolicName = initialValue;

and permits using the constant instead of the initialValue anywhere in the program
after the declaration.

168 Assignment, Formatting, and Interactive Input

Programming Projects for Chapter 3

1. (General Math) a. Write a C++ program to calculate and display the value of the slope of
the line connecting two points with the coordinates (3,7) and (8,12). Use the fact that the
slope between two points with the coordinates (x1,y1) and (x2,y2) is (y2 - y1) / (x2 - x1).

b. How do you know the result your program produced is correct?

c. After verifying the output your program produces, modify it to determine the slope of
the line connecting the points (2,10) and (12,6).

d. What do you think will happen if you use the points (2,3) and (2,4), which results in
a division by zero? How do you think this situation can be handled?

e. If your program doesn’t already do so, change its output to this:

The value of the slope is xxx.xx

The xxx.xx denotes placing the calculated value in a field wide enough for three places
to the left of the decimal point and two places to the right of it.

2. (General Math) a. Write a C++ program to calculate and display the midpoint
coordinates of the line segment connecting the two endpoints given in Exercise 1a. Use
the fact that the coordinates of the midpoint between two points with the coordinates
(x1,y1) and (x2,y2) are ((x1+x2)/2, (y1+y2)/2). Your program should produce the following
display (replacing the underscores with values your program calculates):

The x midpoint coordinate is _____
The y midpoint coordinate is _____

b. How do you know the midpoint values your program calculates are correct?

c. After verifying the output your program produces, modify it to determine the
midpoint coordinates of the line connecting the points (2,10) and (12,6).

d. If your program doesn’t already do so, change its output to this:

The x coordinate of the midpoint is xxx.xx
The y coordinate of the midpoint is xxx.xx

The xxx.xx denotes placing the calculated value in a field wide enough for three places
to the left of the decimal point and two places to the right of it.

3. (General Math) Modify the program written for Exercise 2 so that it accepts the x and
y coordinates of two points. Have your program determine and display the midpoints of
the two points (use the formula given in Exercise 2). Verify your program by using the
following test data:

Test data set 1: Point 1 = (0,0) and Point 2 = (16,0)
Test data set 2: Point 1 = (0,0) and Point 2 = (0,16)
Test data set 3: Point 1 = (0,0) and Point 2 = (-16,0)
Test data set 4: Point 1 = (0,0) and Point 2 = (0,-16)
Test data set 5: Point 1 = (-5,-5) and Point 2 = (5,5)

169Chapter 3
Programming Projects

When you have finished your verification, use your program to complete the following chart:

First Point Second Point Midpoint
(4, 6) (16, 18)
(22, 3) (8, 12)
(-10, 8) (14, 4)
(-12, 2) (14, 3.1)
(3.1,-6) (20, 16)
(3.1, -6) (-16, -18)

4. (Biology) The number of bacteria, B, in a culture that’s subject to refrigeration can be
approximated by this formula:

B = 300000 e-0.032t

e is Euler’s number 2.71828 (rounded to five decimal places).
t is the time in hours the culture has been refrigerated.

Using this formula, write, compile, and execute a single C++ program that prompts the
user for a value of time, calculates the number of bacteria in the culture, and displays the
result. For testing purposes, check your program by using a test input of 10 hours. After
verifying your program, use it to determine the number of bacteria in the culture after
12, 18, 24, 36, 48, and 72 hours.

5. (Heat Transfer) The time it takes for a spherical object to cool from an initial
temperature of Tinit to a final temperature of Tfin, caused entirely by radiation, is
provided by Kelvin’s cooling equation:

t
Nk
e A T T

=

2

1 1
3 3σ fin init

-

t is the cooling time in years.
N is the number of atoms.
k is Boltzmann’s constant = 1.38 × 10-23 m2kg/s2K (note that 1 Joule = 1 m2kg/s2).
e is emissivity of the object.
� is Stephan-Boltzmann’s constant = 5.6703 × 10-8 Watts/m2K4.
A is the surface area.
Tfin is the final temperature.
Tinit is the initial temperature.

Assuming an infinitely hot initial temperature, this formula reduces to

t
Nk

e AT
=

2 3σ fin

170 Assignment, Formatting, and Interactive Input

Using this second formula, write a C++ program to determine the time it took Earth to cool
to its current surface temperature of 300°K from its initial infinitely hot state, assuming the
cooling is caused only by radiation. Use the information that the area of the Earth’s surface
is 5.15 × 1014m2, its emissivity is 1, the number of atoms contained in the Earth is 1.1 × 1050,
and the radius of the Earth is 6.4 × 106 meters. Additionally, use the relationship that a
sphere’s surface area is given by this formula:

Surface area of a sphere = 4 � r2

6. (Heat Transfer) The formula developed in Exercise 5 can be used to determine the
cooling time, t, caused only by radiation, of each planet in the solar system. For
convenience, this formula is repeated here (see Exercise 5 for a definition of each
symbol):

t
Nk

e AT
=

2 3σ fin

A = surface area of a sphere = 4 � r2

N = number of atoms = volume of the sphere
volume of an atom

Volume of a sphere = 4
3

� radius3

The volume of a single atom is approximately 1 × 10-29m3. Using this information and
the current temperatures and radii listed in the following chart, determine the time it
took each planet to cool to its current temperature, caused only by radiation.

Planet Current Average
Surface Temperature
(°Celsius)

Radius (km) Cooling Time
(years)

Mercury 270 2439
Venus 462 6051
Earth 14 6371
Mars -46 3396
Jupiter -108 7.1492 × 104

Saturn -139 6.0268 × 104

Uranus -197 2.5559 × 104

Neptune -201 2.4764 × 104

7. (Physics) When a particular rubber ball is dropped from a given height (in meters), its
impact speed (in meters/second) when it hits the ground is given by the formula

speed gh= 2

where g is the acceleration caused by gravity and h is the height. The ball then rebounds
to 2/3 the height from which it last fell. Using this information, write, test, and run a C++
program that calculates and displays the impact speed of the first three bounces and the

171Chapter 3
Programming Projects

rebound height of each bounce. Test your program by using an initial height of
2.0 meters. Run the program twice, and compare the results for dropping the ball on
Earth (g = 9.81 meters/sec2) and on the moon (g = 1.67 meters/sec2).

8. (Electrical Eng.) a. The voltage gain of an amplifier is given by this formula:

275

23 0 52 2+

. f

n

voltage gain =

f is the frequency in Hz.
n is the number of stages in the amplifier.

Using this formula, write, compile, and execute a C++ program to determine the value
of the voltage gain for a four-stage amplifier operating at a frequency of 120 Hz. Your
program should produce the following display:

At a frequency of xxxxx Hertz, the voltage gain is yyyyy

Your program should replace xxxxx with the frequency and yyyyy with the voltage gain.

b. Manually check the value your program produces. After verifying that your program
is working correctly, modify it to determine the voltage gain of a 12-stage amplifier
operating at a frequency of 9500 Hz.

9. (Electrical Eng.) Write, compile, and execute a C++ program that calculates and
displays the value of the current flowing through an RC circuit (see Figure 3.18). The
circuit consists of a battery connected in a series to a switch, a resistor, and a capacitor.
When the switch is closed, the current, i, flowing through the circuit is given by this
formula:

i = (E/R) e-t/RC

E is the voltage of the battery in volts.
R is the value of the resistor in ohms.
C is the value of the capacitor in farads.
t is the time in seconds after the switch is closed.
e is Euler’s number, which is 2.71828 (rounded to five decimal places).

Using this formula, write, compile, and run a C++ program to determine the voltage
across the capacitor shown in Figure 3.18 when t is 0.31 seconds. (Note: The value of RC
is referred to as the system’s time constant.)

The program should prompt the user to enter appropriate values and use input
statements to accept the data. In constructing the prompts, use statements such as

172 Assignment, Formatting, and Interactive Input

“Enter the voltage of the battery.” Verify your program’s operation by calculating by hand
the current for the following test data:

Test data set 1: Voltage = 20 volts, R = 10 ohms, RC = 0.044, t = 0.023 seconds.
Test data set 2: Voltage = 35, R = 10 ohms, RC = 0.16, t = 0.067 seconds.

b. Check the value computed by your program by hand. After verifying that your program
is working correctly, use your program to complete the following chart:

Voltage V
(volts)

Resistance R
(ohms)

RC (Time
Constant)

Time t (sec) Current i (amps)

35 10 0.16 0.11
35 10 0.16 0.44
35 10 0.16 0.83
15 10 0.55 0.11
15 10 0.55 0.44
15 10 0.55 0.067
6 1000 2.6 12.4

10. (Electrical Eng.) The amplification of electronic circuits is measured in units of
decibels, which is calculated as

10 LOG (Po/Pi)

where Po is the power of the output signal and Pi is the power of the input signal. Using
this formula, write, compile, and execute a C++ program to calculate and display the
decibel amplification, in which the output power is 50 times the input power. Verify your
program’s result by using a hand calculation. After verifying that your program is working
correctly, use it to determine the amplification of a circuit, where output power is
4.639 Watts and input power is 1 Watt.

R

CE

Switch

Figure 3.18 A series RC circuit

173Chapter 3
Programming Projects

11. (Acoustics) The loudness of a sound is measured in units of decibels and is calculated
as shown:

10 LOG (SL/RL)

SL is the intensity of the sound being measured.
RL is a reference sound-intensity level.

Using this formula, write a C++ program that calculates and displays the decibel loudness
of a busy street having a sound intensity of 10,000,000 RL. Verify your program’s result
by using a hand calculation. After verifying that your program is working correctly, use
it to determine the sound level in decibels of the following sounds:

a. A whisper at sound intensity 200 RL

b. A rock band playing at sound intensity 1,000,000,000,000 RL

c. An airplane taking off at sound intensity 100,000,000,000,000 RL

12. (General Math) a. A balance has the following size weights: 100 lb, 50 lb, 10 lb, 5 lb,
and 1 lb. The number of 100 lb and 50 lb weights required to weigh an object weighing
WEIGHT pounds can be calculated by using the following C++ statements:

// Determine the number of 100 lb weights
w100 = int(WEIGHT/100)

// Determine the number of 50 lb weights
w50 = int((WEIGHT - w100 * 100)/50)

Using these statements as a starting point, write a C++ program that calculates the
number of each type of weight needed to weigh a 789 lb object.

b. Without compiling or executing your program, manually check the effect of each
statement in the program and determine what’s stored in each variable as each
statement is encountered.

c. After verifying that your algorithm works correctly, compile and execute your program.
Verify that the results your program produces are correct. After verifying that your
program is working correctly, use it to determine the weights required to weigh a 626 lb
object.

174 Assignment, Formatting, and Interactive Input

Engineering and Scientific Disciplines

Electrical Engineering
Electrical engineering, the largest engineering field, deals with applying the principles of
electricity and electromagnetism to the manufacture of all forms of machines and
devices that use electricity or produce electrical energy. In the mid-1800s, this field was
concerned solely with generating electrical energy, but it has evolved into a broad field
encompassing the following areas, among others:

� Power: This area involves generation of electrical energy in large fossil-fuel,
nuclear, solar, and hydroelectric plants as well as efficient use of electrical energy
by means of motors or illumination devices. Also important are transmitting and
distributing electrical energy through overhead lines, microwaves, light pipes, and
superconducting lines.

� Solid-state electronics: Through modern physics and materials science, semicon-
ducting materials are developed and used to construct microcircuitry for moni-
toring and controlling the operations of all kinds of devices, from video games to
assembly-line robots. The improved reliability, rapidly shrinking size, and reduced
power requirements of modern miniaturized electrical components have created
limitless opportunities for applications.

� Communications: This area involves designing and constructing equipment used
to transmit information via electricity or electromagnetic waves (radio, light,
microwaves, and so on). This field used to include antenna characteristics and
radar, but using laser for communication is the current topic.

� Computers and robotics: Although electronics deals with principles associated
with the functions of components, computer engineers are concerned with
designing the complex circuitry that interweaves components into a computer.
Microprocessors, or small computers, are designed to constantly monitor and
control the operations of a piece of equipment, such as a lathe or an autopilot.

175Chapter 3
Programming Projects

This page intentionally left blank

Chapter 4
Selection Structures

4.1 Selection Criteria

4.2 The if-else Statement

4.3 Nested if Statements

4.4 The switch Statement

4.5 A Case Study: Solving
Quadratic Equations

4.6 A Closer Look: Program
Testing

4.7 Common Programming Errors

4.8 Chapter Summary

The term “flow of control” refers to the order in which a program’s statements are executed. Unless
directed otherwise, the normal, default flow of control for all programs is sequential. This term means
statements are executed in sequence, one after another, in the order in which they’re placed in a program.

In addition to sequential execution, all high-level languages provide three other control structures
to alter the sequential flow of control in precisely defined ways. Here, the term “control structure” simply
means a construction that specifies the order in which statements are to be executed. The three additional
control structures are called selection, repetition, and invocation.

As you might have guessed by its name, a selection structure is used to select statements to be
performed next, and a repetition structure is used to force a repeat execution of a set of statements.
Invocation is a means of invoking, or forcing, a set of statements, which have previously been combined
into a separate function, to be executed at a particular point in a program.

As any algorithm, no matter how complex, can be programmed by using one or more of the four
standardized flow of control structures (sequential, selection, repetition, and invocation), understanding
how each of these structures is constructed and operates is a primary requirement for all programmers.
This chapter discusses C++’s selection control structures, and Chapters 5 and 6 cover repetition and
invocation control structures.

4.1 Selection Criteria

In solving many problems, different actions must be taken, depending on the data’s value.
Examples of simple situations include calculating an area only if the measurements are
positive, performing a division only if the divisor isn’t zero, printing different messages
depending on the value of a grade received, and so on.

The if-else statement in C++ is used to implement such a decision structure in its
simplest form—choosing between two alternatives. The most commonly used pseudocode
syntax of this statement is as follows:

if (condition)
statement executed if the condition is true;

else
statement executed if the condition is false;

When a running program encounters the if statement, the condition is evaluated to determine
its numerical value, which is then interpreted as true or false. If the condition evaluates to
any positive or negative non-zero numerical value, the condition is considered a “true” condition
and the statement following the if is executed. If the condition evaluates to a zero numerical
value, the condition is considered a “false” condition and the statement following the else is
executed. The else part of the statement is optional and can be omitted.

Relational Operators
The condition used in an if statement can be any valid C++ expression (including, as you’ll
see, even an assignment expression). The most commonly used conditions, however, are
simple relational expressions. A simple relational expression consists of a relational operator
that compares two operands, as shown in Figure 4.1.

Although each operand in a relational expression can be a variable or a constant,
relational operators must be one of those listed in Table 4.1. These relational operators can
be used with integer, float, double, or character operands but must be typed exactly as shown
in Table 4.1. For example, although the following examples are all valid,

age > 40 length <= 50 temp > 98.6
3 < 4 flag == done idNum == 682
day != 5 2.0 > 3.3 hours > 40

operand operand

expression

relational
operator

watts < 15.2

Figure 4.1 A simple relational expression

178 Selection Structures

the following are invalid:

length =< 50 // operator out of order
2.0 >> 3.3 // invalid operator
flag = = done // spaces are not allowed

Table 4.1 C++’s Relational Operators

Relational Operator Meaning Example
< Less than age < 30
> Greater than height > 6.2
<= Less than or equal to taxable <= 20000
>= Greater than or equal to temp >= 98.6
== Equal to grade == 100
!= Not equal to number != 250

The terms relational expression and condition are frequently used as synonyms, and both
terms are used interchangeably in this book. Like all C++ expressions, relational expressions
are evaluated to yield a numerical result.1 In a relational expression, the value of the
expression can be only the integer value 1 or 0. These values are interpreted as true and false,
respectively. Conversely, a relational expression that’s true always evaluates to an integer value of
1, and a relational expression that’s false always evaluates to an integer value of 0.

For example, because the relationship 3 < 4 is always true, this expression has a value
of 1, and because the relationship 2.0 > 3.0 is always false, the value of the expression
itself is 0. This rule can be verified by the following statements,

cout << "The value of 3 < 4 is " << (3 < 4) << endl;
cout << "The value of 2.0 > 3.0 is " << (2.0 > 3.0) << endl;
cout << "The value of true is " << true << endl;
cout << "The value of false is " << false << endl;

which result in this display:

The value of 3 < 4 is 1
The value of 2.0 > 3.0 is 0
The value of true is 1
The value of false is 0

The value of a relational expression such as hours > 40 depends on the value stored
in the variable hours. In a C++ program, a relational expression’s value isn’t as important as
the interpretation C++ places on the value when the expression is used as part of a selection
statement. In these statements, which are explained in the next section, you’ll see that C++
uses a zero value to represent a false condition and any non-zero value to represent a true
condition. The selection of which statement to execute next is then based on the value.

In addition to numerical operands, character data can be compared by using relational
operators. For these comparisons, the char values are coerced to int values automatically
for the comparison. For example, in Unicode, the letter 'A' is stored by using a code with
a lower numerical value than the letter 'B', the code for 'B' has a lower value than the

1In this regard, C++ differs from other high-level languages, which yield a Boolean (true or false) result.

179Chapter 4
Selection Criteria

code for 'C', and so on. For character sets coded in this manner, the following conditions are
evaluated as shown:

Expression Value Interpretation
'A' > 'C' 0 false
'D' <= 'Z' 1 true
'E' == 'F' 0 false
'g' >= 'm' 0 false
'b' != 'c' 1 true
'a' == 'A' 0 false
'B' < 'a' 1 true
'b' > 'Z' 1 true

Comparing letters is essential in alphabetizing names or using characters to select a
choice in decision-making situations. Strings of characters can also be compared, and two
string expressions can be compared by using relational operators or the string class’s
comparison methods (discussed in Section 9.3). In the ASCII character set, a blank precedes
(and is considered “less than”) all letters and numbers; the letters of the alphabet are stored
in order from A to Z; and digits are stored in order from 0 to 9. In this sequence, lowercase
letters come after (are considered “greater than”) uppercase letters, and letter codes come
after (are “greater than”) digit codes (see Appendix B).

When two strings are compared, their characters are compared one pair at a time (both
first characters, then both second characters, and so on). If no differences are found, the
strings are equal; if a difference is found, the string with the first lower character is considered
the smaller string. Following are examples of string comparisons:

Expression Value Interpretation Comment
"Hello" > "Good-bye" 1 true The first H in Hello is greater

than the first G in Good-bye.
"SMITH" > "JONES" 1 true The first S in SMITH is greater

than the first J in JONES.
"123" > "1227" 1 true The third character in 123,

the 3, is greater than the third
character in 1227, the 2.

"Behop" > "Beehive" 1 true The third character in Behop,
the h, is greater than the third
character in Beehive, the
second e.

"He" == "She" 0 false The first H in He is not equal
to the first S in She.

"plant" < "planet" 0 false The t in plant is greater than
the e in planet.

180 Selection Structures

Logical Operators
In addition to using simple relational expressions as conditions, more complex conditions can
be created by using the logical operators AND, OR, and NOT. These operators are
represented by the symbols &&, ||, and !, respectively.

When the AND operator, &&, is used with two simple expressions, the condition is true
only if both expressions are true by themselves. Therefore, the logical condition

(voltage > 48) && (milliamp < 10)

is true only if voltage is greater than 48 and milliamp is less than 10. Because relational
operators have a higher precedence than logical operators, the parentheses in this logical
expression could have been omitted.

The logical OR operator, ||, is also used with two expressions. When using the OR
operator, the condition is satisfied if one or both of the two expressions are true. Therefore,
the condition

(voltage > 48) || (milliamp < 10)

is true if voltage is greater than 48, milliamp is less than 10, or both conditions are true.
Again, the parentheses surrounding the relational expressions are included to make the
statement easier to read. Because relational operators have a higher precedence than logical
operators, the same evaluation is made even if the parentheses are omitted.

For the declarations

int i, j;
double a, b, complete;

the following are valid conditions:

a > b
(i == j) || (a < b) || complete
(a/b > 5) && (i <= 20)

Before these conditions can be evaluated, the values of a, b, i, j, and complete must
be known. Assuming a = 12.0, b = 2.0, i = 15, j = 30, and complete = 0.0, the previous
expressions yield the following results:

Expression Value Interpretation
a > b 1 true
(i == j) || (a < b) || complete 0 false
(a/b > 5) && (i <= 20) 1 true

The NOT operator, !, is used to change an expression to its opposite state; that is, if the
expression has a non-zero value (true), the statement !expression produces a zero value
(false). If an expression is false to begin with (has a zero value), !expression is true and
evaluates to 1. For example, if the number 26 is stored in the variable age, the expression
age > 40 has a value of 0 (false), and the expression !(age > 40) has a value of 1
(true). Because the NOT operator is used with only one expression, it’s a unary operator.

181Chapter 4
Selection Criteria

Relational and logical operators have a hierarchy of execution similar to arithmetic
operators. Table 4.2 lists the precedence of these operators in relation to the other operators
you have used.

Table 4.2 Operator Precedence and Associativity

Operator Associativity
! unary – ++ -- Right to left
* / % Left to right
+ – Left to right
< <= > >= Left to right
== != Left to right
&& Left to right
|| Left to right
= += –= *= /= Right to left

The following chart illustrates using an operator’s precedence and associativity to
evaluate relational expressions, assuming the following declarations:

char key = 'm';
int i = 5, j = 7, k = 12;
double x = 22.5;

Expression Equivalent Expression Value Interpretation
i + 2 == k - 1 (i + 2) == (k - 1) 0 false
3 * i - j < 22 (3 * i) - j < 22 1 true
i + 2 * j > k (i + (2 * j)) > k 1 true
k + 3 <= -j + 3 * i (k + 3) <= ((-j) + (3*i)) 0 false
'a' + 1 == 'b' ('a' + 1) == 'b' 1 true
key - 1 > 'p' (key - 1) > 'p' 0 false
key + 1 == 'n' (key + 1) == 'n' 1 true
25 >= x + 1.0 25 >= (x + 1.0) 1 true

As with all expressions, parentheses can be used to alter the assigned operator priority
and improve the readability of relational expressions. By evaluating the expressions in
parentheses first, the following compound condition is evaluated as shown:

(6 * 3 == 36 / 2) || (13 < 3 * 3 + 4) && !(6 - 2 < 5)
(18 == 18) || (13 < 9 + 4) && !(4 < 5)

1 || (13 < 13) && !1
1 || 0 && 0
1 || 0

1

182 Selection Structures

A Numerical Accuracy Problem
In C++’s relational expressions, a subtle numerical accuracy problem related to single-
precision and double-precision numbers can occur. Because of the way computers store these
numbers, you should avoid testing for equality of single-precision and double-precision
values and variables by using the relational operator ==.

The reason is that many decimal numbers, such as 0.1, can’t be represented in binary
with a finite number of bits, so testing for exact equality for these numbers can fail. When
you want equality of noninteger values, it’s better to require that the absolute value ofthe
difference between operands be less than some extremely small value. Therefore, for
single-precision and double-precision operands, the general expression

operandOne == operandTwo

should be replaced by the condition

abs(operandOne – operandTwo) < 0.000001

where the value 0.000001 can be altered to any other acceptably small value. Therefore, if the
difference between the two operands is less than 0.000001 (or another user-selected amount),
the two operands are considered essentially equal. For example, if x and y are single-
precision variables, a condition such as

x/y == 0.35

should be programmed as the following:

abs(x/y - 0.35) < EPSILON

EPSILON can be a constant set to any acceptably small value, such as 0.000001.2 Not
requiring exact equivalence to zero ensures that slight inaccuracies in representing noninte-
ger numbers in binary don’t affect evaluation of the tested condition. Because all computers
have an exact binary representation of 0, comparisons for exact equality to 0 don’t have this
numerical accuracy problem.

EXERCISES 4.1

1. (Practice) Determine the value of the following expressions, assuming a = 5, b = 2, c = 4,
d = 6, and e = 3:
a. a > b

b. a != b

c. d % b == c % b

d. a * c != d * b

e. d * b == c * e

2Using the abs() function requires including the cmath header file by placing the preprocessor command #include<cmath> before or after
#include<iostream>. UNIX-based systems also require including the math library with the -lm command-line argument.

183Chapter 4
Selection Criteria

f. !(a * b)

g. !(a % b * c)

h. !(c % b * a)

i. b % c * a

2. (Practice) Using parentheses, rewrite the following expressions to indicate their order of
evaluation correctly. Then evaluate each expression, assuming a = 5, b = 2, and c = 4.
a. a % b * c && c % b * a

b. a % b * c || c % b * a

c. b % c * a && a % c * b

d. b % c * a || a % c * b

3. (Practice) Write relational expressions to express the following conditions (using variable
names of your choosing):
a. The distance is equal to 30 feet.

b. The ambient temperature is 86.4 degrees.

c. A speed is 55 mph.

d. The current month is 12 (December).

e. The letter input is K.

f. A length is greater than 2 feet and less than 3 feet.

g. The current day is the 15th day of the 1st month.

h. The automobile’s speed is 35 mph and its acceleration is greater than 4 mph per second.

i. An automobile’s speed is greater than 50 mph and it has been moving for at least
5 hours.

j. The code is less than 500 characters and takes more than 2 microseconds to transmit.

4. (Practice) Determine the value of the following expressions, assuming a = 5, b = 2,
c = 4, and d = 5:
a. a == 5

b. b * d == c * c

c. d % b * c > 5 || c % b * d < 7

4.2 The if-else Statement

The if-else structure directs the computer to select between two statements based on the
result of a comparison. For example, suppose you need to calculate the area of a circle, given
the radius as an input value. If the input is a negative number, you want to print a message,
using one cout statement, that the radius can’t be a negative value; otherwise, you calculate
and print the circle’s area, using a second cout statement. The if-else structure can be

184 Selection Structures

used in this situation to select the correct operation based on whether the radius is negative.
This is the general syntax of the if-else statement:

if (expression) statement1;

else statement2;

The expression is evaluated first. If its value is non-zero, statement1 is executed.
If its value is zero, the statement after the keyword else is executed. Therefore, one of the
two statements (statement1 or statement2, but not both) is always executed, depending
on the expression’s value. Notice that the tested expression must be enclosed by parentheses
and a semicolon is placed after each statement.

For clarity, the if-else statement is typically written on four lines in this form:

if (expression) no semicolon here

statement1;

else no semicolon here

statement2;

The form of the if-else statement that’s used typically depends on the length of
statement1 and statement2. However, when using this four-line form, don’t put a
semicolon after the parentheses or the else keyword. The semicolons are placed only at the
ends of statements. Figure 4.2 shows the flowchart for the if-else statement.

As a specific example of an if-else structure, take a look at constructing a C++
program for determining a circle’s area by examining the value of the radius first. The
condition to be tested is whether the radius is less than 0, so the following is an appropriate
if-else statement for this situation:

if (radius < 0.0)
cout << "A negative radius is invalid" << endl;

else
cout << "The area of this circle is " << 3.1416 * pow(radius,2) << endl;

The relational operator < is used to represent the condition “less than.” If the value of
radius is less than 0, the condition is true (has a value of 1) and the statement cout <<
"A negative radius is invalid"; is executed. If the condition is not true, the value
of the expression is 0, and the statement after the else keyword is executed. Program 4.1
shows using this statement in a complete program.

185Chapter 4
The if-else Statement

Program 4.1

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

double radius;

cout << "Please type in the radius: ";

cin >> radius;

if (radius < 0.0)

cout << "A negative radius is invalid" << endl;

else

cout << "The area of this circle is " << 3.1416 * pow(radius,2) << endl;

return 0;

}

next
statement

statement 1

is
condition

true?

previous
statement

no

yes

(else part)

statement 2

Figure 4.2 The if-else flowchart

186 Selection Structures

A blank line is inserted before and after the if-else statement to highlight it in the
program. This format is used throughout the book to emphasize the statement being
discussed.

To illustrate selection in action, Program 4.1 is run twice with different input data. These
are the results:

Please type in the radius: -2.5

A negative radius is invalid

and

Please type in the radius: 2.5

The area of this circle is 19.635

In reviewing this output, observe that the radius in the first run is less than 0, and the
if part of the if-else structure executes the cout statement correctly, telling the user
that a negative radius is invalid. In the second run, the radius isn’t negative, and the else
part of the if-else structure is used to yield this correct area computation:

3.1416 * (2.5)2 = 19.635

Although any expression can be tested by an if-else statement, relational expressions
are used most often. However, statements such as the following are valid:

if (num)
cout << "Bingo!";

else
cout << "You lose!";

Because num is a valid expression by itself, the message Bingo! is displayed if num has any
non-zero value, and the message You lose! is displayed if num has a value of zero.

Compound Statements
Although only a single statement is permitted in the if and else parts of the if-else
statement, each single statement can be a compound statement. A compound statement is a
sequence of single statements between braces, as shown in this example:

{
statement1;
statement2;
statement3;

.

.

.
last statement;

}

187Chapter 4
The if-else Statement

Using braces to enclose a set of statements creates a single block of statements, which
can be used anywhere in a C++ program in place of a single statement. The next example
shows using a compound statement in the general form of an if-else statement:

if (expression)
{

statement1; // as many statements as necessary
statement2; // can be put inside the braces
statement3; // each statement must end with a ;

}
else
{

statement4;
statement5;

.

.
last statement;

}

Program 4.2 shows using a compound statement in an actual program.
Program 4.2 checks whether the value in tempType is f. If so, the compound statement

corresponding to the if part of the if-else statement is executed. Any other letter in
tempType results in execution of the compound statement corresponding to the else part.
A sample run of Program 4.2 follows:

Enter the temperature to be converted: 212

Enter an f if the temperature is in Fahrenheit

or a c if the temperature is in Celsius: f

The equivalent Celsius temperature is 100.00

188 Selection Structures

Program 4.2

#include <iostream>

#include <iomanip>

using namespace std;

// a temperature conversion program

int main()

{

char tempType;

double temp, fahren, celsius;

cout << "Enter the temperature to be converted: ";

cin >> temp;

cout << "Enter an f if the temperature is in Fahrenheit";

cout << "\n or a c if the temperature is in Celsius: ";

cin >> tempType;

// set output formats

cout << setiosflags(ios::fixed)

<< setiosflags(ios::showpoint)

<< setprecision(2);

if (tempType == 'f')

{

celsius = (5.0 / 9.0) * (temp - 32.0);

cout << "\nThe equivalent Celsius temperature is "

<< celsius << endl;

}

else

{

fahren = (9.0 / 5.0) * temp + 32.0;

cout << "\nThe equivalent Fahrenheit temperature is "

<< fahren << endl;

}

return 0;

}

189Chapter 4
The if-else Statement

Block Scope
All statements contained in a compound statement constitute a single block of code, and any
variable declared in this block has meaning only between its declaration and the closing
braces defining the block. For example, take a look at the following example, which consists
of two blocks of code:

{ // start of outer block
int a = 25;
int b = 17;

cout << "The value of a is " << a
<<" and b is " << b << endl;

{ // start of inner block
double a = 46.25;

int c = 10;
cout << "a is now " << a

<< " b is now " << b
<< " and c is " << c << endl;

} // end of inner block

cout << "a is now " << a
<< " and b is " << b << endl;

} // end of outer block

This section of code produces the following output:

The value of a is 25 and b is 17
a is now 46.25 b is now 17 and c is 10
a is now 25 and b is 17

This output is produced as follows: The first block of code defines two variables named
a and b, which can be used anywhere in this block after their declaration, including any block
inside this outer block. In the inner block, two new variables have been declared, named a
and c. The a defined in the inner block is stored in a different memory location than the a
defined in the outer block. Therefore, at this stage, four different variables have been
created, two with the same name. When a variable is referenced, the compiler attempts to
first access a variable with the correct name that has been declared in the block containing
the reference. If the referenced variable hasn’t been defined in the block, the compiler
attempts to access the variable declared in the next outer block, until a valid access results.

190 Selection Structures

Therefore, the values of the variables a and c referenced in the inner block use the
values of the variables a and c declared in that block. Because no variable named b was
declared in the inner block, the value of b displayed from within the inner block is obtained
from the outer block. Finally, the last cout statement, which is outside the inner block,
displays the value of the variable a declared in the outer block. If an attempt is made
todisplay thevalue of c anywhere in the outer block, the compiler issues an error message
stating that c is an undefined symbol.

The area in a program where a variable can be used is formally referred to as the scope
of the variable, and you delve into this subject in Chapter 6.

One-Way Selection
A useful modification of the if-else statement involves omitting the else part of the
statement and has this shortened and often useful form:

if (expression)
statement;

The statement following if (expression) is executed only if the expression has a
non-zero value (a true condition). As before, the statement can be a compound statement.
Figure 4.3 shows the flowchart for this statement.

Point of Information

Placement of Braces in a Compound Statement
A common practice for some C++ programmers is placing the opening brace of a com-
pound statement on the same line as the if and else statements. Using this conven-
tion, the if statement in Program 4.2 would look like the following example. (This
placement is a matter of style only—both styles are used, and both are acceptable.)

if (tempType == 'f') {
celsius = (5.0 / 9.0) * (temp - 32.0);
cout << "\nThe equivalent Celsius temperature is "

<< celsius << endl;
}
else {
fahren = (9.0 / 5.0) * temp + 32.0;
cout << "\nThe equivalent Fahrenheit temperature is "

<< fahren << endl;
}

191Chapter 4
The if-else Statement

This modified form of the if statement is called a one-way if statement. Program 4.3 uses
this statement to display a message only for cars that have been driven more than 3000.0 miles.

To see its one-way selection criteria in action, Program 4.3 was run twice, each time with
different input data. Only the input data for the first run causes the message Car 256 is
over the limit to be displayed.

Please type in car number and mileage: 256 3562.8

Car 256 is over the limit.

End of program output.

and

Please type in car number and mileage: 23 2562.3

End of program output.

next
statement

statement

is
condition

true?

previous
statement

no

yes

Figure 4.3 A one-way if statement

192 Selection Structures

Program 4.3

#include <iostream>

using namespace std;

int main()

{

const double LIMIT = 3000.0;

int idNum;

double miles;

cout << "Please type in car number and mileage: ";

cin >> idNum >> miles;

if(miles > LIMIT)

cout << " Car " << idNum << " is over the limit.\n";

cout << "End of program output.\n";

return 0;

}

Problems Associated with the if-else Statement
Two of the most common problems encountered in using C++’s if-else statement are the
following:

• Misunderstanding the full implications of what an expression is
• Using the assignment operator, =, in place of the relational operator ==

Recall that an expression is any combination of operands and operators that yields a
result. This definition is much broader and more encompassing than is apparent at first. For
example, all the following are valid C++ expressions:

age + 5
age = 30
age == 40

Assuming the variables are declared correctly, each of the preceding expressions yields a
result. Program 4.4 uses cout statements to display the value of these expressions when
age = 18.

193Chapter 4
The if-else Statement

Program 4.4

#include <iostream>

using namespace std;

int main()

{

int age = 18;

cout << "The value of the first expression is " << (age + 5) << endl;

cout << "The value of the second expression is " << (age = 30) << endl;

cout << "The value of the third expression is " << (age == 40) << endl;

return 0;

}

The display Program 4.4 produces is as follows:

The value of the first expression is 23

The value of the second expression is 30

The value of the third expression is 0

As the output of Program 4.4 shows, each expression has a value associated with it. The
value of the first expression is the sum of the variable age plus 5, which is 23. The value of
the second expression is 30, which is also assigned to the variable age. The value of the third
expression is 0 because age is not equal to 40, and a false condition is represented in C++
with a value of 0. If the value in age had been 40, the relational expression a == 40 would
be true and have a value of 1.

Now assume that the relational expression age == 40 was intended to be used in this
if statement,

if (age == 40)
cout << "Happy Birthday!";

but was mistyped as age = 40, resulting in the following:

if (age = 40)
cout << "Happy Birthday!";

Because the mistake results in a valid C++ expression, and any C++ expression can be
tested by an if statement, the resulting if statement is valid and causes the message Happy
Birthday! to be displayed regardless of what value was previously assigned to age. Can
you see why?

The condition tested by the if statement doesn’t compare the value in age to the
number 40. It assigns the number 40 to age. That is, the expression age = 40 is not a
relational expression at all; it’s an assignment expression. At the completion of the assign-
ment, the expression itself has a value of 40. Because C++ treats any non-zero value as true,

194 Selection Structures

Point of Information

The Boolean Data Type
Before the current ANSI/ISO C++ standard, C++ didn’t have a built-in Boolean data
type with its two Boolean values, true and false. Because this data type wasn’t
originally part of the language, a tested expression could not evaluate to a Boolean
value. Therefore, the syntax

if(Boolean expression is true)
execute this statement;

also wasn’t built into C or C++. Instead, both C and C++ use the more encompassing
syntax,

if(expression)
execute this statement;

where expression is any expression that evaluates to a numeric value. If the value of
the tested expression is a non-zero value, it’s considered true, and only a zero value is
considered false.

As the ANSI/ISO C++ standard specifies, C++ has a built-in Boolean data type con-
taining the values true and false. As you learned in Chapter 2, Boolean variables
are declared with the bool keyword. As currently implemented, the actual values that
the Boolean values true and false represent are the integer values 1 and 0,
respectively. For example, examine the following program, which declares two Boolean
variables:

#include <iostream>
using namespace std;
int main()
{
bool t1, t2;

t1 = true;
t2 = false;
cout <<"The value of t1 is " << t1

<< "\nand the value of t2 is " << t2 << endl;

return 0;
}

This program produces the following output:

The value of t1 is 1
and the value of t2 is 0

continued...

195Chapter 4
The if-else Statement

the cout statement is executed. Another way of looking at it is to realize that the if
statement is equivalent to the following two statements:

age = 40; // assign 40 to age
if (age) // test the value of age

cout << "Happy Birthday!";

Because a C++ compiler has no means of knowing that the expression being tested isn’t
the one you want, you must be especially careful when writing conditions.

EXERCISES 4.2

1. (Practice) Write appropriate if statements for the following conditions:
a. If an angle is equal to 90 degrees, print the message “The angle is a right angle”;

else, print the message “The angle is not a right angle.”

b. If the temperature is above 100 degrees, display the message “above the boiling point
of water”; else, display the message “below the boiling point of water.”

c. If the number is positive, add the number to the variable positivesum; else, add
the number to the variable negativesum.

d. If the slope is less than 0.5, set the variable flag to zero; else, set flag to one.

Point of Information

The Boolean Data Type (continued)
As shown by this output, the Boolean values true and false are represented by the
integer values 1 and 0 and have the following relationships:

!true= is false
!false= is true

Additionally, applying a postfix or prefix ++ operator to a variable of type bool sets
the Boolean value to true. The postfix and prefix -- operators can’t be applied to
Boolean variables.

Boolean values can also be compared, as shown in the following code:

if (t1 == t2)
cout << "The values are equal" << endl;

else
cout << "The values are not equal" << endl;

Last, assigning any non-zero value to a Boolean variable results in the variable being
set to true (a value of 1), and assigning a zero value to a Boolean results in the vari-
able being set to false (a value of 0).

196 Selection Structures

e. If the difference between volts1 and volts2 is less than 0.001, set the variable
approx to zero; else, calculate approx as the quantity (volts1 - volts2) / 2.0.

f. If the frequency is above 60, display the message “The frequency is too high.”

g. If the difference between temp1 and temp2 exceeds 2.3, calculate the variable
error as (temp1 - temp2) * factor.

h. If x is greater than y and z is less than 20, request that the user input a value for the
variable p.

i. If distance is greater than 20 and less than 35, request that the user input a value for
the variable time.

2. (Practice) Write if statements corresponding to the conditions illustrated in the follow-
ing flowcharts:
a.

sum=
sum +a

count=
count+1

ace<25

false

true

b.

volts=5
pwr=10

volts=16
pwr=25

c==15

false

true

c.

factor=.7

id>22

false

true

d.

average
=sum/count

count==10

false

true

display
average

197Chapter 4
The if-else Statement

3. (Practice) Write a C++ program that asks the user to input two numbers. If the first
number entered is greater than the second number, the program should print the message
“The first number is greater”; else, it should print the message “The first number is
smaller.” Test your program by entering the numbers 5 and 8 and then using the num-
bers 11 and 2. What do you think your program will display if the two numbers entered
are equal? Test this case.

4. (Practice) a. A certain waveform is 0 volts for time less than 2 seconds and 3 volts for
time equal to or greater than 2 seconds. (These waveforms are referred to as step
functions.) Write a C++ program that accepts time in the variable named time and dis-
plays the appropriate voltage, depending on the input value.

b. How many runs should you make for the program written in Exercise 4a to verify that
it’s operating correctly? What data should you input in each program run?

5. (Practice) An insulation test for a wire requires that the insulation withstand at least 600
volts. Write a C++ program that accepts a test voltage and displays the message “PASSED
VOLTAGE TEST” or the message “FAILED VOLTAGE TEST,” as appropriate.

6. (Practice) a. Write a C++ program to compute the value of pressure in pounds per square
inch (psi) of a waveform described as follows: For time, t, equal to or less than 35 seconds,
the pressure is 0.46t psi, and for time greater than 35 seconds, the pressure is 0.19t + 9.45 psi.
The program should request the time as input and display the pressure as output.

b. How many runs should you make for the program written in Exercise 6a to verify that
it’s operating correctly? What data should you input in each program run?

7. (Practice) a. Write a C++ program to display the message “PROCEED WITH TAKEOFF”
or “ABORT TAKEOFF,” depending on the input. If the character g is entered in the vari-
able code, the first message should be displayed; otherwise, the second message should be
displayed.

b. How many runs should you make for the program written in Exercise 7a to verify that
it’s operating correctly? What data should you input in each program run?

8. (Fluid Mechanics) A fluid particle flowing through a pipe can flow in a smooth, constant
manner, called laminar flow; in a chaotic manner, called turbulent flow; or in an interme-
diate transitional stage between smooth and turbulent flow. As a practical design param-
eter, the Reynolds number can be used to determine the type of flow. For a Reynolds
number below 2000, the flow is laminar, and for a Reynolds number above 3000, the flow
is turbulent. For a Reynolds number between 2000 and 3000, the flow is in transition
from laminar to turbulent. Using this information, write and execute a C++ program that
accepts a Reynolds number as user input; determines whether the flow is laminar, turbu-
lent, or in transition; and displays a message indicating the type of flow based on the
input Reynolds number.

9. (Electrical Eng.) A small factory generates its own power with a 20-kilowatt generator and a
50-kilowatt generator. The plant manager indicates which generator is required by typing a
character code. Write a C++ program that accepts this code as input. If code s is typed, a
message directing the plant foreman to use the smaller generator should be displayed; other-
wise, a message directing the use of the larger generator should be displayed.

198 Selection Structures

4.3 Nested if Statements

As you have seen, an if-else statement can contain any valid C++ simple or compound
statements, including another if-else statement. Therefore, one or more if-else
statements can be included in either part of an if-else statement. Including one or more
if statements inside an existing if statement is called a nested if statement. For example,
substituting the one-way if statement

if (distance > 500)
cout << "snap";

for statement1 in the following if statement

if (hours < 9)
statement1;

else
cout << "pop";

results in this nested if statement:

if (hours < 9)
{

if (distance > 500)
cout << "snap";

}
else

cout << "pop";

The braces around the inner one-way if statement are essential because in their
absence, C++ associates an else with the closest unpaired if. Therefore, without the
braces, the preceding statement is equivalent to the following:

if (hours < 9)
if (distance > 500)

cout << "snap";
else

cout << "pop";

In this example, the else is paired with the inner if, which destroys the meaning of the
original if-else statement. Notice also that the indentation is irrelevant, as far as the compiler
is concerned. Whether the indentation exists or not, the statement is compiled by associating the last
else with the closest unpaired if, unless braces are used to alter the default pairing. The process of
nesting if statements can be extended indefinitely, so the cout << "snap"; statement could
be replaced by a complete if-else statement or another one-way if statement.

199Chapter 4
Nested if Statements

Figures 4.4a and 4.4b illustrate the general form of a nested if-else statement when
a second if-else statement is nested within a) the if part of an if-else statement and
b) the else part of an if-else statement.

statement 1

no (else part)

yes

is
expression-1

true?

yes

no (else part)

is
expression-2

true?

statement 2 statement 3

Figure 4.4a Nested within the if part

200 Selection Structures

The if-else Chain
In general, the nesting shown in Figure 4.4a tends to be confusing and is best avoided in
practice. However, a useful construction for the nesting in Figure 4.4b has this form:

if (expression_1)
statement1;

else
if (expression_2)

statement2;
else

statement3;

As with all C++ programs, because white space is ignored, this indentation isn’t required.
Typically, the preceding construction is written in the following arrangement:

if (expression_1)
statement1;

else if (expression_2)
statement2;

else
statement3;

statement 2

yes

is
expression-1

true?

yes

no (else part)

no (else part)

statement 3

statement 1

is
expression-2

true?

Figure 4.4b Nested within the else part

201Chapter 4
Nested if Statements

This useful form of a nested if statement is called an if-else chain. Each condition
is evaluated in order, and if any condition is true, the corresponding statement is executed
and the remainder of the chain is terminated. The statement associated with the final else
is executed only if no previous condition is satisfied. This final else serves as a default or
catch-all case that’s useful for detecting an error condition or processing a condition that’s not
handled specifically by the previous conditions.

The chain can be continued indefinitely by repeatedly making the last statement
another if-else statement. Therefore, the general form of an if-else chain is as follows:

if (expression_1)
statement1;

else if (expression_2)
statement2;

else if (expression_3)
statement3;

.

.

.
else if (expression_n)

statement_n;
else

last_statement;

Each condition is evaluated in the order it appears in the statement. For the first
condition that’s true, the corresponding statement is executed, and the remainder of the
statements in the chain aren’t executed. Therefore, if expression_1 is true, only
statement1 is executed; otherwise, expression_2 is tested. If expression_2 is true,
only statement2 is executed; otherwise, expression_3 is tested, and so on. The final
else and its associated statement(s) in the chain are optional, and last_statement is
executed only if no previous expressions are true.

To illustrate using an if-else chain, Program 4.5 displays an item’s specification status
corresponding to a letter input. The following input codes are used:

Specification Status Input Code
Space exploration S
Military grade M
Commercial grade C
Toy grade T

202 Selection Structures

Program 4.5

#include <iostream>

using namespace std;

int main()

{

char code;

cout << "Enter a specification code: ";

cin >> code;

if (code == 'S')

cout << "The item is space exploration grade.";

else if (code == 'M')

cout << "The item is military grade.";

else if (code == 'C')

cout << "The item is commercial grade.";

else if (code == 'T')

cout << "The item is toy grade.";

else

cout << "An invalid code was entered.";

cout << endl;

return 0;

}

As another example of an if-else chain, take a look at determining the output of a
digital converter unit by using the following input/output relationship:

Input Weight Output Reading
Greater than or equal to 90 lbs 1111
Less than 90 lbs but greater than or equal to 80 lbs 1110
Less than 80 lbs but greater than or equal to 70 lbs 1101
Less than 70 lbs but greater than or equal to 60 lbs 1100
Less than 60 lbs 1011

The following statements can be used to determine the correct output corresponding to
the value input for the variable inlbs:

if (inlbs >= 90)
digout = 1111;

else if (inlbs >= 80)

203Chapter 4
Nested if Statements

digout = 1110;
else if (inlbs >= 70)

digout = 1101;
else if (inlbs >= 60)

digout = 1100;
else

digout = 1011;

Notice that this example makes use of the chain stopping after a true condition is found
by checking for the highest input weight first. If the input value is less than 90, the if-else
chain continues checking for the next highest weight, and so on, until the correct weight
category is obtained. Program 4.6 uses an if-else chain to calculate and display the correct
output corresponding to the weight input in the cin statement.

Program 4.6

#include <iostream>

using namespace std;

int main()

{

int digout;

double inlbs;

cout << "Enter the input weight: ";

cin >> inlbs;

if (inlbs >= 90)

digout = 1111;

else if (inlbs >= 80)

digout = 1110;

else if (inlbs >= 70)

digout = 1101;

else if (inlbs >= 60)

digout = 1100;

else

digout = 1011;

cout << "The digital output is " << digout << endl;

return 0;

}

204 Selection Structures

The following is a sample run of Program 4.6:

Enter the input weight: 72.5

The digital output is 1101

As with all C++ statements, each statement in an if-else chain can be replaced by a
compound statement bounded by braces.

EXERCISES 4.3

1. (Practice) Modify Program 4.5 to accept both lower and uppercase letters as codes. For
example, if a user enters an m or an M, the program should display the message “The
item is military grade.”

2. (Practice) Write nested if statements corresponding to the conditions illustrated in the
following flowcharts:
a.

t=s+a

bin=1

is
weight >35

no

yes

is
grade=='A'

yes

no

b.

sum=0

no

yes

is
count <5

is
grade <50

fail=
fail+1

yes

no

205Chapter 4
Nested if Statements

3. (Practice) An acute angle is less than 90 degrees, an obtuse angle is greater than 90
degrees, and a right angle is equal to 90 degrees. Using this information, write a C++ pro-
gram that accepts an angle, in degrees, and displays the type of angle corresponding to
the degrees entered.

4. (Data Processing) The grade level of undergraduate college students is typically deter-
mined according to the following schedule:

Number of Credits Completed Grade Level
Less than 32 Freshman
32 to 63 Sophomore
64 to 95 Junior
96 or more Senior

Using this information, write a C++ program that accepts the number of credits a student
has completed, determines the student’s grade level, and displays the grade level.

5. (Data Processing) A student’s letter grade is calculated according to the following schedule:

Numerical Grade Letter Grade
Greater than or equal to 90 A
Less than 90 but greater than or equal to 80 B
Less than 80 but greater than or equal to 70 C
Less than 70 but greater than or equal to 60 D
Less than 60 F

Using this information, write a C++ program that accepts a student’s numerical grade,
converts the numerical grade to an equivalent letter grade, and displays the letter grade.

6. (Measurement) The tolerance of critical components in a system is determined accord-
ing to the following schedule:

Specification Status Tolerance
Space exploration Less than 0.1%
Military grade Greater than or equal to 0.1% and less than 1%
Commercial grade Greater than or equal to 1% and less than 10%
Toy grade Greater than or equal to 10%

Using this information, write a C++ program that accepts a component’s tolerance reading
and determines the specification that should be assigned to it.

7. (General Math) Write a C++ program that accepts a number followed by one space and
then a letter. If the letter following the number is f, the program is to treat the number
entered as a temperature in degrees Fahrenheit, convert the number to the equivalent
degrees Celsius, and display a suitable message. If the letter following the number is c, the

206 Selection Structures

program is to treat the number entered as a temperature in degrees Celsius, convert the
number to the equivalent degrees Fahrenheit, and display a suitable message. If the letter is
neither f nor c, the program is to display a message that the data entered is incorrect and
terminate. Use an if-else chain in your program and make use of these conversion
formulas:
Celsius = (5.0 / 9.0) × (Fahrenheit - 32.0)
Fahrenheit = (9.0 / 5.0) × Celsius + 32.0

8. (Debugging) Using the relationships in Program 4.6, the following program calculates the
digital output:

int main()
{

int digout;
double inlbs;

cout << "Enter the input weight: ";
cin >> inlbs;

if (inlbs >= 90) digout = 1111;
if (inlbs >= 80) && (inlbs <= 90) digout = 1110;
if (inlbs >= 70) && (inlbs <= 80) digout = 1101;
if (inlbs >= 60) && (inlbs <= 70) digout = 1100;
if (inlbs < 1000) digout = 1011;

cout << "The digital output is " << digout << endl;

return 0;
}

a. Will this program produce the same output as Program 4.6?

b. Which program is better and why?

9. (Debugging) The following program was written to produce the same result as Program 4.6:

int main()
{

int digout;
double inlbs;

cout << "Enter the input weight: ";
cin >> inlbs;

if (inlbs < 60)
digout = 1011;

else if (inlbs >= 60)
digout = 1100;

else if (inlbs >= 70)
digout = 1101;

else if (inlbs >= 80)
digout = 1110;

else if (inlbs >= 90)
digout = 1111;

207Chapter 4
Nested if Statements

cout << "The digital output is " << digout << endl;

return 0;
}

a. Will this program run?

b. What does this program do?

c. For what values of input pounds does this program calculate the correct digital output?

4.4 The switch Statement

An if-else chain is used in programming applications when one set of instructions must
be selected from many possible alternatives. A switch statement is an alternative to the
if-else chain for situations when the condition involves comparing an integer expression
with a specific value. It has this general form:

switch (expression)
{ // start of compound statement

case value_1: // terminated with a colon
statement1;
statement2;

.

.
break;

case value_2: // terminated with a colon
statementm;
statementn;

.

.
break;
.
.

case value_n: // terminated with a colon
statementw;
statementx;

.

.
break;

default: // terminated with a colon
statementaa;
statementbb;

.

.
} // end of switch and compound statement

The switch statement uses four new keywords: switch, case, break, and default.
The following discussion explains what each of these keywords does.

The switch keyword identifies the start of the switch statement. The expression in
parentheses after switch is then evaluated, and this expression must evaluate to an integer
result, or a compilation error results.

208 Selection Structures

In the switch statement, the case keyword identifies values that are compared with
the switch expression’s value. The case values are compared in the order in which they’re
listed until a match is found, and then execution begins with the statement following the
match. As illustrated in Figure 4.5, the switch expression’s value determines where
execution actually begins.

A switch statement can contain any number of case labels in any order. If the value
of the expression doesn’t match any of the case values, however, no statement is executed
unless the default keyword is encountered. (The default keyword is optional and
operates the same as the last else in an if-else chain.) If the value of the expression
doesn’t match any case value, program execution begins with the statement following the
default keyword.

After the switch statement has located an entry point, all further case value
evaluations are ignored. Execution continues through the end of the compound statement
unless the break keyword is encountered, which identifies the end of a case and causes
an immediate exit from the switch statement. Just as the case keyword identifies possible
entry points in the compound statement, the break keyword determines terminating points.

Start here if
expression equals value_1

Start here if
expression equals value_2

Start here if
expression equals value_3

Start here if
expression equals value_n

Start here if no
previous match

switch (expression) // evaluate expression
{
 case value_1:

 break;
 case value_2:

 break;
 case value_3:

 break;

 case value_n:

 break;
 default:

} // end of switch statement

Figure 4.5 The expression determines an entry point for execution

209Chapter 4
The switch Statement

If break statements are omitted, all cases following the matching case value, including the
default case, are executed.

When writing a switch statement, you can use multiple case values to refer to the
same set of statements; the default keyword is optional. For example, take a look at the
following:

switch (number)
{

case 1:
cout << "Have a Good Morning\n";
break;

case 2:
cout << "Have a Happy Day\n";
break;

case 3:
case 4:
case 5:

cout << "Have a Nice Evening\n";
}

If the value stored in the variable number is 1, the message Have a Good Morning
is displayed. Similarly, if the value of number is 2, the second message is displayed. Finally,
if the value of number is 3, 4, or 5, the last message is displayed. Because the statement to
be executed for the last three cases is the same, the case statements for these values can
be “stacked together,” as shown in the example. Also, because there’s no default keyword,
no message is printed if the value of number isn’t one of the listed case values. Although
listing case values in increasing order is a good programming practice, it’s not required by
the switch statement. A switch statement can have any number of case values, in any
order; only the values you’re testing for must be listed.

Program 4.7 uses a switch statement to select the arithmetic operation (addition,
multiplication, or division) to perform on two numbers, depending on the value of the
opselect variable.

In the following two sample runs, the resulting display clearly identifies the case that
was selected:

Please type in two numbers: 12 3

Enter a select code:

1 for addition

2 for multiplication

3 for division : 2

The product of the numbers entered is 36

and

Please type in two numbers: 12 3

Enter a select code:

1 for addition

2 for multiplication

3 for division : 3

The first number divided by the second is 4

210 Selection Structures

Program 4.7

#include <iostream>

using namespace std;

int main()

{

int opselect;

double fnum, snum;

cout << "Please type in two numbers: ";

cin >> fnum >> snum;

cout << "Enter a select code: ";

cout << "\n 1 for addition";

cout << "\n 2 for multiplication";

cout << "\n 3 for division : ";

cin >> opselect;

switch (opselect)

{

case 1:

cout << "The sum of the numbers entered is " << fnum+snum;

break;

case 2:

cout << "The product of the numbers entered is " << fnum*snum;

break;

case 3:

cout << "The first number divided by the second is " << fnum/snum;

break;

} // end of switch

cout << endl;

return 0;

}

In reviewing Program 4.7, notice the break statement in the last case. Although it’s not
necessary, terminating the last case in a switch statement with a break is a good
programming practice. It prevents a possible program error later if another case is added to
the switch statement. With the addition of a new case, the break keyword between cases
ensures that you won’t forget to include the break at the time of the addition.

211Chapter 4
The switch Statement

Because character data types are always converted to integers in an expression, a switch
statement can also be used to “switch” based on the value of a character expression. For
example, assuming choice is a character variable, the following switch statement is valid:

switch(choice)
{

case 'a':
case 'e':
case 'i':
case 'o':
case 'u':

cout << "The character in choice is a vowel\n";
break;

default:
cout << "The character in choice is not a vowel\n";
break; // this break is optional

} // end of switch statement

EXERCISES 4.4

1. (Practice) Rewrite the following if-else chain by using a switch statement:

if (letterGrade == 'A')
cout << "The numerical grade is between 90 and 100\n";

else if (letterGrade == 'B')
cout << "The numerical grade is between 80 and 89.9\n";

else if (letterGrade == 'C')
cout << "The numerical grade is between 70 and 79.9\n";

else if (letterGrade == 'D')
cout << "How are you going to explain this one?\n";

else
{

cout << "Of course I had nothing to do with my grade.\n";
cout << "It must have been the professor's fault.\n";

}

2. (Practice) Rewrite the following if-else chain by using a switch statement:

if (factor == 1)
pressure = 25.0;

else if (factor == 2)
pressure = 36.0;

else if (factor == 3)
pressure = 45.0;

else if (factor == 4) || (factor == 5) || (factor == 6)
pressure = 49.0;

212 Selection Structures

3. (Data Processing) Each disk drive in a shipment is stamped with a code from 1 through
4 to indicate the manufacturer, as follows:

Code Disk Drive Manufacturer
1 3M Corporation
2 Maxell Corporation
3 Sony Corporation
4 Verbatim Corporation

Write a C++ program that accepts the code number as input and, based on the value
entered, displays the correct disk drive manufacturer.

4. (Practice) Rewrite Program 4.5 by using a switch statement.

5. (Debugging) Explain why the if-else chain in Program 4.6 can’t be replaced with a
switch statement.

6. (Debugging) Rewrite Program 4.7 by using a character variable for the select code.

4.5 A Case Study: Solving Quadratic Equations

An important use of C++’s if statements is to validate data by checking for clearly invalid
cases. For example, a date such as 5/33/06 contains an obviously invalid day. Similarly, the
division of any number by zero in a program, such as 14/0, shouldn’t be allowed. Both
examples illustrate the need for a technique called defensive programming, in which the
program includes code to check for improper data before an attempt is made to process it
further. The defensive programming technique of checking user input data for erroneous or
unreasonable data is referred to as input data validation.

A second major use of selection statements is to determine the type of calculation to be
made based on the data. Both uses are shown in this case study, which illustrates a C++
program that determines the roots of a quadratic equation. A quadratic equation has the form
ax2 + bx + c = 0 or can be algebraically manipulated into this form. In this equation, x is the
unknown variable, and a, b, and c are known constants. Although the constants b and c can
be any numbers, including 0, the value of the constant a can’t be 0. (If a is 0, the equation
would become a linear equation in x.) Here are examples of quadratic equations:

5x2 + 6x + 2 = 0
x2 - 7x + 20 = 0
34x2 + 16 = 0

In the first equation, a = 5, b = 6, and c = 2; in the second equation, a = 1, b = -7, and
c = 20; and in the third equation, a = 34, b = 0, and c = 16.

213Chapter 4
A Case Study: Solving Quadratic
Equations

The real roots of a quadratic equation can be calculated by using these quadratic formulas:

x
b b ac

a
= +- -2 4

2
and

x
b b ac

a
= - - -2 4

2
Using these formulas, you’ll write a C++ program, following the software development

procedure, to solve for the roots of a quadratic equation.

Step 1 Analyze the Problem

The problem requires accepting three inputs—the coefficients a, b, and c of a quadratic
equation. The outputs are the roots of the equation, found by using the given formulas.

Step 2 Develop a Solution

A first attempt at a solution is using the user-entered values of a, b, and c to calculate a value
for each root, as described by the following pseudocode:

Display a program purpose message
Accept user-input values for a, b, and c
Calculate the two roots
Display the values of the calculated roots

However, this solution must be refined to account for possible input conditions. For
example, if a user enters a value of 0 for both a and b, the equation is neither quadratic nor
linear and has no solution (referred to as a “degenerate case”). Another possibility is that the
user enters a zero for a and a non-zero value for b. In this case, the equation becomes linear
with a single solution of -c/b. A third possibility is that the value of the term b2 - 4ac, which
is called the discriminant, is negative. Because the square root of a negative number can’t be
taken, the equation has no real roots (referred to as the “imaginary roots case”). Finally, when
the discriminant is 0, both roots are the same (referred to as the “repeated roots case”).

214 Selection Structures

Taking into account all four limiting cases, the following pseudocode shows a refined
solution for determining the roots of a quadratic equation correctly:

Display a program purpose message
Accept user-input values for a, b, and c
If a = 0 and b = 0 then

display a message saying that the equation has no solution
Else if a = zero then

calculate the single root equal to -c/b
display the single root

Else
{

calculate the discriminant
If the discriminant > 0 then

solve for both roots using the given formulas
display the two roots

Else if the discriminant < 0 then
display a message that there are no real roots

Else
calculate the repeated root equal to -b/(2a)
display the repeated root

Endif
}

Endif

Notice that nested if-else statements are used. The outer if-else statement
validates the entered coefficients and determines whether you have a valid quadratic
equation. The inner if-else statement then determines whether the equation has two real
roots (discriminant > 0), two imaginary roots (discriminant < 0), or repeated roots
(discriminant = 0).

Step 3 Code the Solution

Program 4.8 lists the equivalent C++ code for the pseudocode solution.

215Chapter 4
A Case Study: Solving Quadratic
Equations

Program 4.8

#include <iostream>

#include <cmath>

using namespace std;

// this program solves for the roots of a quadratic equation

int main()

{

double a, b, c, disc, root1, root2;

cout << "This program calculates the roots of a\n";

cout << " quadratic equation of the form\n";

cout << " 2\n";

cout << " ax + bx + c = 0\n\n";

cout << "Please enter values for a, b, and c: ";

cin >> a >> b >> c;

if (a == 0.0 && b == 0.0)

cout << "The equation is degenerate and has no roots.\n";

else if (a == 0.0)

cout << "The equation has the single root x = "

<< -c/b << endl;

else

{ //Start of compound statement for the outer else

disc = pow(b,2.0) - 4 * a * c; // calculate discriminant

if (disc > 0.0)

{

disc = sqrt(disc);

root1 = (-b + disc) / (2 * a);

root2 = (-b - disc) / (2 * a);

cout << "The two real roots are "

<< root1 << " and " << root2 << endl;

}

else if (disc < 0.0)

cout << "Both roots are imaginary.\n";

else

cout << "Both roots are equal to " << -b / (2 * a) << endl;

} //end of compound statement for the outer else

return 0;

}

216 Selection Structures

Step 4 Test and Correct the Program

Test values should include values for a, b, and c that result in two real roots, plus limiting
values for a and b that result in a linear equation (a = 0, b � 0), a degenerate equation
(a = 0, b = 0), and a negative and a zero discriminant. Two test runs of Program 4.8 follow:

This program calculates the roots of a

quadratic equation of the form

2

ax + bx + c = 0

Please enter values for a, b, and c: 1 2 -35

The two real roots are 5 and -7

and

This program calculates the roots of a

quadratic equation of the form

2u

ax + bx + c = 0

Please enter values for a, b, and c: 0 0 16

The equation is degenerate and has no roots.

The first run solves the quadratic equation x2 + 2x - 35 = 0, which has the real roots
x = 5 and x = -7. The input data for the second run results in the equation 0x2 + 0x + 16 = 0.
Because it degenerates into the mathematical impossibility of 16 = 0, the program identifies it
correctly as a degenerate equation. As an exercise, you could create test data for the other limiting
cases the program checks for.

EXERCISES 4.5

1. (Data Processing) Write, compile, and execute a C++ program that accepts a user-
entered number and calculates the values of the following:

user-entered number
and

1
user-entered number

Before calculating the square root, validate that the number is not negative, and before
calculating the reciprocal, check that the number is not zero. If either condition occurs,
display a message stating that the operation can’t be calculated.

2. (Data Processing) a. Write a program that accepts two real numbers and a select code from
a user. If the entered select code is 1, have the program add the two previously entered num-
bers and display the result; if the select code is 2, the numbers should be multiplied, and if
the select code is 3, the first number should be divided by the second number.

b. Determine what the program written in Exercise 2a does when the entered numbers
are 3 and 0 and the select code is 3.

217Chapter 4
A Case Study: Solving Quadratic
Equations

c. Modify the program written in Exercise 2a so that division by 0 is not allowed, and a
message is displayed when this division is attempted.

3. (Data Processing) a. Write a program to display the following two prompts:

Enter a month (use a 1 for Jan, etc.):
Enter a day of the month:

Have your program accept and store a number in the variable month in response to the
first prompt and accept and store a number in the variable day in response to the second
prompt. If the month entered is not between 1 and 12, print a message informing the
user that an invalid month has been entered. If the day entered is not between 1 and 31,
print a message informing the user that an invalid day has been entered.

b. What will your program do if the user enters a number with a decimal point for the
month? How can you make sure your if statements check for an integer number?

c. In a non-leap year, February has 28 days; the months January, March, May, July, August,
October, and December have 31 days; and all other months have 30 days. Using this
information, modify the program written in Exercise 3a to display a message when an
invalid day is entered for a user-entered month. For this program, ignore leap years.

4. (General Math) The quadrant in which a line drawn from the origin resides is deter-
mined by the angle the line makes with the positive x-axis, as follows:

Angle from the Positive X-Axis Quadrant
Between 0 and 90 degrees I
Between 90 and 180 degrees II
Between 180 and 270 degrees III
Between 270 and 360 degrees IV

a. Using this information, write a C++ program that accepts the angle of the line as user
input and determines and displays the correct quadrant for the input data. (Note: If the
angle is exactly 0, 90, 180, or 270 degrees, the corresponding line doesn’t reside in any
quadrant but lies on an axis.)

b. Modify the program written for Exercise 4a to display a message that identifies an
angle of 0 degrees as the positive x-axis, an angle of 90 degrees as the positive y-axis,
an angle of 180 degrees as the negative x-axis, and an angle of 270 degrees as the
negative y-axis.

5. (Data Processing) Years that are evenly divisible by 400 or are evenly divisible by 4 but
not by 100 are leap years. For example, because 1600 is evenly divisible by 400, 1600 was
a leap year. Similarly, because 1988 is evenly divisible by 4 but not by 100, it was also a
leap year. Using this information, write a C++ program that accepts the year as user input,
determines whether the year is a leap year, and displays a message telling the user
whether the entered year is or is not a leap year.

218 Selection Structures

6. (Data Processing) Based on an automobile’s model year and weight, the state of New
Jersey determines the weight class and registration fee by using the following schedule:

Model Year Weight Weight Class Registration
Fee

1970 or earlier Less than 2700 lbs 1 $16.50
2700 to 3800 lbs 2 25.50
More than 3800 lbs 3 46.50

1971 to 1979 Less than 2700 lbs 4 27.00
2700 to 3800 lbs 5 30.50
More than 3800 lbs 6 52.50

1980 or later Less than 3500 lbs 7 19.50
3500 or more lbs 8 52.50

Using this information, write a C++ program that accepts an automobile’s year and weight
and determines and displays its weight class and registration fee.

7. (Data Processing) Modify Program 4.8 so that the imaginary roots are calculated and
displayed when the discriminant is negative. For this case, the two roots of the equation
are the following:

x
b b ac

a
i1

2 4
2

=
+- - -()

and

x
b b ac

a
i2

2 4
2

= - - - -()

where i is the imaginary number symbol for the square root of -1. (Hint: Calculate the
real and imaginary parts of each root separately.)

8. (Heat Transfer) The transfer of heat by the movement (currents) of a gas or liquid is
referred to as heat convection. The heat transferred per unit area of a substance is given
by this formula:

q = hA(Ts - Ta)

q is the heat transfer rate (Watts or Joules/sec).
h is the convective heat transfer coefficient (BTU/hrft°F or Watts/m2°C).
A is the surface area (ft2 or m2).
Ts is the surface temperature (°F or °C).
Ta is the ambient (surrounding) temperature (°F or °C).

219Chapter 4
A Case Study: Solving Quadratic
Equations

a. Write, compile, and execute a C++ program that accepts a substance’s surface area, a
substance’s surface temperature, and the ambient air temperature as inputs and dis-
plays the heat transfer rate through air. Users should have three choices for entering
the surface area:

1. A rectangular area
2. An elliptical area
3. Other

If the user selects 1, the program should ask the user to enter the surface’s length and
width, and the program calculates surface area as length times width. If the user selects 2,
the program should ask the user to enter the surface’s major and minor axii, and the pro-
gram calculates the surface area as �(major axis)(minor axis). If the user selects 3 (Other),
the program should ask the user to enter the surface area. The heat transfer rate should
then be calculated and displayed, using the convective heat transfer coefficient of 8.7
Watts/m2°C, which should be defined as the symbolic constant AIRCONV.

b. After verifying that your program is working correctly, determine the heat transfer rate
away from a chip in a computer’s console. The chip has a surface temperature of
44°C, and the ambient temperature maintained by the console’s fan is 40°C. The rect-
angular chip has a length of 2 cm and a width of 2 cm.

4.6 A Closer Look: Program Testing3

In theory, a comprehensive set of test runs would reveal all possible program errors and
ensure that a program works correctly for any combination of input and computed data. In
practice, this level of testing requires checking all possible combinations of statement
execution. Because of the time and effort required, this goal is usually impossible except for
extremely simple programs. To see why this is so, take a look at Program 4.9.

3This topic can be omitted on first reading without loss of subject continuity.

220 Selection Structures

Program 4.9

#include <iostream>

using namespace std;

int main()

{

int num;

cout << "Enter a number: ";

cin >> num;

if (num == 5)

cout << "Bingo!\n";

else

cout << "Bongo!\n";

return 0;

}

Program 4.9 has two paths that can be traversed as the program progresses from its
opening brace to its closing brace. The first path, which is executed when the input number
is 5, is in this sequence:

cout << "Enter a number";
cin >> num;
cout << "Bingo!\n";

The second path, which is executed when any number except 5 is input, includes this
sequence of instructions:

cout << "Enter a number";
cin >> num;
cout << "Bongo!\n";

Testing each possible path through Program 4.9 requires two runs with a judicious
selection of test input data to make sure both paths of the if statement are exercised.
Adding one more if statement in the program increases the number of possible execution
paths by a factor of two and requires four (that is, 22) runs for complete testing. Similarly, two
additional if statements increase the number of paths by a factor of four and require eight
(that is, 23) runs for complete testing, and three additional if statements produce a program
that requires 16 (that is, 24) test runs.

Now consider an application program consisting of only 10 modules, with each module
containing five if statements. Assuming the modules are always called in the same
sequence, there are 32 possible paths through each module (25) and more than
1,000,000,000,000,000 (250, representing the number of modules multiplied by the number of
if statements per module) possible paths through the complete program (all modules
executed in sequence). The time needed to create test data to exercise each path and the

221Chapter 4
A Closer Look: Program Testing

actual computer runtime required to check each path make complete testing of this program
impossible.

The inability to test all combinations of statement execution sequences fully has led to
the programming proverb “There is no error-free program.” Any testing should be well
thought out to maximize the possibility of locating errors. At a minimum, test data should
include appropriate input values, illegal input values the program should reject, and limiting
values checked by selection statements in the program.

4.7 Common Programming Errors

Four programming errors are common with C++’s selection statements:

1. Using the assignment operator, =, in place of the relational operator ==. This error
can cause frustration because any expression can be tested by an if-else
statement, so it is not immediately obvious that an error is being made. For example,
the statement
if (opselect = 2)

cout << "Happy Birthday";

else

cout << "Good Day";

always results in the message Happy Birthday being displayed, regardless of the
initial value in the opselect variable. The reason is that the assignment expres-
sion opselect = 2 has a value of 2, which is considered a true value in C++.
The correct expression to determine the value in opselect is opselect == 2.

2. Placing a semicolon immediately after the condition, as in this example:
if (condition);

statement;

The semicolon after (condition) is an error. It creates a null statement, which
causes the statement following the semicolon to be a stand-alone statement that’s
no longer part of the if statement. This stand-alone statement is always
executed, regardless of the condition tested by the if statement.

3. Letting the if-else statement appear to select an incorrect choice. In this typical
debugging problem, the programmer mistakenly concentrates on the tested condi-
tion as the source of the problem. For example, assume the following if-else
statement is part of your program:
if (key == 'F')

{

contemp = (5.0/9.0) * (intemp - 32.0);

cout << "Conversion to Celsius was done";

}

else

{

222 Selection Structures

contemp = (9.0/5.0) * intemp + 32.0;

cout << "Conversion to Fahrenheit was done";

}

This statement always displays Conversion to Celsius was done when the vari-
able key contains an F. Therefore, if this message is displayed when you believe key
doesn’t contain F, you should investigate key’s value. As a general rule, whenever a
selection statement doesn’t act as you think it should, test your assumptions about
the values assigned to the tested variables by displaying their values. If an unantici-
pated value is displayed, you have at least isolated the source of the problem to the
variables rather than the structure of the if-else statement. From there, you have
to determine where and how the incorrect value was produced.

4. Using nested if statements without including braces to indicate the structure.
Without braces, the compiler defaults to pairing elses with the closest unpaired
ifs, which sometimes destroys the selection statement’s original intent. To avoid
this problem and create code that’s adaptable to change, writing all if-else
statements as compound statements in this form is useful:
if (expression)

{

// one or more statements in here

}

else

{

// one or more statements in here

}

No matter how many statements are added later, this form maintains the if state-
ment’s original intent.

4.8 Chapter Summary
1. Relational expressions, also called conditions, are used to compare operands. If a

relational expression is true, the value of the expression is the integer 1. If the relational
expression is false, it has an integer value of 0. Relational expressions are created by
using the following relational operators:

Relational
Operator

Meaning Example

< Less than age < 30
> Greater than height > 6.2
<= Less than or equal to taxable <= 20000
>= Greater than or equal to temp >= 98.6
== Equal to grade == 100
!= Not equal to number != 250

223Chapter 4
Chapter Summary

2. More complex conditions can be constructed from relational expressions by using C++’s
logical operators, && (AND), || (OR), and ! (NOT).

3. An if-else statement is used to select between two alternative statements based on
an expression’s value. Although relational expressions are usually used for the tested
expression, any valid expression can be used. In testing an expression, if-else
statements interpret a non-zero value as true and a zero value as false. The general form
of an if-else statement is as follows:

if (expression)
statement1;

else
statement2;

This form is a two-way selection statement. If the expression has a non-zero value, it’s
considered true and statement1 is executed; otherwise, statement2 is executed.

4. An if-else statement can contain other if-else statements. In the absence of
braces, each else is associated with the closest preceding unpaired if.

5. The if-else chain is a multiway selection statement with this general form:

if (expression_1)
statement_1;

else if (expression_2)
statement_2;

else if (expression_3)
statement_3;

.

.

.
else if (expression_m)

statement_m;
else

statement_n;

Each expression is evaluated in the order in which it appears in the chain. If an
expression is true (has a non-zero value), only the statement between this expression and
the next else if or else is executed, and no further expressions are tested. The final
else is optional, and the statement corresponding to the final else is executed only if
no previous expressions are true.

6. A compound statement consists of any number of single statements enclosed by the
brace pair { and }. Compound statements are treated as a single unit and can be used
anywhere a single statement is used.

7. The switch statement is a multiway selection statement with this general form:

switch (expression)
{ // start of compound statement

case value_1: // terminated with a colon
statement1;
statement2;

.

.
break;

case value_2: // terminated with a colon

224 Selection Structures

statementm;
statementn;

.

.
break;
.
.
case value_n: // terminated with a colon

statementw;
statementx;

.

.
break;

default: // terminated with a colon
statementaa;
statementbb;

.

.
} // end of switch and compound statement

For this statement, the value of an integer expression is compared with integer or
character constants or constant expressions. Program execution is transferred to the first
matching case and continues through the end of the switch statement, unless an
optional break statement is encountered. The case values in a switch statement can
appear in any order, and an optional default case can be included. The default case
is executed if no other cases are matched.

Programming Projects for Chapter 4

1. (Data Processing) Write C++ code sections to make the following decisions:

a. Ask for two integer temperatures. If their values are equal, display the temperature;
otherwise, do nothing.

b. Ask for character values letter1 and letter2, representing uppercase letters of
the alphabet, and display them in alphabetical order.

c. Ask for three integer values, num1, num2, and num3, and display them in decreasing
order.

2. (Data Processing) a. Write a program that displays the message I FEEL GREAT
TODAY! or I FEEL DOWN TODAY #$*!, depending on the input. If the character u
is entered in the variable code, the first message should be displayed; otherwise, the
second message should be displayed.

b. How many runs should you make for the program written in Exercise 2a to verify that
it’s operating correctly? What data should you input in each program run?

3. (Data Processing) a. A senior engineer is paid $1700 a week, and a junior engineer,
$900 a week. Write a C++ program that accepts as input an engineer’s status in the
character variable status. If status equals S, the senior engineer’s salary should be
displayed; otherwise, the junior engineer’s salary should be displayed.

225Chapter 4
Programming Projects

b. How many runs should you make for the program written in Exercise 3a to verify that
it is operating correctly? What data should you input in each program run?

4. (Data Processing) a. Write a C++ program to compute and display a person’s weekly
salary as determined by the following conditions: If the hours worked are less than or
equal to 40, the person receives $8.00 per hour; otherwise, the person receives $320.00
plus $12.00 for each hour worked over 40 hours. The program should request the hours
worked as input and display the salary as output.

b. How many runs should you make for the program written in Exercise 4a to verify that
it’s operating correctly? What data should you input in each program run?

5. (Structural Eng.) Three of the most commonly used beams in structural engineering
are the I-beam, rectangular beam, and cylindrical beam, shown in Figures 4.6 through
4.8. In determining the stress a given weight places on a symmetrical beam, an important
design parameter is the beam’s rectangular moment of inertia, I, which is typically given
in units of in4. The computation of I depends on the beam’s geometry, and for the three
beam types shown, the values of I are calculated as follows:

For an I-beam: I
BH bh=

3 3

12
-

where all measurements are in inches

For a rectangular beam: I
bh=

3

12

For a cylindrical beam: I
r= π 4

4

Figures 4.6 through 4.8 show the variables b, h, B, H, and r. Using this information,
design, write, compile, and execute a C++ program that prompts the user for the type of
beam and the necessary data (based on the input), and then computes and displays the
beam’s rectangular moment of inertia.

H h

B

b⁄2

Figure 4.6 An I-beam

226 Selection Structures

6. (Fluid Mechanics) A key parameter used to determine the type of fluid flow through
a pipe is the Reynolds number, which is given by this formula:

Re = V d
v

Re is the Reynolds number (a dimensionless value).
V is the velocity (m/s or ft/sec).
d is the diameter of the pipe (m or ft).
� is the kinematic viscosity of the fluid (m/s2 or ft/sec2).

The viscosity, �, is a measure of the fluid’s resistance to flow and stress. Except at
extremely high pressures, a liquid fluid’s kinematic viscosity is dependent on tempera-
ture and independent of pressure. The following chart provides the viscosity of water at
three different temperatures:

Temperature (°C) Kinematic Viscosity (m/s2)
5 1.49 × 10-6

10 1.31 × 10-6

15 1.15 × 10-6

h

b

Figure 4.7 A rectangular beam

r

Figure 4.8 A cylindrical beam

227Chapter 4
Programming Projects

Using this information, write, compile, and execute a program that requests the velocity
of water flowing through a pipe, the pipe’s diameter, the water’s temperature, and the
water’s kinematic viscosity. Based on the input values, your program should calculate the
Reynolds number. When you have verified that your program is working, use it to
complete the following chart:

Velocity (m/s) Pipe
Diameter (mm)

Temperature (°C) Reynolds
Number

.01 10 5

.03 10 5

.04 10 5

.01 20 10

.03 20 10

.04 20 10

.01 30 15

.03 30 15

.04 30 15

7. (Data Processing) Write a C++ program that accepts a character as input data and
determines whether the character is an uppercase letter. An uppercase letter is any
character that’s greater than or equal to “A” and less than or equal to “Z.” If the entered
character is an uppercase letter, display the message The character just entered
is an uppercase letter. If the entered letter isn’t uppercase, display the message
The character just entered is not an uppercase letter.

8. (Data Processing) Repeat Exercise 7 to determine whether the character entered is a
lowercase letter. A lowercase letter is any character greater than or equal to “a” and less
than or equal to “z.”

9. (General Math) a. Write, run, and test a C++ program that accepts a user-input integer
number and determines whether it’s even or odd. Display the entered number and the
message Even or Odd.

b. Modify the program written for Exercise 9a to determine whether the entered number
is evenly divisible by a user-specified value, with no remainder. That is, is it evenly
divisible by 3, 7, 13, or any other user-specified value?

10. (Data Processing) As a part-time student, you took two courses last term. Write, run, and
test a C++ program that calculates and displays your grade point average (GPA) for the term.
Your program should prompt the user to enter the grade and credit hours for each course.
This information should then be displayed with the lowest grade first, and the GPA for the
term should be calculated and displayed. A warning message should be printed if the GPA
is less than 2.0 and a congratulatory message if the GPA is 3.5 or above.

228 Selection Structures

11. (Debugging) The following program displays the message Hello there! regardless of
the letter input. Determine where the error is.

#include <iostream.h>
using namespace std;

int main()
{

char letter;

cout << "Enter a letter: ";
cin >> letter;

if (letter = 'm')
cout << "Hello there!\n";

return 0;
i}

12. (Data Processing) Write, execute, and verify a C++ program that accepts three numbers
as input, and then sorts the three numbers and displays them in ascending order, from
lowest to highest. For example, if the input values are 7 5 1, the program should display
them in the numerical order 1 5 7.

13. (Heat Transfer) The transfer of heat energy through matter, referred to as heat conduction,
is always from a region of higher temperature to one of lower temperature. It occurs by
transferring energy from atom to atom within a substance. With uniform temperatures on
either side of equal-sized surfaces, the rate of heat flow through a substance is provided by
Fourier’s law of heat conduction, which becomes the following formula:

Q
k T T

w
=

()2 1-

Q is heat per unit time per unit area (Watts/m2 or BTU/hrft2).
k is the thermal conductivity, which is a property of a substance that indicates its
capability to conduct heat (Watts/m°K or BTU/hrft°F).
T2 is the hotter temperature (°F or °K).
T1 is the cooler temperature (°F or °K).
w is the width of the substance (ft or m).

a. Write, compile, and execute a C++ program that calculates and displays the heat
transfer through a substance. The inputs should be the substance’s thermal conduc-
tivity, its width, and temperatures on either side of it. Your program should determine
which unit system is used, item by item, and then convert units as necessary so that
a consistent unit system (SI or English Engineering) is used in the final determination
of Q. The output should display the value of Q in both unit systems.

b. Verify that your program is working by hand-calculating the heat transfer through a
cement wall with a thermal conductivity of .29 Watts/m°K and a thickness of 15 cm.
One side of the wall is at a constant temperature of 32°C, and the other side is -7°C.

229Chapter 4
Programming Projects

c. After verifying that your program is working correctly, use the following chart of
thermal conductivities to determine the heat transfer rate for the following:

i. A pane of glass that’s ½ cm thick and has an inside temperature of 24°C and an
outside temperature of 15°C.

ii. A column of air 10 cm thick that’s held between two walls, one with a temperature
of 23°C and the other of 14°C.

Substance Thermal Conductivity
(Watts/m°K)

Thermal Conductivity
(BTU/hrft°F)

Air .025 .0015
Cement .29 .17
Glass 1.1 .645
Soil 1.5 .88
Wood, oak .17 .096
Wood, pine .12 .065

14. (General Math) In the game of blackjack, the cards 2 through 10 are counted as their
face values, regardless of suit; all face cards (jack, queen, and king) are counted as 10; and
an ace is counted as a 1 or an 11, depending on the total count of all cards in a player’s
hand. The ace is counted as 11 only if the resulting total value of all cards in a player’s
hand doesn’t exceed 21; otherwise, it’s counted as 1. Using this information, write a C++
program that accepts three card values as inputs (a 1 corresponding to an ace, a 2
corresponding to a two, and so on), calculates the total value of the hand, and displays
the value of the three cards.

Engineering and Scientific Disciplines

Civil Engineering
The field of civil engineering is concerned primarily with large-scale structures and sys-
tems used by a community. A civil engineer designs, constructs, and operates bridges,
dams, tunnels, buildings, airports, roads, and other large-scale public works. Civil engi-
neers are also responsible for the effects these large-scale systems have on society and
the environment, so they are involved in water resources, flood control, waste disposal,
and overall urban planning. The field can be subdivided into three categories:

� Structures: Design, construction, and operation of large-scale public works, such
as dams, buildings, and roads. The properties of materials, geology, soil mechan-
ics, and statics and dynamics are important elements of background training. For
example, determining a building’s maximum height before it buckles under its
own weight is a question involving all these subjects.

� Urban planning: Planning, designing, and constructing transportation systems
(roads, railroads, river development, airports) and general land use. Surveying and
mapmaking are necessary skills.

� Sanitation: Waste treatment, water supply, and sewage systems. Fluid mechanics,
hydrology, pollution control, irrigation, and economics are important areas of study.

230 Selection Structures

Chapter 5
Repetition
Statements

5.1 Basic Loop Structures

5.2 while Loops

5.3 Interactive while Loops

5.4 for Loops

5.5 A Closer Look: Loop
Programming Techniques

5.6 Nested Loops

5.7 do while Loops

5.8 Common Programming Errors

5.9 Chapter Summary

The programs you’ve examined so far have illustrated the programming concepts involved in input,
output, assignment, and selection capabilities. By this time, you should have gained enough experience
to be comfortable with these concepts and the mechanics of implementing them in C++. Many problems,
however, require a repetition capability, in which the same calculation or sequence of instructions is
repeated, over and over, using different sets of data. Examples of this type of repetition include
continual checking of user data entries until an acceptable entry, such as a valid password, is entered;
counting and accumulating running totals; and constant acceptance of input data and recalculation of
output values that stop only at entry of a sentinel value.

This chapter explores the different methods used by programmers in constructing repeating sections
of code and explains how they can be implemented in C++. More commonly, a section of code that’s
repeated is referred to as a loop because after the last statement in the code is executed, the program
branches, or loops, back to the first statement and starts another repetition through the code. Each
repetition is also referred to as an iteration or a pass through the loop.

5.1 Basic Loop Structures

The real power of a program is realized when the same type of operation must be made over and
over. For example, in some programs the same set of instructions is repeated multiple times.
Retyping the same set of instructions in a program is tedious, time consuming, and subject to
error. It certainly would be convenient if you could type repeating instructions only once, and
then have a method of informing the program to repeat execution of these instructions three
times. This method is available by using repeating sections of code.

Constructing a repeating section of code requires using four elements. The first
necessary element is a repetition statement. A repetition statement both defines the
boundaries of the repeating section of code and controls whether the code will be executed.
In general, three different forms of repetition statements are provided in C++:

• while
• for
• do while

Each of these statements must include a condition to be evaluated, which is the second
required element for constructing repeating sections of code. Valid conditions are identical to
those used in selection statements. If the condition is true, the code is executed; otherwise,
it’s not.

The third required element is a statement that initially sets the condition. This
statement must always be placed before the condition is first evaluated to ensure correct loop
execution the first time the condition is evaluated.

Finally, there must be a statement in the repeating section of code that allows the
condition to become false. This statement is necessary to ensure that, at some point, the
repetitions stop.

Pretest and Posttest Loops
The condition being tested can be evaluated at the beginning or end of the repeating section
of code. Figure 5.1 illustrates the test occurring at the beginning of the loop. This type of
loop is referred to as a pretest loop because the condition is tested before any statements in
the loop are executed. If the condition is true, the executable statements in the loop are
executed. If the initial value of the condition is false, the executable statements in the loop
are never executed at all, and control transfers to the first statement after the loop. To avoid
infinite repetitions, the condition must be updated within the loop. Pretest loops are also
referred to as entrance-controlled loops. Both the while and for loop structures are examples
of these loops.

A loop that evaluates a condition at end of the repeating section of code, as illustrated
in Figure 5.2, is referred to as a posttest or exit-controlled loop. These loops always execute
the loop statements at least once before the condition is tested. Because the executable
statements in the loop are executed continuously until the condition becomes false, there
must always be a statement in the loop that updates the condition and permits it to become
false. The do while construct is an example of a posttest loop.

232 Repetition Statements

previous
statement

is the
condition

true?

loop
statements

yes

no

next
statement

previous
statement

is the
condition

true?

loop
statements

yes

no

next
statement

Figure 5.1 A pretest loop Figure 5.2 A posttest loop

Fixed-Count Versus Variable-Condition Loops
In addition to classifying repeating sections of code according to where the condition is tested
(pretest or posttest), they are also classified by the type of condition being tested. In a
fixed-count loop, the condition is used to keep track of how many repetitions have occurred.
For example, you might want to produce a table of 10 numbers, including the numbers’
squares and cubes, or a fixed design, such as the following:

In these cases, a fixed number of calculations are performed or a fixed number of lines
are printed, at which point the repeating section of code is exited. All of C++’s repetition
statements can be used to produce fixed-count loops.

233Chapter 5
Basic Loop Structures

In many situations, the exact number of repetitions isn’t known in advance, or the items
are too numerous to count beforehand. For example, when entering a large amount of
experimental data, you might not want to take the time to count the number of actual data
items to be entered. In these cases, a variable-condition loop is used. In a variable-condition
loop, the tested condition doesn’t depend on a count being reached, but on a variable that
can change interactively with each pass through the loop. When a specified value is
encountered, regardless of how many iterations have occurred, repetitions stop. All of C++’s
repetition statements can be used to create variable-condition loops.1 In this chapter, you
encounter examples of both fixed-count and variable-condition loops.

EXERCISES 5.1

1. (For Review) List the three repetition statements provided in C++.

2. (For Review) List the four elements that must be present in a repetition statement.

3. (For Review) a. What is an entrance-controlled loop?

b. Which of C++’s repetition statements produce entrance-controlled loops?

4. (For Review) a. What is an exit-controlled loop?

b. Which of C++’s repetition statements produce exit-controlled loops?

5. (For Review) a. What is the difference between a pretest and posttest loop?

b. If the condition being tested in a pretest loop is false, how many times are statements
in the loop executed?

c. If the condition being tested in a posttest loop is false, how many times are state-
ments in the loop executed?

6. (For Review) What is the difference between a fixed-count and variable-condition loop?

5.2 while Loops

In C++, a while loop is constructed by using a while statement in the following syntax:

while (expression)
statement;

The expression in parentheses is the condition tested to determine whether the
statement following the parentheses is executed. The expression is evaluated in exactly the
same manner as one in an if-else statement; the difference is in how the expression is
used. As you have seen, when the expression in an if-else statement is true (has a non-zero
value), the statement following the expression is executed once. In a while statement, the

1In loop creation, both C and C++ differ from earlier high-level languages, in which the for statement could be used only to produce fixed-count
loops. C++’s for statement, as you see in Section 5.4, is virtually interchangeable with its while statement.

234 Repetition Statements

statement following the expression is executed repeatedly as long as the expression evaluates
to a non-zero value. Considering just the expression and the statement following the
parentheses, the computer uses this process in evaluating a while statement:

1. Test the expression
2. If the expression has a non-zero (true) value

a. execute the statement following the parentheses
b. go back to Step 1

else
exit the while statement and execute the next executable statement following the
while statement

Notice that Step 2b forces program control to be transferred back to Step 1. This transfer
of control back to the start of a while statement to reevaluate the expression is what forms
the program loop. The while statement literally loops back on itself to recheck the
expression until it evaluates to zero (becomes false). Naturally, this rechecking means that
somewhere in the loop must be a provision that permits altering the value of the tested
expression. As you’ll see, this provision is indeed made.

Figure 5.3 shows the looping process a while statement produces. A diamond shape is
used to show the two entry and two exit points required in the decision part of the while
statement.

To make this looping process more tangible, consider the relational expression count
<= 10 and the statement cout << count;. Using these elements, you can write the
following valid while statement:

while (count <= 10)
cout << count;

Although this statement is valid, the alert reader will realize that it creates a situation in
which the cout statement is either executed forever (or until you stop the program) or not
executed at all. Here’s why this happens: If count has a value less than or equal to 10 when
the expression is first evaluated, the cout statement is executed. The while statement
then automatically loops back on itself and retests the expression. Because you haven’t
changed the value stored in count, the expression is still true, and another execution of the
cout statement is made. This process continues forever, or until the program containing this
statement is stopped prematurely by the user. However, if count starts with a value greater
than 10, the expression is false to begin with, and the cout statement is never executed.

How do you set an initial value in count to control what the while statement does the
first time the expression is evaluated? The answer, of course, is to assign values to each
variable in the tested expression before the while statement is encountered. For example,
the following sequence of instructions is valid:

count = 1;
while (count <= 10)

cout << count;

Using this sequence of instructions ensures that count starts with a value of 1. You could
assign any value to count in the assignment statement. What’s important is to assign some
value. In practice, the assigned value depends on the application.

You must still change the value of count so that you can finally exit the while
statement. Doing this requires an expression such as count = count + 1 to increment
the value of count each time the while statement is executed. The fact that a while

235Chapter 5
while Loops

statement provides for repetition of a single statement doesn’t prevent including an
additional statement to change the value of count. All you have to do is replace the single
statement with a compound statement, as in this example:

count = 1; // initialize count
while (count <= 10)
{

cout << count;
count++; // increment count

}

Note that, for clarity, each statement in the compound statement is placed on a different line.
This format is consistent with the convention adopted for compound statements in Chapter 4.

Now analyze the preceding sequence of instructions. The first assignment statement sets
count equal to 1. The while statement is then entered, and the expression is evaluated for
the first time. Because the value of count is less than or equal to 10, the expression is true,
and the compound statement is executed. The first statement in the compound statement
uses the cout object to display the value of count. The next statement adds 1 to the value
currently stored in count, making this value equal to 2. The while statement then loops

test
the expression

(step 1)

execute the
statement
after the

parentheses
(step 2a)

loop

enter the
while statement

(a false condition)

expression
evaluates

to zero

exit the
while statement

expression
evaluates

to a non-zero
number

(a true condition)

go back and
reevaluate the

expression
(step 2b)

Figure 5.3 Anatomy of a while loop

236 Repetition Statements

back to retest the expression. Because count is still less than or equal to 10, the compound
statement is executed again. This process continues until the value of count reaches 11.
Program 5.1 illustrates these statements in an actual program.

Program 5.1

#include <iostream>

using namespace std;

int main()

{

int count;

count = 1; // initialize count

while (count <= 10)

{

cout << count << " ";

count++; // increment count

}

return 0;

}

This is the output for Program 5.1:

1 2 3 4 5 6 7 8 9 10

Note that there’s nothing special about the name count used in Program 5.1. Any valid
integer variable could have been used.

Before you look at other examples of the while statement, two comments on Program 5.1
are in order. First, the statement count++ can be replaced with any statement that changes
the value of count. A statement such as count = count + 2, for example, causes every
second integer to be displayed. Second, it’s the programmer’s responsibility to ensure that
count is changed in a way that leads to a normal exit from the while. For example, if you
replace the expression count++ with the expression count--, the value of count never
exceeds 10 and an infinite loop is created. An infinite loop is a loop that never ends; the program
just keeps displaying numbers until you realize it isn’t working as you expected.

Now that you have some familiarity with the while statement, see whether you can read
and determine the output of Program 5.2.

237Chapter 5
while Loops

Program 5.2

#include <iostream>

using namespace std;

int main()

{

int i;

i = 10;

while (i >= 1)

{

cout << i << " ";

i--; // subtract 1 from i

}

return 0;

}

The assignment statement in Program 5.2 initially sets the int variable i to 10. The
while statement then checks to see whether the value of i is greater than or equal to 1.
While the expression is true, the value of i is displayed by the cout statement, and the
value of i is decremented by 1. When i finally reaches zero, the expression is false, and the
program exits the while statement. Therefore, Program 5.2 produces the following display
when it runs:

10 9 8 7 6 5 4 3 2 1

To illustrate the power of the while statement, consider the task of printing a table of
numbers from 1 to 10 with the numbers’ squares and cubes. You can do this with a simple
while statement, as shown in Program 5.3.

When Program 5.3 runs, the following display is produced:

NUMBER SQUARE CUBE

------ ------ ----

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

10 100 1000

238 Repetition Statements

Program 5.3

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

int num;

cout << "NUMBER SQUARE CUBE\n"

<< "------ ------ ----\n";

num = 1;

while (num < 11)

{

cout << setw(3) << num << " "

<< setw(3) << num * num << " "

<< setw(4) << num * num * num << endl;

num++; // increment num

}

return 0;

}

Note that the expression used in Program 5.3 is num < 11. For the integer variable num,
this expression is exactly equivalent to the expression num <= 10. The choice of which to
use is entirely up to you.

If you want to use Program 5.3 to produce a table of 1000 numbers, all you do is change
the expression in the while statement from num < 11 to num < 1001. Changing the 11
to 1001 produces a table of 1000 lines—not bad for a simple five-line while statement.

239Chapter 5
while Loops

All the program examples of the while statement use fixed-count loops because the
tested condition is a counter that checks for a fixed number of repetitions. In a variation on
the fixed-count loop, the counter is not incremented by one each time through the loop but
by some other value. For example, suppose you have the task of producing a Celsius-to-
Fahrenheit temperature conversion table. Fahrenheit temperatures corresponding to Celsius
temperatures from 5 to 50 degrees are to be displayed in increments of 5 degrees, which can
be done with this series of statements:

celsius = 5; // starting Celsius value
while (celsius <= 50)
{

fahren = (9.0/5.0) * celsius + 32.0;
cout << celsius << " "

<< fahren;
celsius = celsius + 5;

}

As before, the while statement consists of everything from the word while through the
compound statement’s closing brace. Before the program enters the while loop, you must
make sure a value is assigned to the counter being evaluated, and there’s a statement to alter
the value of the counter in the loop (in increments of 5 degrees Celsius) to ensure an exit
from the while loop. Program 5.4 illustrates using similar code in a complete program.

This is the display produced when Program 5.4 is executed:

DEGREES DEGREES

CELSIUS FAHRENHEIT

------- ----------

5 41.00

10 50.00

15 59.00

20 68.00

25 77.00

30 86.00

35 95.00

40 104.00

45 113.00

50 122.00

240 Repetition Statements

Program 5.4

#include <iostream>

#include <iomanip>

using namespace std;

// a program to convert Celsius to Fahrenheit

int main()

{

const int MAX_CELSIUS = 50;

const int START_VAL = 5;

const int STEP_SIZE = 5;

int celsius;

double fahren;

cout << "DEGREES DEGREES\n"

<< "CELSIUS FAHRENHEIT\n"

<< "------- ----------\n";

celsius = START_VAL;

// set output formats for floating point numbers only

cout << setiosflags(ios::showpoint)

<< setprecision(2);

while (celsius <= MAX_CELSIUS)

{

fahren = (9.0/5.0) * celsius + 32.0;

cout << setw(4) << celsius << fixed

<< setw(13) << fahren << endl;

celsius = celsius + STEP_SIZE;

}

return 0;

}

241Chapter 5
while Loops

Technical Note

Fluid Mechanics
The field of fluid mechanics deals with fluids at rest and in motion. Fluids include
both liquids and gases and are defined as substances that conform to the shape of
their holding containers. These are the primary differences between gases and liquids:

� Gases are expandable and contractible and always expand or contract to fill all
space in the container holding them.

� Liquids occupy a definite volume and have a free surface if they don’t fill the
container holding them.

Fluid statics is the science of fluids at rest, a major subdiscipline of fluid mechanics.
The most important property for fluids at rest is their weight. Fluid dynamics is the sci-
ence of fluids in motion, which is the second major subdiscipline of fluid mechanics and
includes aerodynamics, the study of gases in motion, and hydrodynamics, the study of liq-
uids in motion.

For flowing fluids, the two most important properties are density and viscosity.
Density is the measure of how tightly packed the fluid is (density = mass/volume).
Viscosity is the measure of a liquid’s resistance to shear stress. A fluid begins to flow
when an applied force, known as a shear stress, is large enough to overcome the fluid’s
weight and internal friction, assuming the fluid isn’t totally constrained in the direction of
the force. The three types of fluid flow patterns through a pipe or conduit are as follows:

� Laminar—All fluid particles flow in smooth, straight lines parallel to the
pipe’s wall.

� Turbulent—Fluid particle paths are irregular, but the average motion is in the
direction of the flow.

� In transition—The fluid is between laminar and turbulent flow.

Laminar flow generally occurs only when the fluid’s viscosity is very high, as in
lubricating oils. Most flows, such as water flowing through pipes, are faster and
turbulent.

The Reynolds number provides a quick means of determining flow patterns and
can be calculated by using this formula:

Re = ρ
µ
Vd

Re = the Reynolds number
ρ = the fluid’s density (kg/m3)
V = the fluid’s average speed (m/s)
d = the pipe’s diameter (m)
µ = the fluid’s viscosity (kg/ms)

continued...

242 Repetition Statements

EXERCISES 5.2

1. (Practice) Rewrite Program 5.1 to print the numbers 2 to 10 in increments of two. The
output of your program should be the following:

2 4 6 8 10

2. (Practice) Rewrite Program 5.4 to produce a table starting at a Celsius value of -10 and
ending with a Celsius value of 60, in increments of 10 degrees.

3. (Desk Checking) a. For the following program, determine the total number of items
displayed as well as the first and last numbers printed:

#include <iostream>
using namespace std;

int main()
{

int num = 0;
while (num <= 20)
{

num++;
cout << num << " ";

}

return 0;
}

b. Enter and run the program from Exercise 3a on a computer to verify your answers to
the exercise.

Technical Note

Fluid Mechanics (continued)
Essentially, the Reynolds number is equal to the ratio of

fluid speed
viscous forces

A higher Reynolds number correlates with a higher fluid speed. However, when
viscous forces predominate (they are retarding forces), the Reynolds number is lower,
and the fluid flow is slower. In a highly viscous fluid, such as heavy oil, all the fluid’s
particles tend to be kept in line, which is referred to as laminar flow. Critical Reynolds
number values for determining flow type are as follows:

� Re < 2000: Fluid flow is laminar (least common type of water flow).
� 2000 � Re � 3000: Fluid flow is in transition.
� Re > 3000: Fluid flow is turbulent (most common type of fluid flow).

243Chapter 5
while Loops

c. How would the output be affected if the two statements in the compound statement
were reversed (that is, if the cout statement came before the num++ statement)?

4. (Conversions) Write a C++ program that converts gallons to liters. The program should
display gallons from 10 to 20 in one-gallon increments and the corresponding liter
equivalents. Use the relationship that 1 gallon = 3.785 liters.

5. (Conversions) Write a C++ program that converts feet to meters. The program should
display feet from 3 to 30 in 3-foot increments and the corresponding meter equivalents.
Use the relationship that 1 meter = 3.28 feet.

6. (Practice) An automobile travels at an average speed of 55 mph for four hours. Write a
C++ program that displays the distance, in miles, the car has traveled after 1, 2, and so on
hours until the end of the trip.

7. (Fluid Mechanics) The maximum laminar flow speed is the speed at which a fluid
begins to change from a smooth, straight flow to turbulent flow within a pipe. It can be
determined by using this formula:

Maximum laminar flow speed = (2000 × pipe diameter × density)/viscosity
Using this formula, write a C++ program that used a fixed-count repetition loop of four.
For each pass through the loop, the program should accept a fluid’s density, its viscosity,
and a pipe diameter as input, and then calculate and output the maximum laminar flow
rate through the pipe. Use the results your program outputs to complete the last column
in this chart:

Fluid Viscosity at 40°C
= 77°F (kg/ms)

Density (kg/m3) Pipe
Diameter
(m)

Maximum
Laminar
Flow
Speed
(m/s)

Gasoline .4466 × 10-3 .7186 × 103 0.4
Medium
fuel oil

2.9922 × 10-3 .8496 × 103 0.4

Medium
lubricating oil

87.0736 × 10-3 .8865 × 103 0.4

Water .8975 × 10-3 .9973 × 103 0.4

8. (Numerical Analysis) a. The following is an approximate conversion formula for con-
verting Fahrenheit to Celsius temperatures:
Celsius = (Fahrenheit - 30) / 2
Using this formula, and starting with a Fahrenheit temperature of 0 degrees, write a C++
program that determines when the approximate equivalent Celsius temperature differs
from the exact equivalent value by more than four degrees. (Hint: Use a while loop that
terminates when the difference between approximate and exact Celsius equivalents
exceeds 4 degrees.)

244 Repetition Statements

b. Using the approximate Celsius conversion formula given in Exercise 8a, write a C++
program that produces a table of Fahrenheit temperatures, exact Celsius equivalent
temperatures, approximate Celsius equivalent temperatures, and the difference
between the exact and approximate equivalent Celsius values. The table should begin
at 0 degrees Fahrenheit, use 2-degree Fahrenheit increments, and terminate when the
difference between exact and approximate values is more than 4 degrees.

9. (Numerical Analysis) The value of Euler’s number, e, can be approximated by using
this formula:

e = + + + + + +1
1
1

1
2

1
3

1
4

1
5! ! ! ! !

. . .

Using this formula, write a C++ program that approximates the value of e, using a while
loop that terminates when the difference between two successive approximations is less
than 10e-9.

10. (Numerical Analysis) The value of sin x can be approximated by using this formula:

sin()
! ! ! !

. . .x x
x x x x= + +- -

3 5 7 9

3 5 7 9

Using this formula, determine how many terms are needed to approximate the value
returned by the intrinsic sin() function with an error less than 1e-6, when x = 30
degrees. (Hints: Use a while loop that terminates when the difference between the value
returned by the intrinsic sin() function and the approximation is less than 1e-6. Also,
note that x must first be converted to radian measure, and the alternating sign in the
approximating series can be determined as (-1) × (n + 1), where n is the number of terms
used in the approximation.)

5.3 Interactive while Loops

Combining interactive data entry with the repetition capabilities of the while statement
produces adaptable and powerful programs. To understand the concept, take a look at
Program 5.5, where a while statement is used to accept and then display four user-entered
numbers, one at a time. Although the program uses a simple idea, it highlights the flow of
control concepts needed to produce more useful programs.

The following is a sample run of Program 5.5:

This program will ask you to enter 4 numbers.

Enter a number: 26.2

The number entered is 26.2

Enter a number: 5

The number entered is 5

Enter a number: 103.456

The number entered is 103.456

Enter a number: 1267.89

The number entered is 1267.89

245Chapter 5
Interactive while Loops

Program 5.5

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int MAXNUMS = 4;

int count;

double num;

cout << "\nThis program will ask you to enter "

<< MAXNUMS << " numbers.\n";

count = 1;

while (count <= MAXNUMS)

{

cout << "\nEnter a number: ";

cin >> num;

cout << "The number entered is " << num;

count++;

}

cout << endl;

return 0;

}

Review the program so that you understand clearly how the output was produced. The
first message displayed is caused by execution of the first cout statement. This statement
is outside and before the while statement, so it’s executed once before any statement in the
while loop.

After the while loop is entered, the statements in the compound statement are
executed while the tested condition is true. The first time through the compound statement,
the message Enter a number: is displayed. The program then executes the cin
statement, which forces the computer to wait for a number to be entered at the keyboard.
After a number is typed and the Enter key is pressed, the cout statement displays the
number. The variable count is then incremented by one. This process continues until four
passes through the loop have been made and the value of count is 5. Each pass causes the
message Enter a number: to be displayed, causes one cin statement to be executed, and
causes the message The number entered is to be displayed. Figure 5.4 illustrates this
flow of control.

Instead of simply displaying the entered numbers, Program 5.5 can be modified to use
the entered data. For example, you can add the numbers entered and display the total. To
do this, you must be careful about how you add the numbers because the same variable, num,
is used for each number entered. For this reason, the entry of a new number in Program 5.5

246 Repetition Statements

automatically causes the previous number stored in num to be lost. Therefore, each number
entered must be added to the total before another number is entered. This is the required
sequence:

Enter a number
Add the number to the total

add 1 to
count

loop

no

(condition is false)

set count
equal to 1

print a
message

print value
of number

accept a
number

using cin

print the
message
Enter a
number:

is count
less than or

equal to
4?

go back and
retest count

these statements
are executed

each time the loop
is traversed

yes
(condition is true)

end of program

start

stop

Figure 5.4 Flow of control diagram for Program 5.5

247Chapter 5
Interactive while Loops

How do you add a single number to a total? A statement such as total = total + num
does the job perfectly. It’s the accumulation statement introduced in Section 3.1. After each
number is entered, the accumulating statement adds the number to the total, as shown in
Figure 5.5.

The complete flow of control for adding the numbers is illustrated in Figure 5.6. In
reviewing Figure 5.6, observe that a provision has been made for initially setting the total to
zero before the while loop is entered. If you cleared the total inside the while loop, it
would be set to zero each time the loop was executed, and any value stored previously would
be erased.

total = total + num

new
total

total

the variable total

new number
goes in here

cin

num

new number

accept a new
number

the variable num

add 1 to
count

add num
to total

accept a
num

is count
< 4?

no

set total
to zero

print total

yes

set count
to one

stop

start

Figure 5.5 Accepting and adding Figure 5.6 Accumulation flow of
a number to a total control

Program 5.6 incorporates the necessary modifications to Program 5.5 to total the numbers
entered. As shown, the statement total = total + num; is placed immediately after the
cin statement. Putting the accumulating statement at this point in the program ensures that
the entered number is “captured” immediately into the total.

248 Repetition Statements

Program 5.6

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int MAXNUMS = 4;

int count;

double num, total;

cout << "\nThis program will ask you to enter "

<< MAXNUMS << " numbers.\n";

count = 1;

total = 0;

while (count <= MAXNUMS)

{

cout << "\nEnter a number: ";

cin >> num;

total = total + num;

cout << "The total is now " << setprecision(7) << total;

count++;

}

cout << "\nThe final total is " << setprecision(7) << total << endl;

return 0;

}

To make sure you understand, review Program 5.6. The variable total was created to
store the total of the numbers entered. Before entering the while statement, the value of
total is set to zero to make sure any previous value in the storage location(s) assigned to
the variable total is erased. Inside the while loop, the statement total = total +
num; is used to add the value of the entered number to total. As each value is entered,
it’s added to the existing total to create a new total. Therefore, total becomes a running
subtotal of all the values entered. Only after all numbers are entered does total contain the
final sum of all the numbers. After the while loop is finished, a cout statement is used to
display this sum.

249Chapter 5
Interactive while Loops

Using the same data entered in the sample run for Program 5.5, the following sample run
of Program 5.6 was made:

This program will ask you to enter 4 numbers.

Enter a number: 26.2

The total is now 26.2

Enter a number: 5

The total is now 31.2

Enter a number: 103.456

The total is now 134.656

Enter a number: 1267.89

The total is now 1402.546

The final total is 1402.546

Having used an accumulating assignment statement to add the numbers entered, you can
go further and calculate the average of the numbers. Where do you calculate the average—
inside the while loop or outside it?

In the case at hand, calculating an average requires that both a final sum and the number
of items in that sum be available. The average is then computed by dividing the final sum
by the number of items. At this point, you must ask, “At what point in the program is the
correct sum available, and at what point is the number of items available?”

In reviewing Program 5.6, you can see that the correct sum needed for calculating the
average is available after the while loop is finished. In fact, the whole purpose of the while
loop is to ensure that the numbers are entered and added correctly to produce a correct sum.
After the loop is finished, you also have a count of the number of items used in the sum.
However, because of the way the while loop was constructed, the number in count (5)
when the loop is finished is one more than the number of items (four) used to obtain the
total. Knowing this, you simply subtract one from count before using it to determine the
average. With this information as background, take a look at Program 5.7.

Program 5.7 is almost identical to Program 5.6, except for the calculation of the average.
The constant display of the total inside and after the while loop has also been removed.
The loop in Program 5.7 is used to enter and add four numbers. Immediately after the loop
is exited, the average is computed and displayed. A sample run of Program 5.7 follows:

This program will ask you to enter 4 numbers.

Enter a number: 26.2

Enter a number: 5

Enter a number: 103.456

Enter a number: 1267.89

The average of the numbers is 350.637

250 Repetition Statements

Program 5.7

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int MAXNUMS = 4;

int count;

double num, total, average;

cout << "\nThis program will ask you to enter "

<< MAXNUMS << " numbers.\n";

count = 1;

total = 0;

while (count <= MAXNUMS)

{

cout << "Enter a number: ";

cin >> num;

total = total + num;

count++;

}

count--;

average = total / count;

cout << "\nThe average of the numbers is " << average << endl;

return 0;

}

Sentinels
All the loops created so far have been examples of fixed-count loops, in which a counter is used
to control the number of loop iterations. By means of a while statement, variable-condition
loops can also be constructed. For example, when entering grades, you might not want to count
the number of grades that will be entered. Instead, you prefer to enter the grades continuously,
and at the end, type in a special data value to signal the end of data input.

In computer programming, data values used to signal the start or end of a data series are
called sentinels. Sentinel values must, of course, be selected so as not to conflict with
legitimate data values. For example, if you’re constructing a program to process a student’s
grades, and assuming no extra credit is given that could produce a grade higher than 100, you
could use any grade higher than 100 as a sentinel value. Program 5.8 illustrates this concept:
Data is requested and accepted continuously until a number larger than 100 is entered. Entry

251Chapter 5
Interactive while Loops

of a number higher than 100 alerts the program to exit the while loop and display the sum
of the numbers entered.

Program 5.8

#include <iostream>

using namespace std;

int main()

{

const int HIGHGRADE = 100;

double grade, total;

grade = 0;

total = 0;

cout << "\nTo stop entering grades, type in any number";

cout << "\n greater than 100.\n\n";

while (grade <= HIGHGRADE)

{

total = total + grade;

cout << "Enter a grade: ";

cin >> grade;

}

cout << "\nThe total of the grades is " << total << endl;

return 0;

}

The following lines show a sample run of Program 5.8. As long as grades less than or
equal to 100 are entered, the program continues to request and accept additional data. When
a number less than or equal to 100 is entered, the program adds this number to the total.
When a number greater than 100 is entered, the loop is exited, and the sum of the grades that
were entered is displayed.

To stop entering grades, type in any number

greater than 100.

Enter a grade: 95

Enter a grade: 100

Enter a grade: 82

Enter a grade: 101

The total of the grades is 277

252 Repetition Statements

break and continue Statements
Two useful statements in connection with repetition statements are the break and continue
statements. You encountered the break statement in Section 4.4 when learning about the
switch statement. This is the format of the break statement:

break;

A break statement, as its name implies, forces an immediate break, or exit, from the
switch, while, for, and do-while statements (discussed in the next sections). For
example, execution of the following while loop is terminated immediately if a number
greater than 76 is entered:

while(count <= 10)
{

cout << "Enter a number: ";
cin >> num;
if (num > 76)
{

cout << "You lose!\n";
break; // break out of the loop

}
else

cout << "Keep on trucking!\n";
count++

}
// break jumps to here

The break statement violates structured programming principles because it provides a
second, nonstandard exit from a loop. Nevertheless, the break statement is extremely useful
for breaking out of loops when an unusual condition is detected. The break statement is
also used to exit from a switch statement when the matching case value has been
detected and processed.

The continue statement is similar to the break statement but applies only to loops
created with while, do-while, and for statements. This is the general format of a
continue statement:

continue;

When continue is encountered in a loop, the next iteration of the loop begins
immediately. For while loops, this means execution is transferred automatically to the top of the
loop, and reevaluation of the tested expression is initiated. Although the continue statement
has no direct effect on a switch statement, it can be included in a switch statement, which
is contained in a loop. The effect of continue is the same: The next loop iteration begins.

As a general rule, the continue statement is less useful than the break statement, but
it’s convenient for skipping over data that shouldn’t be processed while remaining in a loop.

253Chapter 5
Interactive while Loops

For example, invalid grades are simply ignored in the following section of code, and only
valid grades are added to the total:2

while (count < 30)
{

cout << "Enter a grade: ";
cin >> grade
if(grade < 0 || grade > 100)

continue;
total = total + grade;
count++;

}

The Null Statement
All statements must be terminated by a semicolon. A semicolon with nothing preceding it is
also a valid statement, called the null statement, as shown:

;

It’s a do-nothing statement used where a statement is required syntactically, but no
action is called for. Typically, null statements are used with while or for statements.
Program 5.10c in Section 5.4 shows an example of a for statement using a null statement.

EXERCISES 5.3

1. (Practice) Rewrite Program 5.6 to compute the total of eight numbers.

2. (Practice) Rewrite Program 5.6 to display this prompt:

Please type in the total number of data values to be added:

In response to this prompt, the program should accept a user-entered number, and then
use this number to control the number of times the while loop is executed. So if the
user enters 5 in response to the prompt, the program should request the input of five
numbers and display the total after five numbers have been entered.

3. (Practice) Rewrite Program 5.7 to compute the average of 10 numbers.

4. (Practice) Rewrite Program 5.7 to display the following prompt:

Please type in the total number of data values to be averaged:

2The continue statement is not essential, however, and the selection could have been written as follows:
if (grade� 0 && grade � 100)
{
total = total + grade;
count++;

}

254 Repetition Statements

In response to this prompt, the program should accept a user-entered number, and then
use this number to control the number of times the while loop is executed. So if the
user enters 6 in response to the prompt, the program should request an input of six num-
bers and display the average of the next six numbers entered.

5. (Debugging) By mistake, a programmer puts the statement average = total /
count; in the while loop immediately after the statement total = total + num;
in Program 5.7. As a result, the while loop becomes the following:

while (count <= MAXNUMS)
{

cout << "Enter a number: ";
cin >> num;
total = total + num;
average = total / count;
count++;

}

a. Will the program yield the correct result with this while loop?

b. From a programming perspective, which while loop is better to use and why?

6. (Conversions) a. Write a C++ program to convert meters to feet. The program should
request the starting meter value, the number of conversions to be made, and the increment
between metric values. The display should have appropriate headings and list the meters and
the corresponding feet value. If the number of iterations is greater than 10, have your pro-
gram substitute a default increment of 10. Use the relationship that 1 meter = 3.281 feet.

b. Run the program written in Exercise 6a on a computer. Verify that your program
begins at the correct starting meter value and contains the exact number of conver-
sions specified in your input data.

7. (Conversions) a. Modify the program written in Exercise 6a to request the starting
meter value, the ending meter value, and the increment. Instead of the condition check-
ing for a fixed count, the condition checks for the ending meter value. If the number of
iterations is greater than 20, have your program substitute a default increment of (ending
value - starting value) / 19.

b. Run the program written in Exercise 7a on a computer. Verify that your output starts
at the correct beginning value and ends at the correct ending value.

8. (Numerical Analysis) An arithmetic series is defined by the following:

a + (a + d) + (a + 2d) + (a + 3d) + ... + [(a + (n - 1)d)]

a is the first term.
d is the “common difference.”
n is the number of terms to be added.

Using this information, write a C++ program that uses a while loop to display each term
and determine the sum of the arithmetic series having a = 1, d = 3, and n = 100. Make
sure your program displays the value it has calculated.

9. (Numerical Analysis) A geometric series is defined by the following:
a + ar + ar 2 + ar 3 + ... + arn - 1

255Chapter 5
Interactive while Loops

a is the first term.
r is the “common ratio.”
n is the number of terms in the series.

Using this information, write a C++ program that uses a while loop to both display each
term and determine the sum of a geometric series having a = 1, r = .5, and n = 10. Make
sure your program displays the value it has calculated.

10. (Misc. Application) a. The data in the following chart was collected on a recent auto-
mobile trip:

Mileage Gallons
22,495 Full tank
22,841 12.2
23,185 11.3
23,400 10.5
23,772 11.0
24,055 12.2
24,434 14.7
24,804 14.3
25,276 15.2

Write a C++ program that accepts a mileage and gallons value and calculates the miles
per gallon (mpg) for that segment of the trip. The mpg is obtained as the difference in
mileage between fill-ups divided by the number of gallons of gasoline used in the fill-up.

b. Modify the program written for Exercise 10a to also compute and display the cumula-
tive mpg after each fill-up. The cumulative mpg is calculated as the difference
between the mileage at each fill-up and the mileage at the start of the trip divided by
the sum of gallons used to that point in the trip.

5.4 for Loops

In C++, a for loop is constructed by using a for statement. This statement performs the
same functions as the while statement but uses a different form. In many situations,
especially those using a fixed-count condition, the for statement format is easier to use than
its while statement equivalent. This is the syntax of the for statement:

for (initializing list; expression; altering list)
statement;

Although the for statement looks a little complicated, it’s really quite simple if you
consider each part separately. Inside the parentheses of the for statement are three items,
separated by semicolons. Each item is optional and can be described separately, but the
semicolons must always be present, even if you don’t use the items. In the for statement’s
most common form, the initializing list consists of a single statement used to set
the starting (initial) value of a counter, the expression (also called the “condition”)

256 Repetition Statements

contains the maximum or minimum value the counter can have and determines when the
loop is finished, and the altering list provides the increment value that’s added to or
subtracted from the counter each time the loop is executed. Here are two examples of simple
for statements having this form:

for (count = 1; count < 10; count = count + 1)
cout << count;

and

for (i = 5; i <= 15; i = i + 2)
cout << i;

In the first for statement, the counter variable is named count, the initial value
assigned to count is 1, the loop continues as long as the value in count is less than 10, and
the value of count is incremented by 1 each time through the loop.

In the next for statement, the counter variable is named i, the initial value assigned to
i is 5, the loop continues as long as i’s value is less than or equal to 15, and the value of i
is incremented by 2 each time through the loop. In both examples, a cout statement is used
to display the value of the counter. Program 5.9 shows another example of a for loop.

