
• ANSI/ISO STANDARD C++
• CONTROL STRUCTURES
• FUNCTIONS/ARRAYS

• POINTERS/STRINGS
• VECTOR/STRING OBJECTS
• CLASSES/DATA ABSTRACTION
• OPERATOR OVERLOADING
• INHERITANCE/POLYMORPHISM
• VIRTUAL FUNCTIONS
• RUN-TIME TYPE INFORMATION
• STANDARD STREAM I/O
• TEMPLATES/STL
• EXCEPTION HANDLING
• FILES/DATA STRUCTURES
• BITS/CHARACTERS
• NAMESPACES

- • INTERNET/WEB RESOURCES

UML 000 CASE STUDY

• USE CASE DIAGRAMS
• CLASS DIAGRAMS
• OBJECT DIAGRAMS
• ASSOCIATION
• COMPOSITION

.. STATECHART DIAGRAMS
• ACTIVITY DIAGRAMS
• SEQUENCE DIAGRAMS
• COLLABORATION DIAGRAMS

DEITEL

DEITEL

l
�� �r'""'!J

�

-:FOt11"th

-PR.O O-R J-\-Iyr
D'r D'r'rrr'r"r,"r I I L L..!...l

I

911780 3011

'rr['r'rrr

--

Editioll-

110yvrj'O

U..L__..L-w V __

The complete, authoritative DEITELTM LIVE-CODE™ introduction to C++, Object-
Oriented Design (OOD) with the UML™ and Web programming with CGI

T his Fourth Edition of the world's most widely used C++ textbook explains C++
extraordinary capabilities, presents an optional object-oriented design and implementa
tion case study with the Unified Modeling Language (UML) from the Object
Management GroupTM, and introduces n-tier Web-applications development with CGI.

Dr. Harvey M. Deitel and Paul J. Deitel are the founders of Deitel & Associates, Inc.,
the internationally recognized corporate-training and content-creation organization spe
cializing in C++, C, Visual C++® ,NET, Java™, C#, Visual Basic® .NET, XML, Python_
Perl, Internet, Web, ,NET and object technologies. T he Deitels are the authors of several
of the world's best-selling programming-language textbooks, including Java How to
Program, 41e, and Internet & World Wide Web How to Program, 21e,

In C++ How to Program, 41e, the Deitels introduce the fundamentals of object-oriented
programming and generic programming in C++. Key topics include:

• Control structureslFunctionslPointers • Exception handling/Operator overloading
• Classes/ObjectsiEncapsulation • Templates/Data structures/Files/Stream
• OOP/InheritancelPolymorphism • Standard Template Library (STL)
• Object-Oriented Design with the UML • Bit and character manipulation
• string and vector objects • NamespaceslRun-Time Type Information
• Pointer-based arrays and strings • N-tier Web applications/CGIIXHTML TM

C++ How to Program, 41e, helps students build real-world C++ applications. It includes:
• Hundreds of LIVE-CODE™ programs with screen captures that show exact outputs
• Extensive Internet and World Wide Web resources to encourage further research
• Hundreds of tips, recommended practices and cautions-all marked with icons

Good Software
Programming Engineering
Practices Observations

Peljormance
Tips

Portability
Tips

Testing and
Debugging
Tips

Common
Programming
Errors

c++ How to Program's teaching resources include Web sites (www.deitel.com.
www.prenhall.com/deitel and www.InformIT.com/deitel) with the book's
code examples (also on the enclosed CD) and information for faculty, students and profes
sionals; an optional CD (C++ Multimedia Cyber Classroom, 41e) with solutions to approx
imately half the exercises in C++ How to Program, 41e, interactivity features-including
hyperlinks and audio walkthroughs of the code examples; and access to the authors at

deitel@deitel.com

For information on Deitel instructor-led seminars offered
worldwide, and to subscribe to the DE/TEL ™ Buzz ONLINE e-mail
newsletter, visit:

www.deitel.com

For information on DeitellPrentice Hall publications and Deitel

ISBN 0-13-038474-7

training courses, pleaseoe the last few pages of this book, 1 3 8 4 7 4 4
PRENTICE HALL Upper Saddle River, NJ 07458 www.prenhall.com

90000

c++
How TO PROGRAM
FOURTH EDITION

I

Deitel� Books, Cyber Classrooms, Complete Tra
published by

How To PROGRAM Series

Advanced Java� 2 Platform How to Program

C How to Program, 3/E

C++ How to Program, 4/E

C# How to Program

e-Business and e-Commerce How to Program

Internet and World Wide Web How to Program, 2/E

Java� How to Program, 4/E

Perl How to Program

Python How to Program

Visual Basic� 6 How to Program

Visual Basic� .NET How to Program, 2/E

Visual C+ +'" .NET How to Program (Fall 2002)

Wireless Internet & Mobile Business How to Program

XML How to Program

DElTEL'" Developer Series

Java'" Web Services for Experienced

Programmers

Web Services A Technical Introduction

Java 2 Micro Editionfor Experienced

Programmers (Spring 2003)

Java 2 Enterprise Edition for

Experienced Programmers (Spring
2003)

ASP . NET and Web Services with Visual

Basic'" . NET for Experienced

Programmers (Spring 2003)

ASP . NET and Web Services with C# for

Experienced Programmers (Spring

2003)

. NET A Technical Introduction

For Managers Series

e-Business and e-Commerce for

Managers

.NET How to Program Series

C# How to Program

Visual Basic'" .NET How to Program, 21E
Visual C++ . NET How to Program (Fall

2002)

Visual Studio� Series

C# How to Program

Visual Basic'" . NET How to Program, 21E
Visual C++ . NET How to Program (Fall

2002)

Getting Started with Microsoft'" Visual

C++� 6 with an Introduction to MFC

Visual Basic� 6 How to Program

Coming Soon

e-books and e-whitepapers

Premium Course Compass, WebCT and

Blackboard Multimedia Cyber

Classroom versions

ining Courses and Web-Based Training Courses
Prentice Hall

Multimedia Cyber Classroom and

Web-Based Training Series

(For information regarding DEITELTM Web-based

training visit www.ptgtraining.com)

C++ Multimedia Cyber

Classroom, 41E

C# Multimedia Cyber Classroom

e-Business and e-Commerce

Multimedia Cyber Classroom

Internet and World Wide Web

Multimedia Cyber Classroom, 21E

Java'" 2 Multimedia Cyber

Classroom, 41E

Perl Multimedia Cyber Classroom

Python Multimedia Cyber Classroom

Visual Basic$ 6 Multimedia Cyber

Classroom

Visual Basic� . NET Multimedia Cyber

Classroom, 21E

Wireless Internet & Mobile Business

Programming Multimedia Cyber

Classroom

XML Multimedia Cyber Classroom

The Complete Training Course

Series

The Complete C++ Training

Course,4lE

The Complete C# Training Course

The Complete e-Business and e

Commerce Programming Training

Course

The Complete Internet and World Wide

Web Programming Training

Course,2lE

The Complete Java'" 2 Training Course,

41E

The Complete Perl Training Course

The Complete Python Training Course

The Complete Visual Basic@ 6 Training

Course

The Complete Visual Basic� .NET

Training Course, 21E

The Complete Wireless Internet &
Mobile Business Programming

Training Course

The Complete XML Programming

Training Course

To follow the Deitel publishing program, please register at

www . de i t e l . com/ news letter/ subsc ribe . html

for the DE/TEL'· Buzz ONLINE e-mail newsletter.

To communicate with the authors, send e-mail to:

de i t e l@de i t e l . com

For information on corporate on-site seminars offered by Deitel & Associates, Inc.

worldwide, visit:

www . de i t e l . com

For continuing updates on Prentice Hall and Deitel publications visit:

www . de i t e l . com.

www . prenhal l . com/de i t e l or

www . lnformIT . com/de i t e l

Library of Congress Cataloging-in-publication Data

On file

Vice President and Editorial Director, ECS: Marcia J. Horton

Acquisitions Editor: Petra J. Recter

Assistant Editor: Sarah Burrows

Project Manager: Jennifer Cappello

Vice President and Director of Production and Manufacturing, ESM: David W. Riccardi

Executive Managing Editor: Vince O'Brien

Production Editor: Chirag Thakkar

Director of Creative Services: Paul Be/fanti

Creative Director: Carole Anson

Chapter Opener and Cover Designer: Tamara L. Newnam, Laura Treibeck, Dr. Harvey Deitel

Manufacturing Manager: Trudy Pisciotti

Manufacturing Buyer: Lisa McDowell

Marketing Manager: Pamela Shaffer

Marketing Assistant: Barrie Reillhold

© 2003 by Pearson Education, lnc.

Upper Saddle River, New Jersey 07458
The authors and publisher of this book have used their best efforts in preparing this book. These efforts include
the development, research, and testing of the theories and programs to determine their effectiveness. The authors
and publisher make no warranty of any kind, expressed or implied, with regard to these programs or to the docu
mentation contained in this book. The authors and publisher shall not be liable in any event for incidental or con
sequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade
marks and registered trademarks. Where those designations appear in this book, and Prentice Hall and the authors

were aware of a trademark claim, the designations have been printed in initial caps or all caps. All product names
mentioned remain trademarks or registered trademarks of their respective owners.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 I

ISBN 0-13-038474-7

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong

Pearson Education Canada, Inc., Toronto

Pearson Educacion de Mexico, S.A. de c.y.
Pearson Education-Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

Pearson Education, Inc., Upper Saddle River, New Jersey

c++
How TO PROGRAM
FOU RT H E D I T I O N

H. M. Deitel
Deitel & Associates, Inc.

P. J. Deitel
Deitel & Associates, Inc.

PRENTICE HALL, Upper Saddle River, New Jersey 07458

Trademarks

Borland and C++Builder are trademarks or registered trademarks of Borland.

DEITEL, DIVE INTO, and LIVE CODE are trademarks of Deitel and Associates, lnc.

Describe, Embarcadero's UML design tool, is a trademark of Embarcadero Technologies, Inc. and is

protected by the laws of the United States and other countries.

Internet Explorer, Microsoft, Visual C++ 6, Visual C++ .NET, Visual Studio and Windows are reg

istered trademarks of Microsoft Corporation in the United States and/or other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in

the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Netscape, the Netscape N and Ship's Wheel logos are registered trademarks of Netscape Communi

cations Corporation in the U.S. and other countries.

Object Management Group, OMG, Unified Modeling Language and UML are trademarks of Object

Management Group, Inc.

Rational Rose, Rational Software Corporation's UML visual modeling tool, and Rational Unified

Process are registered trademarks of Rational Software Corporation in the United States and/or other

countries.

Cygwin is a trademark and copyrighted work of Red Hat, Inc. in the United States and other countries.

CSS, Cascading Style Sheets Specification, and XHTML, The Extensible HyperText Markup Lan

guage, are trademarks of the World Wide Web Consortium (W3CO) and its hosts, the Massachusetts

Institute of Technology (MIT), Institut National de Recherche en Informatique et en Automatique

(INRIA), and Keio University (Keio).

TO

Don Kostuch:

For your steadfast commitment to excellence in teaching and
writing about C++ and object technology.

Thank you for being our mentor, our colleague and our
friend.

Thank you for a decade of being our most critical, yet most
constructive reviewer.

It is a privilege for us to be your students.

Harvey and Paul Deitel

Contents

Preface xxxiv

1 Introduction to Computers and C++ Programming
1. 1 Introduction 2

1.2 What is a Computer? 4

1.3 Computer Organization 5

1.4 Evolution of Operating Systems 6

1.5 Personal Computing, Distributed Computing and Client/Server Computing 7

1.6 Machine Languages, Assembly Languages, and High-level Languages 7

1.7 History of C and C++ 8
1.8 C++ Standard Library 10

1.9 Java 1 1

1. 10 Visual Basic, Visual C++ and C# 1 1

1.1 1 Other High-level Languages 13

1. 12 Structured Programming 13

1. 13 The Key Software Trend: Object Technology 14

1.1 4 Basics of a Typical C++ Environment 15
1.15 Hardware Trends 17

1. 16 History of the Internet 1 8

1 . 17 History of the World Wide Web 19

1.18 World Wide Web Consortium (W3C) 20

1 .19 General Notes About C++ and This Book 20

1 .20 Introduction to C++ Programming 2 1

1.2 1 A Simple Program: Printing a Line of Text 2 1

1 .22 Another Simple Program: Adding Two Integers 26

1.23 Memory Concepts 30

1.24 Arithmetic 3 1

Contents IX

1.25 Decision Making: Equality and Relational Operators 34

1.26 Thinking About Objects: Introduction to Object Technology and the Unified

Modeling Language ™ 40

1.27 Tour of the Book 44

2 Control Structures 70
2. 1 Introduction 7 1

2.2 Algorithms 72

2.3 Pseudocode 72

2.4 Control Structures 73

2.5 if Selection Structure 76

2.6 if/else Selection Structure 77

2.7 while Repetition Structure 8 1

2.8 Formulating Algorithms: Case Study 1 (Counter-Controlled Repetition) 83

2.9 Formulating Algorithms with Top-Down, Stepwise Refinement:

Case Study 2 (Sentinel-Controlled Repetition) 86

2. 10 Formulating Algorithms with Top-Down, Stepwise Refinement:

Case Study 3 (Nested Control Structures) 94

2. 1 1 Assignment Operators 98

2. 12 Increment and Decrement Operators 99

2. 13 Essentials of Counter-Controlled Repetition 102

2. 14 for Repetition Structure 104

2. 15 Examples Using the for Structure 109

2. 16 switch Multiple-Selection Structure 1 13

2. 17 do/while Repetition Structure 120

2. 18 break and continue Statements 122

2. 19 Logical Operators 124

2.20 Confusing Equality (==) and Assignment (=) Operators 127

2.2 1 Structured-Programming Summary 128

2.22 [Optional Case Study] Thinking About Objects: Identifying a

System's Classes from a Problem Statement 133

3 Functions 169
3. 1 Introduction 170

3.2 Program Components in C++ 170

3.3 Math Library Functions 171

3.4 Functions 173

3.5 Function Definitions 174

3.6 Function Prototypes 178

3.7 Header Files 180

3.8 Random Number Generation 182

3.9 Example: Game of Chance and Introducing enum 188

3. 10 Storage Classes 192

3. 1 1 Scope Rules 1 95

3. 12 Recursion 198

3. 13 Example Using Recursion: Fibonacci Series 202

x

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

4
4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

5
5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

6
6.1

6.2

6.3

Recursion vs. Iteration

Functions with Empty Parameter Lists

lnline Functions

References and Reference Parameters

Default Arguments

Unary Scope Resolution Operator

Function Overloading

Function Templates

[Optional Case Study] Thinking About Objects: Identifying a

Class's Attributes

Arrays
Introduction

Arrays

Declaring Arrays

Examples Using Arrays

Passing Arrays to Functions

Sorting Arrays

Case Study: Computing Mean, Median and Mode Using Arrays

Searching Arrays: Linear Search and Binary Search

Multiple-Subscripted Arrays

[Optional Case Study] Thinking About Objects: Identifying the

Operations of a Class

Pointers and Strings
Introduction

Pointer Variable Declarations and Initialization

Pointer Operators

Calling Functions by Reference

Using const with Pointers

Bubble Sort Using Pass-by-Reference

Pointer Expressions and Pointer Arithmetic

Relationship Between Pointers and Arrays

Arrays of Pointers

Case Study: Card Shuffling and Dealing Simulation
Function Pointers

Introduction to Character and String Processing

5.12.1 Fundamentals of Characters and Strings

5.12.2 String Manipulation Functions of the String-Handling Library

[Optional Case Study] Thinking About Objects: Collaborations

Among Objects

Classes and Data Abstraction
Introduction

Structure Definitions

Accessing Structure Members

Contents

206

208

209

211

215

217

219

222

225

252
253

253

255

256

272

276

278

283

289

296

319
320

320

322

325

329

336

341

344

349

350

355

360

360

362

370

404
405

406

407

Contents XI

6.4 Implementing User-Defined Type Time with a C-Iike struct 408

6.5 Implementing Abstract Data Type Time with a class 411

6.6 Class Scope and Accessing Class Members 4 18

6.7 Separating Interface from Implementation 420

6.8 Controlling Access to Members 424

6.9 Access Functions and Utility Functions 426

6. 10 Initializing Class Objects: Constructors 430

6. 1 1 Using Default Arguments with Constructors 430

6.12 Destructors 435

6. 13 When Constructors and Destructors Are Called 435

6. 14 Using Set and Get Functions 439

6. 15 Subtle Trap: Returning a Reference to a private Data Member 445

6. 16 Default Memberwise Assignment 448

6. 17 Software Reusability 450

6. 18 [Optional Case Study) Thinking About Objects: Starting to Program the

Classes for the Elevator Simulator 45 1

7 Classes: Part II 468
7. 1 Introduction 469

7.2 const (Constant) Objects and const Member Functions 469

7.3 Composition: Objects as Members of Classes 478

7.4 friend Functions and friend Classes 485

7.5 Using the this Pointer 489

7.6 Dynamic Memory Management with Operators new and delete 495
7.7 static Class Members 497
7.8 Data Abstraction and Information Hiding 502

7.8. 1 Example: Array Abstract Data Type 504

7.8.2 Example: String Abstract Data Type 504

7.8.3 Example: Queue Abstract Data Type 505

7.9 Container Classes and Iterators 505

7. 10 Proxy Classes 506

7. 1 1 [Optional Case Study] Thinking About Objects: Programming the

Classes for the Elevator Simulator 509

8 Operator Overloading; String and Array Objects 546
8. 1 Introduction 547
8.2 Fundamentals of Operator Overloading 548
8.3 Restrictions on Operator Overloading 549

8.4 Operator Functions as Class Members vs. as friend Functions 550

8.5 Overloading Stream-Insertion and Stream-Extraction Operators 552

8.6 Overloading Unary Operators 555
8.7 Overloading Binary Operators 555
8.8 Case Study: Array Class 556
8.9 Converting between Types 568
8. 10 Case Study: String Class 569
8. 1 1 Overloading ++ and -- 58 1

XII

8.12

8.13

9
9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

10
10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

1 1
11.1
11.2

11.3

11.4

11.5

11.6

11.7

11.8

1 2
12.1

12.2

Contents

Case Study: A Dat e Class

Standard Library Classes s t ring and vector

Object-Oriented Programming: Inheritance
Introduction

Base Classes and Derived Classes

protected Members

Relationship between Base Classes and Derived Classes

Case Study: Three-Level Inheritance Hierarchy

Constructors and Destructors in Derived Classes

"Uses A" and "Knows A" Relationships

pub l i c, prot ected and private Inheritance

Software Engineering with Inheritance

[Optional Case Study] Thinking About Objects: Incorporating

Inheritance into the Elevator Simulation

Object-Oriented Programming: Polymorphism
Introduction

Relationships Among Objects in an Inheritance Hierarchy

10.2.1 Invoking Base-Class Functions from Derived-Class Objects

10.2.2 Aiming Derived-Class Pointers at Base-Class Objects

10.2.3 Derived-Class Member-Function Calls via Base-Class Pointers

10.2.4 Virtual Functions

Polymorphism Examples

Type Fields and swi tch Structures

Abstract Classes

Case Study: Inheriting Interface and Implementation

Polymorphism, Virtual Functions and Dynamic Binding "Under

the Hood"

Virtual Destructors

Case Study: Payroll System Using Polymorphism and Run-Time

Type Information with dynami c_cast and type id

Templates
Introduction
Function Templates

Overloading Function Templates

Class Templates

Class Templates and Nontype Parameters

Templates and Inheritance

Templates and Friends

Templates and static Members

c++ Stream Input/Output
Introduction

Streams

12.2.1 Classic Streams vs. Standard Streams

582

588

609
610

611

614
614

637

642

648

648

649

650

662
663

664

665

670

672

673

679

680

680

682

695

699

699

7 1 8
719
720

723

723

730

731

731
732

737
739

739

740

Contents XII'

12. 2 . 2 i o s t ream Library Header Files 740

12 . 2 . 3 Stream Input/Output Classes and Objects 741

12 . 3 Stream Output 743

12 . 3 .1 Output of char * Variables 743

12 . 3 . 2 Character Output using Member Function put 744

12.4 Stream Input 744

12.4.1 get and get1ine Member Functions 745

12 .4.2 i st ream Member Functions peek, putback and i gnore 748

12 .4.3 Type-Safe I/O 748

12.5 Unformatted I/O using read, write and gcount 748

12 .6 Introduction to Stream Manipulators 749

12 .6.1 Integral Stream Base: dec, oct, hex and setba s e 7 5 0

12 . 6 . 2 Floating-Point Precision (prec i s ion, s etprec i s i on) 751

12 . 6 . 3 Field Width (width, setw) 75 2

12 .6 .4 Programmer-Defined Manipulators 754

12.7 Stream Format States and Stream Manipulators 755

12.7.1 Trailing Zeros and Decimal Points (showpoint) 756

12 .7 .2 Justification (l e f t, right and interna l) 757

12 .7 .3 Padding (f i l l, set f i l l) 759

12.7.4 Integral Stream Base (dec, oct, hex, showbas e) 760

12.7.5 Floating-Point Numbers; Scientific and Fixed Notation

(s c i ent i f i c, f ixed) 761

12 .7.6 Uppercase/Lowercase Control (uppercase) 762

12.7.7 Specifying Boolean Format (boo1a1pha) 763

12 .7.8 Setting and Resetting the Format State via Member-

Function f l ags 764

12.8 Stream Error States 766

12.9 Tying an Output Stream to an Input Stream 768

1 3 Exception Handling 7 7 9
13 .1 Introduction 780

13 .2 Exception-Handling Overview 781

13 . 3 Other Error-Handling Techniques 783

13.4 Simple Exception-Handling Example: Divide by Zero 784

13 .5 Rethrowing an Exception 788

13 .6 Exception Specifications 789

13.7 Processing Unexpected Exceptions 790
13 .8 Stack Unwinding 790

13 .9 Constructors, Destructors and Exception Handling 792

13 .10 Exceptions and Inheritance 793

13 .11 Processing new Failures 793

13 .12 Class aut o-p t r and Dynamic Memory Allocation 797

13.13 Standard Library Exception Hierarchy 800

1 4 File Processing 808
14 .1 Introduction 809

14 .2 The Data Hierarchy 809

XIV Contents

14.3 Files and Streams 811

14.4 Creating a Sequential-Access File 812
14.5 Reading Data from a Sequential-Access File 816

14.6 Updating Sequential-Access Files 823

14.7 Random-Access Files 824

14.8 Creating a Random-Access File 824

14.9 Writing Data Randomly to a Random-Access File 829

14.10 Reading Data Sequentially from a Random-Access File 831
14.11 Example: A Transaction-Processing Program 834
14.12 Input/Output of Objects 841

1 5 Class string and String Stream Processing 850
15.1 Introduction 851

15.2 string Assignment and Concatenation 852

15.3 Comparing strings 855

15.4 Substrings 857

15.5 Swapping strings 858
15.6 string Characteristics 859

15.7 Finding Strings and Characters in a string 862

15.8 Replacing Characters in a string 864

15.9 Inserting Characters into a string 866
15.10 Conversion to C-Style char * Strings 867
15.11 Iterators 869

15.12 String Stream Processing 870

J6 Web Programming with CGI 880
16.1 Introduction 881
16.2 HTTP Request Types 882
16.3 Multi-Tier Architecture 882

16.4 Accessing Web Servers 883

16.5 Apache HTTP Server 884

16.6 Requesting XHTML Documents 885

16.7 Introduction to CGI 885

16.8 Simple HTTP Transaction 886

16.9 Simple CGI Script 888
16.10 Sending Input to a COl Script 895
16.11 Using XHTML Forms to Send Input 897

16.12 Other Headers 905

16.13 Case Study: An Interactive Web Page 905

16.14 Cookies 909

16.15 Server-Side Files 915

16.16 Case Study: Shopping Cart 921

16.17 Internet and Web Resources 936

1 7 Data Structures 942
17.1 Introduction 943

17.2 Self-Referential Classes 944

Contents xv

17.3 Dynamic Memory Allocation and Data Structures 945

17.4 Linked Lists 945

17.5 Stacks 960

17.6 Queues 965

17.7 Trees 969

J8 Bits, Characters, Strings and Structures 1000
18.1 Introduction 1001

18.2 Structure Definitions 1001

18.3 Initializing Structures 1003

18.4 U sing Structures with Functions 1004

18.5 typedef 1004

18.6 Example: High-Performance Card-Shuffling and Dealing Simulation 1005

18.7 Bitwise Operators 1007

18.8 Bit Fields 1017

18.9 Character-Handling Library 1020

18.10 String-Conversion Functions 1026

18.11 Search Functions of the String-Handling Library 1031

18.12 Memory Functions of the String-Handling Library 1036

J9 Preprocessor 1 053
19.1 Introduction 1054

19.2 The #include Preprocessor Directive 1054

19.3 The #define Preprocessor Directive: Symbolic Constants 1055

19.4 The #define Preprocessor Directive: Macros 1056

19.5 Conditional Compilation 1057

19.6 The #error and #pragma Preprocessor Directives 1058

19.7 The # and ## Operators 1059

19.8 Line Numbers 1059

19.9 Predefined Symbolic Constants 1060

19.10 Assertions 1060

20 C Legacy Code Topics 1 065
20.1 Introduction 1066

20.2 Redirecting Input/Output on UNIX and DOS Systems 1066

20.3 Variable-Length Argument Lists 1067

20.4 Using Command-Line Arguments 1070

20.5 Notes on Compiling Mu1tip1e-Source-File Programs 1071

20.6 Program Termination with exit and atexit 1073

20.7 The volatile Type Qualifier 1075

20.8 Suffixes for Integer and Floating-Point Constants 1075

20.9 Signal Handling 1075

20.10 Dynamic Memory Allocation with calloc and realloc 1078
20.11 The Unconditional Branch: goto 1079
20.12 Unions 1080

20.13 Linkage Specifications 1084

XVI Contents

21 Standard Template Library (STl) 1 090
21.1 Introduction to the Standard Template Library (STL) 1092

21.1.1 Introduction to Containers 1094

21.1.2 Introduction to Iterators 1098

21.1.3 Introduction to Algorithms 1103

21.2 Sequence Containers 1105
21.2.1 vector Sequence Container 1105
21.2.2 list Sequence Container 1113

2l.2.3 deque Sequence Container 1117

21.3 Associative Containers 1119

21.3.1 multiset Associative Container 1119

21.3.2 set Associative Container 1122

21.3.3 multimap Associative Container 1124

21.3.4 map Associative Container 1126

2l.4 Container Adapters 1128

21.4.1 stack Adapter 1128

21.4.2 queue Adapter 1130

21.4.3 priori ty _queue Adapter 1132

21.5 Algorithms 1133

21.5.1 fill,fill_n,generateandgenerate_n 1134

2l.5.2 equal, mismatch and lexicographical_compare 1136

21.5.3 remove, remove_if, remove_copy and

remove_copy_if 1138

2l.5.4 replace, replace_if, replace_copy and

replace_copy_if 1141
21.5.5 Mathematical Algorithms 1144
2l.5.6 Basic Searching and Sorting Algorithms 1148

2l.5.7 swap, iter_swap and swap_ranges 1150

21.5.8 copy_backward, merge, unique and reverse 1152

21.5.9 inplace_merge,unique_copyandreverse_copy 1154

2l.5.10 Set Operations 1156

21.5.11 lower_bound, upper_bound and equal_range 1160

21.5.12 Heapsort 1162

2l.5.13 min and max 1165

21.5.14 Algorithms Not Covered in This Chapter 1166
2l.6 Class bit set 1168

21.7 Function Objects 1172

21.8 STL Internet and Web Resources 1175

22 Other Topics 1183
22.1 Introduction 1184

22.2 const_cast Operator 1184

22.3 reinterpret_cast Operator 1185

22.4 namespaces 1186

22.5 Operator Keywords 1190

22.6 explicit Constructors 1192

Contents XVII

22.7 mutabl e Class Members 1197

22.8 Pointers to Class Members (• * and - > *) 1199

22.9 Multiple Inheritance 1201

22 .10 Multiple Inheritance and virtual Base Classes 1205

22 .11 Closing Remarks 1210

A Operator Precedence Chart 1 2 1 4

B ASCII Character Set 1 2 1 6

C Number Systems 1 2 1 7
C . l Introduction 1 218

C . 2 Abbreviating Binary Numbers as Octal Numbers and

Hexadecimal Numbers 1221

C . 3 Converting Octal Numbers and Hexadecimal Numbers to Binary Numbers 1222

Co4 Converting from Binary, Octal or Hexadecimal to Decimal 1222

C. 5 Converting from Decimal to Binary, Octal or Hexadecimal 1223

C . 6 Negative Binary Numbers: Two's Complement Notation 1225

D C++ Internet and Web Resources 1 230
0 .1 Resources 1230

0 . 2 Tutorials 1232

0.3 FAQs 1233

004 Visual C++ 1233

0.5 Newsgroups 1233

0.6 Compilers and Development Tools 1234

0 . 7 Standard Template Library 1234

E Introduction to XHTMl 1 236
E. l Introduction 1237

E.2 Editing XHTML 1237

E . 3 First XHTML Example 1238

Eo4 Headers 1240

E . 5 Linking 1242

E.6 Images 1245

E . 7 Special Characters and More Line Breaks 1249

E .8 Unordered Lists 1251

E .9 Nested and Ordered Lists 1251
E . l O Basic XHTML Tables 1252
E.1l Intermediate XHTML Tables and Formatting 125 7

E .12 Basic XHTML Forms 1259
E.13 More Complex XHTML Forms 1262
E .14 Internet and World Wide Web Resources 1269

F XHTMl SpeCial Characters 1 274

Bibliography 1275

Index 1 28 1

Illustrations

1 Introduction to Computers and C++ Programming 1
1. 1 A typical C++ environment. 16

1.2 Text-printing program. 22

1.3 Escape sequences. 24

1.4 Printing on one line with separate statements using couto 25

1.5 Printing on multiple lines with a single statement using couto 25

1.6 Addition program. 26

1.7 Memory location showing the name and value of variable integerl. 30

1.8 Memory locations after storing values for integerl and integer2. 3 1

1.9 Memory locations after calculating the sum of integerl and integer2. 3 1

1. 10 Arithmetic operators. 3 1

1. 1 1 Precedence of arithmetic operators. 33

1. 12 Order in which a second-degree polynomial is evaluated. 35

1. 13 Equality and relational operators. 35

1. 14 Equality and relational operators . 36

1. 15 Precedence and associativity of the operators discussed so far. 39

2 Control Structures 70
2.1 Sequence structure activity diagram. 73
2.2 C++ keywords. 75

2.3 if single-selection structure activity diagram. 77

2.4 if/else double-selection structure activity diagram. 78

2.5 while repetition structure activity diagram. 82

2.6 Class-average problem pseudocode algorithm that uses

counter-controlled repetition. 83

2.7 Class-average problem with counter-controlled repetition. 84

2.8 Class-average problem pseudocode algorithm with

sentinel-controlled repetition. 89

Illustrations

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.40

2.41

2.42

2.43

2.44

3
3.1

3.2

3.3

3.4

3.5

3.6

3.7

Class-average probl e m with senti nel -contro l led repeti t ion .

Exami n at ion-results problem pseudocode algori th m .

N ested control structures: Examination-results problem.

Arithmetic assignment operators .

I ncrement and decrement operators .

Pre incrementing and postincrementing.

Operator precedence for the operators encountered so far i n the text .

Counter-controlled repeti t ion.

Counter-controlled repetit ion with the for structure .

for structure header components.

for repeti t ion structure act ivity diagram.

S u mmation w i th for.

Compound interest calculations with for.

swi tch structure testing mult ip le letter-grade values .

swi tch m ultiple-se lection structure act ivity d iagram with

break statements .

do/wh i l e structure .

do/whi l e repetit ion structure act iv i ty d iagram.

break statement ex it ing a for structure .

cont inue statement termi nating a s ingle iteration of a for structure.

&& (l ogical A N D) operator truth table .

I I (logical O R) operator truth table .

! (logical negat ion) operator truth tab le .

Operator precedence and associ at iv i ty .

C++' s s ingle-entry/s ingle-exit sequence, selection and repetition structures .

R ules for forming structured programs.

S implest act iv ity d iagram .

Repeatedly app l y i ng rule 2 of Fig. 2.33 to the s implest activity d iagram.

Applying rule 3 of Fig . 2.33 to the s i mplest act i vity d iagram.

Activi ty d iagram with i l l egal syntax .

U se-case d iagram for elevator syste m .

L i st o f n o u n s i n problem statement .

Representing a class i n the UML.

Associations between c lasses i n a c l ass diagram.

M u l t i pl i c ity values .

Ful l cl ass d iagram for e levator s imulat ion.

Object diagram of empty bui ld i ng.

Functions
H i erarchical boss function/worker function rel at ionship .

M ath l ibrary functions.

Programmer-defi ned function square.

Programmer-defi ned maximum function.

Promotion h ierarchy for built- i n data types .

S tandard l ibrary header fi les .

Shifted, scaled i n tegers produced by 1 + rand () % 6.

XIX

89

96

96

99

100

100

102

103

104

105

108

109

III
114

118

121

121

122

123

125

125

126

127

129

130

130

130

131

132

139

140

142

142

143

144

145

1 69
172

172

174

177

180

181

183

xx

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3. \8

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

4
4.1

4.2

4.3

4.4

4.5
4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

Illustrations

Rol l i ng a s i x-s ided die 6000 t imes.

Random iz i ng the die-rol l i ng program .

Craps s i mulation.

Sam ple outputs for the craps program.

Scoping example.

Recursive evaluation of 5!.

Factorial calculations w i th a recursive function .

Fibonacci numbers generated with a recursive function .

S e t of recursive cal l s to method Fibonacc i .

S ummary o f recursion examples and exerc i ses i n the text.

F unctions that take no arguments.

inl ine function that calculates the volume of a cube.

Passing arguments by value and by reference .

In i t ia l iz ing a reference.

U n i n it ial ized l ocal reference causes a syntax error.

Defaul t arguments to a function.

Unary scope resolution operator.

Overloaded function defi n i tions.

Name mangl ing to enable type-safe l inkage.

Us ing a function template.

Descriptive words and phrases in problem statement.

Class d iagram showing attri butes.

Statechart d iagram for c l asses FloorButton and E l evatorButton.

Statechart diagram for c lass El evator.

Act iv i ty d iagram that models the elevator' s logic for responding to

floor-button presses.

Sample program for Exerc i se 3.2.

Towers of Hanoi for the case with four disks .

Arrays
Array of 12 elements .

Operator precedence and associat ivi ty .

I n i t ia l iz ing an array ' s e lements to zeros and pri nting the array .

In i t ial iz i ng the elements of an array wi th a declarat ion .

Generat ing values to be p l aced into e lements of an array .

I n i tia l iz ing and us ing a constant variable .

cons t variables must be in i t ial ized.

Computing the sum of the e lements of an array .

H i stogram pri nting program.

Dice-rol l ing program using an array instead of swi tch.

Student-pol l-analys is program .

Character arrays processed as strings.

stat i c array in i tia l i zation and automatic array in i t ia l ization .

Passing arrays and indiv idual array elements to functions .

const type qual i fier appl ied to an array parameter.

Sort ing an array wi th bubble sort .

184

186

188

191

196

200

200

202

205

207

208

210

212

213

214

216

217

219

221

223

225

226

228

228

230

237

247

252
254

255

256

257

259
260

260

261

262

263

265

268

270

273

275

277

Illustrations

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

5
5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

S urvey data analys i s program .