Program 5.9

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int main()

{

const int MAXCOUNT = 5;

int count;

cout << "NUMBER SQUARE ROOT\n";

cout << "------ -----------\n";

cout << setiosflags(ios::showpoint);

for (count = 1; count <= MAXCOUNT; count++)

cout << setw(4) << count

<< setw(15) << sqrt(double(count)) << endl;

return 0;

}

257Chapter 5
for Loops

When Program 5.9 is executed, the following display is produced:

NUMBER SQUARE ROOT

------ -----------

1 1.00000

2 1.41421

3 1.73205

4 2.00000

5 2.23607

The first two lines of this output are produced by the two cout statements placed before
the for statement. The remaining output is produced by the for loop, which begins with
the for statement and is executed as follows: The initial value assigned to the counter
variable count is 1. Because the value in count doesn’t exceed the final value of 5, the
execution of the cout statement in the loop produces this display:

1 1.00000

Control is then transferred back to the for statement, which increments the value in
count to 2, and the loop is repeated, producing this display:

2 1.41421

This process continues until the value in count exceeds the final value of 5, producing
the complete output table.

For comparison purposes, a while loop equivalent to the for loop in Program 5.9 is as
follows:

count = 1
while (count <= MAXCOUNT)
{

cout << setw(4) << count
<< setw(15) << sqrt(count) << endl;

count++;
}

As you can see in this example, the difference between the for and while loops is the
placement of the initialization, condition being tested, and incrementing items. Grouping
these items in the for statement is convenient when you must construct fixed-count loops.
See whether you can determine the output Program 5.10 produces.

258 Repetition Statements

Program 5.10

#include <iostream>

using namespace std;

int main()

{

int count;

for (count = 2; count <= 20; count = count + 2)

cout << count << " ";

return 0;

}

Did you figure it out? The loop starts with count initialized to 2, stops when count
exceeds 20, and increments count in steps of 2. This is the output of Program 5.10:

2 4 6 8 10 12 14 16 18 20

As mentioned, the for statement doesn’t require having an initializing or altering list
inside for’s parentheses; however, the two semicolons must be included in these
parentheses. For example, the construction for (; count <= 20 ;) is valid.

If the initializing list is missing, the initialization step is omitted when the for statement is
executed. Therefore, the programmer must provide the required initializations before the for
statement is encountered. Similarly, if the altering list is missing, any expressions needed to alter
the evaluation of the tested expression must be included in the statement part of the loop. The
for statement only ensures that all expressions in the initializing list are executed once, before
evaluation of the tested expression, and all expressions in the altering list are executed at the end
of the loop, before the tested expression is rechecked. Program 5.10 can be rewritten in any of
the three ways shown in Programs 5.10a, 5.10b, and 5.10c.

Program 5.10a

#include <iostream>

using namespace std;

int main()

{

int count;

count = 2; // initializer outside the for statement

for (; count <= 20; count = count + 2)

cout << count << " ";

return 0;

}

259Chapter 5
for Loops

Program 5.10b

#include <iostream>

using namespace std;

int main()

{

int count;

count = 2; // initializer outside the for loop

for(; count <= 20;)

{

cout << count << " ";

count = count + 2; // alteration statement

}

return 0;

}

Program 5.10c

#include <iostream>

using namespace std;

int main() // all expressions inside for's parentheses

{

int count;

for (count = 2; count <= 20; cout << count << " ", count = count + 2);

return 0;

}

In Program 5.10a, count is initialized outside the for statement, and the first list inside
the parentheses is left blank. In Program 5.10b, both the initializing list and the altering list
are outside the parentheses. Program 5.10b also uses a compound statement in the for loop,
with the expression-altering statement included in the compound statement. Finally,
Program 5.10c has included all items inside the parentheses, so there’s no need for any useful
statement following the parentheses. In this example, the null statement satisfies the
syntactical requirement of one statement to follow for’s parentheses.

Also, observe in Program 5.10c that the altering list (the last set of items in parentheses)
consists of two items, and a comma has been used to separate these items. Using commas to
separate items in both the initializing and altering lists is required if either of these lists
contains more than one item.

260 Repetition Statements

Last, note that Programs 5.10a, 5.10b, and 5.10c are all inferior to Program 5.10, and
although you might encounter them in your programming career, you shouldn’t use them.
Adding items other than loop control variables and their updating conditions in the for
statement tends to make it confusing to read and can result in unwanted effects. Keeping the
loop control structure “clean,” as in Program 5.10, is important and a good programming
practice.

Although the initializing and altering lists can be omitted from a for statement, omitting
the tested expression results in an infinite loop. For example, this statement creates an
infinite loop:

for (count = 2; ; count = count + 1)
cout << count;

As with the while statement, both break and continue statements can be used in
a for loop. A break forces an immediate exit from the for loop, as it does in the while
loop. A continue, however, forces control to be passed to the altering list in a for
statement, after which the tested expression is reevaluated. This action differs from
continue’s action in a while statement, where control is passed directly to reevaluation of
the tested expression.

Figure 5.7 illustrates the internal workings of a for loop. As shown, when the for loop
is completed, control is transferred to the first executable statement following the loop. To
avoid having to illustrate every step, you can use a simplified set of flowchart symbols to
describe for loops. If you use the following flowchart symbol to represent a for statement,

Point of Information

Where to Place the Opening Braces
When the for loop contains a compound statement, professional C++ programmers use
two styles of writing for loops. The style used in this book takes the following form:

for (expression)
{

compound statement in here
}

An equally acceptable style places the compound statement’s opening brace on the
first line. Using this style, a for loop looks like the following:

for (expression) {
compound statement in here

}

The advantage of the first style is that the braces line up under one another, making it
easier to locate brace pairs. The advantage of the second style is that it makes the code
more compact and saves a line, so more code can be viewed in the same display area.
Both styles are used but are almost never intermixed. Select whichever style appeals to you
and be consistent in its use. As always, the indentation you use in the compound state-
ment (two or four spaces or a tab) should also be consistent throughout all your programs.
The combination of styles you select becomes a “signature” for your programming work.

261Chapter 5
for Loops

you can then illustrate a complete for loop, as shown in Figure 5.8.

for
statement

execute the
altering list

execute the
statement
after the

parentheses

evaluate
the

tested
expression

loop

(false condition)

expression’s value
is non-zero
(true condition)

initializing
statements

enter the
for statement

expression’s value
is zero

exit the
for statement

go back and
retest the condition

Figure 5.7 A for loop flowchart

262 Repetition Statements

To understand the enormous power of for loops, consider the task of printing a table of
numbers from 1 to 10, including their squares and cubes, by using a for statement. This
table was produced previously by using a while loop in Program 5.3. You might want to
review Program 5.3 and compare it to Program 5.11 to get a better sense of the equivalence
between for and while loops.

Point of Information

Do You Use a for or while Loop?
Beginning programmers often ask which loop structure they should use—a for or
while loop. It’s a good question because both loop structures are pretest loops that,
in C++, can be used to construct fixed-count and variable-condition loops.

In most other computer languages, including Visual Basic and Pascal, the answer is
straightforward because the for statement can be used only to construct fixed-count
loops. In these languages, then, for statements are used to construct fixed-count
loops, and while statements are generally used only for variable-condition loops.

In C++, this easy distinction doesn’t hold because both statements can be used to
create both types of loops. The answer is more a matter of style. Because a for and
while loop are interchangeable in C++, either loop is appropriate. Some professional
programmers always use a for statement for pretest loops and almost never use a
while statement; others always use a while statement and rarely use a for
statement. Still a third group tends to retain the convention used in other languages—a
for loop is generally used to create fixed-count loops, and a while loop is used to
create variable-condition loops. In C++, it’s a matter of style, and you’ll encounter all
three styles in your programming career.

for
(expression)

{
 statement 1
 through
 statement n
}

enter the for
statement

expression’s value is non-zero
(true condition)

(false condition)

expression’s value
is zero exit the for

statement

Figure 5.8 A simplified for loop flowchart

263Chapter 5
for Loops

Program 5.11

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int MAXNUMS = 10;

int num;

cout << "NUMBER SQUARE CUBE\n"

<< "------ ------ ----\n";

for (num = 1; num <= MAXNUMS; num++)

cout << setw(3) << num << " "

<< setw(3) << num * num << " "

<< setw(4) << num * num * num << endl;

return 0;

}

When Program 5.11 runs, this is the display produced:

NUMBER SQUARE CUBE

------ ------ ----

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

10 100 1000

Simply changing the number 10 in the for statement of Program 5.11 to 1000 creates
a loop that’s executed 1000 times and produces a table of numbers from 1 to 1000. As with
the while statement, this small change produces an immense increase in the program’s
processing and output. Notice also that the expression num++ was used in the altering list in
place of the usual num = num + 1.

264 Repetition Statements

EXERCISES 5.4

1. (Practice) Write a for statement for each of the following cases:
a. Use a counter named i that has an initial value of 1, a final value of 20, and an incre-

ment of 1.

b. Use a counter named icount that has an initial value of 1, a final value of 20, and an
increment of 2.

c. Use a counter named j that has an initial value of 1, a final value of 100, and an
increment of 5.

d. Use a counter named icount that has an initial value of 20, a final value of 1, and an
increment of -1.

e. Use a counter named icount that has an initial value of 20, a final value of 1, and an
increment of -2.

f. Use a counter named count that has an initial value of 1.0, a final value of 16.2, and
an increment of 0.2.

g. Use a counter named xcnt that has an initial value of 20.0, a final value of 10.0, and
an increment of -0.5.

2. (Desk Checking) Determine the number of times each for loop is executed for the
for statements written for Exercise 1.

3. (Desk Checking) Determine the value in total after each of the following loops is
executed:
a. total = 0;

for (i = 1; i <= 10; i = i + 1)
total = total + 1;

b. total = 1;
for (count = 1; count <= 10; count = count + 1)

total = total * 2;

c. total = 0
for (i = 10; i <= 15; i = i + 1)

total = total + i;

d. total = 50
for (i = 1; i <=10; i = i + 1)

total = total – i;

e. total = 1
for (icnt = 1; icnt <= 8; ++icnt)

total = total * icnt;

f. total = 1.0
for (j = 1; j <= 5; ++j)

total = total / 2.0;

265Chapter 5
for Loops

4. (Desk Checking) Determine the output of the following program:

#include <iostream>
using namespace std;

int main()
{

int i;

for (i = 20; i >= 0; i = i – 4)
cout << i << " ";

return 0;
}

5. (Modify) Modify Program 5.11 to produce a table of the numbers 0 through 20 in incre-
ments of 2, with their squares and cubes.

6. (Modify) Modify Program 5.11 to produce a table of numbers from 10 to 1, instead of 1
to 10, as it currently does.

7. (Conversions) Write a C++ program to convert kilometers/hr to miles/hr. The program
should produce a table of 10 conversions, starting at 60 km/hr and incremented by 5 km/hr.
The display should have appropriate headings and list each km/hr and its equivalent miles/hr
value. Use the relationship that 1 kilometer = 0.6241 miles.

8. (Practice) Write sections of C++ code to do the following:
a. Display the multiples of 3 backward from 33 to 3, inclusive.

b. Display the uppercase letters of the alphabet backward from Z to A.

9. (Practice) Write, run, and test a C++ program to find the value of 2n by using a for
loop, where n is an integer value the user enters at the keyboard. (Hint: Initialize result
= 1. Accumulate result = 2 * result.)

10. (Fluid Dynamics) Write a C++ program that uses a fixed-count loop of four. For each
pass through the loop, enter a fluid’s viscosity and density from the following chart. Your
program should then determine the kinematic viscosity for each fluid, using the following
formula (see the Technical Note in Section 5.2 for a description of density and viscosity):

Kinematic viscosity = viscosity / density
Use the results output by your program to complete the last column in this chart:

Fluid Viscosity at 40°C =
77°F (kg/ms)

Density (kg/m3) Kinematic
Viscosity (m2/s)

Gasoline .4466 × 10-3 .7186 × 103

Medium fuel oil 2.9922 × 10-3 .8496 × 103

Medium
lubricating oil

87.0736 × 10-3 .8865 × 103

Water .8975 × 10-3 .9973 × 103

266 Repetition Statements

11. (Fluid Dynamics) Write a C++ program that calculates the Reynolds number for a pipe
having a diameter of 0.1 meters, in which fluid flows at an average rate of .09 m/s. Your
program should have a fixed-count loop of four and display both the calculated Reynolds
number and the type of fluid flow—laminar, in-transition, or turbulent—for each fluid
listed in the following chart, using the information provided after the chart. Use the
results your program outputs to fill in the last two columns of this chart:

Fluid Kinematic
Viscosity
(m2/s) at
40°C

Pipe
Diameter (m)

Avg.
Fluid
Speed
(m/s)

Reynolds
Number

Type of Flow

Gasoline 6.215 × 10-7 0.1 .09
Medium
fuel oil

3.523 × 10-6 0.1 .09

Medium
lubricating oil

9.822 × 10-5 0.1 .09

Water 8.999 × 10-5 0.1 .09

The Reynolds number can be calculated by using this formula:

Re = V d
v

Re is the Reynolds number.
V is the average speed of the fluid (ft/sec or m/s).
d is the pipe diameter (ft or m).
� is the kinematic viscosity (ft2/sec or m2/sec).

For the determination of flow type, use these facts:
Re < 2000: Fluid flow is smooth (laminar).
2000 � Re � 3000: Fluid flow is in transition.
Re > 3000: Fluid flow is turbulent.

12. (Structural Eng.) The expansion of a steel bridge as it’s heated to a final Celsius tem-
perature, TF, from an initial Celsius temperature, T0, can be approximated by using this
formula:
Increase in length = a × L × (TF - T0)

a is the coefficient of expansion (which for steel is 11.7 × 10-6).
L is the length of the bridge at temperature T0.

Using this formula, write a C++ program that displays a table of expansion lengths for a
steel bridge that’s 7365 meters long at 0 degrees Celsius, as the temperature increases to
40 degrees in 5-degree increments.

267Chapter 5
for Loops

5.5 A Closer Look: Loop Programming Techniques

This section discusses four common programming techniques associated with pretest (for and
while) loops. All these techniques are common knowledge to experienced programmers.

Technique 1: Interactive Input in a Loop
In Section 5.2, you saw the effect of including a cin statement in a while loop. Entering
data interactively in a loop is a general technique that’s equally applicable to for loops. For
example, in Program 5.12, a cin statement is used to allow a user to interactively input a set
of numbers. As each number is input, it’s added to a total. When the for loop is exited, the
average is calculated and displayed.

The for statement in Program 5.12 creates a loop that’s executed four times. The user
is prompted to enter a number each time through the loop. After each number is entered, it’s
added to the total immediately. Notice that total is initialized to 0 before the initializing
list of the for statement is executed. The loop in Program 5.12 is executed as long as the
value in count is less than 4 and is terminated when count becomes 4. (The increment to
4, in fact, is what causes the loop to end.) The output produced by Program 5.12 is essentially
the same as Program 5.7.

Program 5.12

#include <iostream>

using namespace std;

// This program calculates the average of MAXCOUNT user-entered numbers

int main()

{

const int MAXCOUNT = 4;

int count;

double num, total, average;

total = 0.0;

for (count = 0; count < MAXCOUNT; count++)

{

cout << "Enter a number: ";

cin >> num;

total = total + num;

}

average = total / MAXCOUNT;

cout << "The average of the data entered is "

<< average << endl;

return 0;

}

268 Repetition Statements

Technique 2: Selection in a Loop
Another common programming technique is to use a for or while loop to cycle through a set
of numbers and select numbers meeting one or more criteria. For example, assume you want to
find both the positive and negative sum of a set of numbers. The criterion is whether the number
is positive or negative, and the logic for implementing this program is given by this pseudocode:

While the loop condition is true
Enter a number
If the number is greater than zero

add the number to the positive sum
Else

add the number to the negative sum
Endif

Endwhile

Program 5.13 describes this algorithm in C++ for a fixed-count loop in which five
numbers are to be entered.

Program 5.13

#include <iostream>

using namespace std;

// This program computes the positive and negative sums of a set

// of MAXNUMS user-entered numbers

int main()

{

const int MAXNUMS = 5;

int i;

double usenum, positiveSum, negativeSum;

positiveSum = 0; // this initialization can be done in the declaration

negativeSum = 0; // this initialization can be done in the declaration

for (i = 1; i <= MAXNUMS; i++)

{

cout << "Enter a number (positive or negative) : ";

cin >> usenum;

if (usenum > 0)

positiveSum = positiveSum + usenum;

else

negativeSum = negativeSum + usenum;

}

�

269Chapter 5
A Closer Look: Loop Programming
Techniques

cout << "The positive total is " << positiveSum << endl;

cout << "The negative total is " << negativeSum << endl;

return 0;

}

The following is a sample run of Program 5.13:

Enter a number (positive or negative) : 10

Enter a number (positive or negative) : –10

Enter a number (positive or negative) : 5

Enter a number (positive or negative) : –7

Enter a number (positive or negative) : 11

The positive total is 26

The negative total is –17

Technique 3: Evaluating Functions of One Variable
Loops can be constructed to give you a way to determine and display the values of a single
variable mathematical function for a set of values over any specified interval. For example,
you want to know the values of the following function for x between 2 and 6:

y = 10x2 + 3x - 2

Assuming x has been declared as an integer variable, the following for loop can be used
to calculate the required values:

for (x = 2; x <= 6; x++)
{

y = 10 * pow(x,2.0) + 3 * x – 2;
cout << setw(4) << x

<< setw(11) << y << endl;
}

In this loop, the variable x is used as both the counter variable and the unknown
(independent variable) in the function. For each value of x from 2 to 6, a new value of y is
calculated and displayed. This for loop is used in Program 5.14, which also prints headings
for the displayed values.

270 Repetition Statements

Program 5.14

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int main()

{

int x, y;

cout << "x value y value\n"

<< "------- --------\n"

for (x = 2; x <= 6; x++)

{

y = 10 * pow(x,2.0) + 3 * x – 2;

cout << setw(4) << x

<< setw(11) << y << endl;

}

return 0;

}

The following is displayed when Program 5.14 is executed:

x value y value

------- --------

2 44

3 97

4 170

5 263

6 376

Two items are important here. First, any equation with one unknown can be evaluated
by using a single for or an equivalent while loop. This method requires substituting your
equation in the loop in place of the equation used in Program 5.14 and adjusting the counter
values to match the solution range you want.

Second, you’re not constrained to using integer values for the counter variable. For
example, by specifying a non-integer increment, solutions for fractional values can be
obtained. This technique is shown in Program 5.15, where the equation y = 10x2 + 3x - 2 is
evaluated in the range x = 2 to x = 6 in increments of 0.5.

271Chapter 5
A Closer Look: Loop Programming
Techniques

Program 5.15

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int main()

{

double x, y;

cout << "x value y value\n";

<< "------- ---------\n"

cout << setiosflags(ios::fixed)

<< setiosflags(ios::showpoint)

<< setprecision(5);

for (x = 2.0; x <= 6.0; x = x + 0.5)

{

y = 10.0 * pow(x,2.0) + 3.0 * x - 2.0;

cout << setw(7) << x

<< setw(14) << y << endl;

}

return 0;

}

Notice that x and y have been declared as floating-point variables in Program 5.15 to
allow these variables to take on fractional values. The following is the output this program
produces:

x value y value

------- ---------

2.00000 44.00000

2.50000 68.00000

3.00000 97.00000

3.50000 131.00000

4.00000 170.00000

4.50000 214.00000

5.00000 263.00000

5.50000 317.00000

6.00000 376.00000

272 Repetition Statements

Technique 4: Interactive Loop Control
Values used to control a loop can be set by using variables rather than constant values. For
example, these four statements

i = 5;
j = 10;
k = 1;
for (count = i; count <= j; count = count + k)

produce the same effect as this single statement:

for (count = 5; count <= 10; count++)

Similarly, these statements

i = 5;
j = 10;
k = 1;
count = i;
while (count <= j)

count = count + k;

produce the same effect as the following while loop:

count = 5;
while (count <= 10)

count++;

The advantage of using variables in the initialization, condition, and altering expressions
is that it allows you to assign values for these expressions outside the for or while
statement. This method is especially useful when a cin statement is used to set the actual
values. To make this technique a little more tangible, take a look at Program 5.16.

273Chapter 5
A Closer Look: Loop Programming
Techniques

Program 5.16

#include <iostream>

#include <iomanip>

using namespace std;

// this program displays a table of numbers with their squares and cubes,

// starting from the number 1. The final number in the table is

// input by the user.

int main()

{

int num, final;

cout << "Enter the final number for the table: ";

cin >> final;

cout << "NUMBER SQUARE CUBE\n";

cout << "------ ------ ----\n";

for (num = 1; num <= final; num++)

cout << setw(3) << num

<< setw(8) << num*num

<< setw(7) << num*num*num << endl;

return 0;

}

In Program 5.16, a variable is used in the for statement to control the condition (middle)
expression. A cin statement has been placed before the loop to allow the user to decide what
the final value should be. Notice that this arrangement permits the user to set the table’s
size at runtime, instead of having the programmer set the table size at compile time. This
arrangement also makes the program more general because it can be used to create a variety
of tables without the need for reprogramming and recompiling.

EXERCISES 5.5

1. (cin within a loop) Write and run a C++ program that accepts six Fahrenheit tempera-
tures, one at a time, and converts each value entered to its Celsius equivalent before the
next value is requested. Use a for loop in your program. The conversion required is
Celsius = (5.0/9.0) × (Fahrenheit - 32).

274 Repetition Statements

2. (cin within a loop) Write and run a C++ program that accepts 10 values of gallons, one
at a time, and converts each value entered to its liter equivalent before the next value is
requested. Use a for loop in your program. Use the fact that 1 gallon = 3.785 liters.

3. (Interactive Loop Control) Modify the program written for Exercise 2 to initially
request the number of data items to be entered and converted.

4. (Interactive Loop Control) Modify Program 5.13 so that the number of entries to be
input is specified by the user when the program is executed.

5. (Selection) Modify Program 5.13 so that it displays the average of the positive and nega-
tive numbers. (Hint: Be careful not to count the number 0 as a negative number.) Test
your program by entering the numbers 17, -10, 19, 0, and -4. The positive average your
program displays should be 18, and the negative average should be -7.

6. (Selection) a. Write a C++ program that selects and displays the maximum value of five
numbers to be entered when the program is executed. (Hint: Use a for loop with both a
cin and if statement inside the loop.)

b. Modify the program written for Exercise 6a so that it displays both the maximum
value and the position in the input set of numbers where the maximum occurs.

7. (Selection) Write a C++ program that selects and displays the first 20 integer numbers
that are evenly divisible by 3. (Hint: Use the modulus operator, %.)

8. (Selection) A child’s parents promised to give the child $10 on her 12th birthday and
double the gift on every subsequent birthday until the annual gift exceeded $1000. Write
a C++ program to determine how old the child will be when the last amount is given and
the total amount the child will have received.

9. (Mathematical Functions) Modify Program 5.15 to produce a table of y values for the
following:
a. y = 3x5 - 2x3 + x for x between 5 and 10 in increments of 0.2

b. y x
x x x= + + + +1
2 3 24

2 3 4

for x between 1 and 3 in increments of 0.1

c. y = 2e0.8t for t between 4 and 10 in increments of 0.2

10. (Mathematical Functions) A model of worldwide population, in billions of people, is
given by this formula
Population = 6.0e0.02t

where t is the time in years (t = 0 represents January 2000 and t = 1 represents January
2001). Using this formula, write a C++ program that displays a yearly population table for
the years January 2005 though January 2010.

11. (Mathematical Functions) The x and y coordinates, as a function of time, t, of a projec-
tile fired with an initial velocity, v, at an angle of θ with respect to the ground, are given
by these formulas:
x = v t cos(θ)
y = v t sin(θ)

275Chapter 5
A Closer Look: Loop Programming
Techniques

Using these formulas, write a C++ program that displays a table of x and y values for a
projectile fired with an initial velocity of 500 ft/sec at an angle of 22.8 degrees. (Hint:
Remember to convert to radian measure.) The table should contain values corresponding
to the time interval 0 to 10 seconds in increments of ½ seconds.

5.6 Nested Loops

In many situations, using a loop within another loop, called a nested loop, is convenient.
Here’s a simple example of a nested loop:

for(i = 1; i <= 5; i++) // start of outer loop
{

cout << "\ni is now " << i << endl;

for(j = 1; j <= 4; j++) // start of inner loop
cout << " j = " << j; // end of inner loop

} // end of outer loop

The first loop, controlled by the value of i, is called the outer loop. The second loop,
controlled by the value of j, is called the inner loop. Notice that all statements in the inner loop
are contained in the boundaries of the outer loop, and a different variable is used to control each
loop. For each trip through the outer loop, the inner loop runs through its entire sequence.
Therefore, each time the i counter increases by one, the inner for loop executes completely,
and goes through four values (j takes on the values 1 to 4), as shown in Figure 5.9. Program 5.17
includes this type of loop in a working program.

276 Repetition Statements

This is the output of a sample run of Program 5.17:

i is now 1

j = 1 j = 2 j = 3 j = 4

i is now 2

j = 1 j = 2 j = 3 j = 4

i is now 3

j = 1 j = 2 j = 3 j = 4

i is now 4

j = 1 j = 2 j = 3 j = 4

i is now 5

j = 1 j = 2 j = 3 j = 4

inner
loop

inner
loop

inner
loop

i=3

i=2

i=1

j=1j=2

j=3

j=4

j=4

j=3

j=2 j=1
j=4

j=3

j=2

j=1

Figure 5.9 For each i, j loops

277Chapter 5
Nested Loops

Program 5.17

#include <iostream>

using namespace std;

int main()

{

const int MAXI = 5;

const int MAXJ = 4;

int i, j;

for(i = 1; i <= MAXI; i++) // start of outer loop <----+

{ // |

cout << "\ni is now " << i << endl; // |

// |

for(j = 1; j <= MAXJ; j++) // start of inner loop |

cout << " j = " << j; // end of inner loop |

} // end of outer loop <-----+

cout << endl;

return 0;

}

To understand the usefulness of a nested loop, take a look at using one to compute the
average grade for each student in a class of 20 students. Each student has taken four exams
during the semester. The final grade is calculated as the average of these exam grades. The
pseudocode describing how to compute this average is as follows:

for 20 times
set the student grade total to zero
for 4 times

input a grade
add the grade to the total

endfor // end of inner for loop
calculate student’s average grade
print the student’s average grade

endfor // end of outer for loop

As described by the pseudocode, an outer loop consisting of 20 passes is used to compute
the average grade for each student. The inner loop consists of four passes, and one
examination grade is entered in each inner loop pass. As each grade is entered, it’s added to
the total for the student, and at the end of the loop, the average is calculated and displayed.
Because both the outer and inner loops are fixed-count loops of 20 and 4, respectively, for
statements are used to create these loops. Program 5.18 shows the C++ code corresponding
to the pseudocode.

278 Repetition Statements

Program 5.18

#include <iostream>

using namespace std;

int main()

{

const int NUMGRADES = 4;

const int NUMSTUDENTS = 20;

int i, j;

double grade, total, average;

for (i = 1; i <= NUMSTUDENTS; i++) // start of outer loop

{

total = 0; // clear the total for this student

for (j = 1; j <= NUMGRADES; j++) // start of inner loop

{

cout << "Enter an examination grade for this student: ";

cin >> grade;

total = total + grade; // add the grade to the total

} // end of the inner for loop

average = total / NUMGRADES; // calculate the average

cout << "\nThe average for student " << i

<< " is " << average << "\n\n";

} // end of the outer for loop

return 0;

}

In reviewing Program 5.18, pay particular attention to the initialization of total in the
outer loop, before the inner loop is entered: total is initialized 20 times, once for each
student. Also, notice that the average is calculated and displayed immediately after the inner
loop is finished. Because the statements that compute and display the average are also in the
outer loop, 20 averages are calculated and displayed. The entry and addition of each grade
in the inner loop uses techniques you have seen before and should be familiar with now.

EXERCISES 5.6

1. (Misc. Application) Four experiments are performed, and each experiment has six test
results. The results for each experiment are given in the following list. Write a program
using a nested loop to compute and display the average of the test results for each
experiment.

279Chapter 5
Nested Loops

1st experiment results: 23.2 31 16.9 27 25.4 28.6
2nd experiment results: 34.8 45.2 27.9 36.8 33.4 39.4
3rd experiment results: 19.4 16.8 10.2 20.8 18.9 13.4
4th experiment results: 36.9 39 49.2 45.1 42.7 50.6

2. (Modify) a. Modify the program written for Exercise 1 so that the number of test results
for each experiment is entered by the user. Write your program so that a different num-
ber of test results can be entered for each experiment.

b. Rewrite the program written for Exercise 2a to eliminate the inner loop.

3. (Electrical Eng.) a. An electrical manufacturer tests five generators by measuring their
output voltages at three different times. Write a C++ program that uses a nested loop to
enter each generator’s test results, and then computes and displays the average voltage for
each generator. Assume the following generator test results:

1st generator: 122.5 122.7 123.0
2nd generator: 120.2 127.0 125.1
3rd generator: 121.7 124.9 126.0
4th generator: 122.9 123.8 126.7
5th generator: 121.5 124.7 122.6

b. Modify the program written for Exercise 3a to calculate and display the average volt-
age for all the generators. (Hint: Use a second variable to store the total of all the gen-
erator’s voltages.)

4. (Modify) Rewrite the program written for Exercise 3a to eliminate the inner loop. To do
this, you have to input three voltages for each generator instead of entering one at a time.
Each voltage must be stored in its own variable before the average is calculated.

5. (Mathematical Functions) Write a program that calculates and displays values for
y when
y = xz / (x - z)
Your program should calculate y for values of x ranging between 1 and 5 and values of z
ranging between 2 and 6. The x variable should control the outer loop and be incre-
mented in steps of 1, and z should be incremented in steps of 1. Your program should
also display the message Function Undefined when the x and z values are equal.

6. (Numerical Analysis) Assembly languages for some microprocessors don’t have a multi-
ply operation. Although there are sophisticated algorithms for performing multiplication in
these languages, a simple method multiplies by repeated addition. In this case, the algo-
rithm’s efficiency can be increased by using nested loops. For example, to multiply a
number by 12, first add the number three times, and then add the result four times. This
calculation requires only 7 additions as opposed to 12. Using this information, write a C++
program that multiplies 33, 47, and 83 by 1001, using three loops, and then displays the
result. (Hint: 1001 = 7 × 11 × 13.)

280 Repetition Statements

5.7 do while Loops

Both while and for statements evaluate an expression at the start of the repetition loop, so
they are always used to create pretest loops. Posttest loops, also referred to as exit-controlled
loops, can also be constructed in C++. Figure 5.10 shows the basic structure of a posttest loop,
which is referred to as a do while loop. Notice that a do while loop continues iterations
through the loop while the condition is true and exits the loop when the condition is false.

In C++, a posttest do while loop is created by using a do statement. As its name
implies, this statement allows you to perform some statements before an expression is
evaluated at the end of the loop. It has this general form in C++:

do
statement;

while (expression); don’t forget the final semicolon, which is required here

As with all C++ programs, the single statement in the do can be replaced with a
compound statement. Figure 5.11 shows a flow-control diagram illustrating the operation of
the do statement.

As shown, all statements within the do statement are executed at least once before the
expression is evaluated. Then, if the expression has a non-zero value, the statements are

previous
statement

is the
condition

true?

loop
statements

no

yes

next
statement

Figure 5.10 The do while loop structure

281Chapter 5
do while Loops

executed again. This process continues until the expression evaluates to zero (becomes false).
For example, take a look at the following do statement:

do
{

cout << "\nEnter a price: ";
cin >> price;
if (abs(price – SENTINEL) < 0.0001)

break;
salestax = RATE * price;
cout << setiosflags(ios::showpoint)

<< setprecision(2)
<< "The sales tax is $ " << salestax;

}
while (price != SENTINEL);

Observe that the prompt and cin statement are included in the loop because the tested
expression is evaluated at the end of the loop.

evaluate
the

expression

loop

(false condition)

expression’s value
is non-zero
(true condition)

execute the
statement
after the
word do

enter the
do statement

expression’s value
is zero

exit the
do statement

go back and
execute the statement

Figure 5.11 The do statement’s flow of control

282 Repetition Statements

As with all repetition statements, the do statement can always replace or be replaced by
an equivalent while or for statement. The choice of which statement to use depends on
the application and the programmer’s preferred style. In general, while and for statements
are preferred because anyone reading the program can clearly see what’s being tested up
front, at the top of the program loop.

Validity Checks
The do statement is particularly useful in filtering user-entered input and providing data
validation checks. For example, an operator is required to enter a valid customer identifica-
tion number between 1000 and 1999. A number outside this range is to be rejected, and a
new request for a valid number is made. The following section of code provides the necessary
data filter to verify the entry of a valid identification number:

do
{

cout << "\nEnter an identification number: ";
cin >> id_num;

}
while (id_num < 1000 || id_num > 1999);

In this code, a request for an identification number is repeated until a valid number is
entered. This section of code is “bare bones,” in that it doesn’t alert the operator to the cause
of the new request for data or allow premature exit from the loop if a valid identification
number can’t be found. The following code is an alternative for removing the first drawback:

do
{

cout << "\nEnter an identification number: ";
cin >> id_num;
if (id_num < 1000 || id_num > 1999)
{

cout << "An invalid number was just entered\n";
cout << "Please check the ID number and reenter\n";

}
else

break; // break if a valid id_num was entered
} while(1); // this expression is always true

A break statement is used to exit from the loop. Because the expression the do
statement is evaluating is always 1 (true), an infinite loop has been created that’s exited only
when the break statement is encountered.

EXERCISES 5.7

1. (Practice) a. Using a do statement, write a program to accept a grade. The program
should request a grade continuously as long as an invalid grade is entered. An invalid

283Chapter 5
do while Loops

grade is any grade less than 0 or greater than 100. After a valid grade has been entered,
your program should display the value of the grade entered.

b. Modify the program written for Exercise 1a so that the user is alerted when an invalid
grade has been entered.

c. Modify the program written for Exercise 1b so that it allows the user to exit the pro-
gram by entering the number 999.

d. Modify the program written for Exercise 1b so that it automatically terminates after
five invalid grades are entered.

2. (Misc. Application) a. Write a program that continuously requests a grade to be entered.
If the grade is less than 0 or greater than 100, your program should print an appropriate
message informing the user that an invalid grade has been entered; else, the grade should
be added to a total. When a grade of 999 is entered, the program should exit the repeti-
tion loop and compute and display the average of the valid grades entered.

b. Run the program written in Exercise 2a on a computer and verify the program by
using appropriate test data.

3. (Misc. Application) a. Write a program to reverse the digits of a positive integer
number. For example, if the number 8735 is entered, the number displayed should be
5378. (Hint: Use a do statement and continuously strip off and display the number’s units
digit. If the variable num initially contains the number entered, the units digit is obtained
as (num % 10). After a units digit is displayed, dividing the number by 10 sets up the
number for the next iteration. Therefore, (8735 % 10) is 5 and (8735 / 10) is 873.
The do statement should continue as long as the remaining number is not zero.

b. Run the program written in Exercise 3a on a computer and verify the program by
using appropriate test data.

4. (Practice) Repeat any of the exercises in Section 5.3, using a do statement rather than a
for statement.

5. (Numerical Analysis) Given a number, n, and an approximation for its square root, a
closer approximation of the actual square root can be obtained by using this formula:

new approximation
n previous approximation= +(/) pprevious approximation

2

Using this information, write a C++ program that prompts the user for a number and an
initial guess at its square root. Using this input data, your program should calculate an
approximation of the square root that’s accurate to 0.00001. (Hint: Stop the loop when the
difference between the two approximations is less than 0.00001.)

6. (Numerical Analysis) Here’s a challenging problem for those who know a little calculus.
The Newton-Raphson method can be used to find the roots of any equation y(x) = 0. In
this method, the (i + 1)st approximation, xi+1, to a root of y(x) = 0 is given in terms of the
ith approximation, xi, by the following formula, where y' denotes the derivative of y(x)
with respect to x:
xi+1 = xi - y(xi) / y'(xi)

284 Repetition Statements

For example, if y(x) = 3x2 + 2x - 2, then y'(x) = 6x + 2, and the roots are found by making
a reasonable guess for a first approximation x1 and iterating by using this equation:
xi+1 = xi - (3xi

2 + 2xi - 2) / (6xi + 2)
a. Using the Newton-Raphson method, find the two roots of the equation 3x2 + 2x - 2 = 0.

(Hint: There’s one positive root and one negative root.)

b. Extend the program written for Exercise 6a so that it finds the roots of any function
y(x) = 0, when the function for y(x) and the derivative of y(x) are placed in the code.

5.8 Common Programming Errors

When using repetition statements, beginning C++ programmers are prone to making the
following seven errors:

1. The most troublesome error for new programmers is the “off by one” error, in which
the loop executes one too many or one too few times than was intended. For
example, the loop created by the statement for(i = 1; i < 11; i++) executes
10 times, not 11, even though the number 11 is used in the statement. An equivalent
loop can be constructed by using the statement for(i = 1; i <= 10; i ++).
However, if the loop is started with an initial value of i = 0, using the statement
for(i = 0; i < 11; i++), the loop is traversed 11 times, as is a loop con-
structed with the statement for(i = 0; i <= 10; i++). In constructing loops,
you must pay particular attention to both the initial and final conditions used to
control the loop to make sure the number of loop traversals isn’t off by one too
many or one too few executions.

The next two errors pertain to the tested expression, and you have already encountered
them with the if and switch statements:

2. Inadvertently using the assignment operator, =, in place of the equality operator, ==,
in the tested expression—for example, typing the assignment expression a = 5
instead of the correct relational expression a==5. Because the tested expression can
be any valid C++ expression, including arithmetic and assignment expressions, the
compiler doesn’t detect this error.

3. Using the equality operator, ==, when testing floating-point or double-precision
operands. For example, the expression fnum == 0.01 should be replaced by a test
requiring that the absolute value of fnum – 0.01 be less than an acceptable
amount. The reason is that all numbers are stored in binary form. Using a finite
number of bits, decimal numbers such as 0.01 have no exact binary equivalent, so
tests requiring equality with these numbers can fail. (See Section 4.1 for a more
complete description of this numerical accuracy problem.)

The next three errors are particular to the for statement:

4. Placing a semicolon at the end of for’s parentheses, which frequently produces a
do-nothing loop. For example, take a look at these statements:
for(count = 0; count < 10; count++);

total = total + num;

285Chapter 5
Common Programming Errors

The semicolon at the end of the first line of code is a null statement. It has the
effect of creating a loop that’s executed 10 times with nothing done except incre-
menting and testing count. This error tends to occur because C++ programmers
are used to ending most lines with a semicolon.

5. Using commas are used to separate items in a for statement instead of the required
semicolons, as in this example:
for (count = 1, count < 10, count++)

Commas must be used to separate items in the initializing and altering lists, but
semicolons must be used to separate these lists from the tested expression.

6. Changing the value of the control variable used in the tested condition both inside the
body of a for loop and in its altering list. For example, take a look at this for loop:
for(int i=0; i<10; i++)

cout << i++;

In this code, the value of the variable being tested (in this case, i) is changed in
two places, which is a serious logic error.

7. The final common programming error is omitting the final semicolon from the do
statement. This error is usually made by programmers who have learned to omit the
semicolon after the parentheses of a while statement and carry over this habit when
encountering the reserved word while at the end of a do statement.

5.9 Chapter Summary
1. A section of repeating code is referred to as a loop. A loop is controlled by a repetition

statement that tests a condition to determine whether the code will be executed. Each
pass through the loop is referred to as a repetition or an iteration. The tested condition
must always be set explicitly before its first evaluation by the repetition statement.
Within the loop, there must always be a statement that permits altering the condition so
that the loop, after it’s entered, can be exited.

2. There are three basic type of loops: while, for, and do while. The while and for
loops are pretest or entrance-controlled loops. In this type of loop, the tested condition
is evaluated at the beginning of the loop, which requires setting the tested condition
explicitly before loop entry. If the condition is true, loop repetitions begin; otherwise, the
loop is not entered. Iterations continue as long as the condition remains true. In C++,
while and for loops are constructed by using while and for statements.

The do while loop is a posttest or exit-controlled loop, in which the tested condition
is evaluated at the end of the loop. This type of loop is always executed at least once.
As long as the tested condition remains true, do while loops continue to execute.

3. Loops are also classified according to the type of tested condition. In a fixed-count loop,
the condition is used to keep track of how many repetitions have occurred. In a
variable-condition loop, the tested condition is based on a variable that can change
interactively with each pass through the loop.

286 Repetition Statements

4. In C++, a while loop is constructed by using a while statement. This is the most
commonly used form of this statement:

while (expression)
{

statements;
}

The expression in parentheses is the condition that’s tested to determine whether the
statement following the parentheses, which is generally a compound statement, is
executed. The expression is evaluated in exactly the same manner as one in an if-else
statement; the difference is how the expression is used. In a while statement, the
statement following the expression is executed repeatedly as long as the expression
retains a non-zero value, instead of just once, as in an if-else statement. An example
of a while loop follows:
count = 1; // initialize count
while (count <= 10)
{

cout << count << " ";
count++; // increment count

}

The first assignment statement sets count equal to 1. The while statement is then
entered, and the expression is evaluated for the first time. Because the value of count
is less than or equal to 10, the expression is true, and the compound statement is
executed. The first statement in the compound statement uses the cout statement to
display the value of count.

The next statement adds 1 to the value currently stored in count, making this value
equal to 2. The while statement then loops back to retest the expression. Because
count is still less than or equal to 10, the compound statement is executed again. This
process continues until the value of count reaches 11.

Because the while statement always checks its expression at the top of the loop, any
variables in the tested expression must have values assigned before the while is
encountered. In addition, the while loop must contain a statement that alters the tested
expression’s value.

5. In C++, a for loop is constructed by using a for statement. This statement performs
the same functions as the while statement but uses a different form. In many situations,
especially those using a fixed-count condition, the for statement format is easier to use
than its while statement equivalent. This is the most commonly used form of the for
statement:

for (initializing list; expression; altering list)
{

statements;
}

287Chapter 5
Chapter Summary

Inside the parentheses of the for statement are three items, separated by semicolons.
Each of these items is optional, but the semicolons must be present.

The initializing list is used to set any initial values before the loop is entered;
generally, it’s used to initialize a counter. Statements in the initializing list are executed
only once. The expression in the for statement is the condition being tested: It’s
tested at the start of the loop and before each iteration. The altering list contains
loop statements that aren’t within the compound statement; generally, it’s used to
increment or decrement a counter each time the loop is executed. Multiple statements
in both an initializing and altering list are separated by commas. Here’s an example of a
for loop:
for (total = 0, count = 1; count < 10; count++)
{

cout << "Enter a grade: ";
total = total + grade;

}

In this for statement, the initializing list is used to initialize both total and count.
The expression determines that the loop executes as long as the value in count is less
than 10, and the altering list specifies that the value of count is incremented by one
each time through the loop.

6. The for statement is extremely useful in creating fixed-count loops because you can
include initializing statements, the tested expression, and statements affecting the tested
expression in parentheses at the top of a for loop for easy inspection and modification.

7. The do statement is used to create posttest loops because it checks its expression at the
end of the loop. Checking at the end of the loop ensures that the body of a do loop is
executed at least once. A do loop must contain at least one statement that alters the
tested expression’s value.

Programming Projects for Chapter 5

1. (Probability) The probability that a telephone call will last less than t minutes can be
approximated by the exponential probability function:

Probability that a call lasts less than t minutes = 1 - e-t/a

a is the average call length.
e is Euler’s number (2.71828).

For example, assuming the average call length is 2 minutes, the probability that a call will
last less than 1 minute is calculated as 1 - e-1/2 = 0.3297. Using this probability equation,
write a C++ program that calculates and displays a list of probabilities of a call lasting less
than 1 minute to less than 10 minutes, in 1-minute increments.

2. (Probability) a. The arrival rate of customers in a busy New York bank can be
estimated by using the Poisson probability function:

P x
e
x

x

()
!

= λ λ-

288 Repetition Statements

x is the number of customer arrivals per minute.
l is the average number of arrivals per minute.
e is Euler’s number (2.71828).

For example, if the average number of customers entering the bank is three customers
per minute, then l is equal to three. Therefore, the probability of one customer arriving
in any one minute is

P x
e

()
!

.= = =1
3

1
0 149561

1 3-

and the probability of two customers arriving in any one minute is the following:

P x
e

()
!

.= = =2
3

2
0 224454

2 3-

Using the Poisson probability function, write a C++ program that calculates and displays
the probability of 1 to 10 customer arrivals in any one minute when the average arrival
rate is 3 customers per minute.

b. The formula given in Exercise 2a is also applicable for estimating the arrival rate of
planes at a busy airport. (In this situation, an arriving “customer” is an incoming
plane.) Using this same formula, modify the program written in Exercise 2a to accept
the average arrival rate as an input data item. Then run the modified program to
determine the probability of 0 to 10 planes attempting to land at an airport in any
one-minute period during peak arrival times. Assume that the average arrival rate for
peak arrival times is two planes per minute.

3. (Physics) A golf ball is dropped from an airplane. The distance, d, the ball falls in t seconds
is given by the formula d = ½ gt2, where g is the acceleration caused by gravity and is equal
to 32 ft/sec2. Using this information, write and run a C++ program that displays the distance
fallen in each one-second interval for 10 seconds and the total distance the golf ball falls at
the end of each interval. The output should complete the following chart:

Time (sec) Distance in the Current Time
Interval (ft)

Total Distance (ft)

0 0.0
1 16.0
. . .
10

4. (Physics) Assume the airplane in Exercise 3 is flying at a height of 50,000 feet. Modify the
program written for Exercise 3 to determine how long it will take the ball to reach the
ground. To increase the accuracy of your result without an undue number of calculations,
decrease the time interval from 1 second to 0.1 second as the ball nears the ground.

5. (Numerical Analysis) The Fibonacci sequence is 0, 1, 1, 2, 3, 5, 8, 13, . . . ; the first two
terms are 0 and 1, and each term thereafter is the sum of the two preceding terms—that is,
Fib[n] = Fib[n - 1] + Fib[n - 2]. Using this information, write a C++ program that calculates
the nth number in a Fibonacci sequence, where the user enters n into the program
interactively. For example, if n = 6, the program should display the value 5.

289Chapter 5
Programming Projects

6. (Numerical Analysis) Develop, test, and execute a C++ program that uses a while
loop to determine the smallest integer power of 3 that exceeds 30,000. That is, find the
smallest value of n so that 3n > 30,000. (Hint: Initialize PowerOfThree = 1, and then
accumulate the expression PowerOfThree = 3 * PowerOfThree.)

7. (Numerical Analysis) A prime integer number is one that has exactly two different
divisors, namely 1 and the number itself. Write, run, and test a C++ program that finds
and prints all the prime numbers less than 100. (Hint: 1 is a prime number. For each
number from 2 to 100, find Remainder = Number % n, where n ranges from 2 to
sqrt(number). If n is greater than sqrt(number), the number is not equally
divisible by n. Why? If any Remainder equals 0, the number is not a prime number.)

8. (Numerical Analysis) The quotient in long division is the number of times the divisor
can be subtracted from the dividend. The remainder is what’s left over after the last
subtraction. Write a C++ program that performs division by using this method.

9. (Conversion) Print the decimal, octal, and hexadecimal values of all characters between
the start and stop characters entered by a user. For example, if the user enters an 'a'
and a 'z', the program should print all the characters between a and z and their
respective values. Make sure the second character the user enters occurs later in the
alphabet than the first character. If it doesn’t, write a loop that asks the user repeatedly
for a valid second character.

10. (Misc. Application) a. An old Arabian legend has it that a fabulously wealthy but
unthinking king agreed to give a beggar one cent and double the amount for 64 days. Using
this information, write, run, and test a C++ program that displays how much the king must
pay the beggar on each day. The output of your program should appear as follows:

Day Amount Owed
--- -----------
1 0.01
2 0.02
3 0.04
. .
. .
. .
64 .

b. Modify the program you wrote for Exercise 10a to determine on which day the king
will have paid the beggar a total of one million dollars.

11. (Misc. Application) According to legend, the island of Manhattan was purchased from
the native Indian population in 1626 for $24. Assuming this money was invested in a
Dutch bank paying 5% simple interest per year, construct a table showing how much
money the native population would have at the end of each 50-year period, starting in
1626 and ending 400 years later.

290 Repetition Statements

Engineering and Scientific Disciplines

Industrial Engineering
Each of the traditional engineering disciplines (civil, mechanical, electrical, chemical, and
metallurgical/mining) relies on a particular area of natural science for its foundation. Indus-
trial engineering, however, incorporates knowledge of the social sciences into designing
improvements in human-machine systems. Industrial engineers are responsible for design-
ing, installing, and evaluating machines and systems and for monitoring their interface with
people to improve overall productivity. This job can also involve understanding human
behavioral characteristics and their effects on the design of machines or the workplace.
Industrial engineers draw heavily on knowledge in economics, business management, and
finance as well as in the natural sciences. The areas of specialization for industrial engineers
can be divided into four categories:

� Operations research: This area involves applying analytical techniques and math-
ematical models to phenomena such as inventory control, simulation, decision
theory, and queuing theory to optimize the total systems necessary for the
production of goods.

� Management or administrative engineering: The increasingly complex interplay of
management and production skills in modern industrial operations has resulted in a
need for technically trained managers. These managers evaluate and plan corporate
ventures and interact with labor, engineering departments, and subcontractors. A
management engineer can also participate in a company’s financial operations,
drawing on knowledge in economics, business management, and law.

� Manufacturing and production engineering: Before a product is produced, the
complete manufacturing process must be designed and set up to optimize the
economics involved and the product’s final quality. This task requires a broad
knowledge of process design, plant layouts, tool design, robotics, and human-
machine interactions.

� Information systems: This area involves using computers to gather and analyze data
for decision making and planning and to improve human-machine interaction.

The following list includes the most common responsibilities of industrial engineers
who responded to a recent survey by the American Institute of Industrial Engineers:

Facilities planning and design Cost control
Methods engineering Inventory control
Work systems design Energy conservation
Production engineering Computerized process control
Management information and Product packaging, handling, and testing

control systems Tool and equipment selection
Organization analysis and design Production control
Work measurement Product improvement study
Wage administration Preventive maintenance
Quality control Safety programs
Project management Training programs

291Chapter 5
Programming Projects

This page intentionally left blank

Chapter 6
Modularity Using
Functions

6.1 Function and Parameter
Declarations

6.2 Returning a Single Value

6.3 Returning Multiple Values

6.4 A Case Study: Rectangular to
Polar Coordinate Conversion

6.5 Variable Scope

6.6 Variable Storage Categories

6.7 Common Programming Errors

6.8 Chapter Summary

Professional programs are designed, coded, and tested much like hardware: as a set of modules
integrated to perform a completed whole. A good analogy is an automobile; one major module is the
engine, another is the transmission, a third the braking system, a fourth the body, and so on. All these
modules are linked together and placed under the driver’s control, which can be compared to a
supervisor or main program module. The whole now operates as a complete unit, able to do useful
work, such as driving to the store. During the assembly process, each module is constructed, tested, and
found to be free of defects (bugs) before it’s installed in the final product.

Now think of what you might do if you wanted to improve your car’s performance. You might alter
the existing engine or remove it and replace it with a new engine, or you might replace the transmission.
You can make each modification separately as your time and budget allow. The majority of the other
modules can stay the same, but the car operates differently after your changes are made.

In this analogy, each major car component can be compared to a function. For example, the driver
calls on the engine when the gas pedal is pressed. The engine accepts inputs of fuel, air, and electricity
to turn the driver’s request into a useful product—power—and then sends this output to the
transmission for further processing. The transmission receives the engine’s output and converts it to a
form the drive axle can use.

The engine, transmission, and other modules “know” only the universe bounded by their inputs and
outputs. The driver doesn’t need to know the internal operation of the modules being controlled. All
that’s required is understanding what each unit does and how to use it. The driver simply “calls” on
a module, such as the brakes, when that module’s output is required. Communication between modules
is restricted to passing inputs to each module as it’s called on to perform its task, and each module
operates in a fairly independent manner. Programmers use this same modular approach to create and
maintain reliable C++ programs by using functions.

As you have seen, each C++ program must contain a main() function. In addition to this
required function, C++ programs can also contain any number of other functions. In this chapter, you
learn how to write these functions, pass data to them, process the passed data, and return a result.

6.1 Function and Parameter Declarations

In creating C++ functions, you must be concerned with the function itself and how it
interacts with other functions, such as main(). Interaction with a function includes passing
data to a function correctly when it’s called and returning values from a function when it
ceases operation. This section describes the first part of the interface, passing data to a
function and having the function receive, store, and process the transmitted data correctly.

As you have already seen with mathematical functions, a function is called, or used, by giving
the function’s name and passing any data to it, as arguments, in the parentheses following the
function name (see Figure 6.1). The called function must be able to accept the data passed to
it by the function doing the calling. Only after the called function receives the data successfully
can the data be manipulated to produce a useful result.

To clarify the process of sending and receiving data, take a look at Program 6.1, which
calls a function named findMax(). The program, as shown, is not yet complete. After the
function findMax() is written and included in Program 6.1, the completed program,
consisting of the functions main() and findMax(), can be compiled and executed.

function-name (data passed to function);

This identifies the
called function

This passes data
to the function

Figure 6.1 Calling and passing data to a function

294 Modularity Using Functions

Program 6.1

#include <iostream>

using namespace std;

void findMax(int, int); // the function declaration (prototype)

int main()

{

int firstnum, secnum;

cout << "\nEnter a number: ";

cin >> firstnum;

cout << "Great! Please enter a second number: ";

cin >> secnum;

findMax(firstnum, secnum); // the function is called here

return 0;

}

First, examine the declaration and calling of the findMax() function from main().
You then see how to write findMax() to accept data passed to it and determine the largest
or maximum value of the two passed values.

The function findMax() is referred to as the called function because it’s called or
summoned into action by its reference in main(). The function that does the calling, in this
case main(), is referred to as the calling function. The terms “called” and “calling” come
from standard telephone usage, in which one party calls the other. The person initiating the
call is referred to as the calling party, and the person receiving the call is referred to as the
called party. The same terms describe function calls. The called function, in this case
findMax(), is declared as a function that expects to receive two integer numbers and to
return no value (a void) to main(). This declaration is formally referred to as a function
prototype. The function is then called by the last statement in the program.

Function Prototypes
Before a function can be called, it must be declared to the function that will do the calling.
The declaration statement for a function is referred to as a function prototype. The function
prototype tells the calling function the type of value that will be formally returned, if any, and
the data type and order of the values the calling function should transmit to the called
function. For example, the function prototype previously used in Program 6.1

void findMax(int, int);

295Chapter 6
Function and Parameter Declarations

declares that the function findMax() expects two integer values to be sent to it and that
this function formally returns no value (void).

Function prototypes can be placed with the variable declaration statements of the calling
function, above the calling function name (as in Program 6.1), or in a separate header file
specified with an #include preprocessor statement. The function prototype for findMax()
could have been placed before or after the statement #include <iostream>, before
main(), or within main(). (The reasons for the choice of placement are explained in
Section 6.3.) The general form of function prototype statements is as follows:

returnDataType functionName(list of argument data types);

The DataType refers to the type of value the function returns. Here are some examples of
function prototypes:

int fmax(int, int);
double swap(int, char, char, double);
void display(double, double);

The function prototype for fmax() declares that this function expects to receive two
integer arguments and returns an integer value. The function prototype for swap() declares
that this function requires four arguments—consisting of an integer, two characters, and a
double-precision argument, in that order—and returns a double-precision number. Finally,
the function prototype for display() declares that this function requires two double-
precision arguments and doesn’t return any value. This function might be used to display the
results of a computation without returning any value to the called function.

The use of function prototypes permits the compiler to error-check data types. If the
function prototype doesn’t agree with data types defined when the function is written, a compiler
warning occurs. The prototype also serves another task: It ensures that all arguments passed to
the function are converted to the declared data type when the function is called.

Calling a Function
Calling a function is rather easy. The only requirements are using the name of the function and
enclosing any data passed to the function in the parentheses following the function name, using
the same order and type declared in the function prototype. The items enclosed in parentheses
are called arguments of the called function (see Figure 6.2).

If a variable is one of the arguments in a function call, the called function receives a copy
of the value stored in the variable. For example, the statement findMax(firstnum,
secnum); calls the findMax() function and causes the values stored in the variables
firstnum and secnum to be passed to findMax(). The variable names in parentheses are
arguments that provide values to the called function. After values are passed, control is
transferred to the called function.

findMax (firstnum, secnum);

This identifies
the findMax()

function

This causes two
values to be passed

to findMax()

Figure 6.2 Calling and passing two values to findMax()

296 Modularity Using Functions

As illustrated in Figure 6.3, the findMax() function does not receive the variables
named firstnum and secnum and has no knowledge of these variable names.1 The
function simply receives the values in these variables and must then determine where to
store these values before it does anything else. Although this procedure for passing data to
a function might seem surprising, it’s actually a safety procedure for ensuring that a called
function doesn’t inadvertently change data stored in a variable. The function gets a copy of
the data to use. It can change its copy and, of course, change any variables declared within
it. However, unless specific steps to do so are taken, a function isn’t allowed to change the
contents of variables declared in other functions.

Next, you begin writing the findMax() function to process the values passed to it.

Defining a Function
A function is defined when it’s written. Each function is defined once (that is, written once) in
a program and can then be used by any other function in the program that declares it suitably.

Like the main() function, every C++ function consists of two parts, a function header
and a function body, as illustrated in Figure 6.4. The function header’s purpose is to identify
the data type of the value the function returns, provide the function with a name, and specify
the number, order, and type of arguments the function expects. The function body’s purpose
is to operate on the passed data and return, at most, one value directly back to the calling
function. (In Section 6.3, you see how a function can be made to return multiple values
indirectly.)

1In Section 6.3, you see how C++ also permits direct access to the calling function’s variables with reference variables.

findMax (firstnum, secnum);

G
et

 th
e

va
lu

e

stored in secnum

a value

G
et

 th
e

va
lu

e

stored in firstnum

a value

Send the
value to

findMax()

Send the
value to

findMax()

the variable
secnum

the variable
firstnum

Figure 6.3 The findMax() function receives actual values

297Chapter 6
Function and Parameter Declarations

The function header is always the first line of a function and contains the function’s
returned value type, its name, and the names and data types of its parameters. Because
findMax() doesn’t formally return any value and receives two integer values, the following
function header can be used:

void findMax(int x, int y) no semicolon

The names in parentheses in the header are called the formal parameters of the function
(or parameters, for short).2 Therefore, the parameter x is used to store the first value passed
to findMax(), and the parameter y is used to store the second value passed at the time of
the function call. The function doesn’t know where the values come from when the call is
made from main(). The first part of the call procedure the computer executes involves
going to the variables firstnum and secnum and retrieving the stored values. These values
are then passed to findMax() and stored in the parameters x and y (see Figure 6.5).

2The portion of the function header containing function names and parameters is formally referred to as a “function declarator.” The items
enclosed in parentheses, the parameters, are specifications for the arguments. The arguments are the values provided when the function is called.

 function header line

{

}

Function header

Function body
constant and

any other C++ statements;
variable declarations;

Figure 6.4 The general format of a function

findMax(int x, int y)

findMax(firstnum,secnum); This statement
calls findMax()

The value
in secnum
is passed

The value
in firstnum

is passed

The
parameter
named x

The
parameter
named y

Figure 6.5 Storing values in parameters

298 Modularity Using Functions

The function name and all parameter names in the header—in this case, findMax, x,
and y—are chosen by the programmer. Any names selected according to the rules for
choosing variable names can be used. All parameters listed in the function header must be
separated by commas and have their data types declared separately.

Now that the function header for findMax() has been written, you can construct its body.
The function has been written to select and display the larger of the two numbers passed to it.

A function body begins with an opening brace, {, contains any necessary declarations and
other C++ statements, and ends with a closing brace, }. This structure should be familiar
because it’s the same one used in all the main() functions you’ve seen so far. This required
structure shouldn’t be a surprise because main() is a function and must adhere to the rules
for constructing all legitimate functions, as shown here:

{
symbolic constant declarations,
variable declarations, and
other C++ statements

}

Point of Information

Function Definitions and Function Prototypes
When you write a function, you’re formally creating a function definition. Each defini-
tion begins with a function header that includes a parameter list, if any, enclosed in
parentheses and ends with the closing brace that terminates the function’s body. The
parentheses are required whether or not the function uses any parameters. The follow-
ing is a commonly used syntax for a function definition:

returnDataType functionName(parameter list)
{
constant declarations
variable declarations

other C++ statements

return value
}

A function prototype declares a function. The syntax for a function prototype,
which provides the function’s return data type, the function’s name, and the function’s
parameter list, is as follows:

returnDataType functionName(list of parameter data types);

The prototype, along with pre- and postcondition comments (see the next Point of
Information box), should give users all the programming information needed to call the
function successfully.

Generally, all function prototypes are placed at the top of the program, and all
definitions are placed after the main() function. However, this placement can be
changed. The only requirement in C++ is that a function can’t be called before it has
been declared or defined.

299Chapter 6
Function and Parameter Declarations

In the body of the findMax() function, one variable is declared to store the maximum of
the two numbers passed to it. An if-else statement is then used to find the maximum of the
two numbers. Finally, a cout statement is used to display the maximum. The following shows
the complete function definition for findMax():

void findMax(int x, int y)
{ // start of function body

int maxnum; // variable declaration

if (x >= y) // find the maximum number
maxnum = x;

else
maxnum = y;

cout << "\nThe maximum of the two numbers is "
<< maxnum << endl;

return;
} // end of function body and end of function

Notice that the parameter declarations are made in the function header, and the variable
declaration is made immediately after the function body’s opening brace. This placement is
in keeping with the concept that parameter values are passed to a function from outside the
function, and variables are declared and assigned values from within the function body.
Program 6.2 includes the findMax() function in the program code previously listed in
Program 6.1.

Point of Information

Preconditions and Postconditions
Preconditions are any set of conditions a function requires to be true if it’s to operate
correctly. For example, if a function uses the symbolic constant MAXCHARS, which must
have a positive value, a precondition is that MAXCHARS must be declared with a posi-
tive value before the function is called. Similarly, a postcondition is a condition that
will be true after the function is executed, assuming the preconditions are met.

Pre- and postconditions are typically documented as user comments. For example,
examine the following declaration and comments:

bool leapyr(int)
// Precondition: the integers must represent a year in a four-digit
// form, such as 2009
// Postcondition: a value of true is returned if the year is a leap year;
// otherwise, false is returned

Pre- and postcondition comments should be included with function prototypes and
function definitions whenever clarification is needed.

300 Modularity Using Functions

Program 6.2

#include <iostream>

using namespace std;

void findMax(int, int); // the function prototype

int main()

{

int firstnum, secnum;

cout << "\nEnter a number: ";

cin >> firstnum;

cout << "Great! Please enter a second number: ";

cin >> secnum;

findMax(firstnum, secnum); // the function is called here

return 0;

}

// following is the function FindMax()

void findMax(int x, int y)

{ // start of function body

int maxnum; // variable declaration

if (x >= y) // find the maximum number

maxnum = x;

else

maxnum = y;

cout << "\nThe maximum of the two numbers is "

<< maxnum << endl;

return;

} // end of function body and end of function

Program 6.2 can be used to select and print the maximum of any two integer numbers
the user enters. A sample run of Program 6.2 follows:

Enter a number: 25

Great! Please enter a second number: 5

The maximum of the two numbers is 25

301Chapter 6
Function and Parameter Declarations

The placement of the findMax() function after the main() function in Program 6.2
is a matter of choice. Usually, main() is listed first because it’s the driver function that gives
anyone reading the program an idea of what the complete program is about before
encountering the details of each function. In no case, however, can the definition of
findMax() be placed inside main(). This rule applies to all C++ functions, which must be
defined by themselves outside any other function. Each C++ function is a separate and
independent entity with its own parameters and variables; nesting functions is never
permitted.

Placement of Statements
C++ doesn’t impose a rigid statement-ordering structure on programmers. The general rule
for placing statements in a C++ program is simply that all preprocessor directives, named
constants, variables, and functions must be declared or defined before they can be used. As
noted previously, although this rule permits placing both preprocessor directives and
declaration statements throughout a program, doing so results in poor program structure.

As a matter of good programming form, the following statement ordering should form the
basic structure around which all C++ programs are constructed:

preprocessor directives

function prototypes

int main()
{

// symbolic constants
// variable declarations

// other executable statements

// return statement
}

// function definitions

As always, comment statements can be intermixed anywhere in this basic structure.

Function Stubs
An alternative to completing each function required in a complete program is writing the
main() function first and then adding the remaining functions as they’re developed.

302 Modularity Using Functions

The problem with this approach, however, is the same one that occurred with Program 6.1:
The program can’t be run until all the functions are included. For convenience, the code for
Program 6.1 has been reproduced here:

#include <iostream>
using namespace std;

void findMax(int, int); // the function declaration (prototype)

int main()
{

int firstnum, secnum;

cout << "\nEnter a number: ";
cin >> firstnum;
cout << "Great! Please enter a second number: ";
cin >> secnum;

findMax(firstnum, secnum); // the function is called here

return 0;
}

This program would be complete if there were a function definition for findMax().
However, you really don’t need a correct findMax() function to test and run what has been
written; you just need a function that acts like it is. A “fake” findMax() that accepts the correct
number and types of parameters and returns values of the proper form for the function call is all
you need for initial testing. This fake function, called a stub, is the beginning of a final function
and can be used as a placeholder for the final unit until the unit is completed. A stub for
findMax() is as follows:

void findMax(int x, int y)
{

cout << "In findMax()\n";
cout << "The value of x is " << x << endl;
cout << "The value of x is " << y << endl;

}

This stub function can now be compiled and linked with the previously completed code
to produce an executable program. The code for the function can then be further developed
with the “real” code when it’s completed, replacing the stub portion.

The minimum requirement of a stub function is that it compiles and links with its calling
module. In practice, it’s a good idea to have a stub display a message that it has been entered
successfully and display the values of its received parameters, as in the stub for findMax().
As the function is refined, you let it do more, perhaps allowing it to return intermediate or
incomplete results. This incremental, or stepwise, refinement is an important concept in
efficient program development that gives you the means to run a program that doesn’t yet
meet all its final requirements.

Functions with Empty Parameter Lists
Although useful functions having an empty parameter list are extremely limited, they can
occur. (You see one such function in Exercise 11 at the end of this section.) The function

303Chapter 6
Function and Parameter Declarations

prototype for such a function requires writing the keyword void or nothing at all between
the parentheses following the function’s name. For example, both these prototypes

int display();

and

int display(void);

indicate that the display() function takes no parameters and returns an integer. A function
with an empty parameter list is called by its name with nothing written inside the required
parentheses following the function’s name. For example, the statement display();
correctly calls the display() function, whose prototype is shown in the preceding example.

Point of Information

Isolation Testing
One of the most successful software testing methods is to embed the code being
tested in an environment of working code. For example, you have two untested func-
tions called in the following order, and the result the second function returns is
incorrect:

function 1
calls

function 2
Returned value

is incorrect

From the information shown in this figure, one or possibly both of the functions
could be operating incorrectly. The first order of business is to isolate the problem to a
specific function.

One powerful method of performing this code isolation is to decouple the
functions. You do this by testing each function separately or by testing one function
first and, only after you know it’s operating correctly, reconnecting it to the second
function. Then, if an error occurs, you have isolated the error to the transfer of data
between functions or the internal operation of the second function.

This procedure is an example of the basic rule of testing, which states that each
function should be tested only in a program in which all other functions are known to
be correct. This rule means one function must first be tested by itself, using stubs if
necessary for any called functions, and a second tested function should be tested by
itself or with a previously tested function, and so on. This testing procedure ensures
that each new function is isolated in a test bed of correct functions, with the final pro-
gram built from tested function code.

304 Modularity Using Functions

Default Arguments3

C++ provides default arguments in a function call for added flexibility. The primary use of
default arguments is to extend the parameter list of existing functions without requiring any
change in the calling parameter lists already used in a program.

Default argument values are listed in the function prototype and transmitted automati-
cally to the called function when the corresponding arguments are omitted from the function
call. For example, the function prototype

void example(int, int = 5, double = 6.78);

provides default values for the last two arguments. If any argument is omitted when the
function is actually called, the C++ compiler supplies the default values. Therefore, all the
following function calls are valid:

example(7, 2, 9.3) // no defaults used
example(7, 2) // same as example(7, 2, 6.78)
example(7) // same as example(7, 5, 6.78)

Four rules must be followed when using default arguments. First, default values should
be assigned in the function prototype.4 Second, if any parameter is given a default value in
the function prototype, all parameters following it must also be supplied with default values.
Third, if one argument is omitted in the actual function call, all arguments to its right must
also be omitted. The second and third rules make it clear to the C++ compiler which
arguments are being omitted and permits the compiler to supply correct default values for the
missing arguments, starting with the rightmost argument and working in toward the left.
Fourth, the default value used in the function prototype can be an expression consisting of
both constants and previously declared variables. If this kind of expression is used, it must
pass the compiler’s check for validly declared variables, even though the expression’s actual
value is evaluated and assigned at runtime.

Default arguments are extremely useful when extending an existing function to include
more features that require additional arguments. Adding new arguments to the right of the
existing arguments and giving each new argument a default value permits all existing
function calls to remain as they are. In this way, the effect of the changes are conveniently
isolated from existing code in the program.

Reusing Function Names (Overloading)5

C++ provides the capability of using the same function name for more than one function,
referred to as function overloading. The only requirement for creating more than one function
with the same name is that the compiler must be able to determine which function to use
based on the parameters’ data types (not the data type of the return value, if any). For
example, take a look at the three following functions, all named cdabs():

void cdabs(int x) //
compute and display the absolute value of an integer
{

if (x < 0)
x = -x;

�

3This topic can be omitted on first reading without loss of subject continuity.
4Some compilers accept default assignments in the function definition.
5This topic can be omitted on first reading without loss of subject continuity.

305Chapter 6
Function and Parameter Declarations

cout << "The absolute value of the integer is " << x << endl;
}

void cdabs(float x) // compute and display the absolute value of a float
{

if (x < 0)
x = -x;

cout << "The absolute value of the float is " << x << endl;
}

void cdabs(double x) //
compute and display the absolute value of a double
{

if (x < 0)
x = -x;
cout << "The absolute value of the double is " << x << endl;

}

Which of the three functions named cdabs() is actually called depends on the
argument type supplied at the time of the call. Therefore, the function call cdabs(10);
causes the compiler to use the function named cdabs() that expects an integer argument,
and the function call cdabs(6.28f); causes the compiler to use the function named
cdabs() that uses a single-precision argument.6

Notice that overloading a function’s name simply means using the same name for more
than one function. Each function that uses the name must still be written and exists as a
separate entity. The use of the same function name doesn’t require code in the functions to
be similar, although good programming practice dictates that functions with the same name
should perform essentially the same operations. All that’s required to use the same function
name is that the compiler can distinguish which function to select, based on the data types
of the arguments when the function is called. However, if the only difference in the
overloaded functions is the argument types, a better programming solution is to create a
function template, discussed next. The use of overloaded functions, however, is extremely
useful with constructor functions, explained in Section 10.2.

Function Templates7

In most high-level languages, including C++’s immediate predecessor, C, each function
requires its own unique name. In theory, using unique names makes sense, but in practice,
it can lead to a profusion of function names, even for functions that perform essentially the
same operations. For example, consider determining and displaying a number’s absolute
value. If the number passed to the function can be an integer, a single-precision value, or a
double-precision value, three distinct functions must be written to handle each case correctly.

6Selection of the correct function is accomplished by a process called “name mangling.” Using this process, the function name the C++ compiler
actually generates differs from the function name used in the source code. The compiler appends information to the source code function,
depending on the type of data being passed, and the resulting name is said to be a “mangled” version of the source code name.
7This topic can be omitted on first reading without loss of subject continuity.

306 Modularity Using Functions

Certainly, you could give each function a unique name, such as abs(), fabs(), and
dabs(), having the following function prototypes:

void abs(int);
void fabs(float);
void dabs(double);

Each of these functions performs essentially the same operation but on different
parameter data types. A much cleaner solution is writing a general function that handles all
cases, but the compiler can set parameters, variables, and even return type based on the
actual function call. You can write this type of function in C++ by using function templates.
A function template is a single, complete function that serves as a model for a family of
functions. The function from the family that’s actually created depends on subsequent
function calls. To make this concept more concrete, take a look at a function template that
computes and displays the absolute value of a passed argument:

template <class T>
void showabs(T number)
{

if (number < 0)
number = -number;

cout << "The absolute value of the number "
<< " is " << number << endl;

return;
}

For the moment, ignore the first line, template <class T>, and look at the second
line, which consists of the function header void showabs(T number). Notice that this
function header has the same syntax used for all function definitions, except the T where a
data type is usually placed. For example, if the function header were void showabs(int
number), you should recognize it as a function named showabs() that expects one integer
argument to be passed to it and returns no value. Similarly, if the function header were void
showabs(double number), you should recognize it as a function that expects one
double-precision argument to be passed to it when the function is called.

The advantage of using the T in the function template header is that it represents a
general data type that’s replaced by an actual data type, such as int, float, double, and
so forth, when the compiler encounters an actual function call. For example, if a function call
with an integer argument is encountered, the compiler uses the function template to
construct a function that expects an integer parameter. Similarly, if a call is made with a
double-precision argument, the compiler constructs a function that expects a double-
precision parameter. As a specific example, take a look at Program 6.3.

307Chapter 6
Function and Parameter Declarations

Program 6.3

#include <iostream>

using namespace std;

template <class T>

void showabs(T number)

{

if (number < 0)

number = -number;

cout << "The absolute value of the number is "

<< number << endl;

return;

}

int main()

{

int num1 = -4;

float num2 = -4.23f;

double num3 = -4.23456;

showabs(num1);

showabs(num2);

showabs(num3);

return 0;

}

Notice the three function calls made in the main() function; they call the function
showabs() with an integer, float, and double value. Now review the function template for
showabs() and look at the first line, template <class T>. This line, called a template
prefix, is used to inform the compiler that the function immediately following is a template
using a data type named T. In the function template, the T is used in the same manner as
any other data type, such as int, float, and double. When the compiler encounters an
actual function call for showabs(), the data type of the argument passed in the call is
substituted for T throughout the function. In effect, the compiler creates a specific function,
using the template, that expects the argument type in the call.

Because Program 6.3 makes three calls to showabs(), each with a different argument
data type, the compiler creates three separate showabs() functions. The compiler knows
which function to use based on the arguments passed at the time of the call. This is the
output displayed when Program 6.3 runs:

The absolute value of the number is 4

The absolute value of the number is 4.23

The absolute value of the number is 4.23456

308 Modularity Using Functions

The letter T used in the template prefix template <class T> is simply a placeholder
for a data type that’s defined when the function is actually called. Any letter or non-keyword
identifier can be used instead, so the showabs() function template could just as well have
been defined as follows:

template <class DTYPE>
void abs(DTYPE number)
{

if (number < 0)
number = -number;

cout << "The absolute value of the number is "
<< number << endl;

return;
}

In this regard, sometimes it’s simpler and clearer to read the word class in the template
prefix as the words data type. With this substitution, you can read the template prefix
template <class T> as “I’m defining a function template that has a data type named T.”
Then, in the defined function’s header and body, the data type T (or any other letter or
identifier defined in the prefix) is used in the same manner as any built-in data type, such
as int, float, and double.

Now suppose you want to create a function template to include both a return type and
an internally declared variable. For example, take a look the following function template:

template <class T> // template prefix
T abs(T value) // function header line
{

T absnum; // variable declaration

if (value < 0)
absnum = -value;

else
absnum = value;

return absnum;
}

In this template definition, the date type T is used to declare three items: the return type
of the function, the data type of a single function parameter named value, and one variable
declared in the function. Program 6.4 shows how this function template could be used in the
context of a complete program.

309Chapter 6
Function and Parameter Declarations

Program 6.4

#include <iostream>

using namespace std;

template <class T> // template prefix

T abs(T value) // header line

{

T absnum; // variable declaration

if (value < 0)

absnum = -value;

else

absnum = value;

return absnum;

}

int main()

{

int num1 = -4;

float num2 = -4.23f;

double num3 = -4.23456;

cout << "The absolute value of " << num1

<< " is " << abs(num1) << endl;

cout << "The absolute value of " << num2

<< " is " << abs(num2) << endl;

cout << "The absolute value of " << num3

<< " is " << abs(num3) << endl;

return 0;

}

In the first call to abs() made within main(), an integer value is passed as an
argument. In this case, the compiler substitutes an int data type for the T data type in the
function template and creates the following function:

int abs(int value) // header line
{

int absnum; // variable declaration
if (value < 0)

absnum = -value;
else

absnum = value;
return absnum;

}

310 Modularity Using Functions

Similarly, in the second and third function calls, the compiler creates two more functions:
one in which the data type T is replaced by the keyword float, and one in which the data
type T is replaced by the keyword double. This is the output produced by Program 6.4:

The absolute value of -4 is 4

The absolute value of -4.23 is 4.23

The absolute value of -4.23456 is 4.23456

The value of using a function template is that one function definition has been used to
create three different functions, each of which uses the same logic and operations but
operates on different data types.

Finally, although both Programs 6.3 and 6.4 define a function template using a single
placeholder data type, function templates with more than one data type can be defined. For
example, the template prefix

template <class DTYPE1, class DTYPE2, class DTYPE3>

can be used to create a function template requiring three different data types. As before, in the
function template’s header and body, the data types DTYPE1, DTYPE2, and DTYPE3 are used in
the same manner as any built-in data type, such as int, float, and double. Also, as noted
previously, the names DTYPE1, DTYPE2, and DTYPE3 can be any non-keyword identifier.
Conventionally, the letter T followed by zero or more digits is used, such as T, T1, T2, T3, and
so forth.

EXERCISES 6.1

1. (Practice) For the following function headers, determine the number, type, and order
(sequence) of the values that must be passed to the function:
a. void factorial(int n)

b. void volts(int res, double induct, double cap)

c. void power(int type, double induct, double cap)

d. void flag(char type, double current, double time)

e. void total(double amount, double rate)

f. void roi(int a, int b, char c, char d, double e, double f)

g. void getVal(int item, int iter, char decflag, char delim)

2. (Practice) a. Write a function named check() that has three parameters. The first
parameter should accept an integer number, and the second and third parameters should
accept a double-precision number. The function body should just display the values of
data passed to the function when it’s called. (Note: When tracing errors in functions, hav-
ing the function display values it has been passed is helpful. Quite often, the error isn’t
in what the function body does with data, but in the data received and stored.)

311Chapter 6
Function and Parameter Declarations

b. Include the function written in Exercise 2a in a working program. Make sure your
function is called from main(). Test the function by passing various data to it.

3. (Practice) a. Write a function named findAbs() that accepts a double-precision num-
ber passed to it, computes its absolute value, and displays the absolute value. A number’s
absolute value is the number itself if the number is positive and the negative of the num-
ber if the number is negative.

b. Include the function written in Exercise 3a in a working program. Make sure your
function is called from main(). Test the function by passing various data to it.

4. (Practice) a. Write a function called mult() that accepts two floating-point numbers as
parameters, multiplies these two numbers, and displays the result.

b. Include the function written in Exercise 4a in a working program. Make sure your
function is called from main(). Test the function by passing various data to it.

5. (Practice) a. Write a function named sqrIt() that computes the square of the value
passed to it and displays the result. The function should be capable of squaring numbers
with decimal points.

b. Include the function written in Exercise 5a in a working program. Make sure your
function is called from main(). Test the function by passing various data to it.

6. (Practice) a. Write a function named powfun() that raises an integer number passed to
it to a positive integer power and displays the result. The positive integer should be the
second value passed to the function. Declare the variable used to store the result as a
long-integer data type to ensure enough storage for the result.

b. Include the function written in Exercise 6a in a working program. Make sure your
function is called from main(). Test the function by passing various data to it.

7. (Numerical) a. Write a C++ program that computes and displays the fractional part of
any user-entered number. For example, if the number 256.879 is entered, the number
0.879 should be displayed. (Hint: Use an int cast.)

b. Enter, compile, and execute the program written for Exercise 7a.

8. (Numerical) a. Write a C++ program that accepts an integer argument and determines
whether the passed integer is even or odd. (Hint: Use the % operator.)

b. Enter, compile, and execute the program written for Exercise 8a.

9. (Practice) a. Write a function that produces a table of the numbers from 1 to 10, their
squares, and their cubes. The function should produce the same display as Program 5.11.

b. Include the function written in Exercise 9a in a working program. Make sure your
function is called from main(). Test the function by passing various data to it.

10. (Modify) a. Modify the function written for Exercise 9a to accept the starting value of the
table, the number of values to be displayed, and the increment between values. If the incre-
ment isn’t sent explicitly, the function should use a default value of 1. Name your function
selTab(). A call to selTab(6,5,2); should produce a table of five lines, the first line
starting with the number 6 and each succeeding number increasing by 2.

b. Include the function written in Exercise 10a in a working program. Make sure your
function is called from main(). Test the function by passing various data to it.

312 Modularity Using Functions

11. (Numerical) A useful function using no parameters can be constructed to return a value
for � that’s accurate to the maximum number of decimal places your computer allows.
This value is obtained by taking the arcsine of 1.0, which is � / 2, and multiplying the
result by 2. In C++, the required expression is 2.0 * asin(1.0); the asin() func-
tion is provided in the standard C++ mathematics library. (Remember to include cmath
in your preprocessor directives.) Using this expression, write a C++ function named pi()
that calculates and displays the value of �. (In the next section, you see how to return
this value to the calling function.)

12. (Practice) a. Write a function template named display() that displays the value of
the single argument passed to it when the function is called.

b. Include the function template created in Exercise 12a in a complete C++ program that
calls the function three times: once with a character argument, once with an integer
argument, and once with a double-precision argument.

13. (Numerical) a. Write a function template named whole() that returns the integer
value of any argument passed to it when the function is called.

b. Include the function template created in Exercise 13a in a complete C++ program that
calls the function three times: once with a character argument, once with an integer
argument, and once with a double-precision argument.

14. (Numerical) a. Write a function template named maximum() that returns the maxi-
mum value of three arguments passed to the function when it’s called. Assume that all
three arguments are the same data type.

b. Include the function template created for Exercise 14a in a complete C++ program
that calls the function with three integers and then with three double-precision
numbers.

15. (Numerical) a. Write a function template named square() that computes and returns
the square of the single argument passed to the function when it’s called.

b. Include the function template created for Exercise 15a in a complete C++ program.

6.2 Returning a Single Value

Using the method of passing data to a function explained in the previous section, the called
function receives only copies of the values contained in arguments at the time of the call.
(Review Figure 6.3 if it’s unclear to you.) When a value is passed to a called function in this
manner, the passed argument is referred to as a passed by value and is a distinct advantage
of C++.8 Because the called function doesn’t have direct access to the variables used as
arguments by the calling function, it can’t inadvertently alter the value stored in one of these
variables.

The function receiving the passed by value arguments can process the values sent to it in any
fashion and return one, and only one, “legitimate” value directly to the calling function (see
Figure 6.6). In this section, you see how this value is returned to the calling function. As you

8This argument is also referred to as a “call by value.” These terms, however, don’t refer to the function call as a whole, but to how the calling
function passes values to the called function.

313Chapter 6
Returning a Single Value

might expect, given C++’s flexibility, there’s a way of returning more than a single value, but
that’s the topic of the next section.

As with calling a function, returning a value directly requires handling the interface
between the called and calling functions correctly. From its side of the return transaction, the
called function must provide the following items:

• The data type of the returned value
• The actual value being returned

A function returning a value must specify, in its header, the data type of the value to be
returned. Recall that the function header includes both the function name and a parameter
list. For example, the findMax() function written previously determines the maximum
value of two numbers passed to it. For convenience, the findMax() code is listed again:

void findMax(int x, int y)
{ // start of function body

int maxnum; // variable declaration

if (x >= y) // find the maximum number
maxnum = x;

else
maxnum = y;

cout << "\nThe maximum of the two numbers is "
<< maxnum << endl;

return;
} // end of function body and end of function

In this function header, x and y are the names chosen for the function’s parameters:

void findMax(int x, int y)

If findMax() is to return a value, its function header must be amended to include the
data type of the value being returned. For example, if an integer value is to be returned, this
is the correct function header:

int findMax(int x, int y)

A function can receive many values

Only one value can
be directly returned

Figure 6.6 A function directly returns at most one value

314 Modularity Using Functions

Similarly, if the function is to receive two single-precision parameters and return a
single-precision value, this is the correct function header:

float findMax(float x, float y)

If the function is to receive two double-precision parameters and return a double-
precision value, the function header would be the following:9

double findMax(double x, double y)

Now see how to modify the findMax() function to return the maximum value of the
two numbers passed to it. To do this, you must first determine the data type of the value to
be returned and include this data type in the function header. Because the maximum value
determined by findMax() is stored in the integer variable maxnum, the function should
return this variable’s value. Returning an integer value from findMax() requires the
following function declaration:

int findMax(int x, int y)

Observe that it’s the same as the original function header for findMax(), with the
keyword int substituted for the keyword void.

Having declared the data type that findMax() will return, all that remains is including
a statement in the function to cause the return of the correct value. To return a value, a
function must use a return statement, which has this form:10

return expression;

When the return statement is encountered, the expression is evaluated first. The value
of the expression is then automatically converted to the data type declared in the function
header before being sent back to the calling function. After the value is returned, program
control reverts to the calling function. Therefore, to return the value stored in maxnum, all
you need to do is include the statement return maxnum; before the closing brace of the
findMax() function. The complete function code is as follows:

 int findMax(int x, int y) // function header
{ // start of function body
 int maxnum; // variable declaration
 if (x >= y)
 maxnum = x;
 else
 maxnum = y;

 return maxnum; // return statement
}

These should
be the same
data type

9The return data type is related to the parameter data types only as much as the returned value is typically determined by the parameter values.
In this case, because the function is used to return the maximum value of its parameters, it would make little sense to return a data type that
doesn’t match the function’s parameter data types.
10Many programmers place the expression in parentheses, as in return (expression);. Although either form (with or without parentheses)
can be used, choose one and stay with it for consistency.

315Chapter 6
Returning a Single Value

In this new code for the findMax() function, note that the data type of the expression
in the return statement matches the data type in the function header. It’s up to the
programmer to ensure this match for every function returning a value. Failure to match the
return value with the function’s declared data type exactly might not result in an error when
your program is compiled, but it could lead to undesired results because the return value is
always converted to the data type declared in the function declaration. Usually, this is a
problem only when the fractional part of a returned floating-point or double-precision
number is truncated because the function was declared to return an integer value.

Having taken care of the sending side of the return transaction, you must now prepare
the calling function to receive the value sent by the called function. On the calling (receiving)
side, the calling function must

• Be alerted to the type of value to expect back from the called function
• Use the returned value correctly

Alerting the calling function to the type of return value to expect is taken care of by the
function prototype. For example, including the function prototype

int findMax(int, int);

before the main() function is enough to alert main() that findMax() is a function that
returns an integer value.

To actually use a returned value, you must provide a variable to store the value or use the
value in an expression. To store the returned value in a variable, you use a standard
assignment statement. For example, the following assignment statement can be used to store
the value returned by findMax() in the variable max:

max = findMax(firstnum, secnum);

This assignment statement does two things. First, the right side of the assignment
statement calls findMax(), and then the result returned by findMax() is stored in the
variable max. Because the value returned by findMax() is an integer, the variable max
should also be declared as an integer variable in the calling function’s variable declarations.

The value a function returns need not be stored in a variable, but it can be used wherever
an expression is valid. For example, the expression 2 * findMax(firstnum, secnum)
multiplies the value returned by findMax() by 2, and the following statement displays the
returned value:

cout << findMax(firstnum, secnum);

Program 6.5 illustrates including prototype and assignment statements for main() to
declare, call, and store a returned value from findMax() correctly. As before, and in keeping
with the convention of placing the main() function first, the findMax() function is placed
after main().

316 Modularity Using Functions

Program 6.5

#include <iostream>

using namespace std;

int findMax(int, int); // the function prototype

int main()

{

int firstnum, secnum, max;

cout << "\nEnter a number: ";

cin >> firstnum;

cout << "Great! Please enter a second number: ";

cin >> secnum;

max = findMax(firstnum, secnum); // the function is called here

cout << "\nThe maximum of the two numbers is " << max << endl;

return 0;

}

int findMax(int x, int y)

{ // start of function body

int maxnum; // variable declaration

if (x >= y) // find the maximum number

maxnum = x;

else

maxnum = y;

return maxnum; // return statement

}

In reviewing Program 6.5, note the four items introduced in this section. First, the
function prototype for findMax() is a statement ending with a semicolon, as all declaration
statements do; it alerts main() and any subsequent functions using findMax() to the data
type that findMax() returns. Second, an assignment statement is used in main() to store
the returned value from the findMax() call in the variable max. In Program 6.5, max is
declared correctly as an integer in main()’s variable declarations so that it matches the
returned value’s data type.

The third and fourth items concern coding the findMax() function: The first line of
findMax() declares that the function returns an integer value, and the expression in the
return statement evaluates to a matching data type. Therefore, findMax() is internally

317Chapter 6
Returning a Single Value

consistent in sending an integer value back to main(), and main() has been alerted to
receive and use the returned integer.

In writing your own functions, always keep these four items in mind. For another
example, see whether you can identify these four items in Program 6.6.

Program 6.6

#include <iostream>

using namespace std;

double tempvert(double); // function prototype

int main()

{

const int CONVERTS = 4; // number of conversions to be made

int count;

double fahren;

for(count = 1; count <= CONVERTS; count++)

{

cout << "\nEnter a Fahrenheit temperature: ";

cin >> fahren;

cout << "The Celsius equivalent is "

<< tempvert(fahren) << endl;

}

return 0;

}

// convert fahrenheit to celsius

double tempvert(double inTemp)

{

return (5.0/9.0) * (inTemp - 32.0);

}

In reviewing Program 6.6, first analyze the tempvert() function. The function’s
definition begins with the function header and ends with the closing brace after the return
statement. The function is declared as a double, meaning the expression in the function’s
return statement must evaluate to a double-precision number, which it does. Because a
function header is not a statement but the start of the code defining the function, it doesn’t
end with a semicolon.

On the receiving side, main() has a prototype for the tempvert() function that agrees
with tempvert()’s function definition. No variable is declared in main() to store the

318 Modularity Using Functions

returned value from tempvert() because the returned value is passed immediately to
cout for display.

Finally, one purpose of declarations, as you learned in Chapter 2, is to alert the computer
to the amount of internal storage reserved for data. The prototype for tempvert() performs
this task and alerts the compiler to the type of storage needed for the returned value. Because
main() is always the first function in a program, you must include function prototypes for
all functions called by main() and any subsequent functions.

Inline Functions11

Calling a function places a certain amount of overhead on a computer. This overhead consists
of the following steps:

1. Placing argument values in a reserved memory region (called the stack) that the
function has access to

2. Passing control to the function
3. Providing a reserved memory location for any returned value (again, using the stack

for this purpose)
4. Returning to the correct point in the calling program

Paying this overhead is justified when a function is called many times because it can
reduce a program’s size substantially. Instead of the same code being repeated each time it’s
needed, the code is written once, as a function, and called whenever it’s needed.

For small functions that aren’t called many times, however, the overhead of passing and
returning values might not be warranted. It would still be convenient to group repeating lines
of code together under a common function name and have the compiler place this code in
the program wherever the function is called. Inline functions provide this capability.

Telling the C++ compiler that a function is inline causes a copy of the function code to
be placed in the program at the point the function is called. For example, because the
tempvert() function in Program 6.6 is fairly short, it’s an ideal candidate to be an inline
function. To make it, or any other function, an inline one simply requires placing the reserved
keyword inline before the function name and defining the function before any calls are
made to it. Program 6.7 makes tempvert() an inline function.

Observe in Program 6.7 that the inline function is placed ahead of any calls to it. This
placement is a requirement of all inline functions, so a function prototype isn’t needed before
subsequent calling functions. Because the function is now inline, its code is expanded into
the program wherever it’s called.

11This section is optional and can be omitted on first reading without loss of subject continuity.

319Chapter 6
Returning a Single Value

Program 6.7

#include <iostream>

using namespace std;

inline double tempvert(double inTemp) // an inline function

{

return (5.0/9.0) * (inTemp - 32.0);

}

int main()

{

const CONVERTS = 4; // number of conversions to be made

int count;

double fahren;

for(count = 1; count <= CONVERTS; count++)

{

cout << "\nEnter a Fahrenheit temperature: ";

cin >> fahren;

cout << "The Celsius equivalent is "

<< tempvert(fahren) << endl;

}

return 0;

}

The advantage of using an inline function is an increase in execution speed. Because the
inline function is expanded and included in every expression or statement calling it, no
execution time is lost because of the call and return overhead a non-inline function requires.
The disadvantage is the increase in program size when an inline function is called repeatedly.
Each time an inline function is referenced, the complete function code is reproduced and
stored as an integral part of the program. A non-inline function, however, is stored in memory
only once. No matter how many times the function is called, the same code is used.
Therefore, inline functions should be used only for small functions that aren’t called
extensively in a program.

320 Modularity Using Functions

EXERCISES 6.2

1. (Modify) Rewrite Program 6.5 so that the findMax() function accepts two double-
precision arguments and returns a double-precision value to main(). Make sure to
modify main() to pass two double-precision values to findMax() and to accept and
store the double-precision value returned by findMax().

2. (Practice) For the following function headers, determine the number, type, and order
(sequence) of values that should be passed to the function when it’s called and the data
type of the value the function returns:
a. int factorial(int n)

b. double volts(int res, double induct, double cap)

c. double power(int type, double induct, double cap)

d. char flag(char type, float current, float time)

e. int total(float amount, float rate)

f. float roi(int a, int b, char c, char d, float e, float f)

g. void getVal(int item, int iter, char decflag, char delim)

3. (Practice) Write function headers for the following:
a. A function named check() that has three parameters. The first parameter should

accept an integer number, and the second and third parameters should accept a
double-precision number. The function returns no value.

b. A function named findAbs() that accepts a double-precision number passed to it
and returns its absolute value.

c. A function named mult() that accepts two floating-point numbers as parameters,
multiplies these two numbers, and returns the result.

d. A function named sqrIt() that computes and returns the square of the integer value
passed to it.

e. A function named powfun() that raises an integer number passed to it to a positive
integer (as an argument) power and returns the result as an integer.

f. A function that produces a table of the numbers from 1 to 10, their squares, and their
cubes. No arguments are to be passed to the function, and the function returns no value.

4. (General Math) a. Write a function named rightTriangle() that accepts the
lengths of two sides of a right triangle as the arguments a and b. The subroutine should
determine and return the hypotenuse, c, of the triangle. (Hint: Use Pythagoras’ theorem,
c2 = a2 + b2.)

b. Include the function written for Exercise 4a in a working program. The main() function
should call rightTriangle() correctly and display the value the function returns.

5. (General Math) a. Write a C++ function named findAbs() that accepts a double-
precision number passed to it, computes its absolute value, and returns the absolute value
to the calling function. A number’s absolute value is the number itself if the number is
positive and the negative of the number if the number is negative.

321Chapter 6
Returning a Single Value

b. Include the function written in Exercise 5a in a working program. Make sure your
function is called from main() and returns a value to main() correctly. Have
main() use a cout statement to display the returned value. Test the function by
passing various data to it.

6. (General Math) a. The volume, V, of a cylinder is given by the formula
V = �r2L
where r is the cylinder’s radius and L is its length. Using this formula, write a C++ func-
tion named cylvol() that accepts a cylinder’s radius and length and returns its volume.

b. Include the function written in Exercise 6a in a working program. Make sure your
function is called from main() and returns a value to main() correctly. Have
main() use a cout statement to display the returned value. Test the function by
passing various data to it.

7. (General Math) a. The side surface area, S, of a cylinder is given by the formula
S = 2�rl
where r is the cylinder’s radius, and l is the length of the cylinder. Using this formula,
write a C++ function named surfarea() that accepts a cylinder’s radius and length and
returns its side surface area.

b. Include the function written in Exercise 7a in a working program. Make sure your
function is called from main() and returns a value to main() correctly. Have
main() use a cout statement to display the returned value. Test the function by
passing various data to it.

8. (Numerical) A second-degree polynomial in x is given by the expression ax2 + bx + c,
where a, b, and c are known numbers and a is not equal to 0. Write a C++ function
named polyTwo(a,b,c,x) that computes and returns the value of a second-degree
polynomial for any passed values of a, b, c, and x.

9. (Structural Eng.) a. The maximum allowable deflection of a beam depends on its
function. For a floor, the typical maximum allowable deflection, in inches, is Dmax = L /
240, and for a roof beam, Dmax = L / 180, where L is the length of the beam in inches.
Using these formulas, write and test a function named maxDeflect() that accepts the
length of a beam, in feet, and the type of beam (floor or roof) as a character code and
returns the maximum allowable deflection.

b. Include the function written in Exercise 9a in a working program. Make sure your
function is called from main() and returns a value to main() correctly. Have
main() use a cout statement to display the returned value. Test the function by
passing various data to it.

10. (Structural Eng.) a. The load, Pcr, in units of kips, applied to a column that causes the
column to buckle is referred to as the critical buckling load. This load can be determined
by using this formula:
Pcr = �2 E A / (L / r)2

322 Modularity Using Functions

E is the modulus of elasticity of the column’s material.
A is the cross-sectional area.
L is the length of the column.
r is the column’s radius of gyration.

Using this formula, write a C++ function named cLoad() that accepts values of E, A, L,
and r and returns the critical buckling load.

b. Include the function written in Exercise 10a in a working program. Make sure your
function is called from main() and returns a value to main() correctly. Have
main() use a cout statement to display the returned value. Test the function by
passing various data to it.

11. (Numerical) a. The following is an extremely useful programming algorithm for round-
ing a real number to n decimal places:

Step 1: Multiply the number by 10n

Step 2: Add 0.5
Step 3: Delete the fractional part of the result
Step 4: Divide by 10n

For example, using this algorithm to round the number 78.374625 to three decimal places
yields:

Step 1: 78.374625 × 103 = 78374.625
Step 2: 78374.625 + 0.5 = 78375.125
Step 3: Retaining the integer part = 78375
Step 4: 78375 divided by 103 = 78.375

Using this algorithm, write a C++ function that accepts a user-entered value and returns
the result rounded to two decimal places.

b. Enter, compile, and execute the program written for Exercise 11a.

12. (Numerical) a. Write a C++ function named whole() that returns the integer part of
any number passed to the function. (Hint: Assign the passed argument to an integer
variable.)

b. Include the function written in Exercise 12a in a working program. Make sure your
function is called from main() and returns a value to main() correctly. Have
main() use a cout statement to display the returned value. Test the function by
passing various data to it.

13. (Numerical) a. Write a C++ function named fracpart() that returns the fractional part of
any number passed to it. For example, if the number 256.879 is passed to fracpart(), the
number 0.879 should be returned. Have fracpart() call the whole() function you wrote
in Exercise 12. The number returned can then be determined as the number passed to
fracpart() less the returned value when the same argument is passed to whole(). The
completed program should consist of main() followed by fracpart() followed by
whole().

b. Include the function written in Exercise 13a in a working program. Make sure your
function is called from main() and returns a value to main() correctly. Have
main() use a cout statement to display the returned value. Test the function by
passing various data to it.

323Chapter 6
Returning a Single Value

14. (Numerical) Years that are evenly divisible by 400 or are evenly divisible by 4 but not by
100 are leap years. For example, because 1600 is evenly divisible by 400, 1600 was a leap
year. Similarly, because 1988 is evenly divisible by 4 but not by 100, it was also a leap year.
Using this information, write a C++ function that accepts the year as user input and returns a
1 if the passed year is a leap year or a 0 if it isn’t.

6.3 Returning Multiple Values

In a typical function invocation, the called function receives values from its calling function,
stores and manipulates the passed values, and directly returns at most one value. When data
is passed in this manner, it’s referred to as a pass by value.

Calling a function and passing arguments by value is a distinct advantage of C++. It
allows functions to be written as independent entities that can use any variable or parameter
name without concern that other functions might be using the same name. It also alleviates
any concern that altering a parameter or variable in one function could inadvertently alter a
parameter or variable’s value in another function. In this approach, parameters can be
considered initialized variables, or variables assigned values when the function is executed.
At no time, however, does the called function have direct access to any variable defined in
the calling function, even if the variable is used as an argument in the function call.

At times, however, you need to modify this approach by giving a called function direct
access to its calling function’s variables. This approach allows one function—the called
function—to use and change the value of variables that have been defined in the calling
function. Doing this requires passing the variable’s address to the called function. After the
called function has the variable’s address, it “knows where the variable lives,” so to speak,
and can access and change the value stored there.

Passing addresses is referred to as a function pass by reference12 because the called
function can reference, or access, the variable whose address has been passed. C++ provides
two types of address parameters: references and pointers. This section describes the method
that uses reference parameters.

Passing and Using Reference Parameters
As always, when exchanging data between two functions, you must be concerned with both
the sending and receiving sides. From the sending side, calling a function and passing an
address as an argument that’s accepted as a reference parameter is the same as calling a
function and passing a value; the called function is summoned into action by giving its name
and a list of arguments. For example, the statement newval(firstnum, secnum); calls
the function named newval() and passes two arguments to it. Whether a value or an
address is actually passed depends on the parameter types declared for newval(). Now take
a look at writing the newval() function and prototype so that it receives the addresses
rather than the values of the variables firstnum and secnum, which are assumed to be
double-precision variables.

12It’s also referred to as a “call by reference,” and again, both terms refer only to the argument whose address has been passed.

324 Modularity Using Functions

One of the first requirements in writing newval() is to declare two reference
parameters for accepting passed addresses. In C++, a reference parameter is declared with
this syntax:

dataType& referenceName

For example, the reference declaration

double& num1;

declares that num1 is a reference parameter used to store the address of a double. Similarly,
int& secnum; declares that secnum is a reference to an integer, and char& key;
declares that key is a reference to a character.

Recall from Section 2.4 that the ampersand, &, in C++ means “the address of.”
Additionally, when & is used in a declaration, it refers to “the address of” the preceding data
type. Using this information, declarations such as double& num1 and int& secnum are
sometimes more clearly understood if they are read backward. Reading the declaration
double& num1 in this manner yields the information “num1 is the address of a
double-precision value.”

Because you need to accept two addresses in the parameter list for newval(), the
declarations double& num1 and double& num2 can be used. Including these declarations
in the parameter list for newval(), and assuming the function returns no value (void), the
function header for newval() becomes the following:

void newval(double& num1, double& num2)

For this function header, the following is an appropriate function prototype:

void newval(double&, double&);

This prototype and function header are included in Program 6.8, which uses a newval()
function body that displays and alters the values stored in these reference variables from
within the called function.

In calling the newval() function in Program 6.8, you need to understand the
connection between the arguments, firstnum and secnum, used in the function call and
the parameters, xnum and ynum, used in the function header. Both refer to the same data
items. The significance is that the values in the arguments (firstnum and secnum) can
now be altered from within newval() by using the parameter names (xnum and ynum).
Therefore, the parameters xnum and ynum don’t store copies of the values in firstnum and
secnum; instead, they access the locations in memory set aside for these two arguments.

325Chapter 6
Returning Multiple Values

Program 6.8

#include <iostream>

using namespace std;

void newval(double&, double&); // prototype with two reference parameters

int main()

{

double firstnum, secnum;

cout << "Enter two numbers: ";

cin >> firstnum >> secnum;

cout << "\nThe value in firstnum is: " << firstnum << endl;

cout << "The value in secnum is: " << secnum << "\n\n";

newval(firstnum, secnum); // call the function

cout << "The value in firstnum is now: " << firstnum << endl;

cout << "The value in secnum is now: " << secnum << endl;

return 0;

}

void newval(double& xnum, double& ynum)

{

cout << "The value in xnum is: " << xnum << endl;

cout << "The value in ynum is: " << ynum << "\n\n";

xnum = 89.5;

ynum = 99.5;

return;

}

The equivalence of argument names in Program 6.8, which is the essence of a pass by
reference, is illustrated in Figure 6.7. As shown in this figure, the argument names and their
matching parameter names are simply different names referring to the same memory storage
areas. In main(), these memory locations are referenced by the argument names firstnum
and secnum, and in newval(), the same locations are referenced by the parameter names
xnum and ynum.

326 Modularity Using Functions

The following is a sample run of Program 6.8:

Enter two numbers: 22.5 33.0

The value in firstnum is: 22.5

The value in secnum is: 33

The value in xnum is: 22.5

The value in ynum is: 33

The value in firstnum is now: 89.5

The value in secnum is now: 99.5

In reviewing this output, notice that the values initially displayed for the parameters
xnum and ynum are the same as those displayed for the arguments firstnum and secnum.
Because xnum and ynum are reference parameters, however, newval() now has direct
access to the arguments firstnum and secnum. Therefore, any change to xnum in
newval() alters the value of firstnum in main(), and any change to ynum changes
secnum’s value. As the final displayed values show, the assignment of values to xnum and
ynum in newval() is reflected in main() as the altering of firstnum’s and secnum’s
values.

The equivalence between actual calling arguments and function parameters shown in
Program 6.8 provides the basis for returning multiple values from within a function. For
example, say you want to write a function that’s required to accept three values, compute
these values’ sum and product, and return these computed results to the calling routine. By

firstnum

xnum

One value is stored

secnum

ynum

In main() the values
are referenced as

In newval() the same values
are referenced as

One value is stored

Figure 6.7 The equivalence of arguments and parameters in Program 6.8

327Chapter 6
Returning Multiple Values

naming the function calc() and providing five parameters (three for input data and two
references for returned values), the following function can be used:

void calc(double num1, double num2, double num3, double& total, double&
product)
{

total = num1 + num2 + num3;
product = num1 * num2 * num3;
return;

}

This function has five parameters named num1, num2, num3, total, and product.
Only the last two are declared as references, so the first three arguments are passed by value
and the last two arguments are passed by reference. In this function, only the last two
parameters are altered. The value of the fourth parameter, total, is calculated as the sum
of the first three parameters, and the last parameter, product, is computed as the product
of the parameters num1, num2, and num3. Program 6.9 includes this function in a complete
program.

Program 6.9

#include <iostream>

using namespace std;

void calc(double, double, double, double&, double&); // prototype

int main()

{

double firstnum, secnum, thirdnum, sum, product;

cout << "Enter three numbers: ";

cin >> firstnum >> secnum >> thirdnum;

calc(firstnum, secnum, thirdnum, sum, product); // function call

cout << "\nThe sum of the numbers is: " << sum << endl;

cout << "The product of the numbers is: " << product << endl;

return 0;

}

void calc(double num1, double num2, double num3, double& total, double& product)

{

total = num1 + num2 + num3;

product = num1 * num2 * num3;

return;

}

328 Modularity Using Functions

In main(), the function calc() is called with the five arguments firstnum, secnum,
thirdnum, sum, and product. As required, these arguments agree in number and data
type with the parameters declared by calc(). Of the five arguments passed, only
firstnum, secnum, and thirdnum have been assigned values when the call to calc()
is made. The remaining two arguments haven’t been initialized and are used to receive
values back from calc(). Depending on the compiler used, these arguments initially
contain zeros or “garbage” values. Figure 6.8 shows the relationship between actual and
parameter names and the values they contain after the return from calc().

After calc() is called, it uses its first three parameters to calculate values for total and
product and then returns control to main(). Because of the order of its actual calling
arguments, main() knows the values calculated by calc() as sum and product, which
are then displayed. Following is a sample run of Program 6.9:

Enter three numbers: 2.5 6.0 10.0

The sum of the entered numbers is: 18.5

The product of the entered numbers is: 150

As a final example of the usefulness of passing references to a called function, take a look
at constructing a function named swap() that exchanges the values of two of main()’s
double-precision variables. This type of function is useful when sorting a list of numbers.

Because the value of more than one variable is affected, swap() can’t be written as a
pass by value function that returns a single value. The exchange of main()’s variables by
swap() can be accomplished only by giving swap() access to main()’s variables. One way
of doing this is using reference parameters.

You have already seen how to pass references to two variables in Program 6.8. Now you
see how to construct a function to exchange the values in the passed reference parameters.

num2
num3

num1

10.06.02.5

A value is passed
main()

calc()

Argument names used in main()

Parameter names used in calc()

10.0

thirdnum

6.0

secnum

2.5

firstnum

total

18.5

sum

product

150.0

product

Figure 6.8 The relationship between argument and parameter names

329Chapter 6
Returning Multiple Values

Exchanging values in two variables is accomplished by using the three-step exchange
algorithm:

1. Save the first parameter’s value in a temporary location (see Figure 6.9a).
2. Store the second parameter’s value in the first variable (see Figure 6.9b).
3. Store the temporary value in the second parameter (see Figure 6.9c).

Following is the swap() function written according to these specifications:

void swap(double& num1, double& num2)
{

double temp;

temp = num1; // save num1's value
num1 = num2; // store num2's value in num1
num2 = temp; // change num2's value

return;
}

Notice that the use of references in swap()’s function header gives swap() access to
equivalent arguments in the calling function. Therefore, any changes to the two reference
parameters in swap() change the values in the calling function’s arguments automatically.
Program 6.10 contains swap() in a complete program.

num1temp num2

Figure 6.9a Save the first value

num1temp num2

Figure 6.9b Replace the first value with the second value

num2num1temp

Figure 6.9c Change the second value

330 Modularity Using Functions

Program 6.10

#include <iostream>

using namespace std;

void swap(double&, double&); // function receives two references

int main()

{

double firstnum = 20.5, secnum = 6.25;

cout << "The value stored in firstnum is: " << firstnum << endl;

cout << "The value stored in secnum is: "<< secnum << "\n\n";

swap(firstnum, secnum); // call the function with references

cout << "The value stored in firstnum is now: "

<< firstnum << endl;

cout << "The value stored in secnum is now: "

<< secnum << endl;

return 0;

}

void swap(double& num1, double& num2)

{

double temp;

temp = num1; // save num1's value

num1 = num2; // store num2's value in num1

num2 = temp; // change num2's value

return;

}

The following is a sample run of Program 6.10:

The value stored in firstnum is: 20.5

The value stored in secnum is: 6.25

The value stored in firstnum is now: 6.25

The value stored in secnum is now: 20.5

As shown by Program 6.10’s output, the values stored in main()’s variables have been
modified from within swap(), which was made possible by using reference parameters. If
a pass by value had been used instead, the exchange in swap() would affect only swap()’s

331Chapter 6
Returning Multiple Values

parameters and accomplish nothing with main()’s variables. A function such as swap() can
be written only by using a reference or some other means that provides access to main()’s
variables. (This other means is with pointers, the topic of Chapter 12.)

In using reference parameters, two cautions need to be mentioned. First, reference
parameters must be variables (that is, they can’t be used to change constants). For example,
calling swap() with two literals, as in the call swap(20.5, 6.5), passes two constants to
the function. Although swap() can execute, it doesn’t change the values of these constants.13

Second, a function call gives no indication that the called function will be using reference
parameters. The default in C++ is to make passes by value rather than passes by reference,
specifically to limit a called function’s ability to alter variables in the calling function. This
calling procedure should be adhered to whenever possible, which means reference param-
eters should be used only in restricted situations that require multiple return values, as in the
swap() function in Program 6.10. The calc() function included in Program 6.9, although
useful for illustration purposes, could also be written as two separate functions, each
returning a single value.

EXERCISES 6.3

1. (Practice) Write parameter declarations for the following:
a. A parameter named slope that will be a reference to a double-precision value

b. A parameter named energy that will be a reference to a double-precision number

c. A parameter named minutes that will be a reference to an integer number

d. A parameter named key that will be a reference to a character

e. A parameter named yield that will be a reference to a double-precision number

2. (Practice) Three integer arguments are to be used in a call to a function named
time(). Write a suitable function header for time(), assuming that time() accepts
these variables as the reference parameters sec, min, and hours and returns no value to
its calling function.

3. (Modify) Rewrite the findMax() function in Program 6.5 so that the variable max,
declared in main(), is used to store the maximum value of the two passed numbers.
The value of max should be set from within findMax(). (Hint: A reference to max has
to be accepted by findMax().)

4. (Practice) Write a function named change() that has an integer parameter and six inte-
ger reference parameters named hundreds, fifties, twenties, tens, fives, and
ones. The function is to consider the passed integer value as a dollar amount and con-
vert the value into the fewest number of equivalent bills. Using the reference parameters,
the function should alter the arguments in the calling function.

5. (Practice) Write a function named time() that has an integer parameter named
seconds and three integer reference parameters named hours, mins, and secs. The

13Most compilers catch this error.

332 Modularity Using Functions

function is to convert the passed number of seconds into an equivalent number of hours,
minutes, and seconds. Using the reference parameters, the function should alter the argu-
ments in the calling function.

6. (Practice) Write a function named yearCalc() that has an integer parameter represent-
ing the total number of days from the date 1/1/2000 and reference parameters named
year, month, and day. The function is to calculate the current year, month, and day
given the number of days passed to it. Using the reference parameters, the function
should alter the arguments in the calling function. For this problem, assume each year has
365 days, and each month has 30 days.

7. (Desk Check) The following program uses the same argument and parameter names in
both the calling and called functions. Determine whether doing so causes any problem for
the compiler.

#include <iostream>
using namespace std;

void time(int&, int&); // function prototype

int main()
{

int min, hour;

cout << "Enter two numbers :";
cin >> min >> hour;
time(min, hour);

return 0;
}

void time(int& min, int& hour) // accept two references
{

int sec;

sec = (hour * 60 + min) * 60;
cout << "The total number of seconds is " << sec << endl;

return;

6.4 A Case Study: Rectangular to Polar Coordinate
Conversion

Preparing a well-designed computer program is much like preparing a well-designed term
paper, in that both should start with an outline. This outline can be written down or, for very
small programs, simply kept in mind as the program is being developed. As with a term-paper
outline that lists the main topics, a computer program’s initial outline lists the primary tasks
the program is to accomplish.

In written form, a computer program’s initial outline is typically a pseudocode description
or a first-level structure diagram. (Both were described in Section 1.3.) This initial outline

333Chapter 6
A Case Study: Rectangular to Polar
Coordinate Conversion

begins the process of defining a more complicated problem as a set of smaller, more
manageable tasks. Each of these tasks can be further subdivided or refined into even smaller
tasks, if required. After the tasks are well defined, the actual work of coding can begin,
starting with any task, in any order. If there are more tasks than one programmer can handle,
they can be distributed among as many programmers as necessary. This workload distribution
is equivalent to having many people work on a large research project, with each person
responsible for a topic or project component. A general outline applicable to many
engineering and scientific tasks is the following algorithm:

Get the inputs to the problem
Calculate the desired result
Report the results of the calculation

These three tasks are the primary responsibilities of every program, and this algorithm is
referred to as the problem-solver algorithm. Figure 6.10 shows a first-level structure diagram
of this algorithm.

Each task in the problem-solver algorithm can be worked on independently as a
function—a sort of “mini” C++ program that’s easier to complete than a whole program. Each
function task can be refined and coded in any order, although completing the input section
first usually makes testing and development easier. Next, you apply this development
procedure to the programming problem of converting rectangular coordinates to their polar
equivalents.

Step 1 Problem Definition

A program is to be written to convert a point’s rectangular (x,y) coordinates into polar form.
That is, given an x and y position on a Cartesian coordinate system, shown in Figure 6.11, you
must calculate the distance from the origin, r, and the angle from the x-axis, θ , specified by
the point. The values of r and θ are referred to as the point’s polar coordinates.

When the x and y coordinates of a point are known, the equivalent r and θ coordinates
can be calculated by using these formulas:

r x y= +2 2

θ = ≠tan (/)-1 0y x x

You begin developing your program with an outline of what the program is to accomplish.
You can construct an initial pseudocode description by applying the problem-solver algorithm

Problem-
solver

algorithm

Get
inputs

Calculate
result

Display
result

Figure 6.10 The problem-solver algorithm

334 Modularity Using Functions

to the specifics of the program. The required inputs are x and y coordinates, the calculation
is to convert the input values to their polar coordinate form, and the display is the calculated
polar coordinates. The initial pseudocode description is as follows:

Get the x and y coordinate values
Calculate the polar (r and θ) coordinate values
Display the polar coordinate values

Figure 6.12 shows the equivalent first- or top-level structure diagram for this algorithm.

As this program is rather simple and each task described by the algorithm is well defined, you
can begin coding each task. To show that any task can be coded independently of any other task,
you start by coding the function that calculates polar coordinates, although you could start with
any function. As an added feature, this function will return the angle θ in degrees rather than
the radian measure the atan() function returns. Because this function must receive two inputs,
the x and y coordinates, and return two outputs, the r and θ coordinates, you provide four
parameters: two for the inputs and two for the outputs. Using the parameter names x, y, r, and

(x,y)

x-axis

y-axis

r

Figure 6.11 The correspondence between polar (distance and angle) and Cartesian (x and y)
coordinates

Rectangular
to polar

coordinate
conversion

Input x and
y coordinates

Calculate
r and

Display
r andθ θ

Figure 6.12 A top-level structure diagram

335Chapter 6
A Case Study: Rectangular to Polar
Coordinate Conversion

theta and the function name polar(), the following code performs the required calculation
of polar coordinates:

void polar(double x, double y, double& r, double& theta)
{

const double TODEGREES = 180.0/3.141593;

r = sqrt(x * x + y * y);
theta = atan(y/x) * TODEGREES;

return;
}

The polar() function is straightforward. The function header declares that the
function returns no value, and each of its parameters is declared as a floating-point data type.
The first two parameters are used to accept x and y values, and the last two parameters,
which are reference parameters, are used to pass the converted distance and angle values
back to the calling function.

In the function body, a constant named TODEGREES is defined as the factor 180.0 /
3.142593. The next two assignment statements use the parameters x and y to assign values
to the r and theta parameters. The TODEGREES named constant is used to convert the
radian value returned from the atan() function into degrees. As written, the polar()
function can be compiled to check for any compile-time errors.

To understand how the return values are passed, it’s helpful to think of the reference
parameters r and theta as containers (or variables) through which values can be passed in
either direction. This situation is shown in Figure 6.13, which illustrates the fundamental
characteristics of reference parameters: They simply make it possible for both called functions and
calling functions to access the same storage area with different names. As shown in Figure 6.13, the
calling function can access the values assigned to r and theta in polar() with the
argument names distance and angle or any other programmer-selected argument names.

Step 2 Testing the Function

After polar() is written, it can be tested independently of any other function. For this testing,
you write a dedicated driver function that calls only polar(), as shown in Program 6.11.

r

main()

polar()

main()

polar()
5.0

distance

theta

53.1301

angle

Figure 6.13 Parameter values when polar() is called

336 Modularity Using Functions

Program 6.11

#include <iostream>

#include <cmath>

using namespace std;

void polar(double, double, double&, double&); // function prototype

int main()

{

double distance, angle;

polar(3.0, 4.0, distance, angle);

cout << "r = " << distance << endl;

cout << "angle = " << angle << endl;

return 0;

}

void polar(double x, double y, double& r, double& theta)

{

const double TODEGREES = 180.0/3.141593;

r = sqrt(x * x + y * y);

theta = atan(y/x) * TODEGREES;

return;

}

Notice that in main(), the literals 3.0 and 4.0 are passed to polar(). The function
accepts these inputs as the parameters x and y and uses these parameters in calculating
values for the parameters r and theta. In main(), these last two parameters are known as
distance and angle, and their values are displayed immediately after the call to polar()
is made. This is the output produced when Program 6.11 runs:

r = 5

angle = 53.1301

These results are the same as those you would get from a hand calculation. As the
function performs only two calculations, and the results displayed by the test program agree
with those from a hand calculation, the function has been completely tested. It still remains
to be group tested with the other two functions required for the complete program to make
sure correct argument values are exchanged between each function.

337Chapter 6
A Case Study: Rectangular to Polar
Coordinate Conversion

Step 3 Completing the Program

The structure diagram for the complete program (shown previously in Figure 6.12) also
requires writing functions for accepting two rectangular coordinates and displaying the
calculated polar coordinates. The following function, getrec(), can be used to accept the
input data:

void getrec(double& x, double& y)
{

cout << "Rectangular to Polar Coordinate"
<< " Conversion Program\n" << endl;

cout << "Enter the x coordinate: ";
cin >> x;
cout << "Enter the y coordinate: ";
cin >> y;

return;
}

In this function, the reference parameters x and y are used to return the values entered
in response to the two cin prompts. As with the polar() function, this function can be
tested by using a small dedicated driver program. Program 6.12 shows the function with its
driver program.

Notice that the dedicated driver program, also referred to as a “front-end driver,” has
been used to call getrec() and display the values this function returns. The following
output produced by Program 6.12 verifies the correct operation of the getrec() function:

Rectangular to Polar Coordinate Conversion Program

Enter the x coordinate: 3

Enter the y coordinate: 4

The entered value for x is 3

The entered value for y is 4

338 Modularity Using Functions

Program 6.12

#include <iostream>

using namespace std;

void getrec(double&, double&); // function prototype

int main()

{

double xcoord, ycoord;

getrec(xcoord, ycoord);

cout << "The entered value for x is " << xcoord << endl;

cout << "The entered value for y is " << ycoord << endl;

return 0;

}

void getrec(double& x, double& y)

{

cout << "Rectangular to Polar Coordinate"

<< " Conversion Program\n" << endl;

cout << "Enter the x coordinate: ";

cin >> x;

cout << "Enter the y coordinate: ";

cin >> y;

return;

}

The function for displaying polar coordinates is constructed in a similar manner.
Program 6.13 contains both the function, named showit(), and a front-end driver for
testing the function. Notice that the parameter names used in the function header for
showit() need not be the same as those used in any other function. showit() is
constructed to simply display the values in its two parameters, which in this case have been
named radius and angle.

The following output of Program 6.13 verifies that showit() displays the values passed
to it correctly:

The polar coordinates are:

Distance from origin: 5

Angle (in degrees) from x-axis: 53.1301

339Chapter 6
A Case Study: Rectangular to Polar
Coordinate Conversion

Program 6.13

#include <iostream>

using namespace std;

void showit(double, double); // function prototype

int main()

{

showit(5.0, 53.1301);

return 0;

}

void showit(double radius, double angle)

{

cout << "\nThe polar coordinates are: " << endl;

cout << " Distance from origin: " << radius << endl;

cout << " Angle (in degrees) from x-axis: " << angle << endl;

return;

}

It now remains to create one main() program that calls each of the developed functions in
the correct order. This is done in Program 6.14, which also includes the functions getrec(),
polar(), and showit().