S ample run for the survey data anal y s i s program.

L inear search of an array .

B inary search of a sorted array .

Double-subscripted array wi th three rows and four co lumns .

I n i tia l iz ing mult id imensional arrays .

Double-subscripted array manipulat ions .

Verb phrases for each c l ass i n o u r elevator s imulator.

C l ass d iagram that i n c ludes attributes and operat ions .

Sequence d iagram that models the steps the bui ld ing repeats

durin g the s imulat ion .

Sequence diagram for schedu l i ng process.

The 36 possible outcomes of rol l ing two dice.

Turt l e graphics commands.

The eight poss ib le moves of the k night.

The 22 squares eli m inated by plac ing a queen in the upper- left corner.

Pointers and Strings
D i rect ly and indirect ly referencing a variab le .

G raphica l representat ion of a pointer poi nt ing to a variabl e i n memory .

Representation of y and yptr i n memory .

Pointer operators & and * .

Operator precedence and associat iv i ty .

Pass-by-value used to cube a variab le ' s value.

Pass-by-reference wi th a pointer argument used to cube a variable' s value.

Pass-by-value analys is of the program of Fig . 5.6.

Pass-by-reference analys is (with a pointer argument) of the program

of F ig . 5.7.

Convertin g a string to uppercase .

Print ing a string one character at a t ime using a nonconstant poin ter to

constant data.

Attempting to modify data through a nonconstant poin ter to constant data.

Attempti n g to modify a constant poin ter to nonconstant data.

Attempti n g to modify a constant poin ter to constant data.

B ubble sort w ith pass-by-reference.

s izeof operator when app l ied to an array name returns the n umber of
bytes in the array.
s izeof operator used to determi ne standard data type s izes .

A rray v and a poin ter variable vPt r that points to v.

Pointer vPt r after poi nter arithmetic .

Referencing array e lements wi th the array name a n d w i th pointers .

String copyi ng us ing array notat ion and pointer notat ion .

G raphical representation of the suit array .

Double-subscripted array representation of a deck of c ards .

Card shuffl i ng and deal ing program.

M U l t ipurpose sort ing program using function poi nters.

XXI

279

282

284

286

290

290

293

297

298

300

302

311

313

314

316

319
321

322

322

323

324

326

327

328

329

331

332

333

334

335

336

339
340

342

342

345

347

349

350

352

355

XXII

5.26

5.27

5.28

5.29

5.30

5.3 1

5.32

5.33

5.34

5.35

5.36

5.37

5.38

5.39

5.40

5.4 1

5.42

5.43

5.44

6
6. 1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6. 10

6. 1 1

6. 12

6. 13

6. 14

6.15

6.16

6. 17

6.18

6. 19

6.20

6.2 1

6.22

Illustrations

Array of pointers to functions.

S tr ing-manipulation functions of the string-handl i ng l ibrary .

strcpy and strncpy.

strcat and strncat.

strcmp and strncmp.

strtok.

strlen.

Modifi e d l i st of verb phrases for classes in the syste m .

Col l aborations that occur i n t h e elevator system.

C ollaboration d iagram for loading and unloading passengers.

Unshuffled deck array .

Sample s huffled deck array .

Rules for moving the tortoise and the h are .

S impletron M ac h i ne Language (S M L) operation codes.

S ML Example 1.

S ML Example 2 .

A sample dump.

Double-subscripted array representation of a maze.

Morse code alphabet.

Classes and Data Abstraction
Creati n g a structure, sett ing its members and print ing the structure.

Class Time defin i t ion .

Time abstract data type i mplementation as a class.

Accessing an object ' s data members and member functions through

each type of object handle-the object ' s name, a reference to the

object and a pointer to the object.

Time c l ass defi ni t ion .

Time class member-function defi nit ions.

Program to test class Time.

private m embers of a c lass are not accessible outside the class .

SalesPerson c lass defi n i tion.

SalesPerson class member-function definit ions .

Ut il i ty function demontrat ion.

Time class containing a constructor with default arguments.

Time class member-function defi n i tions including a constructor

that takes arguments.

C o nstru ctor w ith default arguments.

CreateAndDestroy c lass defi nit ion.

CreateAndDestroy c lass member-function defi ni t ions .

Order in which constructors and destructors are called.

Time c l ass defin i t ion w i th set and get functions.

Time c l ass member-function defi n i tions, including set and get functions.

Set and get functions manipulating an object ' s private data.

Returning a reference to a private data member.

Returning a reference to a private data member.

358

363

364

365

366

368

370

371

371

373

386

386

386

388

389

389

392

396

402

404
408

411

413

419

421

42 1

422

425

427

428

429

431

431

433

436

437

438

440

441

443

446

446

Illustrations

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

6.32

6.33

6.34

6.35

6.36

6.37

7
7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16
7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

Returning a reference to a private data member.

Default memberwise assignment.

Class diagram that includes attributes and operations.

List of handles for each class.

Bell class header file.

Clock class header file.

Person class header file.

Door class header file.

Light class header file.

Bui lding class header file.

ElevatorButton class header file.

FloorButton class header file.

Scheduler class header file.

Floor class header file.

Elevator class header file.

Classes: Part II
Time class definition with const member functions.

Time class member-function definitions, including const

member functions.

const objects and const member functions.

Member initializer used to initialize a constant of a built-in data type.

Erroneous attempt to initialize a constant of a built-in data type

by assignment.

Date class definition.

Date class member-function definitions.

Employee class definition showing composition.

Employee class member-function definitions, including constructor

with a member-initializer list.

Member-object initializers.

Friends can access private members of a class.

Nonfriendlnonmember functions cannot access private members.

this pointer implicitly and explicitly used to access an object's members.

Time class definition modified to enable cascaded member-function calls.

Time class member-function definitions modified to enable

cascaded member-function calls.

Cascading member-function calls.

Employee class definition with a static data member to track

the number of Employee objects in memory.

Employee class member-function definitions.

static data member tracking the number of objects of a class.

Implementation class definition.

Interface class definition.

Interface class member-function definitions.

Implementing a proxy class.

Elevator simulation.

Building class header file.

XXII'

447
449

452

452

453

454

454

455

456

456

457

458

458

459

46 1

468
47 1

47 1

473

475

476

479

480

48 1

482

483

486

488

490

491

492

494

498

499

501

506

507

507
508
511

511

XXIV

7.26

7.27

7.28

7.29

7.30

7.31

7.32

7.33

7.34

7.35

7.36

7.37

7.38

7.39

7.40

7.41

7.42

7.43

7.44

7.45

7.46

8
8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.17

8.18

8.19

8.20

9
9.1

9.2

Building class implementation fi le .

Clock class header file .

Clock class implementation file .

Schedule r class h eader f ile.

Schedul er c lass i m plementation fi le .

B ell c l ass h eader fi le .

Bell class implementation fi le .

Light c lass header fil e .

Light class i mplementat ion fi le .

Doo r class h eader fil e .

Door class i mple mentat ion file .

E levato rButton class header fi le .

El evato rButton class i mplementation fi le .

FloorButton c l ass header fi le .

Floo rButton c l ass i mplementation fi le .

Elevator class header fi le .

Elevator class i mplementation fi le .

Floo r c l ass header fi l e .

Floo r class i mplementation fi le .

Pe rson class h eader fi le .

Person class i mplementation fi le .

Operator Overloading; String and Array Objects
Operators that can be overloaded.

Operators that cannot be overloaded.

Overloaded stream- i nsertion and stream-extraction operators .

A rray c lass defi nit ion wi th ove rloaded operators.

Array class member- and friend -fu nction defin it ions .

Array class test program .

St ring c lass defin i ti o n with operator overloading .

St ring class member-fu nction and f riend-funct ion defi n i t ions .

St ring c lass test program.

Dat e class defini t ion with overloaded i ncrement operators .

Date class member- and friend -fu nction defi n i tions .

Dat e class test program.
Standard library cla ss string .

S tandard l ibrary class vector.

Complex c l ass defi nition .

Comp l ex class member-function defi n it ions .

Complex numbers .

HugeInt class defi ni t ion .

Hu geInt c l ass member-function and friend -fu nction defi ni t ions .

Huge i n tegers .

Object-Oriented Programming: Inheritance
I nh eritance examples.

I nheritance hierarchy for uni versity C ommun ityM embers.

Illustrations

512

514

514

515

516

519

519

520

520

522

522

524

525

526

526

528

530

535

536

538

539

546
549

549

552

557

558

561

569

57l

574

582

583

586

588

592

601

602

603

604

604

607

609
612

613

I l lustrations

9.3

9.4

9.5

9 .6

9 .7

9 .8

9 .9

9 .10

9 . l 1

9 .12

9 .13

9 . 1 4

9 . 1 5

9 . 1 6

9 .17

9 . 1 8

9 . 1 9

9 . 20

9 . 21

9 .22

I nheritance h ierarchy for Shapes .

Point class header fi le .

Point class represents an x-y coordinate pair.

Point class test program .

Circle c l ass header fi le .

Circle c lass contain s an x-y coordinate and a radius .

Circle class test program .

Circle2 class header fi le .

Private base-c lass data cannot be accessed from derived class.

Point2 class header fi le .

Point2 class represents an x-y coordinate pair as protected data.

Circle3 c lass header file .

Circle3 c l ass that i n herits from c lass Point2.

Protec ted base-c l ass data can be accessed from deri ved class.

Point3 class header fi le .

Point3 c l ass uses member functions to manipul ate i ts private data.

Circle4 c l ass header fi le.

Circle4 class that i n herits from c lass Point3 , whic h does not

provide protected data.

B ase-c l ass private data i s accessible to a derived c l ass via public

or protected member function i nherited by the derived class.

Cylinder class header fi le .

9 .23 Cylinder c l ass i n heri ts from class Circle4 and redefi nes member

funct ion getArea.

9 . 24

9 .25

9.26

9 . 27

9 . 28

9 . 29

9 .30

9 . 3 1

9 . 3 2

9 . 3 3

9 . 34

9 . 3 5

9 .36

9 . 37

9 . 38

1 0
10.1

10. 2

1 0. 3

10.4

Point/Circle/Cylinder hierarchy test program .

Point4 class header fi le .

Point4 base c l ass contain s a constructor and a destruc tor.

CircleS c l ass header fi le .

CircleS c l ass i n herits from c l ass Point4 .

Constructor and destructor cal l order.

S u mmary of base-class member accessibi l i ty in a derived cl ass.

Attributes and operat ions of ElevatorButton and FloorButton.

C lass d iagram i ncorporat ing i nheritance i nto the elevator- s i m ul ator.

Button class header fi le .

Button c l ass i mplementation fi le-base c l ass for ElevatorButton

and FloorButton.

ElevatorButton c lass header fi le .

ElevatorBut ton c l ass member-fu nction defi n i tions .

FloorButton c l ass header file .

FloorButton c l ass member-function defi n i tions .

Object-Oriented Programming: Polymorphism
Point class header file .

Point class represents an x-y coordinate pair.

Circle c l ass header fi le .

Circle c l ass that i n herits from c l ass Point.

xxv

6 1 4

615

616

617

618

619

621

622

623

625

625

627

627

629

63 1

632

633

634

636

638

639

640

643

643

644

645

647

649

651

652

653

653

654

655

656

656

662
665

665

666

667

XXVI I l lustrations

10.5 Assigning addresses of base-class and derived-class objects to base-class

and derived-class pointers. 669

1 0.6 Aiming a derived-class pointer at a base-class object. 671

1 0.7 Attempting to invoke derived-class-only functions via a base-class pointer. 672

10.8 Point class header file declares print function as virtual. 675

1 0 .9 Circle class header file declares print function as virtual. 675

10 .10 Demonstrating polymorphism by invoking a derived-class virtual

function via a base-class pointer to a derived-class object. 676

1 0. 1 1 Defining the polymorphic interface for the Shape hierarchy classes. 683

10.12 Abstract base class Shape header file. 684

1 0. 1 3 Abstract base class Shape. 684

1 0.14 Point class header file. 685

10. 1 5 Point class implementation file. 686

1 0.16 Circle class header file. 687

1 0.17 Circle class that inherits from class Point. 688

10. 1 8 Cylinder class header file. 690

10.19 Cylinder class implementation file. 691

10.20 Demonstrating polymorphism via a hierarchy headed by an abstract
base class. 692

10.21 Flow of control of a virtual function call.

10.22 Class hierarchy for the polymorphic employee-payroll application.

10.23 Employee class header file.

10.24 Employee class implementation file.

10.25 SalariedEmployee class header file.

1 0.26 SalariedEmployee class implementation file.

10.27 HourlyEmployee class header file.

1 0.28 HourlyEmployee class implementation file.

1 0.29 ConunissionEmployee class header file.

10.30 ConunissionEmployee class implementation file.

10.31 BasePlusConunissionEmployee class header file.

1 0.32 BasePlusConunissionEmployee class implementation file.

10.33 Employee class hierarchy driver program.

697

700

701

701

703

704

705

705

707

708

709

710

711

1 1 Templates 7 1 8
1 1 . 1 Function-template specializations of function template printArray. 721

11.2 Class template Stack. 724

11.3 Class template Stack test program. 726

11.4 Passing a Stack template object to a function template. 728

7 2 C++ Stream Input/Output 737
12.1 Stream-I/O template hierarchy portion. 741

12.2 Stream-I/O template hierarchy portion showing the main

file-processing templates. 743

1 2.3 Printing the address stored in a char * variable. 743

12.4 get, put and eof member functions. 745

Illustrations XXVII

12 .5 I nput of a stri ng us ing c in with stream extraction contrasted w i th

i nput us ing c in . get. 746

12 .6 I nputting character data with cin member function get l ine. 747

12.7 U nformatted I/O using the read, gcount and wri t e member functions. 749

12.8 S tream manipulators hex, oc t , dec and setbase. 750

12.9 Prec is ion of floati ng-point values . 751

12 .10 width member function of class ios_base. 7 5 3

12.11 Programmer-defined, nonparameterized stream manipulators. 754

12.12 Format-state stream manipu lators from < iostream>. 755

12.13 Contro l l ing the pri nting of trai l ing zeros and decimal points for doubles. 7 5 6

12.14 Left j u st ificat ion and right just ification with stream-man i p u l ators

l e f t and right. 757

12 .15 Print ing an i nteger wi th i n ternal spacing and p lus s ign . 758

12 .16 Using member function f i l l and stream manipulator s et f i l l to

change the padding character for f ields l arger than the values being printed. 759

12 . l 7 S tream-manipulator showbase. 761

12 .18 Floati ng-point values displayed in defaul t , scientific and fixed formats. 762

1 2 .19 S tream manipulator uppercase. 763

12 . 20 S tream manipulators boolalpha and noboolalpha. 764

12 . 21 f lags member funct ion. 765

12.22 Test ing error states . 767

1 3 Exception Handling 7 7 9
13 .1 Exception-handl i n g example that throws except ions on attempts to

d i v i de by zero . 785

13 . 2 Rethrowi n g an exception . 788

13 . 3 S tack u n w i nding . 791

13 .4 new returni n g 0 on fai lure . 793

13 .5 new throwing bad_al l oc on fai l ure . 795

13 .6 set_new_handler speci fying the function to cal l when new fai l s . 797

13.7 aut o-ptr object manages dynamical l y al l ocated memory . 798

14 F i le ProceSSing 808
14.1 Data hierarchy . 810

14. 2 C++ ' s v i e w o f a fi l e o f n bytes. 811

14. 3 Port ion o f stream I/O templ ate hierarchy. 812

14.4 Creat ing a sequential fi l e . 813

14.5 Fi le open modes . 814

14 .6 End-of-fi l e key combi nat ions for various popular computer syste m s . 815

14.7 Reading and prin t ing a sequential fi le . 817

14.8 Credi t- i n q uiry program . 8 1 9
14. 9 C + + view of a random-access fi le . 825

14.10 C l i entData c lass header fi le . 825
14.11 C l i entData c l ass represents a customer' s credi t i n format ion . 826

14.12 Creat ing a random-access fi le sequential l y . 828

14.13 Writing to a random-access fi le . 829

XXVII I

1 4 . 1 4 Read i n g a random-access fi le sequential ly .

14.15 Bank-account program.

1 5
15. 1

1 5.2

1 5.3

1 5 .4

15.5

1 5.6

15.7

15.8

15.9

15.10

15.11

15.12

J 6

Class string and String Stream Processing
Dem o nstrati ng s t ring assignment and concatenat ion.

C om pari ng strings.

D emonstrating s t ring member function subs tr.

Using function swap to swap two s t rings.

Print ing s t r ing characteri stics.

D emonstrating the s t ring find functions.

Demonstrating functions erase and replace.

Demonstrat ing the s t ring insert member functions.

C onverting strings to C-style strings and character arrays .

Using an i terator to output a string.

Using a dynamical l y al located ostringstream object.

Demonstrat ing i nput from an i s t ringstream object.

Web Programming with CGI

I l lustrations

832

835

850
853

855

858

858

859

862

865

866

867

869

87 1

873

880
16.1 Three-tier appl ication model . 883

16.2 S tarting the Apache HTTP server. 885

16.3 Requesting t e s t . html from Apache. 885

16.4 C l ient interacting with server and Web server. 887

16.5 First C G I script. 889

16.6 Responding to a get request. 891

16.7 Output of local t ime . cgi when executed from the command l i ne . 892

16.8 Retrieving environment variables v ia function get env. 893

16.9 Read i ng i nput from QUERY_STRING. 896

16.10 XHTML form elements. 898

16.11 Using GET w i th an XHTML form . 899

16.12 Using POST with an XHTML form . 901

16. 1 3 I n teract ive portal to create a password-protected Web page. 906

16.14 I n teractive portal handler. 907

16.15 X HTML document contai n ing a form to post data to the server 910

16.16 Writing a cookie . 91 1

1 6.17 Program to read cookies from the cl ient ' s computer. 9 1 4
16.18 X HTML document to read user' s contact information. 916

16.19 C reating a server-s ide fi le to store user data. 917

16.20 C ontents of c l i ent s . txt data fi le . 921

16.21 Program that outputs a login page.

16.22 C G I script that allows users to buy a book.

16.23 C G I script that allows users to view their carts' content.

1 6.24 Logout program.

1 6.25 Contents of catalog . txt.

J 7 Data Structures
17.1 Two self-referential c lass objects l inked together.

922

929

93 1

935

937

942
945

Illustrations

17 .2

17.3

17 .4

1 7 .5

17 .6

17 .7

17 .8

1 7.9

17 .10

1 7 .11

17 .12

17.13

17.14

17.15

17 .1 6

17 .17

17.18

17 .19

17 .20

1 7.21

17.22

1 7 .23

1 7 .24

17.25

17 .26

17 .27

1 7.28

17 .29

17.30

18
18.1

18.2

18.3

18.4

18 .5

18 .6

18.7

18.8

18 .9

18.1 0

18.11

18.12

18 .13

A graphical re pre se ntation of a l i st .

L i stNode class-te mp late defin i t ion .

List c l ass-te mplate definit ion.

M anipulat ing a l i n ke d l i st .

Ope ration insertAt Front repre sented graphical l y .

Ope ration insertAtBack re pre se nted graphical l y .

Ope ration removeFromFront repre sented graphical l y .

Ope ration removeFromBack re pre sente d graphical l y .

Stack c l ass-template defin it ion.

A s i mp le stack program .

Stack class te mplate with a composed L i s t object .

Queue c l ass-te mplate de fin it ion.

Que ue-proce ssing program.

A graphical represe ntation of a bi nary tree .

A b i nary search tree .

TreeNode c l ass-template defini t ion .

Tree c l ass-te mplate de fin it ion.

Cre at ing and traversing a b i nary tree .

A b inary se arch tree .

A 15 - node binary se arch tree .

S imple commands .

S imple program that determine s the sum of two integers .

S i mple program that fi nds the l arger of two integers.

Calcul ate the square s of se ve ral integers.

Writ ing, compi l ing and e xecuting a S i mple language program .

SML i nstructions produced after the compi ler' s fi rst pass .

S y mbol table for program of Fig. 17.27 .

Nonopti mized code from the program of Fig. 1 7 .27 .

Optim ized code for the program of Fig. 1 7 . 27 .

Bits , Characters, Strings and Structures
Possib le storage a l ignment for a variable of type Example, showing

an unde fi ne d are a i n me mory .

High-pe rformance card-shuffl i ng and deal ing s imulation .

Output for the high-performance card-shuffl ing and deal ing s i m u l at ion .

B i twise ope rators .

Pri nt ing an unsigne d inte ge r in bits .

Re sults of comb i n i ng two bits with the bitwise AND operator (&) .
B itwise A N D , bi twise inc lus ive-OR, bi twise exc lus ive - O R and b i twise

comple ment ope rators .

Sample output for the program of Fig. 1 8 .7 .

Combining two bits with the bitwise inc lus ive-OR ope rator (I) .

Combi ning two bits with the bi twise exclus ive-OR ope rator (A) .
B itwise sh ift ope rators .

B itwise assignment operators .

Ope rator pre ce de nce and associati v i ty .

XXIX

946

947

948

952
956

957

958

959

961

962

964

966

967

969

970

970

971

974

976

980

987

988

988

988

989

992

992

997

997

1 000

1003

1005

1 007

1 008

1009

1 010

1 011

1013

1013

1 01 4

101 4

101 6

101 6

xxx I l lustrations

1 8 . 1 4 B it fields u sed t o store a deck of cards. 1 0 1 7

1 8 . 1 5 Sam pl e output for the program of Fig. 1 8 . 1 4 . 1 0 1 9

1 8 . 1 6 Charac ter-handl ing l ibrary functions. L 020

1 8 . 1 7 Charac ter-handl ing functions i sdigi t , i salpha, i salnum

and i sxdig i t . 1 02 l

1 8 . 1 8 Character-handling functions i s lower, i supper, tolower

and toupper. 1 023

1 8 . 1 9 Character-handling functions i s space, i scnt r l , i spunc t ,

i sprint and i sgraph. 1 025

1 8 .20 S tring-conversion functions of the general -uti l i t ies l i b rary. 1026

1 8 . 2 1 S tring-conversion function atof. 1 027

1 8 .22 S tring-conversion function ato i . 1 027

1 8 .23 S tr in g-conversion function ato l . 1 028

1 8 .24 S tring-conversion function strtod. 1 029

1 8 .25 S tring-conversion fu nction strtol . 1 030

1 8 .26 S tring-conversion function strtou l . 1 030

1 8 .27 Search functions of the string-handl i ng l ibrary. 1 03 1

1 8 .28 S tring-search function s t rchr. 1 03 2

1 8 .29 S tring-search function s t rc spn. 1 03 3

1 8 . 30 S tring-search function s t rpbrk. 1 034

1 8 .3 1 S tring-search function s t rrchr. 1 034

1 8 . 3 2 S tring-search function strspn. 1 035

1 8 .3 3 S tring-search function s t r s t r . 1 036

1 8 .34 Memory functions of the string-handl ing l ibrary. 1 037

1 8 .35 Memory-handling function memcpy. 1 03 8

1 8 .36 Memory-handl ing function memmove . 1 03 8

1 8 .37 Mem ory-handling function memcmp. 1 039

1 8 . 3 8 Memory-handl ing function memchr. 1 040

1 8 .39 Mem ory-handling function memse t . 1 04 1

1 9 Preprocessor 1 053
1 9 . 1 The predefined symbo l i c constants. 1 060

20 C Legacy Code Topics 1 065
20. 1 The type and the macros defined i n header < c stdarg> . 1 067

20.2 Using v ariable-length argument l i sts. 1 068

20.3 Using com mand-l i ne arguments. 1 070

20.4 Using functions exi t and atexi t . 1 074

20.5 Signals defi ned in header < c s igna l > . 1 076

20.6 Using signal handling. 1 076

20.7 Using goto. L 079

20. 8 Printing the value of a union i n both member data types. 1 082

20 .9 Using an anonymous union. 1 083

20. 1 0 S ampl e output for Exerc i se 20. 8 . L 089

2l Standard Template Library (STL) 1 090
2 1.1 S tandard Library container c lasses. 1 094

XXXVI Preface

Features of C++ How to Program, Fourth Edition

This book contain s many features i nc luding :

Full-Color Presentation

This book i s in ful l color to show programs and their outputs as they typical l y would appear

on a c omputer screen . We syntax color al l the C++ code, as do many C++ i ntegrated-de

velopment environ ments and code editors. Thi s great ly i mproves code readab i l i ty-an es

pec i a l l y i mportant goal , g i ven that th is book contai n s over 20,000 l ines of code. Our

s y ntax-colori ng conventions are as fol lows:

comments appear in green

keywords appear in dark blue

errors appear in red

constants and literal value s appear in light blue

a l l o ther code appears in black

Code Highlighting and User-Input Highlighting

We have added extensive code highl ighting. I n our code walkthrough s (at Deite l , we cal l

these "wri tearounds") , we have e l i m inated most of the "redundant" code sn ippets that ap

peared i n l i n e i n the text i n the Third Edition . We kept them i n the earliest portio n of the book

as a pedagogic device to help novices. We want the reader to see all new code features i n

context, s o from Chapter 3 forward, our code walkthroughs s imply refer t o t h e l i n e numbers

of the new code segments i n side complete source programs. To make it easier for readers to

spot the featured segments, we have high l i ghted them in bright ye l low. Thi s feature also

helps students review the material rapidly when preparing for exams or labs. We have also

h ighl ighted i n our screen dialogs a l l user i nputs to dist inguish them from program outputs.

"Code Washing"

Code washing i s our term for applying comments, us ing meani ngfu l ident ifiers, app ly ing

i n dentatio n and us ing vertical spacing to separate meaningful program un i ts . This process

results in programs that are much more readabl e and self-documenti n g . W e have done ex

ten s i ve "code washi ng" of a l l the source code programs in the text, the lab manual, the an

c i l l aries and the Cyber Classroom.

Early Introduction of Standard Library string and vec t or Objects

Object-oriented programming l anguages general l y offer the abi l i ty to create string and ar

ray objects by i n stantiat ing them from l ibrary c l asses or from programmer-defi ned c l asses.

I t i s al so i m portant for students l earning C++ to become fami l i ar w i th C-styl e , pointer

based arrays and stri ngs, because of the massive amount of C and early C++ l egacy code

they w i l l encounter in i ndustry . In C+ + How to Program, 41e, we show a l l three means of

creat ing s tri ngs and arrays . In Chapters 4 and 5 we show the tradit ional , C - I i ke pointer

based an'ays and stri ngs, respect ively . In Chapter 8, Operator Overload ing, we create our

own user-defi ned c l asses Array and String. At the end of Chapter 8, we i ntroduce l i

brary c lasses vector a n d string, which w e explain i n detai l i n Chapter 1 5 a n d Chapter

2 1 , respect ive ly . Through Chapter 8, we favor poi nter-based arrays and strings ; after Chap

ter 8 , we favor the l ibrary c l asses. The Chapter 1 5 material on s t ring could be taught at

any point after Chapter 8 . The Chapter 21 material on vec tor (and other aspects of the
STL) coul d also reasonabl y be taught after Chapter 8, although we recommend coveri n g

Chapter 1 1 , Templates, first.

Preface xxxv

I n th i s Preface, we overview C+ + How to Program, 4/e 's comprehens ive s u i te of edu

cat ional m ateri als that he lp i n structors max i m ize their students' C++ learn i n g experience.

We explain conventions we use, such as syntax coloring the code examples, "code

washing" and h igh l ighting i mportant code segments to help focus students ' attention on the

key concepts introduced in each chapter. We overv iew the new features of C+ + How to

Program, 4/e, inc luding our early treatment of arrays and stri ngs as objects , an enhanced

treatment of object-oriented programming, Web-appl ication development w i th CG1, the

enhanced elevator-s imulation object-oriented design (000) case study wi th the UML, and

the extensive use of U M L diagrams that have been upgraded to U M L version 1 .4 standards.

Prentice Hal l has bundled Microsoft 's Visual C+ +® 6 Introductory Edition software

wi th the text and offers a separate value-pack containing C+ + How to Program, 4/e, with

Metrowerks Code Warrior for the Maci ntosh and Windows. We l i st several comp i lers that

are avai l able on the Web free for download . To further support novice programmers, we

offer s i x of our new DIVE- INTOTM Series pub l ications that are avai lable free for down l oad

at www . de i t e l . com. These materials explain how to compi le , execute and debug C++

programs using various popular C++ development envi ronments.

We overv iew the complete package of anc i l lary materials avai lable to instructors and

students using C+ + How to Program, 4/e . These inc lude an Instructor 's Resource CD w i th

solut ions to the book ' s chapter exercises and a Test-Item File w i th hundreds of mult ip le

choice questions and answers. Additional i nstructor resources are avai lable at the book ' s

Companion Web S ite (www . prenhal l . com/de i t e l) . which inc ludes a Syllabus

Manager and customizable PowerPoint® Lecture Notes. N umerous support materia ls are

avai l able for students at the Companion Web S i te , as wel l . For i nstructors who want to hold

c losed- l ab sessions (or highly structured homework ass ignments) , we provide the optional ,

for-sale manual , C+ + in the Lab. Thi s publ ication i nc l udes carefu l l y constructed Prel ab

Act i v i ties , Lab Exercises and Postlab Activ i t ies .

This Preface also d i sc usses The C+ + Multimedia Cyber Classroom, 4/e, an interac

t ive , mul t imedia CD-based version of the book . Thi s l earning aid provides audio "walk

throughs" of programs, ani mations of programs executing and h undreds of exerc i ses and

sol ut ions . We descri be how to order both the Cyber Cl assroom and The Complete C+ +

Training Course, 4/e, boxed product, which contai ns the Cyber C lassroom and the text

book .

We discuss several OEITELTM e-Iearning initiatives, including an explanation of Oeitel

content avai lable for the Blackboard, CourseCompass and WebCT Course Management Sys

tems, each of which supports C+ + How to Program, 4/e . Premium Course Compass, which

offers enhanced Oeitel content based on The C+ + Multimedia Cyber Classroom, 4/e, wil l be

avai l able in January 2003.

C+ + How to Program, 4/e, was rev iewed by 52 dist ingui shed academics and indu stry

profess ional s ; we l i st the ir names and affi l iations so you can get a sense of how carefu l l y

thi s book w a s scruti n ized. T h e Preface concludes w i t h information about t h e authors and

about Oeitel & Associates, I n c . As you read this book, if you have any questions, p lease

send an e-mai l to de i t e l@deitel . com; we w i l l respond promptly . Please v i s i t our

Web s i te , www . de i t e l . com. regularly and be sure to sign up for the DEITELTM Buzz

ONLINE e- mai l newsletter at www . deitel . com/ news letter/ subscribe. We use

the Web s i te and the newsletter to keep our readers current on a l l OEITEL™ pub l icat ions

and serv ices .

Preface

Welcome to A N S I/I S O Standard C++ , At Deitel & Associates , we write col lege-level pro

gramm i ng-language textbooks and professional books and work hard to keep our publ i shed

books up-to-date with a steady flow of new edit ions . Wri t ing C+ + How to Program,

Fourth Edition, (4/e for short) , was a joy. Thi s book and its support materials have e very

th ing i nstructors and students need for an informative, in terest ing , chal lenging and enter

tai n i ng C++ educational experience. As the book goes to publ icat ion, i t is compl i an t wi th

the latest version of the ANS I/I SO C++ Standard (one of the most i mportant worldwide

standards for the comput ing community) and with object-oriented des ign us ing the latest

vers ion of the UML (U n i fied Model ing Language) from the Object M anagement G roup

(O M G) . We tuned the writ i ng, the pedagogy, our coding style, the book ' s anc i l l ary package

and even added a substantial treatment of deve loping I n ternet- and Web-based appl ica

tions. We have added a comprehensive Tour of the Book section to Chapter I . Thi s w i l l

h e l p i nstructors, students a n d professional s get a sense o f t h e rich coverage t h e book pro

vides of C++ object-oriented programming, object-oriented design with the U M L and ge

neric programming . I f you are evaluati ng the book, please read the Tour of the B ook now

in pages 44-5 6 .
Whether y o u are an i nstructor, a student, an experienced professional or a n o v i c e pro

grammer, th is book has much to offer. C++ is a world-class programming language for
developing industrial -strength, h igh-performance computer appl ications . We carefu l l y
audited t h e manuscript agai nst t h e A N S I/ ISO C + + standard document , I which defines
C++, and we were priv i leged to have as a revi ewer Steve Clamage of S u n M i c rosystems
who heads the A N S I J 1 6 Committee responsib le for evol v i n g the C++ standard . A s a result ,
the programs you create by studying this text should port eas i ly to any A N S I/I SO-com
pl iant compi ler.

I . An electronic PDF copy of the C++ standard docu ment, nu mber I S O- I EC 1 4882- 1 998, is avail
able for $ 1 8 at web st ore .ansi. org / ansidocstore /defau l t .a sp; a paper copy is
available from this site for $ 1 75 .

Illustrations XXXI I I

E.2 H eader e lements hl through h6. 1241
E.3 L i n k i n g to other Web pages. 1242
E.4 Link ing to an e-mai l address. 1244

E.5 Plac i ng i mages in X HTML fi les. 1245

E.6 Using i mages as l i n k anchors. 1247

E.7 I nsert ing specia l characters i nto X HTML. 1249

E.8 Unordered l i sts i n X H TM L. 1251

E.9 Nested and ordered l i sts in XHTML. 1 252
E. l O X H T M L table. 1 255

E.11 Complex X HTML table. 1257

E.12 S i mple form with h idden fields and a text box. 1260

E.13 Form w i th textareas, password boxes and checkboxes. 1263

E.14 Form i ncluding radio buttons and drop-down l i sts. 1266

F XHTML Special Characters 1 274
F. l X H T M L special characters. 1274

XXXI I

22
2 2 . 1

2 2 . 2

2 2 . 3

2 2 . 4

2 2 . 5

2 2 . 6

2 2 . 7

2 2 . 8

2 2 . 9

2 2 . 1 0

22 . 1 1

22. 1 2

22 . 1 3

22. 1 4

22. 1 5

22. 1 6

22. 1 7

22 . 1 8

22. 1 9

22 .20

22 .2 1

22 .22

A
A . I

B
B . I

C
C l

C 2

C 3

C4

C 5

C 6

C7

C 8

C . 9

C lO

D

E
E. l

I l lustrations

Other Topics
Demonstrat ing operator const_cas t .

Demonstrat ing operator reinterpret_cas t .

Demonstrat ing t h e u s e o f name spaces.

Operator keywords as alternatives to operator symbol s .

Demonstrat ing t h e operator keywords.

S ingle-argument constructors and i mpl ic i t conversions-array . h.

S ingle-argument constructors and i mpl ic i t conversions-array . cpp.

S ingle-argument constructors and i mpl ic i t conversions-f ig2 2_0 8 . cpp.

Demonstratin g an expl i c i t constructor-array . h.

Demonstrat ing an expl i c i t constructor-array . cpp.

Demonstrat ing an expl i c i t constructor-f ig2 2_l 1 . cpp.

Demonstrat ing a mutable data member.

Demonstrat ing the • * and - > * operators .

Demonstrat ing mUltiple i nheritance-base l . h.

Demonstratin g mult iple i nheritance-ba se2 • h.

Demonstrat ing mult iple inheritance-deri ved . h.

Demonstrat ing mUltiple i nheritance-deri ved . cpp.

Demonstrat ing multiple i nheritance-f ig2 2_l 8 . cpp.

Mult iple i nheritance to form class i o s t ream.

Attemptin g to call a multiply inherited function polymorphical l y .

U s i n g vi rtual base classes.

name spaces for Exercise 22. 1 0.

Operator Precedence Chart
Operator precedence chart .

ASCII Character Set
ASCII character set.

Number Systems
Digits of the b inary , octal , deci mal and hexadecimal n u mber systems.

Comparison of the binary , octal , decimal and hexadeci mal n umber systems.

Positional values i n the deci mal n umber system.

Positional values i n the b inary n umber syste m .

Positional values i n t h e octal number system.

Positional values i n the hexadecimal n umber system.

Decimal , b i n ary , octal and hexadecimal equivalents .

Convert ing a b inary n umber to decimal .

Convertin g an octal n umber to deci mal .

Convertin g a hexadeci mal n u mber to dec i mal .

C++ Internet and Web Resources

Introduction to XHTM L
First X HTML example.

1 1 83
1 1 84

1 1 86

1 1 87

1 1 90

1 1 9 1

1 1 92

1 1 93

1 1 93

1 1 95

1 1 95

11 96

11 98

1 1 99

1 20]

1 202

1 202

1 203

1 204

1 206

1 206

1 208

1 2 1 2

1 21 4
1 2 1 4

1 21 6
1 2 1 6

1 21 7
1 2 1 9

1 2 1 9

1 2 1 9

1 220

1 220

1 22 1

1 22 1

1 223

1 223

1 223

1 230

1 236
1 23 8

I l lustrations XXXI

21.2 STL container common functions. 1095

21.3 Standard Library container header files. 1096

2 1 .4 typedefs found in first-class containers. 1097

2 1 .5 Input and output stream iterators. 1098

21.6 Iterator categories. 1 100

21.7 Iterator category hierarchy. l l OO
21.8 Iterator types supported by each Standard Library container. 1101

2 1 .9 Iterator typedefs . 1101

21.10 Iterator operations for each type of iterator. 1102

21.1 1 Mutating-sequence algorithms. 1104

21.12 Non-mutating sequence algorithms. 1 1 04

2 1 .13 Numerical algorithms from header file <numeric> . 1104

2 1 .14 Standard Library vector class template. 1 1 06

21. 1 5 Standard Library vector class template element-manipulation functions. 1109

2 1 . 1 6 STL exception types. 1112

21.17 Standard Library list class template. 1113

21.18 Standard Library deque class template. 1118

21. 1 9 Standard Library multiset class template. 1120

21.20 Standard Library set class template. 1123

21.21 Standard Library mul t imap class template. 1 1 24

21.22 Standard Library map class template. 1126

2 1 .23 Standard Library stack adapter class. 1129

2 1 .24 Standard Library queue adapter class templates. 1131

21.25 Standard Library priority_queue adapter class. 1132

21.26 Algorithms fill, fill_n, generate and generate_no 1134

21.27 Algorithms equal, mismatch and lexicographical_compare. 1136

21.28 Algorithms remove, remove_if, remove_copy and

remove_copy_if. 1139

21.29 Algorithms replace, replace_if, replace_copy and

replace_copy_if. 1142

21.30 Mathematical algorithms of the Standard Library. 1144

21.31 Basic searching and sorting algorithms of the Standard Library. 1148

21.32 Demonstrating swap, iter_swap and swap_ranges. 1150

21.33 Demonstrating copy _backward, merge, unique and reverse. 1152

21.34 Demonstrating inplace_merge, unique_copy and

reverse_copy. 1 1 55

21.35 set operations of the Standard Library. 1157

21.36 Algorithms lower_bound, upper_bound and equal_range. 1160

21.37 Using Standard Library functions to perform a heapsort. 1163

21.38 Algorithms min and max. 1165

21.39 Algorithms not covered in this chapter. 1166

2 1 .40 Class bi tset and the Sieve of Eratosthenes. 1 1 70

21.41 Function objects in the Standard Library. 1172

21.42 Binary function object. 1 173

Preface XXXVII

Tuned Treatment of Object-Oriented Programming in Chapters 9 and 10

Thi s i s one of the most s ignificant i mprovements i n this new edit ion . We performed a h igh

prec is ion upgrade to Chapters 9 and 1 0 . The improvements make the material c learer and

more access ib le to students and professionals , espec ia l l y those study ing object-orie ntation

for the first t ime .

Redesigned Pedagogy of Chapter 9 , Object-Oriented Programming: Inheritance .

The new Chapter 9 carefu l l y walks the reader through a fi ve-example sequence that dem

onstrates private data, prot ected data and software reuse v ia i nheritance. We beg i n

by demonstrat ing a c l ass wi th private data members and pub l i c member funct ions to

manipulate that data. Next, we i mplement a second c lass with several addit ional capab i l i

t ies . To do th is , we dupl icate much of the fi rst example ' s code . I n our t h i rd example, we

begin our discussion of i nheritance and software reuse-we use the c l ass from the fi rst

example as a base c l ass and i nherit i ts data and fu nctional ity i nto a new deri ved c l ass . Thi s

example i ntroduces the i nheritance mechan ism and demonstrates that a deri ved c l ass

cann ot access its base c lass ' s private data direct ly . Thi s moti vates our fourth example,

i n which w e i ntroduce prot ected data i n the base c l ass and demonstrate that the derived

c l ass can i ndeed access i ts base c l ass ' s prot ected data. The last example in the sequence

demonstrates proper software engineeri ng by defi n i ng the base c l ass ' s data as private

and us ing the base c l ass ' s publ ic member functions (that were inheri ted by the deri ved

c l ass) to manipulate the base c l ass ' s private data from the derived c l ass . We fol low the

fi ve-part i ntroduction w i th a three-level c lass h ierarchy that employs the software engi

neeri ng techniques i n troduced earl ier i n the chapter. The chapter c loses w i th a d iscuss ion

of the three i nheritance types supported by C++ and a general d iscuss ion of software engi

neeri ng w i th i nheritance .

Redesigned Pedagogy of Chapter 10, Object-Oriented Programming: Polymor

phism. The new Chapter 1 0 bui lds on the i nheritance concepts presented i n Chapter 9 and

focuses on the rel at ionships between c lasses i n a c lass h ierarchy . Chapter 1 0 uses a four

example sequence to present the powerful processing capab i l i t ies that these rel at ionships

enable . We beg i n w i th an example that i l l u strates the " i s-a" re lationship between a derived

c l ass object and i ts base-class type . Thi s re lationship enables the derived-c l ass object to be

treated as an object of its base c l ass . We show that we are able to ai m a base-class poi nter

at a deri ved-cl ass obj ect and i n voke the base-c l ass ' s functions o n that obj ect . In our second

example, we demonstrate that the reverse is not true-a base-class obj ect i s not considered

to be an object of its deri ved-c l ass type-and we show that compi ler errors occur if a pro

gram attempts to man ipulate a base-c lass obj ect i n this manner. Our th i rd example demon

strates that the only functions which can be i nvoked through a base-c l ass poi n ter are those

functions defi ned by the base c l ass . The example shows that attempts to i n voke derived

c l ass-on l y functions resu l t in error messages . The l ast example in the sequence in troduces

polymorphi s m with v i rtual functions, which enable a program to process obj ects of c l asses

related by a c l ass h ierarchy as obj ects of their base-class type. When a v i rtual function is

i nvoked via a base-c lass poi nter (or reference) , the derived-cl ass-spec ific version of that

function is i n voked. The chapter cont inues with a case study on poly morph i s m i n which we

process an array of obj ects that a l l have a common abstract base c l ass that contai ns the set

of functions common to every c l ass in the hierarchy. We fol low th is example wi th an i n

depth discussion of h o w polymorphism works "under t h e hood." W e concl ude w i t h a case

study that demonstrates how a program that processes obj ects polymorphical l y can sti l l

XXXVI I I Preface

perform type-specific processing by determ i n i ng at execution t ime the type of the object

c u rrently being processed.

Web Applications Development with CGI

The new Chapter 1 6, Web Program ming with C G I , has everyth ing readers need to beg i n

developi n g the i r o w n Web-based appl ications that w i l l r u n on t h e In ternet ! 2 Readers w i l l

learn how to b u i l d so-cal led n-t ier appl icati ons, i n which the functional i ty provided b y each

tier can be di stributed to separate computers across the I nternet or executed on the same

computer. In part icu lar, we b u i l d a three-tier on l i ne bookstore appl icatio n . The bookstore's

information i s stored i n the appl icat ion ' s data tier. I n industria l-strength app l icat ions, the

data t ier i s typical ly a database such as Oracle , Microsoft® SQL Server or MySQL. For

s impl icity, we use text fi les and employ the fi le-processing techniques of Chapter 1 4 to ac

cess these fi les . The user enters requests and recei ves responses at the appl ication ' s cI ient

t ier, which i s typical l y a computer running a Web browser such as M i c rosoft I n ternet Ex

plorer or Netscape®. Web browsers, of course, know how to communicate with Web sites

throughout the Internet. The middle tier contai ns both a Web server and an appl ication-spe

c ific C++ program (e . g . , our bookstore appl ication) . The Web server communicates w i th

the C++ program (and vice versa) v ia the CGI (Common Gateway I nterface) protocol . W e

u s e the popu l ar Apache HTTP server a s o u r W e b server, w h i c h i s avai lable free for down

l oad from www . apache . org. The Web server knows how to com m u n icate w i th the c l i

e n t t ier across the I nternet u s i n g the HyperText Transfer Protocol (HTTP) . We d iscuss the

crucial role of the Web server in Web program m i ng and provide a s imple example that re

quests a Web page from a Web server. We discuss CGI and how it al lows a Web server to

comm u n icate with the top t ier and CGT scripts (i .e . , our C++ programs) . We provide a s i m

ple example that gets the ti me a n d date from the server a n d renders i t i n a browser. I n o u r

forms-based examples we u se buttons, password fie lds , check boxes a n d text fie lds . We

present an example of an i nteractive portal for a travel company that di splays airfares to

various c i t ies . Travel-c lub members can log i n and view discounted ai rfares . We also dis

cuss various methods of stori ng c l ient-spec ific data, which i n c l ude hidden fie lds (i .e . , in

formation stored i n a Web page but not rendered by the Web browser) and cookies-smal l

text fi les that the browser stores on the c l ient ' s mach ine . The chapter examples concl ude

with an e-bus iness case study of an onl ine bookstore that a l lows users to add books to an

e lectronic shopping cart . Thi s case study contai ns several CGI scripts that i nteract with one

another to form a complete appl ication. The o n l i ne bookstore is password protected, so us

ers first must log i n to gai n access.

XHTMLTM

The World Wide Web Con sorti u m (W3C) has decl ared HyperText Markup Language (H T

M L) to be a legacy technology that w i l l undergo no further devel opment . HTML is being

replaced by the Extens ib le HyperText Markup Language (X H T M L)-an X M L-based tech

nology that rapidly i s becoming the standard for describ ing Web content . We use X HTML

i n Chapter 1 6 , Web Programming with CG I ; Appendix E presents an X HT M L introduct ion .

I f you are not fam i l iar with X HTML, please read Appendix E before reading Chapter 1 6 .

2. There are other technologies for deve loping Web-based app l icat ions . Java™ developers use J ava
serv lets and l avaServer™ Pages . Wi ndows-pl atform devel opers use Active Server Pages (A S P) .
W e chose C G I for th is book, because both standard C++ a n d C G ! are p latform i n dependent .

Preface XXXIX

Unified Modeling Lallguage™ (UML)

The Unified Mode l i n g Language™ (U M L) has become the preferred graphical mode l ing

language for des i g n i ng object-oriented systems . I n C+ + How to Program, Third Edition ,

we u sed the U M L i n optional sections on ly , and we used conventional fl owchart segments

and i nheritance diagrams to re inforce the explanat ions . We have fu l l y converted the d ia

grams i n the book to be U M L 1.4 compl i ant . I n part icu lar, we upgraded al l the figures in

the U M LIOOD Elevator S i m u lat ion case study ; we converted a l l the flowcharts i n Chapter

2 , Control Structures , to U M L act iv ity di agram s ; and we converted all the i n heritance d i a

grams in Chapters 9, 1 2 , 14 and 22 to UML c l ass di agrams .

T h i s Fourth Edition carefu l l y tunes t h e optional (but h i g h l y recom mended) case study

we present on obj ect-oriented design using the U M L . I n the case study, w e fu l l y i mplement

an e levator s i m u l at ion . I n the 'Thinking About Objects" sect ions at the ends of Chapters

1-7 and 9, we present a carefu l l y paced i ntroduction to obj ect-oriented design us ing the

U M L . We present a concise, s impl ified subset of the UML then gu ide the reader through a

fi rst design experience in tended for the novice object-oriented designer/programmer. The

case study is fu l l y solved. It is not an exercise ; rather, i t i s an end-to-end learn i n g experi

ence that concl udes with a detai led walkthrough of the C++ code . I n each of the fi rst fi ve

chapters, we concentrate on the "conventional" methodology of structured programm i n g ,

because t h e objects that we b u i l d wi l l u s e these structured-program pieces . We concl ude

each chapter with a "Think ing About Obj ects" section , i n which we present an i n troduction

to obj ect orientat ion us ing the UML. These "Think ing About Objects" sect ions he lp stu

dents develop an obj ect-oriented way of thinking, so that they i mmediate l y can use the

obj ect-oriented programming concepts they begi n learning i n Chapter 6 . In the fi rst of these

sections at the end of Chapter 1 , we i ntroduce basic concepts (i . e . , "object th i n k ") and ter

m i no l ogy (i .e . , "object speak") . In the optional "Th i n k i ng About Obj ects" sections at the

ends of Chapters 2-5 , we consider more substantial i ssues, as we undertake a chal lenging

problem w i th the techn i q ues of object-oriented des ign (OOD) . We analyze a typical

problem statement that requ i res a system to be bui lt , determine the obj ects needed to imple

ment that syste m , determ ine the attributes these obj ects need to have, determ i n e the behav

iors these obj ects need to exhibit and spec ify how the obj ects need to i n teract with one

another to meet the system requ i rements. We accompl ish this even before we discuss how

to write obj ect-oriented C++ programs. In the "Think ing About Obj ects" sections at the

ends of Chapters 6, 7 and 9, we b u i l d a C++ implementation of the obj ect-oriented system

we designed in the earl ier chapters. Thi s proj ect enabled u s to i ncorporate topics that we do

not d i scuss in any other section of the book, inc l uding obj ect i n teract ion , an i n-depth d is

cuss ion of handles , the phi losophy of us ing references vs . poi nters and the use of forward
decl arat ions to avoid c i rc u lar- i n c l ude problems . Th is case study w i l l he lp prepare students
for the kinds of substantial proj ects they w i l l encounter in industry . We employ a carefu l l y
developed, i ncremental obj ect-oriented design process t o produce a U ML-based design for
our e levator s i m u l ator. From this design, we produce a substantial work ing C++ i mplemen
tat ion us ing key programm i n g not ions , inc l uding c lasses, obj ects, encap s u l at ion , v i s ib i l i ty,
composit ion and i nheritance.

More About the (Optional) Elevator Simulation Case Study

Th i s case study was i ntroduced in C+ + How to Program, 3/e, and was carefu l l y tuned for
the Fourth Edition . We brought a l l the U M L diagrams i nto compl iance wi th version 1.4,

we reorganized many of the diagrams to make them c learer, we code washed the complete

XL Preface

c++ sol ut ion presented in the book, and we tu ned the discuss ions for c l arity and prec i s i o n .
T h e case s t u d y w a s submitted t o a dist ingui shed team o f OOD/U M L reviewers, i n c l u d i n g
leaders i n the fie ld from Rational (t h e creators o f t h e U M L) a n d t h e Object Management
Group (respons ib le for mai ntai n ing and evol ving the U M L) .

I n Chapter 2 , we begin t h e fi rst phase o f t h e obj ect-oriented design (000) for our e le
vator s i m u l ator-identify ing the c lasses needed to implement the s i m u l ator. We also i n tro
duce the U M L use case, c l ass and obj ect diagrams and the concepts of associations ,
m u l t i p l ic i ty, composit ion, roles and l i nks . I n Chapter 3 , we determine many of the c l as s
attributes needed to implement the elevator s imulator. We also i n troduce the UML state
chart and act iv i ty diagrams and the concepts of events and act ions as they re l ate to these
d iagrams. I n Chapter 4, we determi ne many of the operat ions (behaviors) of the c lasses i n
the e levator s i m u lat ion. W e also i ntroduce the U M L sequence di agram and the concept of
messages sent between objects . I n Chapter 5 , we determi n e the co l laboration (sets of i n ter
act ions among obj ects in the syste m) needed to i mplement the e levator system and repre
sent these in teractions u s i ng the UML col laboration diagram . We also i n c l ude a

b i b l i ography and a l i st of l nternet and Web resources that contain the U M L 1 .4 speci fi ca

t ions and other reference m ateria ls , general resources , tutoria ls , FAQs, art ic les , whi te

papers and software . I n Chapter 6, we use the UML class di agram developed i n previous

sections to out l i ne the C++ header fi les that define our c l asses . We also i ntroduce the con

cept of handles to obj ects i n the system, and we begin to s tudy how to implement handles

i n C++. In Chapter 7 , we present a complete e levator s i m u l ator C++ program (approxi

mate l y 1 200 l i nes of code) and a detai led code walkthrough . The code fol l ow s d i rectly from

the U M L-based des ign created i n previous sections and employs our best programm i n g

practices . W e a l s o d i scuss dynamic-memory al location, composit ion, obj ect i n teraction v i a

handles, a n d h o w t o u s e forward declarations t o avoid t h e c i rc u l ar- i n c l ude problem. I n

Chapter 9, we update t h e e levator s imulation design a n d i mplementation t o i n corporate

i nheritance and suggest further modificat ions .

Standard Template Library (STL)

This might be one of the most i mportant chapters i n the book i n terms of your appreciat ion

of software reuse. The STL defi nes powerfu l , template-based, reu sabl e components that

i m plement many common data structures and algorithms u sed to process those data struc

tures. Chapter 2 1 i ntroduces the STL and d iscusses its three key components-containers,

iterators and al gorithms . STL contai ners are data structures capable of stori ng objects of

any data type . We show that there are three container categories-fi rst-c1ass contai ners,
adapters and near containers. STL iterators , which are s imi l ar to poi nters (but much safer) ,

are used by programs to manipulate the STL-contai ner e lements . I n fact , standard anays

can be man i p u l ated as STL containers, us ing standard poi nters as iterators . We show that

manipu lat ing contai ners with i terators is convenient and provides tremendous express ive

power when combined with STL algorithms-i n some cases , reducing many l ines of code

to a s ingle statement . STL algorithms are functions that perform common data man i p u l a

t ions such as searchi ng, sort ing, compari ng elements (or ent ire data structures) , etc . There

are approx i matel y 70 algorithms i mp lemented in the STL; these i n c l ude common container

operations such as searching for an e lement, sort ing elements, comparing elements , remov

ing elements, replacing e lements and many more . Most of these algori th ms use i terators to

access contai ner elements . We show that each fi rst-class contai ner supports spec i fic i terator

types , some of which are more powerfu l than others . A contai ner' s supported i terator type

Preface XLI

determines whether the container can be used with a spec ific algorithm . I terators encapsu

l ate the mechani s m used to access contai ner elements. This encap s u l at ion enables many of

the STL algori thms to be appl ied to a variety of containers without regard for the u n derly

ing container i m p l e mentat ion . As long as a container' s iterators support the m i n i m u m re

q u i rements of the a lgori thm, the algorithm can process that contai n er ' s e l e ments. Th i s also

enables program mers to create algori thms that can process the e lements of mUlt iple con

tainer types . An advantage of the STL is that programmers can reuse the STL contai ners ,

i terators and algorithms to implement common data representat ions and manipu lat i o n s .

Thi s reuse saves substantial development t ime a n d resources .

Teaching Approach

Our book i s i n tended to be used at the i ntroductory and i n termediate l e v e l s . We have not

attempted to cover every feature of the C++ standard. C++ has repl aced C as the industry ' s

h igh-performance systems- implementation language of choice. However, C programming

conti n ues to be an i m portant and valuable ski l l , because of the enormous amount of C leg

acy code that must be maintai ned i n industry . We poi nt out p itfal l s and exp la in procedures

for deal ing with them effecti ve ly . Students are h ighly motivated by the fact that they are

l earni n g a lead i ng-edge language (C++) and a leading-edge progra m m i n g paradigm (ob

ject-oriented programm i n g) that w i l l be i mmediatel y usefu l to them as they l eave the col

l ege environment .

C+ + How to Program, 4/e, contai ns a rich col l ect ion of examples , exerc i ses and

proj ects drawn from many fie lds and designed to provide students w i th a chance to solve

in terest ing, rea l -world problems. The code examples i n the text have been tested on m u l

t i p l e compi lers-Microsoft V i sual C++ 6, M i c rosoft V i sual C + + . N ET, t w o vers ions of

B or land C++ B u i l der and two versions of G N U C++. For the most part, the programs in the

text w i l l work on a l l ANS I/I SO standard-compl i ant compi lers ; we posted the few problems

we fou n d at www . de i t e l . com. When possi ble , we also posted the exact fi xes requ i red

to enable those programs to work with a part icu lar compi ler.

The book concentrates on the princip les of good software engi neeri ng and stresses pro

gram c l arity . We are educators who teach edge-of-the-practice topics in industry c l ass

room s worldwide. This text emphasizes good pedagogy.

LIVE·CODETM Approach

C+ + How to Program, 4/e, is loaded with n umerous LIVE-CODETM examples . Each new

concept i s presented i n the context of a complete, working example that i s i m mediatel y fol

lowed b y o n e or more sample executions showing the program ' s i n pu t/output dialog. Th i s

sty l e exem p l i fies t h e w a y we teach a n d write about programm i n g and i s the focu s of o u r
mul t i media Cyber Classrooms a n d Web-based trai n i n g courses . We cal l th is method o f
teaching a n d w r i t i n g t h e LIVE·CODE™ Approach . We use programming languages to

teach programming languages. Reading the examples i n the text is much l i ke typi ng and

run n i n g them o n a computer.

World Wide Web Access

A l l of the source-code examples for C+ + How to Program, 4/e, (and our other pub l ica
t ions) are avai l ab l e on the I n ternet as down loads from the fol l o w i ng Web sites:

www.de i t e l .com

www.prenha l l .com / de i t e l

XUI Preface

Registrat ion i s q u ick and easy and the downloads are free. We suggest dow n loading a l l the

examples, then r u n n i ng each program as you read the corresponding text . M aking changes

to the exam p l e s and immediately seeing the effects of those changes i s a great way to en

h ance your C++ learning experience.

Objectives

Each chapter begins with objectives that inform students of what to expect and g i ves them

an opport u n ity, after reading the chapter, to determ ine whether they have met the i ntended

object ives . The obj ectives serve as confidence bu i lders .

Quotations

The chapter obj ectives are fol l owed by sets of quotat ions . Some are h umorous , some are

phi losoph ical and some offer interesti ng ins ights. We have found that students enj oy rel at

ing the quotat ions to the chapter material . M any of the quotat ions are worth a second look

after you read the chapters .

Outline

The chapter outl i ne enables students to approach the material i n a top-down fashion . A l ong

with the chapter objectives, the out l ine helps students antic i pate future topics and set a com

fortable and effective learn ing pace.

20, 704 Lines of Syntax-Colored Code in 267 Example Programs (with Program Outputs)

We present C++ features in the context of complete, working C++ programs . These LtvE
CODE™ programs range i n s ize from j ust a few l i nes of code to substantial examples con

tai n i n g several hundred l i nes of code. Each program is fol l owed by a w i ndow contai n i n g

t h e outputs produced w h e n t h e program is run . Thi s enables t h e student t o confirm that the

programs run as expected. Relating outputs back to the program statements that produce

those outputs is an excel lent way to learn and to re inforce concepts. Our programs exerc i se

the di verse features of C++. The code is sy ntax colored with C++ keywords, comments and

other program text each appeari ng i n different colors. This fac i l i tates reading the code

students espec i al l y w i l l appreciate the syntax coloring when they read the l arger programs

we present . A l l of the examples are avai lable on the book ' s C D and are free for dow n l oad

at www . de i t e l . com.

598 Illustrations/Figures

An abundance of charts , l i ne draw ings and program outputs is inc l uded . We have con verted

a l l flowcharts to U M L acti v i ty diagrams. We also use U M L c lass diagrams in C hapters 9,

l a, l 2 , 1 4 and 22 to model the re lationships between c l asses throughout the text .

601 Programming Tips

We have i n c l uded s ix types of programming t ip to help students focus on i m portant aspects

of program development, test ing and debugging, performance and portab i l i ty . We h igh

l ight hundreds of these t ips as Good Programming Practices, Common Programming Er

rors, Performance Tips, Portability Tips, Software Engineering Observations and Testing

and Debugging Tips . These tips and practices represent the best we could glean from a l

most s i x decades (combined) of program ming and teaching experience. One of our s tu

dents-a mathematics major-told us recently that she fee l s th is approach i s s i m i l ar to the

Preface XLIII

highl ight ing of axioms, theorems and coro l l aries i n mathematics books, because it provide s

a sound bas is on which to b u i l d good software . ffi 90 Good Programming Practices
Good Progra m m i n g Practices are tips that call allenlion 10 techniques Ihat help sludents pro

duce programs that are more readable, selj�documenting and easier to maintain . When we

leach introductory courses 10 nonprogrammers, we state that the "buzzword " of each course

is "clarity, " and we tell the students that we will highlight (in these Good Program m i n g Prac

t ices) techniques for writing programs that are clearer, more understandable and more

maintainable. � 1 98 Common Programming Errors

Students learning a language-especially in their first programming course-tend to make

certain kinds of errors frequently. Focusing on these Common Progra m m i n g Errors reduces

the likelihood that students will makes the same mistakes. It also shortens long lines outside

instructors ' offices during office hours!

88 Performance Tips

In our experience, teaching students to write clear and understandable programs is by far

the most important goal for a /irst programming course. But students want to write the pro

grams that run the fastest, use the least memory, require the sm.al/esl number of keystrokes

or dazzle in other ways. Students really care about pelformance and they want to know what

they can do to produce the most efficient programs. So we include Performance Tips that

h ighlight opportunities for improving program performance-making programs run faster

or minimizing the amoun! of memory that they occupy. {I 36 Portabil ity Tips

Software development is a complex and expensive activity. Organizations that develop soft

ware must ofien produce versions customized to a variety of computers and operating sys

tems. So there is a strong emphasis today on portability, i. e . , on producing sofiware that will

run on a variety of computer systems with few, if any, changes. Some programmers assume

that if they implement an application in standard C+ + , the application wiLL be portable. This

is simply not the case. Achieving portability requires careful and cautious design. There are

many pitfalls. We include Portab i l i ty Tips to help students write portable code and to provide

insights on how C+ + achieves its high degree of port ability. � 1 49 Software Engineering Observations

The object-oriented programming paradigm necessitates a complete rethinking of the way

we build software systems. C+ + is an effective language for achieving good software engi
neering. The Software Engi neeri ng Observat ions highlight architectural and design issues,

that affect the construction of software systems, especially large-scale systems. Much of what

the studen! learns here will be useful in upper-level courses and in indusuy as the studen!

begins to work with large, complex real-world systems. @ 38 Testing and Debugging Tips
• When wefirst designed this " tip type, , , :; thought the lips would contain suggestions strictly

for exposing bugs and removing them from programs. In fact, many of the tips describe as
pects of c+ + that prevent "bugs " from getting into programs in the first place, thus simpli-
fying the testing and debugging process.

XLIV Preface

Summary (875 Summary bullets)

Each chapter ends with addit ional pedagogical devices. We present a thorough, b u l l et

l i st-style s u m m ary of the chapter. Thi s helps the student review and reinforce key concepts.

There is an average of 40 summary bu l lets per chapter.

Terminology (1 782 Terms)

We incl ude an alphabetized l ist of the important terms defi ned i n the chapter i n a Terminology

section . Again , this serves as further reinforcement. There are, on average, 8 1 terms per chap

ter. Each term also appears in the i ndex, so the reader can locate terms and defi n it ions quickly .

555 Self-Review Exercises and Answers (Count Includes Separate Parts)

Extensive SellReview Exercises and Answers to Self-Review Exercises are i n c l uded for self

study. Th is gi ves the student a chance to bu i ld confidence with the material and prepare to

attempt the regu l ar exercises .

800 Exercises (Solutions in Instructor's Manual; Count Includes Separate Parts)

Each chapter concl udes wi th a substantial set of exerc i ses i n c l uding s imple recal l of i m

portant term inology and concepts; writ ing i ndi vidual C++ statements; wri t ing smal l por

t ions of C++ functions and c l asses; writ ing complete C++ funct ions, c l asses and programs;

and wri t ing major term proj ects . The large number of exerci ses enables i nstructors to tai lor

the i r courses to the u n ique needs of their audiences and to vary course ass ignments each

semester. I nstructors can use these exercises to form homework assignments, short quizzes

and major exami nations . The solutions for the exerci ses are inc l uded on the Instructo r 's

CD which is a vailable only to instructors through their Prentice H a l l representat ives .

[NOTE: Please do not write to us requesting the Instructor's CD. Distribution of this

ancillary is limited strictly to college professors teaching from the book. Instructors

may obtain the solutions manual only from their Prentice Hall representatives.] Stu

dents and professional readers can obtain solut ions to approxi mate ly half the exerc i ses in

the book by purchasing the optional C+ + Multimedia Cyber Classroom, 4/e. The Cyber

Classroom offers many other val uable capabi l it ies as wel l and i s ideal for self study and

reference. A l so avai l able i s the boxed product, The Complete C+ + Training Course, 4/e ,

which inc l udes both our textbook, C+ + How to Program, 4/e, and the C+ + Multimedia

Cyber Classroom, 4/e . A l l of our Complete Train ing Course products are avai lable at book

stores and o n l i n e booksel l ers, inc l uding www . informIT . com.

Approximately 5, 000 Index Entries (with approximately 7, 700 Page References)

We have i n c l uded an exten s ive Index at the back of the book. Us ing th i s resource, readers

can search for any term or concept by keyword. The Index is usefu l to people reading the

book for the fi rst t ime and i s espec ia l ly usefu l to professional programmers who use the

book as a reference. These i ndex entries also appear as hyperl inks i n the C+ + Multimedia

Cyber Classroom, 4/e .

"Double Indexing" of All C++ LIVE-CODETM Examples

C+ + How to Program, 4/e, has 267 LlVE-CODeM examples, which we have "double in

dexed." For every C++ source-code program i n the book, we took the figure caption and i n

dexed i t both alphabetical ly and a s a subindex item under "Examples ." T h i s makes it easier

to fi nd examples that are demonstrating particular features. Each of the figure captions al so

appears in the f I I u strations section (fol lowing the Contents section) at the front of the book.

Preface XLV

Software Included with C++ How to Program, 4/e

c+ + How to Program, 31e, inc l uded on its CD the Microsoft V i sual C++ 6 I ntroductory

Edit ion development env iron ment. In C+ + How to Program, 41e, we wanted to i nc l ude Mi

crosoft' s new V isual C++ . N ET development enviro n ment, but M ic rosoft was not as yet

m aking this software avai l able to be inc luded with textbooks . A s soon as M icrosoft does

make Vi sual C++ . NET avai lable, we w i l l post information at our Web s i te i ndicating how

students and professionals can obtai n this software ; there w i l l be separate i n struct ions for

students and professional s . C+ + How to Program, 41e, i n c l udes M i c rosoft V isual C++ 6

I ntroductory Edit ion . A separate val ue-pack option also is avai lable that contai ns Metro

werks CodeWarrior (l S B N# 0- 1 3 - 1 0 1 1 5 1 -0) ; for more i nformation o n th is option please

write to c s @prenha l l . com or de i t e l@de i t e l . com.

Free C++ Compilers and Trial-Edition C++ Compilers on the Web

This sect ion overv iews C++ compi lers that are avai lable for download over the Web. We

d i scuss only those compi lers that are avai l able for free or as free-trial vers ions . Please keep

in m i nd that in many cases, the trial-edit ion software cannot be u sed after the trial period

has expired.

One popular organ ization that develops free software i s the GNU Proj ect

(www . gnu . org), original ly created to develop a free operat ing system s i m i l ar to U N I X .

G N U offers developer resources, including editors, debuggers and compilers . M any devel

opers use the gcc (GNU Compi ler Collection) compi lers, avai lable for down l oad from

gcc . gnu . �rg. This product contai n s compi lers for C, C++, Java and other l anguages .

The gcc compi ler i s a command- l i ne compiler (i .e . , i t does not provide a graphical user

i n terface) . Many Linux and U N I X systems come with the gcc compiler i n stal led . Red H at

has developed Cygwin (www . cygwin . com). an emulator that a l lows developers to use

U N I X commands on W indows. Cygw i n incl udes the gcc compiler.

I ntel provides 30-day trial versions for its Windows and Linux C++ command-l i ne com

pi lers . The 30-day trial period also incl udes free customer support. Information on both com

pi lers can be found at deve loper . intel . com/ software /produc t s / global /

eval . htm.

Borland provides a W i ndows-based C++ developer product cal led C++ B u i l der

(www . borland . com/cbui lder/ cppcomp / index . html). The basic C++ B u i l der

compiler (a command- l i ne compiler) i s free for download. B orland also provides several

vers ions of the C++B u i l der that contai n graphical user i nterfaces (G U l s) . These G U l s are

more forma l l y cal l ed i ntegrated development env ironments (I DEs) , and, u n l i ke command

l i ne compi l ers, enable the developer to edit , debug and test programs qu ick ly . Using an
T OE, many of the task s that invo lved tedious commands can now be executed via men u s
a n d buttons . S o m e o f these products are avai l able o n a free-trial bas i s . For more i n forma
tion on C++ B u i l der, v is i t

www . borland . com/product s / downloads / downl oad_cbuil der . html

For L i n u x developers, B orland provides the B orland Kyl i x development e n v i ronment . The

B orland Kyl i x Open Edit ion , which inc ludes an IDE, can be downloaded from

www . borland . com/product s / downloads / download_kylix . ht m l

Many of the dow n l oads avai lable from Borland requ i re users to regi ster.

XLVI Preface

The D i g i ta l M ars C++ Compiler (www . digi talmars . com). i s avai lable for W i n

dows and DOS, a n d inc ludes tutorials and documentat ion . Readers c a n down load a com

mand- l i ne or I D E version of the compi ler. The DJGPP C/C++ devel opment system is

avai lable for c o mputers run n i ng DOS . DJGPP stands for OJ ' s G N U Progra m m i ng P l at

form, where DJ i s for OJ Oelorie, the creator of OJGPP. I n formation on OJG P P can be

found at www . de l orie . com/dj gpp. Locations where the compi ler can be downloaded

at are provided at www . de lori e . com/dj gpp / gett ing • html .

DIVE-INTOTM Series Tutorials for Popular C++ Environments

We have l a unched our new DIVE-INTOTM SERIES of tutorials to help our readers get started

w i th many popul ar C++ program-development environments . These are avai l ab le free for

down load at www . de i t e l . com/ books / downloads . html .

Current ly , we have the fol lowing DIVE-INTOTM SERIES publ ication s :

DIVE-INTO Microsoft® Visual C+ + ® 6

Dive-Into Microsoft® Visual C+ +® . NET

Dive-Into BorlandfM C+ +Builder™ Compiler (command- l ine vers ion)

Dive-Into BorlandI'M C+ +Builder™ Personal (I DE vers ion)

Dive-Into GNU C+ + on Linux

Dive-Into GNU C+ + via Cygwin on Windows (Cygwi n i s a U N I X e m u l ator for

W indows that i n c ludes the GNU C++ compi ler .)