Program 6.14

// This program converts rectangular coordinates to polar coordinates

// Functions used: getrec() - obtain the rectangular coordinates

// : polar() - calculate the polar coordinates

// : showit() - display the polar coordinates

#include <iostream>

#include <cmath>

using namespace std;

void getrec(double&, double&); // function prototype

void polar(double, double, double&, double&); // function prototype

void showit(double, double); // function prototype

�

340 Modularity Using Functions

int main()

{

double x, y, distance, angle;

getrec(x, y);

polar(x, y, distance, angle);

showit(distance, angle);

return 0;

}

void getrec(double& x, double& y)

{

cout << "Rectangular to Polar Coordinate"

<< " Conversion Program\n" << endl;

cout << "Enter the x coordinate: ";

cin >> x;

cout << "Enter the y coordinate: ";

cin >> y;

return;

}

void polar(double x, double y, double& r, double& theta)

{

const double TODEGREES = 180.0/3.141593;

r = sqrt(x * x + y * y);

theta = atan(y/x) * TODEGREES;

return;

}

void showit(double radius, double angle)

{

cout << "\nThe polar coordinates are: " << endl;

cout << " Distance from origin: " << radius << endl;

cout << " Angle (in degrees) from x-axis: " << angle << endl;

return;

}

341Chapter 6
A Case Study: Rectangular to Polar
Coordinate Conversion

The following output was produced from one run of Program 6.14:

Rectangular to Polar Coordinate Conversion Program

Enter the x coordinate: 3

Enter the y coordinate: 4

The polar coordinates are:

Distance from origin: 5

Angle (in degrees) from x-axis: 53.1301

Before leaving Program 6.14, note that an alternative to writing driver programs for each
function during program development is writing a main() program first and adding the
functions later as they’re developed. To do this, you use stubs for each function (see Section 6.1)
and then replace each stub, one at a time, with the completed function.

EXERCISES 6.4

1. (Practice) The volume, v, and side surface area, s, of a cylinder are given by the formulas
v= �r2l
s = 2�rl
where r is the cylinder’s radius, and l is its length. Using these formulas, write and test a
function named cylinder() that accepts a cylinder’s radius and length and returns its
volume and side surface area.

2. (Practice) Write a C++ program that accepts the rectangular coordinates of two points
(x1, y1) and (x2, y2), calculates the distance of each point from the origin, and calculates
the distance between the two points. The distance, d, between two points is given by
this formula:

d x x y y= () + ()2 1

2

2 1

2
- -

3. (Fluid Mechanics) Fluid flowing in a pipe flows in a smooth pattern, known as laminar
flow, or a turbulent pattern, known as turbulent flow. The velocity, V, that produces each
type of flow in the pipe can be determined by using these formulas:
Vlaminar = (2100 µ) / (r d)
Vturbulent = (4000 µ) / (r d)

Vlaminar is the velocity of the fluid, in ft/sec, that produces a definite laminar flow.
Vturbulent is the velocity of the fluid, in ft/sec, that produces a definite turbulent flow.
µ is the fluid’s viscosity in lbf-sec/ft2.
ρ is the fluid’s density in slug/ft3.
d is the pipe’s inside diameter in feet.

342 Modularity Using Functions

Using these formulas, write and test a C++ function named flow() that returns both the
laminar flow velocity, Vlaminar , and the turbulent flow velocity, Vturbulent , using reference
parameters. The function should calculate these velocities for water, which has a viscosity,
µ, of 1.9 × 105 lbf-sec/ft2 and a density, r , of 1.94 slug/ft3. The pipe diameter should be
passed by value to the flow() function.

4. (Fluid Mechanics) The viscosity and density of three common fluids are listed in the
following chart:

Fluid Viscosity (lbf-sec/ft2) Density (slug/ft3)
Ethyl alcohol 2.29 × 105 1.527
Methyl alcohol 1.17 × 105 1.531
Propyl alcohol 4.01 × 105 1.556

Using this data, write and test a C++ function named viscDen() that returns the viscos-
ity and density of the selected fluid by using reference parameters. The type of fluid
should be input to the function as a character that’s passed by value.

5. (Numerical) Many algorithms have been developed for generating pseudorandom
numbers. Some use a counting scheme, such as counting bits beginning at an arbitrary
location in a changing memory. Another scheme, which creates pseudorandom numbers by
performing a calculation, is the power residue method.
The power residue method begins with an odd n-digit integer, referred to as the “seed”
number. The seed is multiplied by the value (10n/2 - 3). Using the lowest n digits of the
result (the “residue”) produces a new seed. Continuing this procedure produces a series
of random numbers, with each new number used as the seed for the next number. If the
original seed has four or more digits (n equal to or greater than 4) and is not divisible by
2 or 5, this procedure yields 5 × 10(n-2) random numbers before a sequence of numbers
repeats itself. For example, starting with a six-digit seed (n = 6), such as 654321, a series
of 5 × 104 = 50,000 random numbers can be generated.
As an algorithm, the steps in generating pseudorandom numbers with a power residue
method consist of the following:

Step 1: Have a user enter a six-digit integer seed that isn’t divisible by 2 or 5—this
means the number should be an odd number not ending in 5.
Step 2: Multiply the seed number by 997, which is 103 - 3.
Step 3: Extract the lower six digits of the result produced by Step 2. Use this random
number as the next seed.
Step 4: Repeat Steps 2 and 3 for as many random numbers as needed.

343Chapter 6
A Case Study: Rectangular to Polar
Coordinate Conversion

Therefore, if the user-entered seed number is 654321 (Step 1), the first random number
generated is calculated as follows:

Step 2: 654321 × 997 = 652358037
Step 3: Extract the lower six digits of the number obtained in Step 2, using a standard
programming “trick” that involves the following:
Step 3a: Divide the number by 106 = 1000000 (for example, 652358037 / 1000000
= 652.358037).
Step 3b: Take the integer part of the result of Step 3a (for example, the integer part
of 652.358037 = 652).
Step 3c: Multiply the previous result by 106 (for example, 652 × 106 = 652000000).
Step 3d: Subtract this result from the original number (for example, 652358037 -
652000000 = 358037).

The integer part of a floating-point number can be determined by assigning the floating-
point number to an integer variable or using a C++ cast (see Section 3.3). In this proce-
dure, you’ll use the cast mechanism. The algorithm for producing a random number can
be accomplished with the following code:

i = int(997.0 * x / 1.e6); // take the integer part
x = 997.0 * x - i * 1.e6;

Using this information, do the following:
a. Create a function named randnum() that accepts a floating-point “seed” as a param-

eter and returns a floating-point random number between 0 and 1.e6.

b. Incorporate the randnum() function created in Exercise 5a into a working C++ pro-
gram that produces 10 random numbers between 0 and 1.e6.

c. Test the randomness of the randnum() function created in Exercise 5a by using the
method described in Exercise 9. Try some even seed values and odd seed values end-
ing in 5 to determine whether they affect the randomness of the numbers.

6. (Mathematical) Write a C++ function that determines in which quadrant a line drawn
from the origin resides. The determination of the quadrant is made by using the angle
the line makes with the positive x-axis, as follows:

Angle from the Positive X-Axis Quadrant
Between 0 and 90 degrees 1
Between 90 and 180 degrees 2
Between 180 and 270 degrees 3
Between 270 and 360 degrees 4

344 Modularity Using Functions

Note: If the angle is exactly 0, 90, 180, or 270 degrees, the corresponding line doesn’t reside in
any quadrant; it lies on an axis. For this case, your function should return a 0.

N
O

T
E

7. (Simulation) Write a program to simulate the roll of two dice. If the total of the two dice
is 7 or 11, you win; otherwise, you lose. Embellish this program as much as you like, with
betting, different odds, different combinations for win or lose, stopping play when you
have no money left or reach the house limit, displaying the dice, and so forth. (Hint: Cal-
culate the dots showing on each die with the expression dots = int(6.0 * random
number + 1), where the random number is between 0 and 1.)

8. (Desk Check) The following program uses the same variable names in both the calling
and called functions. Determine whether doing so causes any problem for the compiler.

#include <iostream.h>

int time(int, int); // function prototype

int main()
{

int min, hour, sec;

cout << "Enter two numbers: ";
cin >> min, hour;
sec = time(min, hour);
cout << "The total number of seconds is " << sec << endl;

return 0;
}

int time(int min, int hour)
{

int sec;

sec = (hour * 60 + min) * 60;

return sec;
}

9. (Numerical) Write a program that tests the effectiveness of the rand() library function.
Start by initializing 10 counters to 0. Then generate a large number of pseudorandom integers
between 0 and 9. Each time a 0 occurs, increment the variable you have designated as the
zero counter; when a 1 occurs, increment the counter variable that’s keeping count of the 1s
that occur; and so on. Finally, display the number of 0s, 1s, 2s, and so on that occurred and
the percentage of the time they occurred.

345Chapter 6
A Case Study: Rectangular to Polar
Coordinate Conversion

6.5 Variable Scope

Now that you have begun to write programs containing more than one function, you can look
more closely at the variables declared in each function and their relationship to variables in
other functions. By their nature, C++ functions are constructed to be independent modules.
As you have seen, values are passed to a function by using the function’s parameter list, and
a value is returned from a function by using a return statement. Seen in this light, a
function can be thought of as a closed box, with slots at the top to receive values and a single
slot at the bottom to return a value (see Figure 6.14).

The metaphor of a closed box is useful because it emphasizes that what goes on inside
the function, including all variable declarations in the function body, is hidden from the view
of all other functions. Because the variables created in a function are conventionally available
only to the function, they are said to be local to the function, or local variables. This term
refers to the scope of an identifier; scope is the section of the program where the identifier,
such as a variable, is valid or “known.” This section of the program is also referred to as
where the variable is “visible.”

A variable can have a local scope or a global scope. A variable with a local scope is simply one
with storage locations set aside for it by a declaration statement in a function body. Local
variables are meaningful only when used in expressions or statements inside the function that
declared them. This means the same variable name can be declared and used in more than one
function. For each function that declares the variable, a separate and distinct variable is created.

All the variables you have used until now have been local variables, a result of placing
declaration statements inside functions and using them as definition statements that cause
the computer to reserve storage for the declared variable. As you’ll see in the next section,
declaration statements can be placed outside functions and also need not act as definitions
that reserve new storage areas for the declared variable.

A variable with global scope, more commonly termed a global variable, has storage created
for it by a declaration statement located outside any function. These variables can be used
by all functions that are placed after the global variable declaration. Program 6.15 shows using
a global variable, and the same variable name has been used on purpose inside both functions
in the program.

Values passed to the function

......

A single value directly
returned by the function

Figure 6.14 A function can be considered a closed box

346 Modularity Using Functions

Program 6.15

#include <iostream>

using namespace std;

int firstnum; // create a global variable named firstnum

void valfun(); // function prototype (declaration)

int main()

{

int secnum; // create a local variable named secnum

firstnum = 10; // store a value in the global variable

secnum = 20; // store a value in the local variable

cout << "From main(): firstnum = " << firstnum << endl;

cout << "From main(): secnum = " << secnum << endl;

valfun(); // call the function valfun

cout << "\nFrom main() again: firstnum = " << firstnum << endl;

cout << "From main() again: secnum = " << secnum << endl;

return 0;

}

void valfun() // no values are passed to this function

{

int secnum; // create a second local variable named secnum

secnum = 30; // affects only this local variable's value

cout << "\nFrom valfun(): firstnum = " << firstnum << endl;

cout << "From valfun(): secnum = " << secnum << endl;

firstnum = 40; // changes firstnum for both functions

return;

}

347Chapter 6
Variable Scope

The variable firstnum in Program 6.15 is a global variable because its storage is created
by a definition statement located outside a function. Because both main() and valfun()
follow the definition of firstnum, both functions can use this global variable with no
further declaration needed.

Program 6.15 also contains two separate local variables, both named secnum. Storage for
the secnum variable named in main() is created by the definition statement in main().
A different storage area for the secnum variable in valfun() is created by the definition
statement in the valfun() function. Figure 6.15 shows the three distinct storage areas
reserved by the three definition statements in Program 6.15.

Each variable named secnum is local to the function in which its storage is created, and
each variable can be used only from within its corresponding function. Therefore, when
secnum is used in main(), the storage area main() reserves for its secnum variable is
accessed, and when secnum is used in valfun(), the storage area valfun() reserves for
its secnum variable is accessed. The following output is produced when Program 6.15 runs:

From main(): firstnum = 10

From main(): secnum = 20

From valfun(): firstnum = 10

From valfun(): secnum = 30

From main() again: firstnum = 40

From main() again: secnum = 20

firstnum

main()
secnum

storage for
one integer

valfun()
secnum

storage for
one integer

Figure 6.15 The three storage areas reserved by Program 6.15

348 Modularity Using Functions

Now analyze this output to see how local and global variables work. Because firstnum
is a global variable, both main() and valfun() can use and change its value. Initially, both
functions print the value of 10 that main() stored in firstnum. Before returning,
valfun() changes the value of firstnum to 40, which is the value displayed when the
firstnum is next displayed from within main().

Because each function “knows” only its own local variables, main() can send only the
value of its secnum to cout, and valfun() can send only the value of its secnum to
cout. Therefore, whenever secnum is obtained from main(), the value of 20 is displayed,
and whenever secnum is obtained from valfun(), the value 30 is displayed.

C++ doesn’t confuse the two secnum variables because only one function can execute
at a time. While a function is executing, only variables and parameters that are “in scope” for
that function (global and local) can be accessed.

The scope of a variable in no way influences or restricts its data type. Just as a local
variable can be a character, an integer, a Boolean, a double, or any other data type that’s been
introduced, global variables can be all these data types, as illustrated in Figure 6.16. A
variable’s scope is determined by the placement of the definition statement that reserves
storage for it and optionally by a declaration statement that makes it visible, whereas a
variable’s data type is determined by using a keyword (char, int, bool, double, and so
on) before the variable’s name in a declaration statement.

Scope Resolution Operator
When a local variable has the same name as a global variable, all references to the variable
name made within the local variable’s scope refer to the local variable. This situation is
illustrated in Program 6.16, where the variable name number is defined as both a global and
local variable.

When Program 6.16 is run, the following output is displayed:

The value of number is 26.4

char int bool double

local

char int bool double

global

Scope

Data type

Figure 6.16 Relating the scope and type of a variable

349Chapter 6
Variable Scope

Program 6.16

#include <iostream>

using namespace std;

double number = 42.8; // a global variable named number

int main()

{

double number = 26.4; // a local variable named number

cout << "The value of number is " << number << endl;

return 0;

}

As shown by the program’s output, the local variable name takes precedence over the
global variable. In these cases, you can still access the global variable by using C++’s scope
resolution operator, which has the symbol ::. This operator must be placed immediately
before the variable name, as in ::number. When used in this manner, the :: tells the
compiler to use the global variable. As an example, the scope resolution operator is used in
Program 6.16a.

Program 6.16a

#include <iostream>

using namespace std;

double number = 42.5; // a global variable named number

int main()

{

double number = 26.4; // a local variable named number

cout << "The value of number is " << ::number << endl;

return 0;

}

350 Modularity Using Functions

This is the output produced by Program 6.16a:

The value of number is 42.5

As indicated by this output, the scope resolution operator causes the global, rather than
the local, variable to be accessed.

Misuse of Globals
Global variables allow programmers to “jump around” the normal safeguards provided by
functions. Instead of passing variables to a function, it’s possible to make all variables global.
Do not do this. By indiscriminately making all variables global, you destroy the safeguards C++
provides to make functions independent and insulated from each other, including carefully
designating the type of arguments a function needs, the variables used in the function, and
the value returned.

Using only global variables can be especially disastrous in large programs with many
user-created functions. Because all variables in a function must be declared, creating
functions that use global variables requires remembering to write the appropriate global
declarations at the top of each program using the function—they no longer come along with
the function. More devastating, however, is trying to track down an error in a large program
with global variables. Because a global variable can be accessed and changed by any function
following the global declaration, locating the origin of an erroneous value is a time-consuming
and frustrating task.

Global definitions, however, are sometimes useful in creating variables and constants that
must be shared between many functions. Instead of passing the same variable to each
function, defining the variable once as global is easier. Doing so also alerts anyone reading the
program that many functions use the variable. Most large programs almost always make use
of a few global variables or constants. Smaller programs containing a few functions, however,
should almost never contain global variables.

The misuse of globals doesn’t apply to function prototypes, which typically are global. All
the function prototypes you have used have been of global scope, which declares the
prototype to all subsequent functions. Placing a function prototype in a function makes the
prototype a local declaration, which makes it available only to the function it’s declared
within.

EXERCISES 6.5

1. (Practice) a. For the following section of code, determine the data type and scope of all
declared variables on a separate sheet of paper, using the column headings shown in the
following chart. (The entries for the first variable have been filled in.)

Variable Name Data Type Scope
volts int global to main(), roi(), and step()

351Chapter 6
Variable Scope

#include <iostream>
using namespace std;

int volts;
long int resistance;
double current;

int main()
{

int power;
double factor, time;

.

.
return 0;

}

double roi(int mat1, int mat2)
{

int count;
double weight;

.

.
return weight;

}

int step(double first, double last)
{

int hours;
double fracpart;

.

.
return 10*hours;

}

b. Draw boxes around the appropriate section of the preceding code to enclose each vari-
able’s scope.

c. Determine the data type of parameters that the roi() and step() functions expect
and the data type of the value these functions return.

2. (Practice) a. For the following section of code, determine the data type and scope of all
declared variables on a separate sheet of paper, using the column headings shown in the
following chart. (The entries for the first variable have been filled in.)

Variable Name Data Type Scope
key char global to main(), func1(), and func2()

#include <iostream>
using namespace std;

char key;
long int number;

�

352 Modularity Using Functions

int main()
{

int a,b,c;
double x,y;

.

.
return 0;

}

double secnum;

int func1(int num1, int num2)
{

int o,p;
float q;

.

.
return p;

}

double func2(double first, double last)
{

int a,b,c,o,p;
double r;
double s,t,x;

.

.
return s * t;

}

b. Draw a box around the appropriate section of the preceding code to enclose the scope
of the variables key, secnum, y, and r.

c. Determine the data type of the arguments that the func1() and func2() functions
expect and the data type of the value these functions return.

3. (Practice) The term “scope” can also apply to a function’s parameters. What do you
think is the scope of all function parameters?

4. (Practice) Define the scope of the parameter p2 and the variables a, b, c, d, m, n, p, d,
q, and r in the following program structure:

#include <iostream>
using namespace std;

int a, b;
double One(float);
void Two(void);

int main()
{

int c, d;
double e, f;

.

.
return 0;

}
�

353Chapter 6
Variable Scope

double One(double p2)
{

char m, n;
.
.

}

void Two(void)
{

int p, d;
double q, r;

.

.
}

5. (Desk Check) Determine the values displayed by each cout statement in the following
program:

#include <iostream>
using namespace std;

int firstnum = 10; // declare and initialize a global variable
void display(); // function prototype

int main()
{

int firstnum = 20; // declare and initialize a local variable

cout << "\nThe value of firstnum is " << firstnum << endl;

display();

return 0;
}

void display(void)
{

cout << "The value of firstnum is now " << firstnum << endl;

return;
}

6.6 Variable Storage Categories

The scope of a variable defines the location in a program where that variable can be used.
If you draw a box around the section of program code where each variable is valid, the space
inside the box would represent the variable’s scope. From this viewpoint, a variable’s scope
can be thought of as the space in the program where the variable is valid.

In addition to the space dimension represented by scope, variables have a time
dimension that refers to the length of time storage locations are reserved for a variable. This
time dimension is referred to as the variable’s lifetime. For example, all variable storage

354 Modularity Using Functions

locations are released back to the computer when a program is finished running. However,
while a program is still executing, interim variable storage locations are reserved and
subsequently released back to the computer. Where and how long a variable’s storage
locations are kept before they’re released can be determined by the variable’s storage
category.

Besides having a data type and scope, every variable has a storage category. The four
available storage categories are auto, static, extern, and register. If one of these
category names is used, it must be placed before the variable’s data type in a declaration
statement. The following are examples of declaration statements that include a storage
category designation:

auto int num; // auto storage category and int data type
static int miles; // static storage category and int data type
register int dist; // register storage category and int data type
extern int volts; // extern storage category and int data type
auto float coupon; // auto storage category and float data type
static double yrs; // static storage category and double data type
extern float yld; // extern storage category and float data type
auto char inKey; // auto storage category and char variable type

To understand what a variable’s storage category means, next you examine local variables
(created inside a function) and then global variables (created outside a function).

Local Variable Storage Categories
Local variables can be members only of the auto, static, or register storage categories.
If no category description is included in the declaration statement, the variable is assigned to
the auto category automatically, so auto is the default category C++ uses. All the local
variables you have used have been auto variables because the storage category designation
was omitted.

The term auto is short for “automatic.” Storage for automatic local variables is reserved or
created automatically each time a function declaring automatic variables is called. As long as the
function hasn’t returned control to its calling function, all automatic variables local to the function
are “alive”—meaning storage for the variables is available. When the function returns control to
its calling function, its local automatic variables “die”—meaning storage for the variables is
released back to the computer. This process repeats each time a function is called. For example,
in Program 6.17, the testauto() function is called three times from main().

This is the output produced by Program 6.17:

The value of the automatic variable num is 0

The value of the automatic variable num is 0

The value of the automatic variable num is 0

355Chapter 6
Variable Storage Categories

Program 6.17

#include <iostream>

using namespace std;

void testauto(); // function prototype

int main()

{

int count; // count is a local auto variable

for(count = 1; count <= 3; count++)

testauto();

return 0;

}

void testauto()

{

int num = 0; // num is a local auto variable

// initialized to 0

cout << "The value of the automatic variable num is "

<< num << endl;

num++;

return;

}

Each time testauto() is called, the automatic variable num is created and initialized
to 0. When the function returns control to main(), the variable num is destroyed along with
any value stored in num. Therefore, the effect of incrementing num in testauto(), before
the function’s return statement, is lost when control is returned to main().

For most applications, the use of automatic variables works just fine. In some cases,
however, you want a function to remember values between function calls, which is the
purpose of the static storage category. A local variable declared as static causes the
program to keep the variable and its latest value even when the function that declared it has
finished executing. The following are examples of static variable declarations:

static int rate;
static double resistance;
static char inKey;

356 Modularity Using Functions

A local static variable isn’t created and destroyed each time the function declaring it
is called. After they’re created, local static variables remain in existence for the program’s
lifetime. This means the last value stored in the variable when the function finishes
executing is available to the function the next time it’s called.

Because local static variables retain their values, they aren’t initialized in a declaration
statement in the same way as automatic variables. To understand why, consider the automatic
declaration int num = 0;, which causes the automatic variable num to be created and set
to 0 each time the declaration is encountered. This procedure is called a runtime initialization
because initialization occurs each time the declaration statement is encountered. This type
of initialization would be disastrous for a static variable because resetting the variable’s
value to 0 each time the function is called destroys the very value you’re trying to save.

Initialization of static variables (both local and global) is done only once, when the
program is first compiled. At compile time, the variable is created and any initialization value
is placed in it.14 Thereafter, the value in the variable is kept without further initialization. To
see how this process works, examine Program 6.18.

Program 6.18

#include <iostream>

using namespace std;

void teststat(); // function prototypeint main()

{

int count; // count is a local auto variable

for(count = 1; count <= 3; count++)

teststat();

return 0;

}

void teststat()

{

static int num = 0; // num is a local static variable

cout << "The value of the static variable num is now "

<< num << endl;

num++;

return;

}

14Some compilers initialize static local variables the first time the definition statement is executed rather than when the program is compiled.

357Chapter 6
Variable Storage Categories

This is the output produced by Program 6.18:

The value of the static variable num is now 0

The value of the static variable num is now 1

The value of the static variable num is now 2

As this output shows, the static variable num is set to 0 only once. The teststat()
function then increments this variable just before returning control to main(). The value
num has when leaving the teststat() function is retained and displayed when the
function is next called.

Unlike automatic variables that can be initialized by constants or expressions using both
constants and previously initialized variables, static variables can be initialized only by
using constants or constant expressions, such as 3.2 + 8.0. Also, unlike automatic variables,
all static variables are set to 0 when no explicit initialization is given. Therefore, the
specific initialization of num to 0 in Program 6.17 isn’t required.

The remaining storage category available to local variables, register, isn’t used as
extensively as auto or static variables. The following are examples of register
variable declarations:

register int time;
register double diffren;
register float coupon;

The register variables have the same time duration as auto variables; that is, a local
register variable is created when the function declaring it is entered and is destroyed
when the function finishes running. The only difference between register and auto
variables is where storage for the variable is located.

Storage for all variables (local and global), except register variables, is reserved in the
computer’s memory. Most computers also have a few high-speed storage areas, called
registers, located in the CPU that can also be used for variable storage. Because registers are
located in the CPU, they can be accessed faster than the normal memory storage areas
located in the computer’s memory unit. Also, computer instructions referencing registers
typically require less space than instructions referencing memory locations because there are
fewer registers than memory locations that can be accessed. When the compiler substitutes
a register’s location for a variable during program compilation, the instruction needs less space
than address memory having millions of locations.

Besides decreasing a compiled C++ program’s size, using register variables can
increase the program’s execution speed if your computer supports this data type. Application
programs intended to be executed on different types of computers shouldn’t use registers,
however. Generally, the compiler foils attempts to do so by switching variables declared with
the register storage category to the auto storage category automatically. The only
restriction in using the register storage category is that a register variable’s address
can’t be taken by using the address operator, &. This concept is easier to understand when
you realize that registers don’t have standard memory addresses.

Global Variable Storage Categories
Global variables are created by definition statements external to a function. By their nature,
these externally defined variables don’t come and go with the calling of a function. After a
global variable is created, it exists until the program in which it’s declared has finished
executing. Therefore, global variables can’t be declared as auto or register variables that

358 Modularity Using Functions

are created and destroyed as the program is running. Global variables can be declared with
the static or extern storage category (but not both). The following are examples of
declaration statements including these two category descriptions:

extern int sum;
extern double volts;
static double current;

The static and extern storage categories affect only the scope, not the lifetime, of
global variables. As with static local variables, all global variables are initialized to 0 at
compile time. The purpose of the extern storage category is to extend a global variable’s
scope beyond its normal boundaries. To understand this concept, first note that all the
programs written so far have been contained in one file. Therefore, when you have saved or
retrieved programs, you have needed to give the computer only a single name for your
program. C++ doesn’t require doing this, however.

Large programs typically consist of many functions stored in multiple files. For example,
Figure 6.17 shows the three functions main(), func1(), and func2() stored in one file
and the two functions func3() and func4() stored in a second file.

int volts;
double current;
static double power;
 .
 .
 .
int main()
{
 func1();
 func2();
 func3();
 func4();
}
int func1()
{
 .
 .
 .
}
int func2()
{
 .
 .
 .
}

file1 file2

double factor;
int func3()
{
 .
 .
 .
}
int func4()
 .
 .
 .
}

Figure 6.17 A program can extend beyond one file

359Chapter 6
Variable Storage Categories

For the files shown in Figure 6.17, the global variables volts, current, and power
declared in file1 can be used only by the functions main(), func1(), and func2() in
this file. The single global variable, factor, declared in file2 can be used only by the
functions func3() and func4() in file2.

Although the variable volts has been created in file1, you might want to use it in
file2. To do this, you place the declaration statement extern int volts; in file2,
as shown in Figure 6.18. Putting this statement at the top of file2 extends the scope of
volts into file2 so that it can be used by both func3() and func4(). The extern
designation simply declares a global variable that’s defined in another file. So placing the
statement extern double current; in func4() extends the scope of this global
variable, created in file1, into func4(). Additionally, the scope of the global variable
factor, created in file2, is extended into func1() and func2() by the declaration
statement extern double factor; placed before func1(). Notice that factor is not
available to main().

A declaration statement containing the word extern is different from other declaration
statements, in that it doesn’t cause a new variable to be created by reserving new storage for
the variable. An extern declaration statement simply informs the computer that a global

int volts;
double current;
static double power;
 .
 .
 .
int main()
{
 func1();
 func2();
 func3();
 func4();
}
extern double factor;
int func1()
{
 .
 .
 .
}
int func2()
{
 .
 .
 .
}

file1 file2

double factor;
extern int volts;
int func3()
{
 .
 .
 .
}
int func4()
{
 extern double current;
 .
 .
 .
}

Figure 6.18 Extending the scope of global variables

360 Modularity Using Functions

variable already exists and can now be used. The actual storage for the variable must be
created somewhere else in the program by using one, and only one, global declaration
statement in which the word extern hasn’t been used. The global variable can, of course,
be initialized in its original declaration. Initialization in an extern declaration statement is
not allowed, however, and causes a compilation error.

The existence of the extern storage category is the reason for carefully distinguishing
between the creation and declaration of a variable. Declaration statements containing the
word extern don’t create new storage areas; they only extend the scope of existing global
variables.

The last global storage category, static, is used to prevent extending a global variable
into a second file. Global static variables are declared in the same way as local static
variables, except the declaration statement is placed outside any function.

The scope of a global static variable can’t be extended beyond the file in which it’s
declared. This rule provides a degree of privacy for global static variables. Because they
are “known” and can be used only in the file where they’re declared, other files can’t access
or change their values. Therefore, global static variables can’t subsequently be extended
to a second file by using an extern declaration statement. Trying to do so results in a
compilation error.

EXERCISES 6.6

1. (Practice) a. List the storage categories available to local variables.

b. List the storage categories available to global variables.

2. (Practice) Describe the difference between a local auto variable and a local static
variable.

3. (Practice) What is the difference between the following functions?

void init1()
{

static int yrs = 1;

�

Point of Information

Storage Categories
Variables of type auto and register are always local variables. Only non-static
global variables can be declared by using the extern keyword. Doing so extends the
variable’s scope into another file or function.

Making a global variable static makes the variable private to the file in which it’s
declared. Therefore, static variables can’t use the extern keyword. Except for
static variables, all variables are initialized each time they come into scope; static
variables are initialized only once, when they’re defined.

361Chapter 6
Variable Storage Categories

cout << "The value of yrs is " << yrs << endl;
yrs = yrs + 2;

return;
}

void init2()
{

static int yrs;

yrs = 1;
cout << "The value of yrs is " << yrs << endl;
yrs = yrs + 2;

return;
}

4. (Practice) a. Describe the difference between a global static variable and a global
extern variable.

b. If a variable is declared with an extern storage category, what other declaration
statement must be present somewhere in the program?

5. (Practice) The declaration statement static double resistance; can be used to
create a local or global static variable. What determines the scope of the variable
resistance?

6. (Practice) For the function and variable declarations shown in Figure 6.19, place an
extern declaration to accomplish each of the following:
a. Extend the scope of the global variable choice into file2.

b. Extend the scope of the global variable flag into the average() function only.

c. Extend the scope of the global variable date into average() and variance().

d. Extend the scope of the global variable date into roi() only.

e. Extend the scope of the global variable factor into roi() only.

f. Extend the scope of the global variable bondtype into file1.

g. Extend the scope of the global variable resistance into both watts() and
thrust().

6.7 Common Programming Errors

The following programming errors are common when constructing and using functions:

1. An extremely common error related to functions is passing incorrect data types. The
values passed to a function must correspond to the data types of parameters declared
for the function. One way to verify that correct values have been received is to

362 Modularity Using Functions

display all passed values in the function body before any calculations are made. After
this verification has taken place, you can dispense with the display.15

2. Another common error can occur when the same variable is declared locally in both
the calling and called functions. Even though the variable name is the same, a
change to one local variable does not alter the value in the other local variable.

3. A related error is one that can occur when a local variable has the same name as a
global variable. Inside the function declaring it, the use of the variable’s name affects
only the local variable’s contents unless the scope resolution operator, ::, is used.

4. Another common error is omitting the called function’s prototype before or within
the calling function. The called function must be alerted to the type of value to be
returned, and the function prototype provides this information. The prototype can
be omitted if the called function is placed in a program before its calling function.
Although omitting the prototype and return type for functions returning an integer
is permitted, doing so is poor documenting practice. The actual value a function
returns can be verified by displaying it both before and after it’s returned.

5. The last two common errors are terminating a function header with a semicolon and
forgetting to include the data type of a function’s parameters in the function header.

15In practice, a good debugger program should be used.

char choice;
int flag;
long date, time;
int main()
{
 .
 .
 .
}
double factor;
double watts()
{
 .
 .
 .
}
double thrust()
{
 .
 .
 .
}

file1 file2

char bondtype;
double resistance;
double roi()
{
 .
 .
 .
}
double average()
{
 .
 .
 .
}
double variance
{
 .
 .
 .
}

Figure 6.19 Files for Exercise 6

363Chapter 6
Common Programming Errors

6.8 Chapter Summary
1. A function is called by giving its name and passing any data to it in the parentheses

following the name. If a variable is one of the arguments in a function call, the called
function receives a copy of the variable’s value.

2. The common form of a user-written function is as follows:

returnDataType functionName(parameter list)
{

// declarations and other C++ statements;

// return expression;
}

The first line of the function is called the function header. The opening and closing
braces of the function and all statements between these braces constitute the function
body. The returned data type is, by default, an integer when no returned data type is
specified. The parameter list is a comma-separated list of parameter declarations.

3. A function’s return type is the data type of the value the function returns. If no type is
declared, the function is assumed to return an integer value. If the function doesn’t
return a value, it should be declared as a void type.

4. Functions can return at most a single data type value to their calling functions. This
value is the value of the expression in the return statement.

5. Arguments passed to a function, when it’s called, must conform to the parameters
specified by the function header in terms of order, number of arguments, and specified
data type.

6. Using reference parameters, a variable’s address is passed to a function. If a called
function is passed an address, it has the capability to access the calling function’s variable.
Using passed addresses permits a called function to return multiple values.

7. Functions can be declared to all calling functions by means of a function prototype. The
prototype provides a declaration for a function that specifies the data type the function
returns, the function’s name, and the data types of the arguments the function expects.
As with all declarations, a function prototype is terminated with a semicolon and can be
included in local variable declarations or as a global declaration. This is the most common
form of a function prototype:

dataType functionName(parameter data type list);

If the called function is placed above the calling function in the program, no further
declaration is required because the function’s definition serves as a global declaration to
all subsequent functions.

8. Every variable in a program has a scope, which determines where in the program the variable
can be used. A variable’s scope is local or global and is determined by where the variable’s
definition statement is placed. A local variable is defined in a function and can be used only
in its defining function or block. A global variable is defined outside a function and can be
used in any function following the variable’s definition. All global variables that aren’t
specifically initialized by the user are initialized to 0 by the compiler, and global variables not
declared as static can be shared between files by using the keyword extern.

364 Modularity Using Functions

9. Every variable also has a storage category, which determines how long the value in the
variable is retained, also known as the variable’s lifetime. auto variables are local
variables that exist only while their defining function is executing; register variables
are similar to auto variables but are stored in a computer’s registers rather than in
memory; and static variables can be global or local and retain their values while the
program is running. All static variables are set to 0 when they’re defined if the user
doesn’t initialize them explicitly.

Programming Projects for Chapter 6

1. (Practice) The volume, V, of a right circular cylinder is given by the formula

V = � r2 h

where r is the cylinder’s radius and h is the cylinder’s height. Write a function that
accepts two double-precision arguments—a cylinder’s radius and height—and returns the
cylinder’s volume.

2. (Practice) a. Write a function that calculates the area, a, of a circle when its circumfer-
ence, c, is given. This function should call a second function that returns the radius, r,
of the circle, given c. The relevant formulas are r = c/2� and a = �r2.

b. Write a C++ program that accepts the value of the circumference from the user,
calculates the radius and area, and displays the calculated values. Your program should
use the functions written for Exercise 2a.

3. (Practice) Write a function named pass() that returns a reject or accept code
depending on whether the mean tolerance of a group of parts is less than or greater than
1.0%. If the average is less than 1.0%, the function should return an A for accept;
otherwise, it should return an R for reject.

4. (Practice) A function is defined by the following code:

double FractionToDecimal(double numerator, double denominator)
{

return (numerator/denominator);
}

a. Write the shortest front-end driver you can to test this function and check the passing
of parameters.

b. Complete the FractionToDecimal() function so that it correctly calculates and
returns the decimal value of values passed to it when it’s called.

5. (Data Processing) a. The time in hours, minutes, and seconds is to be passed to a
function named totsec(). Write totsec() to accept these values, determine the total
number of seconds in the passed data, and display the calculated value.

b. Include the totsec() function written for Exercise 5a in a working program. The
main() function should correctly call totsec() and display the value the function
returns. Use the following test data to verify your program’s operation: hours = 10,
minutes = 36, and seconds = 54. Make sure to do a hand calculation to verify the result
your program displays.

365Chapter 6
Programming Projects

6. (Data Processing) a. Write a function named daycount() that accepts a month, day, and
year as its input arguments; calculates an integer representing the total number of days from
the turn of the century to the date that’s passed; and returns the calculated integer to the
calling function. For this problem, assume each year has 365 days and each month has
30 days. Test your function by verifying that the date 1/1/00 returns a day count of 1.

b. Include the daycount() function written for Exercise 6a in a working program. The
main() function should correctly call daycount() and display the integer returned
by the function.

7. (Data Processing) a. A clever and simple method of preparing to sort dates into
ascending (increasing) or descending (decreasing) order is to convert a date in the form
month/day/year into an integer number with the formula date = year × 10000 + month ×
100 + day. For example, using this formula, the date 12/6/1988 converts to the integer
19881206, and the date 2/28/2010 converts to the integer 20100228. Sorting the resulting
integer numbers puts dates into the correct order automatically. Using this formula, write
a function named convertdays() that accepts a month, day, and year; converts the
passed data into a single date integer; and returns the integer to the calling function.

b. Include the convertdays() function written for Exercise 7a in a working program.
The main() function should call convertdays() correctly and display the integer
the function returns.

8. (Data Processing) Write a program that reads a key pressed on the keyboard and
displays its code on the screen. Use the program to determine the code for the Enter key.
Then write a function named ReadOneChar() that reads a character and ignores any
succeeding characters until the Enter key is pressed. The entered character should be
returned by ReadOneChar().

9. (Conversion) a. Write and test a C++ function named MakeMilesKmTable() to
display a table of miles converted to kilometers. The arguments to the function should
be the starting and stopping values of miles and the increment. The output should be
a table of miles and their equivalent kilometer values. Use the relationship that 1 mile
= 1.61 kilometers.

b. Modify the function written for Exercise 9a so that two columns are printed. For
example, if the starting value is 1 mile, the ending value is 20 miles, and the
increment is 1, the display should look like the following:

Miles = Kilometers Miles = Kilometers
1 1.61 11 17.70
2 3.22 12 19.31
. . . .
. . . .
10 16.09 20 32.18

(Hint: Find split = (start + stop)/2. Let a loop execute from miles = start to split, and
calculate and print across one line the values of miles and kilometers for both miles and
(miles - start + split + 1).)

366 Modularity Using Functions

10. (Conversion) Your company will soon open a new office in France. So that it can do
business there, your manager has asked you to prepare a comprehensive package that
performs the following American-to-metric conversions on demand:

Measure American Metric Formula
distance inch

foot
yard
mile

centimeter
meter
meter
kilometer

2.54 cm/in
0.305 m/ft
0.9144 m/yd
1.6109 km/mi

temperature Fahrenheit Celsius C = (5/9)(F - 32)
weight pound

ounce
kilogram
gram

0.454 kg/lb
28.35 gm/oz

currency dollar franc entered by the user,
about 5 francs/$

capacity quart
teaspoon

liter
milliliter

0.946 liter/qt
4.9 ml/tsp

math degree
degree

radian
grad

rad = (�/180)(degree)
grad = (200/180)(degree)

11. (Numerical) Heron’s formula for the area, A, of a triangle with sides of length a, b, and
c is

A s s a s b s c= ()()() - - -

where

s
a b c

=
+ +()

2

Write, test, and execute a function that accepts the values of a, b, and c as parameters
from a calling function, and then calculates the values of s and [s(s - a)(s - b)(s - c)]. If
this quantity is positive, the function calculates A. If the quantity is negative, a, b, and
c do not form a triangle, and the function should set A = -1. The value of A should be
returned by the function.

12. (Numerical) A formula to raise a real number, a, to the real power, b, is given by the
formula

a eb b a= × () ln

where a must be positive and b must be positive or 0. Using this formula, write a function
named power() that accepts a and b as real values and returns ab.

13. (Numerical) A fraction-handling program contains this menu:

A. Add two fractions
B. Convert a fraction to decimal
C. Multiply two fractions
Q. Quit

a. Write C++ code for the program with stub functions for the choices.

367Chapter 6
Programming Projects

b. Insert the FractionToDecimal() function from Exercise 4b into the code with
commands to pass and display the parameters.

c. Complete the program by replacing the stub functions with functions that perform
appropriate operations.

14. (Numerical) A value that’s sometimes useful is the greatest common divisor of two
integers, n1 and n2. Euclid discovered an efficient method to do this more than 2000 years
ago. For this exercise, however, a stub is enough. Write the integer function stub gcd(n1,
n2). Simply have it return a value that suggests it received its arguments correctly. (Hint: N1
+ N2 is a good choice of return values. Why isn’t N1 / N2 a good choice?)

15. (Numerical) a. Euclid’s method for finding the greatest common divisor (GCD) of two
positive integers consists of the following steps:

Step 1: Divide the larger number by the smaller and retain the remainder.
Step 2: Divide the smaller number by the remainder, again retaining the remainder.
Step 3: Continue dividing the previous remainder by the current remainder until the

remainder is zero, at which point the last non-zero remainder is the GCD.

For example, if the two positive integers are 84 and 49, you have the following:
Step 1: 84/49 yields a remainder of 35.
Step 2: 49/35 yields a remainder of 14.
Step 3: 35/14 yields a remainder of 7.
Step 3: 14/7 yields a remainder of 0.

Therefore, the last non-zero remainder, which is 7, is the GCD of 84 and 49.

Using Euclid’s algorithm, replace the stub function written for Exercise 14 with an actual
function that determines and returns the GCD of its two integer arguments.

16. (Data Processing) a. Write a function named date() that accepts a long integer of the
form yyyymmdd, such as 19980412; determines the corresponding month, day, and year;
and returns these three values to the calling function. For example, if date is called by
using the statement

date(20110412, &month, &day, &year)

the number 4 should be returned in month, the number 12 in day, and the number 2011
in year.

b. Include the date() function written for Exercise 16a in a working program. The
main() function should call date() and display the three values returned by the
function.

368 Modularity Using Functions

17. (Numerical) The determinant of the 2 by 2 matrix

a a

a a
11 12

21 22

is defined as the scalar value a11a22 - a21a12. Similarly, the determinant of a 3 by 3 matrix,
defined as

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

is determined as

a
a a

a a
a

a a

a a
a

a
11

22 23

32 33
21

12 13

32 33
31

12 - +
aa

a a
13

22 23

a. Using this information, write and test two functions named det2() and det3().
The det2() function should accept the four coefficients of a 2 by 2 matrix and return
its determinant. The det3() function should accept the nine coefficients of a 3 by
3 matrix and return its determinant by calling det2() to calculate the required 2 by
2 determinants.

b. Write and run a C++ program that accepts the nine coefficients of a 3 by 3 matrix in
one function, passes these coefficients to det3(), and uses a third function to display
the calculated determinant.

369Chapter 6
Programming Projects

Engineering and Scientific Disciplines

Chemical Engineering
Chemical engineering is the application of the knowledge or techniques of science, par-
ticularly chemistry, to industry. Chemical engineers are responsible for designing and
operating large-scale manufacturing plants for materials that undergo chemical changes
in their production. These materials include all the new and improved products that
have so profoundly affected society, such as petrochemicals, rubbers and polymers, new
metal alloys, industrial and fine chemicals, foods, paints, detergents, cements, pesti-
cides, industrial gases, and medicines.

Chemical engineers also play an important role in pollution abatement and man-
agement of existing energy resources. Because the field of chemical engineering has
become so broad, classifying the activities of chemical engineers is difficult. They can be
subdivided roughly into large-scale production systems (chemical processing) and smaller
scale (molecular) systems.

Chemical Processing
Chemical processing concerns all aspects of designing and operating large chemical-
processing plants. It includes the following areas:

� Petrochemicals: Distilling and refining fuels, such as gasoline, synthetic natural
gas, and coal liquefaction and gasification, and producing an infinite variety of
petroleum products, from cosmetics to pharmaceuticals.

� Synthetic materials: The process of polymerization, joining simple molecules into
large complex molecules, is responsible for many modern materials, such as nylon,
synthetic rubbers, polystyrene, and a wide variety of plastics and synthetic fibers.

� Food and biochemical engineering: The manufacture of packaged food, improve-
ment of food additives, sterilization, and use of industrial bacteria, fungi, and
yeasts in processes such as fermentation.

� Unit operations: Analyzing the transport of heat or fluid, such as pumping
chemicals through a pipeline or transferring heat between substances. This area
also includes the effect of heat transfer on chemical reactions, such as oxidation,
chlorination, and so on.

� Cryogenic engineering: The design of plants operating at temperatures near
absolute zero.

� Electrochemical engineering: Using electricity to alter chemical reactions, such as
electroplating, or designing batteries and energy cells.

� Pollution control: Monitoring and reducing the harmful effects of chemical
processing on the environment. Topics of concern are wastewater control, air
pollution abatement, and the economics of pollution control.

continued...

370 Modularity Using Functions

Engineering and Scientific Disciplines

Molecular Systems
This field involves applying laboratory techniques to large-scale processes and includes
the following areas:

� Biochemical engineering: Application of enzymes, bacteria, and so on to improve
large-scale chemical processes.

� Polymer synthesis: Molecular basis for polymer properties and the chemical
synthesis of new polymers adapted for large-scale production.

� Research and development in all areas of chemical processing.

Preparation for a career in chemical engineering requires a thorough background in
physics, chemistry, and mathematics and a knowledge of thermodynamics and physical,
analytic, and organic chemistry. Although extensively trained in chemistry, chemical
engineers differ from chemists, in that their main concern is adapting laboratory tech-
niques to large-scale manufacturing plants.

371Chapter 6
Programming Projects

This page intentionally left blank

Chapter 7
Arrays

7.1 One-Dimensional Arrays

7.2 Array Initialization

7.3 Declaring and Processing Two-
Dimensional Arrays

7.4 Arrays as Arguments

7.5 A Case Study: Statistical
Analysis

7.6 The Standard Template
Library (STL)

7.7 A Closer Look: Searching and
Sorting

7.8 Common Programming Errors

7.9 Chapter Summary

All the variables you have used so far have a common characteristic: Each variable can be used to store
only a single value at a time. For example, although the variables key, count, and grade declared
in the statements

char key;
int count;
double grade;

are of different data types, each variable can store only one value of the declared data type. These types
of variables are called atomic variables (also referred to as scalar variables), which means their
values can’t be further subdivided or separated into a legitimate data type.

Often you have a set of values, all the same data type, that form a logical group. For example, the
following lists show three groups of items: 1) a list of five double-precision temperatures, 2) a list of
four character codes, and 3) a list of six integer voltages:

Temperatures Codes Voltages

95.75 Z 98
83.0 C 87
97.625 K 92
72.5 L 79
86.25 85

72

A simple list containing items of the same data type is called a one-dimensional array. This chapter
describes how one-dimensional arrays are declared, initialized, stored in a computer, and used. You also
explore the use of one-dimensional arrays with sample programs and see the procedures for declaring
and using multidimensional arrays.

7.1 One-Dimensional Arrays

A one-dimensional array, also referred to as a single-dimensional array, is a list of related values,
all having the same data type, that’s stored with a single group name.1 In C++, as in other
computer languages, the group name is referred to as the array name. For example, consider
this list of temperatures:

95.75
83.0
97.625
72.5
86.25

All the temperatures in the list are double-precision numbers and must be declared as
such. However, each item in the list doesn’t have to be declared separately. The items in the
list can be declared as a single unit and stored under a common variable name called the array
name. For example, temp is used as the name for this list, and the declaration statement
double temp[5]; specifies that temp is to store five double-precision values. Notice that
this declaration statement gives the array (or list) name, the data type of items in the array,
and the number of items in the array. It’s a specific example of the general syntax of an array
declaration statement:

dataType arrayName[number-of-items]

1Lists can be implemented in a variety of ways. An array is simply one list implementation in which all list elements are of the same type, and
each element is stored consecutively in a set of contiguous memory locations.

374 Arrays

Good programming practice requires defining number-of-items in the array as a
constant before declaring the array. So in practice, the previous array declaration for temp
would be declared with two statements, as in these examples:

const int NUMELS = 5; // define a constant for the number of items
double temp[NUMELS]; // declare the array

The following are other examples of array declarations using this two-line syntax:

const int NUMELS = 6;
int volts[NUMELS];

const int ARRAYSIZE = 4;
char code[ARRAYSIZE];

const int SIZE = 100;
double amount[SIZE];

In these declaration statements, each array is allocated enough memory to hold the
number of data items specified in the declaration statement. For example, the array named
volts has storage reserved for six integers, the array named code has storage reserved for
four characters, and the array named amount has storage reserved for 100 double-precision
numbers. The constant identifiers, NUMELS, ARRAYSIZE, and SIZE, are programmer-
selected names. Figure 7.1 illustrates the storage reserved for the volts and code arrays.

Each item in an array is called an element or a component of the array. The elements in
the arrays shown in Figure 7.1 are stored sequentially, with the first element stored in the
first reserved location, the second element stored in the second reserved location, and so on
until the last element is stored in the last reserved location. This contiguous storage
allocation is a key feature of arrays because it provides a simple mechanism for locating any
element in the list easily.

Because elements in the array are stored sequentially, any single element can be accessed
by giving the array’s name and the element’s position. This position is called the element’s

Enough storage for
six integers

an
integer

an
integer

an
integer

an
integer

an
integer

an
integer

volts
array

a
character

a
character

a
character

a
character

code
array

Enough storage for
four characters

Figure 7.1 The volts and code arrays in memory

375Chapter 7
One-Dimensional Arrays

index or subscript value. (The two terms are synonymous.) For a one-dimensional array, the
first element has an index of 0, the second element has an index of 1, and so on. In C++, the
array name and element index are combined by listing the index in brackets after the array
name. For example, the declaration double temp[5]; creates five elements, with the
following correspondences:

temp[0] refers to the first temperature stored in the temp array
temp[1] refers to the second temperature stored in the temp array
temp[2] refers to the third temperature stored in the temp array
temp[3] refers to the fourth temperature stored in the temp array
temp[4] refers to the fifth temperature stored in the temp array

Figure 7.2 illustrates the temp array in memory with the correct designation for each
array element. Each element is referred to as an indexed variable or a subscripted variable
because both a variable name (the array name, in this case) and an index or a subscript value
must be used to reference the element. Remember that the index or subscript value gives the
element’s position in the array.

The subscripted variable, temp[0], is read as “temp sub zero” or “temp zero.” This is
a shortened way of saying “the temp array subscripted by zero.” Similarly, temp[1] is read
as “temp sub one” or “temp one,” temp[2] as “temp sub two” or “temp two,” and so on.

Although referencing the first element with an index of 0 might seem unusual, doing so
increases the computer’s speed when it accesses array elements. Internally, unseen by the
programmer, the computer uses the index as an offset from the array’s starting position. As
illustrated in Figure 7.3, the index tells the computer how many elements to skip, starting
from the beginning of the array, to get to the desired element.

Subscripted variables can be used anywhere that scalar (atomic) variables are valid. Here
are examples of using the elements of the temp array:

temp[0] = 95.75;
temp[1] = temp[0] - 11.0;
temp[2] = 5.0 * temp[0];
temp[3] = 79.0;
temp[4] = (temp[1] + temp[2] - 3.1) / 2.2;
sum = temp[0] + temp[1] + temp[2] + temp[3] + temp[4];

The subscript in brackets need not be an integer constant; any expression that evaluates
to an integer can be used as a subscript.2 In each case, of course, the value of the expression

2Some compilers permit floating-point variables as subscripts; in these cases, the floating-point value is truncated to an integer value.

temp[0] temp[1] temp[2] temp[3] temp[4]

temp
array

element 0 element 1 element 2 element 3 element 4

Figure 7.2 Identifying array elements

376 Arrays

must be within the valid subscript range defined when the array is declared. For example,
assuming i and j are int variables, the following subscripted variables are valid:

temp[i]
temp[2*i]
temp[j-i]

An important advantage of using integer expressions as subscripts is that it allows
sequencing through an array by using a loop. This makes statements such as the following
unnecessary:

sum = temp[0] + temp[1] + temp[2] + temp[3] + temp[4];

The subscript values in this statement can be replaced by a for loop counter to access each
element in the array sequentially. For example, the code

sum = 0; // initialize the sum to zero
for (i = 0; i < 5; i++)

sum = sum + temp[i]; // add in a value

retrieves each array element sequentially and adds the element to sum. The variable i is
used as both the counter in the for loop and a subscript. As i increases by one each time
through the loop, the next element in the array is referenced. The procedure for adding array
elements in the for loop is similar to the accumulation procedure you have used before.

The advantage of using a for loop to sequence through an array becomes apparent when
working with larger arrays. For example, if the temp array contains 100 values rather than just
5, simply changing the number 5 to 100 in the for statement is enough to sequence through
the 100 elements and add each temperature to the sum.

As another example of using a for loop to sequence through an array, say you want to
locate the maximum value in an array of 1000 elements named volts. The procedure to
locate the maximum value is to assume initially that the first element in the array is the
largest number. Then, as you sequence through the array, the maximum is compared to each

Start
here

The array name temp
identifies the starting
location of the array

Skip over three elements to
get to the starting location
of element 3

temp[0] temp[1] temp[2] temp[3] temp[4]

element 3

Figure 7.3 Accessing an array element—element 3

377Chapter 7
One-Dimensional Arrays

element. When an element with a higher value is located, that element becomes the new
maximum. The following code does the job:

const int NUMELS = 1000;

maximum = volts[0]; // set the maximum to element 0
for (i = 1; i < NUMELS; i++) // cycle through the rest of the array

if (volts[i] > maximum) // compare each element to the maximum
maximum = volts[i]; // capture the new high value

In this code, the for statement consists of one if statement. The search for a new
maximum value starts with element 1 of the array and continues through the last element.
Each element is compared to the current maximum, and when a higher value is encountered,
it becomes the new maximum.

Input and Output of Array Values
An array element can be assigned a value interactively by using a cin statement, as shown
in these examples of data entry statements:

cin >> temp[0];
cin >> temp[1] >> temp[2] >> temp[3];
cin >> temp[4] >> volts[6];

In the first statement, a single value is read and stored in the variable temp[0]. The
second statement causes three values to be read and stored in the variables temp[1],
temp[2], and temp[3]. Finally, the last cin statement is used to read values into the
variables temp[4] and volts[6].

Alternatively, a for loop can be used to cycle through the array for interactive data input.
For example, the following code prompts the user for five temperatures:

const int NUMELS = 5;
for(i = 0; i < NUMELS; i++)
{

cout << "Enter a temperature: ";
cin >> temp[i];

}

Point of Information

Aggregate Data Types
In contrast to atomic types, such as integer and floating-point data, there are aggregate
types. An aggregate type, also referred to as both a structured type and a data struc-
ture, is any type whose values can be decomposed and are related by some defined
structure. Additionally, operations must be available for retrieving and updating values
in the data structure.

One-dimensional arrays are examples of a structured type. In a one-dimensional
array, such as an array of integers, the array is composed of integer values, with the
integers related by their position in the list. Indexed variables provide the means of
accessing and modifying values in the array.

378 Arrays

The first temperature entered is stored in temp[0], the second temperature entered is
stored in temp[1], and so on until five temperatures have been entered.

One caution about storing data in an array: C++ doesn’t check the value of the index
being used (called a bounds check). If an array has been declared as consisting of 10 elements,
for example, and you use an index of 12, which is outside the bounds of the array, C++
doesn’t notify you of the error when the program is compiled. The program attempts to
access element 12 by skipping over the appropriate number of bytes from the start of the
array. Usually, this attempt results in a program crash, but not always. If the referenced
location contains a value of the correct data type, the new value simply overwrites the value
in the referenced memory locations. This leads to more errors, which are troublesome to
locate when the variable legitimately assigned to the storage location is used at a different
point in the program.

During output, an array element can be displayed by using a cout statement, or
complete sections of the array can be displayed by including a cout statement in a for loop.
Examples of both methods are shown:

cout << volts[6];

and

cout << "The value of element " << i << " is " << temp[i];

and

const int NUMELS = 20;
for (k = 5; k < NUMELS; k++)

cout << k << " " << amount[k] << endl;

The first statement displays the value of the subscripted variable volts[6]. The
second statement displays the values of subscript i and of temp[i]. Before this statement
can be executed, i must have an assigned value. Finally, the last example includes a cout
statement in a for loop that displays both the value of the index and the value of elements
5 to 20.

Program 7.1 illustrates these input and output techniques, using an array named temp
that’s defined to store five integer numbers. The program includes two for loops. The first
for loop is used to cycle through each array element and allows the user to input array
values. After five values have been entered, the second for loop is used to display the stored
values.

Program 7.1

#include <iostream>

using namespace std;

int main()

{

const int MAXTEMPS = 5;

int i, temp[MAXTEMPS];

�

379Chapter 7
One-Dimensional Arrays

A sample run of Program 7.1 follows:

Enter a temperature: 85

Enter a temperature: 90

Enter a temperature: 78

Enter a temperature: 75

Enter a temperature: 92

temperature 0 is 85

temperature 1 is 90

temperature 2 is 78

temperature 3 is 75

temperature 4 is 92

In reviewing the output of Program 7.1, pay attention to the difference between the
index value displayed and the numerical value stored in the corresponding array element.
The index value refers to the element’s location in the array, and the subscripted variable
refers to the value stored in the designated location.

In addition to simply displaying the values stored in each array element, the elements
can also be processed by referencing the desired element. For example, in Program 7.2, the
value of each element is accumulated in a total, which is displayed after all array elements
have been displayed.

for (i = 0; i < MAXTEMPS; i++) // Enter the temperatures

{

cout << "Enter a temperature: ";

cin >> temp[i];

}

cout << endl;

for (i = 0; i < MAXTEMPS; i++) // Print the temperatures

cout << "temperature " << i << " is " << temp[i] << endl;

return 0;

}

380 Arrays

A sample run of Program 7.2 follows:

Enter a temperature: 85

Enter a temperature: 90

Enter a temperature: 78

Enter a temperature: 75

Enter a temperature: 92

The total of the temperatures 85 90 78 75 92 is 420

Notice that in Program 7.2, unlike Program 7.1, only the values stored in each array
element, not the index numbers, are displayed. Although the second for loop is used to
accumulate the total of each element, the accumulation could also have been accomplished

Program 7.2

#include <iostream>

using namespace std;

int main()

{

const int MAXTEMPS = 5;

int i, temp[MAXTEMPS], total = 0;

for (i = 0; i < MAXTEMPS; i++) // Enter the temperatures

{

cout << "Enter a temperature: ";

cin >> temp[i];

}

cout << "\nThe total of the temperatures";

for (i = 0; i < MAXTEMPS; i++) // Display and total the temperatures

{

cout << " " << temp[i];

total = total + temp[i];

}

cout << " is " << total << endl;

return 0;

}

381Chapter 7
One-Dimensional Arrays

in the first for loop by placing the statement total = total + temp[i]; after the cin
statement used to enter a value. Also, the cout statement used to display the total is placed
outside the second for loop so that the total is displayed only once, after all values have
been added to the total. If this cout statement were placed inside the for loop, five totals
would be displayed, with only the last displayed total containing the sum of all array values.

EXERCISES 7.1

1. (Practice) Write array declarations for the following:
a. A list of 100 double-precision voltages

b. A list of 50 double-precision temperatures

c. A list of 30 characters, each representing a code

d. A list of 100 integer years

e. A list of 32 double-precision velocities

f. A list of 1000 double-precision distances

g. A list of 6 integer code numbers

2. (Practice) Write correct notation for the first, third, and seventh elements of the follow-
ing arrays:
a. int grades[20]

b. double volts[10]

c. double amps[16]

d. int dist[15]

e. double velocity[25]

f. double time[100]

3. (Practice) a. Write input statements using cin that can be used to enter values in the
first, third, and seventh elements of each array declared in Exercise 2.

b. Write a for loop that can be used to enter values for each array declared in Exercise 2.

4. (Practice) a. Write output statements using cout that can be used to display values
from the first, third, and seventh elements of each array declared in Exercise 2.

b. Write a for loop that can be used to display values for the complete array declared in
Exercise 2.

5. (Desk Check) List the elements displayed by the following sections of code:
a. for (m = 1; m <= 5; m++)

cout << a[m] << " ";

b. for (k = 1; k <= 5; k = k + 2)

cout << a[k] << " ";

382 Arrays

c. for (j = 3; j <= 10; j++)

cout << b[j] << " ";

d. for (k = 3; k <= 12; k = k + 3)

cout << b[k] << " ";

e. for (i = 2; i < 11; i = i + 2)

cout << c[i] << " ";

6. (Practice) a. Write a program to input the following values in an array named volts:
11.95, 16.32, 12.15, 8.22, 15.98, 26.22, 13.54, 6.45, and 17.59. After the data has been
entered, have your program display the values.

b. Repeat Exercise 6a, but after the data has been entered, have your program display it
in the following form:

11.95 16.32 12.15
8.22 15.98 26.22
13.54 6.45 17.59

7. (Practice) Write a program to input eight integer numbers in an array named temp. As
each number is input, add the numbers to a total. After all numbers are input, display the
numbers and their average.

8. (Data Processing) a. Write a program to input 10 integer numbers in an array named
fmax and determine the maximum value entered. Your program should contain only one
loop, and the maximum should be determined as array element values are being input.
(Hint: Set the maximum equal to the first array element, which should be input before
the loop used to input the remaining array values.)

b. Repeat Exercise 8a, keeping track of both the maximum element in the array and the
index number for the maximum. After displaying the numbers, print these two mes-
sages (replacing the underlines with the correct values):

The maximum value is: ___
This is element number ___ in the list of numbers

c. Repeat Exercise 8b, but have your program locate the minimum of the data entered.

9. (Data Processing) a. Write a program to input the following integer numbers in an
array named grades: 89, 95, 72, 83, 99, 54, 86, 75, 92, 73, 79, 75, 82, and 73. As each
number is input, add the numbers to a total. After all numbers are input and the total is
obtained, calculate the average of the numbers, and use the average to determine the
deviation of each value from the average. Store each deviation in an array named
deviation. Each deviation is obtained as the element value less the average of all the
data. Have your program display each deviation with its corresponding element from the
grades array.

b. Calculate the variance of the data used in Exercise 9a. The variance is obtained by
squaring each deviation and dividing the sum of the squared deviations by the num-
ber of deviations.

10. (Electrical Eng.) Write a program that specifies three one-dimensional arrays named cur-
rent, resistance, and volts. Each array should be capable of holding 10 elements.

383Chapter 7
One-Dimensional Arrays

Using a for loop, input values for the current and resistance arrays. The entries in
the volts array should be the product of the corresponding values in the current and
resistance arrays (so volts[i] = current [i] * resistance[i]). After all the
data has been entered, display the following output, with the appropriate value under each
column heading:

Current Resistance Volts

7.2 Array Initialization

Array elements can be initialized in their declaration statements in the same manner as scalar
variables, except the initializing elements must be included in braces, as shown in these
examples:

int temp[5] = {98, 87, 92, 79, 85};
char codes[6] = {'s', 'a', 'm', 'p', 'l', 'e'};
double slopes[7] = {11.96, 6.43, 2.58, .86, 5.89, 7.56, 8.22};

Initializers are applied in the order they are written, with the first value used to initialize
element 0, the second value used to initialize element 1, and so on, until all values have been
used. For example, in the declaration

int temp[5] = {98, 87, 92, 79, 85};

temp[0] is initialized to 98, temp[1] is initialized to 87, temp[2] is initialized to 92,
temp[3] is initialized to 79, and temp[4] is initialized to 85.

Because white space is ignored in C++, initializations can be continued across multiple
lines. For example, the following declaration uses four lines to initialize all the array
elements:

int gallons[20] = {19, 16, 14, 19, 20, 18, // initializing values
12, 10, 22, 15, 18, 17, // can extend across
16, 14, 23, 19, 15, 18, // multiple lines
21, 5};

If the number of initializers is less than the declared number of elements listed in square
brackets, the initializers are applied starting with array element 0. Therefore, in the
declaration

double length[7] = {7.8, 6.4, 4.9, 11.2};

only length[0], length[1], length[2], and length[3] are initialized with the listed
values. The other array elements are initialized to 0.

Unfortunately, there’s no method of indicating repetition of an initialization value or of
initializing later array elements without first specifying values for earlier elements.

A unique feature of initializers is that the array size can be omitted when initializing
values are included in the declaration statement. For example, the following declaration
reserves enough storage room for five elements:

int gallons[] = {16, 12, 10, 14, 11};

384 Arrays

Similarly, the following two declarations are equivalent:

char codes[6] = {'s', 'a', 'm', 'p', 'l', 'e'};
char codes[] = {'s', 'a', 'm', 'p', 'l', 'e'};

Both these declarations set aside six character locations for an array named codes. An
interesting and useful simplification can also be used when initializing character arrays. For
example, the following declaration uses the string "sample" to initialize the codes array:

char codes[] = "sample"; // no braces or commas

Recall that a string is any sequence of characters enclosed in quotation marks. The
preceding declaration creates an array named codes with seven elements and fills the array
with the seven characters shown in Figure 7.4. The first six characters, as expected, consist
of the letters s, a, m, p, l, and e. The last character, the escape sequence \0, is called the
null character. The null character is appended automatically to all strings used to initialize a
character array. It’s what distinguishes a C-string from a string class string. This character
has an internal storage code numerically equal to zero. (The storage code for the 0 character
has a numerical value of decimal 48, so the computer can’t confuse the two.) The null
character is used as a sentinel to mark the end of a string.

After values have been assigned to array elements, through initialization in the declara-
tion statement or with interactive input, array elements can be processed as described in the
previous section. For example, Program 7.3 shows the initialization of array elements in the
array declaration statement, and then uses a for loop to locate the maximum value stored
in the array. The following output is produced by Program 7.3:

The maximum value is 27

codes[0] codes[1] codes[2] codes[3] codes[4] codes[5] codes[6]

s a m p l e \0

Figure 7.4 Initializing a character array with a string adds a terminating \0 character

385Chapter 7
Array Initialization

EXERCISES 7.2

1. (Practice) Write array declarations, including initializers, for the following:
a. A list of 10 integer voltages: 89, 75, 82, 93, 78, 95, 81, 88, 77, and 82.

b. A list of five double-precision slopes: 11.62, 13.98, 18.45, 12.68, and 14.76.

c. A list of 100 double-precision distances; the first six distances are 6.29, 6.95, 7.25, 7.35,
7.40, and 7.42.

d. A list of 64 double-precision temperatures; the first 10 temperatures are 78.2, 69.6,
68.5, 83.9, 55.4, 67.0, 49.8, 58.3, 62.5, and 71.6.

e. A list of 15 character codes; the first seven codes are f, j, m, q, t, w, and z.

2. (Data Processing) Write an array declaration statement that stores the following values
in an array named volts: 16.24, 18.98, 23.75, 16.29, 19.54, 14.22, 11.13, and 15.39.
Include these statements in a program that displays the values in the array.

3. (Data Processing) Write a program that uses an array declaration statement to initialize
the following numbers in an array named slopes: 17.24, 25.63, 5.94, 33.92, 3.71, 32.84,
35.93, 18.24, and 6.92. Your program should locate and display the maximum and mini-
mum values in the array.

Program 7.3

#include <iostream>

using namespace std;

int main()

{

const int MAXELS = 5;

int i, max, nums[MAXELS] = {2, 18, 1, 27, 16};

max = nums[0];

for (i = 1; i < MAXELS; i++)

if (max < nums[i])

max = nums[i];

cout << "The maximum value is " << max << endl;

return 0;

}

386 Arrays

4. (Electrical Eng.) Write a program that stores the following resistance values in an array
named resistance: 16, 27, 39, 56, and 81. Your program should also create two arrays
named current and power, each capable of storing five double-precision numbers. Using a
for loop and a cin statement, have your program accept five user-input numbers in the
current array when the program is run. Your program should store the product of the values
of the squares of the current array and the resistance array in the power array. For
example, use power[1] = resistance[1] * pow(current[1],2). Your program
should then display the following output (fill in the chart):

Resistance Current Power
16
27
39
56
81
Total:

5. (Practice) a. Write a declaration to store the string "This is a test" in an array
named strtest. Include the declaration in a program to display the message, using the
following loop:

for (i = 0; i < NUMDISPLAY; i++)
cout << strtest[i];

NUMDISPLAY is a named constant for the number 14.

b. Modify the for statement in Exercise 5a to display only the array characters t, e, s,
and t.

c. Include the array declaration written in Exercise 5a in a program that uses a cout state-
ment to display characters in the array. For example, the statement cout << strtest;
causes the string stored in the strtest array to be displayed. Using this statement
requires having the end-of-string marker, \0, as the last character in the array.

d. Repeat Exercise 5a, using a while loop. (Hint: Stop the loop when the \0 escape
sequence is detected. The expression while (strtest[i] != '\0') can be used.)

387Chapter 7
Array Initialization

7.3 Declaring and Processing Two-Dimensional Arrays

A two-dimensional array, sometimes referred to as a table, consists of both rows and columns
of elements. For example, the following array of numbers is called a two-dimensional array
of integers:

8 16 9 52
3 15 27 6
14 25 2 10

This array consists of three rows and four columns. To reserve storage for this array, both
the number of rows and the number of columns must be included in the array’s declaration.
Calling the array val, the following is the correct specification for this two-dimensional array:

int val[3][4];

Similarly, the declarations

double volts[10][5];
char code[6][26];

specify that the array volts consists of 10 rows and 5 columns of floating-point numbers,
and the array code consists of 6 rows and 26 columns, with each element capable of holding
one character.

To locate each element in a two-dimensional array, you use its position in the array. As
shown in Figure 7.5, the term val[1][3] uniquely identifies the element in row 1, column
3. As with one-dimensional array variables, two-dimensional array variables can be used
anywhere that scalar variables are valid, as shown in these examples using elements of the
val array:

watts = val[2][3];
val[0][0] = 62;
newnum = 4 * (val[1][0] - 5);
sumRow0 = val[0][0] + val[0][1] + val[0][2] + val[0][3];

The last statement causes the values of the four elements in row 0 to be added and the
sum to be stored in the scalar variable sumRow0.

Row 0

Row 1

Row 2

8

3

14

Col. 0

16

15

25

Col. 1

9

27

2

Col. 2

52

6

10

Col. 3

val[1][3]

Row
position

Column
position

Figure 7.5 Each array element is identified by its row and column position

388 Arrays

As with one-dimensional arrays, two-dimensional arrays can be initialized in their
declaration statements by listing the initial values inside braces and separating them with
commas. Additionally, braces can be used to separate rows. For example, the declaration

int val[3][4] = { {8,16,9,52},
{3,15,27,6},
{14,25,2,10} };

declares val as an array of integers with three rows and four columns, with the initial values
given in the declaration. The first set of internal braces contains values for row 0 of the array,
the second set of internal braces contains values for row 1, and the third set of braces contains
values for row 2.

Although the commas in the initialization braces are always required, the inner braces can
be omitted. Without them, the initialization for val can be written as follows:

int val[3][4] = {8,16,9,52,
3,15,27,6,

14,25,2,10};

Separating initial values into rows in the declaration statement isn’t necessary because
the compiler assigns values beginning with the [0][0] element and proceeds row by row
to fill in the remaining values. Therefore, the initialization

int val[3][4] = {8,16,9,52,3,15,27,6,14,25,2,10};

is equally valid but doesn’t clearly indicate to another programmer where one row ends and
another begins.

As shown in Figure 7.6, a two-dimensional array is initialized in row order. The elements
of row 0 are initialized, then the elements of row 1 are initialized, and so on, until the
initializations are completed. This row ordering is the same ordering used to store two-
dimensional arrays. That is, array element [0][0] is stored first, followed by element
[0][1], then element [0][2], and so on. Following row 1’s elements are row 2’s elements,
and so on for all rows in the array.

Initialization
starts with this

element

val[0][0]=8 val[0][1]=16 val[0][2]=9 val[0][3]=52

val[1][0]=3 val[1][1]=15 val[1][3]=6val[1][2]=27

val[2][0]=14 val[2][1]=25 val[2][2]=2 val[2][3]=10

Figure 7.6 Storage and initialization of the val array

389Chapter 7
Declaring and Processing Two-
Dimensional Arrays

As with one-dimensional arrays, two-dimensional arrays can be displayed with element
notation or by using loops (while or for). Program 7.4, which displays all elements of a
3-by-4 two-dimensional array, shows these two techniques. Notice that constants are used to
define the array’s rows and columns.

This is the display produced by Program 7.4:

Display of val array by explicit element

8 16 9 52

3 15 27 6

14 25 2 10

Program 7.4

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int NUMROWS = 3;

const int NUMCOLS = 4;

int i, j;

int val[NUMROWS][NUMCOLS] = {8,16,9,52,3,15,27,6,14,25,2,10};

cout << "\nDisplay of val array by explicit element"

<< endl << setw(4) << val[0][0] << setw(4) << val[0][1]

<< setw(4) << val[0][2] << setw(4) << val[0][3]

<< endl << setw(4) << val[1][0] << setw(4) << val[1][1]

<< setw(4) << val[1][2] << setw(4) << val[1][3]

<< endl << setw(4) << val[2][0] << setw(4) << val[2][1]

<< setw(4) << val[2][2] << setw(4) << val[2][3];

cout << "\n\nDisplay of val array using a nested for loop";

for (i = 0; i < NUMROWS; i++)

{

cout << endl; // print a new line for each row

for (j = 0; j < NUMCOLS; j++)

cout << setw(4) << val[i][j];

}

cout << endl;

return 0;

}

390 Arrays

Display of val array using a nested for loop

8 16 9 52

3 15 27 6

14 25 2 10

The first display of the val array produced by Program 7.4 is constructed by designating
each array element. The second display of array element values, which is identical to the first,
is produced by using a nested for loop. Nested loops are especially useful when dealing with
two-dimensional arrays because they allow the programmer to designate and cycle through each
element easily. In Program 7.4, the variable i controls the outer loop, and the variable j controls
the inner loop. Each pass through the outer loop corresponds to a single row, with the inner loop
supplying the column elements. After a complete row is printed, a new line is started for the next
row. The result is a display of the array in a row-by-row fashion.

After two-dimensional array elements have been assigned, array processing can begin.
Typically, for loops are used to process two-dimensional arrays because, as noted previously,
they allow the programmer to designate and cycle through each array element easily. For
example, the nested for loop in Program 7.5 is used to multiply each element in the val
array by the scalar number 10 and display the resulting value.

Program 7.5

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int NUMROWS = 3;

const int NUMCOLS = 4;

int i, j;

int val[NUMROWS][NUMCOLS] = {8,16,9,52,

3,15,27,6,

14,25,2,10};

// multiply each element by 10 and display it

cout << "\nDisplay of multiplied elements";

for (i = 0; i < NUMROWS; i++)

{

cout << endl; // start each row on a new line

for (j = 0; j < NUMCOLS; j++)

{

val[i][j] = val[i][j] * 10;

cout << setw(5) << val[i][j];

} // end of inner loop

} // end of outer loop

cout << endl;

return 0;

}

391Chapter 7
Declaring and Processing Two-
Dimensional Arrays

Following is the output produced by Program 7.5:

Display of multiplied elements

80 160 90 520

30 150 270 60

140 250 20 100

Larger Dimensional Arrays
Although arrays with more than two dimensions aren’t commonly used, C++ does allow declaring
any number of dimensions by listing the maximum size of all dimensions for the array. For
example, the declaration int response [4][10][6]; declares a three-dimensional
array.The first element in the array is designated as response[0][0][0] and the last element
as response[3][9][5].

As shown in Figure 7.7, you can think of a three-dimensional array as a book of data
tables. Using this analogy, think of the first index as the location of the desired row in a table,
the second index value as the desired column, and the third index value, often called the
“rank,” as the page number of the selected table.

Similarly, arrays of any dimension can be declared. Conceptually, a four-dimensional array
can be represented as a shelf of books, with the fourth dimension used to declare a selected
book on the shelf, and a five-dimensional array can be viewed as a bookcase filled with books,
with the fifth dimension referring to a selected shelf in the bookcase. Using the same analogy,
a six-dimensional array can be thought of as a single row of bookcases, with the sixth
dimension referring to the desired bookcase in the row; a seven-dimensional array can be
thought of as multiple rows of bookcases, with the seventh dimension referring to the desired
row, and so on. Alternatively, arrays of three, four, five, six, and so on dimensional arrays can
be viewed as mathematical n-tuples of order three, four, five, six, and so forth.

Row
index

Column
index

Page number
index (rank)

Figure 7.7 Representation of a three-dimensional array

392 Arrays

EXERCISES 7.3

1. (Practice) Write specification statements for the following:
a. An array of integers with 6 rows and 10 columns

b. An array of integers with 2 rows and 5 columns

c. An array of characters with 7 rows and 12 columns

d. An array of characters with 15 rows and 7 columns

e. An array of double-precision numbers with 10 rows and 25 columns

f. An array of double-precision numbers with 16 rows and 8 columns

2. (Desk Check) Determine the output produced by the following program:

#include <iostream>
using namespace std;

int main()
{

int i, j, val[3][4] = {8,16,9,52,3,15,27,6,14,25,2,10};

for (i = 0; i < 3; ++i)
for (j = 0; j < 4; ++j)

cout << " " << val[i][j];

return 0;
}

3. (Practice) a. Write a C++ program that adds the values of all elements in the val array
used in Exercise 2 and displays the total.

b. Modify the program written for Exercise 3a to display the total of each row separately.

4. (Practice) Write a C++ program that adds equivalent elements of the two-dimensional
arrays named first and second. Both arrays should have two rows and three columns.
For example, element [1][2] of the resulting array should be the sum of
first[1][2] and second[1][2]. The first and second arrays should be initialized as
follows:

first second
16 18 23 24 52 77
54 91 11 16 19 59

5. (Data Processing) a. Write a C++ program that finds and displays the maximum value
in a two-dimensional array of integers. The array should be declared as a 4-by-5 array of
integers and initialized with the data 16, 22, 99, 4, 18, -258, 4, 101, 5, 98, 105, 6, 15, 2,
45, 33, 88, 72, 16, and 3.

b. Modify the program written in Exercise 5a so that it also displays the maximum val-
ue’s row and column subscript numbers.

393Chapter 7
Declaring and Processing Two-
Dimensional Arrays

6. (Data Processing) Write a C++ program that selects the values in a 4-by-5 array of posi-
tive integers in increasing order and stores the selected values in the one-dimensional
array named sort. Use the data statement in Exercise 5a to initialize the two-
dimensional array.

7. (Electrical Eng.) a. An engineer has constructed a two-dimensional array of real num-
bers with three rows and five columns. This array currently contains test voltages of an
amplifier. Write a C++ program that interactively inputs 15 array values, and then deter-
mines the total number of voltages in these ranges: less than 60, greater than or equal to
60 and less than 70, greater than or equal to 70 and less than 80, greater than or equal to
80 and less than 90, and greater than or equal to 90.

b. Entering 15 voltages each time the program written for Exercise 7a runs is cumbersome.
What method could be used for initializing the array during the testing phase?

c. How might the program you wrote for Exercise 7a be modified to include the case of
no voltage being present? That is, what voltage could be used to indicate an invalid
voltage, and how would your program have to be modified to exclude counting such a
voltage?

7.4 Arrays as Arguments

Array elements are passed to a called function in the same manner as scalar variables; they
are simply included as subscripted variables when the function call is made. For example, the
following function call passes the values of the elements volts[2] and volts[6] to the
function findMin():

findMin(volts[2], volts[6]);

Passing a complete array of values to a function is, in many respects, easier than passing
each element. The called function receives access to the actual array rather than a copy of
values in the array. For example, if volts is an array, the function call findMax(volts);
makes the complete volts array available to the findMax() function. This function call
is different from passing a single variable to a function.

Recall that when a single scalar argument is passed to a function (see Section 6.1), the
called function receives only a copy of the passed value, which is stored in one of the
function’s parameters. If arrays were passed in this manner, a copy of the complete array
would have to be created. For large arrays, making copies for each function call would waste
computer storage and frustrate the effort to return multiple-element changes made by the
called program. (Remember that a function returns at most one direct value.)

To avoid these problems, the called function is given direct access to the original array.3
In this way, any changes the called function makes are made directly to the array. For the
following specific examples of function calls, the arrays nums, keys, volts, and current
are declared as shown:

int nums[5]; // an array of five integers
char keys[256]; // an array of 256 characters
double volts[500], current[500]; // two arrays of 500 doubles

3The called function has access to the original array because the array’s starting address is actually passed as an argument. The formal parameter
receiving this address argument is a pointer. Chapter 12 explains the intimate relationship between array names and pointers.

394 Arrays

For these arrays, the following function calls can be made; note that in each case, the
called function receives direct access to the named array:

findMax(nums);
findCh(keys);
calcTot(nums, volts, current);

On the receiving side, the called function must be alerted that an array is being made
available. For example, the following are suitable function headers for the previous functions:

int findMax(int vals[5])
char findCh(char in_keys[256])
void calcTot(int arr1[5], double arr2[500], double arr3[500])

In each function header, the programmer chooses the names in the parameter list.
However, the parameter names used by the functions still refer to the original array created
outside the function, as Program 7.6 makes clear.

Program 7.6

#include <iostream>

using namespace std;

const int MAXELS = 5;

int findMax(int [MAXELS]); // function prototype

int main()

{

int nums[MAXELS] = {2, 18, 1, 27, 16};

cout << "The maximum value is " << findMax(nums) << endl;

return 0;

}

// find the maximum value

int findMax(int vals[MAXELS])

{

int i, max = vals[0];

for (i = 1; i < MAXELS; i++)

if (max < vals[i]) max = vals[i];

return max;

}

395Chapter 7
Arrays as Arguments

Notice that the function prototype for findMax() declares that findMax returns an
integer and expects an array of five integers as an actual argument. It’s also important to know
that only one array is created in Program 7.6. In main(), this array is known as nums, and
in findMax(), the array is known as vals. As illustrated in Figure 7.8, both names refer
to the same array, so vals[3] is the same element as nums[3].

The parameter declaration in the findMax() header actually contains extra information
not required by the function. All that findMax() must know is that the parameter vals
references an array of integers. Because the array has been created in main() and no
additional storage space is needed in findMax(), the declaration for vals can omit the
array size. Therefore, the following is an alternative function header:

int findMax(int vals[])

This form of the function header makes more sense when you realize that only one item
is actually passed to findMax() when the function is called: the starting address of the num
array, as shown in Figure 7.9.

Because only the starting address of vals is passed to findMax(), the number of
elements in the array need not be included in the declaration for vals.4 In fact, generally

4An important consequence of passing the starting address is that findMax() has direct access to the passed array. This access means any change
to an element of the vals array is a change to the nums array. This result is much different from the situation with scalar variables, where the
called function doesn’t receive direct access to the passed variable.

int main()
{
 int nums[5];
 .
 .
 .
 findMax(nums) ;
 returns 0;
}
int findMax(int vals[5])
 .
 .
 .
}

In main(): nums[1] nums[2] nums[3] nums[4]
In findMax(): vals[1] vals[2] vals[3] vals[4]

This creates the array

These reference
the same array

nums[0]
vals[0]

Figure 7.8 Only one array is created

396 Arrays

it’s advisable to omit the array size from the function header. For example, the more general form
of findMax() can be used to find the maximum value of an integer array of arbitrary size:

int findMax(int vals[], int numels) //find the maximum value
{

int i, max = vals[0];

for (i = 1; i < numels; i++)
if (max < vals[i])

max = vals[i];

return max;
}

The more general form of findMax() declares that the function returns an integer
value. The function expects the starting address of an integer array and the number of
elements in the array as arguments. Then, using the number of elements as the boundary for
its search, the function’s for loop causes each array element to be examined in sequential
order to locate the maximum value. Program 7.7 shows using findMax() in a complete
program.

Starting address
of nums array is &nums[0].
This is passed to
the function

nums[0] nums[1] nums[2] nums[3] nums[4]

findMax(nums);

Figure 7.9 The array’s starting address is passed

Program 7.7

#include <iostream>

using namespace std;

int findMax(int [], int); // function prototype

int main()

{

�

397Chapter 7
Arrays as Arguments

The following is the output displayed by Programs 7.6 and 7.7:

The maximum value is 27

Passing two-dimensional arrays to a function is identical to passing one-dimensional
arrays. The called function receives access to the entire array. For example, if val is a
two-dimensional array, the function call display(val); makes the complete val array
available to the function display(). Consequently, any changes display() makes are
made directly to the val array. As further examples, if the following two-dimensional arrays
named test, factors, and thrusts are declared as

int test[7][9];
float factors[26][10];
double thrusts[256][52];

then the following function calls are valid:

findMax(test);
obtain(factors);
average(thrusts);

On the receiving side, the called function must be alerted that a two-dimensional array
is being made available. For example, assuming the previous functions return an integer, the
following are suitable function headers:

int findMax(int nums[7][9])
int obtain(float values[26][10])
int average(double vals[256][52])

const int MAXELS = 5;

int nums[MAXELS] = {2, 18, 1, 27, 16};

cout << "The maximum value is "

<< findMax(nums, MAXELS) << endl;

return 0;

}

// find the maximum value

int findMax(int vals[], int numels)

{

int i, max = vals[0];

for (i = 1; i < numels; i++)

if (max < vals[i]) max = vals[i];

return max;

}

398 Arrays

The parameter names chosen are used inside the function body. However, the parameter
names still refer to the original array created outside the function. Program 7.8 shows passing
a two-dimensional array to a function that displays the array’s values.

Only one array is created in Program 7.8. This array is known as val in main() and as
nums in display(). Therefore, val[0][2] refers to the same element as nums[0][2].

Notice the use of the nested for loop in Program 7.8 for cycling through each array
element. The variable rownum controls the outer loop, and the variable colnum controls the
inner loop. For each pass through the outer loop, which corresponds to a single row, the
innerloop makes one pass through the column elements. After a complete row is printed, a

Program 7.8

#include <iostream>

#include <iomanip>

using namespace std;

const int ROWS = 3;

const int COLS = 4;

void display(int [ROWS][COLS]); // function prototype

int main()

{

int val[ROWS][COLS] = {8,16,9,52,

3,15,27,6,

14,25,2,10};

display(val);

return 0;

}

void display(int nums[ROWS][COLS])

{

int rownum, colnum;

for (rownum = 0; rownum < ROWS; rownum++)

{

for(colnum = 0; colnum < COLS; colnum++)

cout << setw(4) <<nums[rownum][colnum];

cout << endl;

}

return;

}

399Chapter 7
Arrays as Arguments

new line is started for the next row. The result is a display of the array in a row-by-row
fashion:

8 16 9 52

3 15 27 6

14 25 2 10

The parameter declaration for nums in display() contains extra information not
required by the function. The declaration for nums can omit the row size of the array, so the
following is an alternative function prototype:

display(int nums[][4]);

The reason the column size must be included but the row size is optional becomes
obvious when you see how array elements are stored in memory. Starting with element
val[0][0], each succeeding element is stored consecutively, row by row, as val[0][0],
val[0][1], val[0][2], val[0][3], val[1][0], val[1][1], and so on, as illustrated
in Figure 7.10.

As with all array accesses, a single element of the val array is obtained by adding an
offset to the array’s starting location. For example, element val[1][3] of the val array in
Figure 7.10 is located at an offset of 28 bytes from the start of the array. Internally, the
compiler uses the row index, column index, and column size to determine this offset, using
the following calculation (assuming 4 bytes for an int):

The column size is necessary in the offset calculation so that the compiler can determine
the number of positions to skip over to get to the correct row.

val[1][3]

Column 0 Column 1 Column 2 Column 3

Row 0

Row 1

Row 2

Figure 7.10 Storage of the val array

 No. of bytes in a complete row

Offset = [(3 4)+ [1 (4 4)] = 28 bytes

 Bytes per integer
 Column size
 Row index
 Column index

× × ×

400 Arrays

Internal Array Element Location Algorithm5

Internally, each element in an array is obtained by adding an offset to the starting address of
the array. Therefore, the memory address of each array element is calculated internally as
follows:

Address of element i = starting array address + the offset

For one-dimensional arrays, the offset to the element with index i is calculated as
follows:

Offset = i * the size of an element

For two-dimensional arrays, the same address calculation is made, except that the offset
is determined as

Offset = column index value * the size of an element
+ row index value * number of bytes in a complete row

where the number of bytes in a complete row is calculated as follows:

number of bytes in a complete row =
maximum column specification * the size of an element

For example, as illustrated in Figure 7.11, for a one-dimensional array of integers in
which each integer is stored with 4 bytes, the offset to the element with an index value of
5 is 5 * 4 = 20. Using the address operator, &, you can check this address algorithm, as shown
in Program 7.9.

5This topic is optional and can be omitted without loss of subject continuity.

An integer An integer An integer An integer An integer An integer

Index = 0 Index = 1 Index = 2 Index = 3 Index = 4 Index = 5

Starting address
of the array

4 bytes 4 bytes 4 bytes 4 bytes 4 bytes

Offset to Element 5 = 20 bytes

Address of
Element 5

Figure 7.11 The offset to the element with an index value of 5

401Chapter 7
Arrays as Arguments

Here is a sample output produced by Program 7.9:

The starting address of the arr array is: 1244796

The storage size of each array element is: 4

The address of element number 5 is: 1244816

The starting address of the array,

displayed using the notation arr, is: 1244796

Notice that the addresses have been displayed in decimal form, and element 5 is 20 bytes
beyond the array’s starting address. Also, the array’s starting address is the same as the address
of element 0, which is coded as &arr[0]. Alternatively, as shown by the displayed line, the
starting array address can also be obtained as arr, which is the array name, because an array
name is a pointer constant, which is an address. (Chapter 12 explains the close association of
array names and pointers.)

Program 7.9

#include <iostream>

using namespace std;

int main()

{

const int NUMELS = 20;

int arr[NUMELS];

cout << "The starting address of the arr array is: "

<< int (&arr[0]) << endl;

cout << "The storage size of each array element is: "

<< sizeof(int) << endl;

cout << "The address of element number 5 is: "

<< int (&arr[5]) << endl;

cout << "The starting address of the array, "

<< "\ndisplayed using the notation arr, is: "

<< int (arr) << endl;

return 0;

}

402 Arrays

EXERCISES 7.4

1. (Practice) The following declaration was used to create the volts array:

int volts[500];

Write two different function headers for a function named sortArray() that accepts
the volts array as a parameter named inArray.

2. (Practice) The following declaration was used to create the factors array:

double factors[256];

Write two different function headers for a function named findKey() that accepts the
factors array as a parameter named select.

3. (Practice) The following declaration was used to create the power array:

double power[256];

Write two different function headers for a function named prime() that accepts the
power array as an argument named watts.

4. (Modify) a. Modify the findMax() function in Program 7.6 to locate the minimum
value of the passed array.

b. Include the function written in Exercise 4a in a complete program and run the
program.

5. (Practice) Write a program that has a declaration in main() to store the following num-
bers in an array named temps: 6.5, 7.2, 7.5, 8.3, 8.6, 9.4, 9.6, 9.8, and 10.0. There should
be a function call to show() that accepts the temps array as a parameter named temps
and then displays the numbers in the array.

6. (Electrical Eng.) Write a program that declares three one-dimensional arrays named
volts, current, and resistance. Each array should be declared in main() and be
capable of holding 10 double-precision numbers. The numbers to store in current are
10.62, 14.89, 13.21, 16.55, 18.62, 9.47, 6.58, 18.32, 12.15, and 3.98. The numbers to store
in resistance are 4, 8.5, 6, 7.35, 9, 15.3, 3, 5.4, 2.9, and 4.8. Your program should pass
these three arrays to a function named calc_volts(), which should calculate elements
in the volts array as the product of the corresponding elements in the current and
resistance arrays (for example, volts[1] = current[1] * resistance[1]). After
calc_volts() has passed values to the volts array, the values in the array should be
displayed from within main().

7. (Statistics) Write a program that includes two functions named calcavg() and
variance(). The calcavg() function should calculate and return the average of val-
ues stored in an array named testvals. The array should be declared in main() and
include the values 89, 95, 72, 83, 99, 54, 86, 75, 92, 73, 79, 75, 82, and 73. The
variance() function should calculate and return the variance of the data. The variance
is obtained by subtracting the average from each value in testvals, squaring the values

403Chapter 7
Arrays as Arguments

obtained, adding them, and dividing by the number of elements in testvals. The val-
ues returned from calcavg() and variance() should be displayed by using cout
statements in main().

7.5 A Case Study: Statistical Analysis

Arrays are extremely useful in applications that require multiple passes through the same set
of data elements. This section uses one such application that’s a statistical data analysis
requiring two passes through the data. The first pass is used to input the list and determine
the average of the data. The second pass uses the average to determine a standard deviation.
This application illustrates one-dimensional array processing and helps you understand
passing an array to a function.

Step 1 Analyze the Problem

The statement of the problem indicates that two output values are required: an average and a
standard deviation. The input item defined in the problem statement is a list of integer numbers.
Because the problem statement doesn’t specify the list size, and to make the application’s
functions as general as possible, both functions will be designed to handle any size list passed to
them. This design also requires passing the exact number of elements in the array to each
function at the time of the function call. This capability means each function must be capable
of receiving at least two input items as parameters: an array of arbitrary size and an integer
number corresponding to the number of elements in the passed array.

Step 2 Develop a Solution

The I/O specifications determined from the problem analysis imply that the each function’s
parameter list must be capable of receiving at least two items: one parameter to accommodate
the integer array and the second parameter to accept an integer. The first function returns the
average of the numbers in the passed array, and the second function returns the standard
deviation. These items are determined as follows:

Calculate the average by adding the grades and dividing by the number of grades that
was added.

Determine the standard deviation by:
Subtracting the average from each grade. (This results in a set of new

numbers, each of which is called a deviation.)
Squaring each deviation found in the previous step.
Adding the squared deviations and dividing the sum by the number of

deviations.
The square root of the number found in the previous step is the standard

deviation.

The standard deviation can be calculated only after the average has been computed.
Therefore, in addition to requiring the array of integers and the number of values in the array,
the standard deviation function also requires that the average be passed to it. Specifying the
algorithm in detail, before any coding is done, ensures that all necessary inputs and
requirements are discovered early in the program development process.

404 Arrays

To make sure you understand the required processing, do a hand calculation, assuming
the average and standard deviation of the following 10 grades are to be determined: 98, 82,
67, 54, 78, 83, 95, 76, 68, and 63. Here’s the average of these grades:

Average = (98 + 82 + 67 + 54 + 78 + 83 + 95 + 76 + 68 + 63)/10 = 76.4

The standard deviation is calculated by first determining the sum of the squared
deviations, and then dividing the resulting sum by 10 and taking its square root, as shown:

- -= +(.) (98 76 4 82 762 ..)4 2

- -+ +(.) (.)67 76 4 54 76 42 2

-+ +(.) (78 76 4 82 33 76 4 2- .)

- -+ +(.) (.)95 76 4 76 76 42 2

-+ (.)68 76 3 22 263 76 4 1730 400700+ =(.) .-

== = =1730 4007 10 173 04007 13 154470. / . .

Sum of squared deviations

Standard deviation
Having specified the algorithm for both functions, you’re now in a position to code them.

Step 3 Code the Solution

When writing functions, concentrating on the function header first is helpful. You can then
write the function body to process the input parameters correctly to produce the desired
results. Naming the averaging function findAvg() and selecting the parameter names
nums for the passed array and numel for the number of elements, the function header
becomes the following:

double findAvg(int nums[], int numel)

This function header begins the definition of the averaging function and allows the
function to accept an array of integer values and an integer number. As shown by the hand
calculation, the average of a set of integer numbers can be a floating-point number; therefore,
the function is defined as returning a floating-point value. The function body calculates the
average as described by the algorithm developed earlier. The completed findAvg()
function is as follows:

double findAvg(int nums[], int numel)
{

int i;
double sumnums = 0.0;

for (i = 0; i < numel; i++) // calculate the sum of the grades
sumnums = sumnums + nums[i];

return (sumnums / numel); // calculate and return the average
}

The function body contains a for loop to sum the numbers. Notice also that the
termination value of the loop counter in the for loop is numel, the number of integers in
the array passed to the function through the parameter list. Using this parameter gives the

405Chapter 7
A Case Study: Statistical Analysis

function its generality and allows it to be used for input arrays of any size. For example,
calling the function with the statement

findAvg(values,10)

tells the function that numel is 10 and the values array consists of 10 values, whereas the
statement

findAvg(values,1000)

tells findAvg() that numel is 1000 and the values array consists of 1000 numbers. In
both calls, the actual argument named values corresponds to the parameter named nums
in the findAvg() function.

Using similar reasoning as for the averaging function, the function header for the standard
deviation function, named stdDev(), is as follows:

double stdDev(int nums[], int numel, double av)

This header begins the definition of the stdDev() function. It defines the function as
returning a double-precision value and accepting an array of integers, an integer value, and
a double-precision value as inputs to the function. The body of the stdDev() function must
calculate the standard deviation as described in the algorithm. This is the complete standard
deviation function:

double stdDev(int nums[], int numel, double av)
{

int i;
double sumdevs = 0.0;

for (i = 0; i < numel; i++)
sumdevs = sumdevs + pow((nums[i] - av),2.0);

return(sqrt(sumdevs/numel));
}

Step 4 Test and Correct the Program

Testing a program’s function requires writing a main() function to call the function you’re
testing and display the returned results. Program 7.10 uses a main() function to set up a
grade array with the data previously used in the hand calculation and to call the
findAvg() and stdDev() functions.

406 Arrays

Program 7.10

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

double findAvg(int [], int); // function prototype

double stdDev(int [], int, double); // function prototype

int main()

{

const int NUMELS = 10;

int values[NUMELS] = {98, 82, 67, 54, 78, 83, 95, 76, 68, 63};

double average, sDev;

average = findAvg(values, NUMELS); // call the function

sDev = stdDev(values, NUMELS, average); // call the function

cout << "The average of the numbers is "

<< setw(5) << setiosflags(ios::showpoint)

<< setprecision(2) << average << endl;

cout << "The standard deviation of the numbers is "

<< setw(5) << setiosflags(ios::showpoint)

<< setprecision(2) << sDev << endl;

return 0;

}

double findAvg(int nums[], int numel)

{

int i;

double sumnums = 0.0;

for (i = 0; i < numel; i++) // calculate the sum of the grades

sumnums = sumnums + nums[i];

return (sumnums / numel); // calculate and return the average

}

�

407Chapter 7
A Case Study: Statistical Analysis

A test run of Program 7.10 produced the following display:

The average of the numbers is 76.40

The standard deviation of the numbers is 13.15

Although this result agrees with the previous hand calculation, testing isn’t complete
without verifying the calculation at the boundary points. For this program, the test consists
of checking the calculation with all the same values, such as all 0s and all 100s. Another
simple test is to use five 0s and five 100s. You can try these tests on your own as an exercise.

EXERCISES 7.5

1. (Practice) Enter and run Program 7.10 on your computer.

2. (Practice) Run Program 7.10 to determine the average and standard deviation of the fol-
lowing list of 15 grades: 68, 72, 78, 69, 85, 98, 95, 75, 77, 82, 84, 91, 89, 65, and 74.

3. (List Maintenance) A common programming problem is maintaining a list in numerical
or alphabetical order. For example, inventory part numbers are typically kept in numerical
order, but telephone lists are kept in alphabetical order.
For this exercise, write a function that inserts a three-digit part number in a list of part
numbers. The list is maintained in increasing numerical order, and duplicate part numbers
aren’t allowed. Allocate a maximum list size of 100 values, and use a sentinel value of
9999 to indicate the end of the list. For example, if the current list contains nine part
numbers, the 10th position in the list contains the sentinel value. Figure 7.12 shows

double stdDev(int nums[], int numel, double av)

{

int i;

double sumdevs = 0.0;

for (i = 0; i < numel; i++)

sumdevs = sumdevs + pow((nums[i] - av),2);

return(sqrt(sumdevs/numel));

}

408 Arrays

the insertion process for an original list of nine part numbers, using the following process-
ing algorithm:

Determine where in the list the new part number should be placed
This is done by comparing the new part number to each value in the current list

until a match is found, a part number larger than the new part number is
located, or the end of the list is encountered

If the new part number matches an existing part number,
display a message that the part number exists

Else
To make room for the new element in the array, move each element down one

position. This is done by starting from the sentinel value and coping each
item to the next position down until the desired position in the list is vacated.

Insert the new part number in the vacated position
Endif

4. (List Maintenance) a. Write a complete C++ program that can be used to update an
ordered list of numbers. Use the list of numbers shown in Figure 7.12 to test that your
program is working correctly.

b. Test the program you wrote for Exercise 4a, using a new part number of 86 with the
list of numbers shown in Figure 7.12. This test should place this new part number at
the beginning of the existing list.

c. Test the program you wrote for Exercise 4a, using a part number of 200 with the list
of numbers shown in Figure 7.12. This test should place this new part number at the
end of the existing list.

5. (List Maintenance) a. Determine an algorithm for deleting an entry from an ordered
list of numbers.

b. Write a function named delete(), which uses the algorithm determined in Exercise 5a,
to delete a part number from the list shown in Figure 7.12.

The new part number of
142 is to be inserted here

(a) Original list

(b) Elements copied to make room for the new part number

(c) The updated list

185 192 9999109 122 136 144 157 162 178

185 192 9999109 122 136 144 157 162 178144

185 192 9999109 122 136 144 157 162 178142

Figure 7.12 Updating an ordered list of part numbers

409Chapter 7
A Case Study: Statistical Analysis

6. (List Maintenance) The following letters are stored in an alphabet array: B, J, K, M, S,
and Z. Write and test a function named adlet(), which accepts the alphabet array and a
new letter as arguments, and then inserts the new letter in the correct alphabetical order
in the alphabet array.

7. (File Creation) Write a C++ program that creates an array containing the integer num-
bers 60, 40, 80, 90, 120, 150, 130, 160, 170, and 200. Your program should then write the
data in the array to a text file. (Alternatively, you can create the file with a text editor.)

8. (File Update) a. Develop, write, and execute a C++ program that reads in the list of 10
integer numbers from the data file created in Exercise 7.

b. Modify the program you wrote for Exercise 8a so that the program does the following:
� Deletes the first number input from the file
� Accepts a new integer value that will be placed at the end of the list of numbers
� Computes and displays the average of all numbers (not including the deleted value)
� Overwrites the old file with the new list of numbers

7.6 The Standard Template Library (STL)6

Many programming applications require expanding and contracting lists as list items are
added and removed. Although expanding and contracting an array can be accomplished by
creating, copying, and deleting arrays, this solution is costly in terms of initial programming,
maintenance, and testing time. To meet the need of providing a tested and generic set of data
structures that can be modified, expanded, and contracted, C++ includes a useful set of
classes in its Standard Template Library (STL).

Additionally, the functions included in the STL provide useful ways of sorting and
searching lists of data. For example, you might need to arrange experimental results in
increasing (ascending) or decreasing (descending) order for a statistical analysis. Perhaps an
array of names, as string data, must be sorted in alphabetical order, or an array of part names
needs to be searched to find a particular part.

Each STL class is coded as a template (see Section 6.1) that permits constructing a
generic data structure, referred to as a container. The terms list and collection are synonyms
for a container, and both these terms refer to a set of data items that form a natural unit or
group. Using this definition, an array can also be considered a container, but not in the
technical sense that it’s created by using the STL; rather, it’s provided as a built-in data type.
Figure 7.13 shows the container types in the STL.

This section discusses the vector container class, along with the most commonly used
algorithms for this class and the arguments, known as iterators, these algorithms require. A
vector is similar to an array, in that it stores elements that can be accessed by using an integer
index starting at 0. However, a vector is different from an array, in that a vector expands
automatically as needed and is provided by several extremely useful class functions7 for

6This topic can be omitted on first reading without loss of subject continuity.
7In general computer terminology, functions defined in a class (discussed in Part Two) are referred to as “methods.” In C++, the terms “class
functions” and “class methods” are used interchangeably.

410 Arrays

operating on the vector. Table 7.1 lists these vector class functions, with shading to identify
the functions used in the demonstration program.

Table 7.1 Summary of Vector Class Functions and Operations

Class Functions and Operations Description
vector<DataType> name Creates an empty vector with compiler-dependent

initial size
vector<DataType>
name(source)

Creates a copy of the source vector

vector<DataType> name(n) Creates a vector of size n
vector<DataType> name
(n, elem)

Creates a vector of size n with each element
initialized as elem

vector<DataType>
name(src.beg, src.end)

Creates a vector initialized with elements from
a source container beginning at src.beg and
ending at src.end

~vector(DataType>() Destroys the vector and all elements it contains

name[index] Returns the element at the designated index,
with no bounds checking

name.at(index) Returns the element at the specified index
argument, with bounds checking on the
index value

name.front() Returns the first element in the vector
name.back() Returns the last element in the vector
dest = src Assigns all elements of src vector to dest

vector
name.assign(n, elem) Assigns n copies of elem
name.assign
(src.begin, src.end)

Assigns the elements of the src container (need
not be between the range src.begin and src.
end) to the name vector

STL container
types

vector

deque

list

set

multiset

map

multimap

Figure 7.13 The collection of STL container types

411Chapter 7
The Standard Template Library (STL)

Table 7.1 Summary of Vector Class Functions and Operations (continued)

Class Functions and Operations Description
insert(pos, elem) Inserts elem at position pos
name.insert
(pos, n, elem)

Inserts n copies of elem starting at position pos

name.insert(pos,
src.begin, src.end)

Inserts elements from src.begin to src.end,
starting at position pos

name.push_back(elem) Appends elem at the end of the vector
name.erase(pos) Removes the element at the specified

position pos
name.erase(begin, end) Removes elements within the specified range
name.resize(value) Resizes the vector to a larger size, with new

elements created by using the default constructor
name.resize(value, elem) Resizes the vector to a larger size, with new

elements created as elem
name.clear() Removes all elements from the vector
name.swap(nameB) Swaps the elements of nameA and nameB

vectors; can be performed by using the swap
algorithm

nameA == nameB Returns a Boolean true if nameA elements equal
nameB elements; otherwise, returns false

nameA != nameB Returns a Boolean false if nameA elements
equal nameB elements; otherwise, returns true;
same as !(nameA == nameB)

nameA < nameB Returns a Boolean true if nameA is less than
nameB; otherwise, returns false

nameA > nameB Returns a Boolean true if nameA is greater than
nameB; otherwise, returns false; same as
nameB < nameA

nameA <= nameB Returns a Boolean true if nameA is less than or
equal to nameB

nameA >= nameB Returns a Boolean true if nameA is greater than
or equal to nameB

name.size() Returns the size of the vector
name.empty() Returns a Boolean true if the vector is empty;

otherwise, returns false
name.max_size() Returns the maximum possible elements as an

integer
name.capacity() Returns the maximum possible elements as an

integer without relocating the vector

In addition to the vector class functions listed in Table 7.1, vectors have access to the
complete set of generic STL functions, referred to in the STL as algorithms. Table 7.2
summarizes the most commonly used STL algorithms.

412 Arrays

Table 7.2 Commonly Used STL Algorithms

Algorithm Name Description
accumulate Returns the sum of the numbers in a specified range
binary_search Returns a Boolean value of true if the specified value

exists within the specified range; otherwise, returns
false. Can be used only on a sorted set of values.

copy Copies elements from a source range to a
destination range

copy_backward Copies elements from a source range to a destination
range in a reverse direction

count Returns the number of elements in a specified range
that match a specified value

equal Compares the elements in one range of elements,
element by element, to the elements in a second range

fill Assigns every element in a specified range to a
specified value

find Returns the position of an element’s first occurrence in
a specified range having a specified value if the value
exists. Performs a linear search, starting with the first
element in a specified range, and proceeds one
element at a time until the complete range has been
searched or the specified element has been found.

max_element Returns the maximum value of elements in the
specified range

min_element Returns the minimum value of elements in the
specified range

random_shuffle Randomly shuffles element values in a specified range
remove Removes a specified value in a specified range without

changing the order of the remaining elements
replace Replaces each element in a specified range having a

specified value with a newly specified value
reverse Reverses elements in a specified range
search Finds the first occurrence of a specified value or

sequence of values within a specified range
sort Sorts elements in a specified range into ascending

order
swap Exchanges element values between two objects
unique Removes duplicate adjacent elements in a

specified range

413Chapter 7
The Standard Template Library (STL)

Notice that there’s both a swap algorithm (Table 7.2) and a swap() vector function
(Table 7.1). Because a function is targeted to work specifically with its container type and
generally executes faster when a container class provides a function with the same name as
an algorithm, you should use the class functions.

Finally, the STL provides additional items referred to as iterators, used to specify which
elements in a container are to be operated on when an algorithm is called. Two of the most
useful iterators are returned by the STL iterator functions begin() and end(). These
general-purpose functions return the positions of the first and last elements in a container.

To better understand using an STL container class, in this section you see how to use the
vector container class to create a vector for holding a list of part numbers. As you’ll see, a
vector is similar to a C++ array, except it can automatically expand as needed.

Program 7.11 constructs a vector and initializes it with integers stored in an integer array.
After it’s initialized, various vector functions and STL algorithms are used to operate on the
vector. Specifically, one function is used to change an existing value, a second is used to
insert a value into the vector, and a third is used to add a value to the end of the list. After
each function and algorithm are applied, a cout statement is used to display the results.

In reviewing Program 7.11, notice these four header files that precede the using
namespace std; statement:

• The <iostream> header is required to create and use cout.
• The <string> header is required for constructing strings.
• The <vector> header is required to create one or more vector objects.
• The <algorithm> header is required for the sort algorithm that’s applied after

vector elements have been added and replaced.

Point of Information

When to Use an Array or a Vector
An array is the data structure of first choice when you have a list of primitive data
types or objects that don’t have to be expanded or contracted. A vector is the data
structure of first choice when you have a list of primitive data types or objects that can
be grouped as an array but must be expanded or contracted.

Whenever possible, use STL’s algorithms to operate on arrays and vectors. STL
classes and algorithms provide verified and reliable code that can shorten program
development time.

414 Arrays

Program 7.11

#include <iostream>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

int main()

{

const int NUMELS = 4;

int n[] ={136, 122, 109, 146};

int i;

// create a vector of strings using the n[] array

vector<int> partnums(n, n + NUMELS);

cout << "\nThe vector initially has a size of "

<< int(partnums.size()) << ",\n and contains the elements:\n";

for (i = 0; i < int(partnums.size()); i++)

cout << partnums[i] << " ";

// modify the element at position 4 (i.e. index = 3) in the vector

partnums[3] = 144;

cout << "\n\nAfter replacing the fourth element, the vector has a size of "

<< int(partnums.size()) << ",\n and contains the elements:\n";

for (i = 0; i < int(partnums.size()); i++)

cout << partnums[i] << " ";

// insert an element into the vector at position 2 (i.e. index = 1)

partnums.insert(partnums.begin()+1, 142);

cout << "\n\nAfter inserting an element into the second position,"

<< "\n the vector has a size of " << int(partnums.size()) << ","

<< " and contains the elements:\n";

for (i = 0; i < int(partnums.size()); i++)

cout << partnums[i] << " ";

// add an element to the end of the vector

partnums.push_back(157);

�

415Chapter 7
The Standard Template Library (STL)

The following statement in Program 7.11 is used to create and initialize the vector named
partnums:

vector<int> partnums(n, n + NUMELS);

The vector partnums is declared as a vector of type int and initialized with elements from
the n array, starting with the first array element (element n[0]) and ending with the last array
element, located at position n + NUMELS. Therefore, the vector size is large enough for four
integer values and has been initialized with the integers 136, 122, 109, and 146.

The next set of statements in Program 7.11 displays the initial values in the vector by
using standard subscripted vector notation that’s identical to the notation for accessing array
elements. Displaying vector values in this manner, however, requires knowing how many
elements each vector contains. As you insert and remove elements, you would like the vector
to track the first and last elements’ locations. This capability is provided automatically by the
two STL iterator functions mentioned previously: begin() and end().

The next major set of statements consists of the following:

// modify the element at position 4 (i.e. index = 3) in the vector
partnums[3] = 144;

// insert an element into the vector at position 2 (i.e. index = 1)
partnums.insert(partnums.begin()+1, 142);

These statements are used to modify an existing vector value and insert a new value into the
vector. Specifically, the partnums[3] notation uses standard indexing, and the insert()
function uses an iterator argument, which is constructed as an offset by using the begin() or

cout << "\n\nAfter adding an element to the end of the list,"

<< "\n the vector has a size of " << int(partnums.size()) << ","

<< " and contains the elements:\n";

for (i = 0; i < int(partnums.size()); i++)

cout << partnums[i] << " ";

// sort the vector

sort(partnums.begin(), partnums.end());

cout << "\n\nAfter sorting, the vector's elements are:\n";

for (i = 0; i < int(partnums.size()); i++)

cout << partnums[i] << " ";

cout << endl;

return 0;

}

416 Arrays

end() function. Additionally, you have to specify the value to be inserted at the designated
position. Therefore, partnums[3] specifies changing the fourth element in the vector.
(Vectors, like arrays, begin at index position 0.) The insert() function is used to insert the
integer value 142 in the vector’s second position. Because the begin() function returns a value
corresponding to the start of the vector, adding 1 to it designates the vector’s second position.8
At this position, the new value is inserted. All subsequent values are moved up by one position
in the vector, and the vector expands automatically to accept the inserted value. At this point in
the program, the vector partnums now contains the following elements:

136 142 122 109 144

This arrangement of values was obtained by replacing the original value 146 with 144 and
inserting the 142 into the second position, which moves all subsequent elements up
automatically by one position and increases the total vector size to five integers.

Next, the statement partnums.push_back(157); is used to append the integer 157
to the end of the vector, which results in the following elements:

136 142 122 109 144 157

Finally, the last section of code in Program 7.11 uses the sort() algorithm to sort
elements in the vector. After the algorithm is applied, the vector’s values are displayed again.
Following is the complete output Program 7.11 produces:

The vector initially has a size of 4,

and contains the elements:

136 122 109 146

After replacing the fourth element, the vector has a size of 4,

and contains the elements:

136 122 109 144

After inserting an element into the second position,

the vector has a size of 5, and contains the elements:

136 142 122 109 144

After adding an element to the end of the list,

the vector has a size of 6, and contains the elements:

136 142 122 109 144 157

After sorting, the vector's elements are:

109 122 136 142 144 157

8More precisely, begin() requires an iterator argument, not an integer index argument. The begin() and end() functions return iterators,
to which offsets can be applied. In this behavior, they are similar to pointers (covered in Chapter 12).

417Chapter 7
The Standard Template Library (STL)

EXERCISES 7.6

1. (For Review) Define the terms “container” and “Standard Template Library.”

2. (For Review) What include statements should be included with programs using the
Standard Template Library?

3. (Practice) Enter and execute Program 7.11.

4. (Modify) Modify Program 7.11 so that the user inputs the initial set of numbers when
the program executes. Have the program request the number of initial numbers to be
entered.

5. (Modify) Modify Program 7.11 to use and display the results reported by the vector
class’s capacity() and max_size() functions.

6. (Modify) Modify Program 7.11 to use the random_shuffle algorithm.

7. (Modify) Modify Program 7.11 to use the binary_search and find algorithms. Have
your program request the number to be found.

8. (Modify) Using Program 7.11 as a starting point, create an equivalent program that uses a
vector of strings. Initialize the vector by using the array string names[] =
{"Donavan", "Michaels", "Smith", "Jones"};.

9. (Practice) Use the max_element and min_element algorithms to determine the maxi-
mum and minimum values in the vector created for Exercise 8. (Hint: Use the expression
max_element(vectorName.begin(), vectorName.end()) to determine the maxi-
mum value stored in the vector. Then use the same arguments for the min_element
algorithm.)

7.7 A Closer Look: Searching and Sorting9

Most programmers encounter the need to both sort and search a list of data items at some
time in their programming careers. For example, you might have to sort a list of names in
alphabetical order and search this list to find a particular name. Similarly, you might have to
arrange a list of dates in ascending order and search this list to locate a certain date. This
section introduces the fundamentals of sorting and searching lists. Note that sorting a list
before searching it isn’t necessary, although much faster searches are possible if the list is in
sorted order, as you’ll see.

Search Algorithms
A common requirement of many programs is searching a list for a certain element. For
example, in a list of names and telephone numbers, you might search for a specific name so

9This topic can be omitted on first reading without loss of subject continuity.

418 Arrays

that the corresponding telephone number can be printed, or you might need to search the list
simply to determine whether a name is there. The two most common methods of performing
these searches are the linear and binary search algorithms.

Linear Search In a linear search, also known as a sequential search, each item in the list is
examined in the order in which it occurs until the desired item is found or the end of the list
is reached. This search method is analogous to looking at every name in the phone directory,
beginning with Aardvark, Aaron, until you find the one you want or until you reach Zzxgy,
Zora. Obviously, it’s not the most efficient way to search a long alphabetized list. However,
a linear search has these advantages:

• The algorithm is simple.
• The list need not be in any particular order.

In a linear search, the search begins at the first item in the list and continues sequentially,
item by item, through the list. The pseudocode for a function performing a linear search is
as follows:

For all items in the list
Compare the item with the desired item
If the item is found

Return the index value of the current item
Endif

EndFor
Return -1 if the item is not found

Notice that the function’s return value indicates whether the item was found. If the
return value is -1, the item isn’t in the list; otherwise, the return value in the for loop
provides the index of where the item is located in the list. The linearSearch() function
illustrates this procedure as a C++ function:

// this function returns the location of key in the list
// a -1 is returned if the value is not found
int linearSearch(int list[], int size, int key)
{

int i;

for (i = 0; i < size; i++)
{

if (list[i] == key)
return i;

}

return -1;
}

In reviewing linearSearch(), notice that the for loop is simply used to access each
element in the list, from first element to last, until a match with the desired item is found.
If the item is located, the index value of the current item is returned, which causes the loop
to terminate; otherwise, the search continues until the end of the list is encountered.

To test this function, a main() driver function has been written to call linearSearch()
and display the results it returns. Program 7.12 shows the complete test program.

419Chapter 7
A Closer Look: Searching and Sorting

Program 7.12

#include <iostream>

using namespace std;

int linearSearch(int [], int, int); //function prototype

int main()

{

const int NUMEL = 10;

int nums[NUMEL] = {5,10,22,32,45,67,73,98,99,101};

int item, location;

cout << "Enter the item you are searching for: ";

cin >> item;

location = linearSearch(nums, NUMEL, item);

if (location > -1)

cout << "The item was found at index location " << location

<< endl;

else

cout << "The item was not found in the list\n";

return 0;

}

// this function returns the location of key in the list

// a -1 is returned if the value is not found

int linearSearch(int list[], int size, int key)

{

int i;

for (i = 0; i < size; i++)

{

if (list[i] == key)

return i;

}

return -1;

}

420 Arrays

Sample runs of Program 7.12 follow:

Enter the item you are searching for: 101

The item was found at index location 9

and

Enter the item you are searching for: 65

The item was not found in the list

As noted previously, an advantage of linear searches is that the list doesn’t have to be in
sorted order to perform the search. Another advantage is that if the desired item is toward the
front of the list, only a small number of comparisons are made. The worst case, of course,
occurs when the desired item is at the end of the list. On average, however, and assuming
the item is equally likely to be anywhere in the list, the number of required comparisons is
n/2, where n is the list’s size. Therefore, for a 10-element list, the average number of
comparisons needed for a linear search is 5, and for a 10,000-element list, the average number
of comparisons needed is 5000. As you see next, this number can be reduced significantly by
using a binary search algorithm.

Binary Search In a binary search, the list must be in sorted order. Starting with an ordered
list, the desired item is first compared to the element in the middle of the list. (For lists with
an even number of elements, either of the two middle elements can be used.) There are
three possibilities after the comparison is made: The desired item might be equal to the
middle element, it might be greater than the middle element, or it might be less than the
middle element.

In the first case, the search has been successful, and no further searches are required. In
the second case, because the desired item is greater than the middle element, it must be in
the second half of the list, if it’s found at all. This means the first part of the list, consisting
of all elements from the first to the midpoint, can be discarded from any further search. In
the third case, because the desired item is less than the middle element, it must be in the
first part of the list, if it’s found at all. For this case, the second half of the list, containing all
elements from the midpoint to the last element, can be discarded from any further search.

The algorithm for this search strategy is shown in Figure 7.14 and defined by the
following pseudocode:

Set the lower index to 0
Set the upper index to one less than the size of the list
Begin with the first item in the list
While the lower index is less than or equal to the upper index

Set the midpoint index to the integer average of the lower and upper index values
Compare the desired item to the midpoint element

If the desired item equals the midpoint element
Return the index value of the current item

Else If the desired item is greater than the midpoint element
Set the lower index value to the midpoint value plus 1

Else If the desired item is less than the midpoint element
Set the upper index value to the midpoint value less 1

Endif
EndWhile
Return -1 if the item is not found

421Chapter 7
A Closer Look: Searching and Sorting

In both the pseudocode and Figure 7.14’s flowchart, a while loop is used to control the
search. The initial list is defined by setting the left index value to 0 and the right index value
to one less than the number of elements in the list. The midpoint element is then taken as
the integerized average of the left and right values.

Set left
index to

midpoint +1

Item
>midpoint
element?

Item
=midpoint
element?