Each of these tutorials shows how to compi le , execute and debug C++ appl icat ions i n that

part icu lar compi ler product . Many of these documents also provide step-by-step instruc

tions w ith screenshots to help readers to i nstal l the software . Each doc u ment overv iews the

compi ler and its on l i ne docu mentat ion .

Ancillary Package for C++ How to Program , 4/e

C+ + How to Program, 4/e, has extensive anc i l l ary materi a ls for i nstructors . The Instruc

tor 's Resource CD (IRCD) contai ns the Instructor 's Manual with solut ions to the vast ma

j ority of the end-of-chapter exerc i ses and a Test Item File of mul t ip le-choice q uestions

(approxi mate l y two per book section) . I n addit ion, we provide PowerPoint® s l i des contai n

i n g a l l t h e code a n d figures i n the text, a n d bu l leted items that sum marize the k e y poi nts i n

t h e text. I nstructors c a n c ustomize t h e s l ides. T h e PowerPoi nt® s l ides are dow n l oadable
from www . de i t e l . com and are avai lable as part of Prentice Hal l ' s Companion Web Site

(www . prenha l l . com/ de i t e l) for C+ + How to Program, 4/e, which offers resources

for both i n structors and students. For i nstructors , the Companion Web Site offers a Syllabus

Manager, which helps i nstructors plan courses i nteract ively and create o n l i n e syl l abi .

Students also benefi t from the functional ity of the Companion Web Site . B ook-spec ific

resources for students inc l ude :

Customizable PowerPoint® sl ides

Example source code

Reference materials from the book appendices (such as operator-precedence

chart, character set and Web resources)

Preface XLVII

Chapter-specific resources avai l able for students inc l ude:

Chapter object ives

H i g h l ights (e . g . , chapter summary)

Out l i n e

T i p s (e . g . , Common Programm.ing Errors, Good Programming Practices, Porta

bility Tips, Pelformance Tips, Software Engineering Observations and Testing

and Debugging Tips)

O n l i ne Study Guide-contai n s addi t ional short-an swer se lf-review exerc i se s

(e . g . , true/fal se a n d matching quest ions) w i th answers a n d provides i mmed i ate

feedback to the student

Students can track their results and course performance on qu izzes u s i ng the Student Pro

file feature, which records and manages all feedback and results from tests taken on the Com

panion Web Site . To access DEITELTM Companion Web Site, vis i t www . prenhal l . com/

de i t e l.

c++ in the Lab
This lab manual (fu l l t i t le : C+ + in the Lab, Lab Manual to A ccompany C+ + How to Pro

gram, Fourth Edition ; I S B N O- 1 3 -03847 8-X) complements C+ + How to Program, 4/e,

and the optional C+ + Multimedia Cyber Classroom, 4/e, by prov i d i n g a series of hands-on

lab assignments designed to re inforce students ' understanding of lecture materia l . Thi s l ab

manual i s designed for c l osed l aboratories, which are regu l ar ly scheduled c l asses super

v i sed by an i nstructor. C losed laboratories prov ide an exce l lent learn i n g e n v i ronment be

cause students can use concepts presented i n c lass to solve carefu l l y des i gned lab problems .

i nstructors are better ab le to gauge the students ' understanding of the materia l by mon itor

ing the students ' progress i n lab. Th i s lab manual also can be used for open l aboratories ,

homework and for self-study.

C+ + in the Lab focuses on Chapters 1 - 1 4 and 1 7 of C+ + How to Program, 4/e . Each

chapter in the lab manual i s divided i nto Prelab A ctivities, Lab Exercises and Postlab A ctivi

ties .3 Each chapter contains objectives that i ntroduce the lab' s key topics and an ass ignment

checkl ist that al lows students to mark which exerc ises the i nstructor has assigned. Each page

in the lab manual is pelforated, so students can submit their answers (if requ ired) .

Solut ions t o the lab manual ' s Prelab Activities, Lab Exercises a n d Postlab A ctivities

are avai l able in e lectronic form. I nstructors can obtai n these materia ls from their regu l ar

Prentice H a l l representat i ves ; the sol ut ions are not avai lable to students .

Prelab Activities

Prelab Activ it ies are i ntended to be completed by students after studying each chapter in C+ +

How to Program, 4/e . Prelab A ctivities test students' u nderstanding of the material presented

3. We expect few i ntroducto ry c l asses to advance beyond C hapter 1 0 of this lab m a n u a l . For t h i s rea
son, the labs i n C hapters I 1 - 1 4 and 1 7 do not contai n the extensive sets of act i v i t i e s avai lab le i n
t h e prev ious c hapters. Nevertheless , i n s tructors w i l l b e able to conduct effect ive labs u s i n g t h e ex
erc i ses we h ave i n c l uded on these more complex topic s . I nstructors with spec i a l requ i rements

should wri te to deitel@deite l .com.

XLVI I I Preface

in the textbook, and prepare students for the programming exercises in the l ab session. (These

activities may be fin ished before or during lab, at the instructor' s d iscretion .) The exerc i ses

focus on i mportant terminology and programming concepts and are effective for self-review.

Prelab Activ i ties inc lude Matching Exercises, Fill- in-the-Blank Exercises, Short-Answer

Questions, Programming-Output Exercises (these ask students to determine what short code

segments do wi thout actual ly running the program) and Correct-the-Code Exercises (these

ask students to identify and correct a l l errors in short code segments) .

Lab Exercises

The most i m portant section in each chapter i s the Lab Exerc i ses . These exerc i ses teach stu

dents how to appl y the material learned in C+ + How to Program, 4/e, and prepare them for

writ ing C++ programs. Each lab contai ns one or more lab exerc i ses and a debuggi ng prob

l e m . The Lab Exercises contai n the fol lowing:

Lab Objectives high l i ght specific concepts on which the l ab exerc i se focuses.

Problem Descriptions provide the detai l s of the exerc i se and h i nts to help students

i mp lement the program .

Sample Outputs i l lustrate the des ired program behav ior, which further c l arifies the

probl e m descriptions and aids the students with wri t ing programs .

Program Templates take complete C + + programs a n d rep lace k e y l i nes o f code

w i th comments describ ing the m i ssing code .

Problem-Solving Tips highl ight key i ssues that students need to consider when

solv ing the l ab exerc i ses .

• Follow- Up Questions and A ctivities ask students to modify solut ions to lab exer

c i ses, write new programs that are s i m i l ar to thei r l ab-exerc i se solutions or explain

the i mplementation choices that were made when sol v ing l ab exercises .

Debugging Problems consist of a b locks of code that contain syntax errors and/or

logic errors . These alert students to the types of errors they are l ikely to encounter

w h i l e programming .

Postlab Activities

Professors typical l y assign Postlab Acti v i t ies to re i nforce key concepts or to pro v i de stu

dents w ith more programm i ng experience outside the lab. Post lab Act iv i t ies test the stu

dents ' understanding of the Pre l ab and Lab Exerc i se material , and ask students to appl y

the knowledge t o creat ing programs from scratch . The section provides t w o types o f pro

gra m m i ng act i v i t i e s : cod i n g exerc i ses and programming cha l lenges . Coding exerc i se s

are short a n d serve a s rev i e w after t h e Prelab A ctivities a n d Lab Exercises h a v e been

completed. These exerc i ses ask students to write programs or program segments u s i n g

key concepts fro m t h e textbook . Programming chal lenges a l l ow students t o appl y t h e

knowledge they h a v e gained i n c l ass t o substantial program m i n g exerc i ses . H i nts , sample

outputs and/or pseudocode are provided to aid students wi th these prob l e m s . S tudents

who complete the programm i ng chal lenges for a chapter successfu l l y have i ndeed mas

tered the chapter m ateri a l . Answers to the programming chal l enges are avai lable for

downl oad fro m www . de i t e l . com.

Preface XLIX

The C++ Multimedia Cyber Classroom, 4/e, and The Complete
C++ Train ing Course, 4/e

We have updated our optional i nteractive mul t imedia vers ion of the book-The C+ + Mul

timedia Cyber Classroom, 4/e (C D for Wi ndows®)-with cons iderable addit ional audio,

i nc l uding the new m aterial on Web Programming with C G I . This resource i s loaded with
electron ic features that are i deal for both learn ing and reference. The Cyber Classroom i s

packaged w i t h the textbook at a d iscount i n The Complete C+ + Training Course, 4/e . I f

you already have the book and would l i ke t o purchase the C+ + Multimedia Cyber Class

room, 4/e, separately , p lease v i s i t www . InformIT . com/ cybe rc la s s roorns ; the

I S B N n umber for this product i s 0- 1 3 - 1 0025 3 - 8 . Deitel™ Cyber Classrooms are general ly

avai l able i n C D and various popu l ar Web-based trai n i ng formats .

The C D provides an i ntroduction i n which the authors overv iew the Cyber Class

room ' s features . The textbook ' s 267 L1vE-CODE™ example C++ programs tru l y "come

alive" in the Cyber Classroom. I f you are viewing a program and want to execute i t , you

s imply cl ick the l ightning-bolt icon to run the program . You i mmediate ly w i l l see the pro

gram ' s output. lf you want to modify a program and see the effects of your changes, si mply

cl icking the floppy-disk icon causes the source code to be " l ifted off' the C D and "dropped

i nto" one of your own d i rectories so you can edit the code, recompi l e the program and try

out your new vers ion . C l ick the audio icon to hear one of the authors "walk you through"

the code . In addit ion, the Cyber Classroom contai ns the fu l l -text of C+ + How to Program,

4/e, in fu l l y -searchable format.

The Cyber Classroom also provides post-assessment exams (w i th answers) for each

chapter in the book. These exams are powerful featu res that allow users to gauge their

u nderstanding of the programming concepts presented i n the chapters. Each exam quest ion

hyperl inks to the sect ion i n the book from which the question was deri ved. This a l lows

u sers to rev iew the appropriate chapter materi al before or after answeri ng the q uestio n . A

chart is provided that summarizes the user' s exam resul ts by chapter.

The Cyber Classroom also provides navigational aids, inc l uding extens ive addit ional

hyperl i n k i n g for easy navigat ion . The Cyber Classroom i s browser based, so i t remembers

sections that you have v is i ted recently and al lows you to move forward or backward among

the m . The thousands of i ndex entries are hyperl i n ked to their text occurrences . Further

more, when you key in a term using the "fi nd" feature, the Cyber Classroom w i l l locate

occu rrences of that term throughout the text. The Table of Contents entries are "hot," so

c l icking a chapter or sect ion name takes you i mmediately to that chapter or sectio n .

Students l ike t h e fact that solutions t o approx i mate ly h a l f t h e exerc i ses i n t h e b o o k are

inc l uded with the Cyber Classroom. Studying and run n i n g these extra programs is a n ice

way for students to enhance their L1vE-CODETM learn i n g experience.

Students and professional users of our Cyber Classrooms te l l u s that they l i ke the i nter

act iv ity and that the Cyber Classroom i s a powerfu l reference tool . We recei ved an e-mai l

from a person who said that he l i ves " in the boonies" and cannot take a l i ve course at a u n i

versity, so t h e Cyber Classroom provided a n i c e solution t o h i s educational needs.

Professors tel l u s that their students enjoy using the Cyber Classroom, and consequently

spend more t ime on the courses, masteri ng more of the material than in textbook-only

courses. For a complete l i st of the avai lable and forthcoming Cyber Classrooms and Com

plete Training Courses, see the Deitel™ Series page at the begi nn ing of th is book, the product

Preface

l i st ing and ordering i nformation at the end of this book or visit www . deitel . com.

www . prenhal l . com/ deitel and www . InformIT . com/de i t e l .

Course Management Systems: Blackboard™, WebCPM,
CourseCompassSM and Premium CourseCompassSM
Selected content from the Dei te l s ' i ntroductory program m i n g l anguage How to Program

ser ies , i n c l ud ing c+ + How to Program, 4/e,4 is avai lable to i ntegrate i nto various popu l ar

Course M anagement Systems, i n c l ud ing CourseCompass, B l ac kboard and WebCT. A n e n

hanced version o f CourseCompass, cal led Pre m i u m CourseCompass, w i l l b e avai lable for

C+ + How to Program, 4/e, i n January 2003. Course Management System s help facu lty

create, manage and use sophi st icated Web-based educational too l s and programs . I n struc

tors can save hours of inputti ng data by using Deitel content, created by and for educators ,

for various Course M anagement Systems .

B l ackboard, CourseCompass and WebCT offer:

Features to create and customize an online course, such as areas to post course

i nformation (e .g . , pol ic ies , sy l labi , announcements, assign ments, grades , perfor

mance evaluations and progress tracking) , c lass and student management tools , a

gradebook, reporti n g tools , page tracki ng, a calendar and ass ignments .

Communication tools to help create and mai ntai n i n terpersonal re l at ionships be

tween students and i nstructors, i nc l uding chat rooms, w h iteboards, doc u ment

shari ng, bu l leti n boards and pri vate e-mai l .

Flexible testing tools that al low a n i nstructor to create on l i ne q u i zzes and tests

from questions d i rectly l i n ked to the text, and that grade and track resu l ts effec

t ive ly . All tests can be inputted i nto the gradebook for effic ient course manage

ment. WebCT also al lows i nstructors to admi n ister t i med on l i ne q u i zzes .

Support materials for i nstructors are avai lable i n pri nt a n d on l i ne formats.

In addit ion to the types of tools found in B l ackboard and WebCT, CourseCompass

from Prentice Hal l i n c l udes:

CourseCompass course home page, which makes the course as easy to navi gate

as a book. A n expandable table of contents al lows i nstructors to v iew course con

tent at a g lance and to l ink to any section .

Hosting on Prentice Hall 's centralized servers, which a l lows course adm i n is
trators to avo id separate l icensing fees or server-space i ssues . Access to Prent ice

Hal l techn ical support also is avai l able .

"How Do I" online-support sections are avai lable for users who need help per

sonal iz ing course s i tes , inc lud ing step-by-step i n struct ions for addi ng Power

Point® s l ides, v i deo and more .

Instructor Quick Start Guide helps i n structors create o n l i ne courses us ing a

s i mple, step-by-step process.

4. The ent i re text of c+ + How to Program, 41e, i s inc l uded i n the e- Book i n c l uded w i th Pre m i u m
CourseCompas s .

Preface II

Introducing the Premium CourseCompass Course Management System

Premium CourseCompass integrates content from a rich variety of sources, inc luding Dei

tel Cyber Classrooms, How to Program books and Companion Web Sites with Course

Compass courseware-providing enhanced content to CourseCompass users . Premium

CourseCompass inc ludes :

Pre-Loaded DEITELTM Content i n a Customizable Interface. An i nstructor can

aggregate and customize al l course material s . This feature includes the e-Book, a

searchable digital version of C+ + How to Program, 4/e, inc luding ful l -color

graphics and downloadable PowerPoint® slides.

All the Interactivity of the Cyber CLassroom. Students can work with code and

recei ve the added benefit of 17+ hours of detai led audio descriptions of thousands

of l ines of code to help reinforce concepts. Every code example from C+ + How

to Program, 4/e, i s included.

Abundant Self-Assessment and Complete Test-Item File. Use or edit hundreds

of pre-loaded assessments, or upload your own. Assessments inc l ude self-review

exercises, programming exerci ses (half with answers inc luded) and test questions .

Instructors choose which questions to assign, and students receive immediate

feedback . Instructors can collect students' work and track thei r progress in an on

l ine gradebook .

To view free onl ine demonstrations and learn more about these Course Management

Systems, that support Deitel content, v is i t the fol lowing Web s i tes:

B lackboard : www.blackboard. com and

www.prenhall.com/blackboard.

WebCT: www.webct.comandwww.prenhall.com/webct.

CourseCompass : www. coursecompass. com and

www.prenhall.com/coursecompass.

Deifel e-Learning Initiatives

e-Books and Support for WireLess Devices

Wireless devices wi l l have an enormous role in the future of the Internet . Given recent

bandwidth enhancements and the emergence of 2.S and 3G technologies, i t is pro jected

that, within a few years, more people will access the Internet through wireless devices than

through desktop computers. Deitel & Associates is committed to wireless accessibi l ity and

recently publ ished Wireless Internet & Mobile Business How to Program . To fulfi l l the

needs of a wide range of customers, we current ly are developing our content both in tradi

tional print formats and in newly developed electronic formats , such as wireless e-books so

that students and professors can access content v irtual ly anytime, anywhere . For periodic

updates on these initiatives subscribe to the Deitel™ Buzz Online e-mail newsletter,

www.deitel.com/newsletter/subscribe.html or vis i t www.deitel.com.

e-Matter

Deitel & Associates is partnering with Prentice Hal l's parent company, Pearson PLC, and its

information technology Web site, www.InformIT.com. to launch the DEITELTM e-Matter

Lli Preface

series at www.InformIT.com/deitelinSpring2003.This series will provide profes

sors, students and professionals with an additional source of information on programming and

software topics. e- Matter consists of stand- alone sections taken from published texts, fOlth

coming texts or pieces written during the Deitel research- and-development process. Develop

ing e-Matter based on pre-publication books allows us to offer significant amounts of the

material to early adopters for use in academic and corporate courses.

Deitel and InformlT Newsletters

Deitel Newsletter

Our own free newsletter, the DEITELTM Buzz ONLINE, includes commentary on industry

trends and developments, links to free articles and resources from our published books and

upcoming publications, product-release schedules, challenges, anecdotes, information on

our corporate instructor-led training courses and more. To subscribe, visit

www.deitel.com/newsletterlsubscribe.html

Deitel Column in the InformlT Newsletters

Deitel & Associates, I nc., contributes articles to two free InformlT weekly e-mail newslet

ters, currently subscribed to by more than 1,000,000 IT professionals worl dwide.

Editorial Newsletter-C ontains dozens of new articles per week on various IT

topics, including programming, advanced computing, networking, business, Web

development, software engineering, operating systems and more. Deitel & Asso

ciates contributes 2-3 articles per week taken from our extensive content base or

from material being created during our research and development process.

Promotional Newsletter-Features weekly specials and discounts on most Pear

son publications. Each week a new DEITELTM product is featured along with infor

mation about our corporate instructor-led training courses.

To subscribe, visit www.InformIT.com.

The New DE/TEL 1M Developer Series

Deitel & Associates, I nc., is making a major commj tment to covering leading-edge tech

nologies for industry software professionals through the launch of our DEITELTM Developer

Series. Web Services A Technical Introduction and Java Web Services for Experienced

Programmers are among the first books in the series. These will be followed by Java 2 En

terprise Edition, Java 2 Micro Edition , .NET A Technical Introduction, ASP . NET with Vi

sual Basic . NET for Experienced Programmers, ASP . NET with C# for Experienced

Programmers and many more. Please visit www.deitel • com for continuous updates on

all published and forthcoming DEITELTM Developer Series titles.

The DEITELTM Developer Series is divided into three subseries. The A Technical lntro

duction subseries provides IT managers and developers with detailed overviews of

emerging technologies. The A Programmer's Introduction subseries is designed to teach

the fundamentals of new languages and software technologies to programmers and novices

from the ground up; these books discuss programming fundamentals, followed by brief

introductions to more sophisticated topics. The For Experienced Programmers subseries is

designed for seasoned developers seeking a deeper treatment of new programming lan-

Preface LIII

guages and technologies, without the encumbrance of introductory material; the books in

this subseries move quickly to in-depth coverage of the features of the programming lan

guages and software technologies being covered.

Acknowledgments

One of the great pleasures of writing a textbook is acknowledging the efforts of many peo

ple whose names may not appear on the cover, but whose hard work, cooperation, friend

ship and understanding were crucial to the production of the book. Many people at Deitel

& Associates, Inc. devoted long hours to this project.

Tern Nieto, a graduate of the Massachusetts Institute of Technology and Director

of Product Development at Deitel & Associates, co-authored Chapters 1 5, 20 and

22 and the "Building Your Own Compiler" Special Section in Chapter 1 7. He also

contributed to the Instructor's Manual and the C+ + Multimedia Cyber Class

room, 4/e, and developed the student lab manual, C+ + in the Lab, and the corre

sponding instructor's manual.

Ben Wiedermann, a graduate of Boston University with a degree in Computer Sci

ence, was the lead developer, programmer and writer working with Dr. Harvey M.

Deitel on the UML case study in Chapters 1-7 and 9.

Sean E. Santry, a graduate of Boston College with degrees in Computer Science

and Philosophy, is Director of Software Development at Deitel & Associates.

Sean worked on the coding and code walkthroughs of the UML Case Study and

helped certify the technical accuracy of Chapters 2-5, 8 , 9, 1 1, 1 2, 16 and 21 .

Jonathan Gadz ik , a graduate of the Columbia University School of Engineering

and Applied Science with a degree in Computer Science, contributed to the

'Thinking About Objects" sections, the preface and Chapters 1, 9- 14 and 16; Jon

also updated all the UML diagrams in Chapters 2, 9, 1 2 and 14 to version 1.4.

Cheryl Yaeger, a graduate of Boston University with a degree in Computer Sci

ence, is Director of .NET Development at Deitel & Associates. Cheryl helped cer

tify the technical accuracy of Chapters 17, 19 and 20.

Christi Kelsey, a graduate of Purdue University with a degree in Management and
a minor in Information Systems, is Director of Business Development at Deitel &
Associates. Christi worked on the Internet and Web Resources appendix, applied

copy edits to the manuscript and contributed to the preface.

Laura Treibick, a graduate of the University of Colorado at Boulder with a degree

in Photography and Multimedia, is Director of Multimedia at Deitel & Associates.

She enhanced many of the graphics throughout the text, consulted on the book

cover design and audited the index.

Christina Courtemarche, a graduate of Boston University with a degree in Com

puter Science, certified Chapters 9, II , 13 and 15 for technical accuracy.

Betsy Duwal dt, Editorial Director at Deitel & Associates, is a graduate of Metro
politan State College of Denver with a degree in Technical Communications
(Writing and Editing Emphasis) . Betsy edited the Preface and Appendix D.

LlV Preface

Barbara Deitel applied the copy edits to the manuscript. She did this in parallel

with handling her extensive financial and administrative responsibilities at Deitel

& Associates.

Abbey Deitel, a graduate of Carnegie Mellon University's Industrial Management

Program and President of Deitel & Associates, recruited additional full-time em

pl oyees and interns during 2002 and leased, equipped and furnished our new cor

porate headquarters to create the work environment in which C+ + How to

Program, 4/e, and our other Deitel2 002 publications were produced. She suggest

ed the title for the How to Program series an d contributed to this preface.

We would also like to thank the participants in the Deitel & Associates, Inc., College

Internship Program.5

Emanuel Achildiev, a sophomore in Computer Science at Northeastern Universi

ty, worked on the anci lIaries for Chapters 6 and 8 and tested the example programs

on several platforms.

Kalid Azad, a senior at Princeton University in Computer Science, worked on the

book's ancillaries, in cluding the PowerPoin t® Instructor Lecture Notes and the

Test Item File.

Nicholas Cassie, a sophomore at Northeastern University in Computer Science,

worked on the anci Ilary materials for Chapters 4, 10- 12 and 14 and tested example

programs on several C++ compilers.

Thiago da Silva, a sophomore at Northeastern University in Computer Science,

tested the programs for the entire book on many C++ compilers. He also contrib

uted to the online DIV£-INTOTM support materials that demonstrate how to write,

compile and debug programs with several C++ development environments.

Mike Dos'San tos, a Computer Science major at Northeastern University, pro

duced ancillary materials for Chapters 7, 9 and 1 3, and did extensive work on

C+ + in the Lab.

Brian Foster, a sophomore at Northeastern University in Computer Science, tested

the example programs on several C++ compilers. He al so contributed to the onl ine

DIV£-INTOTM support materials that demonstrate how to write, compile and debug

programs with several C++ devel opment environments.

Audrey Lee, a graduate of Wellesley College and a Ph.D. candidate in Computer
Science at the University of Massachusetts, Amherst, worked on the book's ancil

laries, including the PowerPoint® Instructor Lecture Notes, the Companion Web

Site, the C+ + Multimedia Cyber Classroom, 4/e, an d the Test item File.

5. T h i s competit ive program offers a l i mited number of salaried pos itions to Boston-area college stu
dents m ajoring in Computer Science, Information Technology, M arket ing, M anagement and En
g l i sh . Students work at our corporate headquarters i n Maynard, M assachusetts ful l-t i me i n the
s u mmers and (for those attending col lege in the Boston area) part-time during the academic year.
We also offer ful l-t ime i nternship pos itions for students interested in taki ng a semester off from
school to gain industry experience. Regul ar ful l-time posi tions are avai lable to col lege graduates.
For more i n formation, p lease contact abbey. dei tel@deitel . com and visit our Web site,
www.deitel.com.

Preface LV

Jimmy Nguyen, a sophomore in Computer Science at Northeastern University,

worked on the anci Ilaries for Chapters 5, 15 and 17 . He also tested the book's pro

grams on several C++ compilers.

Matthew Rubino, a sophomore at Northeastern University in Computer Science,

tested the programs on several C++ compilers. He also contributed to the online

DIV£-INTOTM support materials.

We would like to thank one of our business colleagues who contributed to the book.

Chris Poirier, an independent consultant, co-authored Chapter 16, Web Programming with

CGI. Chris also is a FrameMaker Developer Kit (FDK) expert; he used this product to

implement the new yellow background code-highlighting style, so crucial to enhancing the

pedagogy in C++ How to Program, 4/e . We also would like to thank Justin Liberman who

researched the URLs in Appendix D.

We are fortunate to have worked on this project with the talented and dedicated team

of publishing professionals at Prentice Hall. We especially appreciate the extraordinary

efforts of our Computer Science editor, Petra Recter and her boss-our mentor in pub

lishing-Marcia Horton, Editorial Director of Prentice-Hall's Engineering and Computer

Science Division. Vince O'Brien did a marvelous job managing the production of the book.

Sarah Burrows managed the publication of the book's extensive ancillary package. Pamela

Shaffer, Executive Marketing Manager for Computer Science, developed the book's exten

sive marketing program.

The C++ Multimedia Cyber Classroom, 4/e, was developed in parallel with C++ How

to Program, 4/e. We sincerely appreciate the "new media" insight, savvy and technical

expertise of our electronic-media editors, Mark Taub and Karen McLean. They, with

project manager Mike Ruel, did a wonderful job publishing the C++ Multimedia Cyber

Classroom, 4/e, and The Complete C++ Training Course, 4/e.

We owe special thanks to the creativity of Tamara Newnam (smart_art@earth

link. net). Tammy produced the cover and created the delightful creature who shares

with you the book's programming tips. Barbara Deitel contributed the bugs' names for the

front cover.

We would like to extend a special note of thanks to Steve Clamage of Sun Microsys

tems, the chairman of ANSI Technical Committee J 16, the group responsible for devel

oping and evolving the standard for C++. Steve's contributions to this book (and previous

editions) are profound. We benefited greatly from his insightful comments and deep under

standing of C++. Steve wants textbooks describing C++ to be correct and he takes time

from his busy professional schedule to help us and other C++ authors "get it right." Our

sincere thanks to a consummate professional.

We wish to acknowledge the efforts of our 52 Fourth Edition reviewers and to give a

special note of thanks to Jennifer Capello of Prentice Hall, who managed this extraordinary

review effort.

Fourth Edition Reviewers

Reviewers of C++ Material

Ammar Abuthuraya (Microsoft)

Richard Albright (University of Delaware)

Rob Andrews (Independent software developer)

Peter Becker (Dinkumware, Ltd.)

lVI

Carl Burnham (HostingResolve.com)

Jimmy Chen (Salt Lake Community College)

Ram Choppa (Baker Hughes)

Stephen Clamage (ANS] J 16 Chair; Sun Microsystems)

Nathan Clegg (Geerbox)

Eric Crampton (Automated Trading Desk)

Timothy Culp (Harris Corporation)

Joel Davis (DinaaliSystems)

Christophe de Dinechin (Hewlett-Packard)

V incent Drake (Borland)

Lars Marius Garshol (Ontopian)

John Godel (EPOCH Technical Services)

Ric Heishman (Northern Virginia Community College)

Anne Horton (AT&T)

James Huddleston (Independent consultant)

Rex Jaeschke (Independent consultant)

Clark Jefcoat (ProObject)

Vivek KajaJe (University of Texas, Arlington)

Sam Kohn (New York Institute of Technology)

Don Kostuch (You Can C Clearly Now)

Stan Kurkovsky (Columbus State University)

Meng Lee (Co-creator of STL; Hewlett-Packard)

Sean McGrath (Propylon)

Robert Myers (Florida State University)

Ami Neiman (DeVry University-Fremont)

David Papurt (independent contractor; C++ lecturer and author)

Garrett Pease (LearnFrame, Inc.)

Wolfgang Pelz (University of Akron)

Tom Pennings (Borland)

Prashant Rane (University of Texas)

Shailesh Ratadia (Microsoft)

Kroum Savadjiev (Purkinje Inc.)

Vicki Scott (Metrowerks, Inc.)

Richard Seabrook (Anne Arundel Community College)

Gary Sibbitts (St. Louis Community College)

Vladimir Toncar (Kerio Technologies)

Owen Urkov (Borland)

Reid Wilkes (Microsoft)

C++ How to Program, 41e, OODIUML Case Study Reviewers

Brian Cook (Zurich insurance)

Ron Felice (Omniware Development)

Terry Hull (Enterprise Component Technologies, Inc.)

Don Kostuch (You Can C Clearly)

Grant Larsen (Rational Software)

Davyd Norris (Rational Software)

Kendall Scott (Independent consultant)

Preface

Preface

Cameron Skinner (Embarcadero Technologies; OMG)

Mark Taube (Raytheon)

Stephen Tockey (Construx Software; OMG)

Bing Xue (Siemens Applied Automation)

LVII

Under tight deadlines, these reviewers scrutinized every aspect of the text and made count

less suggestions for improving the accuracy and completeness of the presentation.

Contacting Deitel & Associates

We would sincerely appreciate your comments, criticisms, corrections and suggestions for

improving the text. Please address all correspondence to:

deitel@deitel.com

We will respond promptly.

Errata

We will post all errata for the Fourth Edition at www.deitel.com.

Customer Support

Please direct all software and installation questions to Pearson Education Technical Sup

port:

By phone: 1 -800-677-6337

By email: media.support@pearsoned.com

On the Web: 247 .prenhall.com

Please direct all C++ language questions to dei tel@deitel.com.

Well, that is it for now. Welcome to the exciting world of C++, object-oriented pro

gramming, UML, generic programming with the STL and C++ Web programming with

CGI . We hope you enjoy this look at contemporary computer programming. Good luck!

Dr. Harvey M. Deitel

Paul J. Deitel

About the Authors

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer (CSO) of Deitel & Associates,

I nc., has 41 years experience in the computing field, including extensive industry and aca

demic experience. Dr. Deitel earned B.S. and M.S. degrees from the Massachusetts I nsti

tute of Technology and a Ph.D. from Boston University. He worked on the pioneering

virtual-memory operating-systems projects at I BM and MI T that developed techniques

now widely implemented in systems such as UNIX, Linux and Windows XP. He has 20

years of college teaching experience, including earning tenure and serving as the Chairman

of the Computer Science Department at Boston College before founding Deitel & Associ

ates, I nc., with his son, Paul J. Deitel. He and Paul are the co-authors of several dozen books

and multimedia packages and they are writing many more. With translations published in

Japanese, Russian, Spanish, Traditional Chinese, Simplified Chinese, Korean, French, Pol

ish, I talian, Portuguese, Greek, Urdu and Turkish, the Deitels' texts have earned interna-

LVI II Preface

tional recognition. Dr. Deitel has delivered professional seminars to major corporations,

government organizations and various branches of the military.

Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a

graduate of the Massachusetts Institute of Technology's Sloan School of Management,

where he studied Information Technology. Through Deitel & Associates, Inc., he has deliv

ered C, C++, Java, Internet and World Wide Web courses to industry clients, including

Compaq, Sun Microsystems, White Sands Missile Range, Rogue Wave Software, Boeing,

Dell, Stratus, Fidelity, Cambridge Technology Partners, Open Environment Corporation,

One Wave, Hyperion Software, Lucent Technologies, Adra Systems, Entergy, CableData

Systems, NASA at the Kennedy Space Center, the National Severe Storm Laboratory, IBM

and many other organizations. He has lectured on C++ and Java for the Boston Chapter of

the Association for Computing Machinery and has taught satellite-based Java courses

through a cooperative venture of Deitel & Associates, Prentice Hall and the Technology

Education Network. He and his father, Dr. Harvey M. Deitel, are the world's best-selling

Computer Science textbook authors.

About Deitel & Associates, Inc.
Deitel & Associates, Inc., is an internationally recognized corporate training and content

creation organization specializ ing in Internet/World Wide Web software technology, e

business/e-commerce software technology, object technology and computer programming

languages education. The company provides instructor-led courses on Internet and World

Wide Web/ programming, wireless Internet programming, object technology, and major

programming languages and platforms, such as C, C++, Visual C++® .NET, Visual Basic®

.NET, C#, Java, Advanced Java, XML, Perl, Python and more. The founders of Deitel &

Associates, Inc., are Dr. Harvey M. Deitel and Paul 1. Deitel. The company's clients in

clude many of the world's largest computer companies, government agencies, branches of

the military and business organizations. Through its 27-year publishing partnership with

Prentice Hall, Deitel & Associates, Inc., publishes leading-edge programming textbooks,

professional books, interactive CD-based multimedia Cyber Classrooms, Complete Train

ing Courses, e-books, e-Matter, Web-based training courses and course management sys

tems e-content for popular CMSs such as WebCT, Blackboard and CourseCompass. Deitel

& Associates, Inc., and the authors can be reached via e-mail at:

deitel@deitel.com

To learn more about Deitel & Associates, Inc., its publications and its worldwide corporate

on-site curriculum, see the last few pages of this book or visit:

www.deitel.com

Individuals wishing to purchase Deitel™ books, Cyber Classrooms, Complete Training

Courses and Web-based training courses can do so through bookstores, online booksellers

and:

www.deitel.com

www.prenhall.com/deitel

www.lnformIT.com/deitel

www.lnformIT.com/cyberclassrooms

Preface lIX

Bulk orders by corporations and academic institutions should be placed directly with Pren

tice Hall. See the last few pages of this book for worldwide ordering details.

The World Wide Web Consortium (W3C) W3�® Deitel & Associates, Inc., is a member of the World Wide Web Consortium
f (W3C). The W3C was founded in 1 994 "to develop common protocols for
V the evolution of the World Wide Web." As a W3C member, Deitel & Asso

MElVBER ciates, fnc., holds a seat on the W3C Advisory Committee (the company's

representative is our CEO, Paul Deitel). Advisory Committee members help provide "strate

gic direction" to the W3C through meetings held around the world. Member organizations

also help develop standards recommendations for Web technologies (such as XHTML, XML

and many others) through participation in W3C activities and groups. Membership in the

W3C is intended for companies and large organizations. To obtain information on becoming

a member of the W3C visit

www.w3.org/Consortium/Prospectus/Joining

I
Introduction to

Computers and C++
Programming

Objectives
• To understand basic computer-science concepts.

• To become familiar with different types of

programming languages.

• To understand a typical C++ program-development

environment.

• To be able to write simple computer programs in C++.
• To be able to use simple input and output statements.

• To become familiar with fundamental data types.

• To be able to use arithmetic operators.

• To understand the precedence of arithmetic operators.

• To be able to write simple decision-making

statements.

High thoughts must have high language.

Aristophanes

Our life is frittered away by detail ... Simplify, simplify.

Henry David Thoreau

My object all sublime

I shall achieve in time.

W. S. Gilbert

2 Introductio n to Computers and C++ Program m i n g

Outline

1.1 Introduction

1.2 What is a Computer?

1.3 Computer Organization

1.4 Evolution of Operating Systems

Chapter 1

1.5 Personal Computing, Distributed Computing and Client/Server

Computing

1.6 Machine Languages, Assembly Languages, and High-Level

Languages

1.7 History of C and C++

1.8 C++ Standard Ubrary

1.9 Java

1.10 Visual Basic, Visual C++ and C#

1.11 Other High-Level Languages

1.12 Structured Programming

1.13 The Key Software Trend: Object Technology

1.14 Basics of a Typical C++ Environment

1.15 Hardware Trends

1.16 History of the Intemet

1.17 History of the World Wide Web

1.18 World Wide Web Consortium (W3C)

1.19 General Notes About C++ and This Book

1.20 Introduction to C++ Programming

1.21 A Simple Program: Printing a Une of Text

1.22 Another Simple Program: Adding Two Integers

1.23 Memory Concepts

1.24 Arithmetic

1.25 Decision Making: Equality and Relational Operators

1.26 Thinking About Objects: Introduction to Object Technology and the

Unified Modeling Language™

1.27 Tour of the Book

Summary· Terminology· Self-Review Exercises· Answers to Se(f-Review Exercises· Exercises

1.1 Introduction

Welcome to c++! We have worked hard to create what we hope will be an informative,

entertaining and challenging learning experience for you. C++ is a challenging language

that normal ly is taught only to experienced programmers, so this book is unique among

C++ textbooks:

Chapter 1 I ntrod uction to Computers and C++ Progra m ming 3

I t is appropriate for technically oriented people with little or no programming ex

perience.

I t is appropriate for experienced programmers who want a deeper treatment of the

language.

How can one book appeal to both groups? The answer is that the common core of the

book emphasizes achieving program clarity through the proven techniques of structured

programming and object-oriented programming-non-programmers learn programming

the right way from the beginning. We have attempted to write in a clear and straightforward

manner. The book is abundantly illustrated. Perhaps most importantly, tbe book presents

hundreds of complete working C++ programs and shows the outputs produced when those

programs are run on a computer. We call this the "live-code approach." All of these

example programs are provided on the CD-ROM that accompanies this book. You may also

download these programs from our Web site www.deitel.com. The examples are also

available on our interactive CD-ROM product, the C++ Multimedia Cyber Classroom:

Fourth Edition . The Cyber Classroom contains extensive hyperlink ing, audio walk

throughs of the program examples in the book, the ability to search an electronic copy of

the book and answers to approximately half the exercises in this book (including short

answers, small programs and many full projects) . The Cyber Classroom's features and

ordering information appear at the back of this book.

The first five chapters introduce the fundamentals of computers, computer program

ming and the C++ computer programming language. Novices who have taken our courses

tell us that the material in Chapter I-Chapter 5 presents a solid foundation for the deeper

treatment of C++ in the remaining chapters. Experienced programmers typically read the

first five chapters quickly then find the treatment of C++ in the remainder of the book both

rigorous and challenging.

Most people are at least somewhat familiar with the exciting things computers do.

Using this textbook, you will learn how to command computers to do those things. I t is soft

ware (i.e., the instructions you write to command the computer to perform actions and

make decisions) that controls computers (often referred to as hardware). C++ is one of

today's most popular-software development languages. This text provides an introduction

to programming in the version of C++ standardized in the United States through the A mer

ican National Standards Institute (ANSI) and worldwide through the efforts of the Interna

tional Organization for Standardization (ISO). I
The use of computers is increasing in almost every field of endeavor. I n an era of steadily

rising costs, computing costs have been decreasing dramatically because of the rapid devel

opments in both hardware and software technology. Computers that filled large rooms and

cost millions of dollars 25 to 30 years ago now are inscribed on the surfaces of silicon chips

smaller than a fingernail and cost perhaps a few dollars each. I ronically, silicon is one of the

most abundant materials on the eatth-it is an ingredient in common sand. Silicon-chip tech

nology has made computing so economical that hundreds of millions of general-purpose

computers are in use worldwide helping people in business, industry, government and their

personal Lives. That number could easily double in a few years.

I. Accordi n g to the ISO Web s i te (www.iso.org/iso/en/aboutiso/introduction/

whatisISO. html), ISO is the short name for the organ ization used worldwide to avoid sepa
rate acronyms for each tran s l at ion of International Organ izat ion for Standardizat ion .

4 I ntrod uction to Computers and C++ Prog ra m m i n g Chapter 1

Over the years, many programmers learned the programming methodology called

structured programming. You will learn both structured programming and the exciting

newer methodology, object-oriented programming. Why do we teach both? Object-orienta

tion is certain to be the key programming methodology for the next decade. You will create

and work with many objects in this course. But you will discover that the internal structure

of those objects often is built best using structured-programming techniques. Also, the logic

of manipulating objects occasionally is expressed best with structured programming.

There currently is a massive migration occurring from C-based systems to C++-based

systems. There is a huge amount of so-called "legacy C code" in place. C has been in wide

use for about a quarter of a century. Once people learn C++, they find it more powerful than

C and often choose to move to C++. They begin converting their legacy systems to C++.

They begin using the various C++ features generally called "C++ enhancements to C" to

improve their style of writing C-like programs. Finally, they begin employing the object

oriented programming capabilities of C++ to realize the full benefits of the language.

I n the first five chapters of the book you will learn structured programming in C++, the

"C portion" of C++ and the "C++ enhancements to c." I n the balance of the book you will

learn object-oriented programming in C++. We do not want you to wait until Chapter 6 ,

however, to begin appreciating object orientation. Therefore, each of the first five chapters

concludes with a section entitled "Thinking About Objects." These sections introduce basic

concepts and terminology about object-oriented programming. When we reach Chapter 6 ,

Classes and Data Abstraction, you will be prepared to start using C++ to create objects and

write object-oriented programs.

This first chapter has four parts. The first part introduces the basics of computers and

computer programming. The second part gets you started immediately writing some simple

C++ programs. The third part helps you start "thinking about objects." The last part tours

the rest of the book.

So there you have it! You are about to start on a challenging and rewarding path. As

you proceed, if you would like to communicate with us, please send email to us at

deitel@deitel.com

or browse our World Wide Web site at

www.deitel.com

We will respond immediately. We hope you enjoy learning with C++ How to Program.

You may want to consider using the interactive CD-ROM version of the book called the
C++ Multimedia Cyber Classroom: Fourth Edition. Please see the ordering instructions at

the back of this book.

1 . 2 What is a Computer?

A computer is a device capable of performing computations and making logical decisions

at speeds millions (even billions) of times faster than human beings can. For example, many

of today's personal computers can perform a billion additions per second. A person oper

ating a desk calculator might require a lifetime to complete the same number of calculations

a powerful personal computer can perform in one second. (Points to ponder: How would

you know whether the person added the numbers correctly? How would you know whether

Chapter 1 I ntrod uction to Com puters and C++ Progra m m i n g 5

the computer added the numbers correctly?) Today's fastest supercomputers can perform

hundreds of billions of additions per second! And trillion-instruction-per-second computers

are already functioning in research laboratories!

Computers process data under the control of sets of instructions called computer pro
grams. These computer programs guide the computer through orderly sets of actions spec

ified by people called computer programmers.

A computer is comprised of various devices (such as the keyboard, screen, "mouse, "

disks, memory, CD-ROM and processing units) that are referred to as hardware. The com

puter programs that run on a computer are referred to as software. Hardware costs have

been declining dramatically in recent years, to the point that personal computers have

become commodities. Unfortunately, software-development costs have been rising steadily

as programmers develop ever more powerful and complex applications, without signifi

cantly improved technology for software development. In this book you will learn proven

software-development methods that can reduce software-development costs-structured

programming, top-down stepwise refinement, functionalization, object-based program

ming, object-oriented programming, object-oriented design and generic programming.

1 .3 Computer Organization

Regardless of differences in physical appearance, virtually every computer may be envi

sioned as being divided into six logical un its or sections. These are:

l . Input unit. This is the "receiving" section of the computer. I t obtains information

(data and computer programs) from various input devices and places this informa

tion at the disposal of the other units so that the information may be processed.

Most information is entered into computers today through keyboards and mouse

devices. Information also can be entered by speaking to your computer, by scan

ning images and by having your computer receive information from a network ,

such as the I nternet.

2. Output unit. This is the "shipping" section of the computer. I t takes information

that has been processed by the computer and places it on various output devices to

make the information available for use outside the computer. Most information

output from computers today is displayed on screens, printed on paper, or used to

control other devices. Computers also can output their information to networks,

such as the I nternet.

3. Memory unit. This is the rapid access, relatively low-capacity "warehouse" sec
tion of the computer. It retains information that has been entered through the input

unit, so the information may be made immediately available for processing when

it is needed. The memory unit also retains processed information until that infor

mation can be placed on output devices by the output unit. The memory unit is of

ten called either memory or primary memory.

4. A rithmetic and logic unit (ALU). This is the "manufacturing" section of the com
puter. I t is responsible for performing calculations such as addition, subtraction,
multiplication and division. I t contains the decision mechanisms that allow the
computer, for example, to compare two items from the memory unit to determine
whether or not they are equal.

6 I ntrod uction to Com puters and C++ Prog ra m m i n g Chapter 1

5. Central processing unit (CPU). This is the "administrative" section of the com

puter. It is the computer's coordinator and is responsible for supervising the oper

ation of the other sections. The CPU tells the input unit when information should

be read into the memory unit, tells the A LU when information from the memory

unit should be used in calculations and tells the output unit when to send informa

tion from the memory unit to certain output devices. Many of today's computers

have multiple processing units and, hence, can perform many operations simulta

neously-such computers are called multiprocessors .

6. Secondary storage unit. This is the long-term, high-capacity "warehousing" sec

tion of the computer. Programs or data not actively being used by the other units

normally are placed on secondary storage devices (such as disks) until they are

again needed, possibly hours, days, months, or even years later. I nformation in

secondary storage takes much longer to access than information in primary mem

ory, but the cost per unit of secondary storage is much less than the cost per unit

of primary memory.

1 .4 Evolution of Operating Systems

E arly computers were capable of performing only one job or task at a time. This form of

computer operation is often called single-user batch processing. The computer runs a single

program at a time while process ing data in groups or batches. I n these ear l y systems, users

generally submitted their jobs to a computer center on decks of punched cards. Users often

had to wait hours or even days before printouts were returned to their desks.

Software systems called operating systems were developed to help make it more con

venient to use computers. Early operating systems managed the smooth transition between

jobs. This minimized the time it took for computer operators to switch between jobs and

hence increased the amount of work , or throughput, computers could process.

A s computers became more powerful, it became evident that single-user batch pro

cessing rarely utilized the computer's resources efficiently because most of the time was

spent waiting for slow input/output devices to complete their tasks. I nstead, it was thought

that many jobs or tasks could be made to share the resources of the computer to achieve

better utilization. This is called multiprogramming. Multiprogramming involves the

"simultaneous" operation of many jobs on the computer-the computer shares its resources

among the jobs competing for its attention. With early mUltiprogramming operating sys
tems, users stil l submitted jobs on decks of punched cards and waited h ours or days for

results.

I n the 1 960s, s everal groups in indus try and the universities pioneered timesharing

operating sys tems. Timesharing is a special case of multiprogramming, in which users

access the computer through terminals, typically devices with keyboards and screens. In a

typical timesh aring computer system, there may be dozens or even hundreds of users

sharing the computer at once. The computer actually does not run all the users simulta

neously. Rather, it runs a small portion of one user's job then moves on to service the next

user. The computer does this so quickJy that it may provide service to each user several

times per second. Thus the users' programs appear to be running simultaneously. A n

advantage of timesharing is that the user receives almost immediate responses to requests

rather than having to wait long periods for results as with previous modes of computing.

Chapter 1 I ntrod uction to Computers a n d C++ Prog ra m m ing

1 .5 Personal Computing, Distributed Computing and Client/
Server Computing

7

I n 1 9 77, Apple Computer popularized the phenomenon of personal computing. Initially , it

was a hobby ist's dream. Computers became economical enough for people to buy them for

their own personal or business use. I n 1 98 1 , I BM, the world's l argest computer vendor, in

troduced the I BM Personal Computer. Literally overnight, personal computing became le

gitimate in business, industry and government organizations.

But these computers were "standalone" units-people did their work on their own

machines then transported disks back and forth to share inform ation (this is often called

"sneakernet") . Although early personal computers were not powerful enough to timeshare

several users, these machines could be linked together in computer networks, sometimes

over telephone lines and sometimes in local area networks (LANs) within an organization.

This led to the phenomenon of distributed computing, in which an organization's com

puting, instead of being peIformed strictly at some central computer installation, is distrib

u ted over networks to the sites at which the work of the organization is performed. Personal

computers were powerful enough to handle the computing requirements of individual

users, and to handle the basic communications tasks of passing information b etween one

another electronically .

Today's most powerful personal computers are as powerfu l as the mil lion dollar

machines of just a decade ago. The most powerful desktop machines--called worksta

tions-provide individual users with enormous capabilities. I nformation is shared easily

across computer networks where some computers calledjlle servers offer a common store

of programs and data that may be used by client computers distribu ted throughou t the net

work, hence the term client/server computing. C++ has become widely used for writing

software for operating sy stems, for computer networking and for distr ibuted client/server

applications. Today's popular operating systems such as UNIX, Linux and Microsoft's

Windows-based sy stems provide the kinds of capabilities discussed in this section.

1 .6 Machine Languages, Assembly Languages,
and H igh - Level Languages

Programmers write instructions in various programmjng languages, some directly under

standable by the computer and others that require intermediate translation steps. Hundreds

of computer languages are in use today . These may be divided into three general types:

1 . Machine languages,

2 . Assembly languages,

3. High-level languages.

Any computer can directly understand only its own machine language. Machine lan

guage is the "natural language" of a particular computer. I t is defined by the hardware

design of that computer. Machine languages generally consist of strings of numbers (ulti

mately redu ced to I s and as) that instruct computers to perform their most elementary oper

ations one at a time. Machine languages are machine-dependent, i. e. , a particular machine

language can be used on only one type of computer. Machine languages are cumbersome

for humans, as can be seen by the following section of a machine-language program that

adds overtime pay to base pay and stores the result in gross pay .

8 I ntroduction to Com puters and C++ Progra m m i n g

+ 1 3 0 0 0 4 2 7 7 4

+ 1 4 0 0 5 9 3 4 1 9

+ 1 2 0 0 2 7 4 0 2 7

Chapter 1

As computers became more popular, it became apparent that machine- language pro

gramming w as too s low, tedious and error prone. Ins tead of using the s tr ings o f numbers

that computers could directly understand, programmers began us ing Engli sh- like abbrevi

ations to repres ent the elementary operations of the computer. Thes e Englis h- like abbrevi

ations form ed the bas is of assembly languages. Translator programs called assemblers

were developed to convert ass embly-language programs to machine language at computer

speed\; . The following s ection of an ass embly- language program als o adds overtime pay to

bas e pay and s tores the result in gross pay, but more clearly than its machine language

equivalent:

LOAD BASEPAY

ADD OVERPAY

STORE GROSSPAY

A lthough such code is clearer to humans , it is incomprehens ible to computers until trans

lated to machine language by ass emblers .

Computer usage increas ed rapidly with the advent of ass embly languages , but thes e

s till required many ins tructions to accomplis h even the s imples t tasks . To speed the pro

gramming process , high-level languages were developed in which s ingle s tatements

accomplish substantial tasks . Trans lator programs called compilers convert high- level lan

guage programs into machine language. High- level languages allow programmers to write

instructions that look almos t like everyday English and contain commonly us ed mathemat

ical notations . A payro ll program written in a high- level language might contain a s tatement

such as :

gro s sPay = bas ePay + overTimePay

Obviously, high- level languages are much more desirable from the programmer ' s s tand

point than either machine languages or ass embly languages . C and C++ are among the most

powerful and most widely us ed high-level languages .

The process of compiling a high- level language program into machine language can

take a considerab le amount of computer time. Interpreter programs were developed that

can directly execute high- level language programs without the need for compiling those

programs into machi ne l anguag e. Although compiled programs execute faster than inter

preted programs , interpreters are popular in program-development environments , in which

programs are changed frequently as new features are added and errors are corrected. Once

a program is developed, a compiled vers ion can be produced to run most efficiently.

1 . 7 H istory of C and C++

C++ evolved from C, which evolved from two previous programming languages , BCPL

and B. BCPL was developed in 1 967 by Martin Richards as a languag e for writing operat

ing s ys tems software and compilers . Ken Thompson modeled many features in his lan

guage B after their counterparts in BCPL and us ed B to create early versions of the UNIX

Chapter 1 I ntroduction to Computers and C++ Programming 9

operating system at Bell Laboratories in 1 970 on a DEC PDP-7 computer. Both BCPL and

B were "typeless" languages-every data item occupied one "word" in memory and the

burden of treating a data item as a whole number or a real number, for example, was the

responsibility of the programmer.

The C language was evolved from B by Dennis Ritchie at Bell Laboratories and was

originally implemented on a DEC PDP- I I computer in 1 972. C uses many important con

cepts of BCPL and B while adding data typing and other features . C initially became widely

known as the development language of the UNIX operating system. Today, most operating

systems are written in C and/or C++. C is now available for most computers. C is hardware

independent. With careful design, it is possible to write C programs that are portable to

most computers .

By the late 1 970s, C had evolved into what now is referred to as "traditional C,"

"classic C," or "Kernighan and Ritchie c." The publ ication by Prentice-Hall in 1 978 of

Kernighan and Ritchie' s book, The C Programming Language, brought wide attention to

the language.

The widespread use of C with various types of computers (sometimes called hardware

platforms) unfortunately led to many variations . These were similar, but often incompat

ible. This was a serious problem for program developers who needed to write portable pro

grams that would run on several platforms. It became c lear that a standard version of C was

needed. In 1 983 , the X3J 1 1 technical committee was created under the American National

Standards Committee on Computers and Information Processing (X3) to "provide an

unambiguous and machine-independent definition of the language." In 1 989, the standard

was approved. ANSI cooperated with the International Standards Organization (ISO) to

standardize C worldwide; the joint standard document was published in 1 990 and i s

referred to as ANSI/ISO 9899: 1 990. Copies of this document may be ordered from ANSI .

The second edition of Kernighan and Ritchie, published in 1 988 , reflects this version called

ANSI C , a version of the language now used worldwide. fI Portabi l ity Tip 1 . 1

Because C is a standardized, hardware-independent, widely available language, applica

tions written in C often can be run with little or no modifications on a wide range of different

computer systems.

C++, an extension of C, was developed by Bjarne Stroustrup in the early 1 980s at Bell

Laboratories. C++ provides a number of features that "spruce up" the C language, but more

importantly, it provides capabilities for object-oriented programming.

There is a revolution brewing in the software community . Building software quickly,

correctly and economically remains an elusive goal, and this at a time when the demand for

new and more powerful software is soaring. Objects are essentially reusable software com

ponents that model items in the real world. Software developers are discovering that using

a modular, object-oriented design and implementation approach can make software devel

opment groups much more productive than is possible with previous popular programming

techniques, such as structured programming. Object-oriented programs are easier to under

stand, correct and modify .

Many other object-oriented languages have been developed, including Smalltalk,

developed at Xerox ' s Palo Alto Research Center (PARC) . Smalltalk is a pure object-ori

ented language-literally everything is an object. C++ is a hybrid language-it is possible

to program in C++ in either a C-Iike style, an object-oriented style, or both.

1 0 I ntrod uction to Computers and C++ Prog ra m m i n g Chapter 1

1 .8 C++ Standard Library

c++ programs consist of pieces called classes and functions. You can program each piece

you may need to form a C++ program. However, most C++ programmers take advantage

of the rich col lections of exi sting c lasses and functions in the C++ standard l ibrary . Thus,

there are real l y two parts to learning the C++ "world ." The first i s learning the C++ l an

guage itself; the second is learning how to use the c lasses and functions in the C++ standard

library . Throughout the book, we discuss many of these c lasses and functions . The book by

Plauger2 is must reading for programmers who need a deep understanding of the ANSI C

l ibrary functions that are included in C++, how to implement them and how to use them to

write portable code . The standard class l ibraries general ly are provided by compiler ven

dors . Many special-purpose c lass l ibraries are supplied by independent software vendors .

f a name mg 0 ser a 0 1
Use a "building block approach " to creating programs. A void reinventing the wheel. Use

existing pieces where possible-this is called "software reuse " and it is central to object-ori

ented programming.

n Ob rvation '}
When programming in C+ +, you typically will use the following building blocks: classes and

-functions from the C+ + standard library, classes and functions you create yourself, and

classes and functions from various popular third-party libraries.

[Note : We include many of these Software Engineering Observations throughout the text

to explain concepts that affect and improve the overall architecture and quality of a software

system, and particularly, of large software systems. We also highlight Good Programming

Practices (practices that can help you write programs that are clearer, more understandable,

more maintainable, and easier to test and debug), Common Programming Errors (problems

to watch for, so you do not make these elTors in your programs) , Peiformance Tips (tech

niques that help you write programs that run faster and use less memory) , Portability Tips

(techniques that help you write programs that can run, with l i tt le or no modification, on a

variety of computers) and Testing and Debugging Tips (techniques that help you remove bugs

from your programs, and more important, techniques that wil l help you write bug-free pro

grams in the first place) . Many of these techniques and practices are only guidel ines ; you wi l l ,

no doubt, develop your own preferred programming style.]

The advantage of creating your own functions and classes i s that you wi l l know exactly

how they work. You will be able to examine the C++ code. The disadvantage is the time
consuming and complex effort that goes into designing, developing and mai ntain ing new
functions and classes that are correct and that operate efficiently .

Performance Tip 1 . 1
Using standard library functions and classes instead of writing your own comparable ver

sions can improve program pelformance, because this software is written carefully to per

form efficiently and correctly.

Portabil ity Tip 1 .2
Using standard library functions and classes instead of writing your own can improve pro

g ram portability, because this software is included in virtually all C+ + implementations.

2. P. J. P lauger, The Standard C Library (Englewood C l i ffs, NJ: Prentice Hal l , 1 992) .

Chapter 1 I ntroduction to Computers and C++ Progra m m i n g 1 1

1 .9 Java

Many people believe that the next major area in which microprocessors wil l have a pro

found impact i s i n i ntel l igent consumer electronic devices. Recognizing this , Sun Micro

systems funded an internal corporate research project code-named Green in 1 99 1 . The

project resulted in the development of a C and C++ based language which its creator, James

Gosling, called Oak after an oak tree outside his window at Sun. I t was discovered later that

there already was a computer language called Oak. When a group of Sun people visited a

local coffee place, the name Java was suggested and it stuck.

B ut the Green proj ect ran into some difficulties . The marketplace for intelligent con

sumer electronic devices was not developing as quickly as Sun had anticipated. Worse yet,

a maj or contract for which Sun competed was awarded to another company . So the project

was in danger of being canceled. By sheer good fortune, the World Wide Web exploded in

popularity i n 1 993 and Sun people saw the immediate potential of using Java to create so

called dynamic content for Web pages.

Sun formally announced Java at a trade show in May 1 995 . Java generated immediate

interest in the business community because of the phenomenal interest in the World Wide

Web. Java now is used to create Web pages with dynamic and interactive content, to develop

large-scale enterprise appl ications, to enhance the functional ity of Web servers (the com

puters that provide the content we see in our Web browsers) , to provide applications for con

sumer devices (such as cell phones, pagers and personal digital assistants) , and more.

In 1 995 , we were following the development of Java by Sun Microsystems. In

November 1 995 , we attended an Internet conference in Boston. A representative from Sun

Microsystems gave a rousing presentation on Java. As the talk proceeded, i t became clear

to us that Java would play a significant part in the development of interactive, mult imedia

Web pages . But we saw i mmediately a much greater potential for the language.

We saw Java as a nice language for teaching first-year programming l anguage students

the essentials of graphics, images, animation, audio, v ideo, database, networking, multi

threading and collaborative computing. We went to work on the first edition of Java How

to Program which was published in time for fal l 1 996 classes. Java How to Program: Fifth

Edition was published in 2002 .

In addition to its prominence in developing Internet- and intranet-based applications,

Java is certain to become the language of choice for implementing software for devices that

communicate over a network (such as cellular phones, pagers and personal digital assis

tants) . Do not be surprised when your new stereo and other devices in your home will be

networked together using Java technology !

1 . 10 Visual BasiC , Visual C++ and C#

Developing Microsoft Windows-based applications in languages such as C and C++

proved to be a difficult and cumbersome process. When B i l l Gates founded Microsoft Cor

poration, he implemented BASIC on several early personal computers . B ASIC (Beginner' s

Al l-Purpose Symbolic Instruction Code) is a programming language developed in the mjd-

1 960s by Professors John Kemeny and Thomas Kurtz of Dartmouth College as a language

for writing simple programs. BASIC ' s primary purpose was to fami l iarize novices with

programming techniques. The natural evolution from B A S IC to Visual B asic was intro-

1 2 I ntroduction to Computers and C++ Progra m m i n g Chapter 1

duced in 1 99 1 as a result of the development of the Microsoft Windows graphical user in

terface (GUI) i n the late 1 980s and the early 1 990s.

Although V isual Basic i s derived from the BASIC programming language, i t is a dis

tinctly different language that offers such powerful features as graphical u ser i nterfaces,

event handl ing, access to the Windows 32-bit Application Programming Interface (Win32
API), obj ect-oriented programming and error handling. Visual Basic i s one of the most pop

ular event-driven, v isual programming interfaces.

The l atest version of Visual Basic, called Visual Basic .NET? i s designed for

Microsoft ' s new programming platform, .NET. Earl ier versions of Visual B asic provided

object-oriented capabil it ies, but Visual Basic .NET offers enhanced obj ect orientation and

makes use of the powerful l ibrary of reusable software components in . NET.

Visual C++ is a Microsoft implementation of C++ that includes M icrosoft ' s own

extensions to the language . Early graphics and GUI programming with Visual C++ was

i mplemented using the Microsoft Foundation Classes (MFC) . Now, with the introduction

of . NET, Microsoft provides a common l ibrary for implementing GUI, graphics, net

working, multithreading and other capabilit ies. This l ibrary is shared among Visual B asic,

Visual C++ and Microsoft ' s new language, C#.

The advancement of programming tools (e .g . , C++ and Java) and consumer-electronic

devices (e .g . , cell phones) created problems and new requirements . The integration of soft

ware components from various languages proved difficult , and instal lation problems were

common because new versions of shared components were incompatible with old software .

Developers also discovered they needed Web-based appl ications that could be accessed

and used via the Internet. As a result of mobile electronic device popularity, software devel

opers realized that their cl ients were no longer restricted to desktop computers . Developers

recognized the need for software that was accessible to anyone and available via almost any

type of device. To address these needs, Microsoft announced its . NET (pronounced "dot

net") initiative and the C# (pronounced "C-Sharp") programming language.

The . NET platform i s one over which Web-based appl ications can be distributed to a

great variety of devices (even cell phones) and to desktop computers. The platform offers

a new software-development model that allows applications created in disparate program

ming languages to communicate with each other. The C# programming language, devel

oped at Microsoft by a team led by Anders Hej lsberg and Scott Wiltamuth, was designed

specifical ly for the .NET platform as a language that would enable programmers to migrate

easily to . NET. This migration is made easy due to the fact that C# has roots in C, C++ and

Java, adapting the best features of each and adding new features of its own. B ecause C# has

been built upon widely used and well -developed languages, programmers will find learni ng

C# to be easy and enjoyable.

C# i s an event-driven, ful ly object-oriented, visual programming language, in which

programs are created using an Integrated Development Environment (IDE) . With the IDE,

a programmer can create, run , test and debug C# programs conveniently, thereby reducing

the time required to produce a working program to a fraction of the time i t required without

using the IDE. The process of rapidly creating an appl ication using an IDE i s referred to as

Rapid Application Development (RAD).

3 . The reader i n terested i n Visual B asic .NET may want to consider our book, Visual Basic . NET
How to Program, Second Edition .

Chapter 1 I ntroduction to Computers a n d C++ Progra m ming 1 3

C# also enables a new degree of language interoperabil i ty : Software components from

different languages can interact as never before . Developers can package even old software

to work wi th new C# programs . In addition, C# applications can interact via the Internet.

1 . 1 1 Other H igh - Level Languages

Hundreds of high-level languages have been developed, but only a few have achieved

broad acceptance . FORTRAN (FORmula TRANslator) was developed by I B M Corporation

between 1 954 and 1 957 to be used for scientific and engineering applications that require

complex mathematical computations. FORTRAN is sti l l widely used, especially i n engi

neering appl ications .

COBOL (COmmon Bus iness Oriented Language) was developed i n 1 959 by computer

manufacturers, the government and industrial computer users . COBOL is used for commer

cial applications that require precise and efficient manipulation of large amounts of data.

By some estimates, more than half of all business software is st i l l programmed in COBOL.

Pascal was designed at about the same time as C by Professor Niklaus Wirth and was

intended for academic use . We wil l say more about Pascal in the next section.

1 . 1 2 Structured Programming

During the 1 960s, many large software-development efforts encountered severe difficul

t ies . Software schedules were typically late, costs greatly exceeded budgets and the fin

i shed products were unreliable. People began to real ize that software development was a

far more complex activ i ty than they had i magined. Research activity i n the] 960s resulted

in the evolution of structured programming-a disciplined approach to writing programs

that are clearer than unstructured programs, easier to test and debug and easier to modify .

Chapter 2 discusses the principles of structured programming. Chapter 3-Chapter 5 devel

op many structured programs .

One of the more tangible results of th i s research was the development of the Pascal

programming language by Niklaus Wirth in 1 97] . Pascal , named after the seventeenth-cen

tury mathematician and philosopher Blai se Pascal, was designed for teaching structured

programming in academic environments ; i t rapidly became the preferred programming lan

guage i n most universit ies . Unfortunately, the language lacks many features needed to

make it u sefu l in commercial , i ndustrial and government appl ications, so i t has not been

widely accepted outside the universities .

The Ada programming language was developed under the sponsorship of the United

States Department of Defense (000) during the 1 970s and early 1 980s . Hundreds of sepa

rate languages were being used to produce DoD ' s massive command-and-control software

systems . 000 wanted a s ingle language that would fulfi l l most of its needs . Pascal was

chosen as a base, but the final Ada language is quite different from Pascal . The language

was named after Lady Ada Lovelace, daughter of the poet Lord B yron . Lady Lovelace i s

generally credited with writing the world ' s first computer program i n the early 1 800s (for

the Analytical Engine mechanical computing device designed by Charles B abbage) . One

i mportant capabi l ity of Ada i s called multitasking; this allows programmers to specify that

many activities are to occur in paral lel . The other widely used high-level languages we have

discussed-including C and C++-general ly allow the programmer to write programs that

perform only one activity at a time.

1 4 Introduction to Computers and C++ Progra m m i n g Chapter 1

1 . 13 The Key Software Trend: Object Technology

One of the authors, HMD, remembers the great frustration that was felt in the 1 960s by soft

w are-development organizations, especial ly those developing large-scale proj ects . During

his undergraduate years, HMD had the privilege of working summers at a leading computer

vendor on the teams developing time-sharing, virtual memory operating systems . Thi s was

a great experience for a college student. B ut, in the summer of 1 967, reality set in when the

company "decommitted" from producing as a commercial product the particular system on

which hundreds of people had been working for many years . It was difficult to get this soft

ware right. Software is "complex stuff."

I mprovements to software technology did start to appear with the benefits of so-called

structured programming (and the related discipl ines of structured systems anaLysis and

design) being realized in the 1 970s. But it was not until the technology of obj ect-oriented

programming became widely used in the 1 990s, that software developers final ly fel t they

had the necessary tools for making major strides in the software-development process.

Actually , object technology dates back to the mid 1 960s. The C++ programming l an

guage, developed at AT&T by Bj arne Stroustrup in the early 1 980s, i s based on two lan

guages-C, which init ial ly was developed at AT&T to implement the UNIX operating

system in the early 1 970s, and Simula 67, a simulation programming language developed

in Europe and released in 1 967. C++ absorbed the features of C and added S i mula' s capa

b ilit ies for creating and manipulating objects . Neither C nor C++ was originally intended

for wide use beyond the AT&T research laboratories . But grass-roots support rapidly

developed for each.

What are obj ects and why are they special? Actually , obj ect technology i s a packaging

scheme that helps us create meaningful software units. These are large and highly focussed

on particular appl ications areas. There are date objects, time objects, paycheck obj ects,

invoice objects , audio objects, v ideo objects, fi le objects, record objects and so on. In fact ,

almost any noun can be reasonably represented as an object.

We l ive in a world of objects. Just look around you. There are cars, planes, people , ani

mals, buildings, traffic lights, elevators, and the l ike . Before obj ect-oriented languages

appeared, programming languages (such as FORTRAN, Pascal , B asic and C) were

focussed on actions (verbs) rather than on things or objects (nouns) . Programmers l iving i n

a world of obj ects program primari ly using verbs . This paradigm shift made i t awkward to

write programs . Now, with the availabil ity of popular obj ect-oriented languages such as

Java and C++, programmers continue to l ive in an object-oriented world and can program

in an object-oriented manner. This is a more natural process than procedural programming
and has resulted in significant productivity enhancements.

A key problem with procedural programming is that the program units do not easily

mirror real-world entities effectively, so these units are not particularly reusable . It i s not

unusual for programmers to "start fresh" on each new project and have to write s imi lar soft

ware "from scratch." This wastes time and money as people repeatedly "reinvent the

whee\ ." With object technology, the software entities created (called classes), i f properly

designed, tend to be much more reusable on future projects. Using l ibraries of reusable

componentry, such as MFC (Microsoft Foundation CLasses) and those produced by Rogue

Wave and many other software development organizations, can greatly reduce the amount

of effort required to i mplement certain kinds of systems (compared to the effort that would

be required to reinvent these capabil ities on new projects) .

Cha pter 1 I ntrod uction to Computers a n d C++ Progra m m i n g 1 5

Some organizations report that software reuse is not, in fact , the key benefi t they get

from object-oriented programming. Rather, they indicate that object-oriented programming

tends to produce software that is more understandable, better organized and easier to main

tain , modify and debug. This can be significant because it has been estimated that as much

as 80% of software costs are not associated with the original efforts to develop the software,

but are associated with the continued evolution and maintenance of that software

throughout its l ifetime.

Whatever the perceived benefits of obj ect-orientation are, i t i s c lear that object-ori

ented programming wi l l be the key programming methodology for the next several

decades.

The advantage of creating your own code is that you wil l know exactly how it works.

You wil l be able to examine the code . The disadvantage i s the time-consuming and com

plex effort that goes into designing and developing new code.

Extensive class libraries of reusable software components are available over the Internet and
. the World Wide Web. Many of these libraries are available at no charge.

1 . 1 4 Basics of a Typical C++ Environment4

c++ systems general ly consist of three parts : a program-development environment, the lan

guage and the C++ Standard Library . The fol lowing discussion explains a typical C++ pro

gram-development environment shown in Fig. 1 . 1 .

C++ programs typically go through six phases to be executed (Fig. 1 . 1) . These are :

edit, preprocess, compile, link, load and execute.