Calculate
midpoint

index value

While
left index <=
right index

Set right
index to list

size -1

Set left
index to zero

No

Return -1

Return index
value

Set right
index to

midpoint -1

No

No

Yes

Yes

Start

Input
item

Yes

Figure 7.14 The binary search algorithm

422 Arrays

After the comparison to the midpoint element is made, the search is subsequently
restricted by moving the left index to one integer value above the midpoint or by moving the
right index one integer value below the midpoint. This process is continued until the desired
element is found or the left and right index values become equal. The binarySearch()
function presents the C++ version of this algorithm:

// this function returns the location of key in the list
// a -1 is returned if the value is not found
int binarySearch(int list[], int size, int key)
{

int left, right, midpt;

left = 0;
right = size -1;

while (left <= right)
{

midpt = (int) ((left + right) / 2);
if (key == list[midpt])
{

return midpt;
}
else if (key > list[midpt])

left = midpt + 1;
else

right = midpt - 1;
}

return -1;
}

For purposes of testing this function, Program 7.13 is used. A sample run of Program 7.13
yielded the following:

Enter the item you are searching for: 101

The item was found at index location 9

Program 7.13

#include <iostream>

using namespace std;

int binarySearch(int [], int, int); //function prototype

int main()

{

const int NUMEL = 10;

�

423Chapter 7
A Closer Look: Searching and Sorting

int nums[NUMEL] = {5,10,22,32,45,67,73,98,99,101};

int item, location;

cout << "Enter the item you are searching for: ";

cin >> item;

location = binarySearch(nums, NUMEL, item);

if (location > -1)

cout << "The item was found at index location "

<< location << endl;

else

cout << "The item was not found in the array\n";

return 0;

}

// this function returns the location of key in the list

// a -1 is returned if the value is not found

int binarySearch(int list[], int size, int key)

{

int left, right, midpt;

left = 0;

right = size -1;

while (left <= right)

{

midpt = (int) ((left + right) / 2);

if (key == list[midpt])

{

return midpt;

}

else if (key > list[midpt])

left = midpt + 1;

else

right = midpt - 1;

}

return -1;

}

424 Arrays

The value of using a binary search algorithm is that the number of elements that must
be searched is cut in half each time through the while loop. So the first time through the
loop, n elements must be searched; the second time through the loop, n/2 of the elements has
been eliminated and only n/2 remain. The third time through the loop, another half of the
remaining elements has been eliminated, and so on.

In general, after p passes through the loop, the number of values remaining to be
searched is n/(2p). In the worst case, the search can continue until less than or equal to one
element remains to be searched. Mathematically, this procedure can be expressed as n/(2p) �
1. Alternatively, it can be rephrased as p is the smallest integer so that 2p > n. For example,
for a 1000-element array, n is 1000 and the maximum number of passes, p, required for a
binary search is 10. Table 7.3 compares the number of loop passes needed for a linear and
binary search for different list sizes.

Table 7.3 A Comparison of while Loop Passes for Linear and Binary Searches

Array size 10 50 500 5000 50,000 500,000 5,000,000 50,000,000
Average
linear
search
passes

5 25 250 2500 25,000 250,000 2,500,000 25,000,000

Maximum
linear
search
passes

10 50 500 5000 50,000 500,000 5,000,000 50,000,000

Maximum
binary
search
passes

4 6 9 13 16 19 23 26

As shown, the maximum number of loop passes for a 50-item list is almost 10 times more for
a linear search than for binary search, and even more spectacular for larger lists. As a rule of
thumb, 50 elements are usually taken as the switch-over point: For lists smaller than 50 elements,
linear searches are acceptable; for larger lists, a binary search algorithm should be used.

Big O Notation
On average, over a large number of linear searches with n items in a list, you would expect
to examine half (n/2) of the items before locating the desired item. In a binary search, the
maximum number of passes, p, occurs when n/(2)p = 1. This relationship can be manipulated
algebraically to 2p = n, which yields p = log2n, which approximately equals 3.33 log10n.

For example, finding a particular name in an alphabetical directory with n = 1000 names
requires an average of 500 (=n/2) comparisons using a linear search. With a binary search, only
about 10 (� 3.33 * log101000) comparisons are required.

A common way to express the number of comparisons required in any search algorithm
using a list of n items is to give the order of magnitude of the number of comparisons
required, on average, to locate a desired item. Therefore, the linear search is said to be of
order n and the binary search of order log2n. Notationally, they’re expressed as O(n) and
O(log2n), where the O is read as “the order of.”

425Chapter 7
A Closer Look: Searching and Sorting

Sort Algorithms
Two major categories of sorting techniques, called internal and external sorts, are available for
sorting data. Internal sorts are used when the data list isn’t too large and the complete list can
be stored in the computer’s memory, usually in an array. External sorts are used for much
larger data sets that are stored in external disk or tape files and can’t be accommodated in the
computer’s memory as a complete unit. Next, you learn about two internal sort algorithms
that can be used when sorting lists with fewer than approximately 50 elements. For larger
lists, more sophisticated sorting algorithms are typically used.

Selection Sort One of the simplest sorting techniques is the selection sort, in which the
smallest value is selected from the complete list of data and exchanged with the first element in
the list. After this first selection and exchange, the next smallest element in the revised list is
selected and exchanged with the second element in the list. Because the smallest element is
already in the first position in the list, this second pass needs to consider only the second through
last elements. For a list consisting of n elements, this process is repeated n - 1 times, with each
pass through the list requiring one less comparison than the previous pass.

For example, take a look at the list of numbers shown in Figure 7.15. The first pass
through the initial list results in the number 32 being selected and exchanged with the first
element in the list. The second pass, made on the reordered list, results in the number 155
being selected from the second through fifth elements. This value is then exchanged with
the second element in the list. The third pass selects the number 307 from the third through
fifth elements in the list and exchanges this value with the third element. Finally, the fourth
and last pass through the list selects the remaining minimum value and exchanges it with the
fourth list element. Although each pass in this example resulted in an exchange, no exchange
would have been made in a pass if the smallest value were already in the correct location.

Initial list Pass 1 Pass 2 Pass 3 Pass 4

690 32 32 32 32

307 307 155 144 144

32 690 690 307 307

155 155 307 690 426

426 426 426 426 690

Figure 7.15 A sample selection sort

426 Arrays

In pseudocode, the selection sort is described as follows:

Set exchange count to zero (not required, but done to keep track of the exchanges)
For each element in the list, from the first to the next to last

Find the smallest element from the current element being referenced to the last
element by:

Setting the minimum value equal to the current element
Saving (storing) the index of the current element
For each element in the list, from the current element + 1 to the last element in the list

If element[inner loop index] < minimum value
Set the minimum value = element[inner loop index]
Save the index value corresponding to the newfound minimum value

Endif
EndFor
Swap the current value with the new minimum value
Increment the exchange count

EndFor
Return the exchange count

The selection Sort() function incorporates this procedure into a C++ function:

int selectionSort(int num[], int numel)
{

int i, j, min, minidx, temp, moves = 0;

for (i = 0; i < (numel - 1); i++)
{

min = num[i]; // assume minimum is the first array element
minidx = i; // index of minimum element
for(j = i + 1; j < numel; j++)
{

if (num[j] < min) // if you've located a lower value
{ // capture it
min = num[j];
minidx = j;
}

}
if (min < num[i]) // check whether you have a new minimum
{ // and if you do, swap values

temp = num[i];
num[i] = min;
num[minidx] = temp;
moves++;

}
}

return moves;
}

427Chapter 7
A Closer Look: Searching and Sorting

The selectionSort() function expects two arguments: the list to be sorted and the
number of elements in the list. As the pseudocode specifies, a nested set of for loops
performs the sort. The outer for loop causes one less pass through the list than the total
number of items in the list. For each pass, the variable min is initially assigned the value
num[i], where i is the outer for loop’s counter variable. Because i begins at 0 and ends
at one less than numel, each element in the list, except the last, is successively designated
as the current element.

The inner loop cycles through the elements below the current element and is used to
select the next smallest value. Therefore, this loop begins at the index value i + 1 and
continues through the end of the list. When a new minimum is found, its value and position
in the list are stored in the variables min and minidx. At completion of the inner loop, an
exchange is made only if a value less than that in the current position is found.

Program 7.14 was constructed to test selectionSort(). This program implements a
selection sort for the same list of 10 numbers used to test the search algorithms. For later
comparison to other sorting algorithms, the number of actual moves the program makes to get
data into sorted order is counted and displayed.

The output Program 7.14 produces is as follows:

The sorted list, in ascending order, is:

5 10 22 32 45 67 73 98 99 101

8 moves were made to sort this list

Clearly, the number of moves displayed depends on the initial order of values in the list.
An advantage of the selection sort is that the maximum number of moves that must be made
is n - 1, where n is the number of items in the list. Further, each move is a final move that
results in an element residing in its final location in the sorted list.

A disadvantage of the selection sort is that n(n - 1)/2 comparisons are always required,
regardless of the initial arrangement of data. This number of comparisons is obtained as
follows: The last pass always requires one comparison, the next-to-last pass requires two
comparisons, and so on, to the first pass, which requires n - 1 comparisons. Therefore, the
total number of comparisons is the following:

1 + 2 + 3 + . . . + n - 1 = n(n - 1)/2 = n2/2 - n/2

For large values of n, the n2 term dominates, and the order of the selection sort is O(n2).

428 Arrays

Program 7.14

#include <iostream>

using namespace std;

int selectionSort(int [], int);

int main()

{

const int NUMEL = 10;

int nums[NUMEL] = {22,5,67,98,45,32,101,99,73,10};

int i, moves;

moves = selectionSort(nums, NUMEL);

cout << "The sorted list, in ascending order, is:\n";

for (i = 0; i < NUMEL; i++)

cout << " " <<nums[i];

cout << endl << moves << " moves were made to sort this list\n";

return 0;

}

int selectionSort(int num[], int numel)

{

int i, j, min, minidx, temp, moves = 0;

for (i = 0; i < (numel - 1); i++)

{

min = num[i]; // assume minimum is the first array element

minidx = i; // index of minimum element

for(j = i + 1; j < numel; j++)

{

if (num[j] < min) // if you've located a lower value

{ // capture it

min = num[j];

minidx = j;

}

}

if (min < num[i]) // check whether you have a new minimum

{ // and if you do, swap values

�

429Chapter 7
A Closer Look: Searching and Sorting

Exchange (Bubble) Sort In an exchange sort, adjacent elements of the list are exchanged
with one another so that the list becomes sorted. One example of this sequence of exchanges
is the bubble sort, in which successive values in the list are compared, beginning with the first
two elements. If the list is to be sorted in ascending (from smallest to largest) order, the
smaller value of the two being compared is always placed before the larger value. For lists
sorted in descending (from largest to smallest) order, the smaller of the two values being
compared is always placed after the larger value.

For example, a list of values is to be sorted in ascending order. If the first element in the list
is larger than the second, the two elements are exchanged. Then the second and third elements
are compared. Again, if the second element is larger than the third, these two elements are
exchanged. This process continues until the last two elements have been compared and
exchanged, if necessary. If no exchanges were made during this initial pass through the data, the
data is in the correct order and the process is finished; otherwise, a second pass is made through
the data, starting from the first element and stopping at the next-to-last element. The reason for
stopping at the next-to-last element on the second pass is that the first pass always results in the
most positive value “sinking” to the bottom of the list.

To see a specific example, examine the list of numbers in Figure 7.16. The first
comparison results in exchanging the first two element values, 690 and 307. The next
comparison, between elements two and three in the revised list, results in exchanging values
between the second and third elements, 690 and 32. This comparison and possible switching
of adjacent values is continued until the last two elements have been compared and possibly
exchanged. This process completes the first pass through the data and results in the largest
number moving to the bottom of the list. As the largest value sinks to the bottom of the list,
the smaller elements slowly rise, or “bubble,” to the top of the list. This bubbling effect of
the smaller elements is what gives rise to the name “bubble sort” for this sorting algorithm.

temp = num[i];

num[i] = min;

num[minidx] = temp;

moves++;

}

}

return moves;

}

690 307 307 307 307

307 690 32 32 32

32 32 690 155 155

155 155 155 690 426

426 426 426 426 690

Figure 7.16 The first pass of an exchange sort

430 Arrays

Because the first pass through the list ensures that the largest value always moves to the
bottom of the list, the second pass stops at the next-to-last element. This process continues
with each pass stopping at one higher element than the previous pass, until n - 1 passes
through the list have been completed or no exchanges are necessary in any single pass. In
both cases, the resulting list is in sorted order. The pseudocode describing this sort is as
follows:

Set exchange count to zero (not required, but done to keep track of the exchanges)
For the first element in the list to one less than the last element (i index)

For the second element in the list to the last element (j index)
If num[j] < num[j - 1]
{

Swap num[j] with num[j - 1]
Increment exchange count

}
EndFor

EndFor
Return exchange count

This sort algorithm is coded in C++ as the bubbleSort() function, which is included in
Program 7.15 for testing purposes. This program tests bubbleSort() with the same list of
10 numbers used in Program 7.14 to test selectionSort(). For comparison to the earlier
selection sort, the number of adjacent moves (exchanges) bubbleSort() makes is also
counted and displayed.

Program 7.15

#include <iostream>

using namespace std;

int bubbleSort(int [], int); // function prototype

int main()

{

const int NUMEL = 10;

int nums[NUMEL] = {22,5,67,98,45,32,101,99,73,10};

int i, moves;

moves = bubbleSort(nums, NUMEL);

cout << "The sorted list, in ascending order, is:\n";

for (i = 0; i < NUMEL; ++i)

cout << " " <<nums[i];

cout << endl << moves << " moves were made to sort this list\n";

return 0;

}

�

431Chapter 7
A Closer Look: Searching and Sorting

Here’s the output produced by Program 7.15:

The sorted list, in ascending order, is:

5 10 22 32 45 67 73 98 99 101

18 moves were made to sort this list

As with the selection sort, the number of comparisons in a bubble sort is O(n2), and the
number of required moves depends on the initial order of values in the list. In the worst case,
when the data is in reverse sorted order, the selection sort performs better than the bubble
sort. Both sorts require n(n - 1)/2 comparisons, but the selection sort needs only n - 1 moves,
and the bubble sort needs n(n - 1)/2 moves. The additional moves the bubble sort requires
result from the intermediate exchanges between adjacent elements to “settle” each element
into its final position. In this regard, the selection sort is superior because no intermediate
moves are necessary. For random data, such as that used in Programs 7.14 and 7.15, the
selection sort generally performs equal to or better than the bubble sort.

7.8 Common Programming Errors

Four common errors are associated with using arrays:

1. Forgetting to declare the array. This error results in a compiler error message such as
“invalid indirection” each time a subscripted variable is encountered in a program.

int bubbleSort(int num[], int numel)

{

int i, j, temp, moves = 0;

for (i = 0; i < (numel - 1); i++)

{

for(j = 1; j < numel; j++)

{

if (num[j] < num[j-1])

{

temp = num[j];

num[j] = num[j-1];

num[j-1] = temp;

moves++;

}

}

}

return moves;

}

432 Arrays

Chapter 12 explains the exact meaning of this error message when establishing the
relationship between arrays and pointers.

2. Using a subscript that references a nonexistent array element, such as declaring the
array as size 20 and using a subscript value of 25. Most C++ compilers don’t detect
this error. However, it results in a runtime error that causes a program crash or results
in a value with no relation to the intended element being accessed from memory. In
either case, this error is usually difficult to locate. The only solution is to make sure,
by specific programming statements or by careful coding, that each subscript
references a valid array element.

3. Not using a large enough counter value in a for loop counter to cycle through all the
array elements. This error usually occurs when an array is initially specified as size
n and there’s a for loop in the program of the form for(i = 0; i < n; i++).
The array size is then expanded, but the programmer forgets to change the interior
for loop parameters. Declaring an array’s size with a named constant and consis-
tently using the named constant throughout the function in place of the variable n
eliminates this problem.

4. Forgetting to initialize the array. Although many compilers set all elements of integer
and real value arrays to 0 automatically, and all elements of character arrays to blanks,
it’s up to the programmer to make sure each array is initialized correctly before
processing of array elements begins.

7.9 Chapter Summary
1. A one-dimensional array is a data structure that can be used to store a list of values of the

same data type. These arrays must be declared by giving the data type of values stored
in the array and the array size. For example, the declaration

int num[100];

creates an array of 100 integers. A preferable approach is first using a named constant to
set the array size, and then using this constant in the array definition, as shown in these
examples:
const int MAXSIZE = 100;

and
int num[MAXSIZE];

2. Array elements are stored in contiguous locations in memory and referenced by using the
array name and a subscript (or index), such as num[22]. Any non-negative integer value
expression can be used as a subscript, and the subscript 0 always refers to the first
element in an array.

3. A two-dimensional array is declared by listing a row and a column size with the data type
and array name. For example, the following declaration creates a two-dimensional array
consisting of five rows and seven columns of integer values:

int mat[5][7];

4. Arrays can be initialized when they are declared. For two-dimensional arrays, you list the
initial values, row by row, inside braces and separate them with commas. For example,
the declaration

433Chapter 7
Chapter Summary

int vals[3][2] = { {1, 2},
{3, 4},
{5, 6} };

produces the following three-row-by-two-column array:
1 2
3 4
5 6

As C++ uses the convention that initialization proceeds in row order, the inner braces can
be omitted. Therefore, the following statement is an equivalent initialization:
int vals[3][2] = { 1, 2, 3, 4, 5, 6};

5. Arrays are passed to a function by passing the array name as an argument. The value
actually passed is the address of the first array storage location. Therefore, the called
function receives direct access to the original array, not a copy of the array elements. A
formal argument must be declared in the called function to receive the passed array
name. The declaration of the formal argument can omit the array’s row size.

Programming Projects for Chapter 7

1. (Statistics) a. Write a C++ program that reads a list of double-precision grades from the
keyboard into an array named grade. The grades are to be counted as they’re read, and
entry is to be terminated when a negative value has been entered. After all grades have
been input, your program should find and display the sum and average of the grades.
The grades should then be listed with an asterisk (*) placed in front of each grade that’s
below the average.

b. Extend the program written for Exercise 1a to display each grade and its letter
equivalent, using the following scale:

Between 90 and 100 = A.
Greater than or equal to 80 and less than 90 = B.
Greater than or equal to 70 and less than 80 = C.
Greater than or equal to 60 and less than 70 = D.
Less than 60 = F.

2. (Practice) Define an array named peopleTypes that can store a maximum of 50
integer values entered at the keyboard. Enter a series of 1s, 2s, 3s, and 4s into the array
to represent people at a local school function; 1 represents an infant, 2 represents a child,
3 represents a teenager, and 4 represents an adult. No other integer value should be
accepted as valid input, and data entry should stop when a negative value is entered.
Your program should count the number of each 1, 2, 3, and 4 in the array and display a
list of how many infants, children, teenagers, and adults were at the school function.

3. (Numerical) Given a one-dimensional array of integer numbers, write and test a
function that prints the array elements in reverse order.

4. (Numerical) Write and test a function that returns the position of the largest and
smallest values in an array of double-precision numbers.

434 Arrays

5. (Sorting) Read a set of numerical grades from the keyboard into an array. The maximum
number of grades to be entered is 50, and data entry should be terminated when a
negative number is entered. Have your program sort and print the grades in descending
order.

6. (Numerical) a. Define an array with a maximum of 20 integer values, and fill the array
with numbers input from the keyboard or assigned by the program. Then write a
function named split() that reads the array and places all zeros or positive numbers
in an array named positive and all negative numbers in an array named negative.
Finally, have your program call a function that displays the values in both the positive
and negative arrays.

b. Extend the program written for Exercise 6a to sort the positive and negative
arrays into ascending order before they are displayed.

7. (Numerical) Using the srand() and rand() C++ library functions, fill an array of
1000 floating-point numbers with random numbers that have been scaled to the range 1
to 100. Then determine and display the number of random numbers having values
between 1 and 50 and the number having values greater than 50. What do you expect the
output counts to be?

8. (Statistical) In many statistical analysis programs, data values considerably outside the
range of the majority of values are simply dropped from consideration. Using this
information, write a C++ program that accepts up to 10 floating-point values from a user
and determines and displays the average and standard deviation of the input values. All
values more than four standard deviations away from the computed average are to be
displayed and dropped from any further calculation, and a new average and standard
deviation should be computed and displayed.

9. (Data Processing) Your professor has asked you to write a C++ program that determines
grades at the end of the semester. For each student, identified by an integer number
between 1 and 60, four exam grades must be kept, and two final grade averages must be
computed. The first grade average is simply the average of all four grades. The second grade
average is computed by weighting the four grades as follows: The first grade gets a weight
of 0.2, the second grade gets a weight of 0.3, the third grade gets a weight of 0.3, and the
fourth grade gets a weight of 0.2. That is, the final grade is computed as follows:

0.2 * grade1 + 0.3 * grade2 + 0.3 * grade3 + 0.2 * grade4

Using this information, construct a 60-by-7 two-dimensional array, in which the first
column is used for the student number, the next four columns for the grades, and the last
two columns for the computed final grades. The program’s output should be a display of
the data in the completed array. For testing purposes, the professor has provided the
following data:

Student Grade 1 Grade 2 Grade 3 Grade 4
1 100 100 100 100
2 100 0 100 0
3 82 94 73 86
4 64 74 84 94
5 94 84 74 64

435Chapter 7
Programming Projects

10. (Modify) Modify the program written for Exercise 9 by adding an eighth column to the
array. The grade in the eighth column should be calculated by computing the average of
the top three grades only.

11. (Data Processing) a. Create a two-dimensional list of integer part numbers and
quantities of each part in stock, and write a function that displays data in the array in
decreasing quantity order. No more than 100 different parts are being kept track of. Test
your program with the following data:

Part No. Quantity
1001 62
949 85
1050 33
867 125
346 59
1025 105

b. Modify the function written in Exercise 11a to display the data in part number order.

12. (Data Processing) The answers to a true-false test are as follows: T T F F T. Given a
two-dimensional answer array, in which each row corresponds to the answers provided on
one test, write a function that accepts the two-dimensional array and number of tests as
parameters and returns a one-dimensional array containing the grades for each test. (Each
question is worth 5 points so that the maximum possible grade is 25.) Test your function
with the following data:

Test 1: T F T T T
Test 2: T T T T T
Test 3: T T F F T
Test 4: F T F F F
Test 5: F F F F F
Test 6: T T F T F

13. (Modify) Modify the function you wrote for Exercise 12 so that each test is stored in
column order rather than row order.

14. (Data Processing) A three-dimensional weather array for the months July and August
2008 has planes labeled by the month numbers 7 and 8. In each plane, there are rows
numbered 1 through 31, representing the days, and two columns labeled H and L,
representing the day’s high and low temperatures. Use this information to write a C++
program that assigns the high and low temperatures for each element of the arrays. Then
allow the user to request the following:

• Any day’s high and low temperatures

• Average high and low temperatures for a given month

436 Arrays

• Month and day with the highest temperature

• Month and day with the lowest temperature

15. (Computational) A magic square is a square of numbers with N rows and N columns,
in which each integer value from 1 to (N * N) appears exactly once, and the sum of each
column, each row, and each diagonal is the same value. For example, Figure 7.17 shows
a magic square in which N = 3, and the sum of the rows, columns, and diagonal is 15.
Write a program that constructs and displays a magic square for any given odd number
N. This is the algorithm:

Insert the value 1 in the middle of the first row (element [0][N%2]).
After a value, x, has been placed, move up one row and to the right one column.
Place the next number, x + 1, there, unless:

(1) You move off the top (row = -1) in any column. Then move to the
bottom row and place the next number, x + 1, in the bottom row of that
column.
(2) You move off the right end (column = N) of a row. Then place the
next number, x + 1, in the first column of that row.
(3) You move to a position that is already filled or out of the upper-right
corner. Then place the next number, x + 1, immediately below x.

Stop when you have placed as many elements as there are in the array.

16. (Computational) Among other applications, Pascal’s triangle (see Figure 7.18) provides
a means of determining the number of possible combinations of n things taken r at a
time. For example, the number of possible combinations of five people (n = 5) taken two
at a time (r = 2) is 10.

Each row of the triangle begins and ends with 1. Every other element in a row is the sum
of the element directly above it with the element to the left of the one above it. That is,

element[n][r] = element[n-1][r] + element[n-1][r-1]

Using this information, write and test a C++ program to create the first 11 rows of a
two-dimensional array representing Pascal’s triangle. For any given value of n less than
11 and r less than or equal to n, the program should display the correct element. Use your
program to determine in how many ways a committee of 8 can be selected from a group
of 10 people.

8 1 6

0 1 2

3 5 7

4

0

1

2 9 2

Column

Row

Figure 7.17 A magic square

437Chapter 7
Programming Projects

1

1

1

1

1

1

0

1

2

3

4

5

1

1

4

10

3

1

5

4

1

5

0

1

2

3

4

5

n

1

3

6

10

2

r

Figure 7.18 Pascal’s triangle

Engineering and Scientific Disciplines

Mechanical Engineering
Generally speaking, mechanical engineers are concerned with machines or systems that
produce or apply energy. The range of technological activities considered part of
mechanical engineering is probably broader than in any other engineering field. The
field can be roughly subdivided into four categories:

� Power: Designing power-generating machines and systems, such as boiler-turbine
engines for generating electricity, solar power, heating systems, and heat
exchanges.

� Design: Innovative design of machine parts or components, from the most
intricate and small to the gigantic. For example, mechanical engineers work
alongside electrical engineers to design automatic control systems, such as robots.

� Automotive: Designing and testing transportation vehicles and the machines used
to manufacture them.

� Heating, ventilation, air conditioning, and refrigeration: Designing systems to
control the environment, both indoors and outside, and to control pollution.

Mechanical engineers usually have a thorough background in subjects such as ther-
modynamics, heat transfer, statics and dynamics, and fluid mechanics.

438 Arrays

Chapter 8
I/O Streams and
Data Files

8.1 I/O File Stream Objects and
Methods

8.2 Reading and Writing
Character-Based Files

8.3 Random File Access

8.4 File Streams as Function
Arguments

8.5 A Case Study: Pollen Count
File Update

8.6 A Closer Look: The iostream
Class Library

8.7 Common Programming Errors

8.8 Chapter Summary

The data for the programs you have used so far has been assigned internally in the programs or entered
by the user during program execution. As such, data used in these programs is stored in the computer’s
main memory and ceases to exist after the program using it has finished executing. This type of data
entry is fine for small amounts of data. However, imagine a company having to pay someone to type
in the names and addresses of hundreds or thousands of customers every month when bills are prepared
and sent.

As you learn in this chapter, storing large amounts of data outside a program on a convenient
storage medium is more sensible. Data stored together under a common name on a storage medium other
than the computer’s main memory is called a data file. Typically, data files are stored on disks, USB
drives, or CD/DVDs. Besides providing permanent storage for data, data files can be shared between
programs, so the data one program outputs can be input in another program. In this chapter, you learn
how data files are created and maintained in C++.

8.1 I/O File Stream Objects and Methods

To store and retrieve data outside a C++ program, you need two things:

• A file
• A file stream object

You learn about these important topics in this section.

Files
A file is a collection of data stored together under a common name, usually on a disk,
magnetic tape, USB drive, or CD/DVD. For example, the C++ programs you store on disk
are examples of files. The stored data in a program file is the code that becomes input data
to the C++ compiler. In the context of data processing, however, a C++ program isn’t usually
considered data, and the term “file” or “data file” typically refers only to external files
containing the data used in a C++ program.

A file is physically stored on an external medium, such as a disk. Each file has a unique
filename, referred to as the file’s external name. The external name is how the operating
system (OS) knows the file. When you review the contents of a directory or folder (for
example, in Windows Explorer), you see files listed by their external names. Each computer
OS has its own specification for the maximum number of characters permitted for an external
filename. Table 8.1 lists these specifications for commonly used OSs.

Table 8.1 Maximum Allowable Filename Characters

OS Maximum Filename Length
DOS 8 characters plus an optional period and

3-character extension
Windows 98, 2000, XP, Vista 255 characters
UNIX
Early versions
Current versions

14 characters
255 characters

To make sure examples in this book are compatible with all the OSs listed in Table 8.1,
the more restrictive DOS specification has been adhered to generally (but not always). If
you’re using one of the other OSs, however, you can take advantage of the increased length
specification to create descriptive filenames, but avoid using extremely long filenames
because they take more time to type and can result in typing errors. A manageable length for
a filename is usually 12 to 14 characters, with a maximum of 25 characters.

Using the DOS convention, all the following are valid data filenames:

prices.dat records info.txt
exper1.dat scores.dat math.mem

Choose filenames that indicate the type of data in the file and the application for which
it’s used. Typically, the first eight characters describe the data, and an extension (the
characters after the decimal point) describes the application used to create the file. For
example, the Excel program adds the .xls or .xlsx extension automatically to all
spreadsheet files, Microsoft Word and WordPerfect use the extensions .doc (or .docx) and

440 I/O Streams and Data Files

.wpx (x refers to the version number), and C++ compilers require a program file with the
extension .cpp. When creating your own filenames, you should adhere to this practice. For
example, using the DOS convention, the name exper1.dat is suitable for describing a file
of data corresponding to experiment number 1.

Two basic types of files exist: text files, also known as character-based files, and
binary-based files. Both file types store data by using a binary code; the difference is in what
the codes represent. Briefly, text files store each character, such as a letter, digit, dollar sign,
decimal point, and so on, by using a character code (typically ASCII or Unicode). With a
character code, a word processing program or text editor can display the files so that a person
can read them.

Binary-based files use the same code the C++ compiler uses for primitive data types.
This means numbers appear in their true binary form, and strings retain their ASCII or
Unicode form. The advantage of binary-based files is compactness; storing numbers with
their binary code usually takes less space than with character values. In general, programmers
use text files more often because the file’s data can be displayed by word processing
programs and simple text editors. The default file type in C++ is always a text file and is the
file type discussed in this chapter.

File Stream Objects
A file stream is a one-way transmission path used to connect a file stored on a physical device,
such as a disk or CD, to a program. Each file stream has its own mode that determines the
direction of data on the transmission path—that is, whether the path moves data from a file to
a program or from a program to a file. A file stream that receives or reads data from a file to a
program is an input file stream. A file stream that sends or writes data to a file is an output file
stream. The direction, or mode, is defined in relation to the program, not the file; data going into
a program is considered input data, and data sent out from a program is considered output data.
Figure 8.1 illustrates the data flow from and to a file, using input and output file streams.

For each file your program uses, regardless of the file’s type (text or binary), a distinct file
stream object must be created. If you want your program to read from and write to a file, both
input and output file stream objects are required. Input file stream objects are declared to be

Point of Information

Functions and Methods
C++ programmers can make full use of the many functions C++ classes provide with-
out knowing the internal details of how the function is constructed or even how to
construct a class. Functions provided as part of a class are formally referred to as class
methods (or methods, for short). Therefore, a method can be referred to as a func-
tion, although the term “method” provides more information in telling you the func-
tion is available as part of a class.

Part Two (Chapters 10 and 11) explains classes and their construction in detail. As
you’ll see, a class is constructed from C++ code that includes both data and functions
(although the functions are more accurately referred to as methods). An object is simply
a specific item constructed from a class. For example, a specific car is an object, which
is a specific item from the class of all cars, or the book you’re reading now is an
object, which is a specific item from the class of all third editions of the book C++ For
Engineers and Scientists.

441Chapter 8
I/O File Stream Objects and Methods

of type ifstream, and output file stream objects are declared to be of type ofstream. For
example, the following declaration statement declares an input file stream object named
inFile to be an object of the ifstream class:

ifstream inFile;

Similarly, the following declaration statement declares an output file stream object named
outFile to be an object of the ofstream class:

ofstream outFile;

In a C++ program, a file stream is accessed by its stream object name: one name for
reading the file and one name for writing to the file. Object names, such as inFile and
outFile, can be any programmer-selected name that conforms to C++’s identifier rules.

File Stream Methods
Each file stream object has access to the methods defined for its ifstream or ofstream
class. These methods include connecting a stream object name to an external filename
(called opening a file), determining whether a successful connection has been made, closing
a connection (called closing a file), getting the next data item into the program from an input
stream, putting a new data item from the program onto an output stream, and detecting when
the end of a file has been reached.

Opening a file connects a file stream object to a specific external filename by using a file
stream’s open() method, which accomplishes two purposes. First, opening a file establishes
the physical connecting link between a program and a file. Because details of this link are
handled by the computer’s OS and are not visible to the program, normally the programmer
doesn’t need to consider them.

From a coding perspective, the second purpose of opening a file is more relevant. Besides
establishing the actual physical connection between a program and a data file, opening a file
connects the file’s external name to the stream object name that the program uses internally.
The method that performs this task, open(), is provided by the ifstream and ofstream
classes.

Disk

Input file stream
#include <fstream>
int main()
{

return 0;
}

Program

Output file stream

File

Figure 8.1 Input and output file streams

442 I/O Streams and Data Files

In using the open() method to connect the file’s external name to its internal object
stream name, only one argument is required: the external filename. For example, the
following statement connects the external file named prices.dat to the internal file
stream object named inFile:

inFile.open("prices.dat");

This statement assumes, of course, that inFile has been declared as an ifstream or
ofstream object. If a file has been opened with the preceding statement, the program
accesses the file by using the internal object name inFile, and the computer saves the file
under the external name prices.dat. The external filename argument passed to open()
is a string enclosed in double quotation marks. Calling the open() method requires standard
object notation, in which the method name, in this case open(), is preceded by an object
name (inFile, in this example) followed by a period.

When an existing file is connecting to an input file stream, the file’s data is made
available for input, starting at the first data item in the file. Similarly, a file connected to an
output file stream creates a new file, said to be in output mode, and makes the file available
for output. If a file exists with the same name as a file opened in output mode, the old file
is erased (overwritten) and all its data is lost.

When opening a file for input or output, good programming practice requires checking
that the connection has been established before attempting to use the file. You can do this
with the fail() method, which returns a true value if the file was opened unsuccessfully
(that is, it’s true the open failed) or a false value if the open succeeded. Typically, the
fail() method is used in code similar to the following, which attempts to open a file named

Point of Information

Input and Output Streams
A stream is a one-way transmission path between a source and a destination. In data
transmission, a stream of bytes is sent down this transmission path, similar to a stream
of water providing a one-way path for water to travel from a source to a destination.

Stream objects are created from stream classes. You have already used two stream
objects extensively: the input stream object named cin and the output stream object
named cout. The cin object, created from the istream stream class, provides a
transmission path from keyboard to program. The cout object, created from the
ostream stream class, provides a transmission path from program to screen. The
istream and ostream stream classes are parent classes to the iostream class.
When the iostream header file is included in a program with the #include
<iostream> directive, the cin and cout stream objects are declared automatically
and opened by the C++ compiler.

File stream objects provide the same capabilities as the cin and cout objects,
except they connect a program to a file rather than the keyboard or screen. File stream
objects must be declared explicitly as objects of the ifstream class (for input) or
objects of the ofstream class (for output). The ifstream and ofstream classes are
made available by including the fstream header file with the directive #include
<fstream>. The fstream class is derived from the ifstream and ofstream
classes.

443Chapter 8
I/O File Stream Objects and Methods

prices.dat for input, checks that a valid connection was made, and reports an error
message if the file wasn’t opened for input successfully:

ifstream inFile; // any object name can be used here
inFile.open("prices.dat"); // open the file
// check that the connection was successfully opened
if (inFile.fail())
{

cout << "\nThe file was not successfully opened"
<< "\n Please check that the file currently exists."
<< endl;

exit(1);
}

If the fail() method returns a true, indicating the open failed, this code displays an
error message. In addition, the exit() function, which is a request to the OS to end
program execution immediately, is called. The cstdlib header function must be included
in any program using exit(), and exit()’s single-integer argument is passed directly to
the OS for any further program action or user inspection. Throughout the remainder of the
book, this type of error checking is included whenever a file is opened. (Section 9.2 shows
how to use exception handling for the same type of error checking.) In addition to the
fail() method, C++ provides three other methods, listed in Table 8.2, for detecting a file’s
status.

Table 8.2 File Status Methods

Prototype Description
fail() Returns a Boolean true if the file hasn’t been opened

successfully; otherwise, returns a Boolean false value.
eof() Returns a Boolean true if a read has been attempted past

the end-of-file; otherwise, returns a Boolean false value.
The value becomes true only when the first character
after the last valid file character is read.

good() Returns a Boolean true value while the file is available for
program use. Returns a Boolean false value if a read has
been attempted past the end-of-file. The value becomes
false only when the first character after the last valid file
character is read.

bad() Returns a Boolean true value if a read has been
attempted past the end-of-file; otherwise, returns a false.
The value becomes true only when the first character
after the last valid file character is read.

Program 8.1 shows the statements required to open a file for input, including an
error-checking routine to ensure that the open was successful. A file opened for input is said
to be in read mode or input mode. (These two terms are synonymous.)

444 I/O Streams and Data Files

A sample run of Program 8.1 produces the following output:

The file has been successfully opened for reading.

A different check is required for output files (files that are written to) because if a file
exists with the same name as the file to be opened in output mode, the existing file is erased
and all its data is lost. To avoid this situation, the file is first opened in input mode to see
whether it exists. If it does, the user is given the choice of permitting it to be overwritten
when it’s opened later in output mode. The code to accomplish this check is shaded in
Program 8.2.

Program 8.1

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()

using namespace std;

int main()

{

ifstream inFile;

inFile.open("prices.dat"); // open the file with the

// external name prices.dat

if (inFile.fail()) // check for a successful open

{

cout << "\nThe file was not successfully opened"

<< "\n Please check that the file currently exists."

<< endl;

exit(1);

}

cout << "\nThe file has been successfully opened for reading."

<< endl;

// statements to read data from the file would be placed here

return 0;

}

445Chapter 8
I/O File Stream Objects and Methods

Program 8.2

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()

using namespace std;

int main()

{

ifstream inFile;

ofstream outFile;

inFile.open("prices.dat"); // attempt to open the file for input

char response;

if (!inFile.fail()) // if it doesn't fail, the file exists

{

cout << "A file by the name prices.dat exists.\n"

<< "Do you want to continue and overwrite it\n"

<< " with the new data (y or n): ";

cin >> response;

if (tolower(response) == 'n')

{

cout << "The existing file will not be overwritten." << endl;

exit(1); //terminate program execution

}

}

outFile.open("prices.dat"); // now open the file for writing

if (inFile.fail()) // check for a successful open

{

cout << "\nThe file was not successfully opened"

<< endl;

exit(1);

}

cout << "The file has been successfully opened for output."

<< endl;

// statements to write to the file would be placed here

return 0;

}

446 I/O Streams and Data Files

The following two runs were made with Program 8.2:

A file by the name prices.dat exists.

Do you want to continue and overwrite it

with the new data (y or n): n

The existing file will not be overwritten.

and

A file by the name prices.dat exists.

Do you want to continue and overwrite it

with the new data (y or n): y

The file has been successfully opened for output.

Although Programs 8.1 and 8.2 can be used to open an existing file for reading and
writing, both programs lack statements to perform a read or write and close the file. These
topics are discussed shortly. Before moving on, however, it’s possible to combine the
declaration of an ifstream or ofstream object and its associated open statement into one
statement. For example, examine the following two statements in Program 8.1:

ifstream inFile;
inFile.open("prices.dat");

They can be combined into a single statement:

ifstream inFile("prices.dat");

Embedded and Interactive Filenames Programs 8.1 and 8.2 have two problems:

• The external filename is embedded in the program code.
• There’s no provision for a user to enter the filename while the program is running.

As both programs are written, if the filename is to change, a programmer must modify the
external filename in the call to open() and recompile the program. Both these problems can
be avoided by assigning the filename to a string variable.

A string variable, as used in this book, is a variable that can hold a string value, which is
any sequence of zero or more characters enclosed in quotation marks, such as "Hello
World" and "". Remember that the quotation marks delimit the beginning and end of a
string but aren’t stored as part of the string.

In declaring and initializing a string variable for use in an open() method, the string is
considered a C-string. (See the Point of Information “Using C-Strings as Filenames” for
precautions when using a C-string.) A safer alternative, and one used throughout this book,
is to use a string class object and convert it to a C-string by using the c_str() method.

447Chapter 8
I/O File Stream Objects and Methods

After a string variable is declared to store a filename, it can be used in one of two ways.
First, as shown in Program 8.3a, it can be placed at the top of a program to clearly identify
a file’s external name, instead of embedding it in an open() method call.

Point of Information

Using C-Strings as Filenames
If you use a C-string (which is simply a one-dimensional array of characters) to store an
external filename, you must specify the C-string’s maximum length in brackets immedi-
ately after it’s declared. For example, examine the following declaration:

char filename[21] = "prices.dat";

The number in brackets (21) is one more than the maximum number of characters
that can be assigned to the variable filename because the compiler adds an end-of-
string character to terminate the string. Therefore, the string value "prices.dat",
which consists of 10 characters, is actually stored as 11 characters. In this example, the
maximum value that can be assigned to the string variable filename is a string value
consisting of 20 characters.

Program 8.3a

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()

#include <string>

using namespace std;

int main()

{

string filename = "prices.dat"; // place the filename up front

ifstream inFile;

inFile.open(filename.c_str()); // open the file

if (inFile.fail()) // check for successful open

{

cout << "\nThe file named " << filename

<< " was not successfully opened"

<< "\n Please check that the file currently exists."

<< endl;

exit(1);

}

cout << "\nThe file has been successfully opened for reading.\n";

return 0;

}

448 I/O Streams and Data Files

In Program 8.3a, the string object is declared and initialized with the name filename.
This name is placed at the top of main() for easy file identification. When a string object
is used, as opposed to a string literal, the variable name isn’t enclosed in quotation marks in
the open() method call. In the open() call, the value of the string object, which is a
C-string, is provided by the expression filename.c_str().

Finally, in the fail() method, the file’s external name is displayed by inserting the
string object’s name in the cout output stream. External names of files are identified in this
manner in this book.

Another useful role string objects play is to permit users to enter the filename as the
program is executing. For example, the code

string filename;

cout << "Please enter the name of the file you wish to open: ";
cin >> filename;

allows a user to enter a file’s external name at runtime. The only restriction in this code is that
the user must not enclose the entered string value in quotation marks, and the entered string
value can’t contain any blanks. The reason no blanks can be included is that when cin is used,
the compiler terminates the string when it encounters a blank. Program 8.3b uses this code in the
context of a complete program.

Program 8.3b

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()

#include <string>

using namespace std;

int main()

{

string filename;

ifstream inFile;

cout << "Please enter the name of the file you wish to open: ";

cin >> filename;

inFile.open(filename.c_str()); // open the file

if (inFile.fail()) // check for successful open

{

cout << "\nThe file named " << filename

<< " was not successfully opened"

<< "\n Please check that the file currently exists."

<< endl;

exit(1);

}

cout << "\nThe file has been successfully opened for reading.\n";

return 0;

}

449Chapter 8
I/O File Stream Objects and Methods

Point of Information

Using fstream Objects
In using ifstream and ofstream objects, the input or output mode is indicated by
the object. Therefore, ifstream objects must be used for input, and ofstream
objects must be used for output. Another means of creating file streams is to use
fstream objects that can be used for input or output, but this method requires an
explicit mode designation. An fstream object is declared by using the following
syntax:

fstream objectName;

When using the fstream class’s open() method, two arguments are required: a
file’s external name and a mode indicator. Here are the permissible mode indicators:

Indicator Description

ios::in Open a text file in input mode
ios::out Open a text file in output mode
ios::app Open a text file in append mode
ios::ate Go to the end of the opened file
ios::binary Open a binary file in input mode (default is text file)
ios::trunc Delete file contents if it exists
ios::nocreate If file doesn’t exist, open fails
ios::noreplace If file exists, open for output fails

As with ofstream objects, an fstream object in output mode creates a new file
and makes the file available for writing. If a file exists with the same name as a file
opened for output, the old file is erased. For example, the following statement declares
file1 as an object of type fstream:

fstream file1;

The following statement attempts to open the text file prices.dat for output:

file1.open("prices.dat",ios::out);

After this file has been opened, the program accesses the file by using the internal
object name file1, and the computer saves the file under the external name
prices.dat.

An fstream file object opened in append mode means an existing file is avail-
able for data to be added to the end of the file. If the file opened for appending
doesn’t exist, a new file with the designated name is created and made available to
receive output from the program. For example, the following statement declares file1
to be of type fstream and attempts to open a text file named prices.dat and
make it available for data to be added to the end of the file:

file1.open("prices.dat",ios::app);
continued...

450 I/O Streams and Data Files

The following is a sample output of Program 8.3b:

Please enter the name of the file you wish to open: foobar

The file named foobar was not successfully opened

Please check that the file currently exists.

Closing a File A file is closed by using the close() method. This method breaks the
connection between the file’s external name and the file stream object, which can be used
for another file. Examine the following statement, which closes the inFile stream’s
connection to its current file:

inFile.close();

As indicated, the close() method takes no argument.
Because all computers have a limit on the maximum number of files that can be open at

one time, closing files that are no longer needed makes good sense. Any open files existing
at the end of normal program execution are closed automatically by the OS.

EXERCISES 8.1

1. (Practice) Write declaration and open statements that link the following external filenames
to their corresponding internal object names. All files are text-based.

Point of Information

Using fstream Objects (continued)
Finally, an fstream object opened in input mode means an existing external file

has been connected and its data is available as input. For example, the following state-
ment declares file1 to be of type fstream and attempts to open a text file named
prices.dat for input:

file1.open("prices.dat",ios::in);

The mode indicators can be combined by the bitwise OR operator, | (see
Section 15.2). For example, the following statement opens the file1 stream, which
can be an fstream or ifstream, as an input binary stream:

file1.open("prices.dat", ios::in | ios::binary)

If the mode indicator is omitted as the second argument for an ifstream object,
the stream is opened as a text input file by default; if the mode indicator is omitted for
an ofstream object, the stream is opened as a text output file by default.

451Chapter 8
I/O File Stream Objects and Methods

External Filename Internal Object Name Mode
coba.mem memo output
book.let letter output
coupons.bnd coups append
yield.bnd yield append
prices.dat priFile input
rates.dat rates input

2. (Practice) a. Write a set of two statements that declares the following objects as
ifstream objects, and then opens them as text input files: inData.txt, prices.txt,
coupons.dat, and exper.dat.

b. Rewrite the two statements for Exercise 2a, using a single statement.

3. (Practice) a. Write a set of two statements that declares the following objects as
ofstream objects, and then opens them as text output files: outDate.txt, rates.txt,
distance.txt, and file2.txt.

b. Rewrite the two statements for Exercise 3a, using a single statement.

4. (Practice) Enter and execute Program 8.1 on your computer.

5. (Practice) Enter and execute Program 8.2 on your computer.

6. (Practice) a. Enter and execute Program 8.3a on your computer.

b. Add a close() method to Program 8.3a, and then execute the program.

7. (Practice) a. Enter and execute Program 8.3b on your computer.

b. Add a close() method to Program 8.3b, and then execute the program.

8. (Practice) Using the reference manuals provided with your computer’s OS, determine the
following:
a. The maximum number of characters the computer can use to name a file for storage

b. The maximum number of data files that can be open at the same time

9. (Practice) Would it be appropriate to call a saved C++ program a file? Why or why not?

10. (Practice) a. Write declaration and open statements to link the following external file-
names to their corresponding internal object names. Use only ifstream and ofstream
objects.

External Name Internal Object Name Mode
coba.mem memo binary and output
coupons.bnd coups binary and append
prices.dat priFile binary and input

b. Redo Exercise 10a, using only fstream objects.

c. Write close statements for each file opened in Exercise 10a.

452 I/O Streams and Data Files

Point of Information

Checking for a Successful Connection
You must check that the open() method established a connection between a file
stream and an external file successfully because the open() call is a request to the OS
that can fail for various reasons. Chief among these reasons is a request to open an
existing file for reading that the OS can’t locate or a request to open a file for output
in a nonexistent folder. If the OS can’t satisfy the open request, you need to know
about it and terminate your program. Failure to do so can result in abnormal program
behavior or a program crash.

There are two styles of coding for checking the return value. The most common
method for checking that a fail didn’t occur when attempting to use a file for input is
the one coded in Program 8.1. It’s used to distinguish the open() request from the
check made via the fail() call and is repeated here for convenience:

inFile.open("prices.dat"); // request to open the file
if (inFile.fail()) // check for a failed connection
{

cout << "\nThe file was not successfully opened"
<< "\n Please check that the file currently exists."
<< endl;

exit(1);
}

Similarly, the check made in Program 8.2 is typically included when a file is being
opened in output mode. Alternatively, you might encounter programs that use
fstream objects in place of ifstream and ofstream objects (see the previous Point
of Information box). When using fstream’s open() method, two arguments are
required: a file’s external name and an explicit mode indication. Using an fstream
object, the open request and check for an input file typically appear as follows:

fstream inFile;

inFile.open("external name", ios::in);
if (inFile.fail())
{

cout << "\nThe file was not successfully opened"
<< "\n Please check that the file currently exists."
<< endl;

exit(1);
}

Many times, the conditional expression inFile.fail() is replaced by the
equivalent expression !inFile. Although ifstream and ofstream objects are
always used in this book, be prepared to encounter styles that use fstream objects.

453Chapter 8
I/O File Stream Objects and Methods

8.2 Reading and Writing Character-Based Files

Reading or writing character-based files involves almost the identical operations for reading
input from the keyboard and writing data to the screen. For writing to a file, the cout object
is replaced by the ofstream object name declared in the program. For example, if
outFile is declared as an object of type ofstream, the following output statements are
valid:

outFile << 'a';
outFile << "Hello World!";
outFile << descrip << ' ' << price;

The filename in each of these statements, in place of cout, directs the output stream to
a specific file instead of to the standard display device (the screen). Program 8.4 shows using
the insertion operator, <<, to write a list of descriptions and prices to a file.

Program 8.4

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()

#include <string>

#include <iomanip> // needed for formatting

using namespace std;

int main()

{

string filename = "prices.dat"; // put the filename up front

ofstream outFile;

outfile.open(filename.c_str());

if (outFile.fail())

{

cout << "The file was not successfully opened" << endl;

exit(1);

}

// set the output file stream formats

outFile << setiosflags(ios::fixed)

<< setiosflags(ios::showpoint)

<< setprecision(2);

�

454 I/O Streams and Data Files

When Program 8.4 runs, the, prices.dat file is created and saved by the computer as
a text file. It’s a sequential file consisting of the following data:

Mats 39.95

Bulbs 3.22

Fuses 1.08

The actual storage of characters in the file depends on the character codes the computer
uses. Although only 30 characters appear to be stored in the file—corresponding to the
descriptions, blanks, and prices written to the file—the file contains 36 characters.

The extra characters consist of the newline escape sequence at the end of each line
created by the endl manipulator, which is created as a carriage return character (cr) and
linefeed (lf). Assuming characters are stored with the ASCII code, the prices.dat file is
physically stored as shown in Figure 8.2. For convenience, the character corresponding to
each hexadecimal code is listed below the code. A code of 20 represents the blank character.
Additionally, C and C++ append the low-value hexadecimal byte 0x00 as the end-of-file
(EOF) sentinel when the file is closed. This EOF sentinel is never counted as part of the file.

// send data to the file

outFile << "Mats " << 39.95 << endl

<< "Bulbs " << 3.22 << endl

<< "Fuses " << 1.08 << endl;

outFile.close();

cout << "The file " << filename

<< " has been successfully written." << endl;

return 0;

}

4D

M

61

a

74

t

73

s

20 33

3

39

9

2E

.

39

9

35

5

0D

cr

0A

1f

42

B

75

u

6C

l

62

b

73

s

20

33

3

2E

.

32

2

32

2

0D

cr

0A

1f

46

F

75

u

73

s

65

e

73

s

20 31

1

2E

.

30

0

38

8

0D

cr

0A

1f

Figure 8.2 The prices.dat file as stored by the computer

455Chapter 8
Reading and Writing Character-
Based Files

Reading from a Text File
Reading data from a character-based file is almost identical to reading data from a standard
keyboard, except the cin object is replaced by the ifstream object declared in the
program. For example, if inFile is declared as an object of type ifstream that’s opened
for input, the following statement reads the next two items in the file and stores them in the
variables descrip and price:

inFile >> descrip >> price;

The file stream name in this statement, in place of cin, directs the input to come from
the file stream rather than the standard input device stream. Table 8.3 lists other methods
that can be used for stream input. These methods must be preceded by a stream object
name. All these methods, except getline(), are defined in the iostream class. The
getline() method is defined in the string class.

Point of Information

Formatting Text File Output Stream Data
Output file streams can be formatted in the same manner as the cout standard output
stream. For example, if an output stream named fileOut has been declared, the fol-
lowing statement formats all data inserted in the fileOut stream in the same way
these parameterized manipulators work for the cout stream:

fileOut << setiosflags(ios::fixed)
<< setiosflags(ios::showpoint)
<< setprecision(2);

The first manipulator parameter, ios::fixed, causes the stream to output all num-
bers as though they were floating-point values. The next parameter, ios::showpoint,
tells the stream to provide a decimal point. Therefore, a value such as 1.0 appears as 1.0,
not 1. Finally, the setprecision() manipulator tells the stream to display two decimal
values after the decimal point. Therefore, the number 1.0, for example, appears as 1.00.

Instead of using manipulators, you can use the stream methods setf() and
precision(). For example, the previous formatting can be accomplished with the
following code:

fileOut.setf(ios::fixed);
fileOut.setf(ios::showpoint);
fileOut.precision(2);

Which style you select is a matter of preference. In both cases, the formats need
be specified only once and remain in effect for every number subsequently inserted in
the file stream.

456 I/O Streams and Data Files

Table 8.3 Stream Input Class Methods

Method Name Description
get() Returns the next character extracted from the input

stream as an int.
get(charVar) Overloaded version of get() that extracts the next

character from the input stream and assigns it to the
specified character variable, charVar.

getline(fileObject,
strObj, termChar)

Extracts characters from the specified input stream,
fileObject, until the terminating character,
termChar, is encountered. Assigns the characters to
the specified string class object, strObj.

peek() Returns the next character in the input stream
without extracting it from the stream.

ignore(int n) Skips over the next n characters. If n is omitted, the
default is to skip over the next single character.

Program 8.5 shows how the prices.dat file created in Program 8.4 can be read. This
program illustrates one way of detecting the EOF marker by using the good() method (see
Table 8.2). Because this method returns a Boolean true value before the EOF marker has
been read or passed over, it can be used to verify that the data read is valid file data. Only
after the EOF marker has been read or passed over does this method return a Boolean false.
Therefore, the notation while(inFile.good()) used in Program 8.5 ensures that the
data is read from the file before the EOF has been read.

Point of Information

The put() Method
All output streams have access to the fstream class’s put() method, which permits
character-by-character output to a stream. This method works in the same manner as
the character insertion operator, <<. The syntax of this method call is the following:

ofstreamName.put(characterExpression);

The characterExpression can be a character variable or literal value. For
example, the following code can be used to output an 'a' to the standard output
stream:

cin.put('a');

In a similar manner, if outFile is an ofstream object file that has been opened,
the following code outputs the character value in the character variable named
keycode to this output:

char keycode;
.
.

outFile.put(keycode);

457Chapter 8
Reading and Writing Character-
Based Files

Program 8.5 produces the following display:

Mats 39.95

Bulbs 3.22

Fuses 1.08

Program 8.5

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()

#include <string>

using namespace std;

int main()

{

string filename = "prices.dat"; // put the filename up front

string descrip;

double price;

ifstream inFile;

inFile.open(filename.c_str());

if (inFile.fail()) // check for successful open

{

cout << "\nThe file was not successfully opened"

<< "\n Please check that the file currently exists."

<< endl;

exit(1);

}

// read and display the file's contents

inFile >> descrip >> price;

while (inFile.good()) // check next character

{

cout << descrip << ' ' << price << endl;

inFile >> descrip >> price;

}

inFile.close();

return 0;

}

458 I/O Streams and Data Files

Point of Information

A Way to Identify a File’s Name and Location
During program development, test files are usually placed in the same directory as the
program. Therefore, a method call such as inFile.open("exper.dat") causes no
problems to the OS. In production systems, however, it’s not uncommon for data files
to reside in one directory and program files to reside in another. For this reason, includ-
ing the full pathname of any file that’s opened is always a good idea.

For example, if the exper.dat file resides in the C:\test\files directory, the
open() call should include the full pathname: inFile.open("C:\\test\\
files\\exper.dat"). Then, no matter where the program is run from, the OS
knows where to locate the file. Note the use of double backslashes, which is required.

Another important convention is to list all filenames at the top of a program
instead of embedding the names deep in the code. You can do this easily by using
string variables to store each filename. For example, if the statement

string filename = "c:\\test\\files\\exper.dat";

is placed at the top of a program file, the declaration statement clearly lists both the
name of the file and its location. Then, if some other file is to be tested, all that’s
required is a simple one-line change at the top of the program.

Using a string variable for the file’s name is also useful for the fail() method
check. For example, take a look at the following code:

string filename;
ifstream infile;

inFile.open(filename.c_str());
if (inFile.fail())
{
cout << "\n The file named " << filename

<< was not successfully opened"
<<\n Please check that this file currently exists.";

exit(1);
}

In this code, the name of the file that failed to open is displayed in the error mes-
sage without the name being embedded as a string value.

459Chapter 8
Reading and Writing Character-
Based Files

Examine the expression inFile.good() used in the while statement. This expres-
sion is true as long as the EOF marker hasn’t been read. Therefore, as long as the item read
is good, the loop continues to read the file. Within the loop, the items just read are displayed,
and then a new string and a double-precision number are input to the program. When the
EOF has been detected, the expression returns a Boolean value of false and the loop
terminates. This termination ensures that data is read and displayed up to, but not including,
the EOF marker.

A replacement for the statement while(inFile.good()) is while(!inFile.
eof()), which is read as "while the end of file has not been reached." This replacement
works because the eof() method returns a true only after the EOF marker has been read
or passed over. In effect, the relational expression checks that the EOF hasn’t been
read—hence, the use of the NOT operator, !.

Another means of detecting the EOF is to use the fact that the extraction operation, >>,
returns a Boolean value of true if data is extracted from a stream; otherwise, it returns a
Boolean false value. Using this return value, the following code can be used in Program 8.5
to read the file:

// read and display the file's contents
while (inFile >> descrip >> price) // check next character

cout << descrip << ' ' << price << endl;

Although this code seems a bit cryptic at first glance, it makes perfect sense when you
understand that the expression being tested extracts data from the file and returns a Boolean
value to indicate whether the extraction was successful.

Finally, in the previous while statement or in Program 8.5, the expression inFile >>
descrip >> price can be replaced by a getline() method (see Table 8.3). For file
input, this method has the following syntax:

getline(fileObject, strObj, terminatingChar)

fileObject is the name of the ifstream file, strObj is a string class object, and
terminatingChar is an optional character constant or variable specifying the terminating
character. If this optional third argument is omitted, the default terminating character is the
newline ('\n') character. Program 8.6 shows using getline() in the context of a complete
program.

Program 8.6 is a line-by-line text-copying program, which reads a line of text from the file
and then displays it on the screen. The output of Program 8.6 is the following:

Mats 39.95

Bulbs 3.22

Fuses 1.08

If obtaining the description and price as separate variables were necessary, either Program 8.5
should be used, or the string returned by getline() in Program 8.6 must be processed further
to extract the separate data items. (See Section 8.6 for parsing procedures.)

460 I/O Streams and Data Files

Standard Device Files
The file stream objects you have seen so far have been logical file objects. A logical file object
is a stream that connects a file of logically related data, such as a data file, to a program. In
addition to logical file objects, C++ supports physical file objects. A physical file object is a
stream that connects to a hardware device, such as a keyboard, screen, or printer.

The actual physical device assigned to your program for data entry is formally called the
standard input file. Usually, it’s the keyboard. When a cin object method call is encountered
in a C++ program, it’s a request to the OS to go to this standard input file for the expected
input. Similarly, when a cout object method call is encountered, the output is automatically
displayed or “written to” a device that has been assigned as the standard output file. For most
systems, it’s a computer screen, although it can also be a printer.

Program 8.6

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()

#include <string>

using namespace std;

int main()

{

string filename = "prices.dat"; // put the filename up front

string line;

ifstream inFile;

inFile.open(filename.c_str());

if (inFile.fail()) // check for successful open

{

cout << "\nThe file was not successfully opened"

<< "\n Please check that the file currently exists."

<< endl;

exit(1);

}

// read and display the file's contents

while (getline(inFile,line))

cout << line << endl;

inFile.close();

return 0;

}

461Chapter 8
Reading and Writing Character-
Based Files

When a program is executed, the standard input stream cin is connected to the standard
input device. Similarly, the standard output stream cout is connected to the standard output
device. These two object streams are available for programmer use, as are the standard error
stream, cerr, and the standard log stream, clog. Both these streams connect to the screen.

Other Devices
The keyboard, display, error, and log streams are connected automatically to the stream objects
cin, cout, cerr, and clog when the iostream header file is included in a program. Other
devices can be used for input or output if the name assigned by the system is known. For
example, most IBM or IBM-compatible PCs assign the name prn to the printer connected to the
computer. For these computers, a statement such as outFile.open("prn") connects the

Point of Information

The get() and putback() Methods
All input streams have access to the fstream class’s get() method, used for
character-by-character input from an input stream. This method works similarly to char-
acter extraction, using the >> operator, with two important differences: If a newline
character, '\n', or a blank character, ' ', is encountered, these characters are read in
the same manner as any other alphanumeric character. The syntax of this method call is
the following:

istreamName.get(characterVariable);

For example, the following code can be used to read the next character from the
standard input stream and store the character in the variable ch:

char ch;
cin.get(ch);

Similarly, if inFile is an ifstream object that has been opened to a file, the
following code reads the next character in the stream and assigns it to the character
variable keycode:

char keycode;
inFile.get(keycode);

In addition to the get() method, all input streams have a putback() method
for putting the last character read from an input stream back on the stream. This
method has the following syntax (with characterExpression representing any
character variable or character value):

ifstreamName.putback(characterExpression);

The putback() method provides output capability to an input stream. The put-
back character need not be the last character read; it can be any character. All putback
characters, however, have no effect on the data file. They affect only the open input
stream. Therefore, the data file characters remain unchanged, although the characters
subsequently read from the input stream can change.

462 I/O Streams and Data Files

printer to the ofstream object named outFile. A subsequent statement, such as outFile
<< "Hello World!";, would cause the string Hello World! to be output directly to the
printer. As the name of an actual file, prn must be enclosed in quotation marks in the open()
method call.

EXERCISES 8.2

1. (Practice and Modify) a. Enter and execute Program 8.5.

b. Modify Program 8.5 to use the expression !inFile.eof() in place of the expression
inFile.good(), and execute the program to see whether it operates correctly.

2. (Practice and Modify) a. Enter and execute Program 8.6.

b. Modify Program 8.6 by replacing cout with cerr, and verify that the output for the
standard error stream is the screen.

c. Modify Program 8.6 by replacing cout with clog, and verify that the output for the
standard log stream is the screen.

3. (Practice and Modify) a. Write a C++ program that accepts lines of text from the key-
board and writes each line to a file named text.dat until an empty line is entered. An
empty line is a line with no text that’s created by pressing the Enter (or Return) key.

b. Modify Program 8.6 to read and display the data stored in the text.dat file created
in Exercise 3a.

4. (Practice) Determine the OS command or procedure your computer provides to display
the contents of a saved file.

5. (Data Processing) a. Create a text file named employee.dat containing the
following data:

Anthony A 10031 7.82 12/18/2008
Burrows W 10067 9.14 06/9/2006
Fain B 10083 8.79 05/18/2007
Janney P 10095 10.57 09/28/2008
Smith G 10105 8.50 12/20/2007

b. Write a C++ program to read the employee.dat file created in Exercise 5a and pro-
duce a duplicate copy of the file named employee.bak.

c. Modify the program written in Exercise 5b to accept the names of the original and
duplicate files as user input.

d. The program written for Exercise 5c always copies data from an original file to a duplicate
file. What’s a better method of accepting the original and duplicate filenames, other than
prompting the user for them each time the program runs?

463Chapter 8
Reading and Writing Character-
Based Files

6. (Data Processing) a. Write a C++ program that opens a file and displays its contents with
line numbers. That is, the program should print the number 1 before displaying the first line,
print the number 2 before displaying the second line, and so on for each line in the file.

b. Modify the program written in Exercise 6a to list the file’s contents on the printer
assigned to your computer.

7. (Data Processing) a. Create a text file containing the following data (without the
headings):

Name Social Security Number Hourly Rate Hours Worked
B Caldwell 555-88-2222 7.32 37
D Memcheck 555-77-4444 8.32 40
R Potter 555-77-6666 6.54 40
W Rosen 555-99-8888 9.80 35

b. Write a C++ program that reads the data file created in Exercise 7a and computes and
displays a payroll schedule. The output should list the Social Security number, name,
and gross pay for each person, calculating gross pay as Hourly Rate × Hours Worked.

8. (Data Processing) a. Create a text file containing the following data (without the
headings):

Car Number Miles Driven Gallons of Gas Used
54 250 19
62 525 38
71 123 6
85 1322 86
97 235 14

b. Write a C++ program that reads the data in the file created in Exercise 8a and displays
the car number, miles driven, gallons of gas used, and miles per gallon (mpg) for each car.
The output should contain the total miles driven, total gallons of gas used, and average
mpg for all cars. These totals should be displayed at the end of the output report.

9. (Data Processing) a. Create a text file with the following data (without the headings):

Part Number Initial Amount Quantity Sold Minimum Amount
QA310 95 47 50
CM145 320 162 200
MS514 34 20 25
EN212 163 150 160

464 I/O Streams and Data Files

b. Write a C++ program to create an inventory report based on the data in the file cre-
ated in Exercise 9a. The display should consist of the part number, current balance,
and the amount needed to bring the inventory to the minimum level. The current
balance is the initial amount minus the quantity sold.

8.3 Random File Access

The term file access refers to the process of retrieving data from a file. There are two types
of file access: sequential access and random access. To understand file access types, first you
need to understand how data is organized in a file.

The term file organization refers to the way data is stored in a file. The files you have
used, and will continue to use, have a sequential organization, meaning characters in the file
are stored in a sequential manner. In addition, each open file has been read in a sequential
manner, meaning characters are accessed one after another, which is called sequential access.
Although characters are stored sequentially, they don’t have to be accessed the same way. In
fact, you can skip over characters and read a sequentially organized file in a nonsequential
manner.

In random access, any character in the opened file can be read without having to
sequentially read all characters stored ahead of it first. To provide random access to files, each
ifstream object creates a file position marker automatically. This marker is a long integer
representing an offset from the beginning of the file and keeps track of where the next
character is to be read from or written to. Table 8.4 lists the methods used to access and
change the file position marker. The suffixes g and p in these method names denote get
and put; get refers to an input (get from) file, and put refers to an output (put to) file.

Table 8.4 File Position Marker Methods

Name Description
seekg(offset, mode) For input files, move to the offset position indicated by

the mode.
seekp(offset, mode) For output files, move to the offset position indicated

by the mode.
tellg(void) For input files, return the current value of the file

position marker.
tellp(void) For output files, return the current value of the file

position marker.

The seek() methods allow the programmer to move to any position in the file. To
understand these methods, you must understand how data is referenced in the file by using
the file position marker.

Each character in a data file is located by its position in the file. The first character in the
file is located at position 0, the next character at position 1, and so forth. A character’s position
is referred to as its offset from the start of the file. Therefore, the first character has a 0 offset,
the second character has an offset of 1, and so on, for each character in the file.

The seek() methods require two arguments: the offset, as a long integer, in the file and
where the offset is to be calculated from, determined by the mode. The three alternatives for the
mode are ios::beg, ios::cur, and ios::end, which denote the beginning of the file,

465Chapter 8
Random File Access

current position, and end of the file. Therefore, the mode ios::beg means the offset is the true
offset from the start of the file. The mode ios::cur means the offset is relative to the current
position in the file, and the mode ios::end means the offset is relative to the end of the file.
A positive offset means move forward in the file, and a negative offset means move backward.

Examples of seek() method calls are shown in the following code. In these examples,
inFile has been opened as an input file and outFile as an output file. The offset passed
to seekg() and seekp() must be a long integer, hence the uppercase L appended to each
number in the method calls.

inFile.seekg(4L,ios::beg); // go to the fifth character in the input file
outFile.seekp(4L,ios::beg); // go to the fifth character in the output file
inFile.seekg(4L,ios::cur); // move ahead five characters in the input file
outFile.seekp(4L,ios::cur); // move ahead five characters in the output file
inFile.seekg(-4L,ios::cur); // move back five characters in the input file
outFile.seekp(-4L,ios::cur); // move back five characters in the output file
inFile.seekg(0L,ios::beg); // go to start of the input file
outfile.seekp(0L,ios::beg); // go to start of the output file
inFile.seekg(0L,ios::end); // go to end of the input file
outFile.seekp(0L,ios::end); // go to end of the output file
inFile.seekg(-10L,ios::end); // go to 10 characters before the input file's end
outFile.seekp(-10L,ios::end); // go to 10 characters before the output file's end

As opposed to seek() methods that move the file position marker, the tell()
methods return the file position marker’s offset value. For example, if 10 characters have
been read from an input file named inFile, the method call returns the long integer 10:

inFile.tellg();

This means the next character to be read is offset 10 byte positions from the start of the
file and is the 11th character in the file.

Program 8.7 shows using seekg() and tellg() to read a file in reverse order, from last
character to first. As each character is read, it’s also displayed.

Assume the test.dat file contains the following characters:

The grade was 92.5

The output of Program 8.7 is the following:

5 : . : 2 : 9 : : s : a : w : : e : d : a : r : g : : e : h : T :

466 I/O Streams and Data Files

Program 8.7

#include <iostream>

#include <fstream>

#include <string>

#include <cstdlib>

using namespace std;

int main()

{

string filename = "test.dat";

char ch;

long offset, last;

ifstream inFile(filename.c_str());

if (inFile.fail()) // check for successful open

{

cout << "\nThe file was not successfully opened"

<< "\n Please check that the file currently exists"

<< endl;

exit(1);

}

inFile.seekg(0L,ios::end); // move to the end of the file

last = inFile.tellg(); // save the offset of the last character

for(offset = 1L; offset <= last; offset++)

{

inFile.seekg(-offset, ios::end);

ch = inFile.get();

cout << ch << " : ";

}

inFile.close();

cout << endl;

return 0;

}

467Chapter 8
Random File Access

Program 8.7 initially goes to the last character in the file. The offset of this character, the
EOF character, is saved in the variable last. Because tellg() returns a long integer, last
has been declared as a long integer.

Starting from the end of the file, seekg() is used to position the next character to be
read, referenced from the end of the file. As each character is read, the character is displayed,
and the offset is adjusted to access the next character. The first offset used is -1, which
represents the character immediately preceding the EOF marker.

EXERCISES 8.3

1. (Practice) a. Create a file named test.dat containing the data in the test.dat file
used in Program 8.7. (You can use a text editor or copy the test.dat file from this
book’s Web site.)

b. Enter and execute Program 8.7 on your computer.

2. (Modify) Rewrite Program 8.7 so that the origin for the seekg() method used in the
for loop is the start of the file rather than the end.

3. (Modify) Modify Program 8.7 to display an error message if seekg() attempts to refer-
ence a position beyond the end of the file.

4. (Practice) Write a program that reads and displays every second character in a file named
test.dat.

5. (Practice) Using the seek() and tell() methods, write a function named
fileChars() that returns the total number of characters in a file.

6. (Practice) a. Write a function named readBytes() that reads and displays n characters
starting from any position in a file. The function should accept three arguments: a file object
name, the offset of the first character to be read, and the number of characters to be read.
(Note : The prototype for readBytes() should be void readBytes(fstream&,
long, int).)

b. Modify the readBytes() function written in Exercise 6a to store the characters read
into a string or an array. The function should accept the storage address as a fourth
argument.

8.4 File Streams as Function Arguments

A file stream object can be used as a function argument. The only requirement is that the
function’s formal parameter be a reference (see Section 6.3) to the appropriate stream, either
ifstream& or ofstream&. For example, in Program 8.8, an ofstream object named
outFile is opened in main(), and this stream object is passed to the inOut() function.
The function prototype and header for inOut() declare the formal parameter as a reference
to an ostream object type. The inOut() function is then used to write five lines of
user-entered text to the file.

468 I/O Streams and Data Files

Program 8.8

#include <iostream>

#include <fstream>

#include <cstdlib>

#include <string>

using namespace std;

int main()

{

string fname = "list.dat"; // here is the file you are working with

void inOut(ofstream&); // function prototype

ofstream outFile;

outFile.open(fname.c_str());

if (outFile.fail()) // check for a successful open

{

cout << "\nThe output file " << fname << " was not successfully opened"

<< endl;

exit(1);

}

inOut(outFile); // call the function

return 0;

}

void inOut(ofstream& fileOut)

{

const int NUMLINES = 5; // number of lines of text

string line;

int count;

cout << "Please enter five lines of text:" << endl;

for (count = 0; count < NUMLINES; count++)

{

getline(cin,line);

fileOut << line << endl;

}

cout << "\nThe file has been successfully written." << endl;

return;

}

469Chapter 8
File Streams as Function Arguments

In main(), the file is an ofstream object named outFile. This object is passed to
the inOut() function and accepted as the formal parameter fileOut, which is declared to
be a reference to an ofstream object type. The inOut() function then uses its reference
parameter outFile as an output file stream name in the same manner that main() would
use the fileOut stream object. Program 8.8 uses the getline() method introduced in
Section 8.2 (see Table 8.3).

Program 8.9 expands on Program 8.8 by adding a getOpen() function to perform the open.
Like inOut(), getOpen() accepts a reference argument to an ofstream object. After the
getOpen() function finishes executing, this reference is passed to inOut(), as in Program 8.8.
Although you might be tempted to write getOpen() to return a reference to an ofstream, it
won’t work because it results in an attempt to assign a returned reference to an existing one.

Program 8.9

#include <iostream>

#include <fstream>

#include <cstdlib>

#include <string>

using namespace std;

int getOpen(ofstream&); // function prototype - pass a reference to an fstream

void inOut(ofstream&); // function prototype - pass a reference to an fstream

int main()

{

ofstream outFile; // filename is an fstream object

getOpen(outFile); // open the file

inOut(outFile); // write to it

return 0;

}

�

470 I/O Streams and Data Files

Program 8.9 allows the user to enter a filename from the standard input device and then
opens the ofstream connection to the external file. If an existing data file’s name is
entered, the file is destroyed when it’s opened for output. A useful trick for preventing this
mishap is to open the entered file by using an input file stream. If the file exists, the fail()
method indicates a successful open (that is, the open doesn’t fail), which indicates the file is
available for input. This technique can be used to alert the user that a file with the entered
name exists in the system and to request confirmation that data in the file can be destroyed
and the file opened for output. Before the file is reopened for output, the input file stream
should be closed. Implementing this trick is left for you to try in Exercise 4.

int getOpen(ofstream& fileOut)

{

string name;

cout << "\nEnter a file name: ";

getline(cin,name);

fileOut.open(name.c_str()); // open the file

if (fileOut.fail()) // check for successful open

{

cout << "Cannot open the file" << endl;

exit(1);

}

else

return 1;

}

void inOut(ofstream& fileOut)

{

const int NUMLINES = 5; // number of lines

int count;

string line;

cout << "Please enter five lines of text:" << endl;

for (count = 0; count < NUMLINES; ++count)

{

getline(cin,line);

fileOut << line << endl;

}

cout << "\nThe file has been successfully written.";

return;

}

471Chapter 8
File Streams as Function Arguments

EXERCISES 8.4

1. (Practice) A function named pFile() is to receive a filename as a reference to an
ifstream object. What declarations are required to pass a filename to pFile()?

2. (Practice) Write a function named fcheck() that checks whether a file exists. The
function should accept an ifstream object as a formal reference parameter. If the file
exists, the function should return a value of 1; otherwise, the function should return a
value of 0.

3. (Practice) A data file consisting of a group of lines has been created. Write a function
named printLine() that reads and displays any line of the file. For example, the func-
tion called printLine(fstream& fName,5); should display the fifth line of the
passed object stream.

4. (Modify) Rewrite the getOpen() function used in Program 8.9 to incorporate the file-
checking procedures described in this section. Specifically, if the entered filename exists,
an appropriate message should be displayed. The user should be presented with the
option of entering a new filename or allowing the program to overwrite the existing file.
Use the function written for Exercise 2 in your program.

8.5 A Case Study: Pollen Count File Update

After a data file has been created, application programs are typically written to read and
update the file with current data. In this case study, a file is used as a database for storing the
10 most recent pollen counts, which are used in the summer as allergy “irritability” measures.
As a new reading is obtained, it’s added to the file, and the oldest stored reading is deleted.

Step 1 Analyze the Problem

Pollen count readings, which are taken from August through September in the northeastern
United States, measure the number of ragweed pollen grains in the air. Pollen counts in the
range of 10 to 200 grains per cubic meter of air are normal during this time of year. Typically,
pollen counts above 10 begin affecting a small percentage of hay fever sufferers, counts in the
range of 30 to 40 noticeably bother approximately 30% of hay fever sufferers, and counts
between 40 and 50 adversely affect more than 60% of all hay fever sufferers.

A program is to be written that updates a file containing the 10 most recent pollen counts.
As a new count is obtained, it’s added to the end of the file, and the oldest count is deleted
from the file.1 Additionally, the average of the new file’s data is calculated and displayed. The
existing file, named pollen.in, contains the data shown in Figure 8.3.

The input data for this problem consist of a file of 10 integer numbers and a user-input
value of the most recent integer value pollen count. There are two required outputs:

• A file of the 10 most recent integer values
• The average of the data in the updated file

1This type of data storage is formally referred to as a first-in/first-out (FIFO) list, also called a “queue.” If the list is maintained in last-in/first-out
order (LIFO), it’s called a “stack.”

472 I/O Streams and Data Files

Step 2 Develop a Solution

The algorithm for solving this problem is straightforward and is described by the following
pseudocode:

main() function
Display a message indicating what the program does.
Call the Input stream function.
Call the Output stream function.
Call the Update function.
Display the new 10-week average.

Input stream function
Request the name of the input data file.
Open an input file stream and validate a successful connection.

Output stream function
Request the name of the output data file.
Open an output file stream and validate a successful connection.

Update function
Request a new pollen count reading.
Read the oldest pollen count from the input data file.
For the remaining input file pollen counts:

Read an input value.
Add the value to a total.
Write the input value to the output file stream.

Endfor
Write the new pollen count to the output file stream.
Add the new pollen count to the total.
Calculate the average as total / (number of pollen counts).
Return the new 10-week average.
Close all files.

In reviewing this algorithm, notice that the oldest pollen count is read but never used in
any computation. The remaining pollen counts are read, “captured” in a total, and written to
the output data file. The last pollen count is then added to the total and also written to the
output data file. Finally, the average of the most recent pollen counts is computed and
displayed, and all file streams are closed.

30

60

40

80

90

120

150

130

160

170

Oldest pollen count
(to be deleted)

Last pollen count

Figure 8.3 Data currently in the pollen.in file

473Chapter 8
A Case Study: Pollen Count File
Update

Step 3 Code the Solution

Program 8.10 presents a C++ representation of the selected design; the algorithm has been
coded as the pollenUpdate() function.

Program 8.10

#include <iostream>

#include <fstream>

#include <cstdlib>

#include <string>

using namespace std;

void openInput(ifstream&); // pass a reference to an ifstream

void openOutput(ofstream&); // pass a reference to an ofstream

double pollenUpdate(ifstream&, ofstream&); // pass two references

int main()

{

ifstream inFile; // inFile is an istream object

ofstream outFile; // outFile is an ofstream object

double average;

// display a user message

cout << "\n\nThis program reads the old pollen count file, "

<< "creates a current pollen"

<< "\n count file, and calculates and displays "

<< "the latest 10-week average.";

openInput(inFile);

openOutput(outFile);

average = pollenUpdate(inFile, outFile);

cout << "\nThe new 10-week average is: " << average << endl;

return 0;

}

�

474 I/O Streams and Data Files

// this function gets an external filename and opens the file for input

void openInput(ifstream& fname)

{

string filename;

cout << "\n\nEnter the input pollen count filename: ";

cin >> filename;

fname.open(filename.c_str());

if (fname.fail()) // check for a successful open

{

cout << "\nFailed to open the file named " << filename << "for input"

<< "\n Please check that this file exists"

<< endl;

exit(1);

}

return;

}

// this function gets an external filename and opens the file for output

void openOutput(ofstream& fname)

{

string filename;

cout << "Enter the output pollen count filename: ";

cin >> filename;

fname.open(filename.c_str());

if (fname.fail()) // check for a successful open

{

cout << "\nFailed to open the file named " << filename << "for output"

<< endl;

exit(1);

}

return;

}

�

475Chapter 8
A Case Study: Pollen Count File
Update

// the following function reads the pollen file,

// writes a new file,

// and returns the new weekly average

double pollenUpdate(ifstream& inFile, ofstream& outFile)

{

const int POLNUMS = 10; // maximum number of pollen counts

int i, polreading;

int oldreading, newcount;

double sum = 0;

double average;

// get the latest pollen count

cout << "Enter the latest pollen count reading: ";

cin >> newcount;

// read the oldest pollen count

inFile >> oldreading;

// read, sum, and write out the rest of the pollen counts

for(i = 0; i < POLNUMS; i++)

{

inFile >> polreading;

sum += polreading;

outFile << polreading << endl;

}

// write out the latest reading

outFile << newcount << endl;

// compute and display the new average

average = (sum + newcount) / double(POLNUMS);

inFile.close();

outFile.close();

cout << "\nThe output file has been written.\n";

return average;

}

476 I/O Streams and Data Files

Step 4 Test and Correct the Program

Testing Program 8.10 requires providing both valid and invalid input data for the program.
Invalid data consists of a nonexistent input data filename and a data file containing fewer than
10 items. Valid data consists of a file containing 10 integers. A sample run of Program 8.10
follows with a valid input file:

This program reads the old pollen count file, creates a current

pollen count file, and calculates and displays the latest

10-week average.

Enter the input pollen count filename: pollen.in

Enter the output pollen count filename: pollen.out

Enter the latest pollen count reading: 200

The output file has been written.

The new 10-week average is: 120

The updated file Program 8.10 creates is shown in Figure 8.4. In reviewing this file’s
contents, notice that the most current reading has been added to the end of the file, and
other pollen readings from the original file shown in Figure 8.3 have been moved up one
position in the new file. Also, notice that the output of the sample run calculates the new
10-week average correctly.

EXERCISES 8.5

1. (Practice) Write a C++ program to create the pollen.in file shown in Figure 8.3.

2. (Practice) Using the file created in Exercise 1 or the pollen.in file provided on this
book’s Web site, enter and run Program 8.10 on your computer.

60

40

80

90

120

150

130

160

170

200

Oldest pollen count

Most recent reading

Figure 8.4 The updated pollen.in file

477Chapter 8
A Case Study: Pollen Count File
Update

3. (Conversion) a. A file named polar.dat contains the polar coordinates needed in a
graphics program. Currently, this file contains the following data:

Distance (Inches) Angle (Degrees)
2.0 45.0
6.0 30.0

10.0 45.0
4.0 60.0

12.0 55.0
8.0 15.0

Write a C++ program to create this file on your computer.

b. Using the polar.dat file created in Exercise 3a, write a C++ program that accepts
distance and angle data from the user and adds the data to the end of the file.

c. Using the polar.dat file created in Exercise 3a, write a C++ program that reads this
file and creates a second file named xycord.dat. The entries in the new file should
contain the rectangular coordinates corresponding to the polar coordinates in the
polar.dat file. Polar coordinates are converted to rectangular coordinates by using
these formulas:

x = r (cos θ)
y = r (sin θ)

The r is the distance coordinate and θ is the radian equivalent of the angle coordi-
nate in the polar.dat file.

4. (Data Processing) a. Write a C++ program to create a data file containing the following
information:

Student ID
Number

Student Name Course Code Course
Credits

Course
Grade

2333021 BOKOW, R. NS201 3 A
2333021 BOKOW, R. MG342 3 A
2333021 BOKOW, R. FA302 1 A
2574063 FALLIN, D. MK106 3 C
2574063 FALLIN, D. MA208 3 B
2574063 FALLIN, D. CM201 3 C
2574063 FALLIN, D. CP101 2 B
2663628 KINGSLEY, M. QA140 3 A
2663628 KINGSLEY, M. CM245 3 B
2663628 KINGSLEY, M. EQ521 3 A
2663628 KINGSLEY, M. MK341 3 A
2663628 KINGSLEY, M. CP101 2 B

478 I/O Streams and Data Files

b. Using the file created in Exercise 4a, write a C++ program that creates student grade
reports. The grade report for each student should contain the student’s name and ID
number, a list of courses taken, the credits and grade for each course, and a semester
grade point average (GPA). For example, this is the grade report for the first student:

Student Name: BOKOW, R.
Student ID Number: 2333021

Course Code Course Credits Course Grade

NS201 3 A
MG342 3 A
FA302 1 A

Total Semester Course Credits Completed: 7
Semester GPA: 4.0

The semester GPA is computed in two steps. First, each course grade is assigned a
numerical value (A = 4, B = 3, C = 2, D = 1, F = 0), and the sum of each course’s
grade value times the credits for each course is computed. This sum is then divided
by the total number of credits taken during the semester.

5. (File Update) a. Write a C++ program to create a data file containing the following
information:

Student ID Number Student Name Course Credits Course GPA
2333021 BOKOW, R. 48 4.0
2574063 FALLIN, D. 12 1.8
2663628 KINGSLEY, M. 36 3.5

b. Write a C++ program to update the file created in Exercise 5a with the data from the
file created in Exercise 4a.

8.6 A Closer Look: The iostream Class Library2

As you have seen, the classes in the iostream class library access files by using entities
called streams. For most systems, the data bytes transferred on a stream represent ASCII
characters or binary numbers. The mechanism for reading a byte stream from a file or writing
a byte stream to a file is hidden when using a high-level language, such as C++. Nevertheless,
understanding this mechanism is useful so that you can place the services provided by the
iostream class library in context.

File Stream Transfer Mechanism
Figure 8.5 illustrates the mechanism for transferring data between a program and a file. As
shown, this transfer involves an intermediate file buffer contained in the computer’s memory.

2This topic can be omitted on first reading without loss of subject continuity.

479Chapter 8
A Closer Look: The iostream
Class Library

Each opened file is assigned its own file buffer, which is a storage area used by the data
transferred between the program and the file.

The program either writes a set of data bytes to the file buffer or reads a set of data bytes
from the file buffer by using a stream object. The data transfer between the device storing
the data file (usually a disk or CD/DVD) and the file buffer is handled by special OS
programs. These programs, called device drivers, aren’t stand-alone programs; they’re an
integral part of the OS. A device driver is a section of OS code that accesses a hardware device,
such as a disk, and handles the data transfer between the device and the computer’s memory.
Because the computer’s internal data transfer rate is generally much faster than any device
connected to it, the device driver must correctly synchronize the data transfer speed between
the computer and the device sending or receiving data.

Typically, a disk device driver transfers data between the disk and file buffer only in fixed
sizes, such as 1024 bytes at a time. Therefore, the file buffer is a convenient means of
permitting a device driver to transfer data in blocks of one size, and the program can access
them by using a different size (typically, as separate characters or as a fixed number of
characters per line).

Components of the iostream Class Library
The iostream class library consists of two primary base classes: streambuf and ios. The
streambuf class provides the file buffer, illustrated in Figure 8.5, and general routines for
transferring binary data. The ios class contains a pointer to the file buffers provided by the
streambuf class and general routines for transferring text data. From these two base classes,
several other classes are derived and included in the iostream class library.

Figure 8.6 is an inheritance diagram for the ios family of classes as it relates to the
ifstream, ofstream, and fstream classes. Figure 8.7 is an inheritance diagram for the
streambuf family of classes. In these diagrams, the arrows point from a derived class to a
base class.

Table 8.5 lists the correspondence between the classes shown in Figures 8.6 and 8.7,
including the header files defining these classes.

Disk, tape, or
CD/DVDComputer memory

Transfer handled

by a device driver

Transfer handled

by iostream library

Program

Buffer

File

Figure 8.5 The data transfer mechanism

480 I/O Streams and Data Files

Table 8.5 Correspondence Between Classes in Figures 8.6 and 8.7

ios Class streambuf Class Header File
istream
ostream
iostream

streambuf iostream or fstream

ifstream
ofstream
fstream

filebuf fstream

Therefore, the ifstream, ofstream, and fstream classes you have used for file
access use a buffer provided by the filebuf class and defined in the fstream header file.
Similarly, the cin, cout, cerr, and clog iostream objects use a buffer provided by the
streambuf class and defined in the iostream header file.

frstream

iostream

fstreamistream ostream

ios

ifstream ofstream

Figure 8.6 The base class ios and its derived classes

streambuf

filebuf strstreambuf

Figure 8.7 The base class streambuf and its derived classes

481Chapter 8
A Closer Look: The iostream
Class Library

In-Memory Formatting
In addition to the classes shown in Figure 8.7, a class named strstream is derived from the
ios class. This class uses the strstreambuf class shown in Figure 8.7, requires the
strstream header file, and provides capabilities for writing and reading strings to and from
in-memory defined streams.

As an output stream, these streams are typically used to “assemble” a string from smaller
pieces until a complete line of characters is ready to be written to cout or to a file. Attaching
a strstream object to a buffer for this purpose is similar to attaching an fstream object
to an output file. For example, the statement

strstream inmem(buf, 72, ios::out);

attaches a strstream object to an existing buffer of 72 bytes in output mode. Program 8.11
shows how this statement is used in the context of a complete program.

Program 8.11

#include <iostream>

#include <strstream>

#include <iomanip>

using namespace std;

int main()

{

const int MAXCHARS = 81; // one more than the maximum characters in a line

int units = 10;

double price = 36.85;

char buf[MAXCHARS];

strstream inmem(buf, MAXCHARS, ios::out); // open an in-memory stream

// write to the buffer through the stream

inmem << "No. of units = "

<< setw(3) << units

<< " Price per unit = $"

<< setw(6) << setprecision(2) << fixed << price << '\0';

cout << '|' << buf << '|';

cout << endl;

return 0;

}

482 I/O Streams and Data Files

Program 8.11 produces the following output:

|No. of units = 10 Price per unit = $ 36.85|

This output illustrates that the character buffer has been filled in correctly by insertions to
the inmem stream. (Note that the end-of-string NULL, '\0', which is the last insertion to the
stream, is required to close off the C-string correctly.) After the character array has been filled, it’s
written to a file as a single string.

In a similar manner, a strstream object can be opened in input mode. This stream
would be used as a working storage area, or buffer, for storing a complete line of text from
a file or standard input. After the buffer has been filled, the extraction operator would be
used to “disassemble” the string into component parts and convert each data item into its
designated data type. Doing this permits inputting data from a file on a line-by-line basis
before assigning data items to their respective variables.

8.7 Common Programming Errors

The common programming errors with files are as follows:

1. Forgetting to open a file before attempting to read from it or write to it.
2. Using a file’s external name in place of the internal file stream object name when

accessing the file. The only stream method that uses the data file’s external name is
the open() method. As always, all stream methods discussed in this chapter must
be preceded by a stream object name followed by a period (the dot operator).

3. Opening a file for output without first checking that a file with the same name
already exists. If it does and you didn’t check for a preexisting filename, the file is
overwritten.

4. Not understanding that the end of a file is detected only after the EOF marker has
been read or passed over.

5. Attempting to detect the end of a file by using character variables for the EOF
marker. Any variable used to accept the EOF must be declared as an integer variable.
For example, if ch is declared as a character variable, the following expression
produces an infinite loop:3

while ((ch = in.file.peek()) != EOF)

This problem occurs because a character variable can never take on an EOF code.
EOF is an integer value (usually -1) with no character representation, which ensures
that the EOF code can’t be confused with a legitimate character encountered as
normal data in the file. To terminate the loop created by the preceding expression,
the variable ch must be declared as an integer variable.

6. Using an integer argument with the seekg() and seekp() functions. This offset
must be a long integer constant or variable. Any other value passed to these functions
can have unpredictable results.

3This infinite loop doesn’t occur on UNIX systems, where characters are stored as signed integers.

483Chapter 8
Common Programming Errors

8.8 Chapter Summary
1. A data file is any collection of data stored together in an external storage medium under

a common name.

2. A data file is connected to a file stream by using fstream’s open() method. This
method connects a file’s external name with an internal object name. After the file is
opened, all subsequent accesses to the file require the internal object name.

3. A file can be opened in input or output mode. An opened output file stream creates a
new data file or erases the data in an existing opened file. An opened input file stream
makes an existing file’s data available for input. An error condition results if the file
doesn’t exist and can be detected by using the fail() method.

4. All file streams must be declared as objects of the ifstream or ofstream class.
Therefore, a declaration similar to either of the following must be included with the
declaration to open the file:

ifstream inFile;
ofstream outfile;

The stream object names inFile and outfile can be replaced with any user-selected
object name.

5. In addition to any files opened in a function, the standard stream objects cin, cout, and
cerr are declared and opened automatically when a program runs. cin is an input file
stream object used for data entry (usually from the keyboard), cout is an output file stream
object used for data display (usually on screen), and cerr is an output file stream object
used for displaying system error messages (usually on screen).

6. Data files can be accessed randomly by using the seekg(), seekp(), tellg(), and
tellp() methods. The g versions of these methods are used to alter and query the file
position marker for input file streams, and the p versions do the same for output file
streams.

7. Table 8.6 lists class-supplied methods for file manipulation. The getline() method is
defined in the string class, and all other methods are defined in the fstream class.

Table 8.6 File Manipulation Methods

Method Name Description
get() Extract the next character from the

input stream and return it as an int.
get(chrVar) Extract the next character from the

input stream and assign it to chrVar.
getline(fileObject, strObj,
termChar)

Extract the next string of characters
from the input file stream object and
assign them to strObj until the
specified terminating character is
detected. If omitted, the default
terminating character is a newline.

484 I/O Streams and Data Files

Table 8.6 File Manipulation Methods (continued)

Method Name Description
getline(C-stringVar,int n,'\n') Extract and return characters from the

input stream until n-1 characters are
read or a newline is encountered
(terminates the input with a '\0').

peek() Return the next character in the input
stream without extracting it from the
stream.

put(chrExp) Put the character specified by chrExp
on the output stream.

putback(chrExp) Push the character specified by chrExp
back onto the input stream. Does not
alter the data in the file.

ignore(int n) Skip over the next n characters; if n is
omitted, the default is to skip over the
next single character.

eof() Returns a Boolean true value if a read
has been attempted past the end of
file; otherwise, it returns a Boolean
false value. The value becomes true
only when the first character after the
last valid file character is read.

good() Returns a Boolean true value while the
file is available for program use. Returns
a Boolean false value if a read has
been attempted past the end of file.
The value becomes false only when
the first character after the last valid file
character is read.

bad() Returns a Boolean true value if a read
has been attempted past the end of
file; otherwise, it returns a false. The
value becomes true only when the
first character after the last valid file
character is read.

fail() Returns a Boolean true if the file
hasn’t been opened successfully;
otherwise, it returns a Boolean false
value.

485Chapter 8
Chapter Summary

Programming Projects for Chapter 8

1. (Data Processing) a. Create a text file containing the following data (without the
headings):

Name Rate Hours
Callaway, G. 6.00 40
Hanson, P. 5.00 48
Lasard, D. 6.50 35
Stillman, W. 8.00 50

b. Write a C++ program that uses the information in the file created in Exercise 1a to
produce the following pay report for each employee:

Name Pay Rate Hours Regular Pay Overtime Pay Gross Pay

Compute regular pay as any hours worked up to and including 40 hours multiplied by
the pay rate. Compute overtime pay as any hours worked above 40 hours times a pay
rate of 1.5 multiplied by the regular rate. The gross pay is the sum of regular and
overtime pay. At the end of the report, the program should display the totals of the
regular, overtime, and gross pay columns.

2. (Data Processing) a. Store the following data in a file:

5 96 87 78 93 21 4 92 82 85 87 6 72 69 85 75 81 73

b. Write a C++ program to calculate and display the average of each group of numbers
in the file created in Exercise 2a. The data is arranged in the file so that each group
of numbers is preceded by the number of data items in the group. Therefore, the first
number in the file, 5, indicates that the next five numbers should be grouped
together. The number 4 indicates that the following four numbers are a group, and the
6 indicates that the last six numbers are a group. (Hint : Use a nested loop. The outer
loop should terminate when the end of file has been encountered.)

3. (Data Processing) Write a C++ program that allows the user to enter the following
information from the keyboard for each student in a class (up to 20 students):

Name Exam 1 Grade Exam 2 Grade Homework Grade Final Exam Grade

For each student, your program should first calculate a final grade, using this formula:

Final Grade = 0.20 × Exam 1 + 0.20 × Exam 2 + 0.35 × Homework + 0.25 × Final Exam

Then assign a letter grade on the basis of 90–100 = A, 80–89 = B, 70–79 = C, 60–69 = D, and
less than 60 = F. All the information, including the final grade and the letter grade, should
then be displayed and written to a file.

4. (Data Processing) Write a C++ program that permits users to enter the following
information about your small company’s 10 employees, sorts the information in ascending
ID number, and then writes the sorted information to a file:

ID No. Sex(M/F) Hourly Wage Years with the Company

5. (Data Processing) Write a C++ program that reads the file created in Exercise 4,
changes the hourly wage or years for each employee, and creates a new updated file.

486 I/O Streams and Data Files

6. (Data Processing) Write a C++ program that reads the file created in Exercise 4 one
record at a time, asks for the number of hours each employee worked each month, and
calculates and displays each employee’s total pay for the month.

7. (Data Processing) a. You have collected information about cities in your state. You
decide to store each city’s name, population, and mayor in a file. Write a C++ program
to accept the data for a number of cities from the keyboard and store the data in a file
in the order in which they’re entered.

b. Read the file created in Exercise 7a, sort the data alphabetically by city name, and
display the data.

8. (Data Processing) A bank’s customer records are to be stored in a file and read into a
set of arrays so that a customer’s record can be accessed randomly by account number.
Create the file by entering five customer records, with each record consisting of an
integer account number (starting with account number 1000), a first name (maximum of
10 characters), a last name (maximum of 15 characters), and a double-precision number
for the account balance.

After the file is created, write a C++ program that requests a user-input account number
and displays the corresponding name and account balance from the file.

9. (Inventory) Create an ASCII file with the following data or use the shipped.txt file
provided on this book’s Web site. The headings are not part of the file but indicate what
the data represents.

Shipped
Date

Tracking
Number

Part
Number

First
Name

Last Name Company

04/12/97 D50625 74444 James Lehoff Rotech
04/12/97 D60752 75255 Janet Lezar Rotech
04/12/97 D40295 74477 Bill McHenry Rotech
04/12/97 D23745 74470 Diane Kaiser Rotech
04/12/97 D50892 75155 Helen Richardson NapTime

The format of each line in the file is identical, with fixed-length fields defined as follows:

Field Position Field Name Starting
Col. No.

Ending
Col. No.

Field
Length

1 Shipped Date 1 8 8
2 Tracking Number 12 17 6
3 Part Number 22 26 5
4 First Name 31 35 5
5 Last Name 39 48 10
6 Company 51 64 14

Using this data file, write a C++ program that reads the file and produces a report listing
the shipped date, part number, first name, last name, and company name.

487Chapter 8
Programming Projects

Engineering and Scientific Disciplines

Environmental Science and Technology
Two of the newest areas of science and engineering are the related fields of environ-
mental science and technology. Environmental science began as an extension of ecol-
ogy, a biological field that gained prominence in the 1960s. Ecology studies the
interrelationships between specific biological organisms and their environment.

In the 1970s, the study of the larger interplay among physical, chemical, and bio-
logical components of the environment, both locally and globally, began and became
the field known as environmental science. This field now includes study of the follow-
ing areas, among others:

� Climate change
� Ozone depletion
� Weather pattern changes
� Water quality
� Air pollution
� Noise pollution
� Conservation of natural resources
� Disposal of toxic substances

The impact of human activities on these environmental areas is a chief concern of
environmental science. Typically, many different scientific and engineering experts are
needed to work as a team in analyzing and solving environmental issues.

Applying engineering and scientific expertise to solving environmental problems
falls within the purview of environmental technology. This field is concerned with pre-
serving the natural environment and its resources by providing solutions in areas such
as water purification, human waste management, renewable energy, and recycling,
among others.

488 I/O Streams and Data Files

Chapter 9
Completing the
Basics

9.1 Exception Handling

9.2 Exceptions and File Checking

9.3 The string Class

9.4 Character Manipulation
Functions

9.5 Input Data Validation

9.6 A Closer Look: Namespaces
and Creating a Personal
Library

9.7 Common Programming Errors

9.8 Chapter Summary

The current ANSI/ISO C++ standard introduces two new features that weren’t part of the original C++
specification: exception handling and the string class. This chapter covers both these new features.

Exception handling is a means of error detection and processing, which has gained increasing
acceptance in programming technology. It permits detecting an error at the point in the code where the
error has occurred and provides a means of processing the error and returning control to the line that
generated the error. Although error detection and code correction are possible by using if statements and
functions, exception handling gives you another useful programming tool targeted at error detection and
processing.

With the new ANSI/ISO C++ standard, the string class is now part of the standard C++
library. This class provides an expanded set of class functions, including easy insertion and removal
of characters from a string, automatic string expansion when a string’s original capacity is exceeded,
string contraction when characters are removed from a string, and range checking to detect invalid
character positions.

In addition to discussing these two new C++ features, this chapter shows how exception handling,
when applied to strings, is a useful means of validating user input.

9.1 Exception Handling

The traditional C++ approach to error handling uses a function to return a specific value to
indicate specific operations. Typically, a return value of 0 or 1 is used to indicate successful
completion of the function’s task, whereas a negative value indicates an error condition. For
example, with a function used to divide two numbers, a return value of -1 could indicate that
the denominator is zero, and the division can’t be performed. When multiple error conditions
can occur, different return values can be used to indicate specific errors.

Although this approach is still available and often used, a number of problems can occur.
First, the programmer must check the return value to detect whether an error did occur.
Next, the error-handling code that checks the return value frequently becomes intermixed
with normal processing code, so sometimes it’s difficult to determine which part of the code
is handling errors. Finally, returning an error condition from a function means the condition
must be the same data type as a valid returned value; hence, the error code must be a
specified value that can be identified as an error alert. This means the error code is
embedded as one of the possible nonerror values the function might require and is available
only at the point where the function returns a value. In addition, a function returning a
Boolean value has no additional values for reporting an error condition.

None of these problems are insurmountable, and many times this approach is simple and
effective. However, the latest C++ compilers have added a technique designed for error
detection and handling referred to as exception handling. With this technique, when an error
occurs while a function is executing, an exception is created. An exception is a value, a
variable, or an object containing information about the error at the point the error occurs.
This exception is immediately passed, at the point it was generated, to code called the
exception handler, which is designed to deal with the exception. The process of generating
and passing the exception is referred to as throwing an exception. The exception is thrown
from within the function while it’s still executing, which permits handling the error and then
returning control back to the function so that it can complete its assigned task.

In general, two fundamental types of errors can cause C++ exceptions: those resulting
from a program’s inability to obtain a required resource and those resulting from flawed data.
Examples of the first error type are attempts to obtain a system resource, such as locating and
finding a file for input. These errors are the result of external resources over which the
programmer has no control.

The second type of error can occur when a program prompts the user to enter an integer,
and the user enters a string, such as e234, that can’t be converted to a numerical value.
Another example is the attempt to divide two numbers when the denominator has a 0 value,
a condition referred to as a “division by zero error.” These errors can always be checked and
handled in a manner that doesn’t result in a program crash. Before seeing how to use
exception handling, review Table 9.1 to familiarize yourself with the terminology used with
processing exceptions.

Table 9.1 Exception-Handling Terminology

Terminology Description
Exception A value, a variable, or an object that identifies a specific error

that has occurred while a program is executing
Throw an exception Send the exception to a section of code that processes the

detected error

490 Completing the Basics

Table 9.1 Exception-Handling Terminology (continued)

Terminology Description
Catch or handle an
exception

Receive a thrown exception and process it

Catch clause The section of code that processes the error
Exception handler The code that throws and catches an exception

The general syntax of the code required to throw and catch an exception is the following:

try
{

// one or more statements,
// at least one of which should
// be capable of throwing an exception

}
catch(exceptionDataType parameterName)
{

// one or more statements
}

This example uses two new keywords: try and catch. The try keyword identifies the
start of an exception-handling block of code. At least one of the statements inside the braces
defining this block of code should be capable of throwing an exception. As an example,
examine the try block in the following section of code:

try
{

cout << "Enter the numerator (whole numbers only): ";
cin >> numerator;
cout << "Enter the denominator (whole numbers only):";
cin >> denominator;
result = numerator/denominator;

}

The try block contains five statements, three of which might result in an error you want
to catch. In particular, a professionally written program would make sure valid integers are
entered in response to both prompts and the second entered value is not a zero. For this
example, you just check that the second value entered isn’t zero.

From the standpoint of the try block, only the value of the second number matters. The
try block is altered to say “Try all the statements within me to see whether an exception,
which in this case is a zero second value, occurs.” To check that the second value isn’t zero,
you add a throw statement in the try block, as follows:

try
{

cout << "Enter the numerator: (whole number only): ";
cin >> numerator;
cout << "Enter the denominator: (whole number only): ";
cin >> denominator;
if (denominator == 0)

throw denominator;
else

result = numerator/denominator;
}

491Chapter 9
Exception Handling

In this try block, the thrown item is an integer value. A string literal, a variable, or an
object could have been used, but only one of these items can be thrown by any single throw
statement. The first four statements in the try block don’t have to be included in the code;
however, doing so keeps all the relevant statements together. Keeping related statements
together makes it easier to add throw statements in the same try block to ensure that both
input values are integer values.

A try block must be followed by one or more catch blocks, which serve as exception
handlers for any exceptions thrown by statements in the try block. Here’s a catch block
that handles the thrown exception, which is an integer:

catch(int e)
{

cout << "A denominator value of " << e << " is invalid." << endl;
exit (1);

}

The exception handling this catch block provides is an output statement that identifies
the caught exception and then terminates program execution. Notice the parentheses
following the catch keyword. Inside the parentheses are the data type of the exception
that’s thrown and a parameter name used to receive the exception. This parameter, which is
a programmer-selected identifier but conventionally uses the letter e for exception, is used
to hold the exception value generated when an exception is thrown.

Multiple catch blocks can be used as long as each block catches a unique data type. The
only requirement is providing at least one catch block for each try block. The more
exceptions that can be caught with the same try block, the better. Program 9.1 provides a
complete program that includes a try block and a catch block to detect a division by zero error.

Following are two sample runs of Program 9.1. Note that the second output indicates that
an attempt to divide by a zero denominator has been detected successfully before the
operation is performed.

Enter the numerator (whole number only): 12

Enter the denominator(whole number only): 3

12/3 = 4

and

Enter the numerator (whole number only): 12

Enter the denominator(whole number only): 0

A denominator value of 0 is invalid.

492 Completing the Basics

Instead of terminating program execution when a zero denominator is detected, a more
robust program can give the user the opportunity to reenter a non-zero value. To do this, the
try block is included in a while statement, and then the catch block returns program
control to the while statement after informing the user that a zero value has been entered.
Program 9.2 accomplishes this task.

Program 9.1

#include <iostream>

using namespace std;

int main()

{

int numerator, denominator;

try

{

cout << "Enter the numerator (whole number only): ";

cin >> numerator;

cout << "Enter the denominator(whole number only): ";

cin >> denominator;

if (denominator == 0)

throw denominator; // an integer value is thrown

else

cout << numerator <<'/' << denominator

<< " = " << double(numerator)/ double(denominator) << endl;

}

catch(int e)

{

cout << "A denominator value of " << e << " is invalid." << endl;

exit (1);

}

return 0;

}

493Chapter 9
Exception Handling

In reviewing this code, notice that it’s the continue statement in the catch block that
returns control to the top of the while statement. (See Section 5.3 for a review of the
continue statement.) Following is a sample run of Program 9.2:

Enter a numerator (whole number only): 12

Enter a denominator (whole number only): 0

A denominator value of 0 is invalid.

Please reenter the denominator (whole number only): 5

12/5 = 2.4

Program 9.2

#include <iostream>

using namespace std;

int main()

{

int numerator, denominator;

bool needDenominator = true;

cout << "Enter a numerator (whole number only): ";

cin >> numerator;

cout << "Enter a denominator (whole number only): ";

while(needDenominator)

{

cin >> denominator;

try

{

if (denominator == 0)

throw denominator; // an integer value is thrown

}

catch(int e)

{

cout << "A denominator value of " << e << " is invalid." << endl;

cout << "Please reenter the denominator (whole number only): ";

continue; // this sends control back to the while statement

}

cout << numerator <<'/' << denominator

<< " = " << double(numerator)/ double(denominator) << endl;

needDenominator = false;

}

return 0;

}

494 Completing the Basics

One caution should be mentioned when throwing string literals as opposed to numeric
values. When a string literal is thrown, it’s a C-string, not a string class object, that is thrown.
This means the catch statement must declare the received argument as a C-string (which is a
character array) rather than a string. As an example, take a look at using the following statement
instead of throwing the value of the denominator variable in Programs 9.1 and 9.2:

throw "***Invalid input - A denominator value of zero is not
permitted***";

Here’s a correct catch statement for the preceding throw statement:

catch(char e[])

An attempt to declare the exception as a string class variable results in a compiler error.

EXERCISES 9.1

1. (Practice) Define the following terms:
a. exception

b. try block

c. catch block

d. exception handler

e. throw an exception

f. catch an exception

2. (Practice) Enter and execute Program 9.1.

3. (Practice) Replace the following statement in Program 9.1

cout << numerator <<'/' << denominator
<< " = " << double (numerator)/ double (denominator) << endl;

with the statement

cout << numerator <<'/' << denominator
<< " = " << numerator/denominator << endl;

and execute the modified program. Enter the values 12 and 5, and explain why the result
is incorrect from the user’s viewpoint.

4. (Modify) Modify Program 9.1 so that it throws and catches the message ***Invalid
input -A denominator value of zero is not permitted***. (Hint: Review
the caution at the end of this section.)

5. (Practice) Enter and execute Program 9.2.

6. (Modify) Modify Program 9.2 so that it continues to divide two numbers until the user
enters the character q (as a numerator or denominator) to terminate program execution.

495Chapter 9
Exception Handling

7. (Validation) Include the exception-handling code provided in this section in Program 9.1
to ensure that the user enters a valid integer value for both the numerator and
denominator.

9.2 Exceptions and File Checking

Error detection and processing with exception handling is used extensively in C++ programs
that use one or more files. For example, if a user deletes or renames a file by using an OS
command, this action causes a C++ program to fail when an open() method call attempts
to open the file with its original name. Exception handling is typically used when opening
a data file to ensure that the file opens successfully before attempting any processing of data
in the file.

Recall from Section 9.1 that the code for general exception handling looks like this:

try
{

// one or more statements,
// at least one of which should
// throw an exception

}
catch(exceptionDataType parameterName)
{

// one or more statements
}

In this code, the try block statements are executed. If no error occurs, the catch block
statements are omitted, and processing continues with the statement following the catch
block. However, if any statement in the try block throws an exception, the catch block
with the exception data type matching the exception is executed. If no catch block is
defined for a try block, a compiler error occurs. If no catch block exists that catches a
thrown data type, a program crash occurs if the exception is thrown. Most times, the catch
block displays an error message and terminates processing with a call to the exit()
function. Program 9.3 shows the statements required to open a file in read mode and includes
exception handling.

Program 9.3

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()

#include <string>

using namespace std;

�

496 Completing the Basics

This is the exception message Program 9.3 displays when the prices.dat file isn’t
found:

The file prices.dat was not successfully opened.
Please check that the file currently exists.

int main()

{

string filename = "prices.dat"; // put the filename up front

string descrip;

double price;

ifstream inFile;

try // this block tries to open the file, read it,

// and display the file's data

{

inFile.open(filename.c_str());

if (inFile.fail()) throw filename; // this is the exception being checked

// read and display the file's contents

inFile >> descrip >> price;

while (inFile.good()) // check next character

{

cout << descrip << ' ' << price << endl;

inFile >> descrip >> price;

}

inFile.close();

return 0;

}

catch (string e)

{

cout << "\nThe file "<< e << " was not successfully opened."

<< "\n Please check that the file currently exists."

<< endl;

exit(1);

}

}

497Chapter 9
Exceptions and File Checking

Although the exception-handling code in Program 9.3 can be used to check for a
successful file open for input and output, a more rigorous check is usually required for an
output file because a file opened for output is almost guaranteed to be found. If it exists, the
file will be found; if it doesn’t exist, the operating system creates it (unless append mode is
specified and the file exists, or the operating system can’t find the indicated folder). Knowing
that the file has been found and opened, however, isn’t enough for output purposes when an
existing output file must not be overwritten. In these cases, the file can be opened for input,
and, if the file is found, a further check can be made to ensure that the user explicitly
approves overwriting it. The shaded code in Program 9.4 shows how to make this check.

Point of Information

Checking That a File Was Opened Successfully
Using exception handling, the most common method for checking that the operating
system located the designated file is the one coded in Program 9.3. The key coding
points are repeated here for convenience:

try // this block tries to open the file, read it,
// and display the file's data

{
// open the file, throwing an exception if the open fails
// perform all required file processing
// close the file

}
catch (string e)
{
cout << "\nThe file "<< e << " was not successfully opened."

<< "\n Please check that the file currently exists."
<< endl;

exit(1);
}

Program 9.4

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()

#include <string>

#include <iomanip> // needed for formatting

using namespace std;

int main()

{

char response;

string filename = "prices.dat"; // put the filename up front

ifstream inFile;

ofstream outfile;

�

498 Completing the Basics

try // open a basic input stream simply to check whether the file exists

{

inFile.open(filename.c_str());

if (inFile.fail()) throw 1; // this means the file doesn't exist

// only get here if the file is found;

// otherwise, the catch block takes control

cout << "A file by the name " << filename << " currently exists.\n"

<< "Do you want to overwrite it with the new data (y or n): ";

cin >> response;

if (tolower(response) == 'n')

{

inFile.close();

cout << "The existing file has not been overwritten." << endl;

exit(1);

}

}

catch(int e) {}; // a do-nothing block that permits

// processing to continue

try

{

// open the file in write mode and continue with file writes

outfile.open(filename.c_str());

if (outfile.fail()) throw filename;

// set the output file stream formats

outfile << setiosflags(ios::fixed)

<< setiosflags(ios::showpoint)

<< setprecision(2);

// write the data to the file

outfile << "Mats " << 39.95 << endl

<< "Bulbs " << 3.22 << endl

<< "Fuses " << 1.08 << endl;

outfile.close();

cout << "The file " << filename

<< " has been successfully written." << endl;

return 0;

}

catch(string e)

{

cout << "The file " << filename

<< " was not opened for output and has not been written."

<< endl;

}

}

499Chapter 9
Exceptions and File Checking

In Program 9.4, the try blocks are separate. Because a catch block is affiliated with the
closest previous try block, there’s no ambiguity about unmatched try and catch blocks.

Opening Multiple Files
To understand how to apply exception handling to opening two files at the same time,
assume you want to read data from a character-based file named info.txt, one character
at a time, and write this data to a file named info.bak. Essentially, this application is a
file-copying program that reads data from one file in a character-by-character manner and
writes the data to a second file. Figure 9.1 shows the characters stored in the input file.

Figure 9.2 illustrates the structure of the streams needed to produce the file copy. In this
figure, an input stream object referenced by the variable inFile reads data from the
info.txt file, and an output stream object referenced by the variable outfile writes data
to the info.bak file.

Now examine Program 9.5, which creates the info.bak file as a duplicate of the
info.txt file, using the procedure shown in Figure 9.2.

Now is the time for all good people
 to come to the aid of their party.
Please call (555) 888-6666 for
 further information.

Figure 9.1 The data stored in the info.txt file

Computer
Program

Read

Write

Disk

OS interface info.txt

info.bakOS interface

Figure 9.2 The file copy stream structure

Program 9.5

#include <iostream>

#include <fstream>

#include <cstdlib> // needed for exit()

#include <string>

using namespace std;

�

500 Completing the Basics

int main()

{

string fileOne = "info.txt"; // put the filename up front

string fileTwo = "info.bak";

char ch;

ifstream inFile;

ofstream outfile;

try //this block tries to open the input file

{

// open a basic input stream

inFile.open(fileOne.c_str());

if (inFile.fail()) throw fileOne;

} // end of outer try block

catch (string in) // catch for outer try block

{

cout << "The input file " << in

<< " was not successfully opened." << endl

<< " No backup was made." << endl;

exit(1);

}

try // this block tries to open the output file and

{ // perform all file processing

outfile.open(fileTwo.c_str());

if (outfile.fail())throw fileTwo;

while ((ch = inFile.get())!= EOF)

outfile.put(ch);

inFile.close();

outfile.close();

}

catch (string out) // catch for inner try block

{

cout << "The backup file " << out

<< " was not successfully opened." << endl;

exit(1);

}

cout << "A successful backup of " << fileOne

<< " named " << fileTwo << " was successfully made." << endl;

return 0;

}

501Chapter 9
Exceptions and File Checking

For simplicity, Program 9.5 attempts to open the input and output files in separate and
unnested try blocks. More generally, the second file is opened in a nested inner try block,
so the attempt to open this second file wouldn’t be made if opening the first file threw an
exception. (The Point of Information box explains how to nest try blocks.)

In reviewing Program 9.5, pay particular attention to this statement:

while((ch = inFile.get())!= EOF)

This statement reads a value from the input stream continuously until the EOF value is
detected. As long as the returned value doesn’t equal the EOF value, the value is written to
the output object stream. The parentheses surrounding the expression (ch = inFile.
get()) are necessary to make sure a value is read and assigned to the variable ch before the
retrieved value is compared to the EOF value. Without parentheses, the complete expression
would be ch = inFile.get()!= EOF. Given the precedence of operations, the relational
expression inFile.get()!= EOF would be executed first. Because it’s a relational
expression, its result is a Boolean true or false value based on the data the get() method
retrieves. Attempting to assign this Boolean result to the character variable ch is an invalid
conversion across an assignment operator.

Point of Information

Nesting try Blocks
When more than one file stream is involved, opening each file stream in its own try
block permits isolating and identifying exactly which file caused an exception, if one
occurs. The try blocks can be nested. For example, Program 9.5 has been rewritten
with nested try blocks. Notice that the catch block for the inner try block must be
nested in the same block scope as the try block:

#include <iostream>
#include <fstream>
#include <cstdlib> // needed for exit()
#include <string>
using namespace std;

int main()
{
string fileOne = "info.txt"; // put the filename up front
string fileTwo = "info.bak";
char ch;
ifstream inFile;
ofstream outfile;

try //this block tries to open the input file
{
// open a basic input stream
inFile.open(fileOne.c_str());
if (inFile.fail()) throw fileOne;
try // this block tries to open the output file and

continued...

502 Completing the Basics

EXERCISES 9.2

1. (For Review) List two conditions that cause a fail condition when a file is opened for
input.

2. (For Review) List two conditions that cause a fail condition when a file is opened for
output.

3. (For Review) If a file that exists is opened for output in write mode, what happens to
the data currently in the file?

Point of Information

Nesting try Blocks (continued)

{ // perform all file processing
// open a basic output stream

outfile.open(fileTwo.c_str());
if (outfile.fail())throw fileTwo;
while ((ch = inFile.get()) != EOF)
outfile.put(ch);

inFile.close();
outfile.close();

} // end of inner try block
catch (string out) // catch for inner try block
{
cout << "The backup file " << out

<< " was not successfully opened." << endl;
exit(1);

}
} // end of outer try block
catch (string in) // catch for outer try block
{
cout << "The input file " << in

<< " was not successfully opened." << endl
<< " No backup was made." << endl;

exit(1);
}

cout << "A successful backup of " << fileOne
<< " named " << fileTwo << "was successfully made." << endl;

return 0;
}

The important point to notice is nesting the try blocks. If the two try blocks
aren’t nested and the input stream declaration, ifstream inFile;, is placed in the
first block, it can’t be used in the second try block without producing a compiler
error. The reason is that all variables declared in a block of code (defined by an open-
ing and closing brace pair) are local to the block in which they’re declared.

503Chapter 9
Exceptions and File Checking

4. (Modify) Modify Program 9.3 to use an identifier of your choice, in place of the letter e,
for the catch block’s exception parameter name.

5. (Practice) Enter and execute Program 9.4.

6. (Debug) Determine why the two try blocks in Program 9.4, which are not nested, cause
no problems in compilation or execution. (Hint: Place the declaration for the filename in
the first try block and compile the program.)

7. (Debug) a. If the nested try blocks in the Point of Information on nested try blocks
are separated into unnested blocks, the program won’t compile. Determine why this is so.

b. What additional changes have to be made to the program in Exercise 7a that would
allow it to be written with unnested blocks? (Hint: See Exercise 6.)

9.3 The string Class

The programs in this book have used the istream class’s cout object extensively, but you
haven’t investigated this class in detail or learned how the cout object is created. However,
an advantage of object-oriented program design is that you can use thoroughly tested classes
without knowing how the class is constructed. In this section, you use another class provided
by C++’s standard library: the string class. However, you’re going to create objects from
the class before using them instead of using an existing object, such as cout.

A class is a user-created data type. Like built-in data types, a class defines a valid set of
data values and a set of operations that can be used on them. The difference between a
user-created class and a built-in data type is how the class is constructed. A built-in data type
is provided as an integral part of the compiler, and a class is constructed by a programmer
using C++ code. Other than that and the terminology, the two data types are used in much
the same manner. The key difference in terminology is that storage areas for built-in data
types are referred to as variables, whereas storage areas declared for a class are referred to as
objects.

The values the string class permits are referred to as string literals. A string literal is any
sequence of characters enclosed in quotation marks. A string literal is also referred to as a
string value, a string constant, and, more conventionally, a string. Examples of strings are
"This is a string", "Hello World!", and "xyz 123 *!#@&". The quotation marks
indicate the beginning and ending points of the string and are never stored with the string.

Figure 9.3 shows the programming representation of the string Hello when it’s created
as an object of the string class. By convention, the first character in a string is always
designated as position 0. This position value is also referred to as both the character’s index
value and its offset value.

H e l

3

l

4210Position:

o

Figure 9.3 The storage of a string as a sequence of characters

504 Completing the Basics

string Class Functions
The string class provides a number of functions for declaring, creating, and initializing a
string. In earlier versions of C++, the process of creating a new object is referred to as
instantiating an object, which in this case becomes instantiating a string object, or creating a
string, for short. Table 9.2 lists the functions the string class provides for creating and
initializing a string object. In class terminology, functions are formally referred to as methods,
and the methods that perform the tasks of creating and initializing are called constructor
methods, or constructors, for short.

Table 9.2 string Class Constructors (Require the Header File string)

Constructor Description Examples
string objectName = value Creates and

initializes a string
object to a value
that can be a
string literal, a
previously declared
string object, or an
expression
containing string
literals and string
objects

string str1 = "Good
Morning";
string str2 = str1;
string str3 = str1 +
str2;

string objectName(stringValue) Produces the same
initialization as the
preceding item

string str1("Hot");
string str1(str1 +
"Dog");

string objectName(str, n) Creates and
initializes a string
object with a
substring of string
object str,
starting at index
position n of str

string str1(str2, 5)
If str2 contains the string
Good Morning, then str1
becomes the string
Morning

string objectName(str, n, p) Creates and
initializes a string
object with a
substring of string
object str,
starting at index
position n of str
and containing p
characters

string str1(str2, 5,2)
If str2 contains the string
Good Morning, then str1
becomes the string Mo

string objectName(n, char) Creates and
initializes a string
object with n
copies of char

string str1(5,'*')
This makes str1 =
"*****"

505Chapter 9
The string Class

Table 9.2 string Class Constructors (Require the Header File string) (continued)

Constructor Description Examples
string objectName Creates and

initializes a string
object to represent
an empty character
sequence (same as
string
objectName =
"";, so the length
of the string is 0)

string message;

Program 9.6 shows examples of each constructor the string class provides.

Program 9.6

#include <iostream>

#include <string>

using namespace std;

int main()

{

string str1; // an empty string

string str2("Good Morning");

string str3 = "Hot Dog";

string str4(str3);

string str5(str4, 4);

string str6 = "linear";

string str7(str6, 3, 3);

cout << "str1 is: " << str1 << endl;

cout << "str2 is: " << str2 << endl;

cout << "str3 is: " << str3 << endl;

cout << "str4 is: " << str4 << endl;

cout << "str5 is: " << str5 << endl;

cout << "str6 is: " << str6 << endl;

cout << "str7 is: " << str7 << endl;

return 0;

}

506 Completing the Basics

Here is the output created by Program 9.6:

str1 is:

str2 is: Good Morning

str3 is: Hot Dog

str4 is: Hot Dog

str5 is: Dog

str6 is: linear

str7 is: ear

Although this output is straightforward, str1 is an empty string consisting of no
characters; because the first character in a string is designated as position 0, not 1, the
character position of the D in the string Hot Dog is position 4, which is shown in Figure 9.4.

String Input and Output
In addition to a string being initialized with the constructors listed in Table 9.2, strings can
be input from the keyboard and displayed on screen. Table 9.3 lists the basic functions and
objects for input and output of string values.

Table 9.3 string Class Input and Output

C++ Object or Function Description
cout General-purpose screen output object
cin General-purpose keyboard input object that stops

reading string input when white space is encountered
getline(cin, strObj) General-purpose keyboard input function that inputs all

characters entered, stores them in the string strObj,
and stops accepting characters when it receives a
newline character (\n)

In addition to the standard cout and cin objects you have been using throughout the
book, the string class provides the getline() function for string input. For example, the
expression getline(cin, message) accepts and stores characters typed at the terminal
continuously until the Enter key is pressed. Pressing the Enter key generates a newline
character, '\n', which getline() interprets as the end-of-line entry. All the characters
encountered by getline(), except the newline character, are stored in the string
message, as illustrated in Figure 9.5.

Program 9.7 shows using the getline() function and cout statement to input and output
a string that’s entered at the user’s terminal. Although cout is used in Program 9.7 for string
output, cin generally can’t be used in place of getline() for string input because cin reads
a set of characters up to a blank space or a newline character. Therefore, attempting to enter the
characters This is a string by using the statement cin >> message; results in only the

H o t

210 5 64

D o g

3Character position:

Figure 9.4 The character positions of the string Hot Dog

507Chapter 9
The string Class

word This being assigned to message. Because a blank terminates a cin extraction operation,
cin’s usefulness for entering string data is restricted; therefore, getline() is used.

The following is a sample run of Program 9.7:

Enter a string:

This is a test input of a string of characters.

The string just entered is:

This is a test input of a string of characters.

In its most general form, the getline() function has the syntax

getline(cin, strObj, terminatingChar)

where strObj is a string variable name and terminatingChar is an optional character
constant, or variable, specifying the terminating character. For example, the expression
getline(cin, message, '!') accepts all characters entered at the keyboard, including
a newline character, until an exclamation point is entered. The exclamation point isn’t stored
as part of the string.

getline()characters \n characters

Figure 9.5 Inputting a string with getline()

Program 9.7

#include <iostream>

#include <string>

using namespace std;

int main()

{

string message; // declare a string object

cout << "Enter a string:\n";

getline(cin, message);

cout << "The string just entered is:\n"

<< message << endl;

return 0;

}

508 Completing the Basics

If the optional third argument, terminatingChar, is omitted when getline() is
called, the default terminating character is the newline ('\n') character. Therefore, the
statement getline(cin,message,'\n'); can be used in place of the statement
getline(cin, message);. Both these statements stop reading characters when the
Enter key is pressed. In all the programs used from this point forward, input is terminated
by pressing the Enter key, which generates a newline character. For this reason, the optional
third argument passed to getline(), which is the terminating character, is omitted.

Caution: The Phantom Newline Character Seemingly strange results can happen when
the cin input stream object and getline() function are used together to accept data or
when cin is used by itself to accept characters. To see how this result can occur, take a look
at Program 9.8, which uses cin to accept an integer entered at the keyboard. The integer is
then stored in the variable value, and a getline() function call follows.

When Program 9.8 runs, the number entered in response to the prompt Enter a
number: is stored in the variable value. At this point, everything seems to be working fine.
Notice, however, that in entering a number, you enter the number and press the Enter key.
On almost all computer systems, this entered data is stored in a temporary holding area called
a buffer immediately after the characters are entered, as shown in Figure 9.6.

Program 9.8

#include <iostream>

#include <string>

using namespace std;

int main()

{

int value;

string message;

cout << "Enter a number: ";

cin >> value;

cout << "The number entered is:\n"

<< value << endl;

cout << "Enter text:\n";

getline(cin, message);

cout << "The text entered is:\n"

<< message << endl;

cout << int(message.length());

return 0;

}

509Chapter 9
The string Class

The cin input stream in Program 9.8 first accepts the number entered but leaves the
'\n' in the buffer. The next input statement, which is a call to getline(), picks up
thecode for the Enter key as the next character and terminates any further input. Following
is a sample run of Program 9.8:

Enter a number: 26

The number entered is 26

Enter text:

The text entered is

In this output, no text is accepted in response to the prompt Enter text:. No text
occurs because, after the program accepts the number 26, the code for the Enter key, which
is a newline escape sequence, remains in the buffer and is picked up and interpreted by the
getline() function as the end of its input. This result occurs whether an integer (as in

Point of Information

The string and char Data Types
A string can consist of zero, one, or more characters. When the string has no charac-
ters, it’s said to be an empty string with a length of zero. A string with a single charac-
ter, such as "a", is a string of length one and is stored differently from a char data
type, such as 'a'.

However, for many practical purposes, a string of length one and a char respond
in the same manner; for example, both cout >> "\n" and cout >> '\n' produce
a new line on the screen. It’s important to understand that they are different data
types; for example, both these declarations

string s1 = 'a'; // INVALID INITIALIZATION
char key = "\n"; // INVALID INITIALIZATION

produce a compiler error because they attempt to initialize one data type with literal
values of another type.

2 6 \n

Each character is
sent to a buffer

as it’s typed

Buffer
(temporary storage)

Keyboard

Figure 9.6 Typed characters are first stored in a buffer

510 Completing the Basics

Program 9.8), a string, or any other input is accepted by cin and then followed by a
getline() function call. There are three solutions to this “phantom” Enter key problem:

• Don’t mix cin with getline() inputs in the same program.
• Follow the cin input with the call to cin.ignore().
• Accept the Enter key in a character variable and then ignore it.

The preferred solution is the first one. All solutions, however, center on the fact that the
Enter key is a legitimate character input and must be recognized as such. You encounter this
problem again when you learn about accepting char data types in Section 9.4.

String Processing
Strings can be manipulated by using string class functions or the character-at-a-time functions
described in Section 9.4. Table 9.4 lists the most commonly used string class functions plus
the standard arithmetic and comparison operators that can also be used with strings.

Table 9.4 The string Class Processing Functions (Require the Header File string)

Function/Operation Description Example
int length() Returns the

length of
the string

string.length()

int size() Same as the
preceding item

string.size()

at(int index) Returns the
character at the
specified index
and throws an
exception if the
index is
nonexistent

string.at(4)

int compare(str) Compares the
given string to
str; returns a
negative value if
the given string is
less than str, a
0 if they are
equal, and a
positive value if
the given string is
greater than str

string1.compare(string2)

c_str() Returns the string
as a null-
terminated
C-string

string1.c_str()

bool empty Returns true if
the string is
empty; otherwise,
returns false

string1.empty()

511Chapter 9
The string Class

Table 9.4 The string Class Processing Functions (Require the Header File
string) (continued)

Function/Operation Description Example
erase(ind,n) Removes n

characters from
the string,
starting at
index ind

string1.erase(2,3)

erase(ind) Removes all
characters from
the string,
starting from
index ind until
the end of the
string, and the
length of the
remaining string
becomes ind

string1.erase(4)

int find(str) Returns the index
of the first
occurrence of
str in the
complete string

string1.find("the")

int find(str, ind) Returns the index
of the first
occurrence of
str in the
complete string,
with the search
beginning at
index ind

string1.find("the",5)

int find_first_of(str, ind) Returns the index
of the first
occurrence of any
character in str
in the complete
string, with the
search starting at
index ind

string1.find_first_of("lt",6)

int find_first_not_of(str, ind) Returns the index
of the first
occurrence of any
character not in
str in the
complete string,
with the search
starting at
index ind

string1.find_first_not_of("lt",6)

512 Completing the Basics

Table 9.4 The string Class Processing Functions (Require the Header File
string) (continued)

Function/Operation Description Example
void insert(ind, str) Inserts the string

str into the
complete string,
starting at index
ind

string.insert(4, "there")

void replace(ind, n, str) Removes n
characters in the
string object,
starting at index
position ind, and
inserts the string
str at index
position ind

string1.replace(2,4,"okay")

string substr(ind,n) Returns a string
consisting of n
characters
extracted from
the string,
starting at index
ind; if n is
greater than the
remaining
number of
characters, the
rest of the string
is used

string2 = string1.substr(0,10)

void swap(str) Swaps characters
in str with
those in the first
string

string1.swap(string2)

[ind] Returns the
character at index
x, without
checking whether
ind is a valid
index

string1[5]

= Assignment (also
converts a
C-string to a
string)

string1 = string

+ Concatenates
two strings

string1 + string2

513Chapter 9
The string Class

Table 9.4 The string Class Processing Functions (Require the Header File
string) (continued)

Function/Operation Description Example
+= Concatenation

and assignment
string2 += string1

== !=

< <=

> >=

Relational
operators
Return true if
the relation is
satisfied;
otherwise, return
false

string1 == string2

string1 <= string2

string1 > string2

The most commonly used function in Table 9.4 is length(). It returns the number of
characters in the string, which is referred to as the string’s length. For example, the value
returned by the function call "Hello World!".length() is 12. As always, the quotation
marks surrounding a string value aren’t considered part of the string. Similarly, if the string
referenced by string1 contains the value "Have a good day.", the value returned by the
call string1.length() is 16.

Two string expressions can be compared for equality by using the standard relational
operators. Each character in a string is stored in binary with the ASCII or Unicode code.
Although these codes are different, they have some characteristics in common. In both, a
blank precedes (is less than) all letters and numbers; letters of the alphabet are stored in
order from A to Z; and digits are stored in order from 0 to 9. In addition, digits come before
(are less than) uppercase characters, which are followed by lowercase characters. Therefore,
uppercase characters are mathematically less than lowercase characters.

When two strings are compared, their characters are compared a pair at a time (both first
characters, then both second characters, and so on). If no differences are found, the strings
are equal; if a difference is found, the string with the first lower character is considered the
smaller string, as shown in these examples:

• "Hello" is greater than "Good Bye" because the first H in Hello is greater than
the first G in Good Bye.

• "Hello" is less than "hello" because the first H in Hello is less than the first
h in hello.

• "SMITH" is greater than "JONES" because the first S in SMITH is greater than the
first J in JONES.

• "123" is greater than "1227" because the third character in 123, the 3, is greater
than the third character in 1227, the 2.

• "Behop" is greater than "Beehive" because the third character in Behop, the h,
is greater than the third character in Beehive, the e.

Program 9.9 uses length() and several relational expressions in the context of a
complete program.

514 Completing the Basics

Following is a sample output produced by Program 9.9:

string1 is the string: Hello

The number of characters in string1 is 5

string2 is the string: Hello there

The number of characters in string2 is 11

Hello is less than Hello there

�

Program 9.9

#include <iostream>

#include <string>

using namespace std;

int main()

{

string string1 = "Hello";

string string2 = "Hello there";

cout << "string1 is the string: " << string1 << endl;

cout << "The number of characters in string1 is " << int(string1.length())

<< endl << endl;

cout << "string2 is the string: " << string2 << endl;

cout << "The number of characters in string2 is " << int(string2.length())

<< endl << endl;

if (string1 < string2)

cout << string1 << " is less than " << string2 << endl << endl;

else if (string1 == string2)

cout << string1 << " is equal to " << string2 << endl << endl;

else

cout << string1 << " is greater than " << string2 << endl << endl;

string1 = string1 + " there world!";

cout << "After concatenation, string1 contains the characters:

" << string1 << endl;

cout << "The length of this string is " << int(string1.length()) << endl;

return 0;

}

515Chapter 9
The string Class

After concatenation, string1 contains the characters:

Hello there world!

The length of this string is 18

When reviewing this program’s output, refer to Figure 9.7, which shows how the
characters in string1 and string2 are stored in memory. The length of each string refers
to the total number of characters in the string, and the first character in each string is located
at index position 0. Therefore, the length of a string is always one more than the index
number of the last character’s position in the string.

Although you use the concatenation operator and length() function most often, at
times you’ll find the other string functions in Table 9.4 useful. One of the most useful is the
at() function, which enables you to retrieve separate characters in a string. Program 9.10
uses this function to select one character at a time from the string, starting at string position
0 and ending at the index of the last character in the string. This last index value is always
one less than the number of characters (that is, the string’s length) in the string.

The expression str.at(i) in the switch statement retrieves the character at position i
in the string. This character is then compared to five different character values. The switch
statement uses the fact that selected cases “drop through” in the absence of break statements.
Therefore, all selected cases result in an increment to vowelCount. Program 9.10 displays the
following output:

The string: Counting the number of vowels

has 9 vowels.

Location of
a string

string2

string1

Character part of a string object

Character part of a string object

Location of
a string

H e l l o

H e l l o t h e r e

Figure 9.7 The initial strings used in Program 9.9

516 Completing the Basics

As an example of inserting and replacing characters in a string with the functions listed
in Table 9.4, assume you start with a string created by the following statement:

string str = "This cannot be";

Figure 9.8 illustrates how this string is stored in the buffer created for it. As indicated, the
length of the string is 14 characters.

Now assume the following statement is executed:

str.insert(4," I know");

Program 9.10

#include <iostream>

#include <string>

using namespace std;

int main()

{

string str = "Counting the number of vowels";

int i, numChars;

int vowelCount = 0;

cout << "The string: " << str << endl;

numChars = int(str.length());

for (i = 0; i < numChars; i++)

{

switch(str.at(i)) // here is where a character is retrieved

{

case 'a':

case 'e':

case 'i':

case 'o':

case 'u':

vowelCount++;

}

}

cout << "has " << vowelCount << " vowels." << endl;

return 0;

}

517Chapter 9
The string Class

This statement inserts the designated seven characters in " I know", beginning with
a blank, in the existing string starting at index position 4. Figure 9.9 shows the string after
the insertion.

If the statement str.replace(12, 6, "to"); is executed next, the existing
characters in index positions 12 through 17 are deleted, and the two characters contained in
to are inserted starting at index position 12. Figure 9.10 shows the net effect of this
replacement. The number of replacement characters (in this case, two) can be fewer than,
equal to, or greater than the number of characters being replaced, which in this case is six.

Finally, if you append the string "correct" to the string shown in Figure 9.10 by using
the concatenation operator, +, you get the string shown in Figure 9.11. Program 9.11 uses
these statements in a complete program.

Character position:

T h i

210 5 643

s

87 11 12109 13

c a n n o b et

Length = 14

Figure 9.8 Initial storage of a string object

Character position:

T h i

210 5 643

s

87 11 12109 13

I k n o w

Length = 21

1514 18 191716 20

a nc n o t b e

Figure 9.9 The string after the insertion

Character position:

T h i

210 5 643

s

87 11 12109 13

I k n o w

Length = 17

1514 16

ot b e

Figure 9.10 The string after the replacement

Character position:

T h i

210 5 643

s

87 11 12109 13

I k n o w

Length = 25

1514 18 191716 20

ot b e c o r

22 2321 24

e c tr

Figure 9.11 The string after the append

518 Completing the Basics

The following output produced by Program 9.11 matches the strings shown in Figures 9.8
to 9.11:

The original string is: This cannot be

and has 14 characters.

The string, after insertion, is: This I know cannot be

and has 21 characters.

The string, after replacement, is: This I know to be

and has 17 characters.

The string, after appending, is: This I know to be correct

and has 25 characters.

Program 9.11

#include <iostream>

#include <string>

using namespace std;

int main()

{

string str = "This cannot be";

cout << "The original string is: " << str << endl

<< " and has " << int(str.length()) << " characters." << endl;

// insert characters

str.insert(4," I know");

cout << "The string, after insertion, is: " << str << endl

<< " and has " << int(str.length()) << " characters." << endl;

// replace characters

str.replace(12, 6, "to");

cout << "The string, after replacement, is: " << str << endl

<< " and has " << int(str.length()) << " characters." << endl;

// append characters

str = str + " correct";

cout << "The string, after appending, is: " << str << endl

<< " and has " << int(str.length()) << " characters." << endl;

return 0;

}

519Chapter 9
The string Class

Of the remaining string functions listed in Table 9.4, the most commonly used are those
that locate specific characters in a string and create substrings. Program 9.12 shows how some
of these other functions are used.

Program 9.12

#include <iostream>

#include <string>

using namespace std;

int main()

{

string string1 = "LINEAR PROGRAMMING THEORY";

string s1, s2, s3;

int j, k;

cout << "The original string is " << string1 << endl;

j = int(string1.find('I'));

cout << " The first position of an 'I' is " << j << endl;

k = int(string1.find('I', (j+1)));

cout << " The next position of an 'I' is " << k << endl;

j = int(string1.find("THEORY"));

cout << " The first location of \"THEORY\" is " << j << endl;

k = int(string1.find("ING"));

cout << " The first index of \"ING\" is " << k << endl;

// now extract three substrings

s1 = string1.substr(2,5);

s2 = string1.substr(19,3);

s3 = string1.substr(6,8);

cout << "The substrings extracted are:" << endl

<< " " << s1 + s2 + s3 << endl;

return 0;

}

520 Completing the Basics

Here is the output produced by Program 9.12:

The original string is LINEAR PROGRAMMING THEORY

The first position of an 'I' is 1

The next position of an 'I' is 15

The first location of "THEORY" is 19

The first index of "ING" is 15

The substrings extracted are:

NEAR THE PROGRAM

The main point shown in Program 9.12 is that characters and sequences of characters can
be located and extracted from a string.

EXERCISES 9.3

1. (Practice) Enter and execute Program 9.7.

2. (Practice) Determine the value of text.at(0), text.at(3), and text.at(10),
assuming for each one that text is each of the following strings:
a. Now is the time

b. Rocky raccoon welcomes you

c. Happy Holidays

d. The good ship

3. (Practice) Enter and execute Program 9.10.

4. (Modify) Modify Program 9.10 to count and display the numbers of each vowel contained
in the string.

5. (Modify) Modify Program 9.10 to display the number of vowels in a user-entered string.

6. (Program) Using the at() function, write a C++ program that reads in a string by using
getline() and then displays the string in reverse order. (Hint: After the string has been
entered and saved, retrieve and display characters, starting from the end of the string.)

7. (Program) Write a C++ program that accepts both a string and a single character from
the user. The program should determine how many times the character is contained in
the string. (Hint: Search the string by using the find(str, ind) function. This func-
tion should be used in a loop that starts the index value at 0 and then changes the index
value to one past the index of where the char was last found.)

8. (Practice) Enter and execute Program 9.11.

9. (Practice) Enter and execute Program 9.12.

521Chapter 9
The string Class

9.4 Character Manipulation Functions

In addition to the string functions provided by the string class, the C++ language provides
several useful character class functions, listed in Table 9.5. The function declaration
(prototype) for each function is contained in the header file string or cctype, which must
be included in any program using these functions.

Table 9.5 Character Library Functions (Require the Header File string or cctype)

Function Prototype Description Example
int isalpha(charExp) Returns a true (non-zero integer)

if charExp evaluates to a letter;
otherwise, it returns a false (zero
integer)

isalpha('a')

int isalnum(charExp) Returns a true (non-zero integer)
if charExp evaluates to a letter or
a digit; otherwise, it returns a
false (zero integer)

char key;
cin >> key;
isalnum(key);

int isupper(charExp) Returns a true (non-zero integer)
if charExp evaluates to an
uppercase letter; otherwise, it
returns a false (zero integer)

isupper('a')

int islower(charExp) Returns a true (non-zero integer)
if charExp evaluates to a
lowercase letter; otherwise, it
returns a false (zero integer)

islower('a')

int isdigit(charExp) Returns a true (non-zero integer)
if charExp evaluates to a digit (0
through 9); otherwise, it returns a
false (zero integer)

isdigit('a')

int isascii(charExp) Returns a true (non-zero integer)
if charExp evaluates to an ASCII
character; otherwise, returns a
false (zero integer)

isascii('a')

int isspace(charExp) Returns a true (non-zero integer)
if charExp evaluates to a space;
otherwise, returns a false (zero
integer)

isspace(' ')

int isprint(charExp) Returns a true (non-zero integer)
if charExp evaluates to a
printable character; otherwise,
returns a false (zero integer)

isprint('a')

int isctrl(charExp) Returns a true (non-zero integer)
if charExp evaluates to a control
character; otherwise, it returns a
false (zero integer)

isctrl('a')

522 Completing the Basics

Table 9.5 Character Library Functions (Require the Header File string or
cctype) (continued)

Function Prototype Description Example
int ispunct(charExp) Returns a true (non-zero integer)

if charExp evaluates to a
punctuation character; otherwise,
returns a false (zero integer)

ispunct('!')

int isgraph(charExp) Returns a true (non-zero integer)
if charExp evaluates to a
printable character other than
white space; otherwise, returns a
false (zero integer)

isgraph(' ')

int toupper(charExp) Returns the uppercase equivalent if
charExp evaluates to an
lowercase character; otherwise, it
returns the character code without
modification

toupper('a')

int tolower(charExp) Returns the lowercase equivalent if
charExp evaluates to an
uppercase character; otherwise, it
returns the character code without
modification

tolower('A')

Because all the istype() functions listed in Table 9.5 return a non-zero integer (a Boolean
true value) when the character meets the condition and a zero integer (a Boolean false value)
when the condition is not met, these functions are typically used in an if statement. For
example, the following code segment assumes ch is a character variable:

if(isdigit(ch))
cout << "The character just entered is a digit" << endl;

else if(ispunct(ch))
cout << "The character just entered is a punctuation mark" << endl;

In this example, if ch contains a digit character, the first cout statement is executed; if
the character is a letter, the second cout statement is executed. In both cases, however, the
character to be checked is included as an argument to the function. Program 9.13 illustrates
this type of code in a program that counts the number of letters, digits, and other characters
in a string. The characters to be checked are obtained by using the string class’s at()
function. In Program 9.13, this function is used in a for loop that cycles through the string
from the first character to the last.

The output produced by Program 9.13 is the following:

The original string is: This -123/ is 567 A ?<6245> Test!

This string contains 33 characters, which consist of

11 letters

10 digits

12 other characters.

As indicated by this output, each of the 33 characters in the string has been categorized
correctly as a letter, a digit, or other character.

523Chapter 9
Character Manipulation Functions

Program 9.13

#include <iostream>

#include <string>

#include <cctype>

using namespace std;

int main()

{

string str = "This -123/ is 567 A ?<6245> Test!";

char nextChar;

int i;

int numLetters = 0, numDigits = 0, numOthers = 0;

cout << "The original string is: " << str

<< "\nThis string contains " << int(str.length())

<< " characters," << " which consist of" << endl;

// check each character in the string

for (i = 0; i < int(str.length()); i++)

{

nextChar = str.at(i); // get a character

if (isalpha(nextChar))

numLetters++;

else if (isdigit(nextChar))

numDigits++;

else

numOthers++;

}

cout << " " << numLetters << " letters" << endl;

cout << " " << numDigits << " digits" << endl;

cout << " " << numOthers << " other characters." << endl;

cin.ignore();

return 0;

}

524 Completing the Basics

Typically, as in Program 9.13, the functions in Table 9.5 are used in a character-by-
character manner on each character in a string. You see this again in Program 9.14, where each
lowercase string character is converted to its uppercase equivalent by using the toupper()
function. This function converts only lowercase letters, leaving all other characters
unaffected.

In Program 9.14, pay particular attention to the statement for (i = 0; i <
int(str.length()); i++) used to cycle through each character in the string. Typically,
this cycling through the string, a character at a time, is how each element in a string is
accessed, using the length() function to determine when the end of the string has been
reached. (Review Program 9.13 to see that it’s used in the same way.) The only real
difference is that in Program 9.14, each element is accessed by using the subscript notation
str[i]; in Program 9.13, the at() function is used. Although these two notations are
interchangeable—and which one you use is a matter of choice—for consistency, the two
notations shouldn’t be mixed in the same program.

A sample run of Program 9.14 produced the following output:

Type in any sequence of characters: this is a test of 12345.
The characters just entered, in uppercase, are: THIS IS A TEST OF 12345.

Program 9.14

#include <iostream>

#include <string>

using namespace std;

int main()

{

int i;

string str;

cout << "Type in any sequence of characters: ";

getline(cin,str);

// cycle through all elements of the string

for (i = 0; i < int(str.length()); i++)

str[i] = toupper(str[i]);

cout << "The characters just entered, in uppercase, are: "

<< str << endl;

cin.ignore();

return 0;

}

525Chapter 9
Character Manipulation Functions

Character I/O
Although you have used cin and getline() to accept data entered from the keyboard in a
more or less “cookbook” manner, you need to understand what data is being sent to the program
and how the program must react to process the data. At a fundamental level, all input (as well
as output) is done on a character-by-character basis, as illustrated in Figure 9.12.

As Figure 9.12 shows, the entry of every piece of data, whether it’s a string or a number,
consists of typing characters. For example, entry of the string Hello consists of pressing and
releasing the five character keys H, e, l, l, o, and the Enter key. Similarly, output of the
number 26.95 consists of displaying the five characters 2, 6, ., 9, and 5. Although
programmers typically don’t think of data in this manner, programs are restricted to this
character-by-character I/O, and all of C++’s higher-level I/O functions and stream objects are
based on lower-level character I/O functions. These more elemental character functions,
which can be used by a programmer, are listed in Table 9.6.

H e l l o

Assemble
into a
string

Is
it '\n'?

get()

int

Replace with
getline()

Stream of data

'H' 'e' 'l' 'l' 'o' <Enter>

No

Stop readingYes

value

Figure 9.12 Accepting keyboard-entered characters

526 Completing the Basics

Table 9.6 Basic Character I/O Functions (Require the Header File cctype)

Function Description Example
cout.put(charExp) Places the character value

of charExp on the
output stream.

cout.put('A');

cin.get(charVar) Extracts the next character
from the input stream
and assigns it to the
variable charVar.

cin.get(key);

cin.peek(charVar) Assigns the next character
from the input stream to
the variable charVar
without extracting the
character from the
stream.

cin.peek(nextKey);

cin.putback(charExp) Pushes a character value
of charExp back onto
the input stream.

cin.putback(cKey);

Point of Information

Why the char Data Type Uses Integer Values
In C++, a character is stored as an integer value, which is sometimes confusing to
beginning programmers. The reason is that, in addition to standard English letters and
characters, a program needs to store special characters that have no printable
equivalents. One is the end-of-file (EOF) sentinel that all computer systems use to desig-
nate the end of a data file. The EOF sentinel can be transmitted from the keyboard. For
example, on UNIX-based systems, it’s generated by holding down the Ctrl key and
pressing the D key; on Windows-based systems, it’s generated by holding down Ctrl
and pressing Z. On both systems, the EOF sentinel is stored as the integer number -1,
which has no equivalent character value. (You can check this by displaying the integer
value of each entered character [see Program 9.15] and typing Ctrl+D or Ctrl+Z,
depending on the system you’re using.)

By using a 16-bit integer value, more than 64,000 different characters can be
represented. This number of characters provides enough storage for multiple character
sets, including Arabic, Chinese, Hebrew, Japanese, and Russian, and almost all known
language symbols. Therefore, storing a character as an integer value has a practical
value.

An important consequence of using integer codes for string characters is that char-
acters can be compared easily for alphabetical ordering. For example, as long as each
subsequent letter in an alphabet has a higher value than its preceding letter, the com-
parison of character values is reduced to the comparison of numeric values. Storing
characters in sequential numerical order ensures that adding one to a letter produces
the next letter in the alphabet.

527Chapter 9
Character Manipulation Functions

Table 9.6 Basic Character I/O Functions (Require the Header File cctype) (continued)

Function Description Example
cin.ignore(n, char) Ignores a maximum of the

next n input characters, up
to and including the
detection of char. If no
arguments are specified,
ignores the next single
character on the input
stream.

cin.ignore(80,'\n');
cin.ignore();

The get() function reads the next character in the input stream and assigns it to the
function’s character variable. For example, examine this statement:

cin.get(nextChar);

It causes the next character entered at the keyboard to be stored in the character variable
nextChar. This function is useful for inputting and checking characters before they are
assigned to a complete string or C++ data type.

The character output function corresponding to get() is put(). This function expects
a single-character argument and displays the character passed to it on the screen. For
example, the statement cout.put('A') causes the letter A to be displayed on the screen.

Of the last three functions listed in Table 9.6, the cin.ignore() function is the most
useful. This function permits skipping over input until a designated character, such as '\n', is
encountered. For example, the statement cin.ignore(80, '\n') skips up to a maximum
of the next 80 characters or stops skipping if the newline character is encountered. This
statement can be useful in skipping all further input on a line, up to a maximum of 80 characters,
or until the end of the current line is encountered. Input would begin with the next line.

The peek() function returns the next character on the stream but doesn’t remove it from
the stream’s buffer (see Table 9.6). For example, the expression cin.peek(nextChar)
returns the next character input on the keyboard but leaves it in the buffer. This action is
sometimes useful for peeking ahead and seeing what the next character is but leaving it in place
for the next input.

Finally, the putback() function places a character back on the stream so that it’s the
next character read. The argument passed to putback() can be any character expression
that evaluates to a legitimate character value; it doesn’t have to be the last input character.

The Phantom Newline Character Revisited As you saw in Section 9.3, sometimes you
get seemingly strange results when a cin input stream is followed by a getline() function
call. This same result can occur when characters are inputted by using the get() character
function. To see how it can occur, take a look at Program 9.15, which uses the get()
function to accept the next character entered at the keyboard and stores the character in the
variable fkey.

528 Completing the Basics

When Program 9.15 runs, the character entered in response to the prompt Type in a
character: is stored in the character variable fkey, and the decimal code for the character
is displayed by explicitly casting the character into an integer to force its display as an integer
value. The following sample run illustrates this technique:

Type in a character: m

The key just accepted is 109

At this point, everything seems to be working, although you might be wondering why the
decimal value of m is displayed instead of the character. In typing m, two keys are usually pressed,
the m key and the Enter key. As in the previous section, these two characters are stored in a
buffer after they’re pressed (refer back to Figure 9.12). The first key pressed, m in this case, is
taken from the buffer and stored in fkey, but the code for the Enter key is still in the buffer.
Therefore, a subsequent call to get() for a character input picks up the code for the Enter key
as the next character automatically. For example, take a look at Program 9.16.

Point of Information

A Notational Inconsistency
All the character class functions listed in Table 9.6 use the standard object-oriented
notation of preceding the function’s name with an object name, as in cin.get().
However, the string class getline() function uses the notation getline(cin,
strVar). In this notation, the object (cin) appears as an argument, which is how
procedural-based functions pass variables. For consistency, you would expect
getline() to be called as cin.getline(). Unfortunately, this notation was already
in use for a getline() function created for C-style strings (which are simply one-
dimensional arrays of characters, as discussed in Section 7.2), so a notational inconsis-
tency was created.

Program 9.15

#include <iostream>

using namespace std;

int main()

{

char fkey;

cout << "Type in a character: ";

cin.get(fkey);

cout << "The key just accepted is " << int(fkey) << endl;

return 0;

}

529Chapter 9
Character Manipulation Functions

The following is a sample run of Program 9.16:

Type in a character: m

The key just accepted is 109

Type in another character: The key just accepted is 10

After entering the letter m in response to the first prompt, the Enter key is also pressed.
From a character standpoint, this input represents the entry of two distinct characters. The
first character is m, which is coded and stored as the integer 109. The second character also
gets stored in the buffer with the numerical code for the Enter key. The second call to
get() picks up this code immediately, without waiting for another key to be pressed. The
last cout stream displays the code for this key. The reason for displaying the numerical code
rather than the character is that the Enter key has no printable character associated with it
that can be displayed.

Remember that every key has a numerical code, including Enter, the spacebar, Esc, and
Ctrl. These keys generally have no effect when entering numbers because the input
functions ignore them as leading or trailing input with numerical data. These keys also don’t
affect the entry of a single character requested as the first user data to be inputted, as in
Program 9.15. Only when a character is requested after the user has already input other data,
as in Program 9.16, does the usually invisible Enter key become noticeable.

In Section 9.1, you learned some ways to prevent the Enter key from being accepted as
a legitimate character input when the getline() function is used. You can use the
following ways when the get() function is used in a program:

• Follow the cin.get() input with the call cin.ignore().
• Accept the Enter key in a character variable, and then don’t use it again.

Program 9.16

#include <iostream>

using namespace std;

int main()

{

char fkey, skey;

cout << "Type in a character: ";

cin.get(fkey);

cout << "The key just accepted is " << int(fkey) << endl;

cout << "Type in another character: ";

cin.get(skey);

cout << "The key just accepted is " << int(skey) << endl;

return 0;

}

530 Completing the Basics

Program 9.17 applies the first solution to Program 9.16. Ignoring the Enter key after the
first character is read and displayed clears the buffer of the Enter key and gets it ready to
store the next valid input character as its first character.

In Program 9.17, observe that when the user types the letter m and presses the Enter key,
the m is assigned to fkey and the code for the Enter key is ignored. The next call to get()
stores the code for the next key pressed in the variable skey. From the user’s standpoint, the
Enter key has no effect, except to signal the end of each character input. The following is
a sample run of Program 9.17:

Type in a character: m

The key just accepted is 109

Type in another character: b

The key just accepted is 98

A Second Look at User-Input Validation
As mentioned in the first look at user-input validation (in Section 3.4), programs that respond
effectively to unexpected user input are formally referred to as robust programs and
informally as “bulletproof” programs. Code that validates user input and ensures that a
program doesn’t produce unintended results caused by unexpected input is a sign of a
well-constructed, robust program. One of your jobs as a programmer is to produce robust

Program 9.17

#include <iostream>

using namespace std;

int main()

{

char fkey, skey;

cout << "Type in a character: ";

cin.get(fkey);

cout << "The key just accepted is " << int(fkey) << endl;

cin.ignore();

cout << "Type in another character: ";

cin.get(skey);

cout << "The key just accepted is " << int(skey) << endl;

cin.ignore();

return 0;

}

531Chapter 9
Character Manipulation Functions

programs. To see how unintended results can occur, examine the following two code
examples. First, assume your program contains the following statements:

cout << "Enter an integer: ";
cin >> value;

By mistake, a user enters the characters e4. In earlier versions of C++, this input would
cause the program to terminate unexpectedly, or crash. Although a crash can still occur with
the current ANSI/ISO standard, it doesn’t in this case. Instead, a meaningless integer value
is assigned to the variable value. This assignment, of course, invalidates any results
obtained by using this variable.

As a second example, take a look at the following code, which causes an infinite loop if
the user enters a non-numeric value. (The program can be halted by holding down Ctrl and
pressing C.)

double value;

do
{

cout << "Enter a number (enter 0 to exit): ";
cin >> value;

cout << "The square root of this number is: " << sqrt(value) << endl;
}while (value !=0);

The basic technique for handling invalid data input and preventing seemingly innocuous
code, as in these two examples, from producing unintended results is referred to as user-input
validation. This term means validating the entered data during or after data entry and giving
the user a way of reentering data, if it’s invalid. User-input validation is an essential part of
any commercially viable program, and if done correctly, it protects a program from attempting
to process data types that can cause a program to crash, create infinite loops, or produce more
invalid results.

The central element in user-input validation is checking each entered character to verify
that it qualifies as a legitimate character for the expected data type. For example, if an integer
is required, the only acceptable characters are a leading plus (+) or minus (-) sign and the
digits 0 through 9. These characters can be checked as they’re being typed, which means the
get() function is used to input a character at a time, or after all the characters can be
accepted in a string, and then each string character is checked for validity. After all the
entered characters have been validated, the entered string can be converted into the correct
data type.

Two basic techniques can be used to verify the validity of entered characters. Section 9.5
explains one of these techniques: character-by-character checking. A second technique,
which encompasses a broader scope of data-processing tasks using exception handling, is
discussed at the end of Section 9.5.

EXERCISES 9.4

1. (Practice) Enter and execute Program 9.13.

2. (Practice) Enter and execute Program 9.14.

532 Completing the Basics

3. (Practice) Write a C++ program that counts the number of words in a string. A word is
encountered whenever a transition from a blank space to a nonblank character is
encountered. The string contains only words separated by blank spaces.

4. (Practice) Generate 10 random numbers in the range 0 to 129. If the number represents
a printable character, print the character with an appropriate message that indicates the
following:

The character is a lowercase letter.
The character is an uppercase letter.
The character is a digit.
The character is a space.
If the character is none of these, display its value in integer format.

5. (Practice) a. Write a function named length() that determines and returns the length
of a string without using the string class length() function.

b. Write a simple main() function to test the length() function written for Exercise 5a.

6. (Practice) a. Write a function named countlets() that returns the number of letters
in a string passed as an argument. Digits, spaces, punctuation, tabs, and newline charac-
ters should not be included in the returned count.

b. Include the countlets() function written for Exercise 6a in an executable C++ pro-
gram, and use the program to test the function.

7. (Practice) Write a program that accepts a string from the console and displays the hexa-
decimal equivalent of each character in the string.

8. (Practice) Write a C++ program that accepts a string from the console and displays the
string one word per line.

9. (Debug) In response to the following code, suppose a user enters the data 12e4:

cout << "Enter an integer: ";
cin >> value;

What value will be stored in the integer variable value?

9.5 Input Data Validation

One of the major uses of strings in programs is for user-input validation. Validating user input
is essential: Even though a program prompts the user to enter a specific type of data, such
as an integer, the prompt doesn’t ensure that the user will comply. What a user enters is, in
fact, totally out of the programmer’s control. What is in your control is how you deal with the
entered data.

It certainly does no good to tell a frustrated user that “The program clearly tells you to
enter an integer, and you entered a date.” Successful programs anticipate invalid data and
prevent it from being accepted and processed. Typically, this is accomplished by first
validating that data is of the correct type. If it is, the data is accepted; otherwise, the user is
requested to reenter the data, with an explanation of why the entered data was invalid.

533Chapter 9
Input Data Validation

A common method of validating numerical input data is accepting all numbers as strings.
Each character in the string can then be checked to make sure it complies with the requested
data type. After this check is made and data is verified to be the correct type, the string is
converted to an integer or double-precision value by using the conversion functions listed in
Table 9.7. (For data accepted with string class objects, the c_str() function must be
applied to the string before the conversion function is called.)

As an example, consider inputting an integer number. To be valid, the data entered must
adhere to the following conditions:

• The data must contain at least one character.
• If the first character is a + or - sign, the data must contain at least one digit.
• Only digits from 0 to 9 are acceptable following the first character.

Table 9.7 C-String Conversion Functions

Function Description Example
int atoi(stringExp) Converts stringExp to an

integer. Conversion stops at
the first non-integer character.

atoi("1234")

double atof(stringExp) Converts stringExp to a
double-precision number.
Conversion stops at the first
character that can’t be
interpreted as a double.

atof("12.34")

char[] itoa(integerExp) Converts integerExp to a
character array. The space
allocated for the returned
characters must be large
enough for the converted
value.

itoa(1234)

The following function, isvalidInt(), can be used to check that an entered string
complies with these conditions. This function returns the Boolean value of true if the
conditions are satisfied; otherwise, it returns a Boolean false value.

bool isvalidInt(string str)
{

int start = 0;
int i;
bool valid = true; // assume a valid
bool sign = false; // assume no sign

// check for an empty string
if (int(str.length()) == 0) valid = false;

// check for a leading sign
if (str.at(0) == '-'|| str.at(0) == '+')
{

sign = true;
start = 1; // start checking for digits after the sign

}
�

534 Completing the Basics

// check that there is at least one character after the sign
if (sign && int(str.length()) == 1) valid = false;

// now check the string, which you know
// has at least one non-sign character
i = start;
while(valid && i < int(str.length()))
{

if(!isdigit(str.at(i))) valid = false; //found a non-digit character
i++; // move to next character

}

return valid;
}

In the code for the isvalidInt() function, pay attention to the conditions being
checked. They are commented in the code and consist of the following:

• The string is not empty.
• A valid sign (+ or -) is present.
• If a sign is present, at least one digit follows it.
• All the remaining characters in the string are digits.

Only if all these conditions are met does the function return a Boolean true value. After
this value is returned, the string can be converted into an integer safely with the assurance
that no unexpected value will result to hamper further data processing. Program 9.18 uses this
function in the context of a complete program.

Program 9.18

#include <iostream>

#include <string>

using namespace std;

int main()

{

bool isvalidInt(string); // function prototype (declaration)

string value;

int number;

cout << "Enter an integer: ";

getline(cin, value);

�

535Chapter 9
Input Data Validation

if (!isvalidInt(value))

cout << "The number you entered is not a valid integer.";

else

{

number = atoi(value.c_str());

cout << "The integer you entered is " << number;

}

return 0;

}

bool isvalidInt(string str)

{

int start = 0;

int i;

bool valid = true; // assume a valid

bool sign = false; // assume no sign

// check for an empty string

if (int(str.length()) == 0) valid = false;

// check for a leading sign

if (str.at(0) == '-'|| str.at(0) == '+')

{

sign = true;

start = 1; // start checking for digits after the sign

}

// check that there is at least one character after the sign

if (sign && int(str.length()) == 1) valid = false;

// now check the string, which you know

// has at least one non-sign character

i = start;

while(valid && i < int(str.length()))

{

if(!isdigit(str.at(i))) valid = false; //found a non-digit character

i++; // move to next character

}

return valid;

}

536 Completing the Basics

Two sample runs of Program 9.18 produced the following output:

Enter an integer: 12e45

The number you entered is not a valid integer.

and

Enter an integer: -12345

The integer you entered is -12345

As shown by this output, the program successfully determines that an invalid character
was entered in the first run.

A second line of defense is to provide error-processing code in the context of exception-
handling code. This type of code is typically used to permit the user to correct a problem,
such as invalid data entry, by reentering a new value. The means of providing this code in
C++ is referred to as exception handling.

Using exception handling, you can construct a complete means of ensuring that the user
enters an integer number in response to a request for an integer value. The technique
involves extending the isvalidInt() function in Program 9.18 to ensure that not only is
an invalid integer value detected, but also the program gives the user the option of reentering
values until a valid integer is entered. This technique can be applied easily to ensure the
entry of a valid double-precision number, which is the other numerical data type often
requested as user-entered data.

Using the isvalidInt() function from Program 9.18, a more comprehensive function
named getanInt() is developed that uses exception processing to accept user input
continuously until a string corresponding to a valid integer is detected. After a valid string is
entered, the getanInt() function converts the string to an integer and returns the integer
value. This technique ensures that the program requesting an integer actually receives
aninteger and prevents any unwarranted effects, such as a program crash caused by an invalid
data type being entered. The algorithm used to perform this task is as follows:

Set a Boolean variable named notanint to true
while (notanint is true)

try
Accept a string value
If the string value does not correspond to an integer, throw an exception

catch the exception
Display the error message "Invalid integer - Please reenter: "
Send control back to the while statement
Set notanint to false (causes the loop to terminate)

End while
Return the integer corresponding to the entered string

The code corresponding to this algorithm is shaded in Program 9.19.

537Chapter 9
Input Data Validation

Program 9.19

#include <iostream>

#include <string>

using namespace std;

int main()

{

int getanInt(); // function declaration (prototype)

int value;

cout << "Enter an integer value: ";

value = getanInt();

cout << "The integer entered is: " << value << endl;

return 0;

}

int getanInt()

{

bool isvalidInt(string); // function declaration (prototype)

bool notanint = true;

string svalue;

while (notanint)

{

try

{

cin >> svalue; // accept a string input

if (!isvalidInt(svalue)) throw svalue;

}

catch (string e)

{

cout << "Invalid integer - Please reenter: ";

continue; // send control to the while statement

}

notanint = false;

}

return atoi(svalue.c_str()); // convert to an integer

}

�

538 Completing the Basics

Following is a sample output produced by Program 9.19:

Enter an integer value: abc

Invalid integer - Please reenter: 12.

Invalid integer - Please reenter: 12e

Invalid integer - Please reenter: 120

The integer entered is: 120

As this output shows, the getanInt() function works correctly. It requests input
continuously until a valid integer is entered.

bool isvalidInt(string str)

{

int start = 0;

int i;

bool valid = true; // assume a valid

bool sign = false; // assume no sign

// check for an empty string

if (int(str.length()) == 0) valid = false;

// check for a leading sign

if (str.at(0) == '-'|| str.at(0) == '+')

{

sign = true;

start = 1; // start checking for digits after the sign

}

// check that there is at least one character after the sign

if (sign && int(str.length()) == 1) valid = false;

// now check the string, which you know

// has at least one non-sign character

i = start;

while(valid && i < int(str.length()))

{

if(!isdigit(str.at(i))) valid = false; // found a non-digit character

i++; // move to next character

}

return valid;

}

539Chapter 9
Input Data Validation

EXERCISES 9.5

1. (Practice) Write a C++ program that prompts the user to type in an integer. Have your
program use cin to accept the number as an integer and use cout to display the value
your program actually accepted from the data entered. Run your program four times. The
first time you run the program, enter a valid integer number; the second time, enter a
double-precision number; the third time, enter a character; and the fourth time, enter the
value 12e34.

2. (Modify) Modify the program you wrote for Exercise 1, but have your program use a
double-precision variable. Run the program four times: First, enter an integer; second,
enter a decimal number; third, enter a decimal number with an f as the last character
entered; and fourth, enter a character. Using the output display, keep track of what num-
ber your program actually accepted from the data you entered. What happened, if any-
thing, and why?

3. (For Thought) a. Why do you think successful application programs contain extensive
data input validity checks? (Hint: Review Exercises 1 and 2.)

b. What do you think is the difference between a data-type check and a data-
reasonableness check?

c. A program requests that the user enter a month, day, and year. What are some reason-
ableness checks that could be made on the data entered?

4. (Practice) a. Enter and execute Program 9.18.

b. Run Program 9.18 four times, using the data referred to in Exercise 1 for each run.

5. (Modify) Modify Program 9.18 to display any invalid characters that were entered.

6. (Modify) Modify Program 9.18 to request an integer continuously until a valid number is
entered.

7. (Modify) Modify Program 9.18 to remove all leading and trailing spaces from the entered
string before it’s checked for validity.

8. (Useful Utility) Write a function that checks each digit as it’s entered, instead of check-
ing the completed string, as in Program 9.18.

9. (Practice) Enter and execute Program 9.19.

10. (Modify) Modify the isvalidInt() function used in Program 9.19 to remove all lead-
ing and trailing blank spaces from its string argument before determining whether the
string corresponds to a valid integer.

11. (Modify) Modify the isvalidInt() function used in Program 9.19 to accept a string
that ends in a decimal point. For example, the input 12. should be accepted and con-
verted to the integer number 12.

540 Completing the Basics

9.6 A Closer Look: Namespaces and Creating a Personal
Library

Until the introduction of PCs in the early 1980s, with their extensive use of integrated
circuits and microprocessors, computer speed and available memory were severely restricted.
For example, the most advanced computers had speeds measured in milliseconds; current
computers have speeds measured in nanoseconds and higher. Similarly, the memory capacity
of early desktop computers consisted of 4000 bytes of internal memory, but today’s computer
memories are in the 512 MB range and higher.

With these early hardware restrictions, programmers had to use every possible trick to
save memory space and make programs run more efficiently. Almost every program was
hand-crafted and included what was called “clever code” to minimize runtime and maximize
use of memory storage. Unfortunately, this individualized code became a liability. New
programmers had to spend considerable time to understand existing code; even the original
programmer had trouble figuring out code written only months before. This complexity in
code made modifications time consuming and costly and precluded cost-effective reuse of
existing code for new installations.

The inability to reuse code efficiently, combined with expanded hardware capabilities,
prompted the discovery of more efficient programming. This discovery began with structured
programming concepts incorporated into procedural languages, such as Pascal, and led to the
object-oriented techniques that form the basis of C++. An early criticism of C++, however,
was that it didn’t have a comprehensive library of classes, but with the current ANSI/ISO
standard, an extensive C++ library is available.

No matter how many useful classes and functions the standard library provides, however,
each major type of programming application, such as engineering, scientific, and financial, has
its own specialized requirements. For example, the ctime header file in C++ provides good
date and time functions. However, for specialized needs, such as scheduling problems, these
functions must be expanded to include finding the number of working days between two
dates, taking into account weekends and holidays, among other tasks. These functions could
be provided as part of a more complete Date class or as non-class functions.

To meet these specialized needs, programmers create and share their own libraries of
classes and functions with other programmers working on the same or similar projects. After
the classes and functions have been tested, they can be incorporated into any program
without further coding time.

At this stage in your programming career, you can begin building your own library of
specialized functions and classes. Section 9.5 described how to do this with the input validation
functions, isvalidInt() and getanInt(), which are reproduced here for convenience:

bool isvalidInt(string str)
{

int start = 0;
int i;
bool valid = true; // assume a valid
bool sign = false; // assume no sign

// check for an empty string
if (int(str.length()) == 0) valid = false;

�

541Chapter 9
A Closer Look: Namespaces and
Creating a Personal Library

// check for a leading sign
if (str.at(0) == '-'|| str.at(0) == '+')
{

sign = true;
start = 1; // start checking for digits after the sign

}

// check that there is at least one character after the sign
if (sign && int(str.length()) == 1) valid = false;

// now check the string, which you know
// has at least one non-sign character
i = start;
while(valid && i < int(str.length()))
{

if(!isdigit(str.at(i))) valid = false; // found a
// non-digit character

i++; // move to next character
}

return valid;
}
int getanInt()
{

bool isvalidInt(string); // function declaration (prototype)
bool notanint = true;
string svalue;

while (notanint)
{

try
{

cin >> svalue; // accept a string input
if (!isvalidInt(svalue)) throw svalue;

}
catch (string e)
{

cout << "Invalid integer - Please reenter: ";
continue; // send control to the while statement

}
notanint = false;

}
return atoi(svalue.c_str()); // convert to an integer

}

The first step in creating a library is to encapsulate all the specialized functions and
classes into one or more namespaces and then store the complete code (with or without using
a namespace) into one or more files. For example, you can create one namespace,
dataChecks, and save it in the file named dataChecks.cpp. Note that the namespace’s
filename need not be the same as the namespace name used in the code.

The syntax for creating a namespace is the following:

namespace name
{

// functions and/or classes in here
} // end of namespace

542 Completing the Basics

The following code includes the two functions isvalidInt() and getanInt() in the
namespace dataChecks, adds the appropriate include files, and uses a declaration statement
needed by the new namespace. The syntax required to create the namespace has been shaded:

#include <iostream>
#include <string>
using namespace std;

namespace dataChecks
{

bool isvalidInt(string str)
{

int start = 0;
int i;
bool valid = true; // assume a valid
bool sign = false; // assume no sign

// check for an empty string
if (int(str.length()) == 0) valid = false;

// check for a leading sign
if (str.at(0) == '-'|| str.at(0) == '+')
{

sign = true;
start = 1; // start checking for digits after the sign

}

// check that there is at least one character after the sign
if (sign && int(str.length()) == 1) valid = false;

// now check the string, which you know
// has at least one non-sign character
i = start;
while(valid && i < int(str.length()))
{

if(!isdigit(str.at(i))) valid = false; // found a
// non-digit character

i++; // move to next character
}
return valid;

}

int getanInt()
{

bool isvalidInt(string); // function declaration (prototype)
bool notanint = true;
string svalue;

while (notanint)
{

try
{

cin >> svalue; // accept a string input
if (!isvalidInt(svalue)) throw svalue;

}
�

543Chapter 9
A Closer Look: Namespaces and
Creating a Personal Library

catch (string e)
{

cout << "Invalid integer - Please reenter: ";
continue; // send control to the while statement

}
notanint = false;

}
return atoi(svalue.c_str()); // convert to an integer

}
} // end of dataChecks namespace

After the namespace has been created and stored in a file, it can be included in another
file by supplying a preprocessor directive to inform the compiler where the namespace is
found and by including a using directive that tells the compiler which namespace in the file
to use. For the dataChecks namespace, which is stored in a file named dataChecks.
cpp, the following statements perform these tasks:

#include <c:\\mylibrary\\dataChecks.cpp>
using namespace dataChecks;

The first statement provides the full pathname for the source code file. Notice that two
backslashes are used to separate items in pathnames. The double backslashes are required
when providing a relative or full pathname. The only time backslashes aren’t required is
when the library code is in the same directory as the program being executed. As indicated,
the dataChecks source file is saved in the mylibrary folder. The second statement tells
the compiler to use the dataChecks namespace in the designated file. Program 9.20
includes these two statements in an executable program.

The only requirement for the include statement in Program 9.20 is that the filename
and location must correspond to an existing file with the same name in the designated path;

Program 9.20

#include <c:\\mylibrary\\dataChecks.cpp>

using namespace dataChecks;

int main()

{

int value;

cout << "Enter an integer value: ";

value = getanInt();

cout << "The integer entered is: " << value << endl;

return 0;

}

544 Completing the Basics

otherwise, a compiler error occurs. If you want to name the source code file with a file
extension, any extension can be used as long as these rules are followed:

• The filename under which the code is stored includes the extension.
• The same filename, including extension, is used in the include statement.

Therefore, if the filename used to store the functions is dataLib.cpp, the include
statement in Program 9.20 would be the following:

#include <c:\\mylibrary\\dataLib.cpp>

Additionally, a namespace isn’t required in the file. Using a namespace permits you to
isolate the data-checking functions in one area and add more namespaces to the file as
needed. Designating a namespace in the using statement tells the compiler to include only
the code in the specified namespace rather than all code in the file. In Program 9.20, if the
data-checking functions weren’t enclosed in a namespace, the using statement for the
dataChecks namespace would have to be omitted.

Including the previously written and tested data-checking functions in Program 9.20 as
a separate file enables you to focus on the program code using these functions instead of
being concerned with function code that’s already been written and tested. In Program 9.20,
the main() function exercises the data-checking functions and produces the same output as
Program 9.19. In creating the dataChecks namespace, you have included source code for
the two functions. Including this code isn’t required, and a compiled version of the source
code can be saved instead. Finally, additions to a namespace defined in one file can be made
in another file by using the same namespace name in the new file and including a using
statement for the first file’s namespace.

EXERCISES 9.6

1. (Practice) Enter and compile Program 9.20. (Hint: The namespace file dataChecks and
the program file are available with the source code provided on this book’s Web site.)

2. (For Thought) Why would a programmer supply a namespace file in its compiled form
rather than as source code?

3. (For Thought) a. What is an advantage of namespaces?

b. What is a possible disadvantage of namespaces?

4. (For Thought) What types of classes and functions would you include in a personal
library? Why?

5. (Useful Utility) a. Write a C++ function named whole() that returns the integer part
of any number passed to the function. (Hint: Assign the passed argument to an integer
variable.)

b. Include the function written in Exercise 5a in a working program. Make sure your
function is called from main() and correctly returns a value to main(). Have
main() use a cout statement to display the returned value. Test the function by
passing various data to it.

545Chapter 9
A Closer Look: Namespaces and
Creating a Personal Library

c. When you’re confident that the whole() function written for Exercise 5a works cor-
rectly, save it in a namespace and a personal library of your choice.

6. (Useful Utility) a. Write a C++ function named fracpart() that returns the fractional
part of any number passed to the function. For example, if the number 256.879 is passed
to fracpart(), the number .879 should be returned. Have the fracpart() function
call the whole() function you wrote in Exercise 5a. The number returned can then be
determined as the number passed to fracpart() less the returned value when the
same argument is passed to whole().

b. Include the function written in Exercise 6a in a working program. Make sure the
function is called from main() and correctly returns a value to main(). Have
main() use a cout statement to display the returned value. Test the function by
passing various data to it.

c. When you’re confident the fracpart() function written for Exercise 6a works cor-
rectly, save it in the same namespace and personal library selected for Exercise 5c.

9.7 Common Programming Errors

Here are the common errors associated with defining and processing strings:

1. Forgetting to include the string header file when using string class objects.
2. Forgetting that the newline character, '\n', is a valid data input character.
3. Forgetting to convert a string class object by using the c_str() function when

converting string class objects to numerical data types.

9.8 Chapter Summary
1. A string literal is any sequence of characters enclosed in quotation marks. It’s referred to

as a string value, a string constant, and, more conventionally, a string.

2. A string can be constructed as an object of the string class.

3. The string class is commonly used for constructing strings for input and output
purposes, such as for prompts and displayed messages. Because of its capabilities, this
class is used when strings need to be compared or searched or specific characters in a
string need to be examined or extracted as a substring. It’s also used in more advanced
situations when characters in a string need to be replaced, inserted, or deleted regularly.

4. Strings can be manipulated by using the functions of the class they’re objects of or by
using the general-purpose string and character functions.

5. The cin object, by itself, tends to be of limited usefulness for string input because it
terminates input when a blank is encountered.

6. For string class data input, use the getline() function.

7. The cout object can be used to display string class strings.

546 Completing the Basics

Programming Projects for Chapter 9

1. (Practice) Enter the data for the info.txt file in Figure 9.1 or download it from this
book’s Web site. Then enter and execute Program 9.5 and verify that the backup file was
written.

2. (Modify) Modify Program 9.5 to use a getline() function in place of the get()
method currently in the program.

3. (Useful Utility) a. Write a C++ function that accepts a string and two character values.
The function should return the string with each occurrence of the first character replaced
by the second character.

b. Test the function written for Exercise 3a by writing a program that accepts a string from
the user, calls the function written for Exercise 3a to replace all occurrences of the letter
e with the letter x from the user-entered string, and then displays the changed string.

4. (Useful Utility) Modify the function written for Exercise 3a to search for the first
occurrence of a user-entered sequence of characters, and then replace this sequence,
when it’s found in the string, with a second user-entered sequence. For example, if the
entered string is Figure 4-4 illustrates the output of Program 4-2 and
the user enters that 4- is to be replaced by 3-, the resulting string is Figure 3-4
illustrates the output of Program 4-2. (Only the first occurrence of the
searched for sequence has been changed.)

5. (Useful Utility) Modify the program written for Exercise 4 to replace all occurrences of
the designated sequence of characters with the new sequence of characters. For example,
if the entered string is Figure 4-4 illustrates the output of Program 4-2
and the user enters that 4- is to be replaced by 3-, the resulting string is Figure 3-4
illustrates the output of Program 3-2.

6. (Data Processing) a. Write a C++ program that stops reading a line of text when a
period is entered and displays the sentence with correct spacing and capitalization. For
this program, correct spacing means only one space between words, and all letters should
be lowercase, except the first letter. For example, if the user enters the text i am going
to Go TO THe moVies., the displayed sentence should be I am going to go to
the movies.

b. Determine what characters, if any, aren’t displayed correctly by the program you
created for Exercise 6a.

7. (Data Processing) Write a C++ program that accepts a name as first name followed by
last name, and then displays the name as last name, first name. For example, if the user
enters Gary Bronson, the output should be Bronson, Gary.

8. (Data Processing) Modify the program written for Exercise 7 to include an array of
five names.

547Chapter 9
Programming Projects

9. (Useful Utility) a. Write a C++ function named isvalidReal() that checks for a
valid double-precision number. This kind of number can have an optional + or - sign, at
most one decimal point (which can be the first character), and at least one digit between
0 and 9. The function should return a Boolean value of true if the entered number is
a real number; otherwise, it should return a Boolean value of false.

b. Modify the isvalidReal() function written for Exercise 9a to remove all leading
and trailing blank spaces from its string argument before determining whether the
string corresponds to a valid real number.

10. (Useful Utility) Write and execute a C++ function named getareal() that uses
exception handling to accept an input string continuously until a string that can be
converted to a real number is entered. The function should return a double value
corresponding to the string value the user enters.

548 Completing the Basics

Engineering and Scientific Disciplines

Materials Science and Metallurgical Engineering
Advances in many areas of engineering have been made possible by discoveries of new
materials and a better understanding of the properties of existing materials. Knowledge
of the physical and chemical principles determining the electrical properties of exotic
materials called semiconductors have resulted in fantastic progress in the field of solid-
state devices, from transistors to integrated-circuit chips to large computers. Better
understanding of the origins of metallic properties, such as hardness, strength, ductility,
corrosiveness, and others, have led to improved design of automobiles, aircraft, space-
craft, and all types of machinery. The field is generally subdivided into metals and non-
metals, although interests and activities often overlap considerably.

Materials Science
Materials science concerns the behavior and properties of materials (metals and nonmetals)
from both microscopic and macroscopic perspectives. It includes the following areas:

� Ceramics: Noncrystalline materials, such as glass, that are nonmetallic and require
high temperatures in processing. Ceramics can be made brittle or flexible, hard or
soft, or stronger than steel. They can be made to have a variety of chemical
properties.

� Polymers: Structural and physical properties of organic, inorganic, and natural
polymers that are useful in engineering applications.

� Materials fabrication, processing, and treatment: All aspects of manufacturing
ceramics, metals, and polymer synthesis, from the growth of crystals and fibers to
metal forming.

� Corrosion: The reaction mechanism and thermodynamics of metal corrosion in the
atmosphere or submerged under water or chemicals, whether standing or under
stress.

� Stress-strain and fatigue-fracture of engineering materials: Physical properties
governing deformation and fracture of materials and their improvement and use
in construction and design.

Metallurgical Engineering

Metallurgical engineering is the branch of engineering responsible for production of
metals and metal alloys, from discovering ore deposits to fabricating refined metal into
useful products. Metallurgical engineers are important in every step of producing metal
from metal ore. Metallurgical engineering includes the following areas:

� Mining engineering: Usually a separate branch of engineering, but the concerns
of mining engineers and metallurgists often overlap in the processes of extracting
metals from metal ores and refining them into usable products. Extraction
metallurgy makes use of physical and chemical reactions to optimize metal
production.

� Metals fabrication: Forming metal into products such as cans, wires, and tubes as
well as casting and joining metals—for example, by welding.

� Physical metallurgy: Analysis of stress-strain and fatigue-fracture characteristics of
metals and metal alloys to prevent engineering component failures.

549Chapter 9
Programming Projects

This page intentionally left blank

Part Two
Object-Oriented
Programming

10 Introduction to
Classes

11 Class Functions and
Conversions

This page intentionally left blank

Chapter 10
Introduction to
Classes

10.1 Abstract Data Types in C++
(Classes)

10.2 Constructors

10.3 A Case Study: Constructing
a Room Object

10.4 A Closer look: Object
Identification and the Unified
Modeling Language (UML)

10.5 Common Programming Errors

10.6 Chapter Summary

Besides being an improved version of C, the distinguishing characteristic of C++ is its support of
object-oriented programming. Central to this object orientation is the concept of an abstract data type,
which is a programmer-defined data type. This chapter explores the implications of permitting
programmers to define their own data types and then explains C++’s mechanism for constructing them.
As you’ll see, the construction of a data type is based on variables and functions; variables provide the
means for creating new data structures, and functions provide the means for performing operations on
these structures. What C++ provides is a unique way of combining variables and functions into a
self-contained, cohesive unit from which objects can be created.

10.1 Abstract Data Types in C++ (Classes)

A procedural program consists of one or more algorithms that have been written in a
computer-readable language. This type of program, as you have seen in Part One of this
book, is especially useful for solving engineering and scientific problems, in which inputs

must be processed to produce outputs by using clearly defined steps. In these applications,
data is typically entered as character data from a keyboard, and then displayed as character
data on a printer or screen. Input and display of program output have always taken a back seat
to processing, with a clear emphasis on the formulas and calculations being used.

With the emergence of graphical screens on computer desktops and laptops in the 1980s
and 1990s, and the subsequent interest in multicolored, windowed systems, this emphasis has
shifted to a more balanced approach between input, output, and processing. Unfortunately,
providing a graphical user interface (GUI) is a challenge with procedural code, even an
interface that requires only a single window. Programming multiple and overlapping windows
increases the complexity enormously when pure procedural code is used.

Unlike a procedural approach, an object-oriented approach fits graphically windowed
environments well. Each window can be constructed as a self-contained rectangular object
that can be moved and resized in relation to other objects on screen, and other visual objects,
such as check boxes, option buttons, labels, and text boxes, can be placed and moved easily.

Central to the creation of objects is the concept of an abstract data type, which is simply
a user-defined data type, as opposed to the built-in data types provided by all languages (such
as integer and floating-point types). Permitting a programmer to define new data types, such
as a rectangular type, out of which specific rectangular objects can be created and displayed
on screen, forms the basis of C++’s object orientation.

Point of Information

Procedural, Hybrid, and Pure Object-Oriented Languages
Most high-level programming languages can be categorized as procedural, object-
oriented, or hybrid. FORTRAN, the first commercial high-level programming language, is
procedural. This makes sense because FORTRAN was designed to perform mathematical
calculations that use standard algebraic formulas. These formulas were described as
algorithms, and then the algorithms were coded by using function and subroutine
procedures. Subsequent procedural languages included BASIC, COBOL, and Pascal.

Currently, there are only two pure object-oriented languages: Smalltalk and Eiffel.
The first requirement of a pure object-oriented language is that it must contain three
specific features: classes, inheritance, and polymorphism (described in this chapter and
Chapter 11). In addition, however, a “pure” object-oriented language must, as a mini-
mum, always use classes. In a pure object-oriented language, all data types are con-
structed as classes, all data values are objects, all operators can be overloaded, and
every data operation can be executed only by using a class member function. In a pure
object-oriented language, it’s impossible not to use object-oriented features in a
program. This isn’t the case in a hybrid language.

In a hybrid language, such as C++, it’s impossible not to use procedural elements
in programs because the use of any built-in data type or operation violates the pure
object-oriented requirements. Although a hybrid language must be able to define
classes, its distinguishing feature is that it’s possible to write a complete program with
only procedural code. Additionally, hybrid languages need not provide inheritance and
polymorphism—but they must provide classes. Languages that use classes but don’t
provide inheritance and polymorphism are referred to as object-based languages rather
than object-oriented languages.

554 Introduction to Classes

Abstract Data Types
To gain a clear understanding of what an abstract data type is, take another look at the four
built-in data types in C++: integers, doubles, Boolean, and characters. In using these data
types, typically you declare one or more variables of the desired type, use them in their
accepted ways, and avoid using them in ways that aren’t specified. For example, you wouldn’t
use the modulus operator on two double-precision numbers. Because this operation makes no
sense for double-precision numbers, it’s never defined, in any programming language, for
these numbers. Therefore, each data type consists of both a type of data, such as integer or
double, and specific operational capabilities.

In computer terminology, the combination of data and associated operations is defined as
a data type. That is, a data type defines both the types of data and the types of operations that
can be performed on the data. Seen in this light, the integer data type, the double-precision
data type, and the character data type provided in C++ are all examples of built-in data types
defined by a type of data and specific operational capabilities for initializing and manipu-
lating the type. In a simplified form, this relationship can be described as follows:

Data Type = Allowable Data Values + Operational Capabilities

Therefore, the operations you have been using in C++ are an inherent part of each data
type you have been using. For each of these data types, C++ designers had to carefully
consider and then implement specific operations.

To understand the importance of the operational capabilities a programming language
provides, take a moment to review a list of some capabilities supplied with C++’s built-in data
types (int, double, bool, and char). Table 10.1 lists the minimum set of these
capabilities.1

Table 10.1 C++ Built-In Data Type Capabilities

Capability Example
Define one or more variables of the data type int a, b;
Initialize a variable at definition int a = 5;
Assign a value to a variable a = 10;
Assign one variable’s value to another variable a = b;
Perform mathematical operations a + b
Perform relational operations a > b
Convert from one data type to another a = int (7.2);

Now see how all this information relates to abstract data types (ADTs). By definition, an
abstract data type is simply a user-defined type that defines both a type of data and the
operations that can be performed on it. User-defined data types are required when you want
to create objects that are more complex than simple integers and characters. To create your
own data types, you must be aware of both the type of data you’re creating and the
capabilities you provide to initialize and manipulate the data.

As a specific example, say you’re programming an application that uses dates extensively.
Clearly, from a data standpoint, a date must be capable of accessing and storing a month, day,
and year designation. From an implementation standpoint, there are several means of storing

1You might notice the absence of reading and writing operations. In both C and C++, except for primitive operations, input and output are
provided by standard library routines and class functions.

555Chapter 10
Abstract Data Types in C++ (Classes)

a date, but from a user viewpoint, the implementation isn’t relevant. For example, a date can
be stored as three integers, one each for the month, day, and year. Alternatively, a single long
integer in the form yyyymmdd can be used, so the date 5/16/08 is stored as the integer
20080516. For sorting dates, the long integer format is attractive because the numerical
sequence of dates corresponds to their calendar sequence.

The method of structuring the date internally supplies only a partial answer to your
programming effort, unfortunately. You must still supply a set of operations that can be used
with dates. These operations could include assigning values to a date, subtracting two dates
to determine the number of days between them, comparing two dates to determine which is
earlier and which is later, and displaying a date in a form such as 12/03/06 rather than 12/3/6.

Notice that the details of how each operation works depend on how you choose to store
a date (called its data structure) and are of interest to you only as you develop each operation.
For example, the implementation of comparing two dates differs if you store a date as a single
long integer instead using separate integers for the month, day, and year.

The combination of the data structure used for dates with a set of available operations
appropriate for dates would then define an abstract Date data type. After this data type is
developed, programmers who want to use it don’t need to be concerned with how dates are
stored or how operations are performed. All they need to know is what each operation does
and how to invoke it, much as they use C++’s built-in operations. For example, you don’t
really care how the addition of two integers is performed—only that it’s done correctly.

In C++, an abstract data type is referred to as a class. Construction of a class is easy, and
you already have all the necessary tools in variables and functions. What C++ provides is a
mechanism for packaging these two items together in a self-contained unit. Next, you see
how this is done.

Class Construction
A class defines both data and functions. This definition is usually accomplished by
constructing a class in two parts: a declaration section and an implementation section. As
shown in the following code example, the declaration section declares both the data types and
functions for the class. The implementation section then defines the functions whose
prototypes have been declared in the declaration section.2

// class declaration section
class className
{

data members // the variables
function members // prototypes

};
// class implementation section
function definitions

Both the variables and functions listed in the class declaration section are collectively
referred to as class members. Separately, the variables are referred to as both data members and
instance variables (the terms are synonymous), and the functions are referred to as member
functions. A member function name can’t be the same as a data member name. (When a function
is part of a class, it’s formally referred to as a method to denote class membership. By convention,
however, the terms “class method” and “class function” are used interchangeably in C++.)

2This separation into two parts isn’t mandatory, as the implementation can be included in the declaration statement (described at the end of
Section 10.2).

556 Introduction to Classes

As a specific example of a class, take a look at the following definition of a class named
Date. This type of class is important in applications where equipment delivery dates and
schedules depend on exact date determinations. To accomplish this task, a number of
functions for determining whether a date falls on a weekend or holiday, for example, would
still have to be added to this class.

//--- class declaration section
class Date
{

private: // notice the colon after the word private
int month; // a data member
int day; // a data member
int year; // a data member

public: // again, notice the colon here
Date(int = 7, int = 4, int = 2005); // a member function -

// the constructor
void setDate(int, int, int); // a member function
void showDate(); // a member function

}; // this is a declaration - don't forget the semicolon
//--- class implementation section
Date::Date(int mm, int dd, int yyyy)
{

month = mm;
day = dd;
year = yyyy;

}
void Date::setDate(int mm, int dd, int yyyy)
{

month = mm; day = dd; year = yyyy;
return;

}
void Date::showDate()
{

cout << "The date is ";
cout << setfill('0')

<< setw(2) << month << '/'
<< setw(2) << day << '/'
<< setw(2) << year % 100; // extract the last 2 year digits

cout << endl;
return;

}

Because this definition might look overwhelming, first notice that it does consist of two
sections—a declaration section and an implementation section. The declaration section
begins with the keyword class followed by a class name. Following the class name are the

557Chapter 10
Abstract Data Types in C++ (Classes)

class’s variable declarations and function prototypes, enclosed in a brace pair terminated with
a semicolon. The general structure of this form is as follows:3

class Name
{

private:
a list of variable declarations

public:
a list of function prototypes

};

Notice that the Date class follows this format. For convenience, it’s listed again with no
internal comments:

//--- class declaration section
class Date
{

private:
int month;
int day;
int year;

public:
Date(int = 7, int = 4, int = 2005);
void setDate(int, int, int);
void showDate();

};

The name of this class is Date. Although the initial uppercase letter isn’t required, it’s
used by convention to designate a class. The body of the declaration section, enclosed in
braces, consists of variable and function declarations. In this case, the data members month,
day, and year are declared as integers, and three functions named Date(), setDate(),
and showDate() are declared via prototypes. The keywords private and public are
access specifiers that define access rights. The private keyword specifies that the class
members following it—in this case, month, day, and year—can be accessed only by using
the class functions (or friend functions, as discussed in Section 10.2).4 The private
designation is meant to enforce data security by requiring all access to private data members
through the provided member functions. This type of access, which restricts a user from
seeing how data is actually stored, is referred to as data hiding. After a class category such as
private is designated, it remains in force until a new category is listed.

In this Date class, a date is stored by using three integers for the month, day, and year. In
addition, the year is always stored as a four-digit number. For example, the year 1998 is stored
as 1998, not as 98. Making sure to store all years with their century designation eliminates a
multitude of problems that can crop up if only the last two digits are stored. For example, the
number of years between 2006 and 1999 can be calculated quickly as 2006 - 1999 = 7 years, but
getting this same answer isn’t as easy with the year values 06 and 99. Additionally, with four
digits, it’s clear what the year 2006 refers to, but a two-digit value, such as 06, could refer to either
1906 or 2006.

Following the private class data members, the function prototypes listed in the Date class
have been declared as public. This means these class functions can be called by any objects

3Other forms are possible. However, this form is commonly used and easy to understand, so it serves as the standard model in this book.
4Note that the default membership category in a class is private, which means this keyword can be omitted. In this book, the private
designation is used to reinforce the idea of access restrictions in class memberships.

558 Introduction to Classes

and functions not in the class (from outside the class, in other words). In general, all class
functions should be public so that they provide capabilities to manipulate class variables from
outside the class.

The Date class provides three functions named Date(), setDate(), and showDate().
Notice that one of these member functions has the same name, Date, as the class name. This
function is referred to as a constructor function, and it has a special purpose: It can be used to
initialize class data members with values. The default values used for this function are the
numbers 7, 4, and 2001, which, as you see shortly, are used as the default month, day, and year
values. Note that the default year is represented as a four-digit integer to retain the century
designation. Also, notice that the constructor function has no return type, which is a requirement
for this special function. The two remaining functions declared in the Date class, setDate()
and showDate(), have been declared as returning no value (void). (It’s in the implementation
section that these three member functions are written to permit the initialization, assignment,
and display capabilities implied by their names.)

The implementation section is where the member functions declared in the declaration
section are written.5 The following example shows the general form of functions written in
the implementation section. This format is correct for all functions except the constructor,
which, as stated previously, has no return type:

returnType className::functionName(parameter list)
{

function body
}

As this example shows, member functions defined in the implementation section have the
same format as all user-written C++ functions, with the addition of the class name and scope
resolution operator, ::, that identifies the function as a member of a particular class. Now take
another look at the implementation section of the Date class, which is repeated for convenience:

//--- class implementation section
Date::Date(int mm, int dd, int yyyy)
{

month = mm;
day = dd;
year = yyyy;

}
void Date::setDate(int mm, int dd, int yyyy)
{

month = mm;
day = dd;
year = yyyy;
return;

}
void Date::showDate()
{

cout << "The Date is ";
cout << setfill('0')

<< setw(2) << month << '/'
<< setw(2) << day << '/'
<< setw(2) << year % 100; // extract the last 2 year digits

cout << endl;
return;

}

5You can also define these functions in the declaration section by declaring and writing them as inline functions. Section 10.2 includes examples
of inline member functions.

559Chapter 10
Abstract Data Types in C++ (Classes)

Notice that the first function in this implementation section has the same name as the
class, which makes it a constructor function. Therefore, it has no return type. The Date::
at the beginning of the function header identifies this function as a member of the Date
class. The rest of the function header

Date(int mm, int dd, int yyyy)

defines the function as having three integer parameters. The body of this function simply
assigns the data members month, day, and year with the values of the parameters mm, dd,
and yyyy.

The next function header

void Date::setDate(int mm, int dd, int yyyy)

defines the setDate() function as belonging to the Date class (Date::). This function
returns no value (void) and expects three integer parameters: mm, dd, and yyyy. In a
manner similar to the Date() function, the body of this function assigns the data members
month, day, and year with the values of its parameters.

Finally, the last function header in the implementation section

void Date::showDate()

defines a function named showDate(). This function has no parameters, returns no value,
and is a member of the Date class. The body of this function, however, needs a little more
explanation.

Although all years have been stored as four-digit values to retain century information,
users are accustomed to seeing dates with the year represented as a two-digit value, such as
12/15/99. To display the last two digits of the year value, the expression year % 100 can
be used. For example, if the year is 1999, the expression 1999 % 100 yields the value 99,
and if the year is 2006, the expression 2006 % 100 yields the value 6.

If you had used an assignment such as year = year % 100;, however, you would
actually be altering the stored value of year to correspond to the last two digits of the year.
Because you want to retain the year as a four-digit number, you must be careful to manipulate
only the displayed value by using the expression year % 100 in the cout statement. The
setfill and setw manipulators are used to make sure the displayed values correspond to
conventionally accepted dates. For example, the date March 9, 2006, should appear as 3/9/06
or 03/09/06. The setw manipulator forces each value to be displayed in a field width of 2.
Because this manipulator remains in effect only for the next insertion, it’s used before the
display of each date value. As the setfill manipulator, however, remains in effect until the
fill character is changed, it must be included only once. The setfill manipulator has been
used to change the fill character from the default of a blank space to the character 0. Doing
this ensures that a date such as December 9, 2006 appears as 12/09/06, not as 12/ 9/ 6.

To see how the Date class can be used in the context of a complete program, take a look
at Program 10.1. To make the program easier to read, the shaded area contains the class
declaration and implementation sections. The unshaded area contains the header and
main() function. This shading convention is used in the remainder of the book for all
programs using classes.6

6This shading isn’t accidental. In practice, the shaded area containing the class definition is placed in a separate file. A single #include
statement is then used to include this class declaration in the program. The final program would consist of the shaded and unshaded areas in
Program 10.1 with the addition of another #include statement in the unshaded area.

560 Introduction to Classes

Program 10.1

#include <iostream>

#include <iomanip>

using namespace std;

// class declaration section

class Date

{

private:

int month;

int day;

int year;

public:

Date(int = 7, int = 4, int = 2005); // constructor

void setDate(int, int, int); // member function to copy a date

void showDate(); // member function to display a date

};

// class implementation section

Date::Date(int mm, int dd, int yyyy)

{

month = mm;

day = dd;

year = yyyy;

}

void Date::setDate(int mm, int dd, int yyyy)

{

month = mm;

day = dd;

year = yyyy;

return;

}

void Date::showDate()

{

cout << "The date is ";

cout << setfill('0')

<< setw(2) << month << '/'

<< setw(2) << day << '/'

<< setw(2) << year % 100; // extract the last 2 year digits

cout << endl;

return;

}

�

561Chapter 10
Abstract Data Types in C++ (Classes)

The declaration and implementation sections in the shaded area of Program 10.1 should
look familiar. Notice, however, that this area only declares the class; it doesn’t create any
variables of this class type. This is true of all C++ types, including the built-in types, such
as integers and doubles. Just as a variable of an integer type must be defined, variables of a
user-declared class must also be defined. Variables defined to be of a user-declared class are
referred to as objects.

Using this new terminology, the first statement in the Program 10.1 main() function
defines three objects—named a, b, and c—to be of the class type Date. In C++, when a new
object is defined, memory is allocated for the object, and its data members are initialized
automatically by a call to the class constructor function. For example, consider the definition
Date a, b, c(4,1,2000); in main(). When the object named a is defined, the
constructor function Date() is called automatically. Because no parameters have been
assigned to a, the default values of the constructor function are used, resulting in this
initialization:

a.month = 7
a.day = 4
a.year = 2005

Notice the notation used here: an object name and an attribute name separated by a
period. This is the standard syntax for referring to an object’s attribute:

objectName.attributeName

The objectName is the name of a specific object, and attributeName is the name
of a data member defined for the object’s class. Therefore, the notation a.month = 7
indicates that object a’s month data member has been set to the value 7. Similarly, the
notations a.day = 4 and a.year = 2005 indicate that a’s day and year data members
have been set to the values 4 and 2005.

In the same manner, when the object named b is defined, the same default parameters
are used, resulting in the initialization of b’s data members as follows:

b.month = 7
b.day = 4
b.year = 2005

int main()

{

Date a, b, c(4,1,2000); // declare 3 objects

b.setDate(12,25,2006); // assign values to b's data members

a.showDate(); // display object a's values

b.showDate(); // display object b's values

c.showDate(); // display object c's values

return 0;

}

562 Introduction to Classes

The object named c, however, is defined with the arguments 4, 1, and 2000. These three
arguments are passed to the constructor function when the object is defined, resulting in the
following initialization of c’s data members:

c.month = 4
c.day = 1
c.year = 2000

The next statement in main(), b.setDate(12,25,2006), calls b’s setDate()
function, which assigns the argument values 12, 25, and 2006 to b’s data members, resulting
in this assignment:

b.month = 12
b.day = 25
b.year = 2006

Notice the syntax for referring to an object’s method:

objectName.methodName(parameters)

The objectName is the name of a specific object, and methodName is the name of a
function defined for the object’s class. Because all class functions have been defined as public,
a statement such as b.setDate(12,25,2006) is valid inside the main() function and is
a call to the class’s setDate() function. This statement tells the setDate() function to
operate on the b object with the arguments 12, 25, and 2006. It’s important to understand that
because all class data members were specified as private, a statement such as b.month = 12
would be invalid inside main(). Therefore, you’re forced to rely on member functions to
access data member values.

The last three statements in main() call the showDate() function to operate on the
a, b, and c objects. The first call results in the display of a’s data values, the second call in
the display of b’s data values, and the third call in the display of c’s data values. Therefore,
the output of Program 10.1 is the following:

The date is 07/04/05

The date is 12/25/06

The date is 04/01/00

Notice that a statement such as cout << a; is invalid inside main() because cout
doesn’t know how to handle an object of class Date. Therefore, the Date class is supplied
with a function that can be used to access and display an object’s internal values.

Terminology
As there’s sometimes confusion about the terms classes, objects, and other object-oriented
programming terminology, taking a moment to clarify and review the terminology is helpful.

563Chapter 10
Abstract Data Types in C++ (Classes)

A class is a programmer-defined data type from which objects can be created. Objects are
created from classes; they have the same relationship to classes as variables do to C++’s
built-in data types. For example, in the declaration

int a;

a is said to be a variable, and in the Program 10.1 declaration

Date a;

a is said to be an object. If it helps you to think of an object as a variable, do so.
Objects are also referred to as instances of a class, and the process of creating a new object

is often referred to as an instantiation of the object. Each time a new object is instantiated
(created), a new set of data members belonging to the object is created.7 The values
contained in these data members determine the object’s state.

Seen in this way, a class can be thought of as a blueprint for creating particular instances
(objects). Each instance (object) of a class has its own set of values for the set of data
members specified in the class declaration section.

In addition to the data types allowed for an object, a class also defines behavior—that is,
the operations permitted to be performed on an object’s data members. Users of the object
need to know what these functions can do and how to activate them through function calls,
but unless runtime or space implications are relevant, they don’t need to know how the
operation is done. The actual implementation details of an object’s operations are in the class
implementation, which can (and should) be hidden from the user. Other names for the
operations defined in a class implementation section are procedures, functions, services, and
methods. These terms are used interchangeably throughout the remainder of the book.

7Note that only one set of class functions is created. These functions are shared between objects.

Point of Information

Interfaces, Implementations, and Information Hiding
The terms “interface” and “implementation” are used extensively in object-oriented
programming literature and can be equated to specific parts of a class’s declaration and
implementation sections.

An interface consists of a class’s public member function declarations and any
supporting comments. The implementation consists of both the class implementation
section (containing private and public member definitions) and the class’s private data
members, which are defined in the class declaration section.

The implementation is the means of providing data hiding, which generally refers
to the principal that how a class is constructed internally isn’t relevant to programmers
who want to use the class. The implementation can and should be hidden from all
class users to ensure that the class isn’t altered or compromised in any way. All that a
programmer needs to know to use a class correctly should be provided by the
interface.

564 Introduction to Classes

EXERCISES 10.1

1. (For Review) Define the following terms:
a. Class

b. Object

c. Declaration section

d. Implementation section

e. Instance variable

f. Member function

g. Data member

h. Constructor

i. Class instance

j. Services

k. Methods

l. Interface

m. State

n. Behavior

2. (For Thought) a. Instead of specifying a rectangle’s location by listing the position of
two diagonal corner points, what other attributes could be used?

b. What other attributes, besides length and width, could be used to describe a rectangle
to be drawn on a color monitor?

c. Describe a set of attributes that could be used to define circles to be drawn on a
black-and-white monitor.

d. What attributes would you add to those selected in Exercise 2c if the circles are to be
drawn on a color monitor?

3. (Practice) a. The attributes of a class represent how objects of the class appear to the
outside world. The behavior represents how an object of a class reacts to an external
stimulus. Given this, what do you think is the mechanism by which one object “triggers”
the designated behavior in another object?

b. If behavior in C++ is constructed by defining an appropriate function, how do you
think the behavior is activated in C++?

4. (Practice) Write a class declaration section for each of the following specifications. In
each case, include a prototype for a constructor and a member function named
showdata() that can be used to display data member values.
a. A class named Time that has integer data members named secs, mins, and hours

b. A class named Complex that has double-precision data members named real and
imaginary

c. A class named Circle that has integer data members named xcenter and
ycenter and a double-precision data member named radius

d. A class named System that has character data members named computer, printer,
and screen, each capable of holding 30 characters (including the end-of-string NULL),
and double-precision data members named compPrice, printPrice, and scrnPrice

565Chapter 10
Abstract Data Types in C++ (Classes)

5. (Practice) a. Construct a class implementation section for the constructor and showdata()
member functions corresponding to the class declaration created for Exercise 4a.

b. Construct a class implementation section for the constructor and showdata() func-
tion members corresponding to the class declaration created for Exercise 4b.

c. Construct a class implementation section for the constructor and showdata() func-
tion members corresponding to the class declaration created for Exercise 4c.

d. Construct a class implementation section for the constructor and showdata() func-
tion members corresponding to the class declaration created for Exercise 4d.

6. (Program) a. Include the class declaration and implementation sections prepared for
Exercises 4a and 5a in a complete working program.

b. Include the class declaration and implementation sections prepared for Exercises 4b
and 5b in a complete working program.

c. Include the class declaration and implementation sections prepared for Exercises 4c
and 5c in a complete working program.

d. Include the class declaration and implementation sections prepared for Exercises 4d
and 5d in a complete working program.

7. (Debug) Determine the errors in the following class declaration section:

class employee
{
public:

int empnum;
char code;

private:
class(int = 0);
void showemp(int, char);

};

8. (General Math) a. Construct a class named Rectangle that has double-precision data
members named length and width. The class should have member functions named
perimeter() and area() to calculate a rectangle’s perimeter and area, a member
function named setdata() to set a rectangle’s length and width, and a member func-
tion named showdata() that displays a rectangle’s length, width, perimeter, and area.

b. Include the Rectangle class constructed in Exercise 8a in a working C++ program.

9. (Modify) a. Modify the Date class defined in Program 10.1 to include a nextDay()
function that increments a date by one day. Test your function to ensure that it incre-
ments days into a new month and into a new year correctly.

b. Modify the Date class defined in Program 10.1 to include a priorDay() function
that decrements a date by one day. Test your function to ensure that it decrements
days into a prior month and into a prior year correctly.

566 Introduction to Classes

10. (Modify) Modify the Date class in Program 10.1 to contain a method that compares two
Date objects and returns the larger of the two. The method should be written according
to the following algorithm:

Comparison function
Accept two Date values as parameters
Determine the later date by using the following procedure:

Convert each date into an integer value having the form yyyymmdd
This can be accomplished by using the formula year * 100000 + month * 100 + day
Compare the corresponding integers for each date
The larger integer corresponds to the later date

Return the later date

11. (Modify) a. Add a member function to Program 10.1’s class definition that determines
the day of the week for any Date object. An algorithm for determining the day of the
week, known as Zeller’s algorithm, is the following:

For dates in the form of mm/dd/ccyy, mm is the month, dd is the day, cc is the century, and
yy is the year in the century. For example, with 12/28/2006, mm = 12, dd = 28, cc = 20,
and yy = 06.

If mm is less than 3
Set mm = mm + 12 and ccyy = ccyy - 1

Endif
Set cc = int(ccyy/100)
Set yy = ccyy % 100
Set the variable T = dd + int(26 * (mm + 1)/10) + yy + int(yy/4) - 2 * cc
dayOfWeek = T % 7
If dayOfWeek is less than 0

dayOfWeek = dayOfWeek + 7
Endif
Using this algorithm, dayOfWeek has a value of 0 if the date is a Saturday, 1 if it’s a
Sunday, and so forth.

b. Include the class definition constructed for Exercise 11a in a complete C++ program.
The main() function should display the name of the day (Sun, Mon, Tue, and so on)
for the Date object being tested.

10.2 Constructors

A constructor function is any function with the same name as its class. Multiple constructors
can be defined for each class, as long as they can be distinguished by the number and types
of their parameters.

A constructor’s intended purpose is to initialize a new object’s data members. Depending
on the number and types of supplied arguments, one constructor function is called
automatically each time an object is created. If no constructor function is written, the
compiler supplies a default constructor. In addition to its initialization role, a constructor
function can perform other tasks when it’s called and be written in a variety of ways. This
section explains possible variations of constructor functions and introduces another function,
the destructor, which is called automatically whenever an object goes out of existence.

567Chapter 10
Constructors

The following code example shows the general format of a constructor:

className::className(parameter list)
{

// function body
}

As this format shows, a constructor must have the following:

• The same name as the class to which it belongs
• No return type (not even void)

If you don’t include a constructor in your class definition, the compiler supplies a
do-nothing default one for you. For example, examine the following class declaration:

class Date
{

private:
int month, day, year;

public:
void setDate(int, int, int);
void showDate(void);

};

Because no user-defined constructor has been declared, the compiler creates a default
constructor. For the Date class, this default constructor is equivalent to Date::
Date(void){}—that is, the compiler-supplied default constructor expects no parameters
and has an empty body. Clearly, this default constructor isn’t very useful, but it does exist if
no other constructor is declared.

Point of Information

Constructors
A constructor is any function with the same name as its class. Its main purpose is to
initialize an object’s member variables when an object is created, so a constructor is
called automatically when an object is declared.

A class can have multiple constructors if each constructor can be distinguished by
having a different formal parameter list. A compiler error results when unique identifi-
cation of a constructor isn’t possible. If no constructor is provided, the compiler sup-
plies a do-nothing default constructor.

Every constructor function must be declared with no return type (not even void).
Because they are functions, constructors can also be called in nondeclarative statements.
When used in this manner, the function call requires parentheses following the constructor
name, even if no parameters are used. However, when used in a declaration, parentheses
must not be included for a constructor. For example, the declaration Date a(); is
incorrect. The correct declaration is Date a;. When parameters are used, however, they
must be enclosed in parentheses in both declarative and nondeclarative statements. Default
parameter values should be included in the constructor’s prototype.

568 Introduction to Classes

The term default constructor is used often in C++ and refers to any constructor that doesn’t
require arguments when it’s called. The reason it doesn’t require arguments is that no
arguments are declared, as with the compiler-supplied default, or all arguments have been
given default values. For example, Date(int mm = 7, int dd = 4, int yyyy = 2005)
is a valid prototype for a default constructor. Each argument has been given a default value, and
an object can be declared as type Date without supplying any further arguments. Using this
default constructor, the declaration Date a; initializes the a object with the default values 7,
4, and 2005.

To verify that a constructor function is called automatically when a new object is created,
examine Program 10.2. Notice that in the implementation section, the constructor function
uses cout to display the message Created a new date object with data values.
Therefore, whenever the constructor is called, this message is displayed. Because the
main() function creates three objects, the constructor is called three times, and the message
is displayed three times.

Program 10.2

#include <iostream>

using namespace std;

// class declaration section

class Date

{

private:

int month;

int day;

int year;

public:

Date(int = 7, int = 4, int = 2005); // constructor

};

// class implementation section

Date::Date(int mm, int dd, int yyyy)

{

month = mm;

day = dd;

year = yyyy;

cout << "Created a new date object with data values "

<< month << ", " << day << ", " << year << endl;

}

int main()

{

Date a; // declare an object

Date b; // declare an object

Date c(4,1,2006); // declare an object

return 0;

}

569Chapter 10
Constructors

The following output is produced when Program 10.2 runs:

Created a new date object with data values 7, 4, 2005

Created a new date object with data values 7, 4, 2005

Created a new date object with data values 4, 1, 2006

Although any legitimate C++ statement can be used in a constructor function, such as the
cout statement in Program 10.2, it’s best to keep constructors simple and use them only for
initializing purposes. One further point needs to be made about the constructor function in
Program 10.2. According to C++ rules, object members are initialized in the order they are
declared in the class declaration section, not in the order they might appear in the function’s
definition in the implementation section. Usually, this order isn’t an issue, unless one data
member is initialized by using another data member’s value.

Calling Constructors
As you have seen, constructors are called whenever an object is created. The actual
declaration, however, can be made in a variety of ways. For example, the declaration

Date c(4,1,2006);

used in Program 10.2 could also have been written as

Date c = Date(4,1,2006);

This second form declares c as being of type Date and then makes a direct call to the
constructor function with the arguments 4, 1, and 2006. This second form can be simplified
when only one argument is passed to the constructor. For example, if only the month data
member of the c object needs to be initialized with the value 8 and the day and year
members can use the default values, the object can be created by using this declaration:

Date c = 8;

Because the form using an equal sign resembles declarations in C, it’s referred to as the
C style of initialization. The declaration form in Program 10.2, referred to as the C++ style of
initialization, is the form used predominantly in the remainder of this book.

Regardless of which initialization form you use, an object should never be declared with
empty parentheses. For example, the declaration Date a(); is not the same as the
declaration Date a;. The second declaration uses the default constructor values, and the
first declaration results in no object being created.

Overloaded and Inline Constructors
The primary difference between a constructor and other user-written functions is how the
constructor is called: Constructors are called automatically each time an object is created, and
other functions must be called explicitly by name.8 As a function, however, a constructor
must still follow all the rules for user-written functions discussed in Chapter 6. Therefore,
constructors can have default arguments (as in Program 10.1), can be overloaded, and can be
written as inline functions.

8This rule is true for all functions except destructors, described later in this section. A destructor function is called automatically each time an
object is destroyed.

570 Introduction to Classes

Recall from Section 6.1 that function overloading permits using the same function name
with different argument lists. Based on the supplied argument types, the compiler deter-
mines which function to use when the call is encountered. To see how overloading can be
applied to the Date class, take another look at the class declaration repeated here:

// class declaration section
class Date
{

private:
int month;
int day;
int year;

public:
Date(int = 7, int = 4, int = 2005); // constructor

};

The constructor prototype specifies three integer parameters, which are used to initialize
the month, day, and year data members.

Another method of specifying a date is using a long integer in the form year * 10000 +
month * 100 + day. With this form, the date 12/24/1998 is 19981224, and the date 2/5/2006
is 20060205.9 A suitable prototype for a constructor that uses dates in this form is shown here:

Date(long); // an overloaded constructor

The constructor is declared as receiving one long integer argument. The code for this
new Date() function must, of course, convert its single argument into a month, day, and
year and is included in the class implementation section. The actual code for this constructor
is as follows:

Date::Date(long yyyymmdd) // a second constructor
{

year = int(yyyymmdd/10000.0); // extract the year
// extract the month
month = int((yyyymmdd - year * 10000.0) / 100.00);
// extract the day
day = int(yyyymmdd - year * 10000.0 - month * 100.0);

}

Don’t be overly concerned with the conversion code used in the function body. The
important point is the concept of overloading the Date() function to provide two
constructors. Program 10.3 contains the complete class definition in the context of a working
program. The output of Program 10.3 is as follows:

The date is 07/04/05

The date is 04/01/98

The date is 05/15/06

9The reason for specifying dates in this manner is that only one number needs to be used per date, and sorting the numbers puts the
corresponding dates into chronological order automatically.

571Chapter 10
Constructors

Program 10.3

#include <iostream>

#include <iomanip>

using namespace std;

// class declaration section

class Date

{

private:

int month;

int day;

int year;

public:

Date(int = 7, int = 4, int = 2005); // constructor

Date(long); // another constructor

void showDate(); // member function to display a date

};

// class implementation section

Date::Date(int mm, int dd, int yyyy)

{

month = mm;

day = dd;

year = yyyy;

}

Date::Date(long yyyymmdd)

{

year = int(yyyymmdd/10000.0); // extract the year

month = int((yyyymmdd - year * 10000.0)/100.00); // extract the month

day = int(yyyymmdd - year * 10000.0 - month * 100.0); // extract the day

}

void Date::showDate()

{

cout << "The date is ";

cout << setfill('0')

<< setw(2) << month << '/'

<< setw(2) << day << '/'

<< setw(2) << year % 100; // extract the last 2 year digits

cout << endl;

return;

}

�

572 Introduction to Classes

Three objects are created in the Program 10.3 main() function. The first object, a, is
initialized with the default constructor, using its default arguments. Object b is also initialized
with the default constructor but uses the arguments 4, 1, and 1998. Finally, object c, which is
initialized with a long integer, uses the second constructor in the class implementation section.
The compiler knows to use this second constructor because the argument specified,
20060515L, is designated as a long integer by the uppercase L. It’s worth pointing out that a
compiler error would occur if both Date constructors had default values. For example, a
declaration such as Date d; would be ambiguous to the compiler because it couldn’t determine
which constructor to use. Therefore, in each implementation section, only one constructor can be
written as the default.

As mentioned, constructors can also be written as inline functions. Doing so simply
means defining the function in the class declaration section. For example, the following
declaration section makes both constructors in Program 10.3 inline:

// class declaration
class Date
{

private:
int month;
int day;
int year;

public:
Date(int mm = 7, int dd = 4, int yyyy = 2005)
{

month = mm;
day = dd;
year = yyyy;

}
Date(long yyyymmdd) // here is the overloaded constructor
{

year = int(yyyymmdd/10000.0); // extract the year
// extract the month
month = int((yyyymmdd - year * 10000.0)/100.00);
// extract the day
day = int(yyyymmdd - year * 10000.0 - month * 100.0);

}
};

int main()

{

Date a, b(4,1,1998), c(20060515L); // declare three objects

a.showDate(); // display object a's values

b.showDate(); // display object b's values

c.showDate(); // display object c's values

return 0;

}

573Chapter 10
Constructors

The keyword inline isn’t required in this declaration because member functions
defined in the class declaration are inline by default.

Generally, only functions that can be coded on a single line are good candidates for inline
functions. This guideline reinforces the convention that inline functions should be small.
Therefore, the first constructor is more conventionally written as follows:

Date(int mm = 7, int dd = 4, int yyyy = 2005)
{ month = mm; day = dd; year = yyyy; }

The second constructor, which extends over three lines, should not be written as an
inline function.

Destructors
The counterpart to constructor functions are destructor functions. Destructors are functions
with the same class name as constructors but are preceded with a tilde (~). Therefore, for the
Date class, the destructor name is ~Date(). Like constructors, the C++ compiler provides
a default do-nothing destructor in the absence of an explicit destructor. Unlike constructors,
however, there can be only one destructor function per class because destructors take no
parameters and return no values.

Destructors are called automatically when an object goes out of existence and are meant
to “clean up” any undesirable effects the object might leave. Generally, these effects occur
only when an object contains a pointer member.

EXERCISES 10.2

1. (For Review) Determine whether the following statements are true or false:
a. A constructor function must have the same name as its class.

b. A class can have only one constructor function.

Point of Information

Accessor Functions
An accessor function is any non-constructor member function that accesses a class’s
private data members. For example, the showDate() function in the Date class is an
accessor function. These functions are extremely important because they provide a
means of displaying private data members’ stored values.

When you construct a class, make sure to provide a complete set of accessor
functions. Each accessor function doesn’t have to return a data member’s exact value, but
it should return a useful representation of the value. For example, the date 12/25/2006 is
stored as a long integer member variable in the form 20062512. Although an accessor
function could display this value, a more useful representation is 12/25/06 or
December 25, 2006.

574 Introduction to Classes

c. A class can have only one default constructor function.

d. A default constructor can be supplied only by the compiler.

e. A default constructor can have no parameters or all parameters must have default values.

f. A constructor must be declared for each class.

g. A constructor must be declared with a return type.

h. A constructor is called automatically each time an object is created.

i. A class can have only one destructor function.

j. A destructor must have the same name as its class, preceded by a tilde (~).

k. A destructor can have default arguments.

l. A destructor must be declared for each class.

m. A destructor must be declared with a return type.

n. A destructor is called automatically each time an object goes out of existence.

o. Destructors aren’t useful when the class contains a pointer data member.

2. (Desk Check) For Program 10.3, what date is initialized for object c if the declaration
Date c(15); is used instead of the declaration Date c(20060515L);?

3. (Modify) Modify Program 10.3 so that the only data member of the class is a long integer
named yyyymmdd. Do this by substituting the declaration long yyyymmdd; for these
existing declarations:

int month;
int day;
int year;

Using the same constructor function prototypes currently declared in the class declaration
section, rewrite them so that the Date(long) function becomes the default constructor,
and the Date(int, int, int) function converts a month, day, and year into the cor-
rect form for the class data members.

4. (Program) a. Construct a Time class containing integer data members seconds, minutes,
and hours. Have the class contain two constructors: The first should be a default constructor

Point of Information

Mutator Methods
A mutator method, more commonly called a “mutator,” is any nonconstructor class
method that changes an object’s data values. Mutators are used to alter an object’s
data values after a constructor method has created and initialized the object
automatically. A class can contain multiple mutators, as long as each one has a unique
name or parameter list. For example, in the Date class, you could have a mutator for
changing a Date object’s month, day, and year values. Constructors, which have the
main purpose of initializing an object’s member variables when the object is created,
aren’t considered mutators.

575Chapter 10
Constructors

having the prototype Time(int, int, int), which uses default values of 0 for each data
member. The second constructor should accept a long integer representing a total number of
seconds and disassemble the long integer into hours, minutes, and seconds. The final
member function should display the class data members.

b. Include the class written for Exercise 4a in the context of a complete program.

5. (Program) a. Construct a class named Student consisting of an integer student ID
number, an array of five double-precision grades, and an integer representing the total
number of grades entered. The constructor for this class should initialize all Student
data members to 0. Included in the class should be member functions to 1) enter a stu-
dent ID number, 2) enter a single test grade and update the total number of grades
entered, and 3) compute an average grade and display the student ID followed by the
average grade.

b. Include the class constructed in Exercise 5a in the context of a complete program.
Your program should declare two objects of type Student and accept and display
data for the two objects to verify operation of the member functions.

6. (Modify) a. In Exercise 4, you were asked to construct a Time class. For this class,
include a tick() function that increments the time by one second. Test your function to
ensure that it increments time into a new minute and a new hour correctly.

b. Modify the Time class written for Exercise 6a to include a detick() function that
decrements the time by one second. Test your function to ensure that it decrements
time into a prior hour and into a prior minute correctly.

10.3 A Case Study: Constructing a Room Object

Now that you have an understanding of how classes are constructed and the terminology for
describing them, you can apply this knowledge to creating a class from which room objects
can be constructed. The room’s floor area must be calculated for any size room when its
length and width are known. For modeling purposes, assume every room is rectangular.

Step 1 Analyze the Problem

In this application, you have one type of object, a rectangular room. Because of the room’s shape,
the floor can be designated by its length and width. After these attributes have been assigned for
a room, its floor area can be calculated as the room’s length multiplied by its width.

Step 2 Develop a Solution

For this application, a room’s length and width are the only attributes of interest. They can be
represented by double-precision variables named length and width. The services required of
the class are a constructor to set a room’s length and width attributes, an accessor to display a
room’s attribute values, a mutator to change a room’s attribute values, and a function to determine
a room’s floor area from its length and width values. Name the class RoomType, the accessor
function showRoomValues(), the mutator function setNewRoomValues(), and the area
calculation function calculateRoomArea().

576 Introduction to Classes

Step 3 Code the Solution

Given the selection of attribute and class function names, the following class declaration is
suitable:

class RoomType
{

// class declaration section
private:

double length; // declare length as a double variable
double width; // declare width as a double variable

public:
RoomType(); // the constructor's declaration statement
void showRoomValues();
void setNewRoomValues();
void calculateRoomArea();

};

This code declares two data members, length and width, and four class functions. The
data members length and width store a room’s length and width. The class functions are
a constructor to create a room object, an accessor to display a room object’s length and width
values, a mutator to change a room’s length and width values, and a calculation function for
calculating a room’s floor area. To accomplish these services, the following class implemen-
tation is suitable:

// class implementation section
RoomType::RoomType(double l, double w) // this is a constructor
{

length = l;
width = w;
cout << "Created a new room object using the default constructor.\n\n";

}

void RoomType::showRoomValues() // this is an accessor
{

cout << " length = " << length
<< "\n width = " << width << endl;

}

void RoomType::setNewRoomValues(double l, double w) // this is a
// mutator

{
length = l;
width = w;

}

void RoomType::calculateRoomArea() // this performs a calculation
{

cout << (length * width);
}

These functions are straightforward. When a room object is declared, it’s initialized with
a length and width of 0, unless specific values are provided in the declaration. The

577Chapter 10
A Case Study: Constructing a Room
Object

accessor function displays the values stored in length and width, and the mutator permits
reassigning values after a room object has been created. Finally, the calculation function
displays a room’s area by multiplying its length by its width.

Step 4 Test and Correct the Program

Testing the RoomType class entails testing each class function. To do this, Program 10.4
includes the RoomType class in the context of a working program.

Program 10.4

#include <iostream>

using namespace std;

class RoomType

{

// class declaration section

private:

double length; // declare length as a double variable

double width; // declare width as a double variable

public:

RoomType(double = 0.0, double = 0.0); // the constructor's declaration

// statement

void showRoomValues();

void setNewRoomValues(double, double);

void calculateRoomArea();

};

// class implementation section

RoomType::RoomType(double l, double w) // this is a constructor

{

length = l;

width = w;

cout << "Created a new room object using the default constructor.\n\n";

}

void RoomType::showRoomValues() // this is an accessor

{

cout << " length = " << length

<< "\n width = " << width << endl;

}

�

578 Introduction to Classes

The shaded portion of Program 10.4 contains the class construction sections. To see how
this class is used, concentrate on the unshaded section containing the main() function. This
function creates a room object with a length of 12.5 and a width of 18.2. These room
dimensions are displayed by using the showRoomValues() function, and the area is
calculated and displayed by using the calculateRoomArea() function. The room’s
dimensions are reset and displayed, and the room’s area is recalculated. Program 10.4
produces the following output:

Created a new room object using the default constructor.

The values for this room are:

length = 12.5

width = 18.2

The floor area of this room is: 227.5

�

void RoomType::setNewRoomValues(double l, double w) // this is a mutator

{

length = l;

width = w;

}

void RoomType::calculateRoomArea() // this performs a calculation

{

cout << (length * width);

}

int main()

{

RoomType roomOne(12.5, 18.2); // declare a variable of type RoomType

cout << "The values for this room are:\n";

roomOne.showRoomValues(); // use a class method on this object

cout << "\nThe floor area of this room is: ";

roomOne.calculateRoomArea(); // use another class method on this object

roomOne.setNewRoomValues(5.5, 10.3); // call the mutator

cout << "\n\nThe values for this room have been changed to:\n";

roomOne.showRoomValues();

cout << "\nThe floor area of this room is: ";

roomOne.calculateRoomArea();

cout << endl;

return 0;

}

579Chapter 10
A Case Study: Constructing a Room
Object

The values for this room have been changed to:

length = 5.5

width = 10.3

The floor area of this room is: 56.65

The basic requirements of object-oriented programming are evident even in as simple a
program as Program 10.4. Before the main() function can be written, a useful class must be
constructed, which is typical of programs using objects. For these programs, the design process
is front-loaded with the requirement to give careful consideration to the class—its declaration and
implementation. Code in the implementation section effectively removes code that would
otherwise be part of main()’s responsibility. Therefore, any program using the object doesn’t
have to repeat the implementation details in its main() function. Instead, the main() function
and any function called by main() are concerned only with sending messages to objects to
activate them correctly. How the object responds to the messages and how the object’s state is
retained are not main()’s concern—these details are hidden in the class construction.

EXERCISES 10.3

1. (Practice) Enter Program 10.4 and execute it.

2. (Modify) Modify the main() function in Program 10.4 to create a second room with a
length of 9 and a width of 12. Have the program calculate this new room’s area.

3. (Modify) a. Modify the main() function in Program 10.4 to create four rooms: hall,
kitchen, dining room, and living room. The dimensions for these rooms are as follows:

Hall: length = 12.40, width = 3.5
Kitchen: length = 14, width = 14
Living room: length = 12.4, width = 20
Dining room: length = 14, width = 10.5.

Point of Information

Encapsulation
The term encapsulation refers to packaging a number of items into a single unit. For
example, a function is used to encapsulate the details of an algorithm. Similarly, a class
encapsulates variables and functions together in a single package. Although “encapsu-
lation” is sometimes used to refer to the process of data hiding, this usage isn’t techni-
cally accurate. The correct relationship between terms is that data hiding refers to
encapsulating and hiding all implementation details.

580 Introduction to Classes

Your program should display the area of each room and the total area of all four rooms
combined.

b. The total area of all rooms can be calculated and saved by using a class variable. To
do this, what type of variable do you think this class variable must be?

4. (Debug) Remove the public access from the RoomType function declarations in
Program 10.4 and compile the program. Determine why the compiler returns the error
messages that it does.

5. (Program) a. Complete the following class by adding a constructor, an accessor, and a
calculation function. The constructor should initialize all objects with firstNumber = 10
and secondNumber = 15. The calculation function should calculate and display the aver-
age of the two numbers.

class TwoNumbers
{
// class declaration section

private
int firstNumber;
int secondNumber;
double average;

};

// class implementation section

b. Include the class written for Exercise 5a in the context of a complete program. The
program should create a single object and display the object’s values and the average
of these values.

6. (Program) a. Construct a Time class containing the integer instance variables seconds,
minutes, and hours. Include a constructor that initializes each data member with a
value of 10 and an accessor that displays the value of all data members.

b. Include the class written for Exercise 6a in the context of a complete program.

7. (Program) Construct a class named Light that simulates a traffic light. The class’s
color attribute should change from Green to Yellow to Red and then back to Green
by using the class’s change() function. When a new Light object is created, its initial
color should be Red.

8. (Program) a. Construct a class named Student consisting of an integer student ID
number and a double-precision grade point average. The constructor for this class should
initialize the ID number to 111111 and the grade point average to 0.0. Include an acces-
sor function to display all data values.

b. Include the class constructed in Exercise 8a in the context of a complete program.
Your program should declare two objects of type Student and display data for the
two objects to verify operation of the class functions.

9. (Program) a. Construct a class definition to represent an employee of a company. Each
employee is defined by an integer ID number, a floating-point pay rate, and the maxi-
mum number of hours the employee should work each week. The services the class pro-
vides should be the capability to enter data for a new employee, the capability to change
data for a new employee, and the capability to display existing data for a new employee.

581Chapter 10
A Case Study: Constructing a Room
Object

b. Include the class definition created for Exercise 9a in a working C++ program that
asks the user to enter data for three employees and then displays the entered data.

c. Modify the program written for Exercise 9b to include a menu that offers the user the
following choices:

1. Add an employee
2. Modify employee data
3. Delete an employee
4. Exit this menu

In response to the user’s choice, the program should initiate an action to implement the
choice.

10. (Program) a. Construct a class definition to represent types of food. A type of food is
classified as basic or prepared. Basic foods are further classified as Dairy, Meat, Fruit,
Vegetable, or Grain. The services the class provides should be the capability to enter
data for a new food, the capability to change data for a new food, and the capability to
display existing data for a new food.

b. Include the class definition created for Exercise 10a in a working C++ program that
asks the user to enter data for four food items and then displays the entered data.

c. Modify the program written for Exercise 10b to include a menu that offers the user
the following choices:

1. Add a food item
2. Modify a food item
3. Delete a food item
4. Exit this menu

In response to the user’s choice, the program should initiate an action to implement the
choice.

10.4 A Closer Look: Object Identification and the Unified
Modeling Language (UML)10

When solving any problem, often it’s helpful to start by creating a diagram or map or devising
a theoretical analogy for the problem you’re trying to solve. In other words, you need to
create some kind of model. Creating a model helps you see all parts of the problem and helps
you understand what you need to do to solve it.

The first step in constructing an object-based program is developing an object-based
model of the problem. For example, the RoomType class developed in Section 10.3 is based
on the model of a room as a rectangular object. Each class then becomes a description of the
model written in C++. Thinking about a room as an object probably isn’t difficult because in
a physical sense, a room is an object.

10This topic can be omitted on first reading without loss of subject continuity.

582 Introduction to Classes

To become a good object-oriented programmer, however, you need to be able to analyze
more complex situations so that you can think of and organize programming problems as the
interaction of different objects. In this section, you explore this object-based concept in more
detail. You also learn how to develop programs systematically by using object-based models.
Figure 10.1 illustrates the concepts discussed in this section.

Representing Problems with Models
Formally, a model is a representation of a problem. The first step in creating an object-based
model is to begin “thinking in objects.” For example, if you want to know the result of
tossing a coin 100 times, you can certainly do so by tossing a real coin. However, if a coin
could be modeled accurately, you could find the result by writing a program to simulate a coin
toss. Similarly, a game of solitaire could be simulated if a realistic model of a deck of cards
could be created and if methods such as shuffling the deck could be coded.

Objects, such as coins, cards, and more complicated graphical objects, are well suited to
a programming representation because they can be modeled by two basic characteristics:
attributes and behaviors. Attributes define the properties of interest, and behaviors define
how the object reacts to its environment. When designing and developing an object-oriented
program, you need to follow these two steps:

1. Identify the required objects.
2. For each object:

a. Identify the attributes of interest.
b. Identify the behaviors (operations) of interest.

To make this process more tangible, think about a coin-tossing experiment. Step 1 tells
you to identify the required objects. For this experiment, the object is a coin. Step 2 tells you
to identify the relevant attributes and behaviors. In terms of attributes, a coin has a
denomination, size, weight, color, condition (tarnished, worn, proof), country of origin, and
side (head or tail). If you’re purchasing a coin for collectible purposes, you’re interested in all
these attributes but the side. For a coin toss, however, the only attribute that’s of interest is
the side; it doesn’t matter whether the coin is a penny or a quarter, copper or silver, or
tarnished or not. In terms of modeling a coin for a coin-tossing experiment, the only attribute
you must consider is what side is visible when the coin is tossed. It’s important to understand
the significance of the choice of attributes. Very few models include every aspect of the
objects they represent; a model should include only attributes that are relevant to the
problem.

Having determined the attributes to use in modeling a coin, the next step requires
identifying the behavior this object should exhibit. In this case, you must have a means of
simulating a toss and determining the side that faces up when the toss is completed.

Figure 10.2 summarizes the initial results of the two steps in developing the object-
oriented coin toss program: It identifies the required object and lists its relevant attributes

A
problem

or
item

Identify
objects

Define
attributes

and
behavior

Class
specifications

Construct
data and
method

specifications

Code

Create
a

C++
class

Object-based
class

Object
description

Figure 10.1 A class is a programming-language description of a model

583Chapter 10
A Closer Look: Object Identification and
the Unified Modeling Language (UML)

and behaviors. This diagram is called an object description. It doesn’t tell you everything there
is to know about a coin, only what you need to know to create a coin toss program. For
programming purposes, this description must be translated into a programming language,
whether it’s C++ or another object-oriented language.

As you expand your design for a program, often you have to refine and expand the object
description. Refinement, or improving and modifying the model, is almost always required
for all but extremely simple problems. As a tool for modifying models, this section introduces
the Unified Modeling Language (UML), which is widely accepted as a technique for developing
object-oriented programs. UML isn’t a programming language, nor is it part of C++. It’s a
program-modeling language with its own rules and notations for creating an object-oriented
design. If used correctly, a UML design can help you understand and clarify a program’s
requirements. The finished design can serve as a set of detailed specifications (which can be
coded easily in an object-oriented programming language, such as C++) and as documenta-
tion for the final program.

UML uses diagrams and techniques that are easy to understand and support all the features
required to implement an object-oriented design. Additionally, UML is currently the predomi-
nant object-oriented design procedure that professional programmers use. At the most funda-
mental level, designing an object-oriented program requires understanding and specifying the
following:

• The objects in the system
• What can happen to these objects
• When something can happen to these objects

In a UML analysis, each item is addressed by separate views and diagrams. This
procedure is similar to the plan for a house, which contains several diagrams required for the
final construction. For example, there must be blueprints for the physical outlay as well as
diagrams for electrical, plumbing, heating and cooling ducts, landscaping, and elevation
views. Each diagram presents a different view of the completed house, and provides different
information, but all the information is required for the finished product.

The same is true for the diagrams in a UML analysis. UML provides seven diagram
types: class, object, state, sequence, activity, use case, component, deployment, and
collaboration. Not all these diagram types are required for every analysis; some provide
specific details that are needed only in more advanced situations. This book covers the two
basic UML diagrams you should be familiar with and the rules for creating them: class and
object diagrams. These two diagrams are similar in structure, and both include attributes and
operations for classes or objects and the relationship between classes or objects.

Although both diagrams can contain information included in the other diagram types,
each diagram type is intended to model and emphasize a different aspect of a system. In
other words, each diagram type views the same system from a different angle and highlights
a particular characteristic of the system. The most important and useful when you first start

Object: A coin

Attributes: Side (head or tail)

Behavior: Landing with heads up or tails up

Figure 10.2 An initial object diagram

584 Introduction to Classes

developing an object-oriented program are class and object diagrams, described in this
section. For many systems, the descriptions that class and object diagrams provide are more
than enough for design and implementation purposes.

Class and Object Diagrams
Class diagrams are used to describe classes and their relationships, and object diagrams are used
to describe objects and their relationships. As you know, a class refers to a type of object, from
which many specific objects can be created, and an object refers to a specific single item created
from a class. For example, a class of books might be described as fiction or nonfiction, of which
many specific instances, or objects, exist. The book A History of England is a specific object of the
nonfiction class, and Pride and Prejudice is a specific object of the fiction class. Therefore, the class
is always the basic plan, or recipe, from which real objects are created. It’s the class that describes
the properties and operations each object must have to be a member of the class.

An attribute, as you have seen, is simply a characteristic each object in the class must
have. For example, title and author are attributes of Book objects; name, age, sex, weight,
and height are attributes of Person objects. After data values are assigned to attributes, a
unique object is created. Every object created from a class must also have an identity to
distinguish it from another object of the same class. This rule isn’t true of a pure data value,
such as the number 5; all occurrences of this number are indistinguishable from one another.

Both classes and objects are represented with a diagram consisting of a box. In class
diagrams, the class name is in bold text and centered at the top of the box. In object
diagrams, the object’s name is also centered at the top of box, but it’s underlined. Figure 10.3
shows the representation of a Person class along with a Person object named Janet Smith.

Including the class name in object diagrams is optional, but if you do, simply underline
it. You can precede the class name with an object name, but you must use a colon to separate
the two names. For example, in Figure 10.3’s object diagram, you could use the name Janet
Smith:Person. Figure 10.4 shows the basic symbols and notations used in constructing class
and object diagrams.

After class attributes have been identified, they are listed in a box below the class name,
separated by a line. Objects are shown in a similar manner, with data values included for all
attributes. For example, Figure 10.5 shows the attributes associated with the Country class
and the values of these attributes for the U.S.A. and Spain objects. As you might expect,
the attributes listed in a class diagram become, in C++, the variables declared in the class
declaration section.

Attributes have two qualities: type and visibility. An attribute’s type is either a primitive
data type—such as integer, double, Boolean, or character—or a class data type, such as a
string. Type is required in a class diagram and is indicated after an attribute name with acolon
followed by the data type.

Person

A class
diagram

Janet Smith

An object
diagram

Figure 10.3 Class and object representations

585Chapter 10
A Closer Look: Object Identification and
the Unified Modeling Language (UML)

ClassName

ClassName

Superclass

Subclass-1 Subclass-2

attribute
attribute:data-type
attribute:data-type=init-value
 ...

operation
operation (arg-list):return-type
 ...

Class: Association:

Generalization (inheritance):

Assembly Class

Part-1-Class Part-2-Class

Aggregation:

Assembly Class

Part-1-Class Part-2-Class

Aggregation (alternate form):

Object Name

Object instances:

attribute-name = value
.
.
.

ClassName

Instantiation relationship:

ObjectName

Class-1 Class-2

Association designations:

Class

Association name
role role

Exactly one

Class Zero or more

Class Zero or one

Class One or more

Class Numerically specified

1..*

0..1

1

*

n

Object Name

Figure 10.4 Basic UML symbols and notation

586 Introduction to Classes

Visibility defines where an attribute can be seen—that is, whether the attribute can be
used in other classes or is restricted to the class defining it. The following list explains the
types of visibility and the UML notation for indicating visibility:

• Private—An attribute with private visibility can be used only in its defining class and
can’t be accessed by other classes directly. A minus sign (-) in front of the attribute
name designates the attribute as private.