The first phase consi sts of editing a fi le . This i s accompl ished with an editor program.

The programmer types a C++ program with the editor and makes corrections if necessary .

The program source fi le is then stored on a secondary storage device such as a disk. C++

program fi le names often end with the . cpp, • cxx, • cc or • C extensions (note that c i s

in uppercase) . See the documentation for your C++ environment for more i nformation on

fi le-name extensions. Two editors widely used on UNIX systems are vi and emac s . C++

software packages for Microsoft Windows such as Borland C++, Metrowerks CodeWarrior

and M icrosoft Visual C++ have bui lt-in editors that are integrated into the programming

environment. We assume the reader knows how to edit a program.

Next, the programmer gives the command to compile the program. The compiler trans

lates the C++ program into machine language code (also referred to as object code) . In a

C++ system, a preprocessor program executes automatical ly before the compi ler' s trans la

tion phase begins . The C++ preprocessor obeys commands called preprocessor directives,

which indicate that certain manipUlations are to be performed on the program before

compi lation . These manipulations usual ly include other text fi les to be compiled and per

form various text replacements. The most common preprocessor directives are discussed in

the early chapters ; a detai led discussion of a l l the preprocessor features appears in

4. On o u r Web s i te a t www.deitel.com/books /downloads . html, we provide DEITELTM DIVE
INTOTM Series publications to help you begin using several popul ar C++ development tools , inc lud
i ng Borland® C++ B u i l der™, M icrosoft® Visual C++® 6, M icrosoft® Visual C++® .NET, GNU C++
on Linux and GNU C++ on the Cygwin™ UNIX® environment for Windows@ We w i l l make other
DIVE INTO™ Series publications avai lable as i nstructors request them .

1 6 I ntroduction to Computers and C++ Prog ramming Chapter 1

Editor I · �c

Preprocessor .. -c

Compiler I · -c

Linker I · -c

Loader

I
l Disk J

CPU

Fig. 1 . 1 A typical C++ environment.

Disk

Disk

Disk

Disk

Primary

Memory

Primary

Memory

1 }
1 }
1 }
1 }

Programmer creates

program in the editor

and stores it on disk.

Preprocessor program

processes the code.

Compiler creates

object code and stores

it on disk.

L inker l inks the object

code with the l ibraries,

creates an executable

file and stores it on disk

Loader puts program

in memory.

CPU takes each

instruction and

executes it possibly

storing new data

values as the program
executes .

Chapter 1 9, Preprocessor. The preprocessor is invoked by the compiler before the program

is converted to machine language.

The next phase is called linking. C++ programs typical ly contain references to func

tions and data defined el sewhere, such as in the standard l ibraries or in the private l ibraries

Chapter 1 I ntroduction to Com puters a n d C++ Program m i n g 1 7

of groups of programmers working on a particular project. The object code produced by the

C++ compiler typically contains "holes" due to these missing parts . A linker l inks the

object code with the code for the missing functions to produce an executable image (wi th

no missing pieces) . If the program compiles and l inks correctly , an executable image is pro

duced. This is the executable image of our we l c ome . cpp program.

The next phase is called loading. Before a program can be executed, the program must

first be placed in memory . This i s done by the loader, which takes the executable image

from disk and transfers it to memory . Additional components from shared l ibraries that sup

port the program are also loaded. Finally, the computer, under the control of its CPU, exe

cutes the program one instruction at a time.

Programs do not always work on the first try . Each of the preceding phases can fai l

because o f various errors that w e wi l l discuss. For example , a n executing program might

attempt to divide by zero (an i l legal operation on computers, j ust as i t i s i n arithmetic) . This

would cause the computer to display an error message . The programmer would then return

to the edit phase, make the necessary corrections a nd proceed through the remaining phases

again to determine whether the corrections work properly .

Common Programming Error 1 . 1
Errors like division-by-zero errors occur as a program runs, so these errors are called run-time

errors or execution-time errors. Divide-by-zero is generally a fatal error, i. e . , an error that

causes the program to terminate immediately without having successfully performed its job.

Non-fatal errors allow programs to run to completion, often producing incorrect results. (Note:

On some systems, divide-by-zero is not afatal error. Please see your system documentation.)

Most programs in C++ i nput and/or output data. Certain C++ functions take their i nput

from cin (the standard input stream; pronounced "see-in") which i s normally the key

board, but c in can be connected to another device. Data is often output to cou t (the stan

dard output stream; pronounced "see-out") which i s normally the computer screen , but

c out can be connected to another device. When we say that a program prints a result , we

normally mean that the result i s displayed on a screen. Data may be output to other devices

such as disks and hardcopy printers. There is also a standard error stream referred to as

cerro The cerr stream (normally connected to the screen) i s used for displaying error

messages . It is common for users to route regular output data, i . e . , c out , to a device other

than the screen while keeping cerr assigned to the screen, so the user can be immediately

informed of errors.

1 . 1 5 Hardware Trends

The programming community thrives on the continuing stream of dramatic i mprovements

in hardware, software and communications technologies. Every year, people generally ex

pect to pay more for most products and services. The opposite has been the case i n the com

puter and communications fields, especial ly with regard to the hardware costs of supporting

these technologies . For many decades, and with no change in the foreseeable future, hard

ware costs have fallen rapidly, if not precipitously . This is a phenomenon of technology .

Every year or two, the capacities of computers, especially the amount of memory they have

in which to execute programs, the amount of secondary storage (such as disk storage) they

have to hold programs and data over the longer term, and their processor speeds-the

speeds at which computers execute their programs (i .e . , do their work)-each tend to ap-

1 8 I ntro d u ction to Computers and C++ Prog ra m m i n g Chapter 1

proxi mately double. The same has been true in the communications field with costs plum

meting, especi ally i n recent years with the enormous demand for communications

bandwidth attracting tremendous competit ion. We know of no other fields in which tech

nology moves so quickly and costs fal l so rapidly.

When computer use exploded in the sixties and seventies, there was talk of huge

i mprovements in human productivity that computing and communications would bring

about. But these improvements did not materialize. Organizations were spending vast sums

on computers and certainly employing them effectively, but without real izing the produc

t ivity gains that had been expected. It was the invention of microprocessor-chip technology

and its wide deployment in the late 1 970s and 1 980s that laid the groundwork for the pro

ductiv i ty i mprovements of the 1 990s and the new mi llenn ium.

1 . 1 6 H istory of the Internet

In the late 1 960s, one of the authors (HMO) was a graduate student at MIT. His research at

MIT ' s Project Mac (now the Laboratory for Computer Science-the home of the World

Wide Web Consortium) was funded by ARPA-the Advanced Research Projects Agency

of the Department of Defense. ARPA sponsored a conference at which several dozen

ARPA-funded graduate students were brought together at the University of I l l inois at Ur

bana-Champaign to meet and share ideas. During this conference, ARPA rolled out the

b lueprints for networking the main computer systems of about a dozen ARPA-funded uni

versities and research institutions. They were to be connected with communications l ines

operating at a then-stunning 56kb (i . e . , 56,000 bits per second) , thi s at a t ime when most

people (of the few who could be) were connecting over telephone l ines to computers at a

rate of 1 1 0 bits per second . HMO vividly recal ls the exc i tement at that conference. Re

searchers at Harvard talked about communication with the Univac 1 1 08 "supercomputer"

across the country at the Un iversity of Utah to handle calculations re lated to their computer

graphics research. Many other intriguing possibi l i ties were rai sed. Academic research was

about to take a giant leap forward . Shortly after this conference, ARPA proceeded to im

plement what quickly became the A RPAnet, the grandparent of today ' s Internet.

Things worked out differently from what was originally planned. Rather than the pri

mary benefit being that researchers could share each other' s computers, i t rapidly became

clear that s imply enabling the researchers to communicate quickly and eas i ly among them

selves via what became known as electronic mail (e-mail, for short) was to be the key ben

efit of the ARPAnet. Thi s i s true even today on the Internet with e-mail fac i l i tati ng

communications of all kinds among mil l ions of people worldwide.

One of ARPA ' s primary goals for the network was to allow multiple users to send and

receive information at the same time over the same communications paths (such as phone

lines) . The network operated with a technique called packet switching in which digital data

was sent in small packages called packets. The packets contained data, address information,

error-control information and sequencing information. The address information was used to

route the packets of data to their destination. The sequencing information was used to help

reassemble the packets (which-because of complex routing mechanisms-actual ly could

arrive out of order) into their original order for presentation to the recipient. Packets of many

people were intermixed on the same lines. This packet-switching technique greatly reduced

transmission costs compared to the cost of dedicated communications lines.

Chapter 1 I ntrod uction to Computers and C++ Program m i n g 1 9

The network was designed to operate without central ized control . This meant that i f a

portion of the network should fai l , the remaining working portions sti l l would be able to

route packets from senders to receivers over alternate paths .

The protocols for communicating over the ARPAnet became known as TCP-the
Transmission Control Protocol. TCP ensured that messages were routed properly from

sender to receiver and that those messages arrived intact.

In parallel w ith the early evolution of the Internet, organizations worldwide were

implementing their own networks for both intra-organization (i . e . , within the organization)

and inter-organization (i .e . , between organizations) communication. A h uge variety of net

working hardware and software appeared. One challenge was to get these to intercommu

nicate . ARPA accompl ished th is with the development of IP (the Internet Protocol) , truly

creating a "network of networks," the current architecture of the Internet. The combined set

of protocols now is called TCPIIP.
Init ial ly, use of the Internet was l imited to universities and research institutions ; then,

the mi l itary became a big user. Eventually , the government allowed access to the I nternet

for commercial purposes. Initially, there was resentment among the research and mil itary

communities-it was felt that response times would become poor as "the net" became sat

urated with so many users . In fact, the exact opposite has occurred. B usinesses rapidly real

ized that by making effective use of the Internet, they could tune their operations and offer

new and better services to their cl ients . As a result , businesses spent vast amounts of money

to develop and enhance the Internet. This generated fierce competition among the commu

nications carriers and hardware and software suppliers to meet this demand . The resul t is

that bandwidth (i . e . , the information carrying capacity of communications l ines) on the

Internet has increased tremendously and costs have plummeted.

1 . 1 7 H istory of the World Wide Web

The World Wide Web allows computer users to locate and view mult imedia-based docu

ments (i . e . , documents with text, graphics, ani mations, audios and/or videos) on almost any

subject. Even though the Internet was developed more than three decades ago, the introduc

tion of the World Wide Web was a relatively recent event. In 1 990, Tim Berners-Lee of

CERN (the European Organization for Nuclear Research) developed the World Wide Web

and several communication protocols that form its backbone.

The Internet and the World Wide Web undoubtedly will be l i sted among the most

important and profound creations of humankind. In the past, most computer appl ications

ran on "stand-alone" computers , i . e . , computers that were not connected to one another.
Today ' s applications can be written to communicate among the world ' s hundreds of mi l
l ions of computers . The Internet mixes computing and communications technologies. I t
makes our work easier. I t makes information instantly and conveniently accessible world
wide. It makes i t possible for individuals and small businesses to get worldwide exposure .
I t i s changing the nature of the way business i s done. People can search for the best prices
on virtually any product or serv ice. Special-interest communities can stay in touch with one
another. Researchers can be made instantly aware of the latest breakthroughs worldwide.
This new fourth edition of c+ + How to Program incl udes Chapter 1 6 , Web Programming
with CGI . After reading this chapter, you wil l be able to develop computer appl ications that
run on the World Wide Web.

20 I ntrod u ction to Computers and C++ Prog ramming Chapter 1

1 . 1 8 World Wide Web Consortium (W3C)

In October 1 994, Tim Berners-Lee founded an organ ization cal led the World Wide Web

Consortium (W3C) that is devoted to developing nonproprietary , interoperable technolo

gies for the World Wide Web. One of the W3C ' s pri mary goal s i s to make the Web univer

sal ly accessible-regardless of d isabi l it ies, language or culture.

The W3C i s also a standardization organization and i s comprised of three hosts-the

Massachusetts Institute of Technology (M IT), France ' s INRIA (Institut National de

Recherche en Informatique et Automatique) and Keio University of Japan-and over 400

member'!" including Deitel & Associates, Inc . Members provide the primary fi nancing for

the W3C and help provide the strategic direction of the Consort ium. To learn more about

the W3C, vis i t www . w3 . org .
Web technologies standardized by the W3C are called Recommendations. Current W3C

Recommendations i nclude Extensible HyperText Markup Language (XHTMUM), Cas

cading Style Sheets (CSSfM) and the Extensible Markup Language (XML) . Recommenda

tions are not actual software products, but documents that specify the role, syntax and rules

of a technology . Before becoming a W3C Recommendation, a document passes through

three major phases : Working Drqft-which, as its name implies, specifies an evolving draft ;

Candidate Recommendation-a stable version of the document that industry can begin to

i mplement; and Proposed Recommendation-a Candidate Recommendation that is consid

ered mature (i . e . , has been i mplemented and tested over a period of time) and i s ready to be

considered for W3C Recommendation status. For detai led information about the W3C Rec

ommendation track, see "6.2 The W3C Recommendation track" at

www . w3 . org / Consort ium/ Proce s s / Proce s s - 1 9 9 9 1 1 1 1 /

proc e s s . html #Rec sCR

1 . 1 9 General Notes About C++ and This Book

C++ is a complex language. Experienced C++ programmers sometimes take pride in being

able to create some weird, contorted, convoluted usage of the language. Thi s is a poor pro

gramming practice. It makes programs more difficult to read, more l ikely to behave

strangely, more difficult to test and debug, and more difficul t to adapt to changing require

ments. Thi s book i s geared for novice programmers, so we stress program clarity. The fol

lowing is our first "good programming practice ."

Good Programming Practice 1 . 1
� Write your C+ + programs in a simple and straightforward manner. This is sometimes re

� jerred to as KIS ("keep it simple "). Do no/ "stretch " the language by trying bizarre usages.

You have heard that C and C++ are portable languages, and that programs written i n

C and C++ can run o n many different computers . Portability is a n elusive goal. The ANSI

C standard document contains a lengthy l i st of portabi l ity i ssues and complete books have

been written that discuss portab i l i ty . � Portabil ity Tip 1 .3
A lthough it is possible to write pOrTable programs, there are many problems among different

C and C+ + compilers and different computers that can make portability difficult to achieve.

Writing programs in C and C+ + does not guarantee portability. The programmer often will

need to deal directly with compiler and computer variations.

Chapter 1 I ntroduction to Computers a n d C++ Progra m m i ng 2 1

We have done a careful walkthrough of the ANSI/I SO C++ standard document and

audited our presentation against it for completeness and accuracy . However, C++ i s a rich

language, and there are some subtleties in the language and some advanced subjects we

have not covered. If you need additional technical detai ls on C++, we suggest that you read

the C++ standard document. You can order this document from the ANSI Web site

webstore . ans i . org/ ans idoc store / default . asp

The title of the document i s "Information Technology - Programming Languages - C++"

and its document number i s INCITS/ISO/IEC 1 4882- 1 998.

We have inc luded an extensive bibliography of books and papers on C++ and object

oriented programming. We also have included a C++ Resources appendix containing many

Internet and World Wide Web sites relating to C++ and obj ect-oriented programming.

Many features of the current versions of C++ are not compatible with older C++ i mple

mentations, so you may find that some of the programs in this text do not work on older

C++ compilers .

Good Programming Practice 1 .2
Read the manualsfor the version of c+ + you are using. Refer to these manuals frequently to

be sure you are aware of the rich collection of c+ + features and that you are using them

correctly. � Good Programming Practice 1 .3
Your computer and compiler are good teachers. Ifafter reading your C+ + language manual,

you still are not sure how afeature of c+ + works, experiment using a small " test program "

and see what happens. Setyourcompileroptionsfor "maximum warnings. " Study each mes-

sage that the compiler generates and correct the programs to eliminate the messages.

1 .20 Introduction to C++ Programming

The C++ language faci l itates a structured and disciplined approach to computer-program de

sign. We now introduce C++ programming and present several examples that i l lustrate many

important features of C++. Each example is analyzed one statement at a time. In Chapter 2

we present a detailed treatment of structured programming in C++. We then use the struc

tured approach through Chapter 5. Beginning with Chapter 6, we study object-oriented pro

gramming in C++. Again , because of the central importance of object-oriented programming

in this book, each of the first five chapters concludes with a section entitled "Thinking About

Objects." These special sections introduce the concepts of object orientation and present a

case study that chal lenges the reader to design and implement a substantial object-oriented

C++ program. The complete design and implementation in C++ are included in this special

sections. Even though this case study is optional , we highly recommend studying it .

1 .2 1 A Simple Program: Printing a Line of Text

C++ uses notations that may appear strange to non-programmers . We now consider a sim
ple program that prints a l ine of text . The program and its output are shown in Fig. 1 . 2 . This
program i l l ustrates several important features of the C++ language. We consider each l ine
of the program in detai l .

22

1
2
3
4
5
6
7
8
9

\ 0
1 1
1 2

I ntroduction to Com puters and C++ Progra m m i n g

/ / Fig . 1 . 2 : f i g0 1_0 2 . cpp

/ / A f i r s t program in c + + .

inc lude < io stream>

/ / func t i on main begins program execut ion

int ma in ()

{
s t d : : cout < < " We l c ome to C + + ! \ n " ;

Chapter 1

return 0 ; / 1 i ndicat e that program ended suc ce s s fu l ly

} / / end funct ion main

We lcome to C + + I

Fig. 1 .2 Text pr int ing progra m .

Lines 1 and 2

/ / Fig . 1 . 2 : f ig0 1_0 2 . cpp

/ / A f i r st program in c + + .

each begin with / / indicating that the remainder of each line is a comment. Programmers in

sert comments to document programs and improve program readability. Comments also help

other people read and understand your program. Comments do not cause the computer to per

form any action when the program is run . Comments are ignored by the C++ compiler and do

not cause any machine-language object code to be generated. The comment A f irst pro

gram in C++ describes the purpose of the program. A comment beginning with / / is called

a single-line comment because the comment terminates at the end of the current line. [Note :

C++ programmers also may use C ' s comment style in which a comment-possibly contain

ing many l ines-begins with / * and ends with * /, but this i s discouraged.]

Good Programming Practice 1 .4
Every program should begin wilh a comment that describes the purpose of the program, au

thor, dale and time. 5

Line 3

inc lude < iostream>

is a preprocessor directive, which is a message to the C++ preprocessor. Lines that begin

with # are processed by the preprocessor before the program i s compiled. This l ine notifies

the preprocessor to include in the program the contents of the input/output stream header

file < iostream> . This fi le must be included for any program that outputs data to the

screen or inputs data from the keyboard using C++-style stream i nputloutput. Figure 1 . 2

outputs data to the screen , as we wi l l soon see. The contents of io s t ream wil l be ex

plained in more detail later.

5. We are not showing the author, date and time i n this book's program s because th is information
would be redundant.

Chapter 1 I ntrod uction to Computers a n d C++ Prog ra m m i n g 23

Common Programming Error 1 . 2
Forgetting to include the <iostream> file in a program that inputs data from the keyboard

or outputs data to the screen causes the compiler to issue an error message.

Line 5

I I func t ion main begins program execut i on

i s another single- l ine comment indicating that program execution begins from the next l ine .

Line 6

int ma in ()

is a part of every C++ program. The parentheses after main indicate that main is a pro

gram building block cal led afunction. C++ programs contain one or more functions, exact

ly one of which must be main. Figure l . 2 contains only one function . C++ programs begin

executing at function main, even if main i s not the first function in the program. The key

word int to the left of main indicates that main "returns" an integer (whole number) val

ue. We wi l l explain what i t means for a function to "return a value" when we study

functions in depth in Chapter 3. For now, simply include the keyword int to the left of

main in each of your programs .

The left brace, { , (l ine 7) must begin the body of every function. A corresponding right

brace, } , (l ine (2) must end each function ' s body . Line 8

s td : : cout « "We l c ome to C + + ! \ n " ;

instructs the computer to print on the screen the string of characters contained between the

quotation marks . The entire l ine, including std : : cout , the « operator, the string

"Welcome to c + + ! \ n " and the semicolon (;) , is called a statement. Every statement

must end with a semicolon (also known as the statement terminator) . Output and input in

C++ is accompl i shed with streams of characters . Thus, when the preceding statement i s ex

ecuted, i t sends the stream of characters We lcome to C++ ! to the standard output stream

object-s td : : cou t-which is normal ly "connected" to the screen. We discuss

std : : cout ' s many features in detai l in Chapter 1 2 , Stream Input/Output.

Notice that we placed std : : before cout o This i s required when we use the prepro

cessor directive # inc lude < iostream> . The notation std : : cout specifies that we

are using a name, in this case cout , that belongs to "namespace" std. Namespaces are an

advanced C++ feature . We discuss namespaces in depth in Chapter 22 . For now, you

should simply remember to include std : : before each mention of cout, c i n and cerr

in a program. This can be cumbersome-in Fig. 1 . 1 4 , we introduce the us ing statement,

which will enable us to omit std : : before each use of a namespace std name.

The operator « is referred to as the stream insertion operator. When this program

executes, the value to the right of the operator, the right operand, is inserted in the output

stream. (Notice that the operator points in the direction of where the data goes .) The char

acters of the right operand normal ly print exactly as they appear between the double quotes .

Notice, however, that the characters \n are not printed on the screen. The backslash (\) i s

cal led an escape character. I t indicates that a "special" character i s to be output. When a

backslash is encountered in a string of characters , the next character is combined with the

backslash to form an escape sequence. The escape sequence \n means newline. It causes

24 I ntroduction to Computers and C++ Progra m m i n g Chapter 1

the cursor (i . e . , the current screen-position indicator) to move to the beginning of the next

l ine on the screen. Some other common escape sequences are l i sted in Fig. 1 . 3 .

Common Programming Error 1 .3
Omitting the semicolon at the end of a statement is a syntax error. A syntax error is caused

when the compi/er cannot recognize a statement. The compiler normally issues an errormes

sage to help the programmer locate andfix the incorrect statement. Syntax errors are viola

tions of the language. Syntax errors are also called compile errors, compi le-t ime errors, or

comp i l at ion errors because they appear during the compilation phase.

Line 1 0

return 0 ; I I indicate that program ended suc c e s s fu l ly

i s included at the end of every main function. C++ keyword return is one of several means

we will use to exit a function. When the return statement is used at the end of main as

shown here, the value 0 indicates that the program has terminated successfully . In Chapter 3 ,

we discuss functions in detail and the reasons for including this statement will become clear.

For now, s imply include this statement in each program, or the compiler may produce a warn

ing on some systems . The right brace, } , (l ine 1 2) indicates the end of function main.

Good Programming Practice 1 .5
Many programmers make the last character printed by afunction a newline (\n). This en

sures that the function will leave the screen cursor positioned at the beginning of a new line.

Conventions of this nature encourage software reusability-a key goal in software develop

ment environments.

Good Programming Practice 1 .6
Indent the entire body of each function one level within the braces that define the body of the

function. This makes the functional structure of a program stand out and helps make pro

grams easier to read. � Good Programming Practice 1 . 7
Set a convention for the size of indent you prefer then uniformly apply that convention. The

tab key may be used to create indents, but tab stops may vary. We recommend using either

/14-inch tab stops or (preferably) three spaces to form a level of indent.

Escape Sequence

\ n

\ t

\ r

\ a

\ \

\ "

Description

Newl i ne . Posit ion the screen cursor to the begin n i n g of the next l i n e .

Horizontal tab. M ove t h e screen cursor to t h e n e x t t a b stop.

Carriage return . Position the screen cursor to the beg i n n i n g of the cur

rent l i n e ; do not advance to the next l i n e .

A lert. Sound t h e system bel l .

Backslash. Used t o print a backs lash c haracter.

Double quote. U sed to print a double quote character.

Fig. 1 .3 Escape sequences.

Chapter 1 I ntroduction to Computers a n d C++ Progra m m i ng 25

We lcome t o C++ ! can be printed several ways . For example, Fig . 1 .4 uses multiple

stream insertion statements (lines 8-9) , yet produces identical output to the program of

Fig. 1 .2 .6 This works because each stream-insertion statement resumes printing where the

previous statement stopped printing. The first stream insertion prints We l c ome fol lowed

by a space and the second stream insertion begins printing on the same l ine immediately

following the space . In general , C++ allows the programmer to express statements i n a

variety of ways.

A single statement can print multiple l ines by using newline characters as in l ine 8 of

Fig. 1 .5 . Each time the \ n (newline) escape sequence i s encountered in the output stream,

the screen cursor is positioned to the beginning of the next l ine . To get a blank line in your

output, place two newline characters back to back as in Fig. 1.5 .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3

I I F i g . 1 . 4 : f i g 0 1_0 4 . cpp

I I Print i ng a l ine with mul t ip le s tat ement s .

inc lude < i o s t ream>

I I funct ion main begins program execut ion

int main ()

{
std : : cout « " Welcome " ;

s td : : cout « " to C + + ! \ n " ;

return 0 ; I I indicate that program ended succ e s s fu l ly

} I I end func t i on main

Welcome to C + + l

Fig. 1 .4 Pr int ing o n one l ine with separate statements us ing cout o

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2

I I F ig . 1 . 5 : f i g 0 1_0 s . cpp

I I Print ing mul t ip l e l ine s w i t h a s ingl e s tat ement

inc lude < i o s t ream>

I I funct i on main begins program execut ion

int main ()

{
s t d : : cout « " Welcome \nto \ n \ nC + + ! \ n " ;

return 0 ; I I indicate that program ended suc c e s s fu l ly

} I I end func t ion main

Welcome
to

C + + l

Fig. 1 .5 Pr int ing on mu lt ip le l ines with a s ingle statement us ing cout o

6. From th is point forward, we highl ight in bold yel l ow the key features each program i ntroduces.

26 I ntroduction to Computers and C++ Progra m m i n g Chapter 1

1 .22 Another Simple Program: Adding Two Integers

Our next program uses the input stream object std : : cin and the stream extraction oper

ator, > >, to obtain two integers typed by a user at the keyboard, computes the sum of these

values and outputs the result using std : : cout o Figure 1 .6 shows the program and sample

output .

The comments in l ines 1 and 2

I I F i g . 1 . 6 : f i g 0 1 0 6 . cpp

I I Addit i on program .

state the name of the file and the purpose of the program. The C++ preprocessor directive

inc lude < io s t ream>

in l ine 3 includes the contents of the iostream header fi le in the program.

As stated earl ier, every program begins execution with function main. The left brace

marks the beginning of main's body and the corresponding right brace marks the end of

main.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24

I I F i g . 1 . 6 : f i g0 1_ 0 6 . cpp

I I Addi t ion program .

inc lude < io stream>

I I funct i on main begins program execut i on

int main ()

{
int integer1 ; I I f i rst number to be input by user

int integer2 ; I I second number to be i nput by user

int sum; I I var iable in which sum wi l l be st ored

std : : cout « " Enter f i rs t integer \ n " ;

std : : c in » integer1 ;

I I prompt

I I read an integer

std : : cout « " Enter second integer \ n " ; I I prompt

std : : c in » integer2 ; I I read an integer

sum = integer1 + integer2 ; I I a s s i gn result to sum

std : : cout « " Sum is " « sum « std : : endl ; I I pr int sum

return 0 ; I I indicate that program ended suc ce s s ful ly

} I I end funct i on ma in

Ente r f i rs t integer

4 5

Ent er second integer

7 2

Sum i s 1 17

Fig. 1 .6 Addit ion progra m .

Chapter 1

Lines 8-10

int intege r l ;

int integer2 ;

int sum;

I ntrod uction to Computers and C++ Prog ra m m i n g

I I f i rst number to b e input by u s e r

I I second number to b e input by u s e r

I I variable in which sum wi l l b e s tored

27

are declarations. The words integeri, integer2 and sum are the names of variables.

A variable is a location in the computer' s memory where a value can be stored for use by

a program. This declaration specifies that the variables integeri, integer2 and sum

are data of type int, which means that these variables will hold integer values, i . e . , whole

numbers such as 7 , - 1 1 , 0, 3 1 9 1 4. Al l variables must be declared with a name and a data

type before they can be used in a program. Several variables of the same type may be de

clared in one declaration or in multiple declarations. We could have declared all three vari

ables in one declaration as follows :

i n t integerl , integer2 , sum;

however, this makes the program less readable and prevents us from providing comments

that describe each variable ' s purpose in the program. If more than one name is declared in

a declaration (as shown here) , the names are separated by commas (,) . This i s referred to

as a comma-separated list. e Good Programming Practice 1 .8
Some prog rammers prefer to declare each variable on a separate line. This format allows for

easy insertion of a descriptive comment next 10 each declaration.

We wi l l soon discuss the data types double (for specifying real numbers, i . e . , num

bers with decimal points l ike 3.4, 0.0, - 1 1 . 1 9) and char (for specifying character data; a

char variable may hold only a single lowercase letter, a single uppercase letter, a single

digit or a s ingle special character l ike a x, $, 7, *, etc .) .

� Good Programming Practice 1 .9

� Place a space after each comma (,) to make programs more readable.

A variable name is any valid identifier. An identifier is a series of characters consisting

of letters, digits and underscores (_) that does not begin with a digit . C++ i s case sensi

tive-uppercase and lowercase letters are different, so ai and Ai are different identifiers . � Porta bi l ity Tip 1 .4

c+ + allows identifiers of any length, but your system andlor C+ + implementation may im

pose some restrictions on the length of identifiers. Use identifiers of 31 characters or fewer

to ensure portability. 9 Good Programming Practice 1 . 1 0

Choosing meaningful variable names helps a program 10 be "seIFdocumenting, " i. e . , it be

comes easIer to understand the program SImply by readll1g It rather than havll1g to read man

uals or use excessive comments. � Good Programming Practice 1 . 1 1

A void identifiers that begin with underscores and double underscores because C+ + compil

ers may use names like that for their own purposes internally. This will prevent names you

choose from being confused with names the compilers choose.

28 I ntroduction to Computers and C++ Progra m m i n g Chapter 1

Declarations of variables can be placed almost anywhere in a function, but they must

appear before their corresponding variables are used in the program. For example, in the

program of Fig. 1 .6 , the declaration

int integerl ;

could have been placed immediately before the l ine

s td : : c in » integer l ;

the decl aration

int integer2 ;

could have been placed immediately before the l ine

std : : c in » integer2 ;

and the declaration

int sum;

could have been placed immediately before the l ine

sum = integer l + integer2 ; � Good Programming Practice 1 . 1 2
Always place a blank line between a declaration and adjacent executable statements. This

makes the declarations stand out in the program and contributes to program clarity. � Good Programming Practice 1 . 1 3
If you prefer to place declarations at the beginning of afunction, separate those declarations

from the executable statements in thatfunction with one blank line to highlight where the dec

larations end and the executable statements begin.

Line 1 2

std : : cout « " Enter f i rst intege r \ n " ; I I prompt

prints the string Ent er f i r s t integer (also known as a string literal or a literal) on

the screen and positions the cursor to the beginning of the next l ine . This message is called

a prompt because it tel l s the user to take a specific action. We l ike to pronounce the preced
ing statement as "cout gets the character string " Enter first integer \ n " ."

Line 1 3

s td : : c in » integer l ; I I read an integer

uses the input stream object cin (of namespace std) and the stream extraction operator,

» , to obtain a value from the keyboard . Using the stream extraction operator with

std : : c in takes character input from the standard input stream which i s usually the key

board. We l ike to pronounce the preceding statement as, "std : : c in gives a value to

integerl" or simply "std : : c in gives integer l . "

When the computer executes the preceding statement, i t waits for the user to enter a

value for variable integerl. The user responds by typing an integer (as characters) then

pressing the Enter key (sometimes called the Return key) to send the characters to the com-

Chapter 1 I ntroduction to Computers a n d C++ Prog ra m m i n g 29

puter. The computer then converts the character representation of the number to an integer

and assigns this number (or value) to the variable integerl . Any subsequent references

to integer l i n this program wil l use this same value.

The std : : cout and std : : cin stream objects faci l i tate i nteraction between the

user and the computer. Because this interaction resembles a dialogue, i t is often called con

versational computing or interactive computing.

Line 1 5

std : : cout « " Enter second integer \ n " ; I I prompt

prints the words Enter second integer on the screen, then positions the cursor to the

beginning of the next l ine . Thi s statement prompts the user to take action . Line 1 6

std : : c in » integer2 ; I I read an integer

obtains a value for v ariable integer2 from the user.

The assignment statement in line 1 8

sum = intege r l + integer2 ; I I a s s ign resu l t t o s um

calculates the sum of the variables integerl and integer2 and assigns the result to

variable sum using the assignment operator = . The statement is read as, "sum gets the val

ue of integerl + integer2 ." Most calculations are performed i n assignment state

ments . The = operator and the + operator are called binary operators because they each

have two operands. In the case of the + operator, the two operands are integerl and

integer2 . In the case of the preceding = operator, the two operands are sum and the val

ue of the expression integerl + integer2 . � Good Progra m ming Practice 1 . 1 4
Place spaces on either side of a binary operator. This makes the operator stand out and

makes the program more readable.

Line 20

std : : cout « " Sum i s " « sum « std : : endl ; I I print sum

displays the character string Sum is fol lowed by the numerical value of variable sum fol

lowed by std : : end! (end! is an abbreviation for "end l ine;" end! also is a name in

namespace std)-a so-called stream manipulator. The std : : end! manipulator outputs

a newline then "flushes the output buffer." This simply means that, on some systems where

outputs accumulate in the machine until there are enough to "make it worthwhile" to display

on the screen, std : : end! forces any accumulated outputs to be displayed at that moment.

Note that the preceding statement outputs multiple values of different types . The

stream insertion operator "knows" how to output each piece of data. Using multiple stream

insertion operators « <) in a s ingle statement i s referred to as concatenating, chaining or

cascading stream insertion operations. Thus, it is unnecessary to have multiple output

statements to output multiple pieces of data.

Calculations can also be performed in output statements . We could have combined the

statements at l ines 1 8 and 20 i nto the statement

std : : cout « " Sum is " « integerl + integer2 « s td : : endl ;

thus e l iminating the need for the variable sum.

30 I ntrod u ction to Computers and C++ Prog ra m m i n g Chapter 1

The right brace, } , informs the computer that the end of function main has been

reached.

A powerful feature of C++ is that users can create their own data types (we wi l l explore

this capabi lity in Chapter 6) . Users can then "teach" C++ how to i nput and output values of

these new data types using the > > and < < operators (this is called operator overloading

a topic we explore in Chapter 8) .

1 . 23 Memory Concepts

"V ariable names such as integerl, integer2 and swn actually correspond to locations

in the computer's memory . Every variable has a name, a type, a size and a value.

In the addition program of Fig. 1 .6, when the statement

std : : c in » integer l ;

i n l i ne 1 3 i s executed, the characters typed by the user are converted to an i nteger that i s

placed i nto a memory location to which the name integerl has been assigned by the

C++ compiler. Suppose the user enters the number 45 as the value for integerl . The

computer wi l l place 45 i nto location integerl as shown in Fig. 1 .7 .

Whenever a value is placed in a memory location, the value overwrites the previous

value in that location.

Returning to our addition program, when the statement

std : : c in » integer2 ;

in l ine 1 6 i s executed, suppose the user enters the value 7 2 . This value is placed into loca

tion integer2 , and memory appears as in Fig. 1 . 8 . Note that these locations are not nec

essarily adj acent in memory.