• Public—An attribute with public visibility can be used in any other class. Public
visibility is indicated with a plus sign (+) in front of the attribute name.

• Protected—An attribute with protected visibility can be passed along to a derived
class; neither a plus sign nor a minus sign is used to indicate protected visibility.

In a class diagram, an attribute’s name and type are required; all other information is
optional. Figure 10.6 illustrates the class diagram for a class named RoomType containing two
private attributes: length and width. Notice that it includes the default values the class is
expected to provide to its attributes.

Just as attributes are designated in a class diagram, so are operations. Operations are
transformations that can be applied to attributes and are coded as C++ functions. Operation
names are listed below attributes and separated from them by a line. Figure 10.7 shows two
class diagrams that include operations.

Country

Continent
Population

Class diagram

U.S.A

North
America

381 million

Object diagram

Spain

Object diagram

Europe
34 million

Figure 10.5 Including attributes in UML class and object diagrams

RoomType

-length : double = 25.0
-width : double = 12.0

Figure 10.6 A class with attributes

587Chapter 10
A Closer Look: Object Identification and
the Unified Modeling Language (UML)

Relationships
In addition to describing classes and objects, UML class and object diagrams show the
relationships between classes and/or objects. The three basic relationships are association,
aggregation, and generalization.

Associations between classes are typically signified by phrases such as “is related to,” “is
associated with,” “has a,” “is employed by,” “works for,” and so forth. This relationship is
indicated by a straight line connecting two classes or objects, and the type of association is listed
above or below the line. For example, Figure 10.8 shows an association between a Person and
a Company. As indicated, a Company “employs” zero or more Persons. The designation of “zero
or more,” referred to as the multiplicity of the relationship, is indicated by the * symbol in the
diagram. Table 10.2 lists the symbols for indicating an association’s multiplicity. These symbols
can be placed above or below the line connecting two classes or objects.

Table 10.2 UML Association Notation

Symbol Relationship
1 One and only one
n Exactly the specified number (n is an integer)
0..1 Zero or one
m..n From m to n (m and n are integers)
* or 0..* From zero to any positive integer
1..* From one to any positive integer

Person Gas Pump

-name : string
-street address : string
-city : string
-state : string
-zip : string
-age : double

+setName ()
+setAddress ()
+setAge ()
+changeName ()
+changeAddress ()
+changeAge

-gallonsInTank : double
-costPerGallon : double

+enablePump ()
+disablePump ()
+setPricePerGallon ()

Figure 10.7 Including operations in class diagrams

Company Person
employs *

Figure 10.8 An association

588 Introduction to Classes

An aggregation is a type of association in which one class or object, referred to as the whole
element, “consists of” or “is composed of” other classes or objects, which are referred to as parts.
For example, a sentence consists of words, which consist of characters. Therefore, characters are
parts of words, which are parts of sentences. This relationship is indicated by a diamond symbol
attached to the class or object representing the whole element. Figures 10.9, 10.10, and 10.11
illustrate three aggregation associations. Reading these class diagrams is easier if you replace the
diamond with the words “consists of” or “is composed of.” When the diamond symbol is hollow,
as in Figure 10.9, it indicates that the parts can still exist independent of the whole to which they
belong. In other words, even if the team is broken up or destroyed, its members can still exist.

A solid diamond symbol, as in Figures 10.10 and 10.11, indicates that the component parts
are intrinsic members of the whole. Therefore, if the whole class or object is removed, its
aggregate parts are also destroyed. As indicated in Figure 10.10, if a sentence is removed, all its
associated words are removed. Similarly, erasing a word erases the characters in the word.

The last type of relationship to consider is generalization, more commonly referred to as
inheritance. Inheritance is a relationship between a class and a derived version of the class.
For example, a derived version of the class Vehicle can be Land, Space, or Water. In this
case, Vehicle is the base class, and Land, Space, and Water are the derived classes.
Figure 10.12 shows a class diagram of this inheritance relationship.

Team Member1..25
(consists of)

Figure 10.9 Single-level aggregation

1..*

1..*

Sentence

(consists of)

(consists of)

Word

Character

Figure 10.10 Another single-level aggregation

589Chapter 10
A Closer Look: Object Identification and
the Unified Modeling Language (UML)

EXERCISES 10.4

1. (For Review) Define the following terms:
a. Attribute

b. Behavior

c. Class

d. Identity

e. Model

f. Object

g. Object diagram

h. State

i. Value

j. Operation

House

RoomFoundation

1..*1 1 1

4 11

Attic

WallFloor Ceiling

Cellar

(consists of)

(consists of)

Figure 10.11 Multilevel aggregation

Vehicle

SpaceLand Water

Figure 10.12 An inheritance relationship

590 Introduction to Classes

2. (For Review) Classify the following as classes or objects:
a. Maple trees

b. Ford automobiles

c. My collie dog

d. The oak tree in your
neighbor’s yard

e. Boeing 767 planes

f. Your Ford Taurus

g. Kitchen tables

h. Student desks

i. The chair you’re sitting on

3. (Practice) a. For each of the following, determine what attributes might be of interest
to someone buying the item:
i. A book

ii. A can of soda

iii. A pen

iv. A CD/DVD

v. A CD/DVD player

vi. An elevator

vii.A car

b. Do the attributes you used in Exercise 3a model an object or a class of objects?

4. (Practice) For each of the following, what behavior might be of interest to someone buy-
ing the item?
a. A car

b. A CD/DVD player

c. An elevator

5. (Practice) a. List five attributes for a character in a video game.

b. List five behaviors that a character in a video game should have.

6. (Practice) a. List attributes and behaviors of interest in a program that simulates dealing
a hand of playing cards. For this exercise, use any card game you’re familiar with.

b. What attributes of cards wouldn’t be of interest for purposes of the simulation?

7. (Practice) a. List attributes and behaviors of interest in a program intended to simulate
an elevator moving between the 1st to the 15th floors of a building.

b. What attributes of the elevator wouldn’t be of interest for purposes of the simulation?

8. (Practice) Construct a class diagram for a Country class. Each country has a capital city.
The attributes of interest for each country are its population, size, main agricultural prod-
uct, and main manufactured product.

9. (Practice) Construct a class diagram for a book consisting of one or more chapters, each
of which consists of one or more sections.

591Chapter 10
A Closer Look: Object Identification and
the Unified Modeling Language (UML)

10. (Practice) a. Construct a class diagram for a computer that consists of a monitor, key-
board, mouse, printer, and system box.

b. Modify the class diagram constructed in Exercise 10a to denote that one or more
monitors and keyboards might be attached to the system box, and the system might
have no mouse or multiple mice.

c. Extend the class diagram constructed for Exercise 10b to denote that the system box
is composed of a CPU chip, a memory board containing zero or more RAM chips, and
a case.

11. (Practice) a. Construct a class diagram for a single gas tank connected to one or more
gas pumps. The attributes of interest for the tank are its capacity, current level, and grade
of gas. The attributes of interest for a pump are the number of gallons dispensed and the
cost per gallon. Additionally, a pump responds to being enabled and disabled.

b. Modify the class diagram constructed in Exercise 11a to denote that a gas pump can
be associated with more than one gas tank.

12. (Practice) Construct a class diagram for a class of circles that’s the base class for a class
of spheres and a class of cylinders.

13. (Practice) Construct a class diagram for a collection of cards consisting of zero or more cards.
The collection of cards forms a base class for both a deck of cards and a hand of cards.

14. (Practice) Determine a car’s major subsystems, such as brakes, steering, and so forth.
Considering these subsystems as classes, construct a class diagram for a Car class that
simply shows the associations between classes (no attributes or operations). Then deter-
mine a set of attributes and operations for each subsystem, and modify the original class
diagram to include the additional information.

15. (Practice) Determine a cell phone’s major subsystems, such as keypad, antenna, and so
on. Considering these subsystems as classes, construct a class diagram for a CellPhone
class that simply shows the associations between classes (no attributes or operations).
Then determine a set of attributes and operations for each subsystem, and modify the
original class diagram to include the additional information.

10.5 Common Programming Errors

Some common programming errors associated with constructing classes are as follows:

1. Failing to terminate the class declaration section with a semicolon.
2. Including a return type with the constructor’s prototype or failing to include a return

type with the other functions’ prototypes.
3. Using the same name for a data member as for a member function.
4. Defining more than one default constructor for a class.
5. Forgetting to include the class name and scope operator, ::, in the function header

of all member functions defined in the class implementation section.

All these errors result in a compiler error message.

592 Introduction to Classes

10.6 Chapter Summary

1. A class is a programmer-defined data type. Objects of a class can be defined and have the
same relationship to their class as variables do to C++’s built-in data types.

2. A class definition consists of a declaration and implementation section. The most
common form of a class definition is as follows:

// class declaration section
class name
{

private:
// a list of variable declarations;

public:
// a list of function prototypes;

};
// class implementation section

// class function definitions

The variables and functions declared in the class declaration section are collectively
called class members. The variables are referred to as class data members, and the
functions are referred to as class member functions. The keywords private and
public are access specifiers. After an access specifier is listed, it remains in force until
another access specifier is given. The private keyword specifies that class members
following it are private to the class and can be accessed only by member functions. The
public keyword specifies that the class members following it can be accessed from
outside the class. Generally, all data members should be specified as private and all
member functions as public.

3. Class functions listed in the declaration section can be written inline, or their definitions
can be included in the class implementation section. Except for constructor and
destructor functions, all class functions defined in the class implementation section use
this form for the function header:

returnType className::functionName(parameter list);

Except for the addition of the class name and scope operator, ::, which are required to
identify the function name with the class, this function header is identical to the one
used for any user-written function.

4. A constructor function is a special function that’s called automatically each time an object
is declared. It must have the same name as its class and can’t have any return type. Its
purpose is to initialize each declared object.

5. If no constructor is declared for a class, the compiler supplies a default constructor. It’s
a do-nothing function having the definition className::className(void){}.

6. The term default constructor refers to any constructor that doesn’t require arguments
when it’s called. The reason it doesn’t require arguments is that no parameters are
declared (as with the compiler-supplied default constructor) or all arguments have been
given default values.

7. Each class can only have one default constructor. If a user-defined constructor is defined,
the compiler doesn’t create a default constructor.

593Chapter 10
Chapter Summary

8. Objects are created by using a C++ or C style of declaration. The C++ style of declaration
has the form

className list-of-objectNames(list of initializers);

where the list of initializers is optional. An example of this style of declaration,
including initializers, for a class named Date is as follows:

Date a, b, c(12,25,2006);

The objects a and b are declared to be of type Date and are initialized by using the
default constructor; the object c is initialized with the values 12, 25, and 2006.

The equivalent C style of declaration, including the optional list of initializers, has this form:

className objectName = className(list of initializers);

An example of this style of declaration for a class named Date is as follows:

Date c = Date(12,25,2006);

The object c is created and initialized with the values 12, 25, and 2006.

9. Constructors can be overloaded in the same manner as any other user-written C++ function.

10. If a constructor is defined for a class, a user-defined default constructor should also be
written, as the compiler doesn’t supply it.

11. A destructor function is called each time an object goes out of scope. Destructors must
have the same name as their class but are preceded with a tilde (~). There can only be
one destructor per class.

12. A destructor function takes no arguments and returns no value. If a user-defined
destructor isn’t included in a class, the compiler provides a do-nothing destructor.

Programming Projects for Chapter 10

1. (Numerical) a. Construct a class named Cartesian containing two floating-point data
members named x and y, used to store a point’s x and y values in rectangular coordinates.
The member functions should include a constructor that initializes an object’s x and y values
to 0, functions to input and display an object’s x and y values, and an assignment function
that performs a memberwise assignment between two Cartesian objects.

b. Include the class written for Exercise 1a in a working C++ program that creates and
displays the values of two Cartesian objects; the second object is assigned the
values of the first object.

2. (General Math) a. Construct a class named XY_Coord containing two floating-point
data members named xval and yval, used to store a point’s x and y values in Cartesian
coordinates. The member functions should include constructor and display functions and
a function named convToCartesian(). The convToCartesian() function should
accept two floating-point numbers representing a point in polar coordinates and convert

594 Introduction to Classes

them into Cartesian coordinates. For conversion from polar to Cartesian coordinates, use
these formulas:

x = r cosθ
y = r sinθ

b. Include the program written for Exercise 2a in a working C++ program.

3. (General Math) a. Construct a class named Pol_coord containing two floating-point
data members named dist and theta, used to store the distance and angle values of
a point in polar coordinates. The member functions should include constructor and
display functions and a function named convToPolar(). The convToPolar()
function should accept two floating-point numbers representing a point in Cartesian
coordinates (x and y) and convert them into polar coordinates (r and θ). For conversion
from Cartesian to polar coordinates, use these formulas:

r x y= +2 2

θ = ()tan /-1 y x

b. Include the program written for Exercise 3a in a working C++ program.

4. (General Math) a. Construct a class named Savings containing three floating-point
data members named balance, rate, and interest and a constructor that initializes
each data member to 0. Include a member function that inputs a balance and rate and
then calculates an interest. The rate should be stored as a percent, such as 6.5 for 6.5%,
and the interest is computed as interest = (balance)(rate/100). Add a member function to
display all data member values.

b. Include the class written for Exercise 4a in a working C++ program that tests each
member function.

5. (General Math) a. Create a class named Fractions having two integer data members
named for a fraction’s numerator and denominator. The class’s default constructor should
provide both data members with default values of 1 if no explicit user initialization is
provided. The constructor must also prohibit a 0 denominator value. Include member
functions for displaying an object’s data values and mathematical functions capable of
adding, subtracting, multiplying, and dividing two Fraction objects according to the
following formulas:

Sum of two fractions
a
b

c
d

ad cb
bd

: + = +

Difference of two fractions
a
b

c
d

ad cb
bd

: -
-=

Product of two fractions
a
b

c
d

ac
bd

: × =

Division of two fractions

a
b

c
d

ad
b

:

=
cc

595Chapter 10
Programming Projects

b. Include the class written for Exercise 5a in a working C++ program that tests each of
the class’s member functions.

6. (Modify) a. Include a member function named gcd() in the Fraction class
constructed in Exercise 5a that reduces a fraction to its lowest common terms. For
example, a fraction such as 2/4 is reduced to 1/2. The way to do this is divide both the
numerator and denominator values by their greatest common divisor (GCD). (Hint : See
Exercise 15 in “Programming Projects for Chapter 6” for a description of finding the
greatest common divisor of two numbers.)

b. Modify the constructor written for Exercise 6a to include a call to gcd() so that every
initialized fraction is in lowest common terms. Also, make sure each mathematical
function also uses gcd() to return a fraction in lowest common terms.

596 Introduction to Classes

Chapter 11
Class Functions and
Conversions

11.1 Assignment

11.2 Additional Class Features

11.3 Operator Functions

11.4 Data Type Conversions

11.5 A Case Study: Random
Numbers and Simulations

11.6 Class Inheritance

11.7 Polymorphism

11.8 Common Programming
Errors

11.9 Chapter Summary

Creating a class requires providing the capability to declare, initialize, assign, manipulate, and
display data members. In Chapter 10, you learned about declaring, initializing, and displaying
objects. In this chapter, you continue constructing classes by providing the ability to create operator and
conversion capabilities, similar to those inherent in C++’s built-in types. With these additions, your
user-defined types will have all the functionality of built-in types.

11.1 Assignment

In Chapter 3, you saw how C++’s assignment operator, =, performs assignment between
variables. In this section, you see how assignment works when it’s applied to objects and how
to define your own assignment operator to override the default one for user-defined classes. For
a specific assignment example, take a look at the main() function in Program 11.1.

Program 11.1

#include <iostream>

#include <iomanip>

using namespace std;

// class declaration section

class Date

{

private:

int month;

int day;

int year;

public:

Date(int = 7, int = 4, int = 2005); // constructor

void showDate(); // member function to display a Date

};

// class implementation section

Date::Date(int mm, int dd, int yyyy)

{

month = mm;

day = dd;

year = yyyy;

}

void Date::showDate()

{

cout << setfill('0')

<< setw(2) << month << '/'

<< setw(2) << day << '/'

<< setw(2) << year % 100;

return;

}

int main()

{

Date a(4,1,2007), b(12,18,2008); // declare two objects

cout << "\nThe date stored in a is originally ";

a.showDate(); // display the original date

a = b; // assign b's values to a

cout << "\nAfter assignment the date stored in a is ";

a.showDate(); // display a's values

cout << endl;

return 0;

}

598 Class Functions and Conversions

Notice that the class implementation section of the Date class in Program 11.1 contains
no assignment function. Nevertheless, you would expect the assignment statement a = b;
in main() to assign b’s data member values to their counterparts in a. In fact, this
assignment does take place and is verified by the output produced when Program 11.1 runs:

The date stored in a is originally 04/01/07

After assignment the date stored in a is 12/18/08

The type of assignment shown in Program 11.1 is referred to as memberwise assignment.
In the absence of any specific instructions, the C++ compiler builds this type of default
assignment operator for each class. If the class doesn’t contain any pointer data members, this
default assignment operator is adequate and can be used without further consideration.
Before seeing the problems that can occur with pointer data members, see how to construct
your own explicit assignment operators.

Assignment operators, like all class members, are declared in the class declaration section
and defined in the class implementation section. For the declaration of operators, however,
the keyword operator must be included in the declaration. Using this keyword, a simple
assignment operator declaration has this form:

void operator=(ClassName&);

The keyword void indicates that the assignment returns no value, the operator=
indicates that you’re overloading the assignment operator with your own version, and the
class name and ampersand in parentheses indicate that the argument to the operator is a class
reference. For example, to declare a simple assignment operator for the Date class, this
declaration can be used:

void operator=(Date&);

The actual implementation of the assignment operator is defined in the class implemen-
tation section. For this declaration, the following implementation is suitable:

void Date::operator=(Date& newdate)
{

day = newdate.day; // assign the day
month = newdate.month; // assign the month
year = newdate.year; // assign the year

}

Using the reference argument in the definition of this operation is not accidental. In fact,
one of the primary reasons for adding reference variables to C++ was to facilitate the
construction of overloaded operators and make the notation more natural.1 In this definition,
newdate is defined as a reference to a Date class. In the body of the definition, the day

1Passing a reference is preferable to passing an object by value because it reduces the overhead of making a copy of each object’s data members.

599Chapter 11
Assignment

member of the object referenced by newdate is assigned to the day member of the current
object, which is then repeated for the month and year members. Assignments such as
a.operator=(b); can then be used to call the overloaded assignment operator and assign
b’s member values to a. For convenience, the expression a.operator=(b) can be replaced
with a = b;.

Program 11.2 contains the new assignment operator in the context of a complete program.
Except for the addition of the overloaded assignment operator declaration and definition,
Program 11.2 is identical to Program 11.1 and produces the same output. Its usefulness is that
it illustrates how you can construct your own assignment definitions. Before moving on,
however, two simple modifications to the assignment operator need to be made.

Program 11.2

#include <iostream>

#include <iomanip>

using namespace std;

// class declaration section

class Date

{

private:

int month;

int day;

int year;

public:

Date(int = 7, int = 4, int = 2005); // constructor

void operator=(Date&); // define assignment of a date

void showDate(); // member function to display a date

};

// class implementation section

Date::Date(int mm, int dd, int yyyy)

{

month = mm;

day = dd;

year = yyyy;

}

void Date::operator=(Date& newdate)

{

day = newdate.day; // assign the day

�

600 Class Functions and Conversions

First, to preclude any inadvertent alteration to the object on the right-hand side of the
assignment, a constant reference argument should be used. For the Date class, it takes this form:

void Date::operator=(const Date& newdate)

The final modification concerns the operation’s return value. As constructed, your simple
assignment operator returns no value, which precludes you from using it in multiple
assignments, such as a = b = c. The reason is that overloaded operators retain the same
precedence and associativity as their built-in versions. Therefore, an expression such as
a = b = c is evaluated in the order a = (b = c). As assignment has been defined,
unfortunately, the expression b = c returns no value, making subsequent assignment to a
an error. To allow multiple assignments, a more complete assignment operation would return
a reference to its class type. Because implementing this assignment requires a special class
pointer, this more complete assignment operator is discussed in Chapter 12. Until then, the
simple assignment operator is more than adequate for your needs.

month = newdate.month; // assign the month

year = newdate.year; // assign the year

return;

}

void Date::showDate()

{

cout << setfill('0')

<< setw(2) << month << '/'

<< setw(2) << day << '/'

<< setw(2) << year % 100;

return;

}

int main()

{

Date a(4,1,2007), b(12,18,2008); // declare two objects

cout << "\nThe date stored in a is originally ";

a.showDate(); // display the original date

a = b; // assign b's value to a

cout << "\nAfter assignment the date stored in a is ";

a.showDate(); // display a's values

cout << endl;

return 0;

}

601Chapter 11
Assignment

Copy Constructors
Although assignment looks similar to initialization, it’s worth noting that they are entirely
different operations. In C++, an initialization occurs every time a new object is created. In an
assignment, no new object is created—the value of an existing object is simply changed.
Figure 11.1 illustrates this difference.

One type of initialization that closely resembles assignment occurs in C++ when one
object is initialized by using another object of the same class. For example, in the declaration

Date b = a;

or its equivalent form

Date b(a);

the b object is initialized to the previously declared a object. The constructor performing this
type of initialization is called a copy constructor, and if you don’t declare one, the compiler
constructs it for you. The compiler’s default copy constructor performs similarly to the default
assignment operator by doing a memberwise assignment between objects. Therefore, for the
declaration Date b = a;, the default copy constructor sets b’s month, day, and year
values to their counterparts in a.

As with default assignment operators, default copy constructors work just fine unless the
class contains pointer data members. Before considering the possible complications with
pointer data members and how to handle them, seeing how to construct your own copy
constructor is helpful.

Copy constructors, like all class functions, are declared in the class declaration section and
defined in the class implementation section. The declaration of a copy constructor has this
general form:

ClassName(const ClassName&);

As with all constructors, the function name must be the class name. Also, the argument
is a reference to the class, which is a characteristic of all copy constructors.2 To ensure that
the argument isn’t altered inadvertently, it’s always specified as a constant. Applying this
general form to the Date class, a copy constructor can be declared as follows:

Date(const Date&);

2A copy constructor is often defined as a constructor whose first argument is a reference to its class type, with any additional arguments being
defaults.

c = a;

Date c = a;Type definition Initialization

Assignment

Figure 11.1 Initialization and assignment

602 Class Functions and Conversions

The actual implementation of this constructor, if it were to perform the same member-
wise assignment as the default copy constructor, would take this form:

Date:: Date(const Date& olddate)
{

month = olddate.month;
day = olddate.day;
year = olddate.year;

}

As with the assignment operator, using a reference argument for the copy constructor is no
accident: The reference argument makes it possible to use a simple notation in the function
body. Program 11.3 contains this copy constructor in the context of a complete program.

Program 11.3

#include <iostream>

#include <iomanip>

using namespace std;

// class declaration section

class Date

{

private:

int month;

int day;

int year;

public:

Date(int = 7, int = 4, int = 2005); // constructor

Date(const Date&); // copy constructor

void showDate(); // member function to display a date

};

// class implementation section

Date::Date(int mm, int dd, int yyyy)

{

month = mm;

day = dd;

year = yyyy;

}

Date::Date(const Date& olddate)

{

month = olddate.month;

day = olddate.day;

year = olddate.year;

}

�

603Chapter 11
Assignment

Program 11.3 produces the following output:

The date stored in a is 04/01/07

The date stored in b is 12/18/08

The date stored in c is 04/01/07

The date stored in d is 12/18/08

As this output shows, the copy constructor has initialized c’s and d’s data members to a’s
and b’s values. Although the copy constructor in Program 11.3 adds nothing to the
functionality of the compiler’s default copy constructor, it does give you the fundamentals of
defining your own copy constructors.

void Date::showDate()

{

cout << setfill('0')

<< setw(2) << month << '/'

<< setw(2) << day << '/'

<< setw(2) << year % 100;

return;

}

int main()

{

Date a(4,1,2007), b(12,18,2008); // use the constructor

Date c(a); // use the copy constructor

Date d = b; // use the copy constructor

cout << "\nThe date stored in a is ";

a.showDate();

cout << "\nThe date stored in b is ";

b.showDate();

cout << "\nThe date stored in c is ";

c.showDate();

cout << "\nThe date stored in d is ";

d.showDate();

cout << endl;

return 0;

}

604 Class Functions and Conversions

Base/Member Initialization3

Except for the reference names olddate and newdate, a comparison of Program 11.3’s
copy constructor to Program 11.2’s assignment operator shows them to be essentially the
same function. The difference is that the copy constructor first creates an object’s data
members before using assignment to specify member values. Therefore, the copy constructor
doesn’t perform a true initialization, but a creation followed by assignment.

A true initialization has no reliance on assignment and is possible in C++ by using a
base/member initialization list. This list can be applied only to constructor functions and can
be written in two ways. The first way is inside a class’s declaration section in this form:

ClassName(argument list) : list of data members(initializing values) {}

Here’s an example of a default constructor performing true initialization in this form:

// class declaration section
public:
Date(int mo = 4, int da = 1, int yr = 2006) : month(mo), day(da), year(yr) {}

The second way is to declare a function prototype with defaults in the class declaration
section followed by the initialization list in the class implementation section. For the Date
constructor, it takes this form:

// class declaration section
public:
Date(int = 4, int = 1, int = 2006); // prototype with defaults

// class implementation section
Date::Date(int mo, int da, int yr) : month(mo), day(da), year(yr) {}

3The material in this section is presented for completeness only and can be omitted without loss of subject continuity.

Point of Information

Values and Identities
Apart from object behaviors, a characteristic feature of objects shared with variables is
they always have a unique identity. An object’s identity is what permits distinguishing
one object from another. This feature isn’t true of a value, such as the number 5,
because all occurrences of 5 are indistinguishable from one another. Therefore, values
are not considered objects in object-oriented programming languages, such as C++.

Another difference between an object and a value is that a value can never be a
container whose value can change, but an object clearly can. A value is simply an
entity that stands for itself.

Now consider a string such as "Chicago". As a string, it’s a value. However,
because Chicago could also be a specific and identifiable object of the class City, the
context in which the name is used is important. If the string "Chicago" is assigned to
an object’s name attribute, for example, it reverts to being a value.

605Chapter 11
Assignment

Notice that in both forms, the body of the constructor function is empty. This isn’t a
requirement, and the body can include any subsequent operations you want the constructor to
perform. The interesting feature of this type of constructor is that it clearly differentiates
between the initialization tasks performed in the member initialization list (between the colon
and the braces) and any subsequent assignments in the function’s body. Although you won’t be
using this type of initialization, it’s required whenever a const class instance variable is used.

EXERCISES 11.1

1. (For Review) Describe the difference between assignment and initialization.

2. (Program) a. Construct a class named Time containing three integer data members
named hours, mins, and secs used to store hours, minutes, and seconds. The member
functions should include a constructor that provides default values of 0 for each data
member, a display function that prints an object’s data values, and an assignment operator
that performs a memberwise assignment between two Time objects.

b. Include the Time class developed in Exercise 2a in a working C++ program that cre-
ates and displays two Time objects; the second object is assigned the values of the
first object.

3. (General Math) a. Construct a class named Complex containing two double-precision
data members named real and imag, used to store the real and imaginary parts of a
complex number. The member functions should include a constructor that provides
default values of 0 for each data member, a display function that prints an object’s data
values, and an assignment operator that performs a memberwise assignment between two
Complex objects.

b. Include the class written for Exercise 3a in a working C++ program that creates and
displays the values of two Complex objects; the second object is assigned the values
of the first object.

4. (Program) a. Construct a class named Car containing the following three data members:
a double-precision variable named engineSize, a character variable named bodyStyle,
and an integer variable named colorCode. The member functions should include a con-
structor that provides default values of 0 for each numeric data member and an X for each
character variable; a display function that prints the engine size, body style, and color
code; and an assignment operator that performs a memberwise assignment between two
Car objects for each instance variable.

b. Include the class written for Exercise 4a in a working C++ program that creates and
displays two Car objects; the second object is assigned the values of the first object.

606 Class Functions and Conversions

11.2 Additional Class Features

This section covers additional features of classes, including defining the scope of a class,
creating static class members, and granting access privileges to nonmember functions. Each
of these topics can be read independently of the others.

Class Scope
You learned about local and global scope in Section 6.5. As you saw, the scope of a variable
defines the portion of a program where the variable can be accessed. For local variables, this
scope is defined by any block inside a brace pair, {}. This block includes both the function
body and any internal subblocks. Additionally, all parameters of a function are considered
local function variables.

Global variables can be accessed from their point of declaration throughout the remaining
portion of the file containing them, with three exceptions:

• If a local variable has the same name as a global variable, the global variable can be
accessed only in the local variable’s scope by using the scope resolution operator, ::.

• A global variable’s scope can be extended into another file by using the keyword
extern.

• The same global name can be reused in another file to define a separate and distinct
variable by using the keyword static. Static global variables are unknown outside
their files.

In addition to local and global scopes, each class defines an associated class scope. That
is, names of data and function members are local to the scope of their class. Therefore, if a
global variable name is reused in a class, the global variable is hidden by the class data
member in the same way that a local function variable hides a global variable of the same
name. Similarly, member function names are local to the class they’re declared in and can be
used only by objects declared for the class. Additionally, local function variables hide the
names of class data members having the same name. Figure 11.2 illustrates the scope of
variables and functions for the following declarations:

double rate; // global scope
// class declaration section
class Test
{

private:
double amount, price, total; // class scope

public:
double extend(double, double); // class scope

};

Static Class Members
As each class object is created, it gets its own block of memory for its data members. In some
cases, however, it’s convenient for every instantiation of a class to share the same memory
location for a specific variable. For example, in a class consisting of employee payment
information, each employee is subject to the same social security tax rate. Clearly, you could
make the tax rate a global variable, but this method isn’t very safe. The data could be

607Chapter 11
Additional Class Features

modified anywhere in the program or could conflict with an identical variable name in a
function, and it certainly violates C++’s principle of data hiding.

C++ handles this situation by declaring a class variable to be static. Static class data
members share the same storage space for all class objects; in this way, they act as global
variables for the class and provide a means of communication between objects.

C++ requires declaring static variables in the class declaration section. To create these
variables, the declared static variable must be redeclared, with or without an initial value
(which defines the variable, in contrast to a formal declaration statement that doesn’t allocate
physical storage for the variable) and outside the class declaration section. For example, take
a look at this class declaration:

//class declaration section
class Employee
{

private:
static double taxRate;
int idNum;

public:
Employee(int); //constructor
void display();

};

The static variable taxRate is defined and initialized by using a statement such as the
following:

double Employee::taxRate = 0.07; // this defines taxRate

In this statement, the scope resolution operator, ::, is used to identify taxRate as a
member of the class Employee, and the keyword static is not included. Program 11.4
uses this definition in the context of a complete program.

double Test::extend(double amt, double pr)
{

amount= amt;
price = pr;
total = rate * amount * price;

}

Local (Block)
Scope

Class
scope

Local (block)
scope

Local (Block)
Scope
Class
scope

Local (Block)
Scope

Global (file)
scope

Local (Block)
Scope

Global (file)
scope

Local (Block)
Scope
Class
scope

Figure 11.2 Examples of scopes

608 Class Functions and Conversions

The output produced by Program 11.4 is as follows:

Employee number 11122 has a tax rate of 0.07

Employee number 11133 has a tax rate of 0.07

Program 11.4

#include <iostream>

using namespace std;

// class declaration section

class Employee

{

private:

static double taxRate;

int idNum;

public:

Employee(int = 0); // constructor

void display(); // access function

};

// static member definition

double Employee::taxRate = 0.07; // this defines taxRate

// class implementation section

Employee::Employee(int num)

{

idNum = num;

}

void Employee::display()

{

cout << "Employee number " << idNum

<< " has a tax rate of " << taxRate << endl;

return;

}

int main()

{

Employee emp1(11122), emp2(11133);

emp1.display();

emp2.display();

return 0;

}

609Chapter 11
Additional Class Features

Although it might seem that the initialization of taxRate is global, it is not. After the
definition is made, any other definition results in an error. Therefore, the actual definition of
a static member remains the responsibility of the class creator, and a compiler error occurs if
this definition is omitted.

Figure 11.3 illustrates the storage sharing produced by the static data member and the
objects created in Program 11.4.

In addition to static data members, static member functions can be created. These
functions apply to a class as a whole instead of to class objects and can access only static data
members and other static member functions of the class. Program 11.5 includes an example
of a static member function.

idNumidNum

taxRate

emp1 emp2

(Local to object)(Local to object)

(Global to class)

Figure 11.3 Sharing the static data member taxRate

Program 11.5

#include <iostream>

using namespace std;

// class declaration section

class Employee

{

private:

static double taxRate;

int idNum;

�

610 Class Functions and Conversions

Program 11.5 produces the following output:

The static tax rate is 0.07

Employee number 11122 has a tax rate of 0.07

Employee number 11133 has a tax rate of 0.07

public:

Employee(int = 0); // constructor

void display(); // access function

static void disp(); // static function

};

// static member definition

double Employee::taxRate = 0.07;

// class implementation section

Employee::Employee(int num)

{

idNum = num;

}

void Employee::display()

{

cout << "Employee number " << idNum

<< " has a tax rate of " << taxRate << endl;

return;

}

void Employee::disp()

{

cout << "The static tax rate is " << taxRate << endl;

return;

}

int main()

{

Employee::disp(); // call the static functions

Employee emp1(11122), emp2(11133);

emp1.display();

emp2.display();

return 0;

}

611Chapter 11
Additional Class Features

Friend Functions
The only method you currently have for accessing and manipulating a class’s private variables
is through the class’s member functions. You can view this arrangement as illustrated in
Figure 11.4a. At times, however, providing access to selected nonmember functions is useful.

The procedure for providing this external access is simple: The class maintains an
approved list of nonmember functions that are granted the same privileges as its member
functions. The nonmember functions in the list are called friend functions, and the list is
referred to as a friends list.

Figure 11.4b shows using a friends list for nonmember access. Any function attempting
access to an object’s private variables is first checked against the friends list: If the function
is on the list, access is approved; otherwise, access is denied.

From a coding standpoint, the friends list is simply a series of function prototype
declarations preceded with the keyword friend and included in the class declaration
section. For example, if the addreal() and addimag() functions are to be allowed access
to private members of the Complex class, the following prototypes must be included in
Complex’s class declaration section:

friend double addreal(Complex&, Complex&);
friend double addimag(Complex&, Complex&);

private class
data members

class
member functions

Figure 11.4a Direct access provided to member functions

private class
data members

class
member
functions

friends
list

A nonmember
function can gain
access only if it’s
on the friends list

Figure 11.4b Access provided to nonmember functions

612 Class Functions and Conversions

This friends list consists of two declarations. The prototypes indicate that each function
returns a floating-point number and expects two references to objects of type Complex as
arguments. Program 11.6 includes these two friend declarations in a complete program.

Program 11.6

#include <iostream>

#include <cmath>

using namespace std;

// class declaration section

class Complex

{

// friends list

friend double addreal(Complex&, Complex&);

friend double addimag(Complex&, Complex&);

private:

double real;

double imag;

public:

Complex(double = 0, double = 0); // constructor

void display();

};

// class implementation section

Complex::Complex(double rl, double im)

{

real = rl;

imag = im;

}

void Complex::display()

{

char sign = '+';

if(imag < 0) sign = '-';

cout << real << sign << abs(imag) << 'i';

return;

}

�

613Chapter 11
Additional Class Features

The output produced by Program 11.6 is the following:

The first complex number is 3.2+5.6i

The second complex number is 1.1-8.4i

The sum of these two complex numbers is 4.3-2.8i

In reviewing Program 11.6, notice these four points:

• Because friends are not class members, they aren’t affected by the access section in
which they’re declared—they can be declared anywhere in the declaration section. The
convention Program 11.6 follows is to include all friend declarations immediately
following the class header.

• The keyword friend (like the keyword static) is used only in the class
declaration, not in the actual function definition.

// friend implementations

double addreal(Complex &a, Complex &b)

{

return(a.real + b.real);

}

double addimag(Complex &a, Complex &b)

{

return(a.imag + b.imag);

}

int main()

{

Complex a(3.2, 5.6), b(1.1, -8.4);

double re, im;

cout << "\nThe first complex number is ";

a.display();

cout << "\nThe second complex number is ";

b.display();

re = addreal(a,b);

im = addimag(a,b);

Complex c(re,im); // create a new Complex object

cout << "\n\nThe sum of these two complex numbers is ";

c.display();

return 0;

}

614 Class Functions and Conversions

• Because a friend function is intended to have access to an object’s private variables,
at least one of the friend’s arguments should be a reference to an object of the class
that made it a friend.

• As Program 11.6 shows, it’s the class that grants friend status to a function, not the
other way around. A function can never confer friend status on itself because doing
so violates the concepts of data hiding and access provided by a class.

EXERCISES 11.2

1. (Modify) a. Rewrite Program 11.5 to include an integer static variable named numemps.
This variable should act as a counter that’s initialized to 0 and incremented by the class
constructor each time a new object is declared. Rewrite the static function disp() to
display this counter’s value.

b. Test the program written for Exercise 1a. Have the main() function call disp()
after each Employee object is created.

2. (General Math) a. Construct a class named Circle containing two integer variables
named xCenter and yCenter and a double-precision variable named radius. Addi-
tionally, the class should contain a static data member named scaleFactor. The
xCenter and yCenter values represent a circle’s center point, radius represents the
circle’s actual radius, and scaleFactor represents a scale factor used to scale the circle
to fit on a variety of display devices.

b. Include the class written for Exercise 2a in a working C++ program.

3. (Debug) a. State whether the following three statements in Program 11.6

re = addreal(a,b);
im = addimag(a,b);
Complex c(re,im); // create a new complex object

could be replaced by this single statement:

Complex c(addreal(a,b), addimag(a,b));

b. Verify your answer to Exercise 3a by running Program 11.6 with the suggested
replacement statement.

4. (Modify) a. Rewrite the program written for Exercise 2a, but include a friend function
that multiplies an object’s radius by a static scaleFactor and then displays the actual
radius value and the scaled value.

b. Test the program written for Exercise 4a.

5. (Modify) Rewrite Program 11.6 to have only one friend function named addComplex().
This function should accept two Complex objects and return a Complex object. The
real and imaginary parts of the returned object should be the sum of the real and imagi-
nary parts of the two objects passed to addComplex().

615Chapter 11
Additional Class Features

6. (General Math) a. Construct a class named Coord containing two double-precision vari-
ables named xval and yval, used to store the x and y values of a point in rectangular
coordinates. The class functions should include constructor and display functions and a
friend function named convPol(). The convPol() function should accept two double-
precision numbers representing a point in polar coordinates and convert them into rectan-
gular coordinates. For conversion from polar to rectangular coordinates, use these
formulas:

x = r cosθ
y = r sinθ
b. Include the class written for Exercise 6a in a working C++ program.

11.3 Operator Functions

You constructed a simple assignment operator in Section 11.1. In this section, you extend this
capability and see how to broaden C++’s built-in operators to work with class objects. As
you’ll discover, class operators are also member or friend functions.

The only symbols permitted for user-defined purposes are the C++ built-in symbols
listed in Table 11.1. These symbols can be adopted for class use with no limitation in their
meaning by making each operation a function that can be overloaded like any other
function.4 The operation of the symbols in Table 11.1 can be redefined as you see fit for your
classes, subject to the following restrictions:

• Symbols not in Table 11.1 can’t be redefined. For example, the ., ::, and ?:
symbols can’t be redefined.

• New operator symbols can’t be created. For example, because %% is not an operator
in C++, it can’t be defined as a class operator.

• Neither the precedence nor the associativity of C++’s operators can be modified.
Therefore, you can’t give the addition operator a higher precedence than the
multiplication operator.

• Operators can’t be redefined for C++’s built-in types.
• A unary C++ operator can’t be changed to a binary operator, and a binary operator

can’t be changed to a unary operator.
• The operator must be a member of a class or defined to take at least one class

member as an operand.

Table 11.1 Operators Available for Class Use

Operator Description
() Function call
[] Array element
-> Structure member pointer reference
new Dynamic allocation of memory

4The only limitation is that the operator’s syntax can’t be changed. Therefore, a binary operator must remain binary, and a unary operator must
remain unary. In this syntax restriction, an operator symbol can be used to produce any operation, whether or not the operation is consistent with
the symbol’s accepted use. For example, you could redefine the addition symbol to provide multiplication. Clearly, this redefinition violates the
intent of making these symbols available, so care has been taken to redefine each symbol in a manner consistent with its accepted use.

616 Class Functions and Conversions

Table 11.1 Operators Available for Class Use (continued)

Operator Description
delete Dynamic deallocation of memory
++ Increment
-- Decrement
- Unary minus
! Logical negation
~ Ones complement
* Indirection
* Multiplication
/ Division
% Modulus (remainder)
+ Addition
- Subtraction
<< Left shift
>> Right shift
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to
!= Not equal to
&& Logical AND
|| Logical OR
& Bit-by-bit AND
^ Bit-by-bit exclusive OR
| Bit-by-bit inclusive OR
=
+= -= *=
/= %= &=
^= |=
<<= >>=

Assignment

, Comma

The first step in providing a class with operators from Table 11.1 is to decide which
operations make sense for the class and how they should be defined. As an example, you’ll
continue building on the Date class introduced previously. For this class, a small, meaningful
set of class operations is defined.

Clearly, the addition of two dates is not meaningful. The addition of a date and an
integer, however, does make sense if the integer is taken as the number of days to be added
to the date. Likewise, subtracting an integer from a date makes sense. Also, the subtraction

617Chapter 11
Operator Functions

of two dates is meaningful if you define the difference to mean the number of days between
the two dates. Similarly, it makes sense to compare two dates and determine whether the
dates are equal or one date occurs before or after another date. Now see how these operations
can be implemented with C++’s operator symbols.

A user-defined operation is created as a function that redefines C++’s built-in operator
symbols for class use. Functions that define operations on class objects and use C++’s built-in
operator symbols are referred to as operator functions. Operator functions are declared and
implemented in the same manner as all member functions, with one exception: It’s the
function name that connects the operator symbol to the operation defined by the function.
An operator function’s name is always in the form operator<symbol>, where <symbol> is one of
the operators in Table 11.1. For example, operator+ is the name of the addition function,
and operator== is the name of the equal-to comparison function.

After the function name is selected, the process of writing the function simply amounts
to having it accept inputs and produce the correct returned value.5 For example, to compare
two Date objects for equality, you select C++’s equality operator, and the function name
becomes operator==. You want the comparison operation to accept two Date objects,
compare them, and return an integer value indicating the result of the comparison: true for
equality and false for inequality. As a member function, a suitable prototype to include in the
class declaration section is as follows:

bool operator==(Date&);

This prototype indicates the function is named operator==, it returns a Boolean value,
and it accepts a reference to a Date object.6 Only one Date object is required because the
second Date object is the object that calls the function. Now see how to write the function
definition to include in the class implementation section. For the Date class, the following
definition is suitable:

bool Date::operator==(Date& Date2)
{

if(day == date2.day && month == date2.month && year == date2.year)
return true;

else
return false;

}

After this function has been defined, it can be called by using the same syntax as for
C++’s built-in types. For example, if a and b are objects of type Date, the expression
if (a == b) is valid. Program 11.7 includes this if statement as well as this operator
function’s declaration and definition in the context of a complete program.

5As noted previously, an operator function can be redefined to perform any operation. Good programming practice, however, dictates writing a
function to actually perform the operation implied by the function name.
6The prototype bool operator==(Date) works, too. Passing a reference, however, is preferable to passing an object because it reduces the
function call’s overhead. Overhead is reduced because passing an object means a copy of the object must be made for the called function, but
passing a reference gives the function access to the object whose address is passed.

618 Class Functions and Conversions

Program 11.7

#include <iostream>

using namespace std;

// class declaration section

class Date

{

private:

int month;

int day;

int year;

public:

Date(int = 7, int = 4, int = 2005); // constructor

bool operator==(Date &); // declare the operator== function

};

// class implementation section

Date::Date(int mm, int dd, int yyyy)

{

month = mm;

day = dd;

year = yyyy;

}

bool Date::operator==(Date &date2)

{

if(day == date2.day && month == date2.month && year == date2.year)

return true;

else

return false;

}

int main()

{

Date a(4,1,2007), b(12,18,2008), c(4,1,2007); // declare 3 objects

if (a == b)

cout << "Dates a and b are the same." << endl;

else

cout << "Dates a and b are not the same." << endl;

if (a == c)

cout << "Dates a and c are the same." << endl;

else

cout << "Dates a and c are not the same." << endl;

return 0;

}

619Chapter 11
Operator Functions

The following output is produced by Program 11.7:

Dates a and b are not the same.

Dates a and c are the same.

The first new feature shown in Program 11.7 is the declaration and implementation of the
operator== function. Except for its name, this operator function is constructed in the same
manner as any other member function: It’s declared in the class declaration section and
defined in the class implementation section.

The second new feature is how the function is called. Operator functions can be called
by using their associated symbols instead of the way other functions are called. Because
operator functions are true functions, however, the traditional method of calling them can also
be used—specifying the function name and including appropriate arguments. Therefore,
instead of being called by the expression a == b in Program 11.7, the call
a.operator==(b) could have been used.

Now see how to create another operator for the Date class—an addition operator. As
before, creating this operator requires specifying three items:

• The name of the operator function
• The processing the function is to perform
• The data type, if any, the function is to return

Clearly, for addition you use the operator function named operator+. Having selected
the function’s name, you must now determine what you want this function to do with Date
objects. As noted previously, adding two dates makes no sense. Adding an integer to a date
is meaningful, however, when the integer represents the number of days before or after a
given date. The sum of an integer and a Date object is simply another Date object, which
should be returned by the addition operation. Therefore, the following prototype is suitable
for the addition function:

Date operator+(int);

This prototype, included in the class declaration section, specifies adding an integer to
a class object and returning a Date object. Therefore, if a is a Date object, the function call
a.operator+(284), or its more common alternative, a + 284, should cause the number
284 to be added to a’s date value correctly. Next, you must construct the function to
accomplish this task.

Constructing the function requires selecting a date convention first. For simplicity, adopt
the financial date convention that considers each month to consist of 30 days and each year
to consist of 360 days. Using this convention, the function first adds an integer number of
days to the Date object’s day value, and then adjusts the resulting day value to lie in the

620 Class Functions and Conversions

range 1 to 30 and the month value to lie in the range 1 to 12. The following function
accomplishes these tasks:

Date Date::operator+(int days)
{

Date temp; // a temporary Date to store the result

temp.day = day + days; // add the days
temp.month = month;
temp.year = year;
while (temp.day > 30) // now adjust the months
{

temp.month++;
temp.day -= 30;

}
while (temp.month > 12) // adjust the years
{

temp.year++;
temp.month -= 12;

}
return temp; // the values in temp are returned

}

The important feature to notice is the use of the temp object. Its purpose is to ensure
that none of the function’s arguments, which become the operator’s operands, are altered. To
understand this point, consider a statement such as b = a + 284; that uses this operator
function, where a and b are Date objects. This statement should never modify a’s value.
Rather, the expression a + 284 should yield a Date value that’s then assigned to b. The
result of the expression is, of course, the temp Date object returned by the operator+()
function. Program 11.8 uses this function in the context of a complete program.

Program 11.8

#include <iostream>

#include <iomanip>

using namespace std;

// class declaration section

class Date

{

private:

int month;

int day;

int year;

public:

Date(int = 7, int = 4, int = 2005); // constructor

Date operator+(int); // overload the + operator

void showDate(); // member function to display a date

};

�

621Chapter 11
Operator Functions

// class implementation section

Date::Date(int mm, int dd, int yyyy)

{

month = mm;

day = dd;

year = yyyy;

}

Date Date::operator+(int days)

{

Date temp; // a temporary date to store the result

temp.day = day + days; // add the days

temp.month = month;

temp.year = year;

while (temp.day > 30) // now adjust the months

{

temp.month++;

temp.day -= 30;

}

while (temp.month > 12) // adjust the years

{

temp.year++;

temp.month -= 12;

}

return temp; // the values in temp are returned

}

void Date::showDate()

{

cout << setfill('0')

<< setw(2) << month << '/'

<< setw(2) << day << '/'

<< setw(2) << year % 100;

return;

}

int main()

{

Date a(4,1,2007), b; // declare two objects

�

622 Class Functions and Conversions

cout << "The initial date is ";

a.showDate();

cout << endl;

b = a + 284; // add in 284 days = 9 months and 14 days

cout << "The new date is ";

b.showDate();

cout << endl;

return 0;

}

Program 11.8 produces the following output:

The initial date is 04/01/07

The new date is 01/15/08

Operator Functions as Friends
The operator functions in Programs 11.7 and 11.8 have been constructed as class members.
An interesting feature of operator functions is that, except for the operator functions =, (),
[], and ->, they can also be written as friend functions. For example, if the operator+()
function used in Program 11.8 is written as a friend, the following is a suitable declaration
section prototype:

friend Date operator+(Date& , int);

Notice that the friend version contains a reference to a Date object that isn’t in the
member function version. In all cases, the friend version of a member operator function must
contain an additional class reference that the member function doesn’t require.7 Table 11.2
lists this equivalence for both unary and binary operators.

Table 11.2 Operator Function Argument Requirements

Operator Member Function Friend Function
Unary 1 implicit 1 explicit
Binary 1 implicit and 1 explicit 2 explicit

Program 11.8’s operator+() function, written as a friend function, is as follows:

Date operator+(Date& op1, int days)
{

Date temp; // a temporary Date to store the result

temp.day = op1.day + days; // add the days
temp.month = op1.month;
temp.year = op1.year;
while (temp.day > 30) // now adjust the months

�

7The extra argument is needed to identify the correct object. This argument isn’t necessary with a member function because the member
functions “knows” which object it’s operating on. The mechanism of this “knowing” is supplied by an implied member function argument
named this.

623Chapter 11
Operator Functions

{
temp.month++;
temp.day -= 30;

}
while (temp.month > 12) // adjust the years
{

temp.year++;
temp.month -= 12;

}
return temp; // the values in temp are returned

}

The only difference between this version and the member version is the explicit use of
a Date argument named op1 (an arbitrary name choice) in the friend version. Therefore, in
the friend function’s body, the first three assignment statements reference op1’s data
members as op1.day, op1.month, and op1.year, whereas the member function simply
refers to its arguments as day, month, and year.

In determining whether to overload a binary operator as a friend or member operator
function, follow this guideline: Friend functions are more appropriate for binary functions
that don’t modify either of their operands (such as ==, +, -, and so forth), and member
functions are more appropriate for binary functions that modify operands (such as =, +=, and
-=, and so forth).

EXERCISES 11.3

1. (Program) a. Define a greater than relational operator function named operator>()
that can be used with the Date class declared in Program 11.7.

b. Define a less than operator function named operator<() that can be used with the
Date class declared in Program 11.7.

c. Include the operator functions written for Exercises 1a and 1b in a working C++
program.

2. (Program) a. Define a subtraction operator function named operator-() that can be
used with the Date class defined in Program 11.7. The subtraction should accept a long
integer argument representing the number of days to be subtracted from an object’s date
and return a Date. In doing the subtraction, assume all months consist of 30 days and all
years consist of 360 days. Additionally, an end-of-month adjustment should be made, if
necessary, that converts any resulting day of 31 to a day of 30, except if the month is
February. If the resulting month is February and the day is 29, 30, or 31, it should be
changed to 28.

b. Define another subtraction operator function named operator-() that can be used
with the Date class defined in Program 11.7. The subtraction should yield a long
integer representing the difference in days between two dates. In calculating the day
difference, use the financial date convention that all months have 30 days and all
years have 360 days.

c. Include the overloaded operators written for Exercises 2a and 2b in a working C++
program.

624 Class Functions and Conversions

3. (Debug) a. Determine whether the following addition operator function produces the
same result as the function in Program 11.8:

Date Date::operator+(int days) // return a Date object
{

Date temp;

temp.day = day + days; // add the days in
temp.month = month + int(day/30); // determine total months
temp.day = temp.day % 30; // determine actual day
temp.year = year + int(temp.month/12); // determine total years
temp.month = temp.month % 12; // determine actual month
return temp;

}

b. Verify your answer to Exercise 3a by including the function in a working C++
program.

4. (Modify) a. Rewrite the equality relational operator function in Program 11.7 as a friend
function.

b. Verify the operation of the friend operator function written for Exercise 4a by includ-
ing it in a working C++ program.

5. (Modify) a. Construct an addition operator for the Complex class declared in Program 11.6.
It should be a member function that adds two complex numbers and returns a complex
number.

b. Add a member multiplication operator function to the class used in Exercise 5a that
multiplies two complex numbers and returns a complex number.

c. Verify the operation of the operator functions written for Exercises 5a and 5b by
including them in a working C++ program.

6. (Modify) a. Rewrite the addition operator function in Program 11.8 to account for the
actual days in a month, omitting leap years. (Note: This function requires an array to store
the days in each month.)

b. Verify the operation of the operator function written for Exercise 6a by including it in
a working C++ program.

11.4 Data Type Conversions

Sections 3.1 and 3.3 described the conversion from one built-in data type to another. With the
introduction of user-defined data types, the possibilities for conversion between data types
expand to the following:

• Conversion from built-in type to built-in type
• Conversion from built-in type to class type
• Conversion from class type to built-in type
• Conversion from class type to class type

The first conversion is handled by C++’s implicit conversion rules or its explicit cast
operator. The second conversion is made by using a type conversion constructor. The third

625Chapter 11
Data Type Conversions

and fourth conversions are made by using a conversion operator function. This section
explains how to perform each conversion.

Built-in to Built-in Conversion
Sections 3.1 and 3.3 already explained conversion from one built-in data type to another. To
review briefly, this type of conversion is implicit or explicit. An implicit conversion occurs in
C++’s operations. For example, when a floating-point value is assigned to an integer variable,
only the integer portion of the value is stored. The conversion is implied by the operation
and performed automatically by the compiler.

An explicit conversion occurs when a cast is used. In C++, two cast notations exist. The
older C notation has the form (dataType)expression, and the newer C++ notation has
the function-like form dataType(expression). For example, both the expressions
(int)24.32 and int(24.32) cause the double-precision value 24.32 to be truncated to
the integer value 24.

Built-in to Class Conversion
User-defined casts for converting a built-in type to a class type are created by using
constructor functions. A constructor whose first argument is not a member of its class and
whose remaining arguments, if any, have default values is a type conversion constructor. If the
first argument of a type conversion constructor is a built-in data type, the constructor can be
used to cast the built-in data type to a class object. Clearly, one restriction of these functions
is that, as constructors, they must be member functions.

Although this type of cast occurs when the constructor is invoked to initialize an object,
it’s actually a more general cast than might be evident at first glance. The reason is that a
constructor function can be called explicitly after all objects have been declared, whether or
not it was called previously as part of an object’s declaration. Before exploring this point
further, first see how to construct a type conversion constructor. Then you see how to use it
as a cast independent of its initialization purpose.

The cast constructed here converts a long integer into a Date object, which consists of
dates in the form month/day/year and uses the now familiar Date class. The long integer is
used to represent dates in the form year * 10000 + month * 100 + day. For example,
the date 12/31/2000 becomes the long integer 20001231. Dates represented in this fashion are
useful for two reasons: First, this representation permits storing a date as a single integer, and
second, dates are in numerically increasing date order, which makes sorting easy. For
example, the date 01/03/2002, which occurs after 12/31/2001, becomes the integer 20020103,
which is larger than 20011231. Because integers representing dates can exceed the size of a
normal integer, these integers are always declared as longs.

A suitable constructor function for converting a long integer date to a date stored as a
month, day, and year is as follows:

// type conversion constructor from long to Date
Date::Date(long findate)
{

year = int(findate/10000.0);
month = int((findate - year * 10000.0)/100.0);
day = int(findate - year * 10000.0 - month * 100.0);

}

Program 11.9 uses this type conversion constructor as an initialization function at
declaration time and as an explicit cast later in the program.

626 Class Functions and Conversions

Program 11.9

#include <iostream>

#include <iomanip>

using namespace std;

// class declaration section

class Date

{

private:

int month, day, year;

public:

Date(int = 7, int = 4, int = 2005); // constructor

Date(long); // type conversion constructor

void showDate();

};

// class implementation section

// constructor

Date::Date(int mm, int dd, int yyyy)

{

month = mm;

day = dd;

year = yyyy;

}

// type conversion constructor from long to Date

Date::Date(long findate)

{

year = int(findate/10000.0);

month = int((findate - year * 10000.0)/100.0);

day = int(findate - year * 10000.0 - month * 100.0);

}

// member function to display a date

void Date::showDate()

{

cout << setfill('0')

<< setw(2) << month << '/'

<< setw(2) << day << '/'

<< setw(2) << year % 100;

return;

}

�

627Chapter 11
Data Type Conversions

The following output is produced by Program 11.9:

Dates a, b, and c are 07/04/05, 12/25/06, and 04/01/07.

Date a is now 01/03/08.

The change in a’s date value is produced by the assignment expression
a = Date(20080103L);, which uses a type conversion constructor to perform the cast
from long to Date.

Class to Built-in Conversion
Conversion from a user-defined data type to a built-in data type is accomplished by using a
conversion operator function, which is a member operator function having the name of a
built-in data type or class. When the operator function has a built-in data type name, it’s used
to convert from a class to a built-in data type. For example, a conversion operator function
for casting a class object to a long integer has the name operator long(). The operator
function’s name indicates that a conversion to a long takes place. If this function were part
of a Date class, it would be used to cast a Date object to a long integer. This use is shown
in Program 11.10.

int main()

{

Date a, b(20061225L), c(4,1,2007); // declare 3 objects and

// initialize 2 of them

cout << "Dates a, b, and c are ";

a.showDate();

cout << ", ";

b.showDate();

cout << ", and ";

c.showDate();

cout << ".\n";

a = Date(20080103L); // cast a long to a Date

cout << "Date a is now ";

a.showDate();

cout << ".\n";

return 0;

}

628 Class Functions and Conversions

Program 11.10

#include <iostream>

#include <iomanip>

using namespace std;

// class declaration section

class Date

{

private:

int month, day, year;

public:

Date(int = 7, int = 4, int = 2005); // constructor

operator long(); // conversion operator function

void showDate();

};

// class implementation section

// constructor

Date::Date(int mm, int dd, int yyyy)

{

month = mm;

day = dd;

year = yyyy;

}

// conversion operator function converting from Date to long

Date::operator long() // must return a long

{

long yyyymmdd;

yyyymmdd = year * 10000 + month * 100 + day;

return(yyyymmdd);

}

// member function to display a date

void Date::showDate()

{

cout << setfill('0')

<< setw(2) << month << '/'

<< setw(2) << day << '/'

<< setw(2) << year % 100;

return;

}

�

629Chapter 11
Data Type Conversions

Program 11.10 produces the following output:

a's date is 04/01/07

This date, as a long integer, is 20070401

As this output shows, the change in a’s date value to a long integer is produced by the
assignment expression b = a. This assignment, which could also have been written as
b = long(a), calls the conversion operator function long() to perform the cast from Date
to long. In general, because explicit conversion more clearly documents what’s happening,
its use is preferred to implicit conversion.

Notice that the conversion operator has no explicit argument or return type, which is true
of all conversion operators. The implicit argument is always an object of the class being cast
from, and the return type is implied by the function’s name. Additionally, as stated
previously, a conversion operator function must be a member function.

Class to Class Conversion
Converting from a class data type to a class data type is done in the same manner as a
conversion from a class to a built-in data type—by using a conversion operator function. In
this case, however, the operator function uses the class name being converted to instead of
a built-in data name. For example, if you have two classes named Date and Intdate, the
operator function operator Intdate() could be placed in the Date class to convert from
a Date object to an Intdate object. Similarly, the operator function Date() could be
placed in the Intdate class to convert from an Intdate to a Date. Notice that as before,
in converting from a class data type to a built-in data type, the operator function’s name
determines the result of the conversion; the class containing the operator function determines
the data type being converted from.

Before seeing an example of a class to class conversion, you should note one additional
point. Converting between classes clearly implies having two classes; one is always defined
first, and one is defined second. Having a conversion operator function in the second class
that has the same name as the first class poses no problem because the compiler knows of
the first class’s existence. However, including a conversion operator function with the second
class’s name in the first class does pose a problem because the second class hasn’t been

int main()

{

Date a(4,1,2007); // declare and initialize one object of type Date

long b; // declare an object of type long

b = a; // a conversion takes place here

cout << "a's date is ";

a.showDate();

cout << "\nThis date, as a long integer, is " << b << endl;

return 0;

}

630 Class Functions and Conversions

defined yet. To remedy this problem, include a declaration for the second class before the
first class’s definition. This declaration, formally called a forward declaration, is shown in
Program 11.11, which also includes conversion operators between the two defined classes.

Program 11.11

#include <iostream>

#include <iomanip>

using namespace std;

// forward declaration of class Intdate

class Intdate;

// class declaration section for Date

class Date

{

private:

int month, day, year;

public:

Date(int = 7, int = 4, int = 2005); // constructor

operator Intdate(); // conversion operator from Date to Intdate

void showDate();

};

// class declaration section for Intdate

class Intdate

{

private:

long yyyymmdd;

public:

Intdate(long = 0); // constructor

operator Date(); // conversion operator from Intdate to Date

void showint();

};

// class implementation section for Date

Date::Date(int mm, int dd, int yyyy) // constructor

{

month = mm;

day = dd;

year = yyyy;

}

�

631Chapter 11
Data Type Conversions

// conversion operator function converting from Date to Intdate class

Date::operator Intdate() // must return an Intdate object

{

long temp;

temp = year * 10000 + month * 100 + day;

return(Intdate(temp));

}

// member function to display a Date

void Date::showDate()

{

cout << setfill('0')

<< setw(2) << month << '/'

<< setw(2) << day << '/'

<< setw(2) << year % 100;

return;

}

// class implementation section for Intdate

Intdate::Intdate(long ymd) // constructor

{

yyyymmdd = ymd;

}

// conversion operator function converting from Intdate to Date class

Intdate::operator Date() // must return a Date object

{

int mo, da, yr;

yr = int(yyyymmdd/10000.0);

mo = int((yyyymmdd - yr * 10000.0)/100.0);

da = int(yyyymmdd - yr * 10000.0 - mo * 100.0);

return(Date(mo,da,yr));

}

// member function to display an Intdate

void Intdate::showint()

{

cout << yyyymmdd;

return;

}

�

632 Class Functions and Conversions

int main()

{

Date a(4,1,2007), b; // declare two Date objects

Intdate c(20081215L), d; // declare two Intdate objects

b = Date(c); // cast c into a Date object

d = Intdate(a); // cast a into an Intdate object

cout << " a's date is ";

a.showDate();

cout << "\n as an Intdate object this date is ";

d.showint();

cout << "\n c's date is ";

c.showint();

cout << "\n as a Date object this date is ";

b.showDate();

cout << endl;

return 0;

}

Program 11.11 produces the following output:

a's date is 04/01/07

as an Intdate object this date is 20070401

c's date is 20081215

as a Date object this date is 12/15/08

As Program 11.11 shows, the cast from Date to Intdate is produced by the assignment
b = Date(c), and the cast from Intdate to Date is produced by the assignment
d = Intdate(a). Alternatively, the assignments b = c and d = a would produce the
same results. Notice, too, the forward declaration of the Intdate class before the Date
class’s declaration. This forward declaration is required so that the Date class can reference
Intdate in its conversion operator function.

EXERCISES 11.4

1. (For Review) a. Define the four data type conversions in C++ and the method of per-
forming each conversion.

b. Define the terms type conversion constructor and conversion operator function and
describe how they are used in user-defined conversions.

633Chapter 11
Data Type Conversions

2. (Program) Write a C++ program that declares a class named Time having integer data
members named hours, minutes, and seconds. Include a type conversion constructor
that converts a long integer, representing the elapsed seconds from midnight, into an
equivalent representation as hours:minutes:seconds. For example, the long integer 30336
should convert to the time 8:25:36. Use military time so that 2:30 p.m. is represented as
14:30:00. The relationship between time representations is as follows:

elapsed seconds = hours × 3600 + minutes × 60 + seconds

3. (Program) A Julian date is represented as the number of days from a known base date.
The following pseudocode shows one algorithm for converting from a Gregorian date, in
the form month/day/year, to a Julian date with a base date of 00/00/0000. All calculations in
this algorithm use integer arithmetic, which means the fractional part of all divisions must
be discarded. In this algorithm, M = month, D = day, and Y = year.

If M is less than or equal to 2
Set the variable MP = 0 and YP = Y - 1

Else
Set MP = int(0.4 × M + 2.3) and YP = Y

EndIf
T = int(YP / 4) - int(YP / 100) + int(YP / 400)
Julian date = 365 × Y + 31 × (M - 1) + D + T - MP
Using this algorithm, modify Program 11.10 to cast from a Gregorian Date object to its
corresponding Julian representation as a long integer. Test your program by using the
Gregorian dates 1/31/2005 and 3/16/2006, which correspond to the Julian dates 732342 and
732751.

4. (Modify) Modify the program written for Exercise 2 to include a conversion operator
function that converts an object of type Time into a long integer representing the num-
ber of seconds from midnight.

5. (Program) Write a C++ program that has a Date class and a Julian class. The Date
class should be the same Date class used in Program 11.11, and the Julian class should
represent a date as a long integer. For this program, include a conversion operator func-
tion in the Date class that converts a Date object to a Julian object, using the algo-
rithm shown in Exercise 3. Test your program by converting the dates 1/31/2006 and
3/16/2007, which correspond to the Julian dates 732707 and 733116.

6. (Program) Write a C++ program that has a Time class and an Ltime class. The Time
class should have integer data members named hours, minutes, and seconds, and the
Ltime class should have a long integer data member named elsecs, which represents
the number of elapsed seconds since midnight. For the Time class, include a conversion
operator function named Ltime() that converts a Time object to an Ltime object. For
the Ltime class, include a conversion operator function named Time() that converts an
Ltime object to a Time object.

634 Class Functions and Conversions

11.5 A Case Study: Random Numbers and Simulations

There are many scientific and engineering problems in which probability must be considered
or statistical sampling techniques must be used. For example, to simulate automobile traffic
flow or telephone usage patterns, statistical models are required. In addition, applications
such as simple computer games and more involved gaming scenarios can only be described
statistically. All these statistical models require generating random numbers—a series of
numbers whose order can’t be predicted.

In practice, finding truly random numbers is hard. Dice are never perfect, cards are never
shuffled completely randomly, and digital computers can handle numbers only in a finite range
and with limited precision. The best you can do in most cases is generate pseudorandom numbers,
which are random enough for the type of applications being programmed.

Some computer languages contain a library function that produces random numbers;
others do not. All C++ compilers provide a general-purpose function, named rand() and
defined in the Math class, for creating random numbers. This function produces a series of
double-precision random numbers in the range 0.0 up to, but not including, RAND_MAX, a
compiler-defined named constant.

Program 11.12 shows the general procedure for creating a series of N random numbers in
C++. It uses the rand() function to generate a series of 10 random numbers.

Program 11.12

#include <iostream>

#include <ctime>

#include <cmath>

using namespace std;

int main()

{

double randValue;

int i;

srand(time(NULL)); // this generates the first "seed" value

for (i = 1; i <= 10; i++)

{

randValue = rand();

cout << randValue << endl;

}

return 0;

}

635Chapter 11
A Case Study: Random Numbers
and Simulations

The following is the output produced by one run of Program 11.12:

25140

17626

21997

657

31803

29419

31873

3263

13106

24521

Each time Program 11.12 runs, it creates a different series of 10 random numbers.

Scaling
In practice, typically you need to make one modification to the random numbers produced
by the rand() function. The reason is that, in most applications, the random numbers must
be integers in a specified range, such as 1 to 100. The procedure for adjusting the random
numbers produced by a random-number generator to fall in a specified range is called scaling.

Scaling random numbers to lie in the range 0.0 to 1.0 is easily done by dividing the returned
value of rand() by RAND_MAX.8 Therefore, the expression double(rand())/RAND_MAX
produces a floating-point random number between 0.0 and 1.0.

8RAND_MAX is the maximum number returned by rand() and is compiler dependent.

Point of Information

Monte Carlo Techniques
Monte Carlo, a city in Monaco on France’s Mediterranean coast, is famous as a gambling
resort, so its name was adopted for mathematical functions involving random numbers.

Monte Carlo techniques involve creating random numbers within specified limits
and determining what percentage of these numbers meet certain criteria. This tech-
nique can be used to calculate the area between curves, to estimate the arrival of air-
planes at an airport, to predict the percentage of manufactured parts that will be
defective, to project the growth and decline of populations with fixed resources, to
specify the needed thickness of nuclear-reactor shielding, and so forth.

Monte Carlo calculations weren’t feasible before the development of high-speed
computers. In many cases, billions of random numbers must be generated to achieve
statistically accurate results. If, on an early PC, one random number selection and test
calculation requires a microsecond, a billion calculations would take about 1000 sec-
onds (roughly 17 minutes).

Clearly, then, a computer’s speed and capacity are critical for effective application of
Monte Carlo techniques. With newer parallel-processing machines, which can handle many
operations concurrently, the time required for Monte Carlo calculations using large data
samples has been reduced to the point that Monte Carlo simulations are now routine.

636 Class Functions and Conversions

Scaling a random number as an integer value between 0 and N - 1 is done with the
expression int(double(rand())/RAND_MAX * N) or rand() % N. For example,
int(double(rand())/RAND_MAX * 100) produces a random integer between 0 and 99,
as does the expression rand() % 100.

To produce an integer random number between 1 and N, you can use the expression

1 + int(double(rand())/RAND_MAX * N)

or

1 + rand() % N

For example, in simulating the roll of a die, the expression

1 + int(double(rand())/RAND_MAX * 6)

produces a random integer between 1 and 6, as does 1 + rand()%6. In general, to produce
a random integer between the numbers a and b, you can use the expression

a + int(double(rand())/RAND_MAX * (b + 1 - a))

or

a + rand() % (b + 1 - a)

Elevator Simulation
Random numbers are commonly used to simulate events, instead of going through the time
and expense of constructing a real-life experiment. The example in this section illustrates the
general concepts and techniques often used in constructing simulations.

Point of Information

Program and Class Libraries
The concept of a program library began with FORTRAN. The FORTRAN library consisted
of a group of tested and debugged mathematical routines provided with the compiler.
Since then, every programming language has provided its own library of functions. In C
and C++, this library, referred to as the standard program library, includes more than
12,000 functions declared in 15 different header files. Examples of standard library func-
tions include sqrt(), pow(), abs(), rand(), srand(), and time(). The advantage
of library functions is that they enhance program development and design by providing
code known to work without the need for additional testing and debugging.

With the introduction of object-oriented languages, the concept of a program
library has been extended to include class libraries. A class library is a library of tested
and debugged classes. A key practical feature of class libraries is that they help achieve the
goal of code reuse. By providing tested and debugged code consisting of data and func-
tion members, class libraries furnish large sections of prewritten, reusable code ready for
incorporation into new applications. Having this code available shifts the focus in writing
application programs from creating new code to using predefined objects and stitching
them together in a cohesive and useful way.

637Chapter 11
A Case Study: Random Numbers
and Simulations

In this application, you see how to simulate an elevator’s operation. The required output is
describing the current floor on which the elevator is stationed or passing by. Additionally, you
should provide an internal elevator button that’s pushed as a request to move to another floor.
The elevator can travel between the 1st and 15th floor of the building in which it’s situated.

Step 1 Analyze the Problem

For this application, you have one object, an elevator. The only attribute of interest is the
elevator’s location. The single requested service is the ability to request a change in the
elevator’s position (its state). Additionally, you must be able to establish the initial floor
position when a new elevator is put into service. Figure 11.5 is a class diagram that includes
the required attributes and operations.

Step 2 Develop a Solution

The elevator’s location, which corresponds to its current floor position, can be represented by an
integer instance variable whose value ranges between 1 and 15. The value of this variable, named
currentFloor, represents the elevator’s current state. Each object is also provided with a
maximum floor it can travel to, which is useful for simulating multiple elevators in larger
buildings. The services for changing the elevator’s state are a constructor function to set the
initial floor position when a new elevator is put in service and a request function to change the
elevator’s position (state) to a new floor. Putting an elevator into service is accomplished by
declaring a single class instance (declaring an object of the class Elevator), and requesting a
new floor position is equivalent to pushing an elevator button.

The response to the elevator button is described by the following algorithm:

If a request is made for a nonexistent floor or the current floor,
Do nothing

ElseIf the request is for a floor above the current floor
Display the current floor number
While not at the designated floor

Increment the floor number
Display the new floor number

EndWhile
Display the ending floor number

�

Floor location

Initialize the floor position
Request a new floor

Elevator

Figure 11.5 An Elevator class diagram

638 Class Functions and Conversions

Else // the request must be for a floor below the current floor
Display the current floor number
While not at the designated floor

Decrement the floor number
Display the new floor number

EndWhile
Display the ending floor number

EndIf

This algorithm consists of an if-else statement with three parts:

• If an incorrect service is requested, no action is taken.
• If a floor above the current position is selected, the elevator moves up.
• If a floor below the current position is selected, the elevator moves down.

Step 3 Code the Solution

A suitable function for the preceding algorithm can be coded by using a while loop to
increment and decrement the elevator’s position one floor at a time and using a cout
statement to report the elevator’s position, as follows:

void Elevator::request(int newfloor)
{

if (newfloor < 1 || newfloor > maxFloor || newfloor == currentFloor)
; // do nothing

else if (newfloor > currentFloor) // move elevator up
{

cout << "\nStarting at floor " << currentFloor << endl;
while (newfloor > currentFloor)
{

currentFloor++; // add one to current floor
cout << " Going Up - now at floor " << currentFloor << endl;

}
cout << "Stopping at floor " << currentFloor << endl;

}
else // move elevator down
{

cout << "\nStarting at floor " << currentFloor << endl;
while (newfloor < currentFloor)
{

currentFloor--; // subtract one from current floor
cout << " Going Down - now at floor " << currentFloor << endl;

}
cout << "Stopping at floor " << currentFloor << endl;

}
}

639Chapter 11
A Case Study: Random Numbers
and Simulations

Class 11.1 includes this function in the context of a complete class. The remaining
functions in this class are straightforward. When an Elevator object is created, it can be
initialized to a specified floor by the overloaded constructor or, if no floor is given, a default
value of 1 is used. In both constructors, a default value of 15 is provided for the highest floor.
This value can be altered by the setMaxFloor() function.

Class 11.1

#include <iostream>

using namespace std;

class Elevator

{

// class declaration section

private:

int maxFloor;

int currentFloor;

// function declaration section

public:

Elevator(); // default constructor

Elevator(int); // overloaded constructor

void setMaxFloor(int);

void request(int);

};

// class implementation section

Elevator::Elevator() // default constructor

{

currentFloor = 1;

maxFloor = 15;

}

Elevator::Elevator(int cfloor) // overloaded constructor

{

currentFloor = cfloor;

maxFloor = 15;

}

�

640 Class Functions and Conversions

Step 4 Test and Correct the Program

Testing the Elevator class requires putting an elevator into service, and then requesting
various floors and seeing that the elevator responds correctly. Putting an elevator in service
is accomplished by creating an object of type Elevator, and requesting a new floor position
is equivalent to pushing an elevator button. Program 11.13 accomplishes these tasks.

void Elevator::setMaxFloor(int max)

{

maxFloor = max;

}

void Elevator::request(int newfloor)

{

if (newfloor < 1 || newfloor > maxFloor || newfloor == currentFloor)

; // do nothing

else if (newfloor > currentFloor) // move elevator up

{

cout << "\nStarting at floor " << currentFloor << endl;

while (newfloor > currentFloor)

{

currentFloor++; // add one to current floor

cout << " Going Up - now at floor " << currentFloor << endl;

}

cout << "Stopping at floor " << currentFloor << endl;

}

else // move elevator down

{

cout << "\nStarting at floor " << currentFloor << endl;

while (newfloor < currentFloor)

{

currentFloor--; // subtract one from current floor

cout << " Going Down - now at floor " << currentFloor << endl;

}

cout << "Stopping at floor " << currentFloor << endl;

}

}

Program 11.13

#include <iostream>

using namespace std;

�

641Chapter 11
A Case Study: Random Numbers
and Simulations

class Elevator

{

// class declaration section

private:

int maxFloor;

int currentFloor;

// function declaration section

public:

Elevator(); // default constructor

Elevator(int); // overloaded constructor

void setMaxFloor(int);

void request(int);

};

// class implementation section

Elevator::Elevator() // default constructor

{

currentFloor = 1;

maxFloor = 15;

}

Elevator::Elevator(int cfloor) // overloaded constructor

{

currentFloor = cfloor;

maxFloor = 15;

}

void Elevator::setMaxFloor(int max)

{

maxFloor = max;

}

void Elevator::request(int newfloor)

{

if (newfloor < 1 || newfloor > maxFloor || newfloor == currentFloor)

; // do nothing

else if (newfloor > currentFloor) // move elevator up

{

cout << "\nStarting at floor " << currentFloor << endl;

while (newfloor > currentFloor)

{

currentFloor++; // add one to current floor

cout << " Going Up - now at floor " << currentFloor << endl;

}

cout << "Stopping at floor " << currentFloor << endl;

}

�

642 Class Functions and Conversions

else // move elevator down

{

cout << "\nStarting at floor " << currentFloor << endl;

while (newfloor < currentFloor)

{

currentFloor--; // subtract one from current floor

cout << " Going Down - now at floor " << currentFloor << endl;

}

cout << "Stopping at floor " << currentFloor << endl;

}

}

int main()

{

Elevator a; // declare 1 object of type Elevator

a.request(16); // try to go above the highest floor

a.setMaxFloor(6); // set the highest floor for this elevator

a.request(7); // try to go above the new maximum floor

a.request(6);

a.request(3);

return 0;

}

Program 11.13 produces the following output:

Starting at floor 1

Going Up - now at floor 2

Going Up - now at floor 3

Going Up - now at floor 4

Going Up - now at floor 5

Going Up - now at floor 6

Stopping at floor 6

Starting at floor 6

Going Down - now at floor 5

Going Down - now at floor 4

Going Down - now at floor 3

Stopping at floor 3

The first statement in Program 11.13’s main() function creates an object of type
Elevator that can be accessed with the reference variable named a. Because no explicit
floor has been given, this elevator begins at floor 1, which is provided by the default

643Chapter 11
A Case Study: Random Numbers
and Simulations

constructor. A request is then made to move the elevator to floor 16. Because this floor
number exceeds the highest floor this elevator can travel to, no elevator movement is
displayed. This sequence of no movement is repeated by setting the maximum floor value
to 6, and then requesting that the elevator travel to the 7th floor. The next two statements,
however, cause the elevator to move by using a request to move to the 6th floor, followed by
a request to move to the 3rd floor.

In Program 11.13, notice the control the main() function provides. This sequential
control, with subsequent calls made to various class functions and using different argument
values, is suitable for testing purposes. However, by incorporating calls to request() inside
a while loop and using the random number function Math.random() to generate random
floor requests, a continuous simulation of the elevator’s operation is possible (see Exercise 5).

EXERCISES 11.5

1. (Practice) Enter and execute Program 11.13 on your computer.

2. (Modify) a. Modify the main() function in Program 11.13 to put a second elevator in
service starting at the 5th floor. Have this second elevator move to the 1st floor and then
move to the 12th floor.

b. Verify that the constructor function is called by adding a message in the constructor
that’s displayed each time a new object is created. Run your program to verify its
operation.

3. (Modify) Modify the main() function in Program 11.13 to use a while loop that calls
the Elevator’s request() function with a random number between 1 and 15. If the
random number is the same as the elevator’s current floor, generate another request. The
while loop should terminate after five valid requests have been made and be satisfied
by movement of the elevator.

4. (Statistics) a. Construct a class named Person. The class should have no attributes, a
single constructor function, and two member functions named arrive() and
request(). The constructor function should be an empty, do-nothing function. The
arrive() function should return a random number between 1 and 10, and the
request() function should provide a random number between 1 and 15.

b. Test the Person class functions written for Exercise 4a in a complete working
program.

c. Use the Person class functions to simulate a random arrival of a person and a random
request for a floor to which the elevator should take this person.

5. (Modify) Using the Elevator class defined in this section and the Person class cre-
ated in Exercise 4, construct a simulation in which a person arrives randomly at any time
from 1 to 10 minutes on any floor and calls the elevator. If the elevator isn’t on the floor
where the person is, it must move to the floor the person is on. After the person is inside
the elevator, he or she can select any floor except the current one. Run the simulation for
three randomly arriving people and have the simulation display the elevator’s movement.

644 Class Functions and Conversions

6. (Statistics) Create a coin toss simulation that simulates flipping a single coin 1000 times.
Knowing that any single toss has a 50% chance of being a head or a tail, designate a
“head” as any number equal to or greater than 0.5 and any other result as a “tail.” Use
the following algorithm, knowing that the final number of tails can be calculated as
1000 - number of heads.

Coin toss algorithm
For 1000 times

Generate a random number between 0 and 1
If the random number is equal to or greater than 0.5, increment the heads count
Increment the tosses count

End For
After all 1000 flips have been made, the algorithm for the calculating the percentages of
heads and tails for the final output your program displays is as follows:

Percentage algorithm
If the number of tosses equals zero

Display a message indicating that no tosses were made
Else

Calculate the number of tails as the number of tosses minus the number of heads
Display the number of tosses, number of heads, and number of tails
Calculate the percentage of heads as the number of heads divided by the number

of tosses × 100%
Calculate the percentage of tails as the number of tails divided by the number of

tosses × 100%
Print the percentage of heads and tails

EndIf

7. (Modify) Modify the program written for Exercise 6 so that it requests the number of
tosses from the user. (Hint: Make sure to have the program correctly determine the per-
centages of heads and tails obtained.)

11.6 Class Inheritance

The ability to create new classes from existing ones is the underlying motivation and power
behind class- and object-oriented programming techniques. Doing so facilitates reusing
existing code in new ways without the need for retesting and validation. It also permits
designers of a class to make it available to others for additions and extensions without
relinquishing control over existing class features.

Constructing one class from another is accomplished by using inheritance, which is the
capability of deriving one class from another class. Related to this capability is an equally
important feature called polymorphism that allows redefining how member functions of related
classes operate, based on the class object being referenced. In fact, for a programming language
to be classified as an object-oriented language, it must provide the features of classes, inheritance,
and polymorphism. This section describes the inheritance and polymorphism features in C++.

The initial class used as the basis for a derived class is referred to as the base, parent, or
superclass. The derived class, also referred to as the child class or subclass, is a new class
incorporating all the data members and member functions of its base class. However, it can,
and usually does, add its own new data members and member functions and can override any
base class function.

645Chapter 11
Class Inheritance

As an example of inheritance, consider three geometric shapes: a circle, a cylinder, and
a sphere. All these shapes share a common characteristic—a radius. Therefore, you can make
the circle a base type for the other two shapes, as illustrated in Figure 11.6. By convention,
arrows always point from the derived class to the base class. In this example, the circle is the
base class, and the cylinder and sphere are the derived classes.

The relationships illustrated in Figure 11.6 are examples of simple inheritance, in which
each derived type has only one base type. The complement to simple inheritance is multiple
inheritance, in which a derived type has two or more base types. Figure 11.7 illustrates an
example of multiple inheritance, but only simple inheritance is discussed in this section.

The class derivations in Figures 11.6 and 11.7 are formally referred to as class hierarchies
because they illustrate the hierarchy, or order, in which one class is derived from another.
With this information as background, now you can see how to derive one class from another.

A derived class has the same form as any other class: It consists of both a declaration and an
implementation. The only difference is in the first line of the declaration section. For a derived
class, this line is extended to include an access specifier and a base class name in this form:

class derivedClassName : classAccess baseClassName

For example, if Circle is the name of an existing class, a new class named Cylinder
can be derived as follows:

class Cylinder : public Circle
{

// place any additional data members and
// member functions in here

}; // end of Cylinder class declaration

Sphere Cylinder

Circle

Figure 11.6 Relating object types

minivan

car truck

Figure 11.7 An example of multiple inheritance

646 Class Functions and Conversions

Except for the class-access specifier after the colon and the base class name, there’s
nothing new or complicated about the construction of the Cylinder class. Before providing
a description of the Circle class and adding data and function members to the derived
Cylinder class, you need to reexamine access specifiers and how they relate to derived
classes.

Access Specifications
Until now, you have used only private and public access specifiers in a class. Giving all data
members private status ensures that they can be accessed only by class member functions or
friends. This restricted access prevents access by any nonclass functions (except friends) but
also precludes access by any derived class functions. This restriction is sensible because
without it, anyone could bypass the private restriction simply by deriving a class.

To retain restricted access across derived classes, C++ provides a third access
specification—protected. A protected access behaves the same as private access, in that it
permits access only to member or friend functions, but it permits any derived class to inherit
this restriction. The derived class then defines the type of inheritance it’s willing to take on,
subject to the base class’s access restrictions. This definition is done by the class-access
specifier, which is listed after the colon at the start of the class declaration section. Table 11.3
lists the derived class member access resulting from the base class member specifications and
the derived class-access specifier.

The shaded region in Table 11.3 shows that if the base class member has a protected
access and the derived class-access specifier is public, the derived class member is
protected to its class. Similarly, if the base class has a public access and the derived
class-access specifier is public, the derived class member is public. These specifications for
base class data members and member functions are the most commonly used, so they are the
ones used in this section. So for all classes intended for use as a base class, a protected data
member access is used instead of a private designation.

Point of Information

Object-Based Versus Object-Oriented Languages
In an object-based language, data and operations can be incorporated together in
such a way that data values can be isolated and accessed through the specified class
functions. The capability to bind data members with operations in a single unit is
referred to as encapsulation. In C++, encapsulation is provided by its class capability.

For a language to be classified as object-oriented, it must also provide inheritance
and polymorphism. As discussed, inheritance is the capability to derive one class from
another. A derived class incorporates all the data members and member functions of
the parent class and can add its own data and function members. Polymorphism per-
mits using the same function name to call one operation in a parent class’s objects and
a different operation in a derived class’s objects.

C++, which provides encapsulation, inheritance, and polymorphism, is a true
object-oriented language. Because C, which is C++’s predecessor, doesn’t provide these
features, it’s not an object-based or object-oriented language.

647Chapter 11
Class Inheritance

Table 11.3 Inherited Access Restrictions

Base Class Member Derived Class-Access
Specifier

Derived Class Member

private : private inaccessible
protected : private private
public : private private
private : public inaccessible
protected : public protected
public : public public
private : protected inaccessible
protected : protected protected
public : protected protected

An Example To understand the process of deriving one class from another, examine
deriving a Cylinder class from a base Circle class. The definition of the Circle class
is as follows:

// class declaration section
class Circle
{

protected:
double radius;

public:
Circle(double = 1.0); // constructor
double calcval();

};

// class implementation section
Circle::Circle(double r) // constructor
{

radius = r;
}

// calculate the area of a circle
double Circle::calcval()
{

return(PI * radius * radius);
}

Except for substituting the access specifier protected in place of the usual private
specifier for the data member, this code is a standard class definition. The only variable not
defined is PI, which is used in the calcval() function. It’s defined as follows:

const double PI = 2.0 * asin(1.0);

This definition is simply a “trick” that forces the computer to return the value of PI
accurate to as many decimal places as your computer allows. This value is obtained by taking
the arcsin of 1.0, which is �/2, and multiplying the result by 2.

648 Class Functions and Conversions

Having defined the base class, you can now extend it to a derived class, which has this
definition:

// class declaration section where Cylinder is derived from Circle
class Cylinder : public Circle
{

protected:
double length; // add one additional data member and

public: // two additional member functions
Cylinder(double r = 1.0, double l = 1.0) : Circle(r), length(l) {}
double calcval();

};

// class implementation section
double Cylinder::calcval() // this calculates a volume
{

return (length * Circle::calcval()); // note the base function call
}

This definition encompasses several important concepts related to derived classes. First, as
a derived class, Cylinder contains all the data members and member functions of its base class,
Circle, plus any of its own members it might add. In this case, the Cylinder class consists
of a radius data member, inherited from the Circle class, plus a length data member.
Therefore, each Cylinder object contains two data members, as shown in Figure 11.8.

In addition, the Cylinder class inherits Circle’s member functions. This inheritance
is shown in the Cylinder constructor, which uses a base/member initialization list (see
Section 11.1) that calls the Circle constructor. It’s also shown in Cylinder’s calcval()
function, which makes a call to Circle::calcval().

In both classes, the same function name, calcval(), has been used to illustrate
overriding a base function with a derived function. When a Cylinder object calls
calcval(), it’s a request to use the Cylinder version of the function; a Circle object
call to calcval() is a request to use the Circle version. In this case, the Cylinder class
can access only the class version of calcval() by using the scope resolution operator, as in
the call Circle::calcval(). Program 11.14 uses these two classes in the context of a
complete program.

length

radius radius

Circle Cylinder

new member

derived member

Figure 11.8 Relationship between Circle and Cylinder data members

649Chapter 11
Class Inheritance

Program 11.14

#include <iostream>

#include <cmath>

using namespace std;

const double PI = 2.0 * asin(1.0);

// class declaration section

class Circle

{

protected:

double radius;

public:

Circle(double = 1.0); // constructor

double calcval();

};

// class implementation section for Circle

Circle::Circle(double r) // constructor

{

radius = r;

}

// calculate the area of a circle

double Circle::calcval()

{

return(PI * radius * radius);

}

// class declaration section where Cylinder is derived from Circle

class Cylinder : public Circle

{

protected:

double length; // add one additional data member and

public: // two additional member functions

Cylinder(double r = 1.0, double l = 1.0) : Circle(r), length(l) {}

double calcval();

};

// class implementation section for Cylinder

double Cylinder::calcval() // this calculates a volume

{

return (length * Circle::calcval()); // note the base function call

}

�

650 Class Functions and Conversions

Program 11.14 produces the following output:

The area of circle_1 is 3.14159

The area of circle_2 is 12.5664

The volume of cylinder_1 is 113.097

The area of circle_1 is now 28.2743

The first three output lines are straightforward and are produced by the first three cout
statements in the program. As the output shows, a call to calcval() with a Circle object
activates the Circle version of this function, and a call to calcval() with a Cylinder
object activates the Cylinder version.

The assignment statement circle_1 = cylinder_1; introduces another important
relationship between a base and derived class: A derived class object can be assigned to a base class
object. This relationship shouldn’t be surprising because base and derived classes share a common
set of data member types. In this type of assignment, only this set of data members, which
consists of all the base class data members, is assigned. Therefore, as illustrated in Figure 11.9,
the Cylinder to Circle assignment results in the following memberwise assignment:

circle_1.radius = cylinder_1.radius;

int main()

{

Circle circle_1, circle_2(2); // create two Circle objects

Cylinder cylinder_1(3,4); // create one Cylinder object

cout << "The area of circle_1 is " << circle_1.calcval() << endl;

cout << "The area of circle_2 is " << circle_2.calcval() << endl;

cout << "The volume of cylinder_1 is " << cylinder_1.calcval() << endl;

circle_1 = cylinder_1; // assign a Cylinder to a Circle

cout << "\nThe area of circle_1 is now " << circle_1.calcval() << endl;

return 0;

}

Circle = Cylinder

derived classbase class

Figure 11.9 An assignment from derived to base class

651Chapter 11
Class Inheritance

The length data member of the Cylinder object isn’t used in the assignment because
it has no equivalent variable in the Circle class. The reverse cast, from base to derived
class, isn’t as simple and requires a constructor to correctly initialize the derived class
members that aren’t in the base class.

Before leaving Program 11.14, one other point should be made. Although the Circle
constructor was called explicitly by using a base/member initialization list for the Cylinder
constructor, an implicit call could have been made. In the absence of an explicit derived class
constructor, the compiler automatically calls the default base class constructor first, before the
derived class constructor is called. This order of calling works because the derived class
contains all the base class data members. In a similar fashion, destructor functions are called
in the reverse order—first derived class and then base class.

EXERCISES 11.6

1. (For Review) Define the following terms:
a. inheritance

b. base class

c. derived class

d. simple inheritance

e. multiple inheritance

f. class hierarchy

2. (For Review) Describe the difference between a private and a protected class member.

3. (For Review) What three features must a programming language provide to be classified
as an object-oriented language?

4. (Modify) a. Modify Program 11.14 to include a derived class named Sphere from the
base Circle class. The only additional class members of Sphere should be a construc-
tor and a calcval() function that returns the sphere’s volume. (Note: Volume = 4/3 �r3.)

b. Include the class constructed for Exercise 4a in a working C++ program. Have your
program call all the member functions in the Sphere class.

5. (General Math) a. Create a base class named Point consisting of x and y data mem-
bers representing point coordinates. From this class, derive a class named Circle with
another data member named radius. For this derived class, the x and y data members
represent a circle’s center coordinates. The member functions of the Point class should
consist of a constructor, an area() function that returns 0, and a distance() function
that returns the distance between two points, (x1, y1) and (x2, y2), where

distance = x x y y2 1

2

2 1

2
- -() + ()

Additionally, the derived class should have a constructor and an override function named
area() that returns a circle’s area.

b. Include the classes constructed for Exercise 5a in a working C++ program. Have your
program call all the member functions in each class. In addition, call the base class
distance() function with two Circle objects and explain the result this function
returns.

652 Class Functions and Conversions

6. (Modify) a. Using the classes constructed for Exercise 5a, derive a class named
Cylinder from the Circle class. The Cylinder class should have a constructor and a
member function named area() that determines a cylinder’s surface area. For this func-
tion, use the algorithm surface area = 2 � r (l + r), where r is the radius of the cylinder
and l is the length.

b. Include the classes constructed for Exercise 6a in a working C++ program. Have your
program call all the member functions in the Cylinder class.

c. What do you think the result might be if the Point (base) class’s distance() func-
tion is called with two Cylinder objects?

11.7 Polymorphism

Overriding a base member function by using an overloaded derived member function, as
shown with the calcval() function in Program 11.14, is an example of polymorphism. As
defined previously, polymorphism permits using the same function name to invoke one
response in a base class’s objects and another response in a derived class’s objects. In some
situations, however, this method of overriding doesn’t work the way you might want. To
understand why, take a look at Program 11.15.

Program 11.15

#include <iostream>

#include <cmath>

using namespace std;

// class declaration section for the base class

class One

{

protected:

double a;

public:

One(double = 2.0); // constructor

double f1(double); // a member function

double f2(double); // another member function

};

// class implementation section for One

One::One(double val) // constructor

{

a = val;

}

�

653Chapter 11
Polymorphism

double One::f1(double num) // a member function

{

return(num/2);

}

double One::f2(double num) // another member function

{

return(pow(f1(num),2)); // square the result of f1()

}

// class declaration section for the derived class

class Two : public One

{

public:

double f1(double); // this overrides class One's f1()

};

// class implementation section for Two

double Two::f1(double num)

{

return(num/3);

}

int main()

{

One object_1; // object_1 is an object of the base class

Two object_2; // object_2 is an object of the derived class

// call f2() using a base class object call

cout << "The computed value using a base class object call is "

<< object_1.f2(12) << endl;

// call f2() using a derived class object call

cout << "The computed value using a derived class object call is "

<< object_2.f2(12) << endl;

return 0;

}

654 Class Functions and Conversions

The following output is produced by Program 11.15:

The computed value using a base class object call is 36

The computed value using a derived class object call is 36

As this output shows, the same result is obtained, no matter which object type calls the
f2() function, because the derived class doesn’t have an override of the base class f2()
function. Therefore, both calls to f2() result in the base class f2() function being called.

After the base class f2() function is called, it always calls the base class version of f1()
rather than the derived class override version. This behavior is caused by a process referred
to as function binding. In normal function calls, static binding is used, meaning the determi-
nation of which function is called is made at compile time. Therefore, when the compiler first
encounters the f1() function in the base class, it makes the determination that whenever
f2() is called, from either a base or derived class object, it subsequently calls the base class
f1() function.

In place of static binding, you would like a binding method capable of determining which
function should be called at runtime, based on the object type making the call. This type of
binding, referred to as dynamic binding, is achieved in C++ with virtual functions. A virtual
function tells the compiler to create a pointer to a function, but not fill in the pointer’s value
until the function is actually called. Then at runtime, based on the object making the call, the
appropriate function address is used.

Creating a virtual function is easy—simply place the keyword virtual before the
function’s return type in the declaration section. For example, examine Program 11.16, which
is identical to Program 11.15, except for the virtual declaration of the f1() function.

Program 11.16

#include <iostream>

#include <cmath>

using namespace std;

// class declaration section for the base class

class One

{

protected:

double a;

public:

One(double = 2.0); // constructor

virtual double f1(double); // a member function

double f2(double); // another member function

};

�

655Chapter 11
Polymorphism

// class implementation section for One

One::One(double val) // constructor

{

a = val;

}

double One::f1(double num) // a member function

{

return(num/2);

}

double One::f2(double num) // another member function

{

return(pow(f1(num),2)); // square the result of f1()

}

// class declaration section for the derived class

class Two : public One

{

public:

virtual double f1(double); // this overrides class One's f1()

};

// class implementation section for Two

double Two::f1(double num)

{

return(num/3);

}

int main()

{

One object_1; // object_1 is an object of the base class

Two object_2; // object_2 is an object of the derived class

// call f2() using a base class object call

cout << "The computed value using a base class object call is "

<< object_1.f2(12) << endl;

// call f2() using a derived class object call

cout << "The computed value using a derived class object call is "

<< object_2.f2(12) << endl;

return 0;

}

656 Class Functions and Conversions

Program 11.16 produces the following output:

The computed value using a base class object call is 36

The computed value using a derived class object call is 16

As this output shows, the f2() function now calls different versions of the overloaded
f1() function based on the object type making the call. Basing the selection on the object
making the call is the classic definition of polymorphic behavior and is caused by the
dynamic binding imposed on f1() because it’s a virtual function.

After a function is declared as virtual, it remains virtual for the next derived class, with
or without a virtual declaration in the derived class. Therefore, the second virtual declaration
in the derived class isn’t strictly necessary but should be included for clarity and to make sure
any subsequently derived classes inherit the function correctly.

In the inheritance diagram in Figure 11.10, class C is derived from class B and class B is
derived from class A.9 In this situation, if the f1() function is virtual in class A but not
declared in class B, it isn’t virtual in class C. The only other requirement is that after a
function has been declared as virtual, the return type and parameter list of all subsequent
derived class override versions must be the same.

EXERCISES 11.7

1. (Practice) Enter and execute Programs 11.15 and 11.16 so that you understand the rela-
tionship between function calls in each program.

2. (For Review) Describe the difference between static binding and dynamic binding.

3. (For Review) Describe the difference between a virtual function and a nonvirtual
function.

4. (For Review) Explain what polymorphism is and provide an example of polymorphic
behavior.

5. (For Review) Describe the two methods C++ provides for implementing polymorphism.

9By convention, as noted previously in Section 11.6, arrows always point from the derived class to the base class.

class C

class B

class A

Figure 11.10 An inheritance diagram

657Chapter 11
Polymorphism

6. (For Review) Explain whether the multiplication operator provided for integer and
double-precision built-in types is an example of overloading or polymorphism.

11.8 Common Programming Errors

1. Using a user-defined assignment operator in a multiple assignment expression when
the operator hasn’t been defined to return an object.

2. Using the keyword static when defining a static data member or member
function. The static keyword should be used only in the class declaration section.

3. Using the keyword friend when defining a friend function. The friend keyword
should be used only in the class declaration section.

4. Failing to instantiate static data members before creating class objects that must
access these data members.

5. Attempting to redefine an operator’s meaning as it applies to C++’s built-in data
types.

6. Redefining an overloaded operator to perform a function not indicated by its
conventional meaning. Although this method works, it’s an example of bad program-
ming practices.

7. Attempting to make a conversion operator function a friend rather than a member
function.

8. Attempting to specify a return type for a conversion operator function.
9. Attempting to override a virtual function without using the same type and number

of arguments as the original function.
10. Using the keyword virtual in the class implementation section. Functions are

declared as virtual only in the class declaration section.

11.9 Chapter Summary
1. An assignment operator can be declared for a class with this function prototype:

void operator=(className&);

The argument is a reference to the class name. The return type of void precludes using
this operator in multiple assignment expressions, such as a = b = c.

2. A type of initialization that closely resembles assignment occurs in C++ when one object
is initialized by using another object of the same class. The constructor performing this
type of initialization is called a copy constructor and has this function prototype:

className(const className&);

It’s often represented with the notation X(X&).

3. Each class has an associated class scope, which is defined by the brace pair, {},
containing the class declaration. Data and function members are local to the scope of
their class and can be used only by objects declared for the class. If a global variable
name is reused in a class, the global variable is hidden by the class variable. Within the
scope of the class variable, the global variable can be accessed by using the scope
resolution operator, ::.

658 Class Functions and Conversions

4. For each class object, a separate set of memory locations is reserved for all data members,
except those declared as static. A static data member is shared by all class objects and
provides a means of communication between objects. Static data members must be
declared in the class declaration section and are defined outside the declaration section.

5. Static function members apply to the class as a whole rather than to separate objects.
Therefore, a static function member can access only static data members and other static
function members. Any static function members must be declared in the class declaration
section and are defined outside the declaration section.

6. A nonmember function can access a class’s private data members if it’s granted friend
status by the class. This is done by declaring the function as a friend in the class’s
declaration section. Therefore, the class always determines which nonmember functions
are friends; a function can never confer friend status on itself.

7. User-defined operators can be constructed for classes by using operator functions. An
operator function has the form operator<symbol>, where <symbol> is one of the following:

() [] -> new delete ++ -- ! ~ * / % + -
<< >> < <= > >= ++ != && || & ^ | = +=
-= *= /= %= &= ^= |= <<= >>= ,

For example, the function prototype Date operator+(int); declares that the
addition operator is defined to accept an integer and return a Date object.

8. User-defined operators can be called in one of two ways—as a conventional function with
arguments or as an operator function. For example, for an operator function having the
function header

Date Date::operator+(int)

if dte is an object of type Date, the following two calls produce the same effect:
dte.operator+(284)
dte + 284

9. Operator functions can also be written as friend functions. The friend version of an
operator function always contains an additional class reference that isn’t required by the
member function.

10. There are four categories of data type conversions:

• Built-in types to built-in types

• Built-in types to class types

• Class types to built-in types

• Class types to class types

Built-in to built-in type conversions are done by using C++’s implicit conversion rules or
its explicit cast operator. Built-in to class type conversions are done by using type
conversion constructors. Conversions from class types to built-in types or from class types
to class types are done by using conversion operator functions.

11. A type conversion constructor is a constructor whose first argument is not a member of
its class and whose remaining arguments, if any, have default values.

659Chapter 11
Chapter Summary

12. A conversion operator function is a member operator function having the name of a class.
It has no explicit arguments or return type; rather, the return type is the name of the
function.

13. Inheritance is the capability of deriving one class from another class. The initial class
used as the basis for the derived class is referred to as the base, parent, or superclass. The
derived class is also referred to as the child class or subclass.

14. Base class functions can be overridden by derived class functions with the same name.
The override function is simply an overloaded version of the base member function
defined in the derived class.

15. Polymorphism is the capability of having the same function name invoke different
responses, based on the object making the function call. It can be accomplished with
override functions or virtual functions.

16. In static binding, the determination of which function is called is made at compile time.
In dynamic binding, the determination is made at runtime.

17. A virtual function designates that dynamic binding should take place. The specification
is made in the function’s prototype by placing the keyword virtual before the
function’s return type. After a function has been declared as virtual, it remains so for all
derived classes, as long as there’s a continuous trail of function declarations through the
derived chain of classes.

Programming Projects for Chapter 11

1. (General Math) a. Construct a class named Cartesian containing two double-
precision data members named x and y, used to store the x and y values of a point in
rectangular coordinates. The member functions should include a constructor that
initializes an object’s x and y values to 0 and functions to input and display an object’s
x and y values. Additionally, include an assignment function that performs a member-
wise assignment between two Cartesian objects.

b. Include the class written for Exercise 1a in a working C++ program that creates and
displays the values of two Cartesian objects; the second object is assigned the
values of the first object.

2. (General Math) a. Construct a class named Fractions containing two integer data
members named num and denom, used to store the numerator and denominator of a
fraction having the form num/denom. Your class should include a default constructor that
initializes num and denom to 1 and four operator functions for adding, subtracting,
multiplying, and dividing the two fractions, as follows:

Addition: a/b + c/d = (a * d + b * c) / (b * d)
Subtraction: a/b - c/d = (a * d - b * c) / (b * d)
Multiplication: a/b * c/d = (a* c) / (b * d)
Division: (a/b) / (c/d) = (a * d) / (b * c)

Finally, your class should have a member function that reduces each fraction to its terms
(refer to Exercise 15 in Programming Projects for Chapter 6 for how to do this) as well
as input and output functions for entering and displaying a fraction.

660 Class Functions and Conversions

3. (General Math) a. Create a base class named Rectangle containing length and
width data members. From this class, derive a class named Box with another data
member named depth. The member functions of the base Rectangle class should
consist of a constructor and an area() function. The derived Box class should have a
constructor, a volume() function, and an override function named area() that returns
the surface area of the box.

b. Include the classes constructed for Exercise 3a in a working C++ program. Have your
program call all the member functions in each class and verify the results manually.

4. (General Math) a. Construct two classes named Rec_coord and Pol_coord. The
Rec_coord class should contain two double-precision data members named xval and
yval, used to store a point’s x and y values in rectangular coordinates. The member
functions should include constructor and display functions and a friend function named
conv_pol(). The Pol_coord class should contain two double-precision data mem-
bers named dist and theta, used to store a point’s distance and angle values in polar
coordinates. The member functions should include constructor and display functions and
a friend function named conv_pol().

The friend function should accept an integer argument named dir, two double-
precision arguments named val1 and val2, and two reference arguments named
recref and polref. The recref argument should be a reference to an object of type
Rec_coord, and the polref argument should be a reference to an object of type
Pol_coord. If the value of dir is 1, val1 and val2 should be considered x and y
rectangular coordinates to be converted to polar coordinates; if the value of dir is any
other value, val1 and val2 should be considered distance and angle values to be
converted to rectangular coordinates. For conversion from rectangular to polar coordi-
nates, use the following formulas:

r x y= +2 2

θ = ()tan /-1 y x

For conversion from polar to rectangular coordinates, use the following formulas:

x = r cosθ
y = r sinθ

b. Include the program written for Exercise 4a in a working C++ program.

661Chapter 11
Programming Projects

This page intentionally left blank

Part Three
Data Structures

12 Pointers

13 Structures

This page intentionally left blank

Chapter 12
Pointers

12.1 Addresses and Pointers

12.2 Array Names as Pointers

12.3 Pointer Arithmetic

12.4 Passing Addresses

12.5 Common Programming
Errors

12.6 Chapter Summary

One of C++’s advantages is that it allows programmers to access the addresses of variables used in
a program. This access gives programmers a view into a computer’s basic storage structure, resulting
in capabilities and programming power that aren’t available in other high-level languages. This is
accomplished by using a feature called pointers. Although other languages provide pointers, C++
extends this feature by providing pointer arithmetic; that is, pointer values can be added, subtracted,
and compared.

Fundamentally, pointers are simply variables used to store memory addresses. This chapter
discusses the basics of declaring pointers, and then explains methods of applying pointer variables to
access and use stored addresses in meaningful ways.

12.1 Addresses and Pointers

As you saw in Section 2.5, to display the address of a variable, you can use C++’s address
operator, &, which means “the address of.” When used in a nondeclarative statement, the
address operator placed in front of a variable’s name refers to the address of the variable.1 For
example, in a nondeclarative statement, &num means the address of num, &miles means the
address of miles, and &foo means the address of foo. Program 12.1, which is a copy of
Program 2.10, uses the address operator to display the address of the num variable.

The output of Program 12.1 is as follows:

The value stored in num is 22

The address of num = 0012FED4

Figure 12.1 illustrates the contents and address of the num variable, as shown in
Program 12.1’s output.

1As you saw in Chapter 6, when used in declaring reference arguments, the ampersand refers to the data type preceding it. Therefore, both the
declarations double& num and double # are read as “num is the address of a double” or, more commonly, as “num is a reference to
a double.”

Program 12.1

#include <iostream>

using namespace std;

int main()

{

int num;

num = 22;

cout << "The value stored in num is " << num << endl;

cout << "The address of num = " << &num << endl;

return 0;

}

Address of first byte used by num Contents of num

22

1 or more bytes of memory

0012FED4

Figure 12.1 A more complete picture of the num variable

666 Pointers

As mentioned in Section 2.5, address information changes, depending on what computer
is executing the program and how many other programs are currently loaded into memory.

Storing Addresses
Besides displaying the address of a variable, as in Program 12.1, you can store addresses in
suitably declared variables. For example, the statement

numAddr = #

stores the address corresponding to the variable num in the variable numAddr, as illustrated
in Figure 12.2.

Similarly, the statements

d = &m;
tabPoint = &list;
chrPoint = &ch;

store addresses of the variables m, list, and ch in the variables d, tabPoint, and
chrPoint, as illustrated in Figure 12.3.

The variables numAddr, d, tabPoint, and chrPoint are formally called pointer variables
or pointers. Pointers are simply variables used to store the addresses of other variables.

Using Addresses
To use a stored address, C++ provides an indirection operator, *. The * symbol, when
followed by a pointer (with a space permitted both before and after the *), means “the
variable whose address is stored in.” Therefore, if numAddr is a pointer (a variable that stores
an address), *numAddr means the variable whose address is stored in numAddr. Similarly,
*tabPoint means the variable whose address is stored in tabPoint, and *chrPoint means

Address of num

Variable’s contents:Variable’s name:
numAddr

Figure 12.2 Storing num’s address in numAddr

Variable:

d

tabPoint

chrPoint

Address of m

Address of list

Address of ch

Contents:

Figure 12.3 Storing more addresses

667Chapter 12
Addresses and Pointers

the variable whose address is stored in chrPoint. Figure 12.4 shows the relationship between
the address contained in a pointer variable and the variable.

Although *d means “the variable whose address is stored in d,” it’s commonly shortened to
the statement “the variable pointed to by d.” Similarly, referring to Figure 12.4, *y can be read
as “the variable pointed to by y.” The value that’s finally obtained, as shown in Figure 12.4,
is qqqq.

When using a pointer variable, the value that’s finally obtained is always found by first
going to the pointer for an address. The address contained in the pointer is then used to get
the variable’s contents. Certainly, this procedure is a rather indirect way of getting to the final
value, so the term indirect addressing is used to describe it.

Because using a pointer requires the computer to do a double lookup (retrieving the
address first, and then using the address to retrieve the actual data), you might wonder why
you’d want to store an address in the first place. The answer lies in the intimate relationship
between pointers and arrays and the ability of pointers to create and delete variable storage
locations dynamically, as a program is running. Both topics are discussed later in this chapter.
For now, however, given that each variable has a memory address associated with it, the idea
of storing an address shouldn’t seem unusual.

Declaring Pointers
Like all variables, pointers must be declared before they can be used to store an address.
When you declare a pointer variable, C++ requires also specifying the type of variable that’s
pointed to. For example, if the address in the pointer numAddr is the address of an integer,
this is the correct declaration for the pointer:

int *numAddr;

This declaration is read as “the variable pointed to by numAddr (from *numAddr in the
declaration) is an integer.”2

Notice that the declaration int *numAddr; specifies two things: First, the variable
pointed to by numAddr is an integer, and second, numAddr must be a pointer (because it’s
used with the indirection operator, *). Similarly, if the pointer tabPoint points to (contains
the address of) a double-precision number and chrPoint points to a character variable, the
required declarations for these pointers are as follows:

double *tabPoint;
char *chrPoint;

2Pointer declarations can also be written in the form dataType* pointerName, with a space between the indirection operator and the pointer name.
This form, however, is error prone when multiple pointers are declared in the same declaration statement and the asterisk is inadvertently
omitted after declaring the first pointer name. For example, the declaration int* num1, num2; declares num1 as a pointer variable and num2
as an integer variable. To accommodate multiple pointers in the same declaration and clearly mark a variable as a pointer, the examples in this
book adhere to the convention of placing an asterisk in front of each pointer name. This potential error rarely occurs with reference declarations
because references are used almost exclusively as formal parameters, and single declarations of parameters are mandatory.

mmmm

A pointer variable y

The contents at
address mmmm are

qqqq

mmmm

qqqq

The contents of y are
an address

Figure 12.4 Using a pointer variable

668 Pointers

These two declarations can be read as “the variable pointed to by tabPoint is a
double” and “the variable pointed to by chrPoint is a char.” Because all addresses
appear the same, the compiler needs this additional information to know how many storage
locations to access when it uses the address stored in the pointer.

Here are other examples of pointer declarations:

char *inkey;
int *numPt;
double *nm1Ptr

To understand pointer declarations, reading them “backward” is helpful, starting with the
indirection operator, *, and translating it as “the variable whose address is stored in” or “the
variable pointed to by.” Applying this method to pointer declarations, the declaration char
*inkey;, for example, can be read as “the variable whose address is stored in inkey is a
char” or “the variable pointed to by inkey is a char.” Both these statements are often
shortened to the simpler “inkey points to a char.” All three interpretations of the
declaration statement are correct, so you can use the description that makes the most sense
to you. Program 12.2 puts this information together to construct a program using pointers.

Program 12.2

#include <iostream>

using namespace std;

int main()

{

int *numAddr; // declare a pointer to an int

int miles, dist; // declare two integer variables

dist = 158; // store the number 158 in dist

miles = 22; // store the number 22 in miles

numAddr = &miles; // store the 'address of miles' in numAddr

cout << "The address stored in numAddr is " << numAddr << endl;

cout << "The value pointed to by numAddr is " << *numAddr << "\n\n";

numAddr = &dist; // now store the address of dist in numAddr

cout << "The address now stored in numAddr is " << numAddr << endl;

cout << "The value now pointed to by numAddr is " << *numAddr << endl;

return 0;

}

669Chapter 12
Addresses and Pointers

The output of Program 12.2 is as follows:

The address stored in numAddr is 0012FEC8

The value pointed to by numAddr is 22

The address now stored in numAddr is 0012FEBC

The value now pointed to by numAddr is 158

The only use for Program 12.2 is to help you understand what gets stored where, so
review the program to see how the output was produced. The declaration statement int
*numAddr; declares numAddr to be a pointer used to store the address of an integer
variable. The statement numAddr = &miles; stores the address of the variable miles in
the pointer numAddr. The first cout statement causes this address to be displayed. The
second cout statement uses the indirection operator to retrieve and display the value
pointed to by numAddr, which is, of course, the value stored in miles.

Because numAddr has been declared as a pointer to an integer variable, you can use this
pointer to store the address of any integer variable. The statement numAddr = &dist
illustrates this use by storing the address of the variable dist in numAddr. The last two
cout statements verify the change in numAddr’s value and confirm that the new stored
address points to the variable dist. As shown in Program 12.2, only addresses should be
stored in pointers.

It certainly would have been much simpler if the pointer used in Program 12.2 could
have been declared as pointer numAddr;. This declaration, however, conveys no
information about the storage used by the variable whose address is stored in numAddr. This
information is essential when the pointer is used with the indirection operator, as in the
second cout statement in Program 12.2. For example, if an integer’s address is stored in
numAddr, typically only 4 bytes of storage are retrieved when the address is used. If a
character’s address is stored in numAddr, only 1 byte of storage is retrieved, and a double
typically requires retrieving 8 bytes of storage. The declaration of a pointer must, therefore,
include the type of variable being pointed to, as illustrated in Figure 12.5.

An address

An address

An address
A pointer to
a double

A pointer to
an integer

A pointer to
a character

1 byte is
retrieved

4 bytes are
retrieved

8 bytes are
retrieved

Figure 12.5 Addressing different data types by using pointers

670 Pointers

References and Pointers
At this point, you might be asking what the difference is between a pointer and a reference.
Essentially, a reference is a named constant for an address; therefore, the address named as
a reference can’t be altered. Because a pointer is a variable, the address in a pointer can be
changed. For most applications, using references rather than pointers as arguments to
functions is easier and preferred. The reason is the simpler notation for locating a reference
parameter, which eliminates the address operator (&) and indirection operator (*) that are
required for pointers. Technically, references are said to be automatically dereferenced or
implicitly dereferenced (the two terms are used synonymously), and pointers must be
dereferenced explicitly to locate the value being accessed.

For example, in passing a scalar variable’s address as a function argument, references
provide a simpler notation and are usually preferred. For other situations, such as dynamically
allocating new sections of memory for additional variables as a program is running or using
alternatives to array notation (both are discussed later in this chapter), pointers are required.

Reference Variables3 References are used almost exclusively as formal function param-
eters and return types. Nevertheless, reference variables are also available in C++. For
completeness, you see how to declare and use these variables.

After a variable has been declared, it can be given additional names by using a reference
declaration, which has this form:

dataType& newName = existingName;

For example, the reference declaration

double& sum = total;

equates the name sum to the name total. Both now refer to the same variable, as illustrated
in Figure 12.6.

After establishing another name for a variable by using a reference declaration, the new
name, referred to as an alias, can be used in place of the original name. For example, take
a look at Program 12.3.

3This section can be omitted with no loss of subject continuity.

Two names for the
same memory area

total or sum

Figure 12.6 sum is an alternative name for total

671Chapter 12
Addresses and Pointers

The following output is produced by Program 12.3:

sum = 20.5

total = 18.6

Because the variable sum is simply another reference to the variable total, the first cout
statement in Program 12.3 displays the value stored in total. Changing the value in sum then
changes the value in total, which the second cout statement in Program 12.3 displays.

When constructing references, keep two points in mind. First, the reference should be
of the same data type as the variable it refers to. For example, this sequence of declarations

int num = 5;
double& numref = num; // INVALID - CAUSES A COMPILER ERROR

doesn’t equate numref to num; rather, it causes a compiler error because the two variables
are of different data types.

Second, a compiler error is produced when an attempt is made to equate a reference to
a constant. For example, the following declaration is invalid:

int& val = 5; // INVALID - CAUSES A COMPILER ERROR

After a reference name has been equated to one variable name correctly, the reference
can’t be changed to refer to another variable.

As with all declaration statements, multiple references can be declared in a single
statement, as long as each reference name is preceded by the ampersand. Therefore, the
following declaration creates two reference variables named sum and average:4

double& sum = total, & average;

4Reference declarations can also be written in the form dataType &newName=existingName, with a space between the ampersand and the
data type. This form isn’t used much, however, probably to distinguish reference variable address notation from the notation used to assign
addresses to pointer variables.

Program 12.3

#include <iostream>

using namespace std;

int main()

{

double total = 20.5; // declare and initialize total

double& sum = total; // declare another name for total

cout << "sum = " << sum << endl;

sum = 18.6; // this changes the value in total

cout << "total = " << total << endl;

return 0;

}

672 Pointers

Another way of looking at references is to consider them as pointers with restricted
capabilities that hide a lot of the dereferencing required with pointers. For example, take a
look at these statements:

int b; // b is an integer variable
int& a = b; // a is a reference variable that stores b's address
a = 10; // this changes b's value to 10

Here, a is declared as a reference variable that’s effectively a named constant for the
address of the b variable. Because the compiler knows from the declaration that a is a
reference variable, it automatically assigns b’s address (rather than b’s contents) to a in the
declaration statement. Finally, in the statement a = 10;, the compiler uses the address
stored in a to change the value stored in b to 10. The advantage of using the reference is that
it accesses b’s value automatically without having to use the indirection symbol, *. As noted
previously, this type of access is referred to as an automatic dereference.

The following sequence of instructions makes use of this same correspondence between
a and b by using pointers:

int b; // b is an integer variable
int *a = &b; // a is a pointer - store b's address in a
*a = 10; // this changes b's value to 10 by explicit

// dereference of the address in a

Here, a is defined as a pointer initialized to store the address of b. Therefore, *a (which
can be read as “the variable whose address is in a” or “the variable pointed to by a”) is b,
and the expression *a = 10 changes b’s value to 10. Notice that with pointers, the stored
address can be altered to point to another variable; with references, the reference variable
can’t be altered to refer to any variable except the one it’s initialized to. Also, notice that to
dereference a, you must use the indirection operator, *. As you might expect, the * is also
called the dereferencing operator.

EXERCISES 12.1

1. (For Review) If average is a variable, what does &average mean?

2. (Practice) For the variables and addresses shown in Figure 12.7, determine the addresses
corresponding to the expressions &temp, &dist, &date, and &miles.

3. (Practice) a. Write a C++ program that includes the following declaration statements.
Have the program use the address operator and a cout statement to display the
addresses corresponding to each variable.

int num, count;
long date;
float slope;
double power;

b. After running the program written for Exercise 3a, draw a diagram of how your com-
puter has set aside storage for the variables in the program. On your diagram, fill in
the addresses the program displays.

673Chapter 12
Addresses and Pointers

c. Modify the program written in Exercise 3a (using the sizeof() operator) to display
the amount of storage your computer reserves for each data type. With this informa-
tion and the address information provided in Exercise 3b, determine whether your
computer set aside storage for the variables in the order in which they were declared.

4. (For Review) If a variable is declared as a pointer, what must be stored in the variable?

5. (Practice) Using the indirection operator, write expressions for the following:
a. The variable pointed to by xAddr

b. The variable whose address is in yAddr

c. The variable pointed to by ptYld

d. The variable pointed to by ptMiles

e. The variable pointed to by mptr

f. The variable whose address is in pdate

g. The variable pointed to by distPtr

h. The variable pointed to by tabPt

i. The variable whose address is in hoursPt

6. (Practice) Write declaration statements for the following:
a. The variable pointed to by yAddr is an integer.

b. The variable pointed to by chAddr is a character.

c. The variable pointed to by ptYr is a long integer.

d. The variable pointed to by amt is a double-precision variable.

e. The variable pointed to by z is an integer.

f. The variable pointed to by qp is a single-precision variable.

g. datePt is a pointer to an integer.

h. yldAddr is a pointer to a double-precision variable.

Addresses: 16892 16893 16894 16895 16896 16897 16898 16899

Addresses: 16900 16901 16902 16903 16904 16905 16906 16907

Addresses: 16908 16909 16910 16911 16912 16913 16914 16915

temp dist

date

miles

Figure 12.7 Memory bytes for Exercise 2

674 Pointers

i. amtPt is a pointer to a single-precision variable.

j. ptChr is a pointer to a character.

7. (For Review) a. What are the variables yAddr, chAddr, ptYr, amt, z, qp, datePt,
yldAddr, amtPt, and ptChr used in Exercise 6 called?

b. Why are the variable names amt, z, and qp used in Exercise 6 not good choices for
pointer names?

8. (Practice) Write English sentences that describe what’s contained in the following
declared variables:
a. char *keyAddr;

b. int *m;

c. double *yldAddr;

d. long *yPtr;

e. double *pCou;

f. int *ptDate;

9. (Practice) Which of the following is a declaration for a pointer?
a. long a;

b. char b;

c. char *c;

d. int x;

e. int *p;

f. double w;

g. float *k;

h. float l;

i. double *z;

10. (Practice) For the following declarations,

int *xPt, *yAddr;
long *dtAddr, *ptAddr;
double *ptZ;
int a;
long b;
double c;

determine which of the following statements is valid:
a. yAddr = &a;

b. yAddr = &b;

c. yAddr = &c;

d. yAddr = a;

e. yAddr = b;

f. yAddr = c;

g. dtAddr = &a;

h. dtAddr = &b;

i. dtAddr = &c;

j. dtAddr = a;

k. dtAddr = b;

l. dtAddr = c;

m. ptZ = &a;

n. ptAddr = &b;

o. ptAddr = &c;

p. ptAddr = a;

q. ptAddr = b;

r. ptAddr = c;

s. yAddr = xPt;

t. yAddr = dtAddr;

u. yAddr = ptAddr;

675Chapter 12
Addresses and Pointers

11. (Practice) For the variables and addresses illustrated in Figure 12.8, fill in the data deter-
mined by the following statements:
a. ptNum = &m;

b. amtAddr = &amt;

c. *zAddr = 25;

d. k = *numAddr;

e. ptDay = zAddr;

f. *ptYr = 1987;

g. *amtAddr = *numAddr;

12. (Practice) Using the sizeof() operator, determine the number of bytes your computer
uses to store the address of an integer, a character, and a double-precision number. (Hint :
sizeof(*int) can be used to determine the number of memory bytes used for a
pointer to an integer.) Would you expect the size of each address to be the same? Why or
why not?

Variable: ptNum
Address: 500

Variable: amtAddr
Address: 564

Variable: zAddr
Address: 8024

Variable: numAddr
Address: 10132

Variable: ptDay
Address: 14862

Variable: ptYr
Address: 15010

Variable: amt
Address: 16256

Variable: firstnum
Address: 18938

Variable: years
Address: 694

Variable: m
Address: 8096

Variable: slope
Address: 20492

Variable: k
Address: 24608

20492 18938

694

154

Figure 12.8 Memory locations for Exercise 11

676 Pointers

12.2 Array Names as Pointers

Although pointers are simply, by definition, variables used to store addresses, there’s also a
direct and intimate relationship between array names and pointers. This section describes
this relationship in detail. Figure 12.9 illustrates the storage of a one-dimensional array
named grade, which contains five integers. Each integer requires 4 bytes of storage.

Using subscripts, the fourth element in the grade array is referred to as grade[3]. The
use of a subscript, however, conceals the computer’s extensive use of addresses. Internally,
the computer immediately uses the subscript to calculate the array element’s address based
on both the array’s starting address and the amount of storage each element uses. Calling the
fourth element grade[3] forces the compiler to make this address computation:

&grade[3] = &grade[0] + (3 * sizeof(int))

Remembering that the address operator, &, means “the address of,” this statement is read
“the address of grade[3] equals the address of grade[0] plus 12.” Figure 12.10 illustrates
the address computation used to locate grade[3].

Recall that a pointer is a variable used to store an address. If you create a pointer to store
the address of the first element in the grade array, you can mimic the computer’s operation
to access the array elements. Before you do this, take a look at Program 12.4.

grade[0]
(4 bytes)

grade[1]
(4 bytes)

grade[2]
(4 bytes)

grade[3]
(4 bytes)

grade[4]
(4 bytes)

Figure 12.9 The grade array in storage

grade[0]
(4 bytes)

offset to grade[3] = 3 × 4 = 12 bytes

+ =

grade[1]
(4 bytes)

grade[2]
(4 bytes)

grade[3]
(4 bytes)

grade[4]
(4 bytes)

offset
starting address

of grade[3]
starting address

of the array

Figure 12.10 Using a subscript to obtain an address

677Chapter 12
Array Names as Pointers

When Program 12.4 runs, it produces the following display:

Element 0 is 98

Element 1 is 87

Element 2 is 92

Element 3 is 79

Element 4 is 85

Program 12.4 displays the values of the grade array by using standard subscript notation.
Now store the address of array element 0 in a pointer. Then, using the * operator, you can
use the address in the pointer to access each array element. For example, if you store the
address of grade[0] in a pointer named gPtr by using the assignment statement
gPtr = &grade[0];, the expression *gPtr (which means “the variable pointed to by
gPtr”) references grade[0], as shown in Figure 12.11.

Program 12.4

#include <iostream>

using namespace std;

int main()

{

const int ARRAYSIZE = 5;

int i, grade[ARRAYSIZE] = {98, 87, 92, 79, 85};

for (i = 0; i < ARRAYSIZE; i++)

cout << "\nElement " << i << " is " << grade[i];

cout << endl;

return 0;

}

gPtr

Address of
grade[0]

*gPtr

grade[0] grade[1] grade[2] grade[3] grade[4]

The variable pointed to by the address
in gPtr is

Figure 12.11 The variable pointed to by *gPtr is grade[0]

678 Pointers

One unique feature of pointers is that offsets can be included in expressions using
pointers. For example, the 1 in the expression *(gPtr + 1) is an offset. The complete
expression references the integer that’s one beyond the variable pointed to by gPtr.
Similarly, as illustrated in Figure 12.12, the expression *(gPtr + 3) references the variable
that’s three integers beyond the variable pointed to by gPtr: the variable grade[3].

Table 12.1 shows the correspondence between elements referenced by subscripts and by
pointers and offsets. Figure 12.13 illustrates the relationships listed in Table 12.1.

Table 12.1 Array Elements Can Be Referenced in Two Ways

Array Element Subscript Notation Pointer Notation
Element 0 grade[0] *gPtr or (gPtr + 0)
Element 1 grade[1] *(gPtr + 1)
Element 2 grade[2] *(gPtr + 2)
Element 3 grade[3] *(gPtr + 3)
Element 4 grade[4] *(gPtr + 4)

gPtr

Address of
grade[0]

*(
gP
tr
+3
)

grade[0] grade[1] grade[2] grade[3] grade[4]

The variable pointed to that’s three integer
locations beyond the address in gPtr is

Figure 12.12 An offset of 3 from the address in gPtr

Address of
grade[0]

grade[0] grade[1] grade[2] grade[3] grade[4]

*gPtr *(gPtr+1) *(gPtr+2) *(gPtr+3) *(gPtr+4)

gPtr
(enough storage
for an address)

Figure 12.13 The relationship between array elements and pointers

679Chapter 12
Array Names as Pointers

Using the correspondence between pointers and subscripts shown in Figure 12.13, the
array elements accessed in Program 12.4 with subscripts can now be accessed with pointers,
which is done in Program 12.5.

The following display is produced when Program 12.5 runs:

Element 0 is 98

Element 1 is 87

Element 2 is 92

Element 3 is 79

Element 4 is 85

Notice that this display is the same as Program 12.4’s display. The method used in
Program 12.5 to access array elements simulates how the compiler references array elements
internally. The compiler automatically converts any subscript used by a programmer to an
equivalent pointer expression. In this case, because the declaration of gPtr includes the
information that integers are pointed to, any offset added to the address in gPtr is scaled
automatically by the size of an integer. Therefore, *(gPtr + 3), for example, refers to the
address of grade[0] plus an offset of 12 bytes (3 * 4), assuming sizeof(int) = 4. This
result is the address of grade[3] shown in Figure 12.13.

Program 12.5

#include <iostream>

using namespace std;

int main()

{

const int ARRAYSIZE = 5;

int *gPtr; // declare a pointer to an int

int i, grade[ARRAYSIZE] = {98, 87, 92, 79, 85};

gPtr = &grade[0]; // store the starting array address

for (i = 0; i < ARRAYSIZE; i++)

cout << "\nElement " << i << " is " << *(gPtr + i);

cout << endl;

return 0;

}

680 Pointers

The parentheses in the expression *(gPtr + 3) are necessary to reference an array
element correctly. Omitting the parentheses results in the expression *gPtr + 3. Because
of operator precedence, this expression adds 3 to “the variable pointed to by gPtr.” Because
gPtr points to grade[0], this expression adds the value of grade[0] and 3 together.
Note also that the expression *(gPtr + 3) doesn’t change the address stored in gPtr.After
the computer uses the offset to locate the correct variable from the starting address in gPtr,
the offset is discarded and the address in gPtr remains unchanged.

Although the pointer gPtr used in Program 12.5 was created specifically to store the
grade array’s starting address, doing so is unnecessary. When an array is created, the
compiler creates an internal pointer constant for it automatically and stores the array’s starting
address in this pointer. In almost all respects, a pointer constant is identical to a programmer-
created pointer variable, but as you’ll see, there are some differences.

For each array created, the array name becomes the name of the pointer constant the
compiler creates for the array, and the starting address of the first location reserved for the
array is stored in this pointer. Therefore, declaring the grade array in Programs 12.4 and 12.5
actually reserves enough storage for five integers, creates an internal pointer named grade,
and stores the address of grade[0] in the pointer, as shown in Figure 12.14.

The implication is that every reference to grade made with a subscript can be replaced by
a reference using grade as a pointer. Therefore, wherever the expression grade[i] is used,
the expression *(grade + i) can also be used. This equivalence is shown in Program 12.6,
where grade is used as a pointer to reference all its elements. Program 12.6 produces the same
output as Programs 12.4 and 12.5. However, using grade as a pointer makes it unnecessary to
declare and initialize the pointer gPtr used in Program 12.5.

grade

&grade[0]

grade[0]
or

*grade

grade[1]
or

*(grade+1)

grade[2]
or

*(grade+2)

grade[3]
or

*(grade+3)

grade[4]
or

*(grade+4)

Figure 12.14 Creating an array also creates a pointer

681Chapter 12
Array Names as Pointers

In most respects, an array name and a pointer can be used interchangeably. A true
pointer, however, is a variable, and the address stored in it can be changed. An array name
is a pointer constant, and the address stored in the pointer can’t be changed by an assignment
statement. Therefore, a statement such as grade = &grade[2]; is invalid. This should
come as no surprise. Because the purpose of an array name is to locate the beginning of the
array correctly, allowing a programmer to change the address stored in the array name defeats
this purpose and leads to havoc when array elements are referenced. Also, expressions taking
the address of an array name are invalid because the pointer the compiler creates is internal
to the computer, not stored in memory, as pointer variables are. Therefore, trying to store the
address of grade by using the expression &grade results in a compiler error.

An interesting sidelight to referencing array elements with pointers is that a pointer
reference can always be replaced with a subscript reference. For example, if numPtr is
declared as a pointer variable, the expression *(numPtr + i) can also be written as
numPtr[i], even though numPtr isn’t created as an array. As before, when the compiler
encounters the subscript notation, it replaces it internally with the pointer notation.

Dynamic Array Allocation5

As each variable is defined in a program, sufficient storage for it is assigned from a pool of
computer memory locations made available to the compiler. After memory locations have
been reserved for a variable, these locations are fixed for the life of that variable, whether or
not they’re used. For example, if a function requests storage for an array of 500 integers, the
storage is allocated and fixed from the point of the array’s definition. If the application
requires fewer than 500 integers, the unused allocated storage isn’t released back to the
system until the array goes out of existence. If, on the other hand, the application requires

5This topic can be omitted on first reading with no loss of subject continuity.

Program 12.6

#include <iostream>

using namespace std;

int main()

{

const int ARRAYSIZE = 5;

int i, grade[ARRAYSIZE] = {98, 87, 92, 79, 85};

for (i = 0; i < ARRAYSIZE; i++)

cout << "\nElement " << i << " is " << *(grade + i);

cout << endl;

return 0;

}

682 Pointers

more than 500 integers, the integer array’s size must be increased and the function defining
the array must be recompiled.

An alternative to this fixed or static allocation of memory storage locations is dynamic
allocation of memory. Under a dynamic allocation scheme, the amount of storage to be
allocated is determined and adjusted at runtime rather than compile time. Dynamic
allocation of memory is useful when dealing with lists because it allows expanding the list as
new items are added and contracting the list as items are deleted. For example, in
constructing a list of grades, you don’t need to know the exact number of grades. Instead of
creating a fixed array to store grades, having a mechanism for enlarging and shrinking the
array as needed is useful. Table 12.2 describes two C++ operators, new and delete, that
provide this capability. (These operators require the new header file.)

Table 12.2 The new and delete Operators (Require the new Header File)

Operator Name Description
new Reserves the number of bytes requested by the

declaration. Returns the address of the first reserved
location or NULL if not enough memory is available.

delete Releases a block of bytes reserved previously. The address
of the first reserved location must be passed as an
argument to the operator.

Dynamic storage requests for scalar variables or arrays are made as part of a declaration
or an assignment statement.6 For example, the declaration statement int *num = new
int; reserves an area large enough to hold one integer and places this storage area’s address
in the pointer num. This same dynamic allocation can be made by first declaring the pointer
with the declaration statement int *num;, and then assigning the pointer an address with
the assignment statement num = new int;. In either case, the allocated storage comes
from the computer’s free storage area.7

Dynamic allocation of arrays is similar but more useful. For example, the declaration

int *grades = new int[200];

reserves an area large enough to store 200 integers and places the first integer’s address in the
pointer grades. Although the constant 200 has been used in this declaration, a variable
dimension can be used. For example, take a look at this sequence of instructions:

cout << "Enter the number of grades to be processed: ";
cin >> numgrades;
int *grades = new int[numgrades];

In this sequence, the actual size of the array that’s created depends on the number the
user inputs. Because pointer and array names are related, each value in the newly created
storage area can be accessed by using standard array notation, such as grades[i], instead
of the pointer notation *(grades + i). Program 12.7 shows this sequence of code in the
context of a complete program.

6Note that the compiler provides dynamic allocation and deallocation from the stack for all auto variables automatically.
7A computer’s free storage area is formally called the heap. It consists of unallocated memory that can be allocated to a program, as requested,
while the program is running.

683Chapter 12
Array Names as Pointers

Notice in Program 12.7 that the delete operator is used with braces where the new
operator was used previously to create an array. The delete[] statement restores the
allocated block of storage back to the free storage area (the heap) while the program is
running.8 The only address delete requires is the starting address of the dynamically
allocated storage block. Therefore, any address returned by new can be used subsequently
by delete to restore reserved memory back to the computer. The delete operator doesn’t

8The operating system should return allocated storage to the heap automatically when the program has finished running. Because this return
doesn’t always happen, however, it’s crucial to restore dynamically allocated memory explicitly to the heap when the storage is no longer needed.
The term memory leak describes the condition that occurs when dynamically allocated memory isn’t returned explicitly by using the delete
operator and the operating system doesn’t reclaim allocated memory.

Program 12.7

#include <iostream>

#include <new>

using namespace std;

int main()

{

int numgrades, i;

cout << "Enter the number of grades to be processed: ";

cin >> numgrades;

int *grades = new int[numgrades]; // create the array

for(i = 0; i < numgrades; i++)

{

cout << " Enter a grade: ";

cin >> grades[i];

}

cout << "\nAn array was created for " << numgrades << " integers\n";

cout << " The values stored in the array are:";

for (i = 0; i < numgrades; i++)

cout << "\n " << grades[i];

cout << endl;

delete[] grades; // return the storage to the heap

return 0;

}

684 Pointers

alter the address passed to it, but simply removes the storage the address references.
Following is a sample run of Program 12.7:

Enter the number of grades to be processed: 4

Enter a grade: 85

Enter a grade: 96

Enter a grade: 77

Enter a grade: 92

An array was created for 4 integers

The values stored in the array are:

85

96

77

92

EXERCISES 12.2

1. (Practice) Replace each of the following references to a subscripted variable with a
pointer reference:
a. prices[5]

b. grades[2]

c. yield[10]

d. dist[9]

e. mile[0]

f. temp[20]

g. celsius[16]

h. num[50]

i. time[12]

2. (Practice) Replace each of the following pointer references with a subscript reference:
a. *(message + 6)

b. *amount

c. *(yrs + 10)

d. *(stocks + 2)

e. *(rates + 15)

f. *(codes + 19)

3. (For Review) a. List three things the declaration statement double slopes[5];
causes the compiler to do.

b. If each double-precision number uses 8 bytes of storage, how much storage is set
aside for the slopes array?

c. Draw a diagram similar to Figure 12.14 for the slopes array.

d. Determine the byte offset in relation to the start of the slopes array, corresponding
to the offset in the expression *(slopes + 3).

4. (Program) Write a declaration to store the following values in an array named rates:
12.9, 18.6, 11.4, 13.7, 9.5, 15.2, and 17.6. Include the declaration in a program that dis-
plays the values in the array by using pointer notation.

685Chapter 12
Array Names as Pointers

12.3 Pointer Arithmetic

Pointer variables, like all variables, contain values. The value stored in a pointer is, of course,
an address. Therefore, by adding and subtracting numbers to pointers, you can obtain
different addresses. Additionally, the addresses in pointers can be compared by using any of
the relational operators (==, !=, <, >, and so forth) that are valid for comparing other
variables. When performing arithmetic on pointers, you must be careful to produce addresses
that point to something meaningful. In comparing pointers, you must also make comparisons
that make sense. Consider these declarations:

int nums[100];
int *nPt;

To set the address of nums[0] in nPt, either of these assignment statements can be used:

nPt = &nums[0];
nPt = nums;

Both assignment statements produce the same result because nums is a pointer constant
containing the address of the first location in the array: the address of nums[0]. Figure 12.15
illustrates the memory allocation resulting from the previous declaration and assignment
statements, assuming each integer requires 4 bytes of memory, and the location of the
beginning of the nums array is address 18934.

After nPt contains a valid address, values can be added and subtracted from the address
to produce new addresses. When adding or subtracting numbers to pointers, the computer
adjusts the number automatically to ensure that the result still “points to” a value of the
correct type. For example, the statement nPt = nPt + 4; forces the computer to scale the
4 by the correct number to make sure the resulting address is the address of an integer.
Assuming each integer requires 4 bytes of storage, as shown in Figure 12.15, the computer
multiplies the 4 by 4 and adds 16 to the address in nPt. The resulting address is 18950,
which is the correct address of nums[4].

Addresses:

nums[0] nums[1] nums[2] nums[3] nums[4]

The address of nums[0]

18
93

4

18
93

8

18
94

2

18
94

6

18
95

0

18934

The starting address of the nums array is 18934

nPt

Figure 12.15 The nums array in memory

686 Pointers

The computer’s automatic scaling ensures that the expression nPt + i, where i is any
positive integer, points to the ith element beyond the one currently pointed to by nPt.
Therefore, if nPt initially contains the address of nums[0], nPt + 4 is the address of
nums[4], nPt + 50 is the address of nums[50], and nPt + i is the address of nums[i].
Although actual addresses are used in Figure 12.15 to illustrate the scaling process, the
programmer doesn’t need to be concerned with the actual addresses the computer uses.
Manipulating addresses with pointers generally doesn’t require knowledge of the actual
addresses.

Addresses can also be incremented or decremented with the prefix and postfix increment
and decrement operators. Adding one to a pointer causes the pointer to point to the next
element of the type being pointed to. Decrementing a pointer causes the pointer to point to
the previous element. For example, if the pointer variable p is a pointer to an integer, the
expression p++ increments the address in the pointer to point to the next integer, as
illustrated in Figure 12.16.

In reviewing Figure 12.16, notice that the increment added to the pointer is scaled to
account for the pointer used to point to integers. It is, of course, up to the programmer to
make sure the correct type of data is stored in the new address contained in the pointer.

The increment and decrement operators can be applied as both prefix and postfix pointer
operators. All the following combinations using pointers are valid:

*ptNum++ // use the pointer and then increment it
*++ptNum // increment the pointer before using it
*ptNum-- // use the pointer and then decrement it
*--ptNum // decrement the pointer before using it

Of these four possible forms, the most commonly used is *ptNum++ because it allows
accessing each array element as the address is “marched along” from the array’s starting
address to the address of the last array element. Program 12.8 shows this use of the increment
operator. In this program, each element in the nums array is retrieved by successively
incrementing the address in nPt. Program 12.8 produces the following output:

The total of the array elements is 115

The pointer p

Address of
an integer

An integer An integer

4 bytes

Adding 1 to the
pointer increases the
address to point here

Figure 12.16 Increments are scaled when used with pointers

687Chapter 12
Pointer Arithmetic

The expression total = total + *nPt++ in Program 12.8 accumulates the values
pointed to by the nPt pointer. In this expression, the *nPt part causes the computer to
retrieve the integer pointed to by nPt. Next, the postfix increment, ++, adds one to the
address in nPt so that nPt then contains the address of the next array element. The
computer, of course, scales the increment so that the actual address in nPt is the correct
address of the next element.

Pointers can also be compared, which is particularly useful when dealing with pointers
that point to elements in the same array. For example, instead of using a counter in a for
loop to access each array element, the address in a pointer can be compared to the array’s
starting and ending addresses. The expression

nPt <= &nums[4]

is true (non-zero) as long as the address in nPt is less than or equal to the address of nums[4].
Because nums is a pointer constant containing the address of nums[0], the term &nums[4]
can be replaced by the equivalent term nums + 4. Using either form, Program 12.8 can be
rewritten in Program 12.9 to continue adding array elements while the address in nPt is less
than or equal to the address of the last array element.

In Program 12.9, the compact form of the accumulating expression total += *nPt++ was
used in place of the longer form, total = total + *nPt++. Also, the expression nums +
4 doesn’t change the address in nums. Because nums is an array name, not a pointer variable, its
value can’t be changed. The expression nums + 4 first retrieves the address in nums, adds 4
to this address (scaled appropriately), and uses the result for comparison purposes. Expressions
such as *nums++, which attempt to change the address, are invalid. Expressions such as *nums
or *(nums + i), which use the address without attempting to alter it, are valid.

Program 12.8

#include <iostream>

using namespace std;

int main()

{

const int NUMS = 5;

int nums[NUMS] = {16, 54, 7, 43, -5};

int i, total = 0, *nPt;

nPt = nums; // store address of nums[0] in nPt

for (i = 0; i < NUMS; i++)

total = total + *nPt++;

cout << "The total of the array elements is " << total << endl;

return 0;

}

688 Pointers

Pointer Initialization
Like all variables, pointers can be initialized when they are declared. When initializing
pointers, however, you must be careful to set an address in the pointer. For example, an
initialization such as

int *ptNum = &miles;

is valid only if miles is declared as an integer variable before ptNum is. This statement
creates a pointer to an integer and sets the address in the pointer to the address of an integer
variable. If the variable miles is declared after ptNum is declared, as follows, an error occurs:

int *ptNum = &miles;
int miles;

The error occurs because the address of miles is used before miles has even been
defined. Because the storage area reserved for miles hasn’t been allocated when ptNum is
declared, the address of miles doesn’t exist yet.

Pointers to arrays can also be initialized in their declaration statements. For example, if
volts has been declared as an array of double-precision numbers, either of the following
declarations can be used to initialize the pointer zing to the address of the first element
in volts:

double *zing = &volts[0];
double *zing = volts;

Program 12.9

#include <iostream>

using namespace std;

int main()

{

const int NUMS = 5;

int nums[NUMS] = {16, 54, 7, 43, -5};

int total = 0, *nPt;

nPt = nums; // store address of nums[0] in nPt

while (nPt < nums + NUMS)

total += *nPt++;

cout << "The total of the array elements is " << total << endl;

return 0;

}

689Chapter 12
Pointer Arithmetic

The last initialization is correct because volts is a pointer constant containing an
address of the correct type. (The variable name zing was selected in this example to
reinforce the idea that any variable name can be selected for a pointer.)

EXERCISES 12.3

1. (Modify) Replace the while statement in Program 12.9 with a for statement.

2. (Program) a. Write a program that stores the following numbers in the array named
rates: 6.25, 6.50, 6.8, 7.2, 7.35, 7.5, 7.65, 7.8, 8.2, 8.4, 8.6, 8.8, and 9.0. Display the val-
ues in the array by changing the address in a pointer called dispPt. Use a for state-
ment in your program.

b. Modify the program written in Exercise 2a to use a while statement.

3. (Program) Write a program that stores the following numbers in the array named miles:
15, 22, 16, 18, 27, 23, and 20. Have your program copy the data stored in miles to
another array named dist, and then display the values in the dist array. Your program
should use pointer rotation when copying and displaying array elements.

4. (Program) Write a program that declares three one-dimensional arrays named miles,
gallons, and mpg. Each array should be capable of holding 10 elements. In the miles
array, store the numbers 240.5, 300.0, 189.6, 310.6, 280.7, 216.9, 199.4, 160.3, 177.4, and
192.3. In the gallons array, store the numbers 10.3, 15.6, 8.7, 14, 16.3, 15.7, 14.9, 10.7,
8.3, and 8.4. Each element of the mpg array should be calculated as the corresponding
element of the miles array divided by the equivalent element of the gallons array: for
example, mpg[0] = miles[0] / gallons[0]. Use pointers when calculating and
displaying the elements of the mpg array.

5. (Program) Define an array of 10 pointers to double-precision numbers. Then read
10 numbers into the locations referenced by the pointers. Next, have your program sum
the numbers and store the result in a pointer-accessed location. Finally, have your pro-
gram display the contents of all locations, again using pointer notation.

12.4 Passing Addresses

You have already seen one method of passing addresses to a function: using reference
parameters in Section 6.3. Passing a reference to a function is an implied use of an address
because even though the reference does provide the function with an address, the actual call
statement doesn’t reveal what is being passed—it could be a variable’s address or the
variable’s value. For example, the function call swap(num1,num2); doesn’t reveal whether
num1 or num2 is an address. Only by looking at the declarations for the variables num1 and
num2, or by examining the function header for swap() for declarations of the function’s
parameters, can you determine the data types of num1 and num2. If they have been defined
as reference variables, an address is passed; otherwise, the value stored in the variables is
passed.

690 Pointers

In contrast to implicitly passing addresses with references, addresses can be explicitly
passed with pointers. To explicitly pass an address to a function, all you need to do is place
the address operator, &, in front of the variable being passed. For example, this function call

swap(&firstnum, &secnum);

passes the addresses of the variables firstnum and secnum to swap(), as shown in
Figure 12.17. Explicitly passing addresses with the address operator is also referred to as a
pass by reference because the called function can reference, or access, variables in the calling
function by using the passed addresses. As you saw in Section 6.3, pass by references can also
be made with references. In this section, you use the addresses passed with pointers to
directly access the variables firstnum and secnum from swap() and exchange their
values—a procedure accomplished in Program 6.8 with reference parameters.

One of the first requirements in writing swap() is to construct a function header that
receives and stores the passed values, which in this case are two addresses. As you saw in
Section 12.1, addresses are stored in pointers, which means the parameters of swap() must
be declared as pointers.

Assuming firstnum and secnum are double-precision variables and swap() returns
no value, a suitable function header for swap() is as follows:

void swap(double *nm1Addr, double *nm2Addr);

The choice of the parameter names nm1Addr and nm2Addr is, as with all parameter
names, up to the programmer. The declaration double *nm1Addr, however, states that the
parameter named nm1Addr is used to store the address of a double-precision value. Similarly,
the declaration double *nm2Addr specifies that nm2Addr also stores the address of a
double-precision value.

Before writing the body of swap() to exchange the values in firstnum and secnum,
first check that the values accessed by using the addresses in nm1Addr and nm2Addr are
correct. Program 12.10 performs this check.

The output displayed when Program 12.10 runs is as follows:

The number whose address is in nm1Addr is 20.5

The number whose address is in nm2Addr is 6.25

A value

A value

swap(&firstnum, &secnum)

Variable name: secnum
Variable address: an address

Variable name: firstnum
Variable address: an address

Figure 12.17 Explicitly passing addresses to swap()

691Chapter 12
Passing Addresses

In reviewing Program 12.10, note two things. First, the function prototype for swap()

void swap(double *, double *)

declares that swap() returns no value directly, and its parameters are two pointers that
“point to” double-precision values. When the function is called, it requires that two addresses
be passed, and each address is the address of a double-precision value.

Second, the indirection operator is used in swap() to access the values stored in
firstnum and secnum. The swap() function has no knowledge of these variable names,
but it does have the address of firstnum stored in nm1Addr and the address of
secnumstored in nm2Addr. The expression *nm1Addr in the first cout statement means
“the variable whose address is in nm1Addr.” It is, of course, the variable firstnum.
Similarly, the second cout statement obtains the value stored in secnum as “the variable
whose address is in nm2Addr.” Pointers have been used successfully to allow swap() to
access variables in main(). Figure 12.18 illustrates storing addresses in parameters.

Program 12.10

#include <iostream>

using namespace std;

void swap(double *, double *); // function prototype

int main()

{

double firstnum = 20.5, secnum = 6.25;

swap(&firstnum, &secnum); // call swap

return 0;

}

// this function illustrates passing pointer arguments

void swap(double *nm1Addr, double *nm2Addr)

{

cout << "The number whose address is in nm1Addr is "

<< *nm1Addr << endl;

cout << "The number whose address is in nm2Addr is "

<< *nm2Addr << endl;

return;

}

692 Pointers

Having verified that swap() can access main()’s local variables firstnum and
secnum, you can now expand swap() to exchange the values in these variables. The values
in main()’s variables firstnum and secnum can be interchanged from within swap() by
using the three-step interchange algorithm described in Section 6.3:

1. Store firstnum’s value in a temporary location.
2. Store secnum’s value in firstnum.
3. Store the temporary value in secnum.

Using pointers in swap(), this algorithm takes the following form:

1. Store the value of the variable that nm1Addr points to in a temporary location by
using the statement temp = *nm1Addr; (see Figure 12.19).

2. Store the value of the variable whose address is in nm2Addr in the variable whose
address is in nm1Addr by using the statement *nm1Addr = *nm2Addr; (see
Figure 12.20).

3. Move the value in the temporary location into the variable whose address is in
nm2Addr by using the statement *nm2Addr = temp; (see Figure 12.21).

Parameter name: nm1Addr

&firstnum

Parameter name: nm2Addr

&secnum

swap(&firstnum, &secnum)

Figure 12.18 Storing addresses in parameters

nm1Addr

Address of
firstnum

firstnum

A value

(b) Store the
value found

temp

 firstnum’s
value

(a) Go to the address
for a value

Figure 12.19 Indirectly storing firstnum’s value

693Chapter 12
Passing Addresses

Program 12.11 contains the final form of swap(), written according to this description.

nm1Addr

Address of
firstnum

firstnum

Goes here *nm1Addr=*nm2Addr

nm2Addr secnum

This value

This address
points here

This address
points hereAddress of

secnum

Figure 12.20 Indirectly changing firstnum’s value

Address of
secnum

firstnum’s
value

firstnum’s
value

temp

nm2Addr secnum

Store the value

Locate the
address

Figure 12.21 Indirectly changing secnum’s value

Program 12.11

#include <iostream>

using namespace std;

void swap(double *, double *); // function prototype

int main()

{

double firstnum = 20.5, secnum = 6.25;

cout << "The value stored in firstnum is: " << firstnum << endl;

cout << "The value stored in secnum is: " << secnum << "\n\n";

�

694 Pointers

A sample run of Program 12.11 produced this output:

The value stored in firstnum is: 20.5

The value stored in secnum is: 6.25

The value stored in firstnum is now: 6.25

The value stored in secnum is now: 20.5

As this output shows, the values stored in main()’s variables have been modified in
swap(), which was made possible by using pointers. To make sure you understand, you
could compare this version of swap() with the version using references in Program 6.10.
The advantage of using pointers rather than references is that the function call specifies that
addresses are being used, which is an alert that the function will most likely alter variables
of the calling function. The advantage of using references is that the notation is much
simpler. Generally, for functions such as swap(), ease of notation wins out, and references
are used. In passing arrays to functions, however, which is the next topic, the compiler passes
an address automatically, which dictates using pointers to store the address.

Passing Arrays
When an array is passed to a function, its address is the only item actually passed. “Address”
means the address of the first location used to store the array, as shown in Figure 12.22.
Because the first location reserved for an array corresponds to element 0 of the array, the
“address of the array” is also the address of element 0.

swap(&firstnum, &secnum); // call swap

cout << "The value stored in firstnum is now: "

<< firstnum << endl;

cout << "The value stored in secnum is now: "

<< secnum << endl;

return 0;

}

// this function swaps the values in its two arguments

void swap(double *nm1Addr, double *nm2Addr)

{

double temp;

temp = *nm1Addr; // save firstnum's value

*nm1Addr = *nm2Addr; // move secnum's value into firstnum

*nm2Addr = temp; // change secnum's value

return;

}

695Chapter 12
Passing Addresses

For a specific example of passing an array to a function, examine Program 12.12. In this
program, the nums array is passed to the findMax() function, using conventional array
notation.

The following output is displayed when Program 12.12 runs:

The maximum value is 27

An array is a series of memory locations

The address of the first location is passed as an argument

Figure 12.22 An array’s address is the address of the first location reserved for the array

Program 12.12

#include <iostream>

using namespace std;

int findMax(int [], int); // function prototype

int main()

{

const int NUMPTS = 5;

int nums[NUMPTS] = {2, 18, 1, 27, 16};

cout << "\nThe maximum value is "

<< findMax(nums,NUMPTS) << endl;

return 0;

}

// this function returns the maximum value in an array of ints

int findMax(int vals[], int numels)

{

int i, max = vals[0];

for (i = 1; i < numels; i++)

if (max < vals[i])

max = vals[i];

return max;

}

696 Pointers

The parameter named vals in the function header declaration for findMax() actually
receives the address of the nums array. Therefore, vals is really a pointer because pointers
are variables (or parameters) used to store addresses. Because the address passed to
findMax() is the address of an integer, the following function header for findMax() is
also suitable:

int findMax(int *vals, int numels) // vals is declared as
// a pointer to an integer

The declaration int *vals in the function header declares that vals is used to store
an address of an integer. The address stored is, of course, the location of the beginning of an
array. The following is a rewritten version of the findMax() function that uses the new
pointer declaration for vals but retains the use of subscripts to refer to array elements:

int findMax(int *vals, int numels) // find the maximum value
{

int i, max = vals[0];

for (i = 1; i < numels; i++)
if (max < vals[i])

max = vals[i];

return max;
}

Regardless of how vals is declared in the function header or how it’s used in the
function body, it’s truly a pointer variable. Therefore, the address in vals can be modified.
This isn’t true for the name nums, however. Because nums is the name of the originally
created array, it’s a pointer constant. As described in Section 12.2, this means the address in
nums can’t be changed, and the address of nums can’t be taken. No such restrictions,
however, apply to the pointer variable vals. All the pointer arithmetic you learned in
Section 12.3 can be applied to vals.

Next, you see how to write two more versions of findMax(), both using pointers
instead of subscripts. In the first version, you simply substitute pointer notation for subscript
notation. In the second version, you use pointer arithmetic to change the address in the
pointer. As stated previously, access to an array element with the subscript notation
arrayName[i] can always be replaced by the pointer notation *(arrayName + i).

In the first modification to findMax(), you make use of this correspondence by simply
replacing all references to vals[i] with the expression *(vals + i):

int findMax(int *vals, int numels) // find the maximum value
{

int i, max = *vals;

for (i = 1; i < numels; i++)
if (max < *(vals + i))

max = *(vals + i);

return max;
}

The second modification of findMax() makes use of being able to change the address
stored in vals. After each array element is retrieved by using the address in vals, the

697Chapter 12
Passing Addresses

address is incremented by one in the altering list of the for statement. The expression
max = *vals previously used to set max to the value of vals[0] is replaced by the
expression max = *vals++, which adjusts the address in vals to point to the second array
element. The element this expression assigns to max is the array element vals points to
before it’s incremented. The postfix increment, ++, doesn’t change the address in vals until
after the address has been used to retrieve the first array element.

int findMax(int *vals, int numels) // find the maximum value
{

int i, max = *vals++; // get the first element and increment it
for (i = 1; i < numels; i++, vals++)
{

if (max < *vals)
max = *vals;

}
return max;

}

Review this version of findMax(). Initially, the maximum value is set to “the thing pointed
to by vals.” Because vals initially contains the address of the first array element passed to
findMax(), the value of this first element is stored in max. The address in vals is then
incremented by one. The one added to vals is scaled automatically by the number of bytes
used to store integers. Therefore, after the increment, the address stored in vals is the address
of the next array element, as illustrated in Figure 12.23. The value of this next element is
compared to the maximum, and the address is again incremented, this time in the altering list
of the for statement. This process continues until all array elements have been examined.

The version of findMax() you choose is a matter of personal style. Generally,
beginning programmers feel more at ease using subscripts rather than pointers. Also, if the
program uses an array as the natural storage structure for the application and data, an array
access using subscripts is more appropriate to indicate the program’s intent clearly. However,
as you learn more about data structures, pointers become an increasingly useful and powerful
tool. In more complex data structures, there’s no simple or easy equivalence for subscripts.

There’s one more neat trick you can glean from this discussion. Because passing an array
to a function actually involves passing an address, you can pass any valid address. For

vals
Before incrementing:

vals[0] vals[1] vals[2] vals[3] vals[4]

vals
After incrementing:

Address of
vals[1]

Address of
vals[0]

Figure 12.23 Pointing to different elements

698 Pointers

example, the function call findMax(&nums[2],3) passes the address of nums[2] to
findMax(). In findMax(), the pointer vals stores the address, and the function starts
the search for a maximum at the element corresponding to this address. Therefore, from
findMax()’s perspective, it has received an address and proceeds appropriately.

Advanced Pointer Notation9

You can also access multidimensional arrays by using pointer notation, although the notation
becomes more cryptic as the array dimensions increase. Pointer notation is especially useful
with two-dimensional character arrays, and this section discusses pointer notation for
two-dimensional numeric arrays. For example, examine this declaration:

int nums[0][1] = { {16,18,20},
{25,26,27} };

This declaration creates an array of elements and a set of pointer constants named nums,
nums[0], and nums[1]. Figure 12.24 illustrates the relationship between these pointer
constants and the elements of the nums array.

The availability of the pointer constants associated with a two-dimensional array enables
you to access array elements in a variety of ways. One way is to view a two-dimensional array
as an array of rows, with each row as an array of three elements. From this viewpoint, the
address of the first element in the first row is provided by nums[0], and the address of the
first element in the second row is provided by nums[1]. Therefore, the variable pointed to
by nums[0] is nums[0][0], and the variable pointed to by nums[1] is nums[1][0].
Each element in the array can be accessed by applying an offset to the correct pointer.
Therefore, the following notations are equivalent:

Pointer Notation Subscript Notation Value
*nums[0] nums[0][0] 16
*(nums[0] + 1) nums[0][1] 18
*(nums[0] + 2) nums[0][2] 20
*nums[1] nums[1][0] 25
*(nums[1] + 1) nums[1][1] 26
*(nums[1] + 2) nums[1][2] 27

9This topic can be omitted without loss of subject continuity.

nums[1]

nums[0]

nums[1][0]

nums[0][0] nums[0][1] nums[0][2]

nums[1][1] nums[1][2]

16

25

18

26

20

27

nums

Address of
nums[0]

Address of
nums[0][0]

Address of
nums[1][0]

Figure 12.24 Storage of the nums array and associated pointer constants

699Chapter 12
Passing Addresses

You can now go further and replace nums[0] and nums[1] with their pointer notations,
using the address of nums. As shown in Figure 12.24, the variable pointed to by nums is
nums[0]. That is, *nums is nums[0]. Similarly, *(nums + 1) is nums[1]. Using these
relationships leads to the following equivalences:

Pointer Notation Subscript Notation Value
*(*nums) nums[0][0] 16
*(*nums + 1) nums[0][1] 18
*(*nums + 2) nums[0][2] 20
((nums + 1)) nums[1][0] 25
((nums + 1) + 1) nums[1][1] 26
((nums + 1) + 2) nums[1][2] 27

The same notation applies when a two-dimensional array is passed to a function. For
example, the two-dimensional array nums is passed to the calc() function by using the call
calc(nums);. As with all array passes, an address is passed. A suitable function header for
the calc() function is as follows:

calc(int pt[2][3])

As you have seen, the parameter declaration for pt can also be the following:

calc(int pt[][3])

Using pointer notation, the following is another suitable declaration:

calc(int (*pt)[3])

In this declaration, the inner parentheses are required to create a single pointer to arrays
of three integers. Each array is, of course, equivalent to a single row of the nums array. By
offsetting the pointer, each element in the array can be accessed. Notice that without the
parentheses, the declaration becomes

int *pt[3]

which creates an array of three pointers, each one pointing to a single integer. After the
correct declaration for pt is made (any of the three valid declarations can be used), all the
following notations in the calc() function are equivalent:

Pointer Notation Subscript Notation Value
*(*pt) pt[0][0] 16
*(*pt+1) pt[0][1] 18
*(*pt+2) pt[0][2] 20
((pt+1)) pt[1][0] 25
((pt+1)+1) pt[1][1] 26
((pt+1)+2) pt[1][2] 27

The last two notations using pointers are seen in more advanced C++ programs. The first
occurs because functions can return any valid C++ scalar data type, including pointers to any

700 Pointers

of these data types. If a function returns a pointer, the data type being pointed to must be
declared in the function’s declaration. For example, the declaration

int *calc()

declares that calc() returns a pointer to an integer value, which means the address of an
integer variable is returned. Similarly, the declaration

double *taxes()

declares that taxes() returns a pointer to a double-precision value, which means the
address of a double-precision variable is returned.

In addition to declaring pointers to integers, double-precision numbers, and C++’s other
data types, you can declare pointers that point to (contain the address of) a function. Pointers
to functions are possible because function names, like array names, are pointer constants. For
example, the declaration

int (*calc)()

declares calc to be a pointer to a function that returns an integer. This means calc contains
the address of a function, and the function whose address is in the variable calc returns an
integer value. If, for example, the function sum() returns an integer, the assignment
calc = sum; is valid.

EXERCISES 12.4

1. (Practice) The following declaration was used to create the prices array:

double prices[500];

Write three different headers for a function named sortArray() that accepts the
prices array as a parameter named inArray and returns no value.

2. (Practice) The following declaration was used to create the keys array:

char keys[256];

Write three different headers for a function named findKey() that accepts the keys
array as a parameter named select and returns no value.

3. (Practice) The following declaration was used to create the rates array:

double rates[256];

Write three different headers for a function named maximum() that accepts the rates
array as a parameter named speed and returns a double-precision value.

4. (Modify) Modify the findMax() function to locate the minimum value of the passed
array. Write the function using only pointers.

701Chapter 12
Passing Addresses

5. (Debug) In the second version of findMax(), vals was incremented in the altering list
of the for statement. Instead, you do the incrementing in the condition expression of
the if statement, as follows:

int findMax(int *vals, int numels) // incorrect version
{

int i, max = *vals++; // get the first element and increment

for (i = 1; i < numels; i++)
if (max < *vals++)

max = *vals;
return (max);

}

Determine why this version produces an incorrect result.

6. (Program) a. Write a program that has a declaration in main() to store the following
numbers in an array named rates: 6.5, 7.2, 7.5, 8.3, 8.6, 9.4, 9.6, 9.8, and 10.0. Include a
function call to show() that accepts rates in a parameter named rates and then dis-
plays the numbers by using the pointer notation *(rates + i).

b. Modify the show() function written in Exercise 6a to alter the address in rates. Always
use the expression *rates rather than *(rates + i) to retrieve the correct element.

12.5 Common Programming Errors

In using the material in this chapter, be aware of the following possible errors:

1. Attempting to store an address in a variable that hasn’t been declared as a pointer.
2. Using a pointer to access nonexistent array elements. For example, if nums is an

array of 10 integers, the expression *(nums + 15) points to a location six integer
locations beyond the last array element. Because C++ doesn’t do bounds checking on
array accesses, the compiler doesn’t catch this type of error. This error is the same
error, disguised in pointer notation form, that occurs when using a subscript to access
an out-of-bounds array element.

3. Forgetting to use the bracket set, [], after the delete operator when dynamically
deallocating memory that was allocated previously with the new [] operator.

4. Incorrectly applying address and indirection operators. For example, if pt is a
pointer variable, both the expressions
pt = &45
pt = &(miles + 10)

are invalid because they attempt to take the address of a value. Notice that the
expression pt = &miles + 10, however, is valid. This expression adds 10 to the
address of miles. It’s the programmer’s responsibility to ensure that the final
address points to a valid data element.

5. Taking addresses of pointer constants. For example, given the declarations
int nums[25];
int *pt;

the assignment
pt = &nums;

702 Pointers

is invalid. The constant nums is a pointer constant that’s equivalent to an address.
The correct assignment is pt = nums.

6. Taking addresses of a reference argument, reference variable, or register variable.
The reason is that reference arguments and variables are essentially the same as
pointer constants, in that they’re named address values. Similarly, the address of a
register variable can’t be taken. Therefore, for the declarations
register int total;
int *ptTot;

the assignment
ptTot = &total; // INVALID

is invalid. The reason is that register variables are stored in a computer’s internal
registers, and these storage areas don’t have standard memory addresses.

7. Initializing pointer variables incorrectly. For example, the initialization
int *pt = 5;

is invalid. Because pt is a pointer to an integer, it must be initialized with a valid
address.

8. Becoming confused about whether a variable contains an address or is an address.
Pointer variables and pointer arguments contain addresses. Although a pointer
constant is synonymous with an address, it’s useful to treat pointer constants as
pointer variables with two restrictions:

• The address of a pointer constant can’t be taken.
• The address “contained in” the pointer constant can’t be altered.

Except for these two restrictions, pointer constants and pointer variables can be used
almost interchangeably. Therefore, when an address is required, any of the following
can be used:

• A pointer variable name
• A pointer argument name
• A pointer constant name
• A non-pointer variable name preceded by the address operator (for example,

&variable)
• A non-pointer argument name preceded by the address operator (for example,

&argument)

Some confusion surrounding pointers is caused by careless use of the word pointer. For
example, the phrase “a function requires a pointer argument” is more clearly understood
when you realize it really means “a function requires an address as an argument.” Similarly,
the phrase “a function returns a pointer” really means “a function returns an address.”

If you’re ever in doubt as to what’s contained in a variable or how it should be treated,
use a cout statement to display the variable’s contents, the “thing pointed to,” or “the
address of the variable.” Seeing what’s actually displayed often helps sort out what the
variable contains.

703Chapter 12
Common Programming Errors

12.6 Chapter Summary

1. Every variable has a data type, an address, and a value. In C++, you can obtain the
address of a variable by using the address operator, &.

2. A pointer is a variable used to store the address of another variable. Pointers, like all C++
variables, must be declared. The indirection operator, *, is used both to declare a pointer
variable and to access the variable whose address is stored in a pointer.

3. An array name is a pointer constant. The value of the pointer constant is the address of
the first element in the array. Therefore, if val is the name of an array, val and
&val[0] can be used interchangeably.

4. Any access to an array element with subscript notation can always be replaced with
pointer notation. That is, the notation a[i] can always be replaced by the notation
*(a + i). This is true whether a was initially declared as an array or a pointer.

5. Arrays can be created dynamically as a program is executing. For example, the following
sequence of statements creates an array named grades of size num:

cout << "Enter the array size: ";
cin >> num;
int *grades = new int[num];

The area allocated for the array can be destroyed dynamically by using the delete[]
operator. For example, the statement delete[] grades; returns the allocated area for
the grades array back to the computer.

6. Arrays are passed to functions as addresses. The called function always receives direct
access to the originally declared array elements.

7. When a one-dimensional array is passed to a function, the function’s parameter
declaration can be an array declaration or a pointer declaration. Therefore, the following
parameter declarations are equivalent:

double a[];
double *a;

8. Pointers can be incremented, decremented, compared, and assigned. Numbers added to
or subtracted from a pointer are scaled automatically. The scale factor used is the number
of bytes required to store the data type originally pointed to.

Programming Projects for Chapter 12

1. (Program) Write a function named trimfrnt() that deletes all leading blanks from a
string. Write the function using pointers with a return type of void.

2. (Program) Write a function named trimrear() that deletes all trailing blanks from a
string. Write the function using pointers with a return type of void.

3. (Program) Write a C++ program that asks for two lowercase characters. Pass the two
entered characters, using pointers, to a function named capit(). The capit() function
should capitalize the two letters and return the capitalized values to the calling function
through its pointer arguments. The calling function should then display all four letters.

704 Pointers

4. (Program) a. Write a program that has a declaration in main() to store the string
Vacation is near in an array named message. Include a function call that accepts
message in an argument named strng and then displays the contents of message by
using the pointer notation *(strng + i).

b. Modify the display function written in Exercise 4a to alter the address in message.
Also, use the expression *strng rather than *(strng + i) to retrieve the correct
element.

5. (Program) Write a program that declares three one-dimensional arrays named price,
quantity, and amount. Each array should be declared in main() and be capable of
holding 10 double-precision numbers. The numbers to be stored in price are 10.62,
14.89, 13.21, 16.55, 18.62, 9.47, 6.58, 18.32, 12.15, and 3.98. The numbers to be stored in
quantity are 4, 8.5, 6, 7.35, 9, 15.3, 3, 5.4, 2.9, and 4.8. Have your program pass these
three arrays to a function called extend(), which calculates the elements in the
amount array as the product of the equivalent elements in the price and quantity
arrays: for example, amount[1] = price[1] * quantity[1].

After extend() has put values in the amount array, display the values in the array from
within main(). Write the extend() function by using pointers.

6. (Desk Check) a. Determine the output of the following program:

#include <iostream.h>

void arr(int [] []); // equivalent to void arr(int (*) []);

int main()
{

const int ROWS = 2;
const int COLS = 3;
int nums[ROWS][COLS] = { {33,16,29},

{54,67,99}};
arr(nums);
return 0;

}

void arr(int (*val) [3])
{

cout << endl << *(*val);
cout << endl << *(*val + 1);
cout << endl << *(*(val + 1) + 2);
cout << endl << *(*val) + 1;
return;

}

b. Given the declaration for val in the arr() function, is the notation val[1][2]
valid in the function?

705Chapter 12
Programming Projects

This page intentionally left blank

Chapter 13
Structures

13.1 Single Structures

13.2 Arrays of Structures

13.3 Structures as Function
Arguments

13.4 Linked Lists

13.5 Dynamic Data Structure
Allocation

13.6 Unions

13.7 Common Programming
Errors

13.8 Chapter Summary

A structure is a historical holdover from C. From a programmer’s perspective, a structure can be
thought of as a class that has all public instance variables and no member methods. In commercial
applications, a structure is referred to, and is the same thing as, a record. In C and C++, a structure
provides a way to store values of different data types, such as an integer part number, a character part
type, and a double-precision supply voltage.

For example, an integrated circuit (IC) manufacturer maintains a summary of information for
each circuit it fabricates. The data items kept for each circuit are shown in this inventory record:

Part Number:
Integrated Circuit Family:
Function Type:
Supply Voltage:
Units in Stock:

Each data item is a separate entity referred to as a data field. Taken together, the data fields
form a single unit referred to as a structure.

Although the IC manufacturer could keep track of hundreds of components, the form of each
component’s structure is identical. In dealing with structures, distinguishing between a structure’s form
and its contents is important. A structure’s form consists of the symbolic names, data types, and
arrangement of data fields in the structure. The structure’s contents refer to the actual data stored in the
symbolic names. The following shows acceptable contents for the structure form listed previously:

Part Number: 23421
Integrated Circuit Family: TTL
Function Type: AND
Supply Voltage: 6.0
Units in Stock: 345

This chapter describes the C++ statements required to create, fill, use, and pass structures between
functions.

13.1 Single Structures

Creating and using a structure involves the same two steps for creating and using any
variable. First, the record structure must be declared. Second, specific values can be assigned
to the structure elements. Declaring a structure requires listing the data types, data names,
and arrangement of data items. For example, the definition

struct
{

int month;
int day;
int year;

} birth;

gives the form of a structure called birth and reserves storage for the data items listed in
the structure. The birth structure consists of three data items or fields, which are called
members of the structure.

Assigning actual data values to a structure’s members is referred to as populating the
structure, which is a straightforward procedure. Each structure member is accessed by giving
both the structure name and data item name, separated by a period. For example,
birth.month refers to the first member of the birth structure, birth.day refers to the
second member of the structure, and birth.year refers to the third member. Program 13.1
shows assigning values to members of the birth structure. Program 13.1 produces the
following output:

My birth date is 12/28/86

708 Structures

As in most C++ statements, the spacing of a structure definition isn’t rigid. For example,
the birth structure could just as well have been defined as the following:

struct {int month; int day; int year;} birth;

Also, as with all C++ definition statements, multiple variables can be defined in the same
statement. For example, the definition statement

struct
{

int month;
int day;
int year;

} birth, current;

Program 13.1

// a program that defines and populates a structure

#include <iostream>

using namespace std;

int main()

{

struct

{

int month;

int day;

int year;

} birth;

birth.month = 12;

birth.day = 28;

birth.year = 86;

cout << "My birth date is "

<< birth.month << '/'

<< birth.day << '/'

<< birth.year << endl;

return 0;

}

709Chapter 13
Single Structures

creates two structure variables having the same form. The members of the first structure are
referenced by the names birth.month, birth.day, and birth.year, and the members of
the second structure are referenced by the names current.month, current.day, and
current.year. Notice that the form of this structure definition statement is identical to the
form for defining any program variable: The data type is followed by a list of variable names.

A helpful and commonly used modification for defining structure types is to list the
structure’s form with no variable names following. In this case, however, the list of structure
members must be preceded by a user-selected data type name. For example, in the
declaration

struct Date
{

int month;
int day;
int year;

};

the term Date is a structure type name: It defines a new data type that’s a data structure of
the declared form.1 By convention, the first letter of a user-selected data type name is
uppercase, as in the name Date, which helps identify it when it’s used in subsequent
definition statements. This declaration for the Date structure creates a new data type
without actually reserving any storage locations. Therefore, it’s not a definition statement. It
simply declares a Date structure type and describes how data items are arranged in the
structure. Actual storage for the structure members is reserved only when variable names are
assigned. For example, the definition statement

Date birth, current;

reserves storage for two Date structure variables named birth and current. Each of these
structures has the form previously declared for the Date structure.

The declaration of structure data types, like all declarations, can be global or local.
Program 13.2 shows the global declaration of a Date data type. In main(), the variable
birth is defined as a local variable of Date type. The output Program 13.2 produces is
identical to the output of Program 13.1.

The initialization of structures follows the same rules as for initialization of arrays: Global
and local structures can be initialized by following the definition with a list of initializers. For
example, the definition statement

Date birth = {12, 28, 86};

can be used to replace the first four statements in main() in Program 13.2. Notice that the
initializers are separated by commas, not semicolons.

1For completeness, it should be mentioned that a C++ structure can also be declared as a class with no member functions and all public data
members. Similarly, a C++ class can be declared as a structure having all private data members and all public member functions. Therefore, C++
provides two syntaxes for structures and classes. The convention, however, is to not mix notations; in other words, always use structures for
creating record types, and use classes for providing true information and implementation hiding.

710 Structures

Structure members aren’t restricted to integer data types, as in the Date structure. Any
valid C++ data type can be used. For example, an employee record consists of the following
data items:

Name:
Identification Number:
Regular Pay Rate:
Overtime Pay Rate:

The following is a suitable declaration for these data items:

struct PayRec
{

string name;
int idNum;
double regRate;
double otRate;

};

Program 13.2

#include <iostream>

using namespace std;

struct Date // this is a global declaration

{

int month;

int day;

int year;

};

int main()

{

Date birth;

birth.month = 12;

birth.day = 28;

birth.year = 86;

cout << "My birth date is " << birth.month << '/'

<< birth.day << '/'

<< birth.year << endl;

return 0;

}

711Chapter 13
Single Structures

After the PayRec data type is declared, a structure variable using this type can be
defined and initialized. For example, the definition

PayRec employee = {"H. Price",12387,15.89,25.50};

creates a structure named employee of the PayRec data type. The members of employee
are initialized with the data listed between braces in the definition statement.

Notice that a single structure is simply a convenient method for combining and storing
related items under a common name. Although a single structure is useful in identifying the
relationship among its members, the members could be defined as separate variables. One of
the real advantages of using structures is realized only when the same data type is used in
a list many times over. Creating lists with the same data type is discussed in Section 13.2.

Including a structure inside a structure follows the same rules for including any data type
in a structure. For example, a structure is to consist of a name and a birth date, and a Date
structure has been declared as follows:

struct Date
{

int month;
int date;
int year;

};

A suitable definition of a structure that includes a name and a Date structure is as
follows:

struct
{

string name;
Date birth;

} person;

Notice that in declaring the Date structure, the term Date is a data type name, so it
appears before the braces in the declaration statement. In defining the person structure
variable, person is a variable name, so it’s the name of a specific structure. The same is true
of the variable birth; it’s the name of a specific Date structure. Members in the person
structure are accessed by using the structure name, followed by a period, followed by the
member. For example, person.birth.month refers to the month variable in the birth
structure contained in the person structure.

Point of Information

Homogeneous and Heterogeneous Data Structures
Both arrays and structures are structured data types. The difference between these two
data structures is the types of elements they contain. An array is a homogeneous data
structure, which means all its components must be of the same data type. A structure
is a heterogeneous data structure, which means its components can be of different
data types. Therefore, an array of structures is a homogeneous data structure with ele-
ments of the same heterogeneous type.

712 Structures

EXERCISES 13.1

1. (Practice) Declare a structure data type named Stemp for each of the following records:
a. A student record consisting of a student identification number, number of credits com-

pleted, and cumulative grade point average

b. A student record consisting of a student’s name, birth date, number of credits com-
pleted, and cumulative grade point average

c. An inventory record consisting of the items listed in the chapter introduction

d. A stock record consisting of the stock’s name, the stock’s price, and the date of purchase

e. An inventory record consisting of an integer part number, a part description, the num-
ber of parts in inventory, and an integer reorder number

2. (Practice) For the data types declared in Exercise 1, define a suitable structure variable
name, and initialize each structure with the following data:
a. Identification Number: 4672

Number of Credits Completed: 68
Grade Point Average: 3.01

b. Name: Rhona Karp
Birth Date: 8/4/60
Number of Credits Completed: 96
Grade Point Average: 3.89

c. Part Number: 54002
IC Family: ECL
Function Type: NAND
Supply Voltage: -5
Units in Stock: 123

d. Stock Name: IBM
Stock Price: 134.5
Date Purchased: 10/1/2009

e. Part Number: 16879
Part Description: Battery
Number in Stock: 10
Reorder Number: 3

3. (Program) a. Write a C++ program that prompts a user to input the current month, day,
and year. Store the entered data in a suitably defined record and display the date in an
appropriate manner.

b. Modify the program written in Exercise 3a to use a record that accepts the current
time in hours, minutes, and seconds.

713Chapter 13
Single Structures

4. (Financial) Write a C++ program that uses a structure for storing a stock name, its esti-
mated earnings per share, and its estimated price-to-earnings ratio. Have the program
prompt the user to enter these items for five different stocks, each time using the same
structure to store the entered data. When data has been entered for a particular stock,
have the program compute and display the anticipated stock price based on the entered
earnings and price-per-earnings values. For example, if a user enters the data XYZ 1.56
12, the anticipated price for a share of XYZ stock is (1.56) × (12) = $18.72.

5. (Timing) Write a C++ program that accepts a user-entered time in hours and minutes.
Have the program calculate and display the time one minute later.

6. (Dates) a. Write a C++ program that accepts a user-entered date. Have the program cal-
culate and display the date of the next day. For the purposes of this exercise, assume all
months consist of 30 days.

b. Modify the program written in Exercise 6a to account for the actual number of days in
each month.

13.2 Arrays of Structures

The real power of structures is realized when the same structure is used for lists of data. For
example, the data shown in Figure 13.1 must be processed. Clearly, the employee numbers
can be stored together in an array of integers, the names in an array of strings, and the pay
rates in an array of double-precision numbers. In organizing the data in this fashion, each
column in Figure 13.1 is considered a separate list stored in its own array. The correspon-
dence between data items for each employee is maintained by storing an employee’s data in
the same array position in each array.

The separation of the list into three arrays is unfortunate because all the items relating
to a single employee constitute a natural organization of data into structures, as shown in
Figure 13.2. Using a structure, the integrity of the data’s organization as a record can be
maintained and reflected by the program. With this approach, the list in Figure 13.2 can be
processed as a single array of 10 structures.

Employee
Number

Employee
Name

Employee
Pay Rate

32479
33623
34145
35987
36203
36417
37634
38321
39435
39567

Abrams, B.
Bohm, P.
Donaldson, S.
Ernst, T.
Gwodz, K.
Hanson, H.
Monroe, G.
Price, S.
Robbins, L.
Williams, B.

6.72
7.54
5.56
5.43
8.72
7.64
5.29
9.67
8.50
7.20

Figure 13.1 A list of employee data

714 Structures

Declaring an array of structures is the same as declaring an array of any other variable
type. For example, if the data type PayRec is declared as

struct PayRec {int idnum; string name; double rate;};

then an array of 10 such structures can be defined as follows:

PayRec employee[10];

This definition statement constructs an array of 10 elements, and each element is a
structure of the data type PayRec. Notice that creating an array of 10 structures has the same
form as creating any other array. For example, creating an array of 10 integers named
employee requires the following declaration:

int employee[10];

In this declaration, the data type is integer, and in the previous declaration for employee,
the data type is PayRec.

After an array of structures is declared, a data item is referenced by giving the position
of its structure in the array, followed by a period and the structure member. For example, the
variable employee[0].rate references the rate member of the first employee struc-
ture in the employee array. Including structures as elements of an array permits processing
a list of structures by using standard array programming techniques. Program 13.3 displays
the first five employee records in Figure 13.2.

Employee
Number

Employee
Name

Employee
Pay Rate

32479
33623
34145
35987
36203
36417
37634
38321
39435
39567

Abrams, B.
Bohm, P.
Donaldson, S.
Ernst, T.
Gwodz, K.
Hanson, H.
Monroe, G.
Price, S.
Robbins, L.
Williams, B.

6.72
7.54
5.56
5.43
8.72
7.64
5.29
9.67
8.50
7.20

1st structure
2nd structure

10th structure

3rd structure
4th structure
5th structure
6th structure
7th structure
8th structure
9th structure

Figure 13.2 A list of structures

715Chapter 13
Arrays of Structures

Program 13.3 displays the following output:

32479 Abrams, B. 6.72

33623 Bohm, P. 7.54

34145 Donaldson, S. 5.56

35987 Ernst, T. 5.43

36203 Gwodz, K. 8.72

Program 13.3

#include <iostream>

#include <iomanip>

#include <string>

using namespace std;

const int NUMRECS = 5; // maximum number of records

struct PayRec // this is a global declaration

{

int id;

string name;

double rate;

};

int main()

{

int i;

PayRec employee[NUMRECS] = {

{ 32479, "Abrams, B.", 6.72 },

{ 33623, "Bohm, P.", 7.54},

{ 34145, "Donaldson, S.", 5.56},

{ 35987, "Ernst, T.", 5.43 },

{ 36203, "Gwodz, K.", 8.72 }

};

cout << endl; // start on a new line

cout << setiosflags(ios::left); // left-justify the output

for (i = 0; i < NUMRECS; i++)

cout << setw(7) << employee[i].id

<< setw(15) << employee[i].name

<< setw(6) << employee[i].rate << endl;

return 0;

}

716 Structures

In reviewing Program 13.3, notice the initialization of the array of structures. Although
the initializers for each structure have been enclosed in inner braces, they aren’t strictly
necessary because all members have been initialized. As with all external and static variables,
in the absence of explicit initializers, the numeric elements of static and external arrays or
structures are initialized to 0 and their character elements are initialized to NULLs. The
setiosflags(ios::left) manipulator included in the cout stream forces each name to
be displayed left-justified in its designated field width.

EXERCISES 13.2

1. (Practice) Define arrays of 100 structures for each of the data types described in
Exercise 1 of Section 13.1.

2. (Practice) a. Using the data type

struct MonthDays
{

string name;
int days;

};

define an array of 12 structures of type MonthDays. Name the array convert[], and
initialize the array with the names of the 12 months in a year and the number of days in
each month.

b. Include the array created in Exercise 2a in a program that displays the names of
months and number of days in each month.

3. (Modify) Using the data type declared in Exercise 2a, write a C++ program that accepts a
month from a user in numerical form and displays the name of the month and the num-
ber of days in the month. For example, in response to an input of 3, the program would
display March has 31 days.

4. (Data Processing) a. Declare a single structure data type suitable for an employee
structure of the type shown in the following chart:

Number Name Rate Hours
3462 Jones 4.62 40
6793 Robbins 5.83 38
6985 Smith 5.22 45
7834 Swain 6.89 40
8867 Timmins 6.43 35
9002 Williams 4.75 42

b. Using the data type declared in Exercise 4a, write a C++ program that interactively
accepts the chart’s data in an array of six structures. After the data has been entered,
the program should create a payroll report listing each employee’s name, number, and
gross pay. Include the total gross pay of all employees at the end of the report.

717Chapter 13
Arrays of Structures

5. (Data Processing) a. Declare a single structure data type suitable for a car structure of
the type in the following chart:

Car Number Miles Driven Gallons Used
25 1450 62
36 3240 136
44 1792 76
52 2360 105
68 2114 67

b. Using the data type declared for Exercise 5a, write a C++ program that interactively
accepts the chart’s data in an array of five structures. After the data has been entered,
the program should create a report listing each car number and the car’s miles per
gallon. At the end of the report, include the average miles per gallon for the entire
fleet of cars.

13.3 Structures as Function Arguments

Structure members can be passed to a function in the same manner as any scalar variable. For
example, given the structure definition

struct
{

int idNum;
double payRate;
double hours;

} emp;

the following statement passes a copy of the structure member emp.idNum to a function
named display():

display(emp.idNum);

Similarly, the statement

calcPay(emp.payRate,emp.hours);

passes copies of the values stored in structure members emp.payRate and emp.hours to
the calcPay() function. Both functions, display() and calcPay(), must declare the
correct data types for their arguments.

Copies of all structure members can also be passed to a function by including the name
of the structure as an argument to the called function. For example, this function call passes
a copy of the emp structure to calcNet():

calcNet(emp);

718 Structures

Inside calcNet(), a declaration must be made to receive the structure. Program 13.4
declares a global data type for an employee structure. The main() and calcNet()
functions then use this data type to define structures with the names emp and temp.

The output produced by Program 13.4 is as follows:

The net pay for employee 6782 is $361.66

Program 13.4

#include <iostream>

#include <iomanip>

using namespace std;

struct Employee // declare a global data type

{

int idNum;

double payRate;

double hours;

};

double calcNet(Employee); // function prototype

int main()

{

Employee emp = {6782, 8.93, 40.5};

double netPay;

netPay = calcNet(emp); // pass copies of the values in emp

// set output formats

cout << setw(10)

<< setiosflags(ios::fixed)

<< setiosflags(ios::showpoint)

<< setprecision(2);

cout << "The net pay for employee " << emp.idNum

<< " is $" << netPay << endl;

return 0;

}

double calcNet(Employee temp) // temp is of data type Employee

{

return temp.payRate * temp.hours;

}

719Chapter 13
Structures as Function Arguments

In reviewing Program 13.4, observe that both main() and calcNet() use the same
data type to define their structure variables. The structure variable defined in main() and
the structure variable defined in calcNet() are two different structures. Any changes made
to the local temp variable in calcNet() aren’t reflected in the emp variable of main(). In
fact, because both structure variables are local to their functions, the same structure variable
name could have been used in both functions with no ambiguity.

When calcNet() is called by main(), copies of emp’s structure values are passed to
the temp structure. calcNet() then uses two of the passed member values to calculate a
number, which is returned to main(). Because calcNet() returns a non-integer number,
the data type of the returned value must be included in all declarations for calcNet().

An alternative to the pass-by-value function call in Program 13.4, in which the called
function receives a copy of a structure, is a pass by reference that passes a reference to a
structure. Doing so permits the called function to access and alter values directly in the
calling function’s structure variable. For example, referring to Program 13.4, the prototype of
calcNet() can be modified to the following:

double calcNet(Employee &);

If this function prototype is used and the calcNet() function is rewritten to conform
to it, the main() function in Program 13.4 can be used as is. Program 13.4a shows these
changes in the context of a complete program.

Program 13.4a

#include <iostream>

#include <iomanip>

using namespace std;

struct Employee // declare a global data type

{

int idNum;

double payRate;

double hours;

};

double calcNet(Employee&); // function prototype

int main()

{

Employee emp = {6782, 8.93, 40.5};

double netPay;

�

720 Structures

Program 13.4a produces the same output as Program 13.4, except the calcNet()
function in Program 13.4a receives direct access to the emp structure instead of a copy of it.
This means the variable name temp in calcNet() is an alternate name for the variable emp
in main(), and any changes to temp are direct changes to emp. Although the same function
call, calcNet(emp), is made in both programs, the call in Program 13.4a passes a reference,
and the call in Program 13.4 passes values.

Passing a Pointer
Instead of passing a reference, a pointer can be used. Using a pointer requires, in addition
to modifying the function’s prototype and header, modifying the call to calcNet() in
Program 13.4 to the following:

calcNet(&emp);

This function call clearly indicates that an address is being passed (which isn’t the case
in Program 13.4a). The disadvantage is the dereferencing notation required inside the
function. However, as pointers are widely used in practice, becoming familiar with this
notation is worthwhile.

To store the passed address correctly, calcNet() must declare its parameter as a
pointer. The following function definition for calcNet() is suitable:

calcNet(Employee *pt)

This definition declares the pt parameter as a pointer to a structure of type Employee.
The pt pointer receives the starting address of a structure when calcNet() is called. In
calcNet(), this pointer is used to reference any member in the structure directly. For

netPay = calcNet(emp); // pass a reference

// set output formats

cout << setw(10)

<< setiosflags(ios::fixed)

<< setiosflags(ios::showpoint)

<< setprecision(2);

cout << "The net pay for employee " << emp.idNum

<< " is $" << netPay << endl;

return 0;

}

double calcNet(Employee& temp) // temp is a reference variable

{

return temp.payRate * temp.hours;

}

721Chapter 13
Structures as Function Arguments

example, (*pt).idNum refers to the idNum structure member, (*pt).payRate refers to
the payRate structure member, and (*pt).hours refers to the hours structure member.
These relationships are illustrated in Figure 13.3.

The parentheses around the expression *pt in Figure 13.3 are necessary to access “the
structure whose address is in pt.” The (*pt) is followed by an identifier to access the
structure member. In the absence of parentheses, the structure member operator, ., takes
precedence over the indirection operator, *. Therefore, the expression *pt.hours is
another way of writing *(pt.hours), which would mean “the variable whose address is in
the pt.hours variable.” This expression makes no sense because there’s no structure
named pt and hours doesn’t contain an address.

As shown in Figure 13.3, the starting address of the emp structure is also the address of
the first structure member. Using pointers in this manner is so common that a special
notation exists for it. The general expression (*pointer).member can always be replaced
with the notation pointer->member. The -> operator is a hyphen followed by a
greater-than symbol. Either expression can be used to locate the member. For example, the
following expressions are equivalent:

(*pt).idNum can be replaced by pt->idNum
(*pt).payRate can be replaced by pt->payRate
(*pt).hours can be replaced by pt->hours

Program 13.5 shows passing a structure’s address and using a pointer with the new
notation to reference the structure directly. The name of the pointer parameter declared in
Program 13.5 is, of course, selected by the programmer. When calcNet() is called, emp’s
starting address is passed to the function. Using this address as a starting point, structure
members are accessed by including their names with the pointer.

idNum

Starting
address
of emp

pt:

emp:

payRate hours

(*pt).hours
(*pt).payRate
(*pt).idNum=*pt

Figure 13.3 A pointer can be used to access structure members

722 Structures

As with all C++ expressions that access a variable, the increment (++) and decrement
(--) operators can also be applied to them. For example, the expression

++pt->hours

adds one to the hours member of the emp structure. Because the -> operator has a higher
priority than the prefix increment operator, the hours member is accessed first, and then the

Program 13.5

#include <iostream>

#include <iomanip>

using namespace std;

struct Employee // declare a global data type

{

int idNum;

double payRate;

double hours;

};

double calcNet(Employee *); //function prototype

int main()

{

Employee emp = {6782, 8.93, 40.5};

double netPay;

netPay = calcNet(&emp); // pass an address

// set output formats

cout << setw(10)

<< setiosflags(ios::fixed)

<< setiosflags(ios::showpoint)

<< setprecision(2);

cout << "The net pay for employee " << emp.idNum

<< " is $" << netPay << endl;

return 0;

}

double calcNet(Employee *pt) // pt is a pointer to a

{ // structure of Employee type

return(pt->payRate * pt->hours);

}

723Chapter 13
Structures as Function Arguments

increment is applied. If you enclose the prefix increment operator and pointer in parentheses,
as in the expression (++pt)->hours, the address in pt is incremented before the hours
member is accessed. Similarly, the expression (pt++)->hours uses the postfix increment
operator to increment the address in pt after the hours member is accessed. In both cases,
however, there must be enough defined structures to ensure that the incremented pointers
actually point to legitimate structures.

As an example, Figure 13.4 illustrates an array of three structures of type Employee.
Assuming the address of emp[1] is stored in the pointer variable pt, the expression ++pt
changes the address in pt to the starting address of emp[2], and the expression --pt
changes the address to point to emp[0].

Returning Structures
In practice, most structure-handling functions get direct access to a structure by receiving a
structure reference or address. Then any changes to the structure can be made directly from the
function. If you want to have a function return a separate structure, however, you must follow the
same procedures for returning data structures as for returning scalar values. These procedures
include declaring the function appropriately and alerting any calling function to the type of data
structure being returned. For example, the getVals() function in Program 13.6 returns a data
structure to main().

The following output is displayed when Program 13.6 runs:

The employee id number is 6789

The employee pay rate is $16.25

The employee hours are 38

&emp[1]

pt

Decrementing the address in pt
causes the pointer to point here

emp[0].idNum emp[0].payRate emp[0].hours

emp[1].idNum emp[1].payRate emp[1].hours

emp[2].idNum emp[2].payRate emp[2].hours

Incrementing the
address in pt
causes the pointer
to point here

The address in pt currently points to emp[1]

Figure 13.4 Changing pointer addresses

724 Structures

Because the getVals() function returns a structure, the function header for getVals()
must specify the type of structure being returned. Because getVals() doesn’t receive any
arguments, the function header has no parameter declarations and consists of this line:

Employee getVals();

Program 13.6

#include <iostream>

#include <iomanip>

using namespace std;

struct Employee // declare a global data type

{

int idNum;

double payRate;

double hours;

};

Employee getVals(); // function prototype

int main()

{

Employee emp;

emp = getVals();

cout << "\nThe employee id number is " << emp.idNum

<< "\nThe employee pay rate is $" << emp.payRate

<< "\nThe employee hours are " << emp.hours << endl;

return 0;

}

Employee getVals() // return an Employee structure

{

Employee next;

next.idNum = 6789;

next.payRate = 16.25;

next.hours = 38.0;

return next;

}

725Chapter 13
Structures as Function Arguments

In getVals(), the variable next is defined as a structure of the type to be returned.
After values have been assigned to the next structure, the structure values are returned by
including the structure name in the return statement.

On the receiving side, main() must be alerted that the getVals() function will be
returning a structure. This alert is handled by including a function declaration for
getVals() in main(). Notice that these steps for returning a structure from a function are
identical to the procedures for returning scalar data types, described in Chapter 6.

EXERCISES 13.3

1. (Data Processing) Write a C++ function named days() that determines the number of
days from the turn of the century for any date passed as a structure. Use the Date structure:

struct Date
{

int month;
int day;
int year;

};

In writing the days() function, follow the financial convention that all years have 360 days
and each month consists of 30 days. The function should return the number of days for any
Date structure passed to it.

2. (Data Processing) Write a C++ function named difDays() that calculates and returns
the difference between two dates. Each date is passed to the function as a structure by
using the following global data type:

struct Date
{

int month;
int day;
int year;

};

The difDays() function should make two calls to the days() function written for
Exercise 1.

3. (Modify) a. Rewrite the days() function written for Exercise 1 to receive a reference
to a Date structure rather than a copy of the structure.

b. Redo Exercise 3a, using a pointer rather than a reference.

4. (Data Processing) a. Write a C++ function named larger() that returns the later date
of any two dates passed to it. For example, if the dates 10/9/2005 and 11/3/2005 are
passed to larger(), the second date is returned.

b. Include the larger() function written for Exercise 4a in a complete program. Store
the Date structure returned by larger() in a separate Date structure and display
the member values of the returned Date.

726 Structures

13.4 Linked Lists

A classic data-handling problem is making additions or deletions to existing structures that
are maintained in a specific order. This problem is best illustrated by the alphabetical
telephone list shown here:

Acme, Sam
(555) 898-2392
Dolan, Edith
(555) 682-3104
Lanfrank, John
(555) 718-4581
Mening, Stephen
(555) 382-7070
Zemann, Harold
(555) 219-9912

Starting with this set of names and telephone numbers, you want to add new structures
to the list in the correct alphabetical sequence and delete existing structures in such a way
that storage for deleted structures is eliminated.

Although inserting or deleting ordered structures can be accomplished by using an array
of structures, these arrays aren’t efficient representations for adding or deleting structures in
the array. Arrays are fixed and have a specified size. Deleting a structure from an array creates
an empty slot that requires special marking or shifting all elements below the deleted
structure up to close the empty slot.

Similarly, adding a structure to an array of structures requires shifting all elements below
the addition down to make room for the new entry, or the new element could be added to
the bottom of the existing array, and the array could then be resorted to restore the structures’
correct order. Therefore, adding or deleting records to or from this type of list generally
requires restructuring and rewriting the list—a cumbersome, time-consuming, and inefficient
practice.

A linked list provides a convenient method for maintaining a constantly changing list,
without needing to reorder and restructure the entire list. A linked list is simply a set of
structures in which each structure contains at least one member whose value is the address
of the next logically ordered structure in the list. Instead of requiring each record to be
physically stored in the correct order, each new structure is physically added wherever the
computer has free storage space. The records are “linked” together by including the address
of the next record in the record immediately preceding it. From a programming standpoint,
the current structure being processed contains the address of the next record, no matter
where the next structure is actually stored.

Figure 13.5 illustrates the concept of a linked list. Although the actual data for the
Lanfrank structure in the figure can be physically stored anywhere in the computer, the
additional member included at the end of the Dolan structure maintains the correct
alphabetical order. This member provides the starting address of the location where the
Lanfrank record is stored. As you might expect, this member is a pointer.

To see the usefulness of the pointer in the Dolan structure, add a telephone number for
June Hagar to the alphabetical list. The data for June Hagar is stored in a data structure,

727Chapter 13
Linked Lists

using the same type as for the existing structures. To make sure the telephone number for
Hagar is displayed correctly after the Dolan telephone number, the address in the Dolan
structure must be altered to point to the Hagar structure, and the address in the Hagar
structure must be set to point to the Lanfrank structure, as illustrated in Figure 13.6.
Notice that the pointer in each structure simply points to the location of the next ordered
structure, even if that structure isn’t physically located in the correct order.

Removing a structure from the ordered list is the reverse of adding a record. The actual
record is removed from the list simply by changing the address in the structure preceding it
to point to the structure immediately after the deleted record.

Each structure in a linked list has the same format; however, it’s clear the last record can’t
have a valid pointer value that points to another record because there’s no other record. C++
provides a special pointer value called NULL that acts as a sentinel or flag to indicate when
the last record has been processed. The NULL pointer value, like its end-of-string counter-
part, has a numerical value of 0.

address of
Lanfrank structure

(555) 682-3104

Dolan, Edith

address of
Mening structure

(555) 718-4581

Lanfrank, John

Figure 13.5 Using pointers to link structures

address of
Lanfrank structure

(555) 467-1818

Hagar, June

address of
Hagar structure

(555) 682-3104

Dolan, Edith

address of
Mening structure

(555) 718-4581

Lanfrank, John

Figure 13.6 Adjusting addresses to point to the correct structures

728 Structures

Besides an end-of-list sentinel value, a special pointer must be provided for storing the
address of the first structure in the list. Figure 13.7 illustrates the pointers and structures for
a list consisting of three names.

Including a pointer in a structure shouldn’t seem surprising. As you discovered in
Section 13.1, a structure can contain any C++ data type. For example, the following structure
declaration declares a structure type consisting of two members:

struct Test
{

int idNum;
double *ptPay;

};

The first member is an integer variable named idNum, and the second variable is a
pointer named ptPay, which is a pointer to a double-precision number. Program 13.7 shows
that the pointer member of a structure is used like any other pointer variable.

Figure 13.8 illustrates the relationship between members of the emp structure defined in
Program 13.7 and the variable pay. The value assigned to emp.idNum is the number 12345,
and the value assigned to pay is 456.20. The address of the pay variable is assigned to the
structure member emp.ptPay. Because this member has been defined as a pointer to a
double-precision number, placing the address of the double-precision variable pay in it is a
correct use of this member. Finally, because the member operator, ., has a higher precedence
than the indirection operator, *, the expression in the cout statement in Program 13.7,
*emp.ptPay, is correct. This expression is equivalent to the expression *(emp.ptPay),
which is translated as “the variable whose address is contained in the member emp.ptPay.”

address of
Dolan structure

(555) 898-2392

Acme, Sam

address of
Lanfrank structure

(555) 682-3104

Dolan, Edith

NULL

(555) 718-4581

Lanfrank, John
address of

Acme structure

Figure 13.7 Using initial and final pointer values

12345 456.20

address of
pay variable

idNum:

ptPay:

emp structure pay

Figure 13.8 Storing an address in a structure member

729Chapter 13
Linked Lists

The output Program 13.7 produces is as follows:

Employee number 12345 was paid $456.20

Although the pointer defined in Program 13.7 is rather simple, the program does illustrate
the concept of including a pointer in a structure. This concept can be extended easily to
create a linked list of structures suitable for storing the names and telephone numbers listed
at the beginning of this section. The following declaration creates a type for this structure:

struct TeleType
{

string name;
string phoneNo;
TeleType *nextaddr;

};

Program 13.7

#include <iostream>

#include <iomanip>

using namespace std;

struct Test

{

int idNum;

double *ptPay;

};

int main()

{

Test emp;

double pay = 456.20;

emp.idNum = 12345;

emp.ptPay = &pay;

// set output formats

cout << setw(6)

<< setiosflags(ios::fixed)

<< setiosflags(ios::showpoint)

<< setprecision(2);

cout << "\nEmployee number " << emp.idNum << " was paid $"

<< *emp.ptPay << endl;

return 0;

}

730 Structures

The last member in this structure is a pointer suitable for storing the address of a
structure of the TeleType type. Program 13.8 shows the use of the TeleType type by
defining three structures having this form. The three structures are named t1, t2, and t3,
and the name and telephone members of each structure are initialized when the structures
are defined, using the data in the list of names and telephone numbers.

Program 13.8 produces the following output:

Acme, Sam

Dolan, Edith

Lanfrank, John

Program 13.8

#include <iostream>

#include <string>

using namespace std;

struct TeleType

{

string name;

string phoneNo;

TeleType *nextaddr;

};

int main()

{

TeleType t1 = {"Acme, Sam","(555) 898-2392"};

TeleType t2 = {"Dolan, Edith","(555) 682-3104"};

TeleType t3 = {"Lanfrank, John","(555) 718-4581"};

TeleType *first; // create a pointer to a structure

first = &t1; // store t1's address in first

t1.nextaddr = &t2; // store t2's address in t1.nextaddr

t2.nextaddr = &t3; // store t3's address in t2.nextaddr

t3.nextaddr = NULL; // store a NULL address in t3.nextaddr

cout << endl << first->name

<< endl << t1.nextaddr->name

<< endl << t2.nextaddr->name

<< endl;

return 0;

}

731Chapter 13
Linked Lists

Program 13.8 demonstrates using pointers to access successive structure members. As
illustrated in Figure 13.9, each structure contains the address of the next structure in the list.

The initialization of the names and telephone numbers for each structure defined in
Program 13.8 is straightforward. Although each structure consists of three members, only the
first two members of each structure are initialized. As both these members are arrays of
characters, they can be initialized with strings. The remaining member of each structure is
a pointer. To create a linked list, each structure pointer must be assigned the address of the
next structure in the list.

The four assignment statements in Program 13.8 perform the correct assignments. The
expression first = &t1 stores the address of the first structure in the list in the pointer
variable first. The expression t1.nextaddr = &t2 stores the starting address of the
t2 structure in the pointer member of the t1 structure. Similarly, the expression
t2.nextaddr = &t3 stores the starting address of the t3 structure in the pointer member
of the t2 structure. To end the list, the value of the NULL pointer, which is 0, is stored in
the pointer member of the t3 structure.

After values have been assigned to each structure member and correct addresses have
been stored in the appropriate pointers, the addresses in the pointers are used to access each
structure’s name member. For example, the expression t1.nextaddr->name refers to the
name member of the structure whose address is in the nextaddr member of the t1 structure.
The member operator, ., and the structure pointer operator, ->, have equal precedence and are

t1.name

&t1

first

t1 structure

t1.phoneNo t1.nextaddr

Acme, Sam\0 (555) 898-2392\0 &t2

t2.name t2.phoneNo t2.nextaddr

Dolan, Edith\0 (555) 682-3104\0 &t3

t3.name t3.phoneNo t3.nextaddr

Lanfrank, John\0 (555) 718-4581\0 NULL
(000000)

t2 structure

t3 structure

Starting storage location for t1

Starting storage location for t2

Starting storage location for t3

Figure 13.9 The relationship between structures in Program 13.8

732 Structures

evaluated from left to right. Therefore, the expression t1.nextaddr->name is evaluated as
(t1.nextaddr)->name. Because t1.nextaddr contains the address of the t2 structure,
the correct name member is accessed.

The expression t1.nextaddr->name can, of course, be replaced by the equivalent
expression (*t1.nextaddr).name, which uses the more conventional indirection
operator. This expression also means “the name member of the variable whose address is in
t1.nextaddr.”

The addresses in a linked list of structures can be used to loop through the complete list.
As each structure is accessed, it can be examined to select a specific value or used to display
a complete list. For example, the display() function in Program 13.9 shows the use of a
while loop, which uses the address in each structure’s pointer member to cycle through the
list and display data stored in each structure.

Program 13.9

#include <iostream>

#include <iomanip>

#include <string>

using namespace std;

struct TeleType

{

string name;

string phoneNo;

TeleType *nextaddr;

};

void display(TeleType *); // function prototype

int main()

{

TeleType t1 = {"Acme, Sam","(555) 898-2392"};

TeleType t2 = {"Dolan, Edith","(555) 682-3104"};

TeleType t3 = {"Lanfrank, John","(555) 718-4581"};

TeleType *first; // create a pointer to a structure

first = &t1; // store t1's address in first

t1.nextaddr = &t2; // store t2's address in t1.nextaddr

t2.nextaddr = &t3; // store t3's address in t2.nextaddr

t3.nextaddr = NULL; // store the NULL address in t3.nextaddr

display(first); // send the address of the first structure

return 0;

}

�

733Chapter 13
Linked Lists

The output produced by Program 13.9 is as follows:

Acme, Sam (555) 898-2392

Dolan, Edith (555) 682-3104

Lanfrank, John (555) 718-4581

The important concept Program 13.9 shows is using the address in one structure to access
members of the next structure in the list. When the display() function is called, it’s
passed the value stored in the variable first. Because first is a pointer variable, the
actual value passed is an address (the address of the t1 structure). The display() function
accepts the passed value in the argument contents. To store the passed address correctly,
contents is declared as a pointer to a structure of the TeleType type. In display(), a
while loop is used to cycle through the linked structures, starting with the structure whose
address is in contents. The condition tested in the while statement compares the value
in contents, which is an address, to the NULL value. For each valid address, the name and
telephone number members of the addressed structure are displayed. The address in
contents is then updated with the address in the pointer member of the current structure.

The address in contents is then retested, and the process continues as long the address
in contents isn’t equal to the NULL value. The display() function “knows” nothing
about the names of structures declared in main() or even how many structures exist. It
simply cycles through the linked list, structure by structure, until it encounters the end-of-list
NULL address. Because the value of NULL is 0, the tested condition can be replaced by the
equivalent expression contents.

A disadvantage of Program 13.9 is that exactly three structures are defined in main() by
name, and storage for them is reserved at compile time. Should a fourth structure be
required, it would have to be declared and the program recompiled. In Section 13.5, you see
how to have the computer allocate and release storage for structures dynamically at runtime,
as storage is required. Only when a new structure is to be added to the list, and while the
program is running, is storage for the new structure created. Similarly, when a structure is no
longer needed and can be deleted from the list, storage for the deleted record is relinquished
and returned to the computer.

void display(TeleType *contents) // contents is a pointer to a

{ // structure of type TeleType

while (contents != NULL) // display until end of linked list

{

cout << endl << setiosflags(ios::left)

<< setw(30) << contents->name

<< setw(20) << contents->phoneNo ;

contents = contents->nextaddr; // get next address

}

cout << endl;

return;

}

734 Structures

EXERCISES 13.4

1. (Modify) Modify Program 13.9 to prompt the user for a name. Have the program search
the existing list for the entered name. If the name is in the list, display the corresponding
telephone number; otherwise, display this message: The name is not in the
current phone directory.

2. (Practice) Write a C++ program containing a linked list of 10 integer numbers. Have the
program display the numbers in the list.

3. (Data Processing) Using the linked list of structures in Figure 13.10, write the sequence
of steps for deleting the record for Edith Dolan from the list.

4. (Modify) Generalize the description in Exercise 3 to describe the sequence of steps for
removing the nth structure from a list of linked structures. The nth structure is preceded
by the (n - 1)st structure and followed by the (n + 1)st structure. Make sure to store all
pointer values correctly.

5. (Data Processing) a. In a doubly linked list, each structure contains a pointer to both
the following and previous structures in the list. Define an appropriate type for a doubly
linked list of names and telephone numbers.

b. Using the type defined in Exercise 5a, modify Program 13.9 to list the names and
telephone numbers in reverse order.

13.5 Dynamic Data Structure Allocation

You have already learned about allocating and deallocating memory space with the new and
delete operators (see Section 12.2). For convenience, Table 13.1 repeats the description of
these operators.

Table 13.1 Operators for Dynamic Allocation and Deallocation

Operator Name Description
new Reserves the number of bytes required by the requested

data type. Returns the address of the first reserved location
or NULL if not enough memory is available.

delete Releases a block of bytes reserved previously. The address of
the first reserved location is passed as an argument to the
operator.

Dynamic allocation of memory is especially useful when dealing with a list of structures
because it permits expanding the list as new records are added and contracting the list as records
are deleted. In requesting additional storage space, the user must provide the new operator with
an indication of the amount of storage needed for a particular data type. For example, the
expression new(int) or new int (the two forms can be used interchangeably) requests

735Chapter 13
Dynamic Data Structure Allocation

enough storage to store an integer number. A request for enough storage for a data structure is
made in the same fashion. For example, using the declaration

struct TeleType
{

string name;
string phoneNo;

};

both the expressions new TeleType and new(TeleType) reserve enough storage for one
TeleType data structure.

In allocating storage dynamically, you have no advance indication where the computer
will physically reserve the requested number of bytes, and you have no explicit name to
access the newly created storage locations. To provide access to these locations, new returns
the address of the first location that has been reserved. This address must, of course, be
assigned to a pointer. The return of a pointer by new is especially useful for creating a linked
list of data structures. As each new structure is created, the pointer new returns to the
structure can be assigned to a member of the previous structure in the list. Program 13.10
shows using new to create a structure dynamically in response to a user-input request.

Program 13.10

// a program illustrating dynamic structure allocation

#include <iostream>

#include <string>

using namespace std;

struct TeleType

{

string name;

string phoneNo;

};

void populate(TeleType *); // function prototype needed by main()

void dispOne(TeleType *); // function prototype needed by main()

int main()

{

char key;

TeleType *recPoint; // recPoint is a pointer to a

// structure of type TeleType

�

736 Structures

A sample of the output Program 13.10 produces is as follows:

Do you wish to create a new record (respond with y or n): y

Enter a name: Monroe, James

Enter the phone number: (555) 617-1817

The contents of the record just created are:

Name: Monroe, James

Phone Number: (555) 617-1817

cout << "Do you wish to create a new record (respond with y or n): ";

key = cin.get();

if (key == 'y')

{

key = cin.get(); // get the Enter key in buffered input

recPoint = new TeleType;

populate(recPoint);

dispOne(recPoint);

}

else

cout << "\nNo record has been created.";

return 0;

}

// input a name and phone number

void populate(TeleType *record) // record is a pointer to a

{ // structure of type TeleType

cout << "Enter a name: ";

getline(cin,record->name);

cout << "Enter the phone number: ";

getline(cin,record->phoneNo);

return;

}

// display the contents of one record

void dispOne(TeleType *contents) // contents is a pointer to a

{ // structure of type TeleType

cout << "\nThe contents of the record just created are:"

<< "\nName: " << contents->name

<< "\nPhone Number: " << contents->phoneNo << endl;

return;

}

737Chapter 13
Dynamic Data Structure Allocation

In reviewing Program 13.10, notice that only two variable declarations are made in
main(). The variable key is declared as a character variable, and the variable recPoint
is declared as being a pointer to a structure of the TeleType type. Because the declaration
for the type TeleType is global, TeleType can be used in main() to define recPoint
as a pointer to a structure of the TeleType type.

If a user enters y in response to the first prompt in main(), a call to new is made for
the required memory to store the designated structure. After recPoint has been loaded
with the correct address, this address can be used to access the newly created structure.

The populate() function is used to prompt the user for data needed in filling the
structure and to store the user-entered data in the correct structure members. The argument
passed to populate() in main() is the pointer recPoint. Like all passed arguments, the
value in recPoint is passed to the function. Because the value in recPoint is an address,
populate() receives the address of the newly created structure and can access the
structure members directly.

In populate(), the value it receives is stored in the argument record. Because the
value to be stored in record is the address of a structure, record must be declared as a
pointer to a structure. This declaration is provided by the statement TeleType *record;.
The statements in populate() use the address in record to locate the structure
members.

The dispOne() function displays the contents of the newly created and populated
structure. The address passed to dispOne() is the same address that was passed to
populate(). Because this passed value is the address of a structure, the argument used to
store the address is declared as a pointer to the correct structure type.

After you understand the mechanism of calling new, you can use it to construct a linked
list of structures. As described in Section 13.4, the structures used in a linked list must
contain at least one pointer member. The address in the pointer member is the starting
address of the next structure in the list. Additionally, a pointer must be reserved for the
address of the first structure, and the pointer member of the last structure in the list is given
a NULL address to indicate that no more members are being pointed to. Program 13.11 shows
using new to construct a linked list of names and telephone numbers. The populate()
function in Program 13.11 is the same one used in Program 13.10, and the display()
function is the same one used in Program 13.9.

Program 13.11

#include <iostream>

#include <iomanip>

#include <string>

using namespace std;

�

738 Structures

const int MAXRECS = 3; // maximum number of records

struct TeleType

{

char name;

char phoneNo;

TeleType *nextaddr;

};

void populate(TeleType *); // function prototype needed by main()

void display(TeleType *); // function prototype needed by main()

int main()

{

int i;

TeleType *list, *current; // two pointers to structures of

// type TeleType

// get a pointer to the first structure in the list

list = new TeleType;

current = list;

// populate the current structure and create the remaining

// structures

for(i = 0; i < MAXRECS - 1; i++)

{

populate(current);

current->nextaddr = new TeleType;

current = current->nextaddr;

}

populate(current); // populate the last structure

current->nextaddr = NULL; // set the last address to a NULL address

cout << "\nThe list consists of the following records:\n";

display(list); // display the structures

return 0;

}

�

739Chapter 13
Dynamic Data Structure Allocation

// input a name and phone number

void populate(TeleType *record) // record is a pointer to a

{ // structure of type TeleType

cout << "Enter a name: ";

getline(cin,record->name);

cout << "Enter the phone number: ";

getline(cin,record->phoneNo);

return;

}

void display(TeleType *contents) // contents is a pointer to a

{ // structure of type TeleType

while (contents != NULL) // display until end of linked list

{

cout << endl << setiosflags(ios::left)

<< setw(30) << contents->name

<< setw(20) << contents->phoneNo;

contents = contents->nextaddr;

}

cout << endl;

return;

}

The first time new is called in Program 13.11, it’s used to create the first structure in the
linked list. Therefore, the address new returns is stored in the pointer variable list. The
address in list is then assigned to the pointer current. This pointer variable is always
used to point to the current structure. Because the current structure is the first structure
created, the address in the pointer list is assigned to the pointer current.

In main()’s for loop, the name and telephone number members of the newly created
structure are populated by calling populate() and passing the address of the current
structure to the function. At the return from populate(), the pointer member of the
current structure is assigned the address of the next structure in the list, which is obtained
from new. The call to new creates the next structure and returns its address to the pointer
member of the current structure. This call completes the population of the current
member. The final statement in the for loop resets the address in the current pointer to
the address of the next structure in the list.

After the last structure has been created, the final statements in main() populate this
structure, assign a NULL address to the pointer member, and call display() to display all
structures in the list. The following is a sample run of Program 13.11:

Enter a name: Acme, Sam

Enter the phone number: (555) 898-2392

Enter a name: Dolan, Edith

Enter the phone number: (555) 682-3104

740 Structures

Enter a name: Lanfrank, John

Enter the phone number: (555) 718-4581

The list consists of the following records:

Acme, Sam (555) 898-2392

Dolan, Edith (555) 682-3104

Lanfrank, John (555) 718-4581

Just as new creates storage dynamically at runtime, the delete operator restores a block
of storage to the computer at runtime. The only argument delete requires is the starting
address of a storage block that was allocated dynamically. Therefore, any address new returns
can be passed subsequently to delete to restore the reserved memory to the computer. The
delete operator doesn’t alter the address passed to it; it simply removes the storage that the
address references.

EXERCISES 13.5

1. (Modify) As described in Table 13.1, the new operator returns the address of the first new
storage area allocated or NULL if insufficient storage is available. Modify Program 13.11 to
check that a valid address has been returned before a call to populate() is made. Display
an appropriate message if not enough storage is available.

2. (Program) Write a C++ function named remove() that removes an existing structure
from the linked list of structures Program 13.11 created. The algorithm for removing a
linked structure should follow the sequence for removing a structure developed in
Exercise 4 in Section 13.4. The argument passed to remove() should be the address of
the structure preceding the record to be removed. In the remove() function, make sure
the value of the pointer in the removed structure replaces the value of the pointer mem-
ber of the preceding structure before the structure is removed.

3. (Program) Write a function named insert() that inserts a structure in the linked list
of structures Program 13.11 created. The algorithm for inserting a structure in a linked list
should follow the sequence for inserting a record previously shown in Figure 13.7. The
argument passed to insert() should be the address of the structure preceding the
structure to be inserted. The inserted structure should follow this current structure. The
insert() function should create a new structure dynamically, call the populate()
function used in Program 13.11, and adjust all pointer values accordingly.

4. (Program) You want to insert a new structure in the linked list of structures Program 13.11
created. The function developed to do this in Exercise 3 assumes that the preceding struc-
ture’s address is known. Write a function called findRec() that returns the address of the
structure immediately preceding the point where the new structure is to be inserted. (Hint:
findRec() must request the new name as input and compare the entered name to existing
names to determine where to place the new name.)

5. (Program) Write a C++ function named modify() that can be used to modify the name
and telephone number members of a structure of the type created in Program 13.11. The
argument passed to modify() should be the address of the structure to be modified.
The modify() function should first display the existing name and telephone number in the
selected structure, and then request new data for these members.

741Chapter 13
Dynamic Data Structure Allocation

6. (Program) a. Write a C++ program that presents a menu of choices for the user. The
menu should consist of the following choices:

Create a linked list of names and phone numbers
Insert a new structure in the linked list
Modify an existing structure in the linked list
Delete an existing structure from the list
Exit from the program

Based on the user’s selection, the program should execute a function to satisfy the request.

b. Why is creating a linked list usually done by one program, and the options to add,
modify, or delete a structure in the list provided by a different program?

13.6 Unions2

A union is a data type that reserves the same area in memory for two or more variables that
can be different data types. A variable declared as a union data type can be used to hold a
character variable, an integer variable, a double-precision variable, or any other valid C++
data type. Each of these types, but only one at a time, can be assigned to the union variable.

The definition of a union has the same form as a structure definition, with the keyword
union used in place of the keyword struct. For example, the following declaration creates
a union variable named val:

union
{

char key;
int num;
double volts;

} val;

If val were a structure, it would consist of three members. As a union, however, val
contains a single member that can be a character variable named key, an integer variable
named num, or a double-precision variable named volts. In effect, a union reserves enough
memory locations to accommodate its largest member’s data type. This same set of locations
is then referenced by different variable names, depending on the data type of the value
currently stored in the reserved locations. Each value stored overwrites the previous value,
using as many bytes of the reserved memory area as necessary.

Union members are referenced by using the same notation as structure members. For
example, if the val union is currently being used to store a character, the correct variable name
to access the stored character is val.key. Similarly, if the union is used to store an integer, the
value is accessed by the name val.num, and a double-precision value is accessed by the name
val.volts. In using union members, it’s the programmer’s responsibility to make sure the
correct member name is used for the data type currently stored in the union.

2This topic can be omitted on first reading with no loss of subject continuity.

742 Structures

Typically, a second variable is used to keep track of the current data type stored in the
union. For example, the following code could be used to select the appropriate member of
val for display. The value in the uType variable determines the currently stored data type
in the val union:

switch(uType)
{

case 'c': cout << val.key;
break;

case 'i': cout << val.num;
break;

case 'd': cout << val.volts;
break;

default : cout << "Invalid type in uType : " << uType;
}

As in structures, a data type can be associated with a union. For example, the declaration

union DateTime
{

int days;
double time;

};

provides a union data type without actually reserving any storage locations. This data type
can then be used to define any number of variables. For example, the definition

DateTime first, second, *pt;

creates a union variable named first, a union variable named second, and a pointer that
can be used to store the address of any union having the form DateTime. After a pointer to
a union has been declared, the same notation for accessing structure members can be used
to access union members. For example, if the assignment pt = &first; is made,
pt->date references the date member of the union named first.

Unions can be members of structures or arrays, and structures, arrays, and pointers can be
members of unions. In each case, the notation used to access a member must be consistent
with the nesting used. For example, in the structure defined by

struct
{

char uType;
union
{

char *text;
float rate;

} uTax;
} flag;

the variable rate is referenced as

flag.uTax.rate

Similarly, the first character of the string whose address is stored in the pointer text is
referenced as follows:

*flag.uTax.text

743Chapter 13
Unions

EXERCISES 13.6

1. (Practice) Assume the following definition has been made:

union
{

double rate;
double taxes;
int num;

} flag;

For this union, write cout statements to display the members of the union.

2. (Practice) Define a union variable named car containing an integer named year, an
array of 10 characters named name, and an array of 10 characters named model.

3. (Practice) Define a union variable named lang that allows referencing a double-
precision number by the variable names volts and emf.

4. (Practice) Define a union data type named Amt containing an integer variable named
intAmt, a double-precision variable named dblAmt, and a pointer to a character
named ptKey.

5. (Desk Check) a. What do you think the following section of code will display?

union
{

char ch;
double btype;

} alt;
alt.ch = 'y';
cout << alt.btype;

b. Include the code in Exercise 5a in a program, and run the program to verify your
answer to Exercise 5a.

13.7 Common Programming Errors

Three common errors are often made when using structures or unions. The first error occurs
because structures and unions, as complete entities, can’t be used in relational expressions.
For example, even if TeleType and PhonType are two structures of the same type, the
expression TeleType == PhonType is invalid. Members of a structure or union can, of
course, be compared if they are of the same data type, using any of C++’s relational operators.

The second common error is actually an extension of a pointer error as it relates to
structures and unions. When a pointer is used to “point to” either of these data types, or
when a pointer is a member of a structure or a union, take care to use the address in the
pointer to access the correct data type. If you’re confused about exactly what’s being pointed
to, remember: “If in doubt, print it out.”

744 Structures

The final error occurs with unions. Because a union can store only one of its members
at a time, you must be careful to keep track of the currently stored variable. Storing one data
type in a union and accessing it by the wrong variable name can result in an error that’s
particularly troublesome to locate.

13.8 Chapter Summary
1. A structure allows grouping variables under a common variable name. Each variable in

a structure is accessed by its structure variable name, followed by a period, followed byits
variable name. Another term for a data structure is a record. One form for declaring a
structure is as follows:

struct
{

// member declarations
} structureName;

2. A data type can be created from a structure by using this declaration form:

struct DataType
{

// member declarations
};

Structure variables can then be defined as this DataType. By convention, the first letter
of the DataType name is always capitalized.

3. Structures are particularly useful as elements of arrays. Used in this manner, each
structure becomes one record in a list of records.

4. Complete structures can be used as function arguments, in which case the called function
receives a copy of each element in the structure. A structure’s address can also be passed,
as a reference or a pointer, which gives the called function direct access to the structure.

5. Structure members can be any valid C++ data type, including other structures, unions,
arrays, and pointers. When a pointer is included as a structure member, a linked list can
be created. This list uses the pointer in one structure to “point to” (contain the address
of) the next logical structure in the list.

6. Unions are declared in the same manner as structures. The definition of a union creates
a memory overlay area, with each union member using the same memory storage
locations. Therefore, only one member of a union can be active at a time.

Programming Projects for Chapter 13

1. (Code) Define a structure data type and member variables for a single kind of screw in
a parts inventory, with fields for inventory number, screw length, diameter, kind of head
(Phillips or standard slot), material (steel, brass, other), and cost.

745Chapter 13
Programming Projects

2. (Code) You have a structure type defined as follows:

struct Inventory
{

char description[50];
int prodnum;
int quantity;
double price;

};

Given this structure, write code for the following:

a. A declaration for an array of 100 structures of type Inventory

b. An assignment of inventory number 4355 to the 83rd Inventory item

c. A statement that displays the price of the 15th Inventory item

3. (Code) Define an array of structures for up to 50 factory employees, in which each
structure contains fields for name, age, social security number, hourly wage, and years
with the company. Write the following:

a. Statements that display the name and number of years with the company for the
25th employee in the array

b. A loop that, for every employee, adds 1 to the number of years with the company and
adds 50 cents to the hourly wage

4. (Mathematical) In two dimensions, a vector is a pair of numbers representing directed
arrows in a plane, as shown by vectors V1 and V2 in Figure 13.10.

Two-dimensional mathematical vectors can be written in the form (a,b), where a and b are
called the x and y components of the vector. For example, for the vectors in Figure 13.10,
V1 = (9,4) and V2 = (3,5). For mathematical vectors, the following operations apply:

If V1 = (a,b) and V2 = (c,d)
V1 + V2 = (a,b) + (c,d) = (a + c, b + d)
V1 - V2 = (a,b) - (c,d) = (a - c, b - d)

Using this information, write a C++ program that defines an array of two mathematical
vector structures; each structure consists of two double-precision components, a and b.
Your program should permit a user to enter two vectors, call two functions that return the
sum and difference of the entered vectors, and display the results calculated by these
functions.

746 Structures

5. (Modify) In addition to the operations defined in Exercise 4, two other vector operations
are negation and absolute value. For a vector V1 with components (a,b), these operations
are defined as follows:

Negation: -V1 = -(a,b) = (-a,-b)
Absolute value: |V1| = sqrt (a * a + b * b)

Using this information, modify the program you wrote for Exercise 4 to display the
negation and absolute values of both vectors input by a user as well as the negation and
absolute value of the sum of the two input vectors.

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10

(3,5)

(9,4)

V2

V1

y

x

Figure 13.10 Two mathematical vectors

747Chapter 13
Programming Projects

This page intentionally left blank

Part Four
Additional Topics

14 Numerical Methods

15 Bit Operations

This page intentionally left blank

Chapter 14
Numerical Methods

14.1 Introduction to Root Finding

14.2 The Bisection Method

14.3 Refinements to the Bisection
Method

14.4 The Secant Method

14.5 Introduction to Numerical
Integration

14.6 The Trapezoidal Rule

14.7 Simpson’s Rule

14.8 Common Programming
Errors

14.9 Chapter Summary

One of the most common tasks in science and engineering is finding the roots of equations—that is,
given a function f(x), finding values of x such that f(x) = 0.0. This type of problem also includes
determining the points of intersection of two curves. If the curves are represented by the functions f(x)
and g(x), the intersection points correspond to the roots of the function F(x) = f(x) - g(x).

A second important task is numerical integration, in which approximation methods are used to
determine the integral’s value when exact solutions don’t exist. In this chapter, you learn several
programming techniques for finding the roots of equations as well as techniques commonly used in
numerical integration.

14.1 Introduction to Root Finding

Root-finding techniques are important for a number of reasons. They are useful, easy to
understand, and usually easy to carry out. By using them, you can solve genuine problems
in engineering with a minimum of instruction. Vital elements in numerical analysis are
appreciating what can or can’t be solved and clearly understanding the accuracy of the
answers found. Because this appreciation and understanding come mostly from experience,

you need to begin solving numerical problems immediately. Besides, root-solving problems
can be fun.

The following list shows some examples of the types of functions encountered in
root-solving problems:

ax2 + bx + c = 0 (Equation 14.1)
2x4 - 7x3 + 4x2 + 7x - 6 = (x - 2)(x - 1)(x + 1)(2x - 3) = 0 (Equation 14.2)
x5 - 2x3 - 5x2 + 2 = 0 (Equation 14.3)
sin5(x) + sin3(x) + 5cos(x) - 7 = 0 (Equation 14.4)
100e - x - sin(2�x) = 0 (Equation 14.5)

The general quadratic equation, Equation 14.1, can be solved easily and exactly by using
this quadratic formula:

r
b b ac

a
= ±- (-)2 4

2
Equation 14.2 can be solved for x exactly by factoring the polynomial. The roots are then

clearly 1, -1, 2, and 3/2. However, most polynomials can’t be factored so easily, and other more
general techniques are required. There are formulas for the exact solution of general cubic
or quartric equations, but they are cumbersome and, therefore, seldom used. No exact
formula is possible for a polynomial such as Equation 14.3, in which the highest power of x
is greater than 4. For these polynomials, numerical means must generally be used to
determine the roots.

Recall from high school algebra that a polynomial of degree n (that is, the highest power
of xn) has precisely n roots, of which some can be complex numbers and others can be
multiple roots. Therefore, Equation 14.3 has three real roots

r1 = -0.712780744625. . .
r2 = 0.57909844162. . .
r3 = 2.0508836199. . .

and two complex roots:

r4 = 0.757225433526 + i(0.57803468208)
r5 = 0.757225433526 - i(0.57803468208)

The equation

x2 - 2x + 1 = 0

can be factored as

(x - 1)2 = 0

752 Numerical Methods

and has two real roots, both of which happen to be the same. In this case, the root is said to
be a multiple root with multiplicity 2.

Equations 14.4 and 14.5 are called transcendental equations and represent an entirely
different class of functions. Typically, transcendental equations involve trigonometric, expo-
nential, or logarithmic functions and can’t be reduced to any polynomial equation in x. The
real roots of polynomials are usually classified as being rational numbers (a simple fraction)
or irrational (for example, 2). The roots of transcendental equations are often transcen-
dental numbers, such as � or e.

Irrational numbers and transcendental numbers are represented by nonrepeating decimal
fractions and can’t be expressed as simple fractions. These numbers are important to
mathematics because they’re responsible for the real number system being dense or
continuous. Therefore, classifying equations as polynomials or transcendental and the roots
of these equations as rational or irrational is vital to traditional mathematics; however, the
distinction is of less consequence to the computer. In fact, the number system available to
the computer is not only continuous, but is also a finite set.

At any rate, when finding the roots of equations, the distinction between polynomials and
transcendental equations is unnecessary, and the same numerical procedures are applied to
both. The distinction between the two types of functions is, however, important in other
regards. Many of the theorems you learned for roots of polynomials don’t apply to
transcendental equations. For instance, both Equations 14.4 and 14.5 have an infinite number
of real roots.

All the root-solving techniques discussed in this chapter are interactive; that is, you
specify an interval that’s known to contain a root or simply provide an initial guess for the
root, and the various routines return a more limited interval or a better guess. Some schemes
discussed in this chapter are guaranteed to find a root eventually, but arriving at the answer
might take considerable computer time. Others might converge to a root much faster but are
more susceptible to problems of divergence; in other words, they come with no guarantees.

The common ingredient in all root-solving recipes is that potential computational
difficulties can be avoided by providing the best possible choice of a method and the initial
guess, based on your knowledge of the problem. This part of the solution is often the most
difficult and time consuming. The art of numerical analysis consists of balancing time spent
optimizing the problem’s solution before computation against time spent correcting unfore-
seen errors during computation.

If possible, you should sketch the function before you attempt root solving; you can use
graphing routines or generate a table of function values that are then graphed by hand. These
graphs are useful to programmers in estimating the first guess for the root as well as
anticipating potential difficulties. If a sketch isn’t feasible, you must use some method of
monitoring the function to understand what the function is doing before you start the actual
computation. As an example of the general procedure to follow, take a look at this
transcendental function:

f(x) = e-x - sin(½�x)

This equation, as you’ll see shortly, has an infinite number of positive roots. For the
moment, concentrate on obtaining an initial guess for the first root, and then use this initial
guess to find a more precise root value.

753Chapter 14
Introduction to Root Finding

Begin by gathering as much information as possible before trying to construct a C++
program. This step almost always involves making a rough sketch of the function. The
previous equation can be written as follows:

e-x = sin(½�x)

A root of this equation then corresponds to any value of x so that the left side and right
side are equal. If the left and right sides are plotted separately, the roots of the original
equation are then given by the points of intersection of the two curves (see Figure 14.1).
From the sketch, you can see that the roots are the following:

Roots � 0.4, 1.9, 4.0, . . .

Because the sine oscillates, there are an infinite number of positive roots. First, you
should concentrate on improving the estimate of the first root near 0.4. You begin by
establishing a procedure, or algorithm, that’s based on the most obvious method of attack
when using a pocket calculator; that is, begin at some value of x just before the root (say, 0.3)
and step along the x-axis, carefully watching the magnitude and particularly the sign of the
function, as shown:

Step x e-x sin(½�x) f(x) = e-x - sin(½�x)
0 0.3 0.741 0.454 0.297
1 0.4 0.670 0.588 0.082
2 0.5 0.606 0.707 -0.101

Notice that the function has changed sign between 0.4 and 0.5, indicating a root between
these two x values. For the next approximation, you use the midpoint value, x = 0.45, for the
next step:

Step x e-x sin(½�x) f(x) = e-x - sin(½�x)
3 0.45 0.638 0.649 -0.012

1

-1

2

1

x

 Intersection of e-x

1

2
π xand sin

e-x

1

2
π xsin

3

Figure 14.1 Graph of e-x and sin(½�x) for locating the intersection points

754 Numerical Methods

The function is again negative at 0.45, indicating that the root is between 0.4 and 0.45.
The next approximation, therefore, is the midpoint of this interval, 0.425. In this way, you can
proceed systematically to a computation of the root to any degree of accuracy.

Step x e-x sin(½�x) f(x) = e-x - sin(½�x)
4 0.425 0.654 0.619 0.0347
5 0.4375 0.6456 0.6344 0.01126
6 0.44365 0.6417 0.6418 -0.00014

The key element in this procedure is monitoring the sign of the function. When the sign
changes, specific action is taken to refine the estimate of the root. This change in the
function’s sign, indicating the vicinity of a root has been located, forms the key element in
the computer code for locating roots. In the next three sections, you learn several root-finding
methods based on this procedure.

EXERCISES 14.1

1. (Practice) Use the iterative technique presented in this section to find a root of the equation
f(x) = sin x - x/3 = 0 (x is in radians)
To do this, first rewrite the equation as
sin x = x/3
and plot the left and right sides separately on the same graph.

14.2 The Bisection Method

The root-solving procedure explained in Section 14.1 is suitable for hand calculations;
however, a slight modification makes it more systematic and easier to adapt to computer
coding. This modified computational technique is known as the bisection method. Suppose
you already know there’s a root between x = a and x = b; that is, the function changes sign
in this interval. For simplicity, assume there’s only one root between x = a and x = b and the
function is continuous in this interval.

The function might then resemble the sketch in Figure 14.2. If you then define x1 = a
and x3 = b as the left and right ends of the interval, respectively, and x2 = ½(x1 + x3) as the
midpoint, in which half-interval does the function cross the x-axis? In the figure, the crossing
is on the right, so you replace the full interval by the right half-interval. Therefore,

x2 now becomes x1.
x3 remains as it is.
x2 is recalculated as the value ½(x1 + x3).

and again, the question is “In which half-interval does the function cross the x-axis?”

755Chapter 14
The Bisection Method

After determining a second time whether the left half or right half contains the root, the
interval is again replaced by the left or right half-interval. This process is continued until you
narrow in on the root to a previously assigned accuracy. Each step halves the interval, so after
n iterations, the interval’s size containing the root is (b - a)/2n. If you’re required to find a root
to within a tolerance � (that is, |x - root| < �), the number of iterations, n, required can be
determined from this equation:

b a
n

-
2

< δ

For example, the initial search interval in the example in the previous section was
(b - a) = 0.1. If the root is required to an accuracy of � = 10-5, then

0 1
2

10 5.
n < -

or

2n > 104

This equation can be solved for n as follows:

n > >log()
log()

10
2

13
4

Therefore, the calculation reveals that the degree of accuracy is achieved after the 13th
application of the interval-halving procedure. The only element of the method that has been
omitted is how the computer determines which half of the interval contains the axis crossing.

x1

x

y

x1

x2

x2

x1 x2 x3

x1 x2 x3

x3

b

y = f(x)

a

Root determination
by the bisection

method

Figure 14.2 A sketch of a function with one root between a and b

756 Numerical Methods

To that end, consider the product of the function evaluated at the left, f1 = f(x1), and the
function evaluated at the midpoint, f2 = f(x2), as shown:

If Then
f1f2 > 0.0 f1 and f2 are both positive or both negative. In either case,

there’s no crossing between x1 and x2, and no root lies within
the interval.

f1f2 < 0.0 f(x) has changed sign between x1 and x2. In this case, there’s a
root within the interval bounded by x1 and x2.

Program 14.1 computes the roots of an equation by using this procedure. In reviewing
this program, note the following features:

• In each iteration after the first, there’s only one function evaluation. Reevaluating
f(x1), f(x2), and f(x3) for each iteration would be inefficient because two of them are
already known. If the function is extremely complicated, redundant computations
such as this one would be a serious problem. Unnecessary function evaluations can
waste a great deal of computer time.

• The program contains several checks for potential problems along with diagnostic
messages (such as excessive iterations, no roots in interval, and so forth), even
though the programmer might think these possibilities are remote. Generally, the
more of these checks a program contains, the better. They take only a few minutes
to code and can save hours of debugging.

• The criterion for success is based on the interval’s size. Therefore, even if the
function isn’t close to zero at a point, x changes very little, and continuing the
iterations wouldn’t improve the accuracy of the root substantially.

Program 14.1

#include <iostream>

#include <cmath>

using namespace std;

void bisection(double, double, double, int); // function prototype

double f(double); // function prototype

using namespace std;

int main()

{

int imax; // maximum number of iterations

double a, b; // left and right ends of the original interval

double epsilon; // convergence criterion

// obtain the input data

cout << "Enter the limits of the original search interval, a and b: ";

�

757Chapter 14
The Bisection Method

cin >> a >> b;

cout << "Enter the convergence criteria: ";

cin >> epsilon;

cout << "Enter the maximum number of iterations allowed: ";

cin >> imax;

bisection(a, b, epsilon, imax);

return 0;

}

// A bisection function that finds roots of a function

// The interval a < x < b is known to contain a root of f(x). The estimate

// of the root is improved successively by finding in which half of the

// interval the root lies and then replacing the original interval by that

// half-interval.

void bisection(double a, double b, double epsilon, int imax)

{

int i; // current iteration counter

double x1, x2, x3; // left, right, and midpoint of current interval

double f1, f2, f3; // function evaluated at these points

double width; // width of original interval = (b - a)

double curwidth; // width of current interval = (x3 - x1)

// echo back the passed input data

cout << "\nThe original search interval is from "

<< a << " to " << b << endl;

cout << "The convergence criterion is: interval < " << epsilon << endl;

cout << "The maximum number of iterations allowed is " << imax << endl;

// calculate the root

x1 = a;

x3 = b;

f1 = f(x1);

f3 = f(x3);

width = (b - a);

// verify there is a root in the interval

if (f1 * f3 > 0.0)

cout << "\nNo root in the original interval exists" << endl;

else

{

�

758 Numerical Methods

for (i = 1; i <= imax; i++)

{

// find which half of the interval contains the root

x2 = (x1 + x3) / 2.0;

f2 = f(x2);

if (f1 * f2 <= 0.0) // root is in left half-interval

{

curwidth = (x2 - x1) / 2.0;

f3 = f2;

x3 = x2;

}

else // root is in right half-interval

{

curwidth = (x3 - x2) / 2.0;

f1 = f2;

x1 = x2;

}

if (curwidth < epsilon)

{

cout << "\nA root at x = " << x2 << " was found "

<< "in " << i << " iterations" << endl;

cout << "The value of the function is " << f2 << endl;

return;

}

}

}

cout << "\nAfter " << imax << " iterations, no root was found "

<< "within the convergence criterion" << endl;

return;

}

// function to evaluate f(x)

double f(double x)

{

const double PI = 2*asin(1.0); // value of pi

return (exp(-x) - sin(0.5 * PI * x));

}

A sample run of Program 14.1 produced the following:

Enter the limits of the original search interval, a and b: .4 .5

Enter the convergence criteria: .00001

Enter the maximum number of iterations allowed: 25

�

759Chapter 14
The Bisection Method

The original search interval is from 0.4 to 0.5

The convergence criterion is: interval < 1e-005

The maximum number of iterations allowed is 25

A root at x = 0.443567 was found in 13 iterations

The value of the function is 1.22595e-005

Although Program 14.1 is used to evaluate the roots of the equation f(x) = e-x - sin(�x/2),
by changing the calculation in the return statement in the last function, f(), this program
can be used for any function.