Once the program has obtained values for integerl and integer2 , it adds these

values and places the sum i nto variable swn. The statement

sum = integerl + integer2 ;

that performs the addition also replaces whatever value was stored in swn. This occurs

when the calculated sum of integerl and integer2 i s placed into location swn (with

out regard to what value may already be in swn; that value i s lost) . After swn i s calculated,

memory appears as in Fig. 1 .9 . Note that the values of integerl and integer2 appear
exactly as they did before they were used in the calculation of swn. These values were

used, but not destroyed, as the computer performed the calculation . Thus, when a value i s

read out of a memory location, the process is nondestructive.

integerl 4 5

Fig. 1 .7 Memory location showing the name and value of var iable int eger l .

Chapter 1 I ntrod uction to Computers a n d C++ Prog ra m m i n g 3 1

integer1 4 5

int eger2 7 2

F i g . 1 .8 Memory locations after stor ing values for integerl and integer2 .

integer1 4 5

integer2 7 2

sum 1 1 7

F ig . 1 .9 Memory locations after calcu lating the sum of intege r l and
int eger2 .

1 .24 Arithmetic

Most programs perform arithmetic calculations . Figure 1 . 1 0 summarizes the arithmetic op

erators. Note the use of various special symbols not used in algebra. The asterisk (*) indi

cates multiplication and the percent sign (%) i s the modulus operator that wi l l be discussed

shortly. The arithmetic operators in Fig. I . l O are all binary operators , i . e . , operators that

take two operands. For example, the expression integer1 + integer2 contains the bi

nary operator + and the two operands integer1 and integer2 .

Integer division (i .e . , both the numerator and the denominator are integers) yields an

integer quotient ; for example, the expression 7 / 4 evaluates to 1 and the expression 17 / 5

evaluates to 3 . Note that any fractional part in integer division is discarded (i . e . , truncated)

no rounding occurs.

C++ provides the modulus operator, %, that yields the remainder after integer divis ion.

The modulus operator can be used only with integer operands. The expression x % y yields

the remainder after x i s divided by y. Thus, 7 % 4 yields 3 and 17 % 5 yields 2. In later

c++ operation Arithmetic operator Algebraic expression c++ expression

Addit ion + J + 7 f + 7

S ubtraction p - c p - c

Mult ip l ication * bm b * m

Divis ion /
x / y or � or x + y

Y

x / y

Modulus % r mod s r % s

Fig. 1 . 1 0 Arithmetic operators .

32 I ntroduction to Computers and C++ Prog ra m m i n g Chapter 1

chapters, we discuss many interesting applications of the modulus operator, such as

determining whether one number is a multiple of another (a special case of this is deter

mining whether a number is odd or even) .

C o m m o n Prog ramming Error 1 .4

Attempting to use the modulus operator, %, with non-integer operands is a syntax error.

Arithmetic expressions in C++ must be entered into the computer in straight- line form.

Thus, expressions such as "a divided by b" must be written as a I b so that all constants,

variables and operators appear in a straight line. The algebraic notation

a

b

is generally not acceptable to compilers, although some special -purpose software packages

do exist that support more natural notation for complex mathematical expressions.

Parentheses are used in C++ expressions in the same manner as in algebraic expres

sions. For example, to multiply a times the quantity b + C we write:

a * (b + c)

C++ applies the operators in arithmetic expressions in a precise sequence determi ned

by the following rules of operator precedence, which are general ly the same as those fol

lowed in algebra:

1 . Operators in expressions contained within pairs of parentheses are evaluated first.

Thus , parentheses may be used to force the order of evaluation to occur in any se

quence desired by the programmer. Parentheses are said to be at the "highest level

of precedence ." In cases of nested, or embedded, parentheses, the operators i n the

innermost pair of parentheses are applied first.

2. Multiplication, divis ion and modulus operations are applied next. If an expression

contains several mUltiplication, division and modulus operations, operators are

applied from left to right. Multipl ication, division and modulus are said to be on

the same level of precedence .

3 . Addition and subtraction operations are applied last. If an expression contains sev

eral addition and subtraction operations, operators are applied from left to right.

Addition and subtraction also have the same level of precedence.

The rules of operator precedence enable C++ to apply operators in the correct order. When

we say that certain operators are applied from left to right, we are referring to the associa

tivity of the operators . For example, in the expression

a + b + c

the addition operators (+) associate from left to right. We wil l see that some operators as

sociate from right to left. Fig. 1 . 1 1 summarizes these rules of operator precedence. Thi s ta

ble will be expanded as additional C++ operators are introduced. A complete precedence

chart i s included in the appendices .

Now let us consider several expressions in l ight of the rules of operator precedence.

Each example l i sts an algebraic expression and its C++ equivalent. The following is an

example of an arithmetic mean (average) of five terms:

Chapter 1

Operator(s)

()

* , / , or %

+ or -

I ntroduction to Computers a n d C++ Prog ra m m i n g 33

Operation(s)

Parentheses

M u lt ipl ication

Division

Modulus

Addit ion

S ubtraction

Order of evaluation (precedence)

Evaluated first . If the parentheses are

nested, the expression in the i nnermost pair

is eval uated first . I f there are several pairs

of parentheses "on the same level" (i . e . , not

nested), they are evalu ated left to right .

Eval uated second. If there are several , they

are evaluated left to right .

Eval uated last . If there are severa l , they are

evaluated left to right .

Fig. 1 . 1 1 Precedence of a rithmetic operators.

Algebra: m
a + b + c + d + e

5

c++: m = (a + b + c + d + e) / 5 ;

The parentheses are required because division has higher precedence than addit ion. The en

tire quantity (a + b + c + d + e) i s to be divided by 5. If the parentheses are erroneously

omitted, we obtai n a + b + c + d + e / 5, which evaluates incorrectly as

The following is an example of the equation of a straight l ine :

A lgebra: y mx + b

c++: y m * x + b ;

No parentheses are required. The multiplication i s appl ied first because multipl ication has

a higher precedence than addit ion.

The following example contai ns modulus (%), mult ip l ication, d iv is ion, addit ion and

subtraction operations :

A l gebra: z = p r % q + w/x - y

c++: z p * r % q + w / x y ;

0 8 0 8 0 0
The circled numbers under the statement indicate the order in which C++ applies the opera

tors . The multipl ication, modulus and divi sion are evaluated first in left-to-right order (i .e . ,

they associate from left to right) because they have higher precedence than addition and sub

traction. The addition and subtraction are appl ied next. These are also applied left to right .

34 I ntroduction to Computers and C++ Progra m m i n g Cha pter 1

Not al l expressions with several pairs of parentheses contain nested parentheses . For

example, the expression

a * (b + c) + c * (d + e)

does not contain nested parentheses. Rather, the parentheses are said to be "on the same

level ."

To develop a better understanding of the rules of operator precedence, consider how a

second-degree polynomial is evaluated .

y a * x * x + b * x + c ;

0 0 0 0 0 0
The circled numbers under the statement indicate the order in which C++ applies the oper

ators . There is no arithmetic operator for exponentiation in C++, so we have represented x2
as x * x. We wi l l soon discuss the standard l ibrary function pow ("power") that performs

exponentiation. Because of some subtle issues related to the data types required by pow,
we defer a detai led explanation of pow until Chapter 3 .

Common Programming Error 1 .5

Some programming languages use operators * * or " to represent exponentiation. C+ + does

not support these operators; using them results in a syntax error.

S uppose variables a, b, c and x are init ial i zed as fol lows : a = 2 , b = 3 , c = 7 and

x = 5. Figure 1 . 1 2 i l lustrates the order in which the operators are applied in the preceding

second degree polynomial .

The preceding assignment statement can be parenthesized with unnecessary paren

theses for c larity as

y = (a * x * x) + (b * x) + c ;

Good Progra m m i ng Practice 1 . 1 5

As in algebra, it is acceptable to place unnecessary parentheses in an expression to make the

expression clearer. These redundant parentheses are commonly used to group subexpres

sions in a large expression to make that expression clearer. Breaking a large statement into

a sequence of shorter, simpler statements also promotes clarity.

1 .25 Decision Making: Equality and Relational Operators

This section introduces a simple version of C++ ' s i f structu re that al lows a program to

make a decision based on the truth or fal sity of some condition. If the condition is met, i . e . ,

the condition is true, the statement i n the body of the i f structure i s executed. If the con

dition i s not met, i . e . , the condition is false, the body statement i s not executed. We will see

an example short ly .

Conditions in if structures can be formed by using the equality operators and rela

tional operators summarized in Fig. 1 . 1 3 . The relational operators all have the same level

of precedence and associate left to right . The equality operators both have the same level

of precedence, which is lower than the precedence of the relational operators. The equality

operators also associate left to right.

Chapter 1 I ntroduction to Computers a n d C++ Progra m m i n g

Step 1 . y 2 * 5 * 5 + 3 * 5 + 7 ;

? (Leftmost multiplication)

Step 2. y 1 0 * 5 + 3 * 5 + 7 ;

'? (Leftmost multiplication)

Step 3. y 5 0 + 3 * 5 + 7 ;

'? (Multiplication before addition)

Step 4. y 5 0 + 1 5 + 7 ;

5 0 + 1 5 i s l¥J (Leftmost addition)

�
Step 5. y 6 5 + 7 ; 'j + 7 i s I¥l (Last addition)

Step 6. y 7 2 ; (Last operation-place 72 into y)

Fig. 1 . 1 2 Order in which a second-degree polynomia l is eva luated .

Standard algebraic C++ equality
equality operator or or relational
relational operator operator

Relational operators

> >

< <

Example

ot C++
condition

x > y

x < y

Meaning ot
C++ condition

x is greater than y

x is less than y

35

� > = x > = Y x is greater than or equal to y

::;; < = x

Equality operators

x

0# ! = x

Fig. 1 . 1 3 Equal ity and relational operators .

< = Y x is less than or equal to y

y x i s equal to y

! = Y x i s not equal to y

36 I ntrodu ction to Computers and C++ Progra m m i n g Chapter 1

Common Programming Error 1 .6
A syntax error will occur if any of the operators ==, ! =, > = and <= appears with spaces

between its pair of symbols.

Com mon Programming Error 1 . 7

Reversing the order of the pair of symbols in any of the operators ! =, >= and <= (by writing

them as = ! , => and =<, respectively) is normally a syntax error. In some cases, writing ! = as

= ! will not be a syntax error, but almost certainly will be a logic error that has an effect at ex

ecution time. A fatal logic error causes a program to fail and terminate prematurely. A nonfatal

logic error allows a program to continue executing, but might produce incorrect results.

Common Programming Error 1 .8

Confusing the equality operator == with the assignment operator = can result in logic errors.

The equality operator should be read " is equal to, " and the assignment operator should be

read "gets " or "gets the value of" or "is assigned the value of " Some people prefer to read

the equality operator as "double equals. " As we will soon see, confusing these operators may

not necessarily cause an easy-to-recognize syntax error, but may cause extremely subtle log

ic errors.

The following example uses six i f statements to compare two numbers input by the

user. If the condition in any of these i f statements is satisfied, the output statement

associated with that i f i s executed. Figure 1 . 1 4 shows the program and the input/output

dialogs of three sample executions .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25

I I Fig . 1 . 14 : f i g 0 1_1 4 . cpp

I I Us ing i f statement s , relat ional

I I operators , and equal ity operators .

inc 1ude < iostream>

u s i ng std : : cout ;

u s ing std : : c in ;

us ing std : : endl ;

I I program uses cout

I I program uses cin

I I program uses endl

I I funct ion main begins program execut ion

int main ()

{
int num1 ; I I f i r s t number to be read from user

int num2 ; I I second number to be read from user

cout « " Enter two integers , and I wi l l t e l l you \ n "

« " the relat ionships they sat i s fy : " ;

c i n » num1 » num2 ; I I read two integers

if (num1 = = num2)

cout « num1 « " i s equal to " « num2 « endl ;

i f (num1 1 = num2)

cout « num1 « " i s not equal to " « num2 « endl ;

Fig. 1 . 1 4 Equal ity and relational operators (Part 1 of 2 .) .

Chapter 1 Introduction to Computers and C++ Programming

if (num1 < num2) 26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42

cout « num1 « " is l e s s than " « num2 « endl ;

i f (num1 > num2)

cout « num1 « " i s greater than n « num2 « endl ;

i f (num1 < = num2)

cout « num1 « " i s l e s s than or equal to "

« num2 « endl ;

i f num1 > = num2)

cout « num1 « " i s greate r than or equal to "

« num2 « endl ;

return 0 ; I I indicate that program ended suc c e s s fu l ly

} I I end funct i on main

Enter two integers , and I wi l l t e l l you

the rel a t i onships they sat i s fy : 3 7

3 i s not equal to 7

3 i s l e s s than 7
3 i s l e s s than or equal to 7

Ente r two intege r s , and I wi l l t e l l you

the re l a t i onships they sat i s fy : 2 2 12

2 2 i s not equal to 1 2

2 2 i s great er than 1 2

2 2 i s greate r than or equal to 1 2

Enter two integers , and I wi l l t e l l you

the re l at i onships they s at i s fy : 7 7

7 i s equal to 7

7 i s l e s s than or equal to 7

7 is greater than or equal to 7

Fig. 1 . 1 4 Equality and relational operators (Part 2 of 2 .) .

Lines 6-8

us ing std : : cout ; I I program u s e s cout

us ing std : : c i n ; I I program uses c in

u s ing std : : endl ; I I program u s e s endl

3 7

are using statements that e l iminate the need to repeat the std : : prefix . Once we include

these us ing statements, we can write cout instead of std : : cout, c in i nstead of

std : : c i n and endl i nstead of std : : endl , respectively, in the remainder of the pro-

38 I ntroduction to Computers and C++ Progra m m i n g Chapter 1

gram. [Note: From this point forward in the book, each example contains one or more u s

ing statements .]

� Good Programming Practice 1 . 1 6
![2J Place using statements immediately after the #includes to which they refer.

Lines 1 3- 1 4

int numl ; I I f i rs t number to be read f rom user
int num2 ; I I s econd number to be read f rom user

declare the variables used in the program. Remember that variables may be declared in one

decl aration or in multiple declarations.

The program uses cascaded stream-extraction operations (l ine 1 8) to input two inte

gers . Remember that we are allowed to write c in (instead of std : : c in) because of l ine

7 . First a va lue i s read into variable numl, then a value is read i nto variable num2 .

The i f structure at l ines 20-2 1

i f (numl == num2)

cout « numl « " i s equal to " « num2 « endl ;

compares the values of variables numl and nwn2 to test for equality . If the values are

equal, the statement at l ine 2 1 displays a l ine of text indicating that the numbers are equal .

If the conditions are true in one or more of the i f structures starting at l ines 23 , 26, 29,

32 and 36, the corresponding cout statement displays a l ine of text.

Notice that each if structure in Fig. 1 . 1 4 has a single statement in its body and that

each body is indented. Indenting the body of an if structure enhances program readabi l i ty .

In Chapter 2 we show how to specify i f structures with multiple-statement bodies (by

enclosing the body statements in a pair of braces, { }) . � Good Programming Practice 1 . 1 7
Indent the statement in the body of an i f structure to make the body of the structure more

visible, thus enhancing readability.

� Good Programming Practice 1 . 1 8
� There should be no more than one statement per line in a program.

Common Programming Error 1 .9
Placing a semicolon immediately after the right parenthesis after the condition in an i f
structure is often a logic error (although not a syntax error). The semicolon would cause the

body of the if structure to be empty, so the if structure would perform no action, regardless

of whether or not its condition is true. Worse yet, the original body statement of the i f
structure now would become a statement in sequence with the i f structure and would always

execute, often causing the program to produce incorrect results.

Notice the use of spacing in Fig. 1 . 1 4 . In C++ statements, white-space c haracters such

as tabs, new lines and spaces are normal ly ignored by the compiler. (These are not ignored

if they appear in strings .) So, statements may be split over several l ines and may be spaced

Cha pter 1 I ntroduction to Computers a n d C++ Pro g ra m m i n g 39

according to the programmer's preferences . I t is a syntax error to split identifiers, strings

(such as " he l l o ") and constants (such as the number 1 0 0 0) over several l ines .

Common Programming Error 1 . 1 0
It is a syntax error to split an identifier by inserting white-space characters (e.g. , writing

main as ma in) .

Good Programming Practice 1 . 1 9
A lengthy statement may be spread over several lines. If a single statement must be split

across lines, choose breaking points that make sense such as aftera comma in a comma-sep

arated list, or after an operator in a lengthy expression. If a statement is split across two or

more lines, indent all subsequent lines and left-align the group.

Figure 1 . 1 5 shows the precedence of the operators i ntroduced in this chapter. The

operators are shown top to bottom in decreasing order of precedence. Notice that al l these

operators, with the exception of the assignment operator = , associate from left to right.

Addition is left associative, so an expression l ike x + y + Z i s evaluated as if i t had been

written (x + y) + z. The assignment operator = associates from right to left, so an expres

sion such as x = y = 0 i s evaluated as if i t had been written x = (y = 0) , which, as we wi l l

soon see, first assigns 0 to y then assigns the result of that assignment-O-to x.

Good Programming Practice 1 .20
Refer to the operator precedence chart when writing expressions containing many operators.

Confirm that the operators in the expression are performed in the order you expect. If you

are uncertain about the order of evaluation in a complex expression, break the expression

into smaller statements or use parentheses to force the order, exactly as you would do in an

algebraic expression. Be sure to observe that some operators such as assignment (=) asso

ciate right to left rather than left to right.

We have introduced many important features of C++ including printing data on the

screen , inputting data from the keyboard, performing calculations and making dec isions . In

Chapter 2, we bui ld on these techniques as we introduce structured programming. You wi l l

become more fami l iar with indentation techniques. We wi l l study how to specify and vary

the order in which statements are executed-this order i s cal l ed flow of control.

Operators Associativity Type

() left to right parentheses

* / % left to right mult ip l icative

+ left to right additive

« » left to right stream i nsert ion/extraction

< < = > > = left to right rel ational

! = left to right equality

right to left assignment

Fig. 1 . 1 5 Precedence and associativity of the operators d iscussed so for .

40 I ntroduction to Computers and C++ Progra m m i n g

1 .26 Thi n king About Objects: I ntroduction to Object
Technology and the Unified Modeling language™

Chapter 1

Now we begin our introduction to object orientation . We wi l l see that object orientation i s

a natural w ay of thinking about the world and of writing computer programs .

I n each of the first five chapters we concentrate on the "conventional" methodology of

structured programming, because the objects we bui ld wi l l be composed in part of struc

tured-program pieces. We then end each chapter with a "Thinking About Obj ects" section

in which we present a careful ly paced introduction to object orientation. Our goal in these

"Thinking About Objects" sections i s to help you develop an object-oriented way of

thinking, so that you can immediately put to use the knowledge of object-oriented program

mjng that you begin to receive in Chapter 6. We also introduce you to the Unified Modeling

Language (UML) . The UML is a graphical language that al lows people who bui ld systems

(e .g . , software architects, systems engineers, programmers, etc .) to represent their obj ect

oriented designs using a common visual notation.

In this required section (Section 1 . 26), we introduce basic concepts (i . e . , "object

think") and termjnology (i . e . , "object speak") . In the optional "Thinking About Objects"

sections at the ends of Chapters 2 through 5 we consider more substantial i ssues as we

attack a challenging problem with the techniques of object-oriented design (ODD). We

analyze a simplified, example problem statement that requires a system to be built, deter

mine the obj ects needed to implement the system, determine the attributes the objects need

to have, determine the behaviors these objects need to exhibit and specify how the objects

need to interact w ith one another to meet the system requirements . We do al l this even

before we have learned how to write object-oriented C++ programs. In the optional

"Thinking About Objects" sections at the ends of Chapters 6, 7 and 9, we discuss a C++

implementation of the object-oriented system we design in the earlier chapters .

Thi s case study wil l help introduce you to the practices employed in industry . Although

our case study is a scaled-down version of an industry-level problem, we nevertheless cover

many common industry practices. If you are a student, and your instructor does not plan on

including this case study in your course, please consider covering the case study on your own

time. We believe it will be well worth your while to walk through thi s engaging project. You

will experience a solid i ntroduction to object-oriented design with the UML, and you wi l l

sharpen your code-reading sk i l l s by touring a careful ly written and well -documented 1 200-

l ine C++ program that solves the problem presented in the case study .

We begin our introduction to object orientation with some of the key termi nology of

object orientation . Look around you in the real world. Everywhere you look you see them

objects ! People, animals , plants, cars, planes, buildings, computers, etc . Humans think i n

terms o f objects. W e have the marvelous abi l i ty of abstraction that enables us t o view

screen i mages as objects such as people, planes, trees and mountains , rather than as indi

vidual dots of color. We can, if we wish, think in terms of beaches rather than grains of

sand, forests rather than trees and houses rather than bricks .

We might be incl ined to divide objects into two categories-animate obj ects and inan

imate objects. Animate objects are "al ive" in some sense. They move around and do things.

Inanimate objects, l ike towels , seem not to do much at al l . They j ust k ind of "sit around."

Al l these objects, however, do have some things in common . They all have attributes, or

state, l i ke s ize, shape, color, weight, etc . that describe the objects. They all exhibit behav

iors, or operations , (e .g . , a ball rol l s , bounces, inflates and deflates ; a baby cries , s leeps,

Chapter 1 Introduction to Computers and C++ Programming 41

crawls, walks and blinks; a car accelerates , brakes and turns ; a towel absorbs water; etc .)

that specify what the objects do.

Humans learn about objects by studying their attributes and observing their behaviors .

Different objects can have similar attributes and can exhibit s imilar behaviors . Compari

sons can be made, for example, between babies and adults and between humans and chim

panzees. Cars, trucks, l ittle red wagons and roller skates have much in common.

Object-oriented programming (OOP) models real-world objects with software counter

parts. It takes advantage of class relationships where objects of a certain class-such as a class

of vehicles-have similar attributes and operations. It takes advantage of inheritance relation

ships, and even multiple inheritance relationships where newly created classes of objects are

derived by absorbing attributes and operations of existing classes and adding unique charac

teristics of their own. An object of class convert ible certainly has the characteristics of

the more general class Automobile, but a Convert ible's roof goes up and down.

Object-oriented programming gives us a natural and intuitive way to view the pro

gramming process, namely, by modeling real-world objects, their attributes and their

behaviors. OOP also provides for communication among objects . Just as people send mes

sages to one another (e .g . , a sergeant commanding a soldier to stand at attention), objects

also communicate via messages .

OOP encapsulates data (attributes) and functions (operations) i nto packages called

objects; the data and functions of an object are intimately tied together. Obj ects have the

property of information hiding. This means that although objects may know how to com

municate with each other across well-defined interfaces, objects normally do not know how

other objects are implemented-implementation detai ls are hidden within the obj ects them

selves . Surely it is possible to drive a car effectively without knowing the details of how

engines, transmissions and exhaust systems work internal ly . Indeed, driving would be

much more difficult and less widespread if such understanding were required. We wil l see

why information hiding i s crucial to good software engineering, as wel l .

In C and other procedural programming languages, programming tends to be action

oriented; whereas in C++, programming tends to be object-oriented. In C, the unit of pro

gramming is the function. In C++, the unit of programming is the class from which objects

are eventually instantiated (an OOP term for "created") . C++ classes contain functions that

implement c lass behaviors and data that implement class attributes.

C programmers concentrate on writing functions. Programmers group actions that per

form some common task into functions, and group functions to form programs . Data is cer

tainly important in C, but the view is that data exists primarily in support of the actions that

functions perform. The verbs in a system specification help the C programmer determine
the set of functions that work together to implement the system.

C++ programmers concentrate on creating their own user-defined types called classes

and components. Each class contains data, as well as the set of functions that manipulate that

data. The data components of a class are called data members in C++. The function compo

nents of a class are called member functions in C++ (typically called methods in other object

oriented programming languages such as Java) . Just as an instance of a built-in type such as

int is called a variable, an instance of a user-defined type (i .e . , a class) i s called an object.

The programmer uses bui lt-in types (and other user defined types) as the "building blocks"

for constructing user-defined types (classes) . The focus of attention in C++ i s on classes

(from which we make objects) rather than on functions. The nouns in a system specification

42 Introduction to Computers and C++ Programming Chapter 1

help the C++ programmer determine the set of classes from which objects are created that

work together to implement the system.

Classes are to objects as blueprints are to houses. We can build many houses from one

blueprint, and we can instantiate many objects from one class . Classes also can have rela

tionships with other classes. For example, in an object-oriented design of a bank, the

BankTel ler class needs to relate to the BankAccount class . The simplest of these

relationships i s called an association.

We wil l see that software packaged as classes can be reused in future software systems.

Groups of related classes are often packaged as reusable components. Just as real-estate

brokers tell their cl ients that the three most important factors affecting the price of real

estate are "location, location and location," we believe the three most important factors

affecting the future of software development are "reuse, reuse and reuse."

With object-oriented technology, we build most future software by combining "stan

dardized, interchangeable parts" called classes. This book teaches you how to "craft valu

able classes" for reuse, reuse and reuse. Each class you create has the potential to become

a valuable software asset that you and other programmers can use to faci litate future soft

ware-development efforts .

Introduction to Object-Oriented Analysis and Design (OOAD) and the UML
By now, you have probably written a few small programs in C++. How did you create the

code for your programs? If you are l ike many beginning programmers, you may have

turned on your computer and started typing. This approach might work for small projects,

but what would you do if asked to create a software system to control a bank ' s automated

teller machines? Such a project is too large and complex to sit down and simply start typing .

For creating the best solutions, you should follow a detailed process for obtaining an

analysis of your project' s requirements and developing a design for sati sfying those

requirements. You would go through this process and have its results reviewed and

approved by your superiors before writing any code for your project. If this process

involves analyzing and designing your system from an object-oriented point of view, i t is

referred to as an object-oriented analysis and design (OOAD) process. Experienced pro

grammers know that no matter how simple a problem appears , time spent on analysis and

design can save innumerable hours that might be lost from abandoning an i l l -planned

system development approach part of the way through its implementation.
OOAD i s the generic term for the ideas behind the process we employ to analyze a

problem and develop an approach for solving it . Small problems like the ones in these first

few chapters do not require an exhaustive process. It may be sufficient to write pseudocode

before we begin writing code. Pseudocode is an informal means of expressing program

code. It is not actually a programming language, but we can use it as an "outline" to guide

us as we write our code. We introduce pseudocode in Chapter 2 .

Pseudocode may suffice for small problems, but a s problems and the groups o f people

solving those problems increase in size, the techniques of OOAD become more involved.

Ideal ly , a group should agree on a strictly defined process for solving the problem and on

a uniform way of communicating the results of that process with one another. Many dif
ferent OOAD processes exist; however, a language for communicating the results of any

OOAD process has become widely used. This language is known as the Unified Modeling

Chapter 1 Introduction to Computers and C++ Programming 43

Language (UML). The UML was developed in the mid- 1 990s, under the initial direction of

a trio of software methodologists : Grady Booch, James Rumbaugh and Ivar Jacobson.

History of the UML
In the 1 980s, increasing numbers of organizations began using OOP to implement their ap

plications, and a need developed for an established process with which to approach OOAD.

Many methodologists-including Booch, Rumbaugh and Jacobson-individually pro

duced and promoted separate processes to satisfy this need. Each of these processes had

their own notation, or "language" (in the form of diagrams) , to convey the results of anal

ysis and design .

By the early 1 990s, different companies, and even different divisions within the same

company, were using different processes and notations . Additionally , these companies

wanted to use software tools that would support their particular processes. With so many

processes, software vendors found it difficult to provide such tools . C learly , standard pro

cesses and notation were needed.

In 1 994, James Rumbaugh joined Grady Booch at Rational Software Corporation, and

the two began worldng to unify their popular processes. They soon were joined by Ivar

Jacobson. In 1 996, the group released early versions of the UML to the software engi

neering community and requested feedback. Around the same time, an organization known

as the Object Management GroupTM (OMGTM) invited submissions for a common mod

eling language . The OMG is a non-profit organization that promotes the use of object-ori

ented technology by issuing guidel ines and specifications for object-oriented technologies.

Several corporations-among them HP, IBM, Microsoft, Oracle and Rational Software

already had recognized the need for a common modeling l anguage. These companies

formed the UML Partners in response to the OMG ' s request for proposals . This consortium

developed and submitted the UML version l. 1 to the OMG. The OMG accepted the pro

posal and, in 1 997, assumed responsibility for the continuing maintenance and revision of

the UML. In 200 1, the OMG released the UML version 1 .4 (the current version at the time

this book was published) . Currently, the OMG is worldng on version 2.0 and plans to

release the new version near the end of 2002. The OMG is one of the world ' s l argest con

sortia with 800 member organizations.

What is the UML?
The Unified Modeling Language is now the most widely used graphical representation

scheme for modeling object-oriented systems. It has unified the various notational schemes

that existed in the late 1 980s. Those who design systems use the l anguage (in the form of

diagrams) to model their systems.

One of the most attractive features of the UML is i ts flexibility. The UML is extend

able and i s independent of the many OOAD processes. UML modelers can develop systems

using various processes, but al l developers can express those systems with one standard set

of notations .

The UML is a complex, feature-rich graphical language. In our "Thinldng About
Objects" sections, we present a concise, simplified subset of these features . We then use this

subset to guide the reader through a first design experience with the UML intended for the

novice object-oriented designer/programmer. For a more complete discussion of the UML,

44 Introduction to Computers and C++ Programming Chapter 1

refer to the Object Management Group's Web site (www.omg.org) and to the official UML

1.4 specifications document (www.omg.org/wn!) . The Unified Modeling Language User

Guide, written by Booch, Rumbaugh and Jacobson, is the definitive tutorial to the UML. In

addition, several modeling tools have emerged to enable designers to bui ld systems v ia the

UML. The conclusion of Section 5 . 1 3 contains l inks to some of these tools .

Object-oriented technology i s ubiquitous in the software industry, and the UML i s rap

idly becoming so. Our goal in these "Thinking About Objects" sections is to encourage you

to think in an object-oriented manner as early , and as often, as possible . Beginning in the

"1'hinking About Objects" section at the end of Chapter 2, you wil l appl y object technology

to implement a solution to a substantial problem. We hope that you find this optional

project to be an enjoyable and challenging introduction to object-oriented design with the

UML and to object-oriented programming.

1 .27 Tour of the Book

In this section, we take a tour of the many capabilities of C++ you will study in C++

How to Program, 4/e.

Chapter 1-Introduction to Computers and C++ Programming-<ii scusses what

computers are, how they work and how they are programmed. It introduces the notion of

structured programming and explains why these techniques have fostered a revolution i n

the way programs are written . The chapter gives a brief history o f the development o f pro

gramming languages from machine languages, to assembly l anguages, to high-level l an

guages. The origin of the C++ programming language i s discussed. The chapter introduces

a typical C++ programming environment and gives a concise introduction to writing C++

programs . A detailed treatment of decision making and arithmetic operations in C++ is pre

sented. We have introduced a new, more open, easier to read "look and feel" for our C++

source programs, most notably using syntax coloring to highl ight keywords , comments and

regular program text and to make programs more readable . We have also introduced a new

background highlight to focus readers ' attention on the new features presented in each pro

gram. After studying this chapter, the student wi l l understand how to write simple, but com

plete, C++ programs . We di scuss the explosion of interest in the Internet that has occurred

with the advent of the World Wide Web. We discuss namespaces and the us ing state

ments. Readers p lunge right i nto object-orientation in the "Thinking About Objects" sec

tion that introduces the basic terminology of object technology.

Chapter 2-Control Structures-introduces the notion of algorithms (procedures)

for solving problems. I t explains the importance of using control structures effectively in

producing programs that are understandable, debuggable, maintainable and more l ikely to

work properly on the first try . It introduces the sequence structure, selection structures (i f ,

i f/el s e and switch) and repetition structures (whi le, do/wh i l e and for). I t exam
ines repetition i n detail and compares counter-control led loops and sentinel-contro lled

loops. It explains the technique of top-down, stepwise refinement that i s critical to the pro

duction of properly structured programs and presents the popular program design aid,

pseudocode. The methods and approaches used in Chapter 2 are applicable to effective use

of control structures in any programming language (not just C++). This chapter helps the

student develop good programming habits in preparation for dealing with the more substan-

Chapter 1 Introduction to Computers and C++ Programming 45

tial programming tasks in the remainder of the text. The chapter concludes with a discus

sion of logical operators-&:&: (and), II (or) and! (not) . We introduce the static_cast

operator, which is safer than using the old-style casting C++ inherited from C. We added

the "Peter Minuit" exercise, so students can see the wonders of compound interest-with

the computer doing most of the work! We discuss the scoping rules for loop counters i n

for-loops . In the optional "Thinking About Objects" section, we begin the first phase of

an object-oriented design (OOD) for the elevator simulator-identifying the classes needed

to implement the simulator. We also introduce the UML use case, c lass and object diagrams

and discuss the concepts of associations, multiplicity, composition, roles and l inks.

Chapter 3-Functions-discusses the design and construction of program modules .

C++ ' s function-related capabil ities include standard-library functions , programmer

defined functions, recursion, call -by-value and cal l -by-reference capabil ities . The tech

niques presented in Chapter 3 are essential to the production of properly structured pro

grams, especially the kinds of larger programs and software that system programmers and

application programmers are l ikely to develop in real-world applications. The "divide and

conquer" strategy i s presented as an effective means for solving complex problems by

dividing them into s impler interacting components . Students enjoy the treatment of random

numbers and simulation, and they appreciate the discussion of the dice game of craps,

which makes elegant use of control structures . The chapter offers a solid introduction to

recursion and includes a table summarizing the dozens of recursion examples and exercises

distributed throughout the remainder of the book. Some texts leave recursion for a chapter

late in the book; we feel this topic is best covered gradual ly throughout the text. The exten

sive collection of 60 exercises at the end of the chapter includes several c lassic recursion

problems such as the Towers of Hanoi . The chapter discusses the so-called "C++ enhance

ments to C," including inl ine functions, reference parameters, default arguments, the

unary scope resolution operator, function overloading and function templates . The header

files table introduces many of the header fi les that the reader wi l l use throughout the book.

In the optional "Thinking About Objects" section, we determine many of the class

attributes needed to implement the elevator simulator. We also introduce the UML state

chart and activity d iagrams and the concepts of events and actions as they relate to these

diagrams .

Chapter 4-Arrays-discusses the structuring of data into arrays, or groups, of

related data items of the same type. The chapter presents numerous examples of both

single-subscripted arrays and double-subscripted arrays . It is widely recognized that struc

turing data properly i s just as important as using control structures effectively in the devel

opment of properly structured programs. Examples i n the chapter investigate various

common array manipulations, printing hi stograms, sorting data, passing arrays to functions

and an introduction to the field of survey data analysis (with simple statistics) . A feature of

this chapter is the discussion of elementary sorting and searching techniques and the pre

sentation of binary searching as a dramatic improvement over l inear searching. The 121
end-of-chapter exercises include a variety of interesting and challenging problems, such as

improved sorting techniques, the design of a simple airline-reservations system, an

introduction to the concept of turtle graphics (made famous in the LOGO language) and the

Knight ' s Tour and Eight Queens problems that introduce the notion of heuristic pro

gramming so widely employed in the field of artificial intelligence. The exercises conclude

46 Introduction to Computers and C++ Programming Chapter 1

with many recursion problems including the selection sort, palindromes, l inear search,

binary search , the Eight Queens, printing an array, printing a string backwards and finding

the minimum value in an array. This chapter sti l l uses C-style arrays, which, as you wil l see

in Chapter 5, are really pointers to the array contents in memory.7 In the "Thinking About

Objects" section of Chapter 4, we determine many of the operations (behaviors) of the

classes in the elevator simulation. We also introduce the UML sequence diagram and the

concept of messages that objects can send to each other.