One final comment: The bisection method used in Program 14.1 is an example of a
so-called brute-force method, meaning it has a minimum of finesse. Although it illustrates
fundamental C++ techniques, more powerful and clever numerical procedures are available.
These techniques are explained in Section 14.3.

EXERCISES 14.2

1. (Practice) Use the bisection method for finding the roots of an equation. First, construct
a table of the following form:

Step x1 x2 x3 f(x1) f(x2) f(x3) Crossing
Left

Crossing
Right

0 a ½(a + b) b
1
.
.
.

Next, use the bisection method and a pocket calculator to obtain the roots of the follow-
ing functions to an accuracy of five significant figures:
a. f(x) = x2 + 2x - 15 (Use a = 2.8 and b = 3.1. The exact answer = 3.0.)

b. g(x) = ½sin(x)(ex - e-x) + 1 (This is the elliptic gear equation, with x in radians. Use
a = 1 and b = 4.)

c. E x R x x x() (-) - tan()= 2 2 (This is the equation for quantum energies of a particle in a
box. Use R = 10, a = 4.0, and b = 4.7.)

d. Predict the number of steps needed to find the answer to the specified accuracy of
five significant figures in Exercises 1a through 1c.

2. (Modify) Modify Program 14.1 to solve for the indicated roots of each function in Exercise 1.

3. (Modify) Modify Program 14.1 to produce a table similar to the one required in Exercise 1
for each function listed in Exercise 1.

760 Numerical Methods

14.3 Refinements to the Bisection Method

The bisection method described in Section 14.2 presents the basics on which most
root-finding methods are constructed. This brute-force method is rarely used in practice
because for almost any problem, an alternative method that’s faster, more accurate, and only
slightly more complex is available. All refinements of the bisection method that might be
devised are based on attempts to use as much information as available about the function’s
behavior at each iteration. In the ordinary bisection method, the only feature of the function
that’s monitored is its sign. Therefore, if you’re searching for roots of the function

f(x) = e-x - sin(½�x)

you begin the search, as described in Section 14.1, by stepping along the x-axis and watching
for a change in sign of the function, as follows:

i xi f(xi)
0 0.0 2.0
1 0.1 1.33
2 0.2 0.75
3 0.3 0.29
4 0.4 -.05

The next step in the bisection method is reducing the step size by half; that is, try
x5 = 0.35. However, from the magnitude of the preceding numbers, you would expect the
root to be closer to 0.4 than 0.3. By using information about the size of the functional value
in addition to its sign, you can speed up the convergence. In this example, you might
interpolate the root to be approximately

0 29 0 0
0 29 0 05

0
0 8533

3 4

. - .
. - (.)

-
-

.
-

= =
f
f f

of the distance from x3 = 0.3 to x4 = 0.4 or x5= 0.3853. Continuing in this manner and
interpolating at each step, you get the following results:

i xi f(xi)
3 0.30 0.29
4 0.40 -0.05
5 0.385 -0.0083
6 0.3823 -0.0013
7 0.3819 -0.00019
8 0.38185 -0.000028
9 0.38184 -0.000004

Comparing these results with the bisection method applied to a similar function in
Section 14.2, you can see that the convergence rate for this method is much faster. The next
task is to formalize this procedure into a method suitable for a general function.

761Chapter 14
Refinements to the Bisection Method

Regula Falsi Method
The basic idea in the first refinement of the bisection method is that it’s essentially the same
as bisection, except instead of using the interval’s midpoint at each step of the calculation,
you use an interpolated value for the root. This method is illustrated in Figure 14.3. In this
figure, a root is known to exist in the interval (x1 ↔ x3) , and in the drawing, f1 is negative,
and f3 is positive. The interpolated position of the root is x2. Because the two triangles ABC
and CDE are similar, the lengths of the sides are related by

DE
AB

CD
BC

=

or

0 0 1

3 1

2 1

3 1

. -
-

-
-

f
f f

x x
x x

=

which can be solved for the unknown position x2 to yield the following:

x x x x
f

f f2 1 3 1
1

3 1

= - (-)
-

This value of x2 then replaces the midpoint used in the bisection method, and the rest
of the procedure remains the same. Therefore, the next step is determining whether the
actual root is to the left or to the right of x2, as before:

If f1 × f2 < 0, then the root is on the left.
If f2 × f3 < 0, then the root is on the right.

x1 x2

E

D
C

f1

0 - f1

A
f3

x3

f3 - f1

B

x3 - x1

x2 - x1

Figure 14.3 Estimating the root by interpolation

762 Numerical Methods

In the figure, the root is to the left of x2, so the interval used for the next iteration is as
follows:

x3 = x2

f3 = f2
f2 = f(x2)

In other words, to use this slightly faster algorithm, the only change that has to be made
to the previous bisection code is replacing statements of the form

x2 = (x1 + x3) / 2

by a statement of this form:

x x x x
f

f f2 1 3 1
1

3 1

= - (-)
-

This method is still guaranteed to obtain a root eventually and almost always converges
faster than the conventional bisection method. You do, however, pay a small price. The
values of f1 and f3 used in solving for x2 might be nearly equal, and you could be plagued by
round-off errors in their difference. Also, in the bisection method, you could predict with
some precision the number of iterations required to find the root to a certain accuracy (see
Section 14.1). This prediction is no longer possible if you use the interpolated values, so the
code must include a check for excessive iterations.

This method shows that a simple change in the algorithm, which is based on more intelligent
monitoring of the function, can reap considerable rewards in more rapid convergence. The formal
name of this method is the regula falsi method (the method of false position).

Are there any other improvements in the basic bisection method that can be imple-
mented easily? To answer this question, you must examine how the regula falsi method
arrives at a solution. This examination is best done graphically. Figure 14.4 continues the
calculation begun in Figure 14.3.

y

x1
x2 x3

x

x1

y = f(x)

f1

f3

x3x2

x3

x3x2x1

x1 x2' ' '

" " "

Figure 14.4 Illustration of several iterations of the regula falsi method

763Chapter 14
Refinements to the Bisection Method

Notice that in Figure 14.4, in which the function is concave downward near the root, the
value of the search interval’s left limit near the root, x1, never changes. The actual root always
remains in the left segment in each iteration. The right segment of the interval, x3 - x2,
shrinks quite rapidly, but the left segment, x2 - x1, doesn’t. If the function were concave
upward, the converse would be true. Therefore, a drawback of the regula falsi method is that
even though it converges more rapidly to a value of x that results in a “small” |f(x)|, the
interval containing the root does not diminish significantly.

Modified Regula Falsi Method
Perhaps the procedure can be made to converge more rapidly if the interval can be made to
collapse from both directions. Figure 14.5 shows one way to accomplish this. The idea is as
follows:

If the root is determined to lie in the left segment (x2 - x1)
The interpolation line is drawn between the points (x1,½f1) and (x3,f3)

Else If the root is in the right segment
The interpolation line is drawn between the points (x1,f1) and (x3,½f3)

Endif

Using this algorithm, the slope of the line is reduced artificially. The effect of this
reduction is that if the root is in the left of the original interval, it eventually turns up in the
right segment of a later interval and subsequently alternates between left and right. This
modification to the bisection method combined with the regula falsi method is known as the
modified regula falsi method, a powerful and popular procedure for finding roots of equations.
The alternatives to the original bisection code in Program 14.1 are straightforward and are

x1
x2

x2
x1

f1

y

x3

4
3
2

1

3

2

1

y = f(x) f3

x

x3

½ f1

Figure 14.5 Illustration of the modified regula falsi method

764 Numerical Methods

incorporated into Program 14.2. The C++ code in Program 14.2 requires some explanation,
however:

1. The function f(x) is evaluated only once per cycle. If the function is complicated and,
therefore, costly to compute, this measure of efficiency is often a deciding factor in
choosing the method of solution.

2. The code can terminate in only three ways:
a. One success path: The current fractional size of the search interval—that is,

(current interval) / (original interval)—is less than the user-supplied conver-
gence criterion. If so, the program’s original aim to bracket a root narrowly has
been achieved. There’s no guarantee that this criterion will result in a value of
f(x) that’s “small.” The point, however, is that successive iterations have
resulted in only small changes in the interval containing the root, so continu-
ing the process isn’t necessary or productive.

b. Two failure paths: 1) If the number of iterations is greater than Imax, the
maximum number of iterations set by the programmer, the process is stopped.
This test allows the programmer to specify the maximum cost accepted for an
attempted solution. Because the number of iterations isn’t predictable in the
regula falsi and modified regula falsi methods, this safeguard is essential. It’s
also a prudent precaution against unforeseen errors in constructing the prob-
lem that could cause the program to cycle forever and not find a solution.
Statements of this type are required in any program in which there’s a danger
of infinite looping. 2) If the function doesn’t change sign (f1 × f3 > 0), the pro-
cess is stopped. Because the original interval is known to contain a root, the
only way this condition can happen is by error. Usually, the error is in the
code for the function f(x); that is, you’re attempting to find a root of a func-
tion different from the one intended.

Program 14.2

#include <iostream>

#include <cmath>

using namespace std;

void modregfalsi(double, double, double, int); // function prototype

double f(double); // function prototype

int main()

{

int imax; // maximum number of iterations

double a, b; // left and right ends of the original interval

double epsilon; // convergence criterion

�

765Chapter 14
Refinements to the Bisection Method

// obtain the input data

cout << "Enter the limits of the original search interval, a and b: ";

cin >> a >> b;

cout << "Enter the convergence criterion: ";

cin >> epsilon;

cout << "Enter the maximum number of iterations allowed: ";

cin >> imax;

modregfalsi(a, b, epsilon, imax);

return 0;

}

// A modified regula falsi function that finds roots of a function

// The maximum number of iterations permitted is imax. The convergence

// criterion is that the fractional size of the search interval

// (x3 - x1) / (b - a) is less than epsilon. A relaxation factor,

// RELAX, is used.

void modregfalsi(double a, double b, double epsilon, int imax)

{

const double RELAX = 0.9; // the relaxation factor

int i; // current iteration counter

double x1, x2, x3; // left, right, and midpoint of current interval

double f1, f2, f3; // function evaluated at these points

double width; // width of original interval = (b - a)

double curwidth; // width of current interval = (x3 - x1)

// echo back the passed input data

cout << "\nThe original search interval is from " << a << " to " << b

<< "\nThe convergence criterion is: interval < " << epsilon

<< "\nThe maximum number of iterations allowed is " << imax << endl;

// calculate the root

x1 = a;

x3 = b;

f1 = f(x1);

f3 = f(x3);

width = abs(b - a);

// iterations

for (i = 1; i <= imax; i++)

{

curwidth = (x3 - x1) / width;

x2 = x1 - width * curwidth * f1 / (f3 - f1);

�

766 Numerical Methods

f2 = f(x2);

if (abs(curwidth) < epsilon) // root is found

{

cout << "\nA root at x = " << x2 << " was found "

<< "in " << i << " iterations" << endl;

cout << "The value of the function is " << f2 << endl;

return;

}

else // check for left and right crossing

{

if(f1 * f2 < 0.0) // check for crossing on the left

{

x3 = x2;

f3 = f2;

f1 = RELAX * f1;

}

else if (f2 * f3 < 0.0) // check for crossing on the right

{

x1 = x2;

f1 = f2;

f3 = RELAX * f3;

}

else // no crossing in the interval

{

cout << "The search for a root has failed due to no root in "

<< "the interval\n"

<< "In step " << i << " of the iteration the function "

<< "does not change sign" << endl;

}

}

}

cout << "\nAfter " << imax << " iterations, no root was found "

<< "within the convergence criterion\n"

<< "The search for a root has failed due to excessive iterations\n"

<< "after the maximum number of " << imax << " iterations" << endl;

return;

}

// function to evaluate f(x)

double f(double x)

{

const double PI = 2*asin(1.0); // value of pi

return (exp(-x) - sin(0.5 * PI * x));

}

767Chapter 14
Refinements to the Bisection Method

A sample run of Program 14.2 produced the following:

Enter the limits of the original search interval, a and b: .4 .5

Enter the convergence criterion: .00001

Enter the maximum number of iterations allowed: 25

The original search interval is from 0.4 to 0.5

The convergence criterion is: interval < 1e-005

The maximum number of iterations allowed is 25

A root at x = 0.443574 was found in 7 iterations

The value of the function is -2.25374e-009

In comparing the results of Program 14.2 to those of Program 14.1, notice that the
modified regula falsi method located a more exact root in six fewer iterations (7 instead of
13). The exactness of the root is indicated by the functional value at the root, which is closer
to 0.0 in Program 14.2’s output. Table 14.1 shows a more complete comparison of the rate of
convergence for all three root-finding methods discussed so far, as these methods apply to
this function:

f(x) = 2e-2x - sin(�x)

Table 14.1 Comparison of Root-Finding Methods Using the Function f(x) = 2e-2x - sin(�x)

i Bisection
x2

Regula Falsi
Bisection
x2

Modified Regula Falsi
Bisection
x2

1 0.35 0.385 0.385
2 0.375 0.3823 0.3820
3 0.3875 0.3819 0.38183
4 0.38125 0.38185 0.381843
5 0.38438 0.381844 0.38184267
6 0.38281 0.381843 0.38184276
7 0.38203 0.3818428 0.38184275
8 0.38164 0.38184275 0.38184275

A slope-reduction factor of one-half was used in constructing Figure 14.5 and is an
example of what’s called a relaxation factor, a number used to alter the results of one iteration
before inserting them into the next. Determining the optimum relaxation factor is usually a
complex problem in any calculation and is well beyond the scope of this book. However, in this
instance, a little trial and error shows that a less drastic decrease in the slope results in improved
convergence. Using a relaxation factor of 0.9 should be adequate for most problems; this factor
was used to generate the values in Table 14.1.

768 Numerical Methods

Summary of the Bisection Methods
The characteristic features of the three methods discussed so far are as follows:

Bisection Success based on size of interval
Slow convergence
Predictable number of iterations
Interval halved in each iteration
Guaranteed to bracket a root

Regula falsi Success based on size of function
Faster convergence
Unpredictable number of iterations
Interval containing the root is not small
Monitors size of function as well as its sign

Modified regula falsi Success based on size of interval
Faster convergence
Unpredictable number of iterations

Of the three methods, the modified regula falsi is probably the most efficient for common
problems and is recommended when the only information available is that the function
changes sign between x1 and x3.

The requirement that the initial search interval be one in which the function changes
sign (only once) can be troublesome occasionally. For example, the problem of finding the
root of the function

f(x) = x2 - 2x + 1 = (x - 1)2

isn’t suited to any of the bisection methods because the function never changes sign. This
difficulty occurs when the root of the function is a multiple root of even multiplicity. A
method that overcomes this limitation is the secant method, discussed in Section 14.4.

EXERCISES 14.3

1. (Practice) Execute Program 14.2.

2. (Practice) Roughly reproduce the sketch in Figure 14.6, and then graphically apply the
regula falsi method for three iterations.

3. (Practice) Using a pocket calculator, apply the regula falsi method for three iterations to
the following functions:
a. f(x) = xe-x2

- cos(x); a = 0, b = 2; exact root = 1.351491185. . .

b. g(x) = x2 - 2x -3; a = 0, b = 4; exact root = 3.0

769Chapter 14
Refinements to the Bisection Method

4. (Practice) Using a pocket calculator, apply the regula falsi method for three iterations to
the following functions:
a. h(x) = ex - (1 + x + x2/2); a = -1, b = 1; exact root = 0.0

b. F(x) = x3 -2x - 5; a = 1, b = 3; exact root = 2.0945514815. . .

c. G(x) = 10 ln(x) - x; a = 1, b = 2; exact root = 1.1183255916. . .

5. (Practice) Roughly reproduce Figure 14.6, and then graphically apply the modified
regula falsi method for three iterations.

14.4 The Secant Method

The secant method is identical to the regula falsi method, except the sign of f(x) doesn’t need
to be checked at each iteration. As in the regula falsi method, the values of x0 and x1 are
required to start the procedure, but then the following algorithm is used to obtain an
improvement for the next value of x:

Step 1: Start with the interval defined by (x0,x1)
Step 2: Compute the next value of x as

x
f x

f x f x
x x2

0

0 1
1 0=

()
() - ()

(-)

Step 3: Replace the pair of values (x0,x1) by the pair (x1,x2)
Step 4: Repeat Steps 2 and 3 until the value of f(x) is within an acceptable limit of zero

The secant method can be shown (see Exercise 2 at the end of this section) to be
equivalent to replacing the function repeatedly by straight lines drawn through the points
[x0, f (x0)] and [x1, f (x1)]—that is, secant lines. Program 14.3 includes the C++ code for a
function using the secant method.

y

x1 x3

Figure 14.6 Function for Exercise 2

770 Numerical Methods

Program 14.3

#include <iostream>

#include <cmath>

using namespace std;

void secant(double, double, double, int); // function prototype

double f(double); // function prototype

int main()

{

int imax; // maximum number of iterations

double a, b; // left and right ends of the original interval

double epsilon; // convergence criterion

// obtain the input data

cout << "Enter the limits of the original search interval, a and b: ";

cin >> a >> b;

cout << "Enter the convergence criteria: ";

cin >> epsilon;

cout << "Enter the maximum number of iterations allowed: ";

cin >> imax;

secant(a, b, epsilon, imax);

return 0;

}

// This function implements the secant method for finding

// a root of a function

void secant(double a, double b, double epsilon, int imax)

{

int i; // current iteration counter

double x0, x1; // left and right x values of current interval

double f0, f1; // function evaluated at these points

double dx0; // delta x0

double dx1; // delta x1

�

771Chapter 14
The Secant Method

// echo back the passed input data

cout << "\nThe original search interval is from " << a << " to " << b

<< "\nThe convergence criterion is: interval < " << epsilon

<< "\nThe maximum number of iterations allowed is " << imax << endl;

// determine the root

x0 = a;

f0 = f(x0);

dx0 = abs(b - a);

// iterations

for (i = 1; i <= imax; i++)

{

x1 = x0 + dx0;

f1 = f(x1);

if (abs(f1) < epsilon) // root is found

{

cout << "\nA root at x = " << x1 + dx1 << " was found "

<< "in " << i << " iterations" << endl;

cout << "The value of the function is " << f1 << endl;

return;

}

else // do next iteration

{

dx1 = (f1/(f0 - f1)) * dx0;

x0 = x1;

dx0 = dx1;

f0 = f1;

}

}

cout << "\nAfter " << imax << " iterations, no root was found "

<< "within the convergence criterion\n"

<< "The search for a root has failed due to excessive iterations\n"

<< "after the maximum number of " << imax << " iterations" << endl;

return;

}

// function to evaluate f(x)

double f(double x)

{

const double PI = 2*asin(1.0); // value of pi

return (exp(-x) - sin(0.5 * PI * x));

}

772 Numerical Methods

A sample run of Program 14.3 produced the following:

Enter the limits of the original search interval, a and b: .4 .5

Enter the convergence criteria: .00001

Enter the maximum number of iterations allowed: 25

The original search interval is from 0.4 to 0.5

The convergence criterion is: interval < 1e-005

The maximum number of iterations allowed is 25

A root at x = 0.443628 was found in 4 iterations

The value of the function is -9.01417e-008

Although the secant method is probably the most popular method for finding the root of
a function, it does pose divergence problems. For this reason, a check should be built into
this method’s C++ code that detects when successive intervals start to become larger rather
than smaller.

EXERCISES 14.4

1. (Practice) Execute Program 14.3.

2. (Practice) Use Program 14.3 to find the root of the function f(x) = x2 - 2x + 0.9, starting
with an initial guess of x0 = 0.6 and x1= 0.9.

3. (Practice) The secant() function in Program 14.3 was used to find a root of the func-
tion f(x) = x2 - 2x + 0.9. Starting with an initial guess of x0 = 0.6, x1 = 0.9, the values of x0
and x1 - x0 were displayed for each iteration as follows:

Step x0 x1 - x0

0 0.600 0.300
1 0.900 -0.180
2 0.720 -0.057
3 0.663 0.022
4 0.685 -0.001

Carefully graph the function for 0.5 � x � 1.0 and use the numbers in the preceding
chart to show how the secant method arrives at a root of the function.

4. (Numerical) Use Program 14.3 to find a root of the function f(x) = x2 - 2x - 3.

773Chapter 14
The Secant Method

14.5 Introduction to Numerical Integration

The integration of a function of a single variable can be thought of as the opposite of
differentiation—that is, the antiderivative—or as the area under a curve. Antiderivatives are
ordinarily discussed in depth in a calculus course. In this section, you concentrate instead on
the less analytic, more visual approach of interpreting a definite integral as an area. The
integral of the function f(x) from x = a to x = b, designated as

I f x dx
a

b

= ∫ ()

will be evaluated by devising schemes for measuring the area under the graph of the function
over this interval (see Figure 14.7). This method of evaluating an integral lends itself so
naturally to numerical computation that the most effective way to understand the process of
integration is to learn the numerical approach first and later have these ideas reinforced by
the more formal concepts of the antiderivative.

Another reason for studying numerical integration at this stage is that it’s a stable process.
It almost always works because numerical integration consists of expressing the area as the
sum of areas of smaller segments, a procedure that’s fairly safe from problems such as division
by zero or a round-off error caused by subtracting numbers of approximately the same
magnitude.

Finally, it’s unfortunately true that many, perhaps most, of the integrals occurring in
actual engineering or science problems can’t be expressed in any closed form.

Formally integrating a function—obtaining a closed expression for the answer—often
takes considerable training and experience. Dozens of “tricks” must be learned and
understood. On the other hand, the procedures of numerical integration are few, and all are
easy to understand and remember. As in many other numerical procedures, you begin by
replacing the function over a limited range by straight-line segments. The interval x = a to
x = b is divided into subintervals or panels of size �x, the function is replaced by line
segments over each subinterval, and the area under the function is then approximated by the
area under the line segments. This procedure is the trapezoidal rule approximation for an
integral and is described in the next section. The next order approximation is replacing the
function by parabolic segments, known as Simpson’s rule, and is explained in Section 14.7.

y

a b

Area = I

y = f(x)

x

Figure 14.7 An integral as an area under a curve

774 Numerical Methods

14.6 The Trapezoidal Rule

An approximation to the area under a complicated curve is obtained by assuming the function
can be replaced by simpler functions over a limited range. A straight line, the simplest
approximation to a function, is the first to be considered and leads to what’s called the
trapezoidal rule.

The area under the curve f(x) from x = a to x = b is approximated by the area beneath
a straight line drawn between the points xa, f (a) and xb, f (b) (see Figure 14.8). The lighter
area is then the approximation to the integral and is the area of a trapezoid, which is

I � (average value of f over interval) (width of interval)

or

I � ½ [f (a) + f(b)] (b - a) = T0 (Equation 14.6)

This is the trapezoidal rule for one panel, identified as T0.

To improve the accuracy of the approximation to the area under a curve, the interval is
next divided in half, and the function is approximated by straight-line segments over each
half. The area in this example is approximated by the area of two trapezoids, as illustrated
in Figure 14.9.

I T f a f x f f b xL≈ = () +()

 + ()()

1 1 1∆1

2
1

2 ∆ L+

or

T
x

f a f f bL
1 12

2= () + + ()
∆

(Equation 14.7)

where

∆

∆

x
b a

f f x a x

L

L

=
()

= = +()

-

2

1

y

a b

∆x0

f(b)

f(a)

x

Figure 14.8 Approximating the area under a curve by a single trapezoid

775Chapter 14
The Trapezoidal Rule

Notice that when adding the areas of the trapezoids, the sides at f(a) and f(b) are sides
of only the first and last trapezoid, but the side at f1 is a side of two trapezoids and, therefore,
“counts twice,” explaining the factor of 2 in Equation 14.7. Furthermore, the two-panel
approximation, T1, can be related to the one-panel results, T0, as shown:

T
T

x f1
0

1 12
= + ∆ (Equation 14.8)

To increase the accuracy, the interval is simply subdivided into a large number of panels.
The result for n panels is clearly

I T x f a f bn
i

n

≈ = () + ()

=

-

∑1
1

1

2∆1
2 +fi (Equation 14.9)

where �xn = (b - a)/n, and fi is the function evaluated at each of the interior points:

f f x a i xi n= = +()∆

The reason for the extra factor of 2 in Equation 14.9 is the same as in the two-panel
example. Equation 14.9 is known as the trapezoidal rule.

Computational Form of the Trapezoidal Rule Equation
Equation 14.9 was derived assuming that the widths of all panels are the same and equal to
�xn. However, equal panel widths aren’t required in the derivation, and the equation can be
generalized easily to a partition of the interval into unequal panels of width �xi, i = 1, . . .,
n - 1. However, for reasons to be explained a bit later, you’ll restrict the panel widths to be
equal and the number of panels to be a power of 2, as shown:

n = 2k

The number of panels is n, the order of the calculation is called k, and the corresponding
trapezoidal rule approximation is labeled as Tk. Therefore, T0 is the result for n = 20 = 1 panel.
The situation for k = 2 or 22 = 4 panels is illustrated in Figure 14.10. In this figure, the width
of a panel is �x2 = (b - a)/22, and the value of the k = 2 trapezoidal rule approximation is the
following:

T x f a f a x f a x f a2 2 2 22 2 2 2= () () + +() + +() +∆ ∆ ∆ +() + () 3 2∆x f b

y

a b

∆x1

f (b)

f (a)

x

f1

y = f(x)

½(a + b)

Figure 14.9 Two-panel approximation to the area

776 Numerical Methods

However, because 2�x2 = �x1, you can see that

f a x f a x+() = +()2 2 1∆

and f(a + �x1) was already determined in the previous calculation of T1 (Equation 14.8). The
point is that by successively doubling the number of panels in each stage, the only new
information required to proceed to the next order trapezoidal rule approximation is the
evaluation of the function at the midpoints of the current intervals.

To exploit this fact further, Equations 14.7 and 14.8 can be used to rewrite Equation 14.10
in this form:

T x f a f a x f b x f a x f a2 1 1 2 24 2= () () + +() + () + +() +∆ ∆ ∆ ∆ ++()

= + +() + +()

3

2 3

2

1 2 2 2

∆

∆ ∆ ∆

x

T x f a x f a x (Equation 14.10)

This equation can be generalized to yield

T T x f a xk k k
i

n

= +()
=

∑1
2 1

1

1

-

-

∆
odd only

∆ ki+
(Equation 14.11)

where

∆x
b a

k k= -
2

The procedure for using Equation 14.11 to approximate an integral by the trapezoidal
rule is then:

1. Compute T0 by using Equation 14.6.
2. Repeatedly apply Equation 14.11 for k = 1, 2, . . . until sufficient accuracy is

obtained.

Example of a Trapezoidal Rule Calculation
To illustrate this section’s concepts, the following integral is used:

I x dx= ()∫ 1
1

2

y

a b

∆ x2

x

fa

f1 f2
f3

f6

x1 x2 x3

Figure 14.10 Four-panel trapezoidal approximation, T2

777Chapter 14
The Trapezoidal Rule

The function f(x) = 1/x can, of course, be integrated analytically to give ln(x), and because
ln(1) = 0, the value of the integral is ln(2) = 0.69314718. The trapezoidal rule approximation
to the integral with a = 1 and b = 2 begins with Equation 14.6 to obtain T0:

T0

1
2

1
1

1
2

2 1 0 75= +

 () =- .

Repeated use of Equation 14.11 then yields the following:

k = 1 ∆x

T T f

1

1 0 2 0 75 2 1 1 5

=

= +()

 = ().

.= 0 708333

1
2

1
2

1
2

1
21 .++

k = 2 ∆x

T T

2

2 1 2 1 25 1.75

=

= +().

.= 0 6970238

1
4

1
4 1+ 1

k = 3 ∆x

T T

3

3 2 2 1 25 1 375 1 1 625 1 1 875

=

= + +().

.= 0 69412185

1
8

1
8 .. .+1+ 1

Continuing the calculation through k = 5 yields the following:

k Tk

0 0.75
1 0.70833
2 0.69702
3 0.69412
4 0.69339
5 0.693208
. .
. .
. .
Exact 0.693147. . .

The convergence of the computed values of the trapezoidal rule isn’t particularly fast, but
the method is quite simple.

EXERCISES 14.6

1. (Practice) Evaluate the following integrals by using the trapezoidal rule:
a. Evaluate T0 for one panel by using Equation 14.6.

778 Numerical Methods

b. Compute T1 by using the value of T0 and Equation 14.11.

c. Continue the calculation through T4.
Collect your results in the form of a table. (Be careful: Errors in one step carry over into
the next.)

i. x dx2

0

8

∫ (Exact result = 170.667)

ii. x dx4

0

8

∫ (Exact result = 6553.6)

2. (Practice) Evaluate the following integrals by using the trapezoidal rule:
a. Evaluate T0 for one panel by using Equation 14.6.

b. Compute T1 using the value of T0 and Equation 14.11.

c. Continue the calculation through T4.
Collect your results in the form of a table. (Be careful: Errors in one step carry over into
the next.)

i. xe dxx-

0

1

∫ (Exact result = 1-2/e = .2642411175. . .)

ii. x x dx(sin)
/

0

2π

∫ (Exact result = 1.0)

3. (Practice) Evaluate the following integrals by using the trapezoidal rule:
a. Evaluate T0 for one panel by using Equation 14.6.

b. Compute T1 using the value of T0 and Equation 14.11.

c. Continue the calculation through T4.
Collect your results in the form of a table. (Be careful: Errors in one step carry over into
the next.)

i. () /1 2 3 2

0

1

+∫ x dx (Exact result = 1.567951962. . .)

ii. e dxx- 2

0

1

∫ (Exact result = 0.74682404. . .)

14.7 Simpson’s Rule

The trapezoidal rule is based on approximating the function by straight-line segments. To
improve the method’s accuracy and convergence rate, an obvious approach is approximating the
function by parabolic segments in place of straight lines. This approach results in an approxi-
mation for the integral known as Simpson’s rule; a simple example is shown in Figure 14.11.
Specifying a parabola uniquely requires three points, so the lowest-order Simpson’s rule has two
panels.

779Chapter 14
Simpson’s Rule

To proceed, you need to know the area under a parabola drawn through three points.
Note that the corresponding step in the derivation of the trapezoidal rule was simple: The
area under a line through two points is simply �x[f(a) + f(b)])/2.

If the curve f(x) drawn in Figure 14.11 is approximated by a parabola drawn through the
three points—f(a), f(b), and the value of f(x) at the midpoint of the interval fmid—it can be
shown with calculus that the area under this parabola, denoted as S1, is

S x f a f a x b1 1 14= () + () + () ∆1
3 f+ ∆

where

∆ x
b a

1 2
= -

This is the first-order Simpson’s rule approximation, where k = 1 and n = 21 panels. The
next level of approximation is to halve the interval width and partition the interval into four
panels, as shown in Figure 14.12. The area under the function f(x) is then approximated as
the area under the two parabolas shown in the figure. Again, using calculus, it can be shown
that the area under the two parabolas is

S x f a f x f x f x f x f b2 2 1 24 4= () + () + () + () + () + (∆)) { }
= () + () + () + () + (12 34 2∆x f a x x x b)){ }

1
3

1
3

32

ff 2ff (Equation 14.12)

where

∆x
b a

2 22
= -

and

f f x a i xi = = +()∆ 2

y

a b

∆ x1

xx1

y = f(x)
parabola

Figure 14.11 Area under a parabola drawn through three points

780 Numerical Methods

This procedure can be extended to 8, 16, 32, and so on panels. The result is a rather
simple generalization of Equation 14.12, and for n = 2k panels is the following:

S x f a f a i x f a i x f bk k k k
i

n

= () + () + () + ()
=

1
3 4

2

∆ ∆
- 2

1

1

∑∑
=

i

n -

odd only even only

+2∆+
(Equation 14.13)

Equation 14.13, known as Simpson’s rule, is a popular method of evaluating integrals of
functions that are smooth, and rightly so. As you see later in this chapter, Simpson’s rule
converges nicely in most instances and is easy to use. Also, Equation 14.13 can be adapted
easily to handle an odd number of unevenly spaced points and is the most common method
for estimating the integral of experimentally obtained data.

Example of Simpson’s Rule as an Approximation to an Integral
Again, consider this integral:

I x dx= ()∫ 1
1

2

Using Equation 14.13 first for k = 1 yields the following:
k = 1

n = =2 21

x =
2

1
21 2∆ b -

1
3)[1 + 4(1/1.5) + (1

2S =1] = 0.69444441
2

=a

Repeating for k = 2 yields the following results:

x =

k = 2

n = =2 42

2∆ 1
4

S =2
1

3)[1 + 4(1/1.25 + 1/1.75) + 2(1/1.5) + (1
4] = 0.693253971

2

y

a b

∆ x1

xx2

y = f(x)

parabola 1

parabola 2

x1 x3

Figure 14.12 The second-order Simpson’s rule approximation is the area under two parabolas

781Chapter 14
Simpson’s Rule

Continuing the calculation, you get the values listed in Table 14.2. For comparison, results
are also included for the same integral obtained in Section 14.6 when using the trapezoidal rule.
Clearly, Simpson’s rule converges much faster that the trapezoidal rule, at least for this example.

Table 14.2 Trapezoidal and Simpson’s Rule Results for the Integral (/)1
1

2

x dx∫

Order
k

Number of Panels
n

Tk Sk

0 1 0.75 –
1 2 0.7083 0.6944
2 4 0.69702 0.69325
3 8 0.69412 0.69315
4 16 0.69339 0.6931466
5 32 0.693208 0.6931473
6 64 0.693162 0.6931472

EXERCISES 14.7

1. (Practice) Using Equation 14.13, calculate the two-panel and four-panel Simpson’s rule
results, S1 and S2 , for the following integrals:

a. x dx2

0

8

∫ (Exact result = 170.667)

b. x dx4

0

8

∫ (Exact result = 6553.6)

2. (Practice) Using Equation 14.13, calculate the two-panel and four-panel Simpson’s rule
results, S1 and S2 , for the following integrals:

a. xe dxx-

0

1

∫ (Exact result = 1-2/e = .2642411175...)

b. x x dx(sin)
/

0

2π

∫ (Exact result = 1.0)

3. (Practice) Using Equation 14.13, calculate the two-panel and four-panel Simpson’s rule
results, S1 and S2 , for the following integrals:

a. () /1 2 3 2

0

1

+∫ x dx (Exact result = 1.567951962. . .)

b. e dxx- 2

0

1

∫ (Exact result = 0.74682404. . .)

4. (Practice) Using Equation 14.13, calculate S1 through S4 for the integrals listed in
Exercise 1.

782 Numerical Methods

14.8 Common Programming Errors

In using the modified bisection root-finding method, two problems can occur. The first
problem is round-off error, which can occur when the values of f(x1) and f(x3) used in the
computation are nearly equal. The second problem occurs because a prediction of the exact
number of iterations required to achieve a specific accuracy isn’t available. To counter these
two problems successfully, the code used in these two methods must detect their occurrence
to prevent excessive and possibly infinite iterations.

In numerical integration, excessive computation times can also be a problem. This
problem typically occurs when the number of iterations exceeds 50. Often you can reduce
runtime quite a bit by inspecting each program loop to ensure that only calculations that must
be computed iteratively are included in the loop, and moving all other calculations to be
computed before or after the loop is completed.

14.9 Chapter Summary

All the root-solving methods described in this chapter are of an iterative nature and can be
categorized in two classes of root-finding algorithms, depending on whether you’re starting
with an interval containing a root or an initial estimate of the root. The bisection-based
procedures begin with an interval that’s known to contain a root and are guaranteed to
converge to within a prescribed tolerance bracketing the root. Of the bisection methods, the
modified regula falsi is the fastest converging and is recommended.

In algorithms based on the bisection method, the initial interval is refined by evaluating
the function repeatedly at points within the interval, and then by monitoring the sign of the
function and determining in which subinterval the root lies. If the left and right ends of the
current interval are x1 and x3, respectively, the standard bisection method uses the function
evaluated at the midpoint, x2 = ½(x1 + x3). The sign of the function at x2 is compared with
that at either end of the interval to determine which half of the interval contains the root.
The full interval is then replaced by this half, and the process is repeated. After n iterations,
the root is contained in an interval of size (x3 - x1)/2n.

In the regula falsi method, the conditions are the same as for the bisection method.
Instead of using the interval’s midpoint, however, a straight line connecting the points at the
ends of the interval is used to interpolate the position of the root. The intersection of this line
with the x-axis determines the value of x2 used in the next step. This value of x2 is given by
the equation

x x x x
f x

f x f x2 1 3 1
1

3 1

= () ()
() ()- -

-

in place of the equation for the midpoint. Convergence is faster than with the bisection
method. However, the interval will likely converge to the root from one side only.

The modified regula falsi method is the same as the regula falsi method, except for the
following change: In each iteration, when the full interval is replaced by the subinterval
containing the root, a relaxation factor is used to modify the function’s value at the fixed end
of the subinterval. A relaxation factor of approximately 0.9 is suggested. This added feature
causes the interval to converge from both ends, and convergence is then based on interval
size. This method is the preferred procedure for finding a root of a function that isn’t too
expensive to evaluate and is known to have a root in a specified interval.

783Chapter 14
Chapter Summary

The secant method replaces the function by a secant line through two points and then
finds the point of intersection of the line with the x-axis. The algorithm requires two input
numbers, x0 and �x0, corresponding to initial guesses for the root and for an interval
containing the root. This pair of values is then replaced by the pair (x1, �x1), where

x x x1 0 0= + ∆

and

∆ ∆x
f x

f x f x
x1

1

0 1
0=

()
() ()-

and the process is continued until the new interval �x is sufficiently small.
Root-solving methods are amenable to C++ coding. However, the success of a program

in finding the root of a function usually depends on the quality of information supplied by
the user. That is, how accurate is the initial guess or search interval, and how well does the
method chosen match the circumstances of the problem? Execution-time problems are
usually traceable to errors in coding the function or to inadequate user-supplied diagnostics
for potential problems.

The integral of f(x) from x = a to x = b, written as

I f x dx
a

b

= ()∫
is evaluated numerically by computing the area under the curve f(x) over the specified range
of x. The procedures for estimating this area consist of partitioning the interval a � x � b into
n panels of width �xi (i = 1,n) and approximating the function f(x) over each panel by a
simpler function.

The trapezoidal rule results from replacing the function f(x) by straight-line segments
over the panels �xi. The approximate value for the integral is then given by the following
formula, which is known as the trapezoidal rule:

f x dx x f a f b
a

b

n
i

n

() ≈ () + + ()

∫ ∑2

1

1

∆
-

-
1

2 if

If the panels are of equal size and the number of panels is n = 2k, where k is a positive
integer, the trapezoidal rule approximation is then labeled as Tk and satisfies the equation

T T x f a xk k k
i

n

k= +()
=

∑1
1

1

-

-

∆ ∆1
2

odd only

+ i

where

∆x
b a

k k= -
2

In the next level of approximation, the function f(x) is replaced by n/2 parabolic segments
over pairs of equal-size panels, �x = (b - a)/n, and results in the formula for the area known
as Simpson’s rule:

f x dx x f a a x x
a

b

k
i

n

k
i

n

() ≈ () + +() +∫ ∑
= =

4
1

1

2

∆ ∆
- 22

∑ +() + ()

bk∆

odd only even only

1
3

-

2f i a if f

784 Numerical Methods

Programming Projects for Chapter 14

1. (Numerical) Write a C++ program to find the maximum of a function f(x) over an interval
a � x � b by starting at x = a with a step size of �x. Evaluate f1 = f(x) and f2 = f(x + �x).
If f1 < f2 , replace x with x + �x and continue; otherwise, reduce the step size by half and
repeat the comparison. The program should terminate successfully when � < 10-6.

2. (Numerical) a. Use Program 14.2 to find the root of the following function to an
accuracy of 10-5:

f(x) = x3 - 2x - 5 (a = 1, b = 3; exact root = 2.0945514815)

b. Change the relaxation factor from 0.9 to 0.75 and rerun the program. Comment on the
difference between the two calculations.

3. (Numerical) Use Program 14.3 to find a root of the function f(x) = ex - (1 + x + x2/2)
(a = -1, b = 1; exact root = 0.0).

4. (Numerical) Given a number, n, and an approximation for its square root, a closer
approximation to the actual square root can be obtained by using this formula:

new approximation
n previous approximation prev

=
() +/ iious approximation

2

Using this information, write a C++ program that prompts the user for a number and an
initial guess at its square root. Using this input data, your program should calculate an
approximation to the square root that’s accurate to 0.00001 (Hint: Stop the loop when the
difference between the two approximations is less than 0.00001.)

5. (Numerical) The Newton-Raphson method can be used to find the roots of any
equation y(x) = 0. In this method, the (i + 1)st approximation, xi+1, to a root of y(x) = 0
is given in terms of the ith approximation, xi , by this formula:

x x
y x
y xi i

i

i
+ = −

′1

()
()

For example, if y(x) = 3x2 + 2x - 2, then y'(x) = 6x + 2, and the roots are found by making
a reasonable guess for a first approximation, x1, and iterating by using this equation:

xi+1 = xi - (3xi
2 + 2xi - 2) / (6xi + 2)

a. Using the Newton-Raphson method, write a program to find the two roots of the
equation 3x2 + 2x - 2 = 0. (Hint: There’s one positive root and one negative root.)

b. Extend the program written for Exercise 5a so that it finds the roots of any function
y(x) = 0, when the function for y(x) and the derivative of y(x) are placed in the code.

785Chapter 14
Programming Projects

This page intentionally left blank

Chapter 15
Bit Operations

15.1 The AND Operator

15.2 The Inclusive OR Operator

15.3 The Exclusive OR Operator

15.4 The Complement Operator

15.5 Different-Size Data Items

15.6 The Shift Operators

15.7 Chapter Summary

C++ operates with data entities stored as one or more bytes, such as character, integer, and
double-precision constants and variables. In addition, C++ provides for the manipulation of bits of
character and integer values and variables. The operators used to perform bit manipulations are called
bit operators and are listed in Table 15.1.

All the operators listed in Table 15.1, except ~, are binary operators, requiring two operands. Each
operand is treated as a binary number consisting of a series of 1s and 0s. The bits in each operand are
then compared on a bit-by-bit basis, and the result is determined based on the selected operation.

Table 15.1 Bit Operators

Operator Description
& Bit-by-bit AND
| Bit-by-bit inclusive OR
^ Bit-by-bit exclusive OR
~ Bit-by-bit ones complement
<< Left shift
>> Right shift

15.1 The AND Operator

The AND operator, &, causes a bit-by-bit AND comparison between its two operands. The
result of each bit-by-bit comparison is a 1 only when both bits being compared are 1s; otherwise, the
result of the AND operation is a 0. For example, the following two 8-bit numbers are to be
ANDed:

1 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1
— — — — — — — —

To perform an AND operation, each bit in one operand is compared to the bit occupying
the same position in the other operand. This sample AND operation illustrates the
correspondence between bits for these two operands:

1 0 1 1 0 0 1 1
& 1 1 0 1 0 1 0 1

— — — — — — — —
1 0 0 1 0 0 0 1

As shown, when both bits being compared are 1s, the result is a 1; otherwise, the result
is a 0. The result of each comparison is, of course, independent of any other bit comparison.

Program 15.1 shows the use of an AND operation. In this program, the variable op1 is
initialized to the octal value 325, which is the octal equivalent of the binary number 1 1 0 1
0 1 0 1, and the variable op2 is initialized to the octal value 263, which is the octal
representation of the binary number 1 0 1 1 0 0 1 1. They are the same two binary numbers
used in the preceding example.

Program 15.1 produces the following output:

325 ANDed with 263 is 221

Program 15.1

#include <iostream>

using namespace std;

int main()

{

int op1 = 0325, op2 = 0263;

int op3 = op1 & op2;

cout << oct << op1 << " ANDed with "<< op2 << " is " << op3 << endl;

return 0;

}

788 Bit Operations

The result of ANDing the octal numbers 325 and 263 is the octal number 221. The
binary equivalent of 221 is the binary number 1 0 0 1 0 0 0 1, which is the result of the AND
operation shown previously.

AND operations are useful for masking, or eliminating, selected bits from an operand
because ANDing any bit (1 or 0) with a 0 forces the resulting bit to be a 0, and ANDing any
bit (1 or 0) with a 1 leaves the original bit unchanged. For example, the variable op1 has the
bit pattern x x x x x x x x, where each x can be 1 or 0, independent of any other x in the
number. The result of ANDing this binary number with the binary number 0 0 0 0 1 1 1 1
is as follows:

op1 = x x x x x x x x
op2 = 0 0 0 0 1 1 1 1

— — — — — — — -
Result = 0 0 0 0 x x x x

As you can see in this example, the 0s in op2 mask the bits in op1, and the 1s in op2
filter, or pass, the bits in op1 through with no change in their values. In this example, the
variable op2 is called a mask. By choosing the mask appropriately, any bit in an operand can
be selected, or filtered, out of an operand for inspection. For example, ANDing the variable
op1 with the mask 0 0 0 0 0 1 0 0 forces all bits of the result to be 0, except the third bit.
The third bit of the result is a copy of the third bit of op1. Therefore, if the result of the
AND is 0, the third bit of op1 must have been 0, and if the result of the AND is a non-zero
number, the third bit must have been 1.

Program 15.2 uses this masking property to convert lowercase letters into their uppercase
form, assuming the letters are stored with the ASCII code. The algorithm for converting
letters is based on binary codes for lowercase and uppercase letters in ASCII being the same
except for bit five, which is a 1 for lowercase letters and a 0 for uppercase letters.1

For example, the binary code for the letter a is 01100001 (hex 61), and the binary code for
the letter A is 01000001 (hex 41). Similarly, the binary code for the letter z is 01111010 (hex 7A),
and the binary code for the letter Z is 01011010 (hex 5A). (See Appendix B for the hexadecimal
values of uppercase and lowercase letters.) Therefore, a lowercase letter can be converted into its
uppercase form by forcing the fifth bit to 0. Program 15.2 does this by masking the letter’s code
with the binary value 11011111, which has the hexadecimal value DF.

A sample run of Program 15.2 follows:

Enter a string of both uppercase and lowercase letters:

abcdefgHIJKLMNOPqrstuvwxyz

The string of letters just entered is:

abcdefgHIJKLMNOPqrstuvwxyz

This string, in uppercase letters, is:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

1This algorithm assumes the conventional numbering scheme, starting with bit 0 as the rightmost bit, is used. Using this convention, the
rightmost bit (bit 0) is referred to as the last significant bit (LSB), and the leftmost bit is referred to as the most significant bit (MSB). In this
example, the MSB is bit 7.

789Chapter 15
The AND Operator

In reviewing Program 15.2, first notice that the input string has been stored and passed
to upper() as a C-string, which is an array of characters. Doing so permits the function to
receive and operate on the original character values instead of receiving a copy of these
values. Second, notice that the lowercase letters are converted to uppercase form, and
uppercase letters are unaltered. This result happens because bit five of all uppercase letters
is 0, so forcing this bit to 0 with the mask has no effect. Only when bit five is a 1, as for
lowercase letters, is the input character altered.

15.2 The Inclusive OR Operator

The inclusive OR operator, |, performs a bit-by-bit comparison of its two operands in a
similar fashion as the bit-by-bit AND. The result of the OR comparison, however, is
determined by the following rule: The result of the comparison is 1 if either bit being compared is
a 1; otherwise, the result is a 0.

Program 15.2

#include <iostream>

using namespace std;

const int TOUPPER = 0xDF;

void upper(char *); // function prototype

int main()

{

char word[81]; // enough storage for a complete line

cout << "Enter a string of both uppercase and lowercase letters:\n";

cin.getline(word,80,'\n');

cout << "\nThe string of letters just entered is:\n"

<< word << endl;

upper(word);

cout << "\nThis string, in uppercase letters, is:\n"

<< word << endl;

return 0;

}

void upper(char *word)

{

while (*word != '\0')

*word++ &= TOUPPER;

}

790 Bit Operations

You can see this rule in the following sample OR operation. As with all bit operations, the
result of each comparison is, of course, independent of any other comparison.

1 0 1 1 0 0 1 1
| 1 1 0 1 0 1 0 1

— — — — — — — —
1 1 1 1 0 1 1 1

Program 15.3 shows the use of an OR operation, using the octal values of the operands
shown in the preceding example.

Program 15.3 produces the following output:

325 ORed with 263 is 367

The result of ORing the octal numbers 325 and 263 is the octal number 367. The binary
equivalent of 367 is 1 1 1 1 0 1 1 1, which is the result of the OR operation shown previously.

Inclusive OR operations are useful for forcing selected bits to take on a 1 value or for
passing through other bit values unchanged. The reason is that ORing any bit (1 or 0) with
a 1 forces the resulting bit to be a 1, and ORing any bit (1 or 0) with a 0 leaves the original
bit unchanged. For example, the variable op1 has the bit pattern x x x x x x x x; each x can

Program 15.3

#include <iostream>

using namespace std;

int main()

{

int op1 = 0325, op2 = 0263;

int op3 = op1 | op2;

cout << oct << op1 << " ORed with " << op2 << " is " << op3 << endl;

return 0;

}

791Chapter 15
The Inclusive OR Operator

be 1 or 0, independent of any other x in the number. The result of ORing this binary number
with the binary number 1 1 1 1 0 0 0 0 is as follows:

op1 = x x x x x x x x
op2 = 1 1 1 1 0 0 0 0

— — — — — — — -
Result = 1 1 1 1 x x x x

As you can see in this example, the 1s in op2 force the resulting bits to 1, and the 0s in
op2 filter, or pass, the bits in op1 through with no change in their values. By using an OR
operation, a masking operation similar to an AND operation can be produced, except the
masking bits are set to 1s rather than 0s. Another way of looking at it is to say that ORing
with a 0 has the same effect as ANDing with a 1.

Program 15.4 uses this masking property to convert uppercase letters in a word into their
lowercase form, assuming the letters are stored with the ASCII code. The algorithm for
converting letters is similar to the one in Program 15.2 and converts uppercase letters into their
lowercase form by forcing the fifth bit in each letter to 1. Program 15.4 does this by masking the
letter’s code with the binary value 00100000, which has the hexadecimal value 20.

Program 15.4

#include <iostream>

using namespace std;

const int TOLOWER = 0x20;

void lower (char *); // function prototype

int main()

{

char word[81]; // enough storage for a complete line

cout << "Enter a string of both uppercase and lowercase letters:\n";

cin.getline(word,80,'\n');

cout << "\nThe string of letters just entered is:\n"

<< word << endl;

lower(word);

cout << "\nThis string, in lowercase letters, is:\n"

<< word << endl;

return 0;

}

void lower(char *word)

{

while (*word != '\0')

*word++ |= TOLOWER;

}

792 Bit Operations

A sample run of Program 15.4 follows:

Enter a string of both uppercase and lowercase letters:

abcdefgHIJKLMNOPqrstuvwxyz

The string of letters just entered is:

abcdefgHIJKLMNOPqrstuvwxyz

This string, in lowercase letters, is:

abcdefghijklmnopqrstuvwxyz

In reviewing Program 15.4, first notice that the input string has been stored and passed
to lower() as a C-string, which is an array of characters. This permits the called function
to receive and process the original character values instead of a copy of the values. Second,
notice that uppercase letters are converted to lowercase form, and lowercase letters are
unaltered. This result happens because bit five of all lowercase letters is 1, so forcing this bit
to 1 with the mask has no effect. Only when bit five is 0, as for uppercase letters, is the input
character altered.

15.3 The Exclusive OR Operator

The exclusive OR operator, ^, performs a bit-by-bit comparison of its two operands. The
result of the comparison is determined by the following rule: The result of the comparison is 1
if one, and only one, of the bits being compared is a 1; otherwise, the result is 0.

As shown in the following example of an exclusive OR operation, when both bits being
compared are the same value (both 1 or both 0), the result is 0. Only when both bits have
different values (one bit a 1 and the other a 0) is the result 1. Again, each pair or bit
comparison is independent of any other bit comparison.

1 0 1 1 0 0 1 1
^ 1 1 0 1 0 1 0 1

— — — — — — — —
0 1 1 0 0 1 1 0

An exclusive OR operation can be used to create the opposite value, or complement, of
any bit in a variable. The reason is that exclusive ORing any bit (1 or 0) with 1 forces the
resulting bit to be the opposite value of its original state, and exclusive ORing any bit (1 or
0) with 0 leaves the original bit unchanged. For example, the variable op1 has the bit pattern
x x x x x x x x; each x can be 1 or 0, independent of any other x in the number. Using the
notation that x is the complement (opposite) value of x, the result of exclusive ORing this
binary number with the binary number 0 1 0 1 0 1 0 1 is as follows:

op1 = x x x x x x x x
op2 = 0 1 0 1 0 1 0 1

— — — — — — — -
_ _ _ _

Result = x x x x x x x x

As you can see in this example, the 1s in op2 force the resulting bits to be the
complement of their original bit values, and the 0s in op2 filter, or pass, the bits in op1
through with no change in their values.

793Chapter 15
The Exclusive OR Operator

Many encryption methods use the exclusive OR operation to code data by exclusive
ORing each character in the string with a mask value. The choice of the mask value, which
is referred to as the encryption key, is arbitrary, and any key value can be used. Program 15.5
uses an encryption key of 52 to code a user-entered message.

Following is a sample run of Program 15.5:

Enter a sentence:

Good morning

The sentence just entered is:

Good morning

The encrypted version of this sentence is:

s[[P¶Y[FZ]ZS

Program 15.5

#include <iostream>

using namespace std;

void encrypt(char *); // function prototype

int main()

{

char message[81]; // enough storage for a complete line

cout << "\nEnter a sentence:\n";

cin.getline(message,80,'\n');

cout << "\nThe sentence just entered is:\n"

<< message << endl;

encrypt(message);

cout << "\nThe encrypted version of this sentence is:\n"

<< message << endl;

return 0;

}

void encrypt(char *message)

{

while (*message != '\0')

*message++ ^= 52;

}

794 Bit Operations

Decoding an encrypted message requires exclusive ORing the coded message with the
original encryption key, which is left for you to try as an exercise (see Programming Projects
for Chapter 15, Exercise 12, at the end of this chapter).

15.4 The Complement Operator

The complement operator, ~, is a unary operator that changes each 1 bit in its operand to 0
and each 0 bit to 1. For example, if the variable op1 contains the binary number 11001010,
~op1 replaces this binary number with the number 00110101. The complement operator is
used to force any bit in an operand to 0, independent of the actual number of bits used to
store the number. For example, the statement

op1 = op1 & ~07; // 07 is an octal number

or its shorter form

op1 &= ~07; // 07 is an octal number

sets the last three bits of op1 to 0, regardless of how op1 is stored in the computer. Either
statement can, of course, be replaced by ANDing the last three bits of op1 with 0s, if the
number of bits used to store op1 is known. In a computer that uses 16 bits to store integers,
the AND operation is

op1 = op1 & 0177770; // in octal

or

op1 = op1 & 0xFFF8; // in hexadecimal

For a computer that uses 32 bits to store integers, the preceding AND also sets the
leftmost or higher order 16 bits to 0, which is an unintended result. The following is the
correct statement for 32 bits:

op1 = op1 & 027777777770; // in octal

or

op1 = op1 & 0xFFFFFFF8; // in hexadecimal

Using the complement operator in this situation frees the programmer from having to
determine the operand’s storage size and, more important, makes the program portable
between machines by using different integer storage sizes.

15.5 Different-Size Data Items

When the bit operators &, |, and ^ are used with operands of different sizes, the shorter
operand is always increased in bit size to match the larger operand’s size. Figure 15.1
illustrates extending a 16-bit unsigned integer into a 32-bit number. As the figure shows, the
additional bits are added to the left of the original number and filled with 0s. This is the
equivalent of adding leading 0s to the number, which has no effect on the number’s value.

795Chapter 15
Different-Size Data Items

When extending signed numbers, the original leftmost bit is reproduced in the extra bits
added to the number. As illustrated in Figure 15.2, if the original leftmost bit is 0, corresponding
to a positive number, 0 is placed in each of the additional bit positions. If the leftmost bit is 1,
which corresponds to a negative number, 1 is placed in the additional bit positions. In either case,
the resulting binary number has the same sign and magnitude of the original number.

15.6 The Shift Operators

The left shift operator, <<, causes the bits in an operand to be shifted to the left by a given
amount. For example, the statement

op1 = op1 << 4;

causes the bits in op1 to be shifted four bits to the left, filling any vacated bits with a 0.
Figure 15.3 illustrates the effect of shifting the binary number 1111100010101011 to the left
by four bit positions.

XXXXXXXXXXXXXXXX

The original 16 bits

0000000000000000

16 0s

32 bits

XXXXXXXXXXXXXXXX

16 bits

X can be
1 or 0

Figure 15.1 Extending 16-bit unsigned data to 32 bits

0XXXXXXXXXXXXXXX

The original 16 bits

0000000000000000

16 0s

0XXXXXXXXXXXXXXX

16 bits

X can be
1 or 0A sign bit of 0

1XXXXXXXXXXXXXXX

The original 16 bits

1111111111111111

16 1s

1XXXXXXXXXXXXXXX

16 bits

A sign bit of 1

Figure 15.2 Extending 16-bit signed data to 32 bits

796 Bit Operations

For unsigned integers, each left shift corresponds to multiplication by two. This is also
true for signed numbers using twos complement representation, as long as the leftmost bit
doesn’t switch values. Because a change in the leftmost bit of a twos complement number
represents a change in both the sign and magnitude represented by the bit, this shift doesn’t
represent a simple multiplication by two.

The right shift operator, >>, causes the bits in an operand to be shifted to the right by
a given amount. For example, the statement

op2 = op1 >> 3;

causes the bits in op1 to be shifted to the right by three bit positions. Figure 15.4a illustrates
the right shift of the unsigned binary number 1111100010101011 by three bit positions. As
shown, the three rightmost bits are shifted “off the end” and are lost.

1 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0

1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1

Vacated bit positions
are filled with 0s

Each bit is shifted to the
left by the designated

Number of places

Figure 15.3 An example of a left shift

0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1

1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 1

Vacated bit positions
are filled with 0s

Each bit is shifted to the
right by the designated

number of places

Figure 15.4a An unsigned arithmetic right shift

797Chapter 15
The Shift Operators

For unsigned numbers, the leftmost bit isn’t used as a sign bit. For this type of number, the
vacated leftmost bits are always filled with 0s, as shown in Figure 15.4a. For signed numbers,
what’s filled in the vacated bits depends on the computer. Most computers reproduce the
number’s original sign bit. Figure 15.4b illustrates the right shift of a negative binary number
byfour bit positions, and the sign bit is reproduced in the vacated bits. Figure 15.4c illustrates the
equivalent right shift of a positive signed binary number.

1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0

1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1

The sign bit is a 1

Vacated bit positions
are filled with 1s

Each bit is shifted to the
right by the designated

number of places

Figure 15.4b The right shift of a negative binary number

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1

The sign bit is a 0

Vacated bit positions
are filled with 0s

Each bit is shifted to the
right by the designated

number of places

Figure 15.4c The right shift of a positive binary number

798 Bit Operations

The type of fill shown in Figures 15.4b and 15.4c, where the sign bit is reproduced in
vacated bit positions, is called an arithmetic right shift. In an arithmetic right shift, each single
shift to the right corresponds to a division by two.

Instead of reproducing the sign bit in right-shifted signed numbers, some computers fill
the vacated bits with 0s automatically. This type of shift is called a logical shift. For positive
signed numbers, in which the leftmost bit is 0, both arithmetic and logical right shifts
produce the same result. The results of these two shifts are different only when negative
numbers are involved.

15.7 Chapter Summary
1. Bits of character and integer variables and constants can be manipulated by using C++’s

bit operators: AND, inclusive OR, exclusive OR, ones complement, left shift, and right
shift operators.

2. The AND and inclusive OR operators are useful in creating masks that can be used to
pass or eliminate bits from the selected operand. The exclusive OR operator is useful in
complementing an operand’s bits.

3. When the AND and OR operators are used with operands of different sizes, the shorter
operand is always increased in bit size to match the size of the larger operand.

4. The shift operators produce different results, depending on whether the operand is a
signed or an unsigned value.

Programming Projects for Chapter 15

1. (Practice) Determine the results of the following operations:
a. 11001010

& 10100101
––––----

b. 11001010
| 10100101

–––––---

c. 11001010
^ 10100101

––––––--

2. (Practice) Write the octal representations of the binary numbers given in Exercise 1.

3. (Practice) Determine the octal results of the following operations, assuming unsigned
numbers:

a. The octal number 0157 shifted left by one bit position

b. The octal number 0701 shifted left by two bit positions

c. The octal number 0673 shifted right by two bit positions

d. The octal number 067 shifted right by three bit positions

4. (Practice) Repeat Exercise 3, assuming the numbers are treated as signed values.

799Chapter 15
Programming Projects

5. (Practice) a. The arbitrary bit pattern xxxxxxxx, where each x can represent 1 or 0, is
stored in the integer variable flag. Determine the octal value of a mask that can be
ANDed with the bit pattern to reproduce the third and fourth bits of flag and set all
other bits to 0. The rightmost bit in flag is considered bit 0.

b. Determine the octal value of a mask that can be inclusively ORed with the bit pattern
in flag to reproduce the third and fourth bits of flag and set all other bits to 1.
Again, the rightmost bit in flag is considered bit 0.

c. Determine the octal value of a mask that can be used to complement the values of the
third and fourth bits of flag and leave all other bits unchanged. Determine the bit
operation that should be used with the mask value to produce this result.

6. (Practice) a. Write the twos complement form of the decimal number -1, using 8 bits.
(Hint: Refer to Section 1.5 for a review of twos complement numbers.)

b. Repeat Exercise 6a, using 16 bits to represent the decimal number -1, and compare
your answer to your previous answer. Could the 16-bit version have been obtained by
sign-extending the 8-bit version?

7. (Desk Check) As noted in the chapter, Program 15.2 has no effect on uppercase letters.
Using the ASCII codes listed in Appendix B, determine what other characters are
unaffected by Program 15.2.

8. (Modify) Modify Program 15.2 so that a complete sentence can be read in and converted
to lowercase values. (Hint: When a space is masked in Program 15.2, the resulting
character is \0, which terminates the output.)

9. (Modify) Modify Program 15.4 to allow a complete sentence to be input and converted
to uppercase letters. Make sure your program doesn’t alter any other characters or
symbols that are entered.

10. (Modify) Modify Program 15.5 to permit the encryption key to be a user-entered input
value.

11. (Modify) Modify Program 15.5 to have its output written to a file named coded.dat.

12. (Program) Write a C++ program that reads the encrypted sentence produced by the
program written for Exercise 10, decodes the sentence, and displays the decoded values.

13. (Program) Write a C++ program that displays the first 8 bits of each character value
entered in a variable named ch. (Hint: Assuming each character is stored with 8 bits, start
by using the hexadecimal mask 80, which corresponds to the binary number 10000000.
If the result of the masking operation is a 0, display a 0; otherwise, display a 1. Then shift
the mask one place to the right to examine the next bit, and so on until all bits in the
variable ch have been processed.)

14. (Program) Write a C++ program that reverses the bits in an integer variable named
okay and stores the reversed bits in the variable named revokay. For example, if the
bit pattern 11100101, corresponding to the octal number 0345, is assigned to okay, the
bit pattern 10100111, corresponding to the octal number 0247, should be produced and
stored in revokay.

800 Bit Operations

Appendix A
Operator Precedence
Table

Table A.1 lists the symbols, precedence, descriptions, and associativity of C++’s operators.
Operators toward the top of the table have a higher precedence than those toward the
bottom. Operators in each section of the table have the same precedence and associativity.

Table A.1 Summary of C++ Operators

Operator Description Associativity
()
[]
–>

.

Function call
Array element
Structure member pointer
reference
Structure member reference

Left to right

Table A.1 Summary of C++ Operators (continued)

Operator Description Associativity
++
--
–
!
~
(type)
sizeof
&
*

Increment
Decrement
Unary minus
Logical negation
One’s complement
Type conversion (cast)
Storage size
Address of
Indirection

Right to left

*
/
%

Multiplication
Division
Modulus (remainder)

Left to right

+
–

Addition
Subtraction

Left to right

<<
>>

Left shift
Right shift

Left to right

<
<=
>
>=

Less than
Less than or equal to
Greater than
Greater than or equal to

Left to right

==
!=

Equal to
Not equal to

Left to right

& Bitwise AND Left to right
^ Bitwise exclusive OR Left to right
| Bitwise inclusive OR Left to right
&& Logical AND Left to right
|| Logical OR Left to right
?: Conditional expression Right to left
=
+= -= *=
/= %= &=
^= |=
<<= >>=

Assignment
Assignment
Assignment
Assignment
Assignment

Right to left

, Comma Left to right

802 Operator Precedence Table

Appendix B
ASCII Character
Codes

Key(s) Dec Oct Hex Key(s) Dec Oct Hex Key(s) Dec Oct Hex
Ctrl 1 0 0 0 Ctrl K 11 13 B Ctrl V 22 26 16
Ctrl A 1 1 1 Ctrl L 12 14 C Ctrl W 23 27 17
Ctrl B 2 2 2 Ctrl M 13 15 D

(Ret)
Ctrl X 24 30 18

Ctrl C 3 3 3 Ctrl N 14 16 E Ctrl Y 25 31 19
Ctrl D 4 4 4 Ctrl O 15 17 F Ctrl Z 26 32 1A
Ctrl E 5 5 5 Ctrl P 16 20 10 Esc 27 33 1B
Ctrl F 6 6 6 Ctrl Q 17 21 11 Ctrl < 28 34 1C
Ctrl G 7 7 7 Ctrl R 18 22 12 Ctrl / 29 35 1D
Ctrl H 8 10 8 Ctrl S 19 23 13 Ctrl = 30 36 1E
Ctrl I 9 11 9 Ctrl T 20 24 14 Ctrl - 31 37 1F
Ctrl J 10 12 A
(line
feed)

Ctrl U 21 25 15 Space 32 40 20

Key(s) Dec Oct Hex Key(s) Dec Oct Hex Key(s) Dec Oct Hex
! 33 41 21 A 65 101 41 a 97 141 61
" 34 42 22 B 66 102 42 b 98 142 62
35 43 23 C 67 103 43 c 99 143 63
$ 36 44 24 D 68 104 44 d 100 144 64
% 37 45 25 E 69 105 45 e 101 145 65
& 38 46 26 F 70 106 46 f 102 146 66
' 39 47 27 G 71 107 47 g 103 147 67
(40 50 28 H 72 110 48 h 104 150 68
) 41 51 29 I 73 111 49 i 105 151 69
* 42 52 2A J 74 112 4A j 106 152 6A
+ 43 53 2B K 75 113 4B k 107 153 6B
, 44 54 2C L 76 114 4C l 108 154 6C
- 45 55 2D M 77 115 4D m 109 155 6D
. 46 56 2E N 78 116 4E n 110 156 6E
/ 47 57 2F O 79 117 4F o 111 157 6F
0 48 60 30 P 80 120 50 p 112 160 70
1 49 61 31 Q 81 121 51 q 113 161 71
2 50 62 32 R 82 122 52 r 114 162 72
3 51 63 33 S 83 123 53 s 115 163 73
4 52 64 34 T 84 124 54 t 116 164 74
5 53 65 35 U 85 125 55 u 117 165 75
6 54 66 36 V 86 126 56 v 118 166 76
7 55 67 37 W 87 127 57 w 119 167 77
8 56 70 38 X 88 130 58 x 120 170 78
9 57 71 39 Y 89 131 59 y 121 171 79
: 58 72 3A Z 90 132 5A z 122 172 7A
; 59 73 3B [91 133 5B { 123 173 7B
< 60 74 3C \ 92 134 5C | 124 174 7C
= 61 75 3D] 93 135 5D } 125 175 7D
> 62 76 3E ^ 94 136 5E ~ 126 176 7E
? 63 77 3F - 95 137 5F del 127 177 7F
@ 64 100 40 ' 96 140 60

804 ASCII Character Codes

Appendix C
Floating-Point
Number Storage

The twos complement binary code used to store integer values was introduced in Section 1.5.
This appendix covers the binary storage format typically used in C++ to store single-precision
and double-precision numbers, which are stored as floats and doubles, respectively. Collec-
tively, single- and double-precision values are commonly referred to as floating-point values.

Like their decimal number counterparts that use a decimal point to separate the integer
and fractional parts of a number, floating-point numbers are represented in a conventional
binary format with a binary point. For example, in the binary number 1011.11, the digits to
the left of the binary point (1011) represent the integer part and the digits to the right of the
binary point (11) represent the fractional part.

To store a floating-point binary number, a code similar to decimal scientific notation is
used. To obtain this code, the conventional binary number format is separated into a mantissa
and an exponent. The following examples show floating-point numbers expressed in this
scientific notation:

Conventional Binary Notation Binary Scientific Notation
1010.0 1.01 exp 011

-10001.0 -1.0001 exp 100

Conventional Binary Notation Binary Scientific Notation
0.001101 1.101 exp -011

-0.000101 -1.01 exp -100

In binary scientific notation, the term “exp” stands for exponent. The binary number in
front of the exp term is the mantissa, and the binary number following the exp term is the
exponent value. Except for the number 0, the mantissa always has a single leading 1 followed
by a binary point. The exponent represents a power of 2 and indicates the number of places
the binary point should be moved in the mantissa to obtain the conventional binary notation.
If the exponent is positive, the binary point is moved to the right. If the exponent is negative,
the binary point is moved to the left.

For example, the exponent 011 in the number

1.01 exp 011

means move the binary point three places to the right so that the number becomes 1010. The
-011 exponent in the number

1.101 exp -011

means move the binary point three places to the left so that the number becomes the
following:

.001101

In storing floating-point numbers, the sign, mantissa, and exponent are stored in separate
fields. The number of bits used for each field determines the number’s precision. The
Institute of Electrical and Electronics Engineers (IEEE) Standard 754-1985 defines single-
precision (32-bit), double-precision (64-bit), and extended-precision (80-bit) floating-point
data formats to have the characteristics in Table C.1. Figure C.1 illustrates the format for a
single-precision floating-point number.

Table C.1 IEEE Standard 754-1985 Floating-Point Specification

Data Format Sign Bits Mantissa Bits Exponent Bits
Single-precision 1 23 8
Double-precision 1 52 11
Extended-precision 1 64 15

The sign bit shown in Figure C.1 refers to the mantissa’s sign. A sign bit of 1 represents
a negative number, and a 0 sign bit represents a positive value. Because all mantissas, except
the number 0, have a leading 1 followed by their binary points, these two items are never
stored explicitly. The binary point resides immediately to the left of mantissa bit 22, and a
leading 1 is always assumed. The binary number 0 is specified by setting all mantissa and
exponent bits to 0. For this number only, the implied leading mantissa bit is also 0.

Sign Exponent Mantissa
30 23 22 0Bit 31

Figure C.1 Single-precision floating-point number storage format

806 Floating-Point Number Storage

The exponent field contains an exponent that’s biased by 127. For example, an exponent
of 5 is stored by using the binary equivalent of the number 132 (127 + 5). Using eight
exponent bits, it’s coded as 100000100. The addition of 127 to each exponent allows coding
negative exponents in the exponent field without needing an explicit sign bit. For example,
the exponent -011, which corresponds to -3, is stored by using the binary equivalent of +124
(127 - 3).

Figure C.2 illustrates encoding and storing the decimal number 59.75 as a 64-bit
single-precision binary number. The sign, exponent, and mantissa are determined as follows.
The conventional binary equivalent of

-59.75

is

-111011.11

Expressed in binary scientific notation, it becomes

-1.1101111 exp 101

The minus sign is signified by setting the sign bit to 1. The mantissa’s leading 1 and
binary point are omitted, and the 23-bit mantissa field is encoded as follows:

11011110000000000000000

The exponent field encoding is obtained by adding the exponent value of 101 to
1111111, which is the binary equivalent of the 12710 bias value:

1 1 1 1 1 1 1 = 12710
+ 1 0 1 = 510

1 0 0 0 0 1 0 0 = 13210

1 10000100 11011110000000000000000

Figure C.2 Encoding and storing the decimal number 59.75

807Appendix C

This page intentionally left blank

Appendix D
Command-Line
Arguments

Arguments can be passed to any function in a program, including the main() function. This
appendix describes the procedures for passing arguments to main() when a program is
initially invoked and having main() correctly receive and store the arguments passed to it.
Both the sending and receiving sides of the transaction must be considered. Fortunately, the
interface for transmitting arguments to a main() function has been standardized in C++, so
sending and receiving arguments can be done almost mechanically.

All the programs run so far can be invoked by typing the name of the program’s
executable version in a DOS window after the operating system prompt. The command line
for these programs consists of a single word: the name of the program. For computers using
UNIX, the prompt is usually the $ symbol and the program’s executable name is a.out. For
these systems, the simple command line

$a.out

begins program execution of the last compiled source program currently residing in a.out.
If you’re using a Windows-based C++ compiler, the equivalent operating system prompt

is typically C:\>, and the executable program’s name is usually the same as the source
program but with an .exe extension rather than a .cpp extension. For this type of system,

the command line for running an executable program named PGMD-1.exe is C:\>PGMD-1.
As illustrated in Figure D.1, this command line causes the executable version of the PGMD-1
program to begin execution with its main() function, but no additional arguments are
passed to main().

Now assume you want to pass three separate string arguments—three blind
mice—to PGMD-1’s main() function. Sending arguments to a main() function is easy; you
simply include the arguments on the command line used to begin program execution.
Because the arguments are typed on the command line, they’re called command-line
arguments. To pass the arguments three blind mice to the main() function of the
PGMD-1 program, add them after the program name, as shown:

C:\>PGMD-1 three blind mice

When the operating system encounters this command line, it stores the strings after the
prompt as a sequence of four strings. (Some systems also store the prompt as part of the first
string.) Figure D.2 illustrates the storage of these strings, assuming each character uses 1 byte
of storage. As shown, each string terminates with the standard C++ null character, \0.

Sending command-line arguments to main() is always this simple. Type the arguments
on the command line, and the operating system stores them as a sequence of separate strings.
Next, you see how to handle the receiving side of the transaction and let main() know that
arguments are being passed to it.

Arguments passed to main(), like all function arguments, must be declared as part of
the function’s definition. To standardize passing arguments to a main() function, only two
items are allowed: a number and an array. The number is an integer variable, typically named
argc (short for argument counter), and the array is a one-dimensional list, which is, by
convention, named argv (short for argument values). Figure D.3 illustrates these two
arguments.

The integer passed to main() is the total number of items on the command line. In this
example, the value of argc passed to main() is 4, which includes the name of the program
plus the three command-line arguments. The one-dimensional array passed to main() is a
list of pointers containing the starting storage address of each string typed on the command
line, as illustrated in Figure D.4.

int main()
{

}

Executable version

of PGMD-1

Invokes the program
starting at main(), but
no additional arguments

are passed

C:\>PGMD-1.exe

Figure D.1 Invoking the PGMD-1.exe program

P G M D - 1 \0 t h r e e \0 b l i n d \0 m i c e \0

Figure D.2 The command-line arguments stored in memory

810 Command-Line Arguments

You can now write the complete function definition for main() to receive arguments by
declaring their names and data types. For main()’s two arguments, the names used by
convention are argv and argc.1 Because argc stores an integer value, its declaration is
int argc. Because argv is the name of an array whose elements are addresses pointing to
where the actual command-line arguments are stored, its proper declaration is char *argv[].
This statement is nothing more than the declaration of an array of pointers. It’s read as “argv
is an array whose elements are pointers to characters.” Putting all this together, the full function
header for a main() function that receives command-line arguments is as follows:

int main(int argc, char *argv[])

No matter how many arguments are typed on the command line, main() needs only the
two standard pieces of information provided by argc and argv: the number of items on the
command line and the list of starting addresses indicating where each argument is actually
stored.

Program D.1 verifies this description by displaying the data actually passed to main().
The variable argv[i] used in Program D.1 contains an address that’s displayed by the first
cout statement in the for loop. For ease of reading the output, this address is cast into an
integer value. The string notation *argv[i] in the second cout statement refers to “the
character pointed to” by the address in argv[i].

1These names aren’t required, and any valid C++ identifier can be used in their place.

argc

argv
Table

of
addresses

Integer

Figure D.3 An integer and an array are passed to main()

\0 t h r e e \0 b l i n d \0 m i c e \0

Address
of P

P G M D - 1

The command line previously stored by the operating system

The argv
array contains

addresses

Address
of t

Address
of b

Address
of m

Figure D.4 Addresses are stored in the argv array

811Appendix D

Program D.1

#include <iostream>

using namespace std;

int main(int argc, char *argv[])

{

int i;

cout << "\nThe number of items on the command line is "

<< argc << endl << endl;

for(i = 0; i < argc; i++)

{

cout << "The address stored in argv[" << i <<"] is "

<< int(argv[i]) << endl; // display address as an integer number

cout << "The character pointed to is " << *argv[i] << endl;

}

return 0;

}

Assuming the executable version of Program D.1 is named PGMD-1.exe, a sample
output for the command line C:\>PGMD-1 three blind mice is the following:

The number of items on the command line is 4

The address stored in argv[0] is 3280388

The character pointed to is P

The address stored in argv[1] is 3280395

The character pointed to is t

The address stored in argv[2] is 3280401

The character pointed to is b

The address stored in argv[3] is 3280407

The character pointed to is m

The addresses Program D.1 displays clearly depend on the machine used to run the
program. Figure D.5 illustrates storage of the command line as displayed by the sample
output. As anticipated, the addresses in the argv array “point” to the starting characters of
each string typed on the command line.

After command-line arguments are passed to a C++ program, they can be used like any other
C-strings. Program D.2 causes its command-line arguments to be displayed from main().

812 Command-Line Arguments

Program D.2

// A program that displays its command-line arguments

#include <iostream>

using namespace std;

int main(int argc, char *argv[])

{

int i;

cout << "\nThe following arguments were passed to main(): ";

for (i = 0; i < argc; i++)

cout << argv[i] << " ";

cout << endl;

return 0;

}

Assuming the executable version of Program D.2 is named PGMD-2.exe, the output for
the command line C:\>PGMD-2 three blind mice is the following:

The following arguments were passed to main(): PGMD-2 three blind mice

\0 t h r e e \0 b l i n d \0 m i c e \0

32
80

38
8

32
80

39
5

32
80

40
1

32
80

40
7

Contents
=3280407

Contents
=3280401

Contents
=3280395

Contents
=3280388

argv[0]

argv[1]

argv[2]

argv[3]

P G M D - 2

Memory
addresses

Figure D.5 The command line stored in memory

813Appendix D

Notice that when addresses in argv[] are inserted in the cout stream in Program D.2,
the C-strings these addresses point to are displayed. As mentioned previously, this display
occurs because cout dereferences these addresses automatically and performs the required
indirection to locate the actual string that’s displayed.

One final comment about command-line arguments: Any argument typed on a command
line is considered a C-string. If you want numerical data passed to main(), it’s up to you to
convert the passed string into its numerical counterpart. This is seldom an issue, however,
because most command-line arguments are used as flags to pass processing control signals to an
invoked program.

814 Command-Line Arguments

Index

Special Characters
\ (backslash), 50, 61–62, 385
< (left angle bracket), 179,

616, 787, 796–799, 802
> (right angle bracket), 142,

143, 179, 616, 787,
796–799, 801, 802

~ (tilde), 616, 787, 795, 802
() (parentheses), 72–73, 182,

616, 801
{} (braces), 191, 261
! (exclamation point), 179,

616, 617, 802
� (double quotation mark), 62
(pound sign), 48
% (percent sign), 71, 72,

616, 802
& (ampersand), 616, 787,

788–790, 802
’ (single quotation mark), 61
� (asterisk), 56, 72, 616,

667–668, 802
+ (plus sign), 59, 72, 616, 802

– (minus sign), 59, 72, 616,
801, 802

/ (forward slash), 617, 802
/ (slash), 55, 56, 72
= (equal sign), 104, 179, 616,

617, 802
? (question mark), 61, 802
[] (square brackets), 616, 801
^ (caret), 616, 787,

793–795, 802
| (bar symbol), 121, 616, 787,

790–793, 802
, (comma), 617, 802
: (colon), 802

A
abs() function, 132, 133
abstract data types (ADTs),

555–556. See also class(es)
access specifications, class

inheritance, 647–649
accessor functions, 574
accumulation statements, 111
acid rain case study, 158–161

addition operator (+), 72,
617, 802

address(es), 36, 666–673
declaring pointers, 668–670
references, 671–673
storing, 667
using, 667–668
variables, displaying, 85–87

address parameters,
functions, 324

addressing, indirect, 668
administrative

engineering, 291
ADTs (abstract data types),

555–556. See also class(es)
aerodynamics, 41
aeronautical/aerospace engi-

neering, 41
aggregate data types, 378
aggregations, 589
alert character (\a), 61
algorithms, 22–26

coding, 26

internal array element
location, 401–402

problem-solver, 334
STLs, 412–414

aliases, 671
ALU (arithmetic logic

unit), 33, 34
American Standard Code for

Information Interchange
(ASCII) codes, 60–62,
803–804

ampersand (&)
address of operator, 802
bit-by-bit AND operator,

617, 787, 788–790, 802
logical AND operator,

617, 802
angle brackets (<>)

extraction operator,
142, 143

shift operators, 617, 787,
796–799, 802

append mode, 450
application software, 30
arguments, 46

arrays as, 394–402
command-line, 809–814
default, 305
file streams as, 468–471
functions, 296
operator functions, 623
passed by value, 313–314
passing pointers, 721–724
structures as, 718–726

arithmetic, pointers, 686–690
arithmetic logic unit

(ALU), 33, 34
arithmetic operations, 68–74

expression types, 70–71
integer division, 71
negation, 71–72
operator precedence and

associativity, 72–74,
182, 802

arithmetic operators, 68–69
associativity, 73–74,

182, 802

binary, 68–69, 72–73
precedence, 72–74,

182, 802
unary, 71–72, 617, 802

array(s), 373–434
as arguments, 394–402
big O notation, 425
common programming

errors, 432–433
dynamic array allocation,

682–685
elements (components). See

array elements
initialization, 384–386
input and output of values,

378–382
larger dimensional, 392
names. See array names
one-dimensional (single-

dimensional), 374–382
passing, 695–699
passing to functions,

394–402
search algorithms, 418–425
sort algorithms, 426–432
Standard Template Library,

410–417
statistical analysis case

study, 404–408
of structures, 714–717
two-dimensional, 388–392
when to use, 414

array element operator
([]), 616
precedence and

associativity, 801
array elements, 375–377

index (subscript) value,
376–377

initialization, 384–386
input and output of array

values, 378–382
internal array element loca-

tion algorithm, 401–402
storage, 375–376

array names, 374
as pointers, 677–685

ASCII (American Standard
Code for Information
Interchange) codes, 60–62,
803–804

assemblers, 28–29
assembly languages, 28–29
assignment

initialization
contrasted, 602

memberwise, 599
objects, 597–606
string class, 513, 514

assignment expressions,
106–107, 110

assignment operators,
106–107, 110, 599–600

assignment statements, 77,
103–114
accumulating, 110–111
assignment expressions,

106–107
assignment operators,

106–107, 110
coercion, 107–108
counting, 111–114
variations, 108–110

associations, classes, 588
associativity, operators,

801–802
arithmetic operators,

73–74, 182, 802
logical operators, 182, 802
relational operators,

182, 802
asterisk (�)

block comments, 56
indirection (dereferencing)

operator, 617, 667–668,
673, 802

multiplication operator,
617, 802

at(int index) function,
string class, 511

atomic data types, 79
atomic data values, 79
attributes

modeling objects, 583

816 Index

type, 585, 587
visibility, 587

automatically dereferenced
references, 671

automotive engineering, 438
auxiliary storage, 33
Avogadro’s number, 150

B
backing up, importance, 20
backslash (\), 61

escape character, 50, 61–62
backspace character (\b), 61
bad() method, 444
bar symbol (|)

bit-by-bit inclusive OR
operator, 617, 787,
790–793, 802

display field delimiter, 121
logical OR operator,

617, 802
base class, 645
base/member initialization

lists, 605–606
BASIC, 32
basic analysis in software

development process, 16
behaviors

defined by classes, 564
modeling objects, 583–584

big O notation, 425
billions of instructions per sec-

ond (BIPS), 34
binary based files, 441
binary code

single- and double-precision
number storage, 805–807

twos complement represen-
tation, 35–36

binary operators, 68–69
precedence, 72–74, 802

binary searches, 421–425
number of while loop

passes for linear and
binary searches com-
pared, 425

biochemical engineering,
370, 371

BIPS (billions of instructions
per second), 34

bisection methods, root
finding, 755–769

bit(s), 35
bit operations, 787–799
bit operators

bit-by-bit AND operator
(&), 617, 787,
788–790, 802

bit-by-bit exclusive OR
operator (^), 617, 787,
793–795, 802

bit-by-bit inclusive OR
operator (|), 617, 787,
790–793, 802

bit-by-bit ones complement
operator (~), 787, 795

different-size data items,
795–796

block comments, 56
block scope, 190–191
Boltzmann’s constant, 150
bool data type, 62, 65
bool empty function, string

class, 511
boolalpha manipulator, 118
Boolean data type, 195–196
bootstrap loader, 30
bounds checks, 379
braces (), placement in com-

pound statements, 191, 261
break statement, 253–254
bubble sort, 430–432
bugs, 18, 166

debuggers, 166
debugging, 166
testing for, 18–19

built-in data types, 58, 555
data type conversions,

626–630
bytes, 35

words, 36

C
C style of initialization, 570
C++ development, 31–32
C++ style of initialization, 570

called functions, 295
calling functions (action),

294–295
calling functions (functions),

296–297
caret (^), bit-by-bit exclusive

OR operator, 617, 787,
793–795, 802

carriage return character
(\r), 61

case studies
acid rain, 158–161
constructing a room object,

576–580
elevator simulation,

637–644
pollen count file update,

472–477
radar speed traps, 90–91
random numbers and simu-

lations, 635–644
rectangular to polar conver-

sion, 333–342
statistical analysis, 404–408

case-sensitivity, 46
cast operators, 135
catch clauses, 491
catch keyword, 491, 492–500
catching an exception, 491
central processing unit

(CPU), 34
ceramics, materials

science, 549
char data type, 60–61,

65, 510
integer values, 527

char[] itoa ()
function, 534

character(s), input/output,
526–531

character codes, 35
character manipulation func-

tions, 522–532
character-based files. See

text files
chemical engineering, 370
chemical processing, 370

817Index

child class, 645
cin input stream, phantom

newline character, 509–511
cin object, string class,

507–511
cin statement, program out-

put using, 139–144
cin.get () function, 527
cin.ignore () function, 528
cin.peak () function, 527
cin.putback () function, 527
civil engineering, 230
class(es), 45, 553–580

abstract data types,
555–556

aggregations, 589
base (parent,

superclass), 645
behaviors defined by, 564
common programming

errors, 592
constructing a room object

case study, 576–580
construction, 556–563
constructors. See const

ructor(s)
data type conversions,

626–633
definition, 564
derived (child,

subclass), 645
destructors, 574
instances, 564. See also

object(s)
personal libraries, 541–545
polymorphism, 645,

653–657
static members, 607–611
terminology, 563–564
user-declared, objects. See

object(s)
class data type, 58
class diagrams, 585–588

operations, 587–588
relationships, 587–588
UML, 585–590

class hierarchies, 646

class inheritance, 589–590,
645–652
access specifications,

647–649
multiple, 646
simple, 646

class libraries, 637
class members, 556

static, 607–611
class methods. See methods
class scope, 607, 608
closing files, 442, 451
COBOL, 31–32
code

block scope, 190–191
�clever code,� 541
source, 29

coding
algorithms, 26
invocation, 18
iteration, 18
selection, 18
sequence, 18
in software development

process, 17–18
coercion, 107–108
collections, STLs, 410
colon (:), conditional expres-

sion operator, 802
comma (,), 617, 802
command-line arguments,

809–814
comments, 55–56

block, 56
line, 55–56

common programming errors,
37, 94–95, 167, 658
arrays, 432–433
classes, 592
files, 483
functions, 362–363
loops, 285–286
numerical methods, 783
pointers, 702–703
repetition statements,

285–286
with selection statements,

222–223

strings, 546
structures, 744–745

communications, electrical
engineering, 175

compiled languages, 29
compilers, 29
compile-time errors, 164, 165
components, arrays. See array

elements
compound statements

placement of braces,
191, 261

computations, pointers,
686–690

computer(s), electrical engi-
neering, 175

computer programs. See also
program entries; software
definition, 14

concatenation, string class,
513, 514

condition(s), 179
conditional expression opera-

tor (?:), 802
conduction, 101
constant(s), 58–59. See also

symbolic constants
constant expressions, 153
constructing a room object

case study, 576–580
construction, classes, 556–563
constructor(s), 559–562,

567–574
calling, 570
copy, 602–605
default, 569
inline, 570, 573–574
overloaded, 570–573
type conversion, 626

constructor methods, string
class, 505–507

containers, STLs, 410
continue statement, 253–254
control unit, 33
convection, 101
conversion

data types. See data type
conversions

818 Index

between SI and English
Engineering units, 6–8

conversion operator functions,
628–630

copy constructors, 602–605
corrosion, materials

science, 549
cos () function, 132
counting statements, 111–114
cout object, 48–51

formatting output stream
data, 125

string class, 507–511
cout.put () function, 527
CPU (central processing

unit), 34
crashing, 532
cryogenic engineering, 370
c_str () function, string

class, 511
C-string conversion

functions, 534
C-strings as filenames, 448

D
data fields, 707
data files, pollen count file

update case study, 472–477
data hiding, 558, 564
data members, 556
data structures, 556, 707–745

arrays of, 714–717
common programming

errors, 744–745
definition, 707
dynamic allocation,

735–741
as function arguments,

718–726
heterogeneous, 712
homogeneous, 712
linked lists, 727–734
members, 708
passing pointers, 721–724
populating, 708–709
returning, 724–726
single, 708–712
unions, 742–743

data type(s), 58–66
abstract, 555–556. See also

class(es)
aggregate, 378
atomic, 79
Boolean, 195–196
built-in, 58, 555
char, 510
class, 58
definition, 555
determining storage

size, 62–64
floating-point, 65–66
integer, 59–62
signed and unsigned, 64–65
string, 510
unions, 742–743

data type conversions,
625–633
built-in to built-in, 626
built-in to class, 626–628
class to built-in, 628–630
class to class, 630–633

debuggers, 166
debugging, 166
dec manipulator, 124
decimal notation, 10
decimal numbers, program

output, 124–126
declaration section,

classes, 556
declaration statements, 78–81

multiple, 81–83
placement, 151–154

declaring pointers, 668–670
decrement operator (--),

617, 802
default arguments, 305
default constructors, 569
defensive programming, 213
defining functions, 297–302
definition statements, 83–85
delete operator, 617

data structure
allocation, 735

memory allocation, 683
density, 242

dereferencing operator (�),
617, 667–668, 673

derived class, 645
design

mechanical processing, 438
software development pro-

cess, 15–19
desk checking, 164
destructors, 574
device drivers, 480
dex manipulator, 118
discriminants, 214
displaying variable

addresses, 85–87
division, integers, 71
division operator (/), 72,

617, 802
do while loops, 281–283

validity checks, 283
documentation, in software

development process, 19
double atof ()

function, 534
double data type, 65
double quotation mark (�), 62
double-precision numbers, 65

numerical accuracy, 183
driver functions, 46
dynamic allocation

data structures, 735–741
memory, 683

dynamic array allocation,
682–685

dynamic binding, 655

E
echo printing, 166
electrical engineering, 175
electrochemical

engineering, 370
elements, arrays. See array

elements
elevator simulation, 637–644
embedded filenames, 447–451
empty parameter lists,

303–304
encapsulation, 580

819Index

encryption key, 794
endl manipulator, 71, 118
engineering and scientific

disciplines
aeronautical/aerospace engi-

neering, 41
chemical engineering, 370
chemical processing, 370
civil engineering, 230
electrical engineering, 175
environmental science and

technology, 488
industrial engineering, 291
materials science, 549
mechanical processing, 438
metallurgical

engineering, 549
molecular systems, 371
thermal science, 101

engineering units, 6–8
English Engineering units, 6–8
entrance-controlled loops,

232, 233
environmental science and

technology, 488
eof () method, 444
equal sign (=), assignment

statements, 104
equal to operator (==),

179, 617
erase() function, string

class, 512
errors

causing exceptions, 490
common, 37
programming. See common

programming errors; pro-
gramming errors

testing for, 18–19
typographical, 165

escape character (\), 50, 61–62
exception(s), 490

catching (handling), 491
throwing, 490, 491

exception handlers, 490, 491

exception handling, 489,
490–503
file checking, 496–503
terminology, 490–491

exchange sort, 430–432
exclamation point (!), logical

negation operator, 617, 802
exit-controlled loops, 232, 233
exp() function, 133
exponential notation, 10–11
expressions, 70–71

floating-point, 70–71
integer, 70
mixed-mode, 71

extended analysis, 16
external name, files, 440
external sorts, 426
extraction operator (>>),

142, 143

F
fail() method, 443–444
fatigue-fracture of engineering

materials, materials
science, 549

field width manipulators,
118–127

file(s), 440–441
append mode, 450
binary based, 441
checking for successful con-

nection between file
and, 453

closing, 442, 451
common programming

errors, 483
data, pollen count file

update case study,
472–477

external name, 440
identifying name and loca-

tion, 459
opening. See opening files
output mode, 443
read (input) mode, 444
text (character-based). See

text files

file access
definition, 465
random, 465–468

file organization, 465
file position marker

methods, 465
file streams. See I/O file

streams
filenames

C-strings, 448
embedded and interactive,

447–451
identifying, 459

findMax () function, 696–699
first-level structure

diagrams, 16
five-dimensional arrays, 392
fixed manipulator, 118
fixed-count loops, 233
flags, 123
float data type, 65
floating-point data

types, 65–66
floating-point

expressions, 70–71
floating-point number(s), 65
floating-point number storage,

805–807
flowcharts, 24–26

symbols, 25
fluid dynamics, 242
fluid mechanics, 242–243
fluid statics, 242
flush manipulator, 118
food engineering, 370
for loops, 256–264

interactive input, 268
opening brace

placement, 261
selection, 269–270
sequencing through arrays,

377–378
while loops vs., 263

form feed character (\f), 61
formal parameters, 298
format flags, 123
format manipulators, 121–122

820 Index

formatting
in-memory, 482–483
numbers. See formatting

numbers for
program output

text file output stream
data, 456

formatting numbers for pro-
gram output, 117–127
field width manipulators,

118–121
formulas, 24
FORTRAN, 31, 32
forward declarations

functions, 631
forward slash (/)

block comments, 56
division operator, 72,

617, 802
line comments, 55

four-dimensional arrays, 392
frequency, waves, 155–156
friend(s), operator functions

as, 623–624
friend functions, 612–615
friends lists, 612–615
fstream objects, 450–451
function(s), 44, 293–365, 556.

See also methods; specific
function and method names
accessor, 574
address parameters, 324
arguments. See arguments
called, 295
calling (action), 294–295
calling (functions), 296–297
character manipulation,

522–532
common programming

errors, 362–363
constructor. See

constructor(s)
conversion operator,

628–630
c-string conversion, 534

default arguments, 305
defining, 297–302
destructor, 574
empty parameter lists,

303–304
forward declarations, 631
friend, 612–615
inline, 319–320
names. See function names
notation, 529
operator. See operator(s)
overloading, 131–132,

305–306
passing arrays to, 394–402,

695–699
personal libraries, 541–545
placement of

statements, 302
postconditions, 300
preconditions, 300
prototypes, 295–296, 299
rectangular to polar conver-

sion case study, 333–342
returning multiple

variables. See functions
returning multiple
variables

returning single variables.
See functions returning
single variables

string class, 505–507
stubs, 302–303
templates, 306–311
virtual, 655

function binding, 655
function body, 297
function call (()), 616

precedence and
associativity, 801

function headers, 46, 297
function names, 45–46

reusing. See overloading
functions

function overloading, 131–132,
305–306

function prototypes,
295–296, 299

functions returning multiple
variables, 324–332
pass by reference, 324
pass by values, 324
passing and using reference

parameters, 324–332
functions returning single vari-

ables, 313–320
inline, 319–320
passed by values, 313–314

G
get() method, 457, 462

phantom newline character,
528–531

getline () method, 457
notation, 529
phantom newline character,

509–511, 528–531
string class, 507–511

global scope, 346
global variables, 346

misuse, 351
storage categories, 358–361

good() method, 444
greater than operator (>),

179, 617
greater than or equal to

operator (>=), 179, 617
guidance, aeronautical/

aerospace engineering, 41

H
handling an exception, 491
hardware, 33–34. See also

specific devices
device files, 461–463

header files, 48
heat transfer, 101
heating, ventilation, air

conditioning, and
refrigeration, 438

821Index

heterogenous data
structures, 712

hex manipulator, 118, 124
hexadecimal number(s), pro-

gram output, 124–126
hexadecimal number

character (\xhhhh), 62
high-level languages, 29
homogenous data

structures, 712
horizontal tab character (\t), 61
hybrid languages, 554

I
ICs (integrated circuits), 34
identifiers, 45
identities of objects, 605
if statements, nested, 199–205
if-else chain, 201–205
if-else statement, 178,

184–196
block scope, 190–191
compound, 187–189
one-way selection, 191–193
problems associated with,

193–194, 196
ignore() method, 457
implementation, 564
implementation section,

classes, 556
implicitly dereferenced

references, 671
#include command, 48
increment operator (++),

617, 802
indentation, program

statements, 54
index value, 504

array elements, 376–377
indexed variables, 376
indirect addressing, 668
indirection operator (�), 617,

667–668, 802
industrial engineering, 291
infinite loops, 237
information systems, industrial

engineering, 291

inheritance, 589–590,
645–652
multiple, 646
simple, 646

initialization
arrays, 384–386
assignment contrasted, 602
C style, 570
C++ style, 570
pointers, 689–690
runtime, 357
variables, 82

inline constructors, 570,
573–574

inline functions, 319–320
in-memory formatting,

482–483
inner loops, 276
input data validation, 213,

533–539
input file streams, 441
input mode, 444
input/output (I/O), 16

array values, 378–382
characters, 526–531
file streams. See I/O

file streams
string class, 507–511

input/output (I/O) units, 33
ins size() function, string

class, 511
instance variables, 556
instances of classes, 564. See

also object(s)
instantiating an object, 505
instrumentation, aeronautical/

aerospace engineering, 41
int atoi () function, 534
int compare() function,

string class, 511
int data type, 59–60, 65
int find() function, string

class, 512
int find_first_not_of ()

function, string class, 512
int find_first_of () func-

tion, string class, 512

int isalnum () function, 522
int isalpha () function, 522
int isascii () function, 522
int isctrl () function, 522
int isdigit () function, 522
int isgraph () function, 522
int islower () function, 522
int isprint () function, 522
int ispunct () function, 522
int isspace () function, 522
int isupper () function, 522
int length() function,

string class, 511
int tolower () function, 522
int toupper () function, 522
integer(s), 59

division, 71
relationship between input,

storage, and display, 126
integer data types, 59–62
integer expressions, 70
integer values, char data

type, 527
integrated circuits (ICs), 34
integration, 774–782

Simpson’s rule, 779–782
trapezoidal rule, 775–778

interactive filenames, 447–451
interactive loop control,

273–274
interactive while loops,

245–254
sentinels, 251–252

interfaces, 564
internal array element loca-

tion algorithm, 401–402
internal sorts, 426
International System (SI)

units, 6–8
interpreted languages, 29
interpreters, 29
invocation, coding, 18
I/O file streams, 439–453

checking for successful con-
nection between file
and, 453

definition, 441

822 Index

file stream objects, 441–442
files, 440–441
formatting text file output

stream data, 456
as function arguments,

468–471
input, 441
input class methods, 457
methods, 442–451
output, 441, 443
transfer mechanism,

479–480
I/O (input/output) units, 33
ios class, 480, 481
ios::fixed format flag, 123
ios::left format flag, 123
ios::right format flag, 123
ios::scientific format

flag, 123
ios::showpoint format

flag, 123
ios::showpos format

flag, 123
iostream class library,

479–483
components, 480–481
file stream transfer mecha-

nism, 479–480
in-memory formatting,

482–483
isolation testing, 304
iterations, 231

coding, 18
iterators, 414

K
Kernighan, Brian, 32
keyboard, standard device

file, 461
keywords, 45

L
left angle bracket (<), left shift

operator, 617, 787,
796–799, 802

left manipulator, 118
left shift operator (<<), 617,

787, 796–799, 802

less than operator (<),
179, 617

less than or equal to operator
(<=), 179, 617

lifetime of variables, 354
line comments, 55–56
linear searches, 419–421

number of while loop
passes for linear and
binary searches
compared, 425

linked lists, 727–734
pointers, 727–734

linkers, 29
lists

linked, 727–734
STLs, 410

literal(s), 58–59
literal values, 58–59
local scope, 346
local variable(s), 346
local variable storage catego-

ries, 355–358
log() function, 133
log10() function, 133
logic errors, 165–166
logical AND operator (&&),

181, 617, 802
logical file objects, 461
logical negation operator (!),

617, 802
logical operators, 181–182

associativity, 182, 802
precedence, 182, 802

logical OR operator (||), 181,
617, 802

long double data type, 65
long int data type, 65
loops, 231–288

for. See for loops
common programming

errors, 285–286
do while, 281–283
evaluating functions of one

variable, 270–272
fixed-count, 233
infinite, 237

inner, 276
interactive input, 268
interactive loop control,

273–274
nested, 276–279
number of passes for linear

and binary searches com-
pared, 425

one-dimensional arrays,
377–378

outer, 276
posttest (exit-controlled),

232, 233
pretest (entrance-

controlled), 232, 233
selection in loops, 269–270
two-dimensional arrays,

390–381
variable-condition, 234
while. See while loops

low-level languages, 29
lvalue , 108

M
machine language, 28
machine-language

programs, 28
magic numbers, 150
main() function, 46–47
maintenance in software

development process, 19
management engineering, 291
manipulators, 70
manufacturing

engineering, 291
materials fabrication, process-

ing, and treatment, 549
materials science, 549
mathematical functions,

131–135
mechanical processing, 438
memberwise assignment, 599
memory, dynamic allocation,

617, 683
memory allocation, 83–85

dynamic, 616
memory unit, 33
metallurgical engineering, 549

823Index

metals fabrication, metallurgi-
cal engineering, 549

methods, 441, 556. See also
function(s); specific method
function names
file streams, 442–451
mutator, 575
string class, 505–507

microprocessors, 34
millions of instructions per

second (MIPS), 34
mining engineering, 549
minus sign (–)

decrement operator,
617, 802

int data type, 59
subtraction operator,

617, 802
unary minus operator,

617, 802
MIPS (millions of instructions

per second), 34
mixed-mode expressions, 71
mnemonics, 46
models, 583–585

UML, 584
modified regula falsi method,

764–768, 769
modular programs, 43–44
modules, 43–44
modulus operator (%), 71, 72,

617, 802
molecular systems, 371
Monte Carlo techniques, 636
multiplication operator (�),

72, 617, 802
multiplicity, class relation-

ships, 588
multiprogrammed systems, 31
multitasking systems, 31
multiuser systems, 31
mutator methods, 575

N
named constants. See symbolic

constants
namespaces, 49

personal libraries, 541–545

navigation, aeronautical/
aerospace engineering, 41

negation operator (-), 71, 72
nested if statements, 199–205

if-else chain, 201–205
nesting try blocks, 502–503
new operator, 616

data structure
allocation, 735

memory allocation, 683
newline character (\n), 61, 63

phantom, 509–511,
528–531

newline escape sequences, 50
noboolalpha

manipulator, 118
noshowbase manipulator, 118
noshowpoint

manipulator, 119
noshowpos manipulator, 119
not equal to operator (!=),

179, 617
NOT operator, 181
nouppercase

manipulator, 119
null character (), 62

array initialization, 385
null statement, 254
number codes, 35
numerical accuracy, relational

expressions, 183
numerical methods, 751–784

common programming
errors, 783

integration. See integration
root finding. See root

finding

O
object(s), 562–563

aggregations, 589
assignment, 597–606
creation, 564
identities, 605
instantiating, 505
modeling, 583–585
states, 564
values contrasted, 605

object descriptions, 584
object diagrams, 585–587

relationships, 587–588
UML, 585–590

object programs, 29
object-based languages, 647
object-oriented languages, 30,

64, 554
oct manipulator, 118, 124
octal number(s), program out-

put, 124–126
octal number character

(\nnn), 62
offset

characters, 465
pointers, 679

offset value, 504
one-dimensional arrays,

374–382
input and output of values,

378–382
ones complement operator

(~), 617, 802
one-way if statements,

191–193
opcode, 28
open() method, 442–443

checking for successful con-
nection, 453

opening files, 442–444
checking, 442–444
multiple files, 500–503

operands, 68
operating systems

(OSs), 30–31
operations, class diagrams,

587–588
operations research, industrial

engineering, 291
operator(s), 616–624

assignment, 106–107, 110,
599–600

associativity, 801–802
bit, 617, 787–799
as friends, 623–624
logical, 181–182

824 Index

precedence, 72–74, 182,
801–802

relational, 178–180, 182
OSs (operating

systems), 30–31
ostream class functions,

126–127
outer loops, 276
output. See input/output (I/O);

input/output (I/O) entries
output file streams, 441
output mode, 443
overloaded constructors,

570–573
overloading functions,

305–306

P
parameter(s)

formal, 298
reference, passing and

using, 324–332
parameter lists, empty,

303–304
parameterized

manipulators, 123
parent class, 645
parentheses (())

function call, 616, 801
operator precedence,

72–73, 182
parse errors, 164, 165
Pascal, 32
pass by references, 324
pass by values, 324
passed by value arguments,

313–314
passes through the loop. See

iterations
passing addresses, 690–701

passing arrays, 695–699
by reference, 691

passing arrays, 695–699
peek() method, 457
percent sign (%)

modulus operator, 71,
72, 617

remainder operator,
617, 802

period of waves, 155–156
personal libraries, 541–545
petrochemical processing, 370
phantom newline character,

509–511
physical file objects, 461–463
physical metallurgy, 549
Planck’s constant, 150
plus sign (+)

addition operator, 72,
617, 802

increment operator,
617, 802

int data type, 59
pointer(s), 665–704

addresses. See addresses
advanced pointer notation,

699–701
arithmetic, 686–690
array names, 677–685
common programming

errors, 702–703
declaring, 668–670
initialization, 689–690
linked lists, 727–734
offset, 679
passing, 690–701
references, 671–673

pointer notation, 699–701
pointer variables. See

pointer(s)
pollen count file update case

study, 472–477
pollution control, chemical

processing, 370
polymers

materials science, 549
synthesis, 371

polymorphism, 645, 653–657
populating structures,

708–709
postconditions, functions, 300
postfix decrement

operators, 114
postfix increment operators,

113–114
posttest loops, 232, 233

pound sign (#), preprocessor
commands, 48

pow () function, 132, 133
power

electrical engineering, 175
mechanical processing, 438

precedence
arithmetic operators,

72–74, 182, 802
logical operators, 182, 802
relational operators,

182, 802
precision, 66
preconditions, functions, 300
prefix decrement

operators, 114
prefix increment operators,

113–114
preprocessor

commands, 48–49
pretest loops, 232, 233
primitive types, 58
problem analysis in software

development process, 16
problem-solver algorithm, 334
procedural languages, 30, 64,

553–554
procedures, 30
production engineering, 291
program(s). See also software

definition, 14
development. See software

development procedure
machine-language, 28
modular, 43–44
robust, 143
source, 29

program libraries, 637
program output

cin statement, 139–144
formatting numbers for,

117–127
program requirements, 15
program tracing, 166
programming, 28

defensive, 213

825Index

programming errors
common. See common pro-

gramming errors
compile-time (parse errors;

syntax errors), 164, 165
debugging, 166
desk checking for, 164
logic, 165–166
runtime, 164–165, 166

programming languages, 28–30
assembly, 28–29
compiled, 29
high-level, 29
hybrid, 554
interpreted, 29
low-level, 29
machine language, 28
object-based, 647
object-oriented, 30, 64, 554
procedural, 30, 64,

553–554
syntax, 49

programming style, 53–56
prompts, 140–141
propulsion systems, 41
protected access, 647
prototypes, functions,

295–296, 299
pseudocode, 24
pseudorandom numbers, 635
put() method, 457
putback () method, 462

Q
quadratic equations case

study, 213–217
question mark (?), 61

conditional expression
operator, 802

R
radar speed traps case

study, 90–91
radiation, 101
random access, 465–468
random numbers, 635

scaling, 636–637

random numbers and simula-
tions case study, 635–644

read mode, 444
reading from text files,

456–461
real numbers, 65
rectangular to polar conver-

sion case study, 333–342
reference(s)

automatically
dereferenced, 671

definition, 671
implicitly dereferenced, 671

reference declarations, 671
reference parameters, passing

and using, 324–332
registers, 358
regula falsi method,

762–764, 769
relational expressions,

178–180
numerical accuracy, 183
simple, 178

relational operators, 178–180
associativity, 182, 802
precedence, 182, 802
string class, 513, 514

relationships
class diagrams, 587–588
object diagrams, 587–588

relaxation factor, 768
remainder operator (%),

617, 802
repetition statements, 232.

See also loops
Reynolds number, 242–243
right angle bracket (>)

extraction operator,
142, 143

right shift operator, 617,
787, 796–799, 802

right manipulator, 118
right shift operator (>>), 617,

787, 796–799, 802
Ritchie, Dennis, 32
robotics, 175
robust programs, 143

root finding, 751–773
bisection methods, 755–769
modified regula falsi

method, 764–768, 769
regula falsi method,

762–764, 769
secant method, 770–773
transcendental

equations, 753
runtime errors, 164–165, 166
runtime initialization, 357
rvalue, 108

S
scaling, random numbers,

636–637
scientific disciplines. See engi-

neering and scientific
disciplines; specific
disciplines

scientific manipulator, 118
scientific method, 14
scientific notation, 10, 11–12

symbols, `12
scientific units, 6–8
scope

classes, 607, 608
variables, 191

scope resolution operator,
349–351

search algorithms, 418–425
big O notation, 425
binary, 421–425
linear, 419–421
number of while loop

passes for linear and
binary searches com-
pared, 425

secant method, 770–773
secondary storage, 33
seekg () method, 465–466
seekp () method, 465–466
selection

coding, 18
in loops, 269–270

826 Index

selection criteria, 178–183
logical operators, 181–182
numerical accuracy

problem, 183
relational operators,

178–180
selection sort, 426–430
selection Sort() function,

427–430
selection structures, 177–225

common programming
errors, 222–223

if-else statement,
184–196

nested if statements,
199–205

program testing, 220–222
quadratic equations case

study, 213–217
selection criteria, 178–183
switch statement, 208–212

sentinels, 251–252
sequence, coding, 18
sequential access, 465
sequential organization, 465
sequential searches, 419–421
setfill ('x')

manipulator, 118
setiosflags

manipulator, 118
setprecision (n)

manipulator, 118
setw (2) manipulator, 121
setw (n) manipulator, 118
setw (5) fixed

setprecision (2)
manipulator, 121, 122

setw (5) setprecision (2)
manipulator, 121

seven-dimensional arrays, 392
shift operators, 617, 787,

796–799
short int data type, 65
showbase manipulator, 118
showpoint manipulator, 118
showpos manipulator, 118

SI (International System)
units, 6–8

signed data types, 64–65
significant digits, 66
simple binary arithmetic

expressions, 68–69
simple inheritance, 646
simple relational

expressions, 178
Simpson’s rule, 779–782
sin() function, 132
single quotation mark (’), 61
single-dimensional arrays. See

one-dimensional arrays
single-precision numbers, 65

numerical accuracy, 183
six-dimensional arrays, 392
sizeof operator, 802
software. See also computer

programs
application, 30
system, 30–31

software development proce-
dure, 14–20
backup, 20
effort expended, 19
phase I: development and

design, 15–19
phase II: documentation, 19
phase III: maintenance, 19

software engineering, 15
solid-state electronics, 175
solution development in soft-

ware development
process, 16–17

sort algorithms, 426–432
bubble sort, 430–432
exchange sort, 430–432
external sorts, 426
internal sorts, 426
selection sort, 426–430

source code, 29
source programs, 29
sqrt () function, 131–132,

134–135
square brackets ([]), array ele-

ment, 616, 801

standard input file, 461
standard output file, 461
standard program

libraries, 637
Standard Template Library

(STL), 410–417
statements. See also specific

statement names
accumulation, 111
assignment. See assignment

statements
compound. See compound

statements
counting, 111–114
declaration. See declaration

statements
definition, 83–85
null, 254
placement, 302
repetition, 232. See also

loops
static binding, 655
statistical analysis case study,

404–408
Stephan-Boltzmann’s

constant, 150
STL (Standard Template

Library), 410–417
storage, 34–36

addresses, 36, 667
array elements, 375–376
secondary (auxiliary), 33
twos complement represen-

tation, 35–36
values for data types, 62–65
words, 36

storage categories, 354–361
global, 358–361
local, 355–358

stream(s), 443. See also I/O
file streams

stream manipulators, 118–119
streambuf class, 480, 481
stress-strain of engineering

materials, materials
science, 549

827Index

string(s), 50
common programming

errors, 546
string class, 489, 504–521

functions, 505–507
input and output, 507–511
string processing, 511–521

string data type, 510
string literals, 504
string substr function,

string class, 513
Stroustrup, Bjarne, 32
strstream class, 482–483
structural design, 41
structure(s). See data structures
structure member pointer ref-

erence (->), 616
precedence and

associativity, 801
stubs, functions, 302–303
subclass, 645
subscript value, array ele-

ments, 376–377
subscripted variables, 376
subtraction operator (–), 72,

617, 802
superclass, 645
swap() function, 691–695
switch statement, 208–212
symbol(s)

flowcharts, 25
scientific notation, `12

symbolic constants, 149–156
statement placement,

151–154
syntax, 49
syntax errors, 164, 165
synthetic materials, chemical

processing, 370
system software, 30–31
systems approach, 14

T
tan() function, 132
tellg () method, 465, 466
tellp () method, 465, 466

templates
functions, 306–311
prefixes, 308

testing, 220–222
isolation, 304
in software development

process, 18–19
text files, 441, 454–463

formatting output stream
data, 456

hardware devices, 461–463
reading from, 456–461
standard device files,

461–462
writing to, 454–455

thermal science, 101
thermodynamics, 101
Thompson, Ken, 32
three-dimensional arrays, 392
throwing an exception, 490
tilde (~)

bit-by-bit ones complement
operator, 787, 795

ones complement operator,
617, 802

top-level structure diagrams, 16
transcendental equations, 753
transistors, 34
trapezoidal rule, 775–778
try blocks, nesting, 502–503
try keyword, 491, 492–503
two-dimensional arrays,

388–392
twos complement representa-

tion, 35–36
type, attributes, 585, 587
type conversion

constructors, 626
type operator, 802
typographical errors, 165

U
UML. See Unified Modeling

Language (UML)
unary minus operator (–),

617, 802
unary operators, 71–72,

617, 802

Unified Modeling Language
(UML), 584
association notation, 588
class and object diagrams,

585–590
unions, 742–743
unit analysis, 4–8

engineering and scientific
units, 6–8

unit operations, chemical
processing, 370

universal gas constant, 150
universal gravitational

constant, 150
unsigned data types, 64–65
unsigned int data type, 65
unsigned long int data

type, 65
unsigned short int data

type, 65
uppercase manipulator, 118
user-input validation, 143-144,

531–532

V
validation

definition, 143
input data, 533–539
user-input, 143–144,

531–532
validity checks, do while

loops, 283
value(s)

input and output from
arrays, 378–382

objects contrasted, 605
pointer variables, 686–690

value boxes, 35–36
variable(s), 76–87. See also

object(s)
aliases, 671
declaration

statements, 78–81
displaying variable

addresses, 85–87
global, 346
initialization, 82
instance, 556

828 Index

lifetime, 354
local, 346
memory allocation, 83–85
multiple

declarations, 81–83
pointer. See pointer(s)
reference declarations, 671
scope, 191
single, evaluating functions,

270–272
storage categories. See stor-

age categories
variable scope, 346–351

misuse of global
variables, 351

scope resolution operator,
349–351

variable-condition loops, 234

vectors, 410–414
vector class functions,

411–412
when to use, 414

vertical tab character (\v), 61
very large-scale integrated

(VLSI) chips, 34
virtual functions, 655
viscosity, 242
visibility, attributes, 587
VLSI (very large-scale inte-

grated) chips, 34
void insert() function,

string class, 513
void replace function,

string class, 513
void swap() function,

string class, 513

W
wave(s), frequency, period,

and wavelength, 155–156
wavelength, 155–156
weighted-sign codes, 36
while loops, 234–241

break statement, 253–254
continue statements,

253–254
interactive, 245–254
for loops vs., 263
null statement, 254
selection, 269–270
sentinels, 251–252

white space, 54
words, 36
writing to text files, 454–455

829Index

	Front Cover
	Title Page
	Copyright
	Contents
	Part 1 Fundamentals of C++ Programming
	Chapter 1 Preliminaries
	1.1 Preliminary One: Unit Analysis
	1.2 Preliminary Two: Exponential and Scientific Notations
	1.3 Preliminary Three: Software Development
	1.4 Preliminary Four: Algorithms
	1.5 A Closer Look: Software, Hardware, and Computer Storage
	1.6 Common Programming Errors
	1.7 Chapter Summary

	Chapter 2 Problem Solving Using C++
	2.1 Introduction to C++
	2.2 Programming Style
	2.3 Data Types
	2.4 Arithmetic Operations
	2.5 Variables and Declaration Statements
	2.6 A Case Study: Radar Speed Traps
	2.7 Common Programming Errors
	2.8 Chapter Summary

	Chapter 3 Assignment, Formatting, and Interactive Input
	3.1 Assignment Operations
	3.2 Formatting Numbers for Program Output
	3.3 Using Mathematical Library Functions
	3.4 Program Input Using cin
	3.5 Symbolic Constants
	3.6 A Case Study: Acid Rain
	3.7 A Closer Look: Programming Errors
	3.8 Common Programming Errors
	3.9 Chapter Summary

	Chapter 4 Selection Structures
	4.1 Selection Criteria
	4.2 The if-else Statement
	4.3 Nested if Statements
	4.4 The switch Statement
	4.5 A Case Study: Solving Quadratic Equations
	4.6 A Closer Look: Program Testing
	4.7 Common Programming Errors
	4.8 Chapter Summary

	Chapter 5 Repetition Statements
	5.1 Basic Loop Structures
	5.2 while Loops
	5.3 Interactive while Loops
	5.4 for Loops
	5.5 A Closer Look: Loop Programming Techniques
	5.6 Nested Loops
	5.7 do while Loops
	5.8 Common Programming Errors
	5.9 Chapter Summary

	Chapter 6 Modularity Using Functions
	6.1 Function and Parameter Declarations
	6.2 Returning a Single Value
	6.3 Returning Multiple Values
	6.4 A Case Study: Rectangular to Polar Coordinate Conversion
	6.5 Variable Scope
	6.6 Variable Storage Categories
	6.7 Common Programming Errors
	6.8 Chapter Summary

	Chapter 7 Arrays
	7.1 One-Dimensional Arrays
	7.2 Array Initialization
	7.3 Declaring and Processing Two-Dimensional Arrays
	7.4 Arrays as Arguments
	7.5 A Case Study: Statistical Analysis
	7.6 The Standard Template Library (STL)
	7.7 A Closer Look: Searching and Sorting
	7.8 Common Programming Errors
	7.9 Chapter Summary

	Chapter 8 I/O Streams and Data Files
	8.1 I/O File Stream Objects and Methods
	8.2 Reading and Writing Character-Based Files
	8.3 Random File Access
	8.4 File Streams as Function Arguments
	8.5 A Case Study: Pollen Count File Update
	8.6 A Closer Look: The iostream Class Library
	8.7 Common Programming Errors
	8.8 Chapter Summary

	Chapter 9 Completing the Basics
	9.1 Exception Handling
	9.2 Exceptions and File Checking
	9.3 The string Class
	9.4 Character Manipulation Functions
	9.5 Input Data Validation
	9.6 A Closer Look: Namespaces and Creating a Personal Library
	9.7 Common Programming Errors
	9.8 Chapter Summary

	Part 2 Object-Oriented Programming
	Chapter 10 Introduction to Classes
	10.1 Abstract Data Types in C++ (Classes)
	10.2 Constructors
	10.3 A Case Study: Constructing a Room Object
	10.4 A Closer Look: Object Identification and the Unified Modeling Language (UML)
	10.5 Common Programming Errors
	10.6 Chapter Summary

	Chapter 11 Class Functions and Conversions
	11.1 Assignment
	11.2 Additional Class Features
	11.3 Operator Functions
	11.4 Data Type Conversions
	11.5 A Case Study: Random Numbers and Simulations
	11.6 Class Inheritance
	11.7 Polymorphism
	11.8 Common Programming Errors
	11.9 Chapter Summary

	Part 3 Data Structures
	Chapter 12 Pointers
	12.1 Addresses and Pointers
	12.2 Array Names as Pointers
	12.3 Pointer Arithmetic
	12.4 Passing Addresses
	12.5 Common Programming Errors
	12.6 Chapter Summary

	Chapter 13 Structures
	13.1 Single Structures
	13.2 Arrays of Structures
	13.3 Structures as Function Arguments
	13.4 Linked Lists
	13.5 Dynamic Data Structure Allocation
	13.6 Unions
	13.7 Common Programming Errors
	13.8 Chapter Summary

	Part 4 Additional Topics
	Chapter 14 Numerical Methods
	14.1 Introduction to Root Finding
	14.2 The Bisection Method
	14.3 Refinements to the Bisection Method
	14.4 The Secant Method
	14.5 Introduction to Numerical Integration
	14.6 The Trapezoidal Rule
	14.7 Simpson’s Rule
	14.8 Common Programming Errors
	14.9 Chapter Summary

	Chapter 15 Bit Operations
	15.1 The AND Operator
	15.2 The Inclusive OR Operator
	15.3 The Exclusive OR Operator
	15.4 The Complement Operator
	15.5 Different-Size Data Items
	15.6 The Shift Operators
	15.7 Chapter Summary

	Appendix A: Operator Precedence Table
	Appendix B: ASCII Character Codes
	Appendix C: Floating-Point Number Storage
	Appendix D: Command-Line Arguments
	Index