Chapter 5-Pointers and Strings-presents one of the most powerful and difficult

to-master features of the C++ language-pointers. The chapter provides detailed explana

tions of pointer operators, call by reference, pointer expressions, pointer arithmetic , the

relationship between pointers and arrays, arrays of pointers and pointers to functions. There

is an intimate relationship between pointers, arrays and strings in C++, so we introduce

basic string-manipulation concepts and discuss of some of the most popular string-han

dling functions, such as get l ine (input a l ine of text), strcpy and s trncpy (copy a

string) , strcat and strncat (concatenate two strings), strcmp and s t rncmp (com

pare two strings) , strtok ("tokenize" a string into its pieces) and strlen (compute the

length of a string). The 1 34 chapter exercises include a s imulation of the classic race

between the tortoise and the hare, card-shuffling and deal ing algorithms, recursive quick

sort and recursive maze traversals. A special section entitled "Bui lding Your Own Com

puter" also i s included. Thi s section explains machine-language programming and

proceeds with a project involving the design and implementation of a computer simulator

that allows the reader to write and run machine-language programs. Thi s unique feature of

the text wi l l be especially useful to the reader who wants to understand how computers

really work. Our students enjoy this project and often i mplement substantial enhancements,

many of which are suggested in the exerci ses. In Chapter 1 7 , another special section guides

the reader through building a compiler; the machine language produced by the compiler

then i s executed on the machine language simulator produced in the Chapter 5 exerc ises.

Information is communicated from the compiler to the simulator in sequential files, which

we discuss i n Chapter 1 4 . A second special section includes challenging string-manipula

tion exercises related to text analysis , word processing, printing dates i n various formats ,

check protection, writing the word equivalent of a check amount, Morse Code and metric

to-English conversions. The reader wil l want to revisit these string-manipulation exerc i ses

after studying class string in Chapter 1 5 . Many people find that the topic of pointers is ,

by far, the most difficult part of an introductory programming course. In C and "raw C++"

arrays and strings are pointers to array and string contents in memory (even function names
are pointers). Studying this chapter carefully should reward you with a deep understanding

of the complex topic of pointers. Again, we cover arrays and strings as ful l-fledged objects

later in the book. In Chapter 8 , we use operator overloading to craft customized Array and

String classes. Chapter 8 also introduces Standard Library classes string and

7. In later chapters, we present arrays as ful l -fledged objects. In Chapter 8, we use the techniques of
operator overloading to craft a valuable Array c lass out of which we create Array objects that
are much more robust and pleasant to program with than the arrays of Chapter 4. We continue that
discussion by introducing C++'s pre-defined vector class, which implements a robust array
data structure. In Chapter 2 1 , Standard Template Library (STL), we present in-depth coverage
c lass vector which, when used with the iterators and algorithms discussed in Chapter 21 , cre
ates a sol id treatment of arrays as ful l-fledged objects.

Chapter 1 Introduction to Computers and C++ Programming 47

vector for manipulating strings and arrays as objects. These classes are explained in

detai l in Chapter 1 5 and Chapter 2 1 , respectively. Chapter 5 i s loaded with challenging

exercises. Please be sure to try the Special Section: Building Your Own Computer. In the

"Thinking About Objects" section, we determine many of the collaborations (interaction s

among objects i n the system) needed t o implement the elevator system and represent these

collaborations using the UML collaboration diagram. We also include a bibliography and

a l i st of Internet and World Wide Web resources that contain the UML specifications and

other reference materials, general resources, tutorial s , FAQs, articles, whitepapers and

software.

Chapter 6-Classes and Data Abstraction-begins our discussion of object-based

programming. The chapter represents a wonderful opportunity for teaching data abstraction

the "right way"-through a language (C++) expressly devoted to implementing abstract

data types (ADTs). In recent years, data abstraction has become a major topic in introduc

tory computing courses. Chapter 6-Chapter 8 include a solid treatment of data abstraction.

Chapter 6 discusses implementing ADTs as C++-style c las ses and why this approach is

superior to using structs , accessing class members, separating i nterface from imple

mentation, using access functions and uti l ity functions, ini tializing obj ects with construc

tors, destroying objects with destructors, assignment by default memberwise copy and

software reusabi l i ty. The chapter exercises challenge the student to develop classes for

complex numbers, rational numbers, times, dates , rectangles, huge integers and playing tic

tac-toe. Students general ly enjoy game-playing programs. Mathematically i nclined readers

wi l l enjoy the exercises on creating class Complex (for complex numbers) , class

Rat ional (for rational numbers) and class Hugelnteger (for arbitrarily large i nte

gers). The "Thinking About Objects" section asks you to write a class header file for each

of the classes in your elevator simulator. In the "Thinking About Objects" section, we use

the UML class diagram developed in previous sections to outline the C++ header fi les that

define our classes. We also introduce the concept of handles to obj ects, and we begin to

study how to implement handles in C++.

Chapter 7-Classes Part II--continues the study of classes and data abstraction. The

chapter discusses declaring and using constant objects, constant member functions, com

position-the process of building classes that have objects of other classes as members,

friend functions and friend classes that have special access rights to the pri vat e and

protected members of classes, the thi s pointer, wruch enables an object to know its

own address, dynarruc memory al location, static class members for containing and

manipulating class-wide data, examples of popular abstract data types (arrays, strings and
queues), container classes and iterators. The chapter exercises ask the student to develop a

savings-account class and a class for holding sets of integers. In our discussion of const

objects, we briefly mention keyword mutable which, as we wil l see i n Chapter 22, is used

in a subtle manner to enable modification of "non-visible" implementation in const

objects. We discuss dynamic memory allocation using new and delete. When new fai ls ,

the program terminates by default because new "throws an exception" i n standard C++.

Chapter 1 3 discusses catching and handling exceptions. We motivate the discussion of
stat ic class members with a video-game-based example. We emphasize how important

it is to hide implementation detai ls from cl ients of a class ; then , we show private data i n

our class headers, which certainly reveal s implementation. We discuss proxy classes, which

48 Introduction to Computers and C++ Programming Chapter 1

provide a means of hiding implementation from cl ients of a class. The "Thinking About

Objects" section asks you to incorporate dynamic memory management and composition

into your elevator simulator. Students will enjoy the exercise creating class Int egerSet .

This motivates the treatment of operator overloading i n Chapter 8 . I n the "Thinking About

Objects" section, we present a complete elevator simulator C++ program (approximately

1,250 lines of code) and a detailed code walkthrough. The code follows directly from the

UML-based design created in previous sections and employs our good programming prac

tices, including the proper use of static and const data members and functions . We also

discuss dynamic-memory allocation, composition and object interaction via handles, and

how to use forward declarations to avoid the "circular-include" problem.

Chapter 8-0perator Overloading; String and Array Objects-presents one of

the most popular topics in our C++ courses . Students really enjoy this material . They find

it a perfect match with the discussion of abstract data types in Chapter 6 and Chapter 7 .

Operator overloading enables the programmer to tell the compiler how to use existing oper

ators with objects of new types. C++ already knows how to use these operators with objects

of built-in types, such as integers, floats and characters. But suppose that we create a new

string class-what would the plus sign mean when used between string objects? Many

programmers use plus with strings to mean concatenation . In Chapter 8, the programmer

will learn how to "overload" the plus sign, so when it is written between two string objects

in an expression, the compiler will generate a function call to an "operator function" that

will concatenate the two strings. The chapter discusses the fundamentals of operator over

loading, restrictions in operator overloading, overloading with class member functions vs .

with nonmember functions, overloading unary and binary operators and converting

between types. A feature of the chapter is the collection of substantial case studies

including an array class, a string class, a date class, a huge integer c lass and a complex num

bers c lass (the last two appear with ful l source code in the exercises) . Mathematically

inclined students wil l enjoy creating the polynomial class in the exercises . This material

is different from what you do in most programming languages and courses. Operator over

loading is a complex topic, but an enriching one. Using operator overloading wisely helps

you add that extra "polish" to your classes. The discussions of class Array and class

String are particularly valuable to students who will go on to use the standard l ibrary

c lasses string and vector, which are introduced with test programs that use string

and vector to mimic the capabi lities shown in the String and Array examples. Intro

ducing string and vector here gives students valuable experience with software reuse
by using existing c lasses, rather than "reinventing the wheel ." With the techniques of

Chapter 6-Chapter 8 , it is possible to craft a Date class that, if we had been using it for the

last two decades, could easi ly have eliminated a major portion of the so-called "Year 2000

(or Y2K) Problem." The exercises encourage the student to add operator overloading to

classes Complex, Rat ional and Hugelnteger to enable convenient manipulation of

objects of these classes with operator symbols-as in mathematics-rather than with func

tion calls as the student did in the Chapter 7 exercises.

Chapter 9-0bject-Oriented Programming: Inheritance-introduces one of the

most fundamental capabi l i ties of object-oriented programming languages . Inheritance is a

form of software reusability in which programmers create classes that absorb an existing

c lass's data and behaviors and enhance them with new capabilities . The chapter discusses

Chapter 1 Introduction to Computers and C++ Programming 49

the notions of base classes and derived classes, protected members, public inherit

ance, protected inheritance, private inheritance, direct base classes, indirect base

classes, constructors and destructors in base classes and derived classes, and software engi

neering with inheritance . The chapter compares inheritance ("is a" relationships) with com

position ("has a" relationships) and introduces "uses-a" and "knows-a" relationships . A

feature of the chapter is the example that implements a point, c ircle , cyl inder class h ier

archy. Using this "mechanical" example, we examine the relationship between base classes

and derived classes, then show how derived classes use inherited data members and

member functions. In the 'Thinking About Objects" section, we update the elevator simu

lation design and implementation to incorporate inheritance. We also suggest further mod

ifications that the student may design and implement.

Chapter lO-Object-Oriented Programming: Polymorphism---deals with another

fundamental capabi l ity of object-oriented programming, namely polymorphic behavior.

When many classes are related to a common base class through inheritance, each derived

class object may be treated as a base-class object. This enables programs to be written in a

general manner independent of the specific types of the derived-class obj ects . New kinds

of objects can be handled by the same program, thus making systems more extensible.

Polymorphism enables programs to el iminate complex switch logic in favor of s impler

"straight-line" logic . A screen manager of a video game, for example, can send a draw mes

sage to every object in a l inked l i st of objects to be drawn. Each object knows how to draw

itself. An object of a new class can be added to the program without modifying that pro

gram (as long as that new object also knows how to draw itself). This style of programming

i s typically used to implement today ' s popular graphical user interfaces (OUrs) . The

chapter discusses the mechanics of achieving polymorphic behavior v ia virtual func

tions. It distinguishes between abstract classes (from which objects cannot be instantiated)

and concrete c lasses (from which objects can be instantiated) . Abstract c lasses are useful

for providing an inheritable interface to classes throughout the hierarchy . We demonstrate

abstract c lasses and polymorphic behavior by revisiting the point, c ircle, cyl inder h ierarchy

of Chapter 9 . We introduce an abstract Shape base class, from which class Point inherits

directly and classes Circ l e and Cyl inder inherit indirectly . In response to this hier

archy, our professional audiences insisted that we provide a deeper explanation that shows

precisely how polymorphism i s implemented in C++, and hence, precisely what execution

time and memory "costs" are incurred when programming with this powerful capabil i ty .

We responded by developing an i l lustration and a precision explanation of the vtables

(virtual function tables) that the C++ compiler builds automatically to support poly

morphism. To conclude Chapter 1 0, we introduce run-time type information (RTTI) and

dynamic casting, which enable a program to determine an object ' s type at execution time,

then act on that object accordingly. We show this in the context of a more "natural" inher

itance hierarchy-several classes derived from an abstract Empl oyee base class, in which

each employee has a common earnings function to calculate an employee ' s weekly pay .

Using RTTI and dynamic casting, we give a 1 0% pay increase to employees of a specific

type, then calculate the earnings for such employees . For all other employee types, we cal

culate their earnings .

Chapter 11-Templates---discusses one of the more recent additions to C++. Func

tion templates were introduced in Chapter 3. Chapter 1 1 presents an additional function

50 Introduction to Computers and C++ Programming Chapter 1

template example. Class templates enable the programmer to capture the essence of an

abstract data type (such as a stack, an array, or a queue) and create-with minimal addi

tional code-versions of that ADT for particular types (such as a queue of int, a queue of

float, a queue of strings, etc .) and to provide specific type information as a parameter

when creating an i nstance of that ADT. For this reason, c lass templates often are cal led

parameterized types . The chapter discusses using type parameters and nontype parameters

and considers the interaction among templates and other C++ concepts, such as inheritance,

friends and static members . The exercises chal lenge the student to write a variety of

function templates and c lass templates and to employ these in complete programs . We

greatly enhance the treatment of templates in our discussion of the Standard Template

Library (STL) containers, i terators and algorithms in Chapter 2 1 .

Chapter 12-C++ Stream InputiOutput-contains a comprehensive treatment of

standard C++ object-oriented input/output. The chapter discusses the various VO capabi l i

ties of C++, including output with the stream insertion operator, input wi th the stream

extraction operator, type-safe 110, formatted 110, unformatted I/O (for performance),

stream manipulators for contro l l ing the numeric base (decimal , octal , or hexadecimal) ,

floating-poi nt-number formatting, contro l l ing field widths , user-defined manipulators ,

stream format states, stream error states, 110 of objects of user-defined types and tying

output streams to i nput streams (to ensure that prompts appear before the user i s expected

to enter responses) .

Chapter 13-Exception Handling-discusses how exception handl ing enables pro

grammers to write programs that are robust, fault tolerant and appropriate for business-crit

ical and miss ion-critical environments . The chapter discusses when exception handl ing is

appropriate ; introduces the bas ic capabi l i ties of exception handl ing with t ry blocks,

throw statements and catch blocks; indicates how and when to rethrow an exception;

explains how to write an exception specification and process unexpected exceptions; and

discusses the i mportant ties between exceptions and constructors , destructors and inherit

ance. The exerc ises in thi s chapter show the student the diversity and power of C++ ' s

exception-handling capabil i t ies . W e discuss rethrowing a n exception, and w e i l l ustrate

both ways new can fai l when memory is exhausted . Prior to the C++ draft standard, new

fai led by returning 0 , much as mal loc fai l s in C by returning a NULL poi nter value.We

show the new style of new fai l i ng by throwing a bad_al loc (bad al location) exception .

We i l lustrate how to use set_new_handler to specify a custom function to be cal led to

deal w ith memory-exhaustion situations . We discuss how to use the auto-ptr class tem

plate to delete dynamical l y allocated memory implicit ly, thus avoiding memory leaks.

To conclude this chapter, we present the standard l ibrary exception hierarchy.

Chapter 14-File Processing-discusses techniques for processing text fi les with

sequential access and random access. The chapter begins with an introduction to the data

hierarchy from bits, to bytes, to fields, to records and to fi les . Next, we present the C++

view of files and streams . We discuss sequential-access files and build programs that show

how to open and close fi les, how to store data sequentia l ly in a fi le and how to read data

sequentially from a fi le . We then discuss random-access fi les and bui ld programs that show

how to create a file for random access, how to read and write data to a fi le with random

access and how to read data sequential ly from a randomly accessed fi l e . The fourth

random-access program combines the techniques of accessing fi les both sequentia l ly and

Chapter 1 Introduction to Computers and C++ Programming 51

randomly into a complete transaction-processing program. Students in our industry semi

nars have mentioned that, after studying the material on fi le processing, they were able to

produce substantial file-processing programs that were immediately useful in their organi

zations . The exerc ises ask the student to implement a variety of programs that build and

process both sequential-access files and random-access fi les .

Chapter IS-Class string and String Stream Processing-The chapter also d is

cusses C++' s capabil it ies for inputting data from strings in memory and outputting data to

strings i n memory ; these capabi lities often are referred to as in-core formatting or string

stream processing. Class string is a required component of the standard l ibrary . We pre

served the treatment of C-l ike strings in Chapter 5 and later for several reasons. First, it

strengthens the reader' s understanding of pointers. Second, for the next decade or so, C++

programmers wi l l need to be able to read and modify the enormous amounts of C legacy

code that has accumulated over the last quarter of a century-this code processes strings as

pointers, as does a large portion of the C++ code that has been written in industry over the

last many years . In Chapter 1 5 we discuss string assignment, concatenation and com

parison. We show how to determine various string characteri stics such as a string's

size, capacity and whether or not it is empty . We discuss how to resize a string. We con

s ider the various find functions that enable us to find a substring in a string (searching

the string either forwards or backwards) , and we show how to find either the first occur

rence or last occurrence of a character selected from a string of characters, and how to

find the first occurrence or last occurrence of a character that is not in a selected string

of characters. We show how to replace, erase and insert characters i n a s tring. We show

how to convert a st ring object to a C-style char * string.

Chapter 16-Web Programming with CGI-This new chapter has everything you

need to begin developing your own Web-based applications that wil l really run on the

Internet!8 You wi l l learn how to build so-cal led n-tier applications, in which the function

ality provided by each tier can be distributed to separate computers across the Internet or

executed on the same computer. In particular, we build a three-tier online bookstore appl i

cation . The bookstore's i nformation is stored in the appl ication's bottom t ier , also called the

data tier. In industrial-strength appl ications, the data tier is typically a database such as

Oracle, M icrosoft® SQL Server or MySQL. For s implicity , we use text fi les and employ the

fi le-processing techniques of Chapter 1 4 to access these fi les . The user enters requests and

receives responses at the application's top tier, also called the user-interface tier or the c lient

tier, which i s typically a computer running a popular Web browser such as M icrosoft

Internet Explorer or Netscape®. Web browsers, of course, know how to communicate w ith

Web sites throughout the Internet. The middle tier, also called the business-logic tier, con
tains both a Web server and an appl ication specific C++ program (e .g . , our bookstore appli

cation) . The Web server communicates with the C++ program (and vice versa) via the CGI

(Common Gateway Interface) protocol . This program is referred to as a CGI script. We use

the popular Apache Web server, which i s avai lable free for download from the Apache Web

site, www.apache.org. Apache Instal lation instructions for many popular platforms,

including Linux and Windows systems, are available at that s ite and at www.dei t e l.com

8. There are other technologies for developing Web-based appl ications . Java developers use Java
servlets and JavaServer Pages . Microsoft developers use Active Server Pages (ASP) . We chose
CGI for this book because both standard C++ and CGI are platform i ndependent.

52 Introduction to Computers and C++ Programming Chapter 1

and www.prenhal l.com/dei tel . The Web server knows how to talk to the cl ient tier

across the Internet using a protocol called HTTP (Hypertext Transfer Protocol) . We discuss

the two most popular HTTP methods for sending data to a Web server-GET and POST.

We then discuss the crucial role of the Web server in Web programming and provide a

simple example that requests an Extensible HyperText Markup Language (XHTML)9 doc

ument from a Web server. We discuss CGI and how it allows a Web server to communicate

with the top tier and CGI appl ications . We provide a simple example that gets the server' s

time and renders it in a browser. Other examples demonstrate how to process form-based

user i nput via the string processing techniques introduced in Chapter IS. In our forms-based

examples we use buttons, password fields, check boxes and text fields. We present an

example of an interactive portal for a travel company that displays airfares to various cit ies .

Travel-club members can log in and view discounted airfares . We also discuss various

methods of storing c l ient-specific data, which include hidden fields (i . e . , information stored

in a Web page but not rendered by the Web browser) and cookies-small text fi les that the

browser stores on the client' s machine. The chapter examples conclude with a case study of

an online book store that allows users to add books to a shopping cart. Thi s case study con

tains several CGI scripts that interact to form a complete appl ication. The online book store

i s password protected, so users first must log in to gain access . The chapter' s Web resources

include information about the CGI specification, C++ CGI l ibraries and Web sites related

to the Apache Web server.

Chapter 17-Data Structures--di scusses the techniques used to create and manipu

late dynamic data structures . The chapter begins with discussions of self-referential classes

and dynamic memory al location, then proceeds with a discussion of how to create and

maintain various dynamic data structures, including l inked l i sts, queues (or waiting l ines) ,

stacks and trees. For each type of data structure, we present complete, working programs

and show sample outputs. The chapter also helps the student master pointers . The chapter

includes abundant examples that use indirection and double indirection-particularly dif

ficult concepts . One problem when working with pointers is that students have trouble v i su

alizing the data structures and how their nodes are l inked together. We have included

i l lustrations that show the l inks and the sequence in which they are created. The binary-tree

example is a superb capstone for the study of pointers and dynamic data structures . Thi s

example creates a b inary tree, enforces dupl icate el imination and introduces recursive pre

order, inorder and postorder tree traversals . Students have a genuine sense of accomplish

ment when they study and implement this example. They particularly appreciate seeing that
the inorder traversal prints the node values in sorted order. We include a substantial col lec

tion of exercises . A highl ight of the exercises i s the special section "Building Your Own

Compiler." The exerc ises walk the student through the development of an infix-to-postfix

conversion program and a postfix-expression-evaluation program. We then modify the

postfix-evaluation algorithm to generate machine-language code. The compiler places this

code in a file (using the techniques of Chapter 1 4) . Students then run the machine language

9. XHTML is a markup language for identifying the elements of an XHTML document (Web page)
so that a browser can render (i .e . , display) that page on your computer screen. XHTML is a new
technology designed by the World Wide Web Consortium to replace the HyperText Markup Lan
guage (HTML) as the primary means of specifying Web content. In Appendix E, we introduce
XHTML.

Chapter 1 Introduction to Computers and C++ Programming 53

produced by their compi lers on the software simulators they built in the exercises of

Chapter 5. The 47 exerc ises i nc lude recursively searching a l i st, recursively printing a l i st

backwards, binary-tree node deletion, level-order traversal of a binary tree, printing trees ,

writing a portion of an optimizing compiler, writing an interpreter, i nserting/deleting any

where i n a l inked l i st, implementing l i sts and queues without tai l pointers, analyzing the

performance of binary-tree searching and sorting, implementing an indexed- l i st class and

a supermarket s imulation that uses queueing. After studying Chapter 1 7 , the reader i s pre

pared for the treatment of STL containers, i terators and algorithms in Chapter 2 1 . The STL

containers are pre-packaged, templatized data structures that most programmers wi l l find

sufficient for the vast majority of appl ications they will need to i mplement. STL is a giant

leap forward in achieving the vision of reuse.

Chapter 18--Bits, Characters, Strings and Structures-presents a variety of impor

tant features. C++ ' s powerful bit-manipulation capabilities enable programmers to write

programs that exercise lower-level hardware capabil i ties. This helps programs process bit

strings, set individual bits and store information more compactly. Such capabi l it ies, often

found only in low-level assembly languages, are valued by programmers writing system

software, such as operating systems and networking software. As you recal l , we introduced

C-style char * string manipulation in Chapter 5 and presented the most popular string

manipulation functions. In Chapter I S , we continue our presentation of characters and C

style char * strings. We present the various character-manipulation capabi l ities of the

<cctype > l ibrary-these include the abi l i ty to test a character to determine whether it i s a

digit, an alphabetic character, an alphanumeric character, a hexadecimal digit, a lowercase

letter or an uppercase letter. We present the remaining string-manipulation functions of the

various string-related l ibraries; as always, every function i s presented in the context of a

complete, working C++ program. Structures in C++ are l ike records in other languages

they aggregate data items of various types. A feature of the chapter is its high-performance

card-shuffl ing and deal ing simulation. This is an excellent opportunity for the instructor to

emphasize the quality of algorithms. The 9 1 exerci ses encourage the student to try out most

of the capabi l ities discussed in the chapter. The feature exercise leads the student through

the development of a spell ing-checker program. Chapter I -Chapter 5 and Chapter I S

Chapter 20 are mostly the "c legacy" portion of C++. In particular, this chapter presents a

deeper treatment of C-l ike, char * strings for the benefit of C++ programmers who are

l ikely to work with C legacy code. Again, Chapter 1 5 discusses c lass s tring and discusses

manipulating strings as ful l-fledged objects.

Chapter 19-Preprocessor-provides detailed discussions of the preprocessor

directives. The chapter includes more complete information on the # inc lude directive,

which causes a copy of a specified fi le to be included in place of the directive before the

file i s compiled and the #de f ine directive that creates symbolic constants and macros.

The chapter explains conditional compi lation for enabl ing the programmer to control the

execution of preprocessor directives and the compi lation of program code. The # operator

that converts its operand to a string and the ## operator that concatenates two tokens are

discussed. The various predefined preprocessor symbol ic constants (_LINE_ ,

FILE, _DATE_, _STDC_, _TIME_ and _TIMESTAMP_) are pre

sented. Final ly , macro as sert of the header fi le <cas s ert > is d iscussed, which is valu

able i n program testing, debugging, verification and validation.

54 Introduction to Computers and C++ Programming Chapter 1

Chapter 20-C Legacy-Code Topics-presents additional topics including several

advanced topics not ordinari ly covered in introductory courses. We show how to redirect

program input to come from a fi le, redirect program output to be placed in a fi le , redirect

the output of one program to be the input of another program (piping) and append the output

of a program to an existing fi le. We develop functions that use variable-length argument

l i sts and show how to pass command-line arguments to function main and use them in a

program. We discuss how to compile programs whose components are spread across mul

t iple files , reg ister functions with atexi t to be executed at program termination and ter

minate program execution with function exit . We also discuss the const and

volat i l e type qual ifiers, specifying the type of a numeric constant using the integer and

floating-point suffixes, using the signal -handling l ibrary to trap unexpected events, creating

and using dynamic arrays with cal loc and real loc, using unions as a space-saving

technique and using l inkage specifications when C++ programs are to be l inked with legacy

C code. As the t it le suggests, this chapter i s intended primari ly for C++ programmers who

wil l be working with C legacy code.

Chapter 21-Standard Template Library (STL)-Throughout thi s book, we dis

cuss the importance of software reuse. Recognizing that many data structures and algo

rithms commonly were used by C++ programmers, the C++ standard committee added the

Standard Template Library (STL) to the C++ Standard Library. The STL defines powerfu l ,

template-based, reusable components that implement many common data structures and

algorithms used to process those data structures. The STL offers proof of concept for

generic programming with templates-introduced in Chapter 1 1 and demonstrated in detai l

in Chapter 1 7 . Thi s chapter introduces the STL and discusses its three key components

containers (popular templatized data structures) , i terators and algorithms. The STL con

tainers are data structures capable of storing objects of any data type. We wi l l see that there

are three container categories-first-c lass containers, adapters and near containers. STL

iterators, which have s imi l ar properties to pointers, are used by programs to manipulate the

STL-container elements. In fact, standard arrays can be manipulated as STL containers,

using standard pointers as iterators. We wi l l see that manipUlating containers with iterators

is convenient and provides tremendous expressive power when combined with STL algo

rithms-in some cases, reducing many l ines of code to a single statement. STL algorithms

are functions that perform common data manipulations such as searching, sorting, com

paring elements (or entire data structures) , etc. There are approximately 70 algorithms

implemented in the STL. Most of these algorithms use iterators to access container ele

ments. We wi l l see that each first-class container supports spec i fic i terator types, some of

which are more powerful than others. A container' s supported iterator type determines

whether the container can be used with a specific algorithm. Iterators encapsulate the mech

anism used to access container elements. This encapsulation enables many of the STL algo

rithms to be applied to several containers without regard for the underlying container

implementation. As long as a container' s iterators support the minimum requirements of

the algorithm, then the algorithm can process that container ' s elements. Thi s also enables

programmers to create algorithms that can process the elements of mult iple different con

tainer types. Chapter 1 7 discusses how to implement data structures with pointers , c lasses

and dynamic memory . Pointer-based code i s complex, and the s l ightest omission or over

sight can lead to serious memory-access violations and memory-leak errors with no com

pi ler complaints. Implementing additional data structures such as deques, priority queues,

Chapter 1 Introduction to Computers and C++ Programming 55

sets, maps, etc . requires substantial additional work. In addition , if many programmers on

a large project implement s imi lar containers and algorithms for different tasks, the code

becomes difficult to modify , maintain and debug. An advantage of the STL i s that program

mers can reuse the STL containers, iterators and algorithms t o implement common data

representations and manipulations . This reuse results in substantial development-time and

resource savings . This chapter i s meant to be an introduction to the STL. It is neither com

plete nor comprehens ive . However, it i s a friendly, accessible chapter that should convince

you of the value of the STL and encourage further study. Thi s might be one of the most

important chapters i n the book in terms of your appreciation of software reuse.

Chapter 22-0ther Topics-i s a collection of miscel laneous C++ topics . This

chapter discusses two cast opprators-const_cast and reinterpret_cast . These

operators, along with stat _cast (Chapter 2) and dynamic_cast (Chapter 1 0) ,

provide a more robust mechanIsm for converting between types than do the original cast

operators C++ inherited from C . We discuss namespaces, a feature particularly crucial for

software developers who build substantial systems, especial ly for those who build systems

from class l ibraries . Namespaces prevent naming col l i s ions, which can h inder such large

software efforts . We discuss the operator keywords, which are useful for programmers who

do not l ike cryptic operator symbols . The pri mary use of these symbols i s in international

markets , where certain characters are not always avai lable on local keyboards . We discuss

keyword expl i c i t , which prevents the compiler from invoking conversion constructors

in undesirable situations ; expl icit-conversion constructors can be i nvoked only

through constructor syntax, not through implicit conversions . We discuss keyword

mutable, which al lows a member of a const object to be changed. Previously, this was

accomplished by "casting away const-ness", which i s considered a dangerous practice.

We also discuss pointer-to-member operators . * and - > * , multiple i nheritance (including

the problem of "diamond inheritance") and vi rtual base c lasses.

Appendix A-Operator Precedence Chart-presents the complete set of C++ oper

ator symbols , in which each operator appears on a l ine by itself with the operator symbol ,

i t s name and i t s associativity .

Appendix 8-ASCII Character Set-Al l the programs i n this book use the ASCI I

character set, which is presented in th i s appendix

Appendix C-Number Systems--d iscusses the binary, octal , deci mal and hexadec

imal number systems. I t considers how to convert numbers between bases and explains the

one ' s complement and two ' s complement binary representations .

Appendix D-C++ Internet and Web Resources--contains a l i sting of valuable

C++ resources, such as demos, information about popular compilers (including "freebies") ,

books, articles , conferences, job banks, journals , magazines, help, tutorials , FAQs (fre

quently asked questions) , newsgroups, Web-based courses, product news and C++ devel

opment tools .

Appendix E-Introduction t o XHTML-provides an introduction to XHTML-a

markup language for describing the elements of a Web page so that a browser, such as

Microsoft Internet Explorer or Netscape, can render that page. The reader should be

56 I ntroduction to Computers and C++ Programming Chapter 1

fami liar with the contents of this appendix before studying Chapter 1 6, Web Programming

with CGI. This appendix does not contain any C++ programming. Some key topics covered

include incorporating text and images in an XHTML document, l inking to other XHTML

documents, incorporating special characters (such as copyright and trademark symbols)

into an XHTML document, separating parts of an XHTML document with horizontal l ines

(called horizontal rules), presenting information in l ists and tables, and col lecting informa

tion from users browsing a site.

Appendix F-XHTML Special Characters-l i sts many commonly used XHTML

special characters, called character entity references.

Bibliography-over 1 00 books and articles to encourage the student to do further

reading on C++ and OOP.

Index-The book contains a comprehensive index to enable the reader to locate by

keyword any term or concept throughout the text.

SUMMARY

• A computer i s a device capable of performing computations and making logical decisions at

speeds mil l ions and even bi l l ions of times faster than human bei ngs can .

• Computers process data under the control of computer programs .

• The various devices (such as the keyboard, screen , disks, memory and processing units) that com

prise a computer system are referred to as hardware.

• The computer programs that run on a computer are referred to as software.

• The i nput unit i s the "receiving" section of the computer. Most information is entered into com

puters today through typewriter-l ike keyboards.

• The output unit is the "shipping" section of the computer. Most information is output from com

puters today by displaying it on screens or by printing it on paper.

• The memory unit is the "warehouse" section of the computer and is often called either memory or

primary memory.

• The arithmetic and logic unit (ALU) performs calculations and makes decisions .

• Programs or data not actively being used by the other units are normally placed on secondary stor

age devices (such as disks) unti l they are again needed.

• In single-user batch processing, the computer runs a single program at a time while processing data

in groups or batches.

• Operating systems are software systems that make it more convenient to use computers and to get

the best performance from computers.

• MUltiprogramming operating systems enable the "simultaneous" operation of many j obs on the

computer-the computer shares its resources among the jobs.

• Timesharing i s a special case of mUltiprogramming in which users access the computer through

terminals . The users ' programs appear to be running simultaneous ly .

• With distributed computing, an organization ' s computing is distributed via networking to the sites

where the work of the organization i s performed.

• Servers store programs and data that may be shared by client computers distributed throughout a

network, hence the term c l ient/server computing.

Chapter 1 Introduction to Computers and C++ Programming 57

• A n y computer c a n directly understand only i t s own machine language. Machine languages gener

ally consist of strings of numbers (ultimately reduced to I s and Os) that instruct computers to per

form their most elementary operations one at a time. Machine languages are machine-dependent.

• English-like abbreviations form the basis of assembly languages. Assemblers translate assembly

language programs into machine language.

• Compilers translate high-level language programs into machine language. High-level languages

contain English words and conventional mathematical notations .

• Interpreter programs directly execute high-level language programs without the need for compil

ing those programs into machine language.

• Although compiled programs execute faster than interpreted programs, interpreters are popular in

program-development environments in which programs are recompiled frequently as new features

are added and errors are corrected. Once a program is developed, a compiled version can then be

produced to run more efficiently.

• It is possible to write programs in C and C++ that are portable to most computers .

• FORTRAN (FORmula TRANslator) is used for mathematical applications . COBOL (COmmon

B usiness Oriented Language) is used primarily for commercial applications that require precise

and efficient manipulation of large amounts of data.

• Structured programming is a disciplined approach to writing programs that are clearer than un

structured programs, easier to test and debug and easier to modify .

• Pascal w a s designed for teaching structured programming in academic environments .

• Ada was developed under the sponsorship of the United States Department of Defense (DOD) us

ing Pascal as a base.

• Multitasking allows programmers to specify paral lel activities .

• All C++ systems consist of three parts: the environment, the language and the standard libraries.

Library functions are not part of the C++ language itself; these functions perform operations such

as popular mathematical calculations.

• C++ programs typically go through six phases to be executed: edit, preprocess, compile, link, load

and execute.

• The programmer types a program with an editor and makes corrections if necessary . C++ file

names typically end with the one of the extensions . cpp, • cxx, • cc or • C extension.

• A compiler translates a C++ program into machine-language code (or object code ; note that this

use of the term "object" is unrelated to that in "object-oriented programming") .

• The preprocessor obeys preprocessor directives, which typically indicate files to be included in the

file being compiled and special symbols to be replaced with program text.

• A l inker links the object code with the code for missing functions to produce an executable image

(with no missing pieces) . If the program compiles and links correctly, an executable file is pro

duced. This is the executable image of the program.

• A loader takes an executable image from disk and transfers it to memory.

• A computer, under the control of its CPU, executes a program one instruction at a time.

• Errors like division-by-zero errors can occur as a program runs, so these errors are called run-time

errors or execution-time errors.

• Divide-by-zero is generally a fatal error, i .e . , an error that causes the program to terminate imme

diately without having successfully performed its job. Non-fatal errors allow programs to run to

completion, often producing incorrect results.

58 Introduction to Computers and C++ Programming Chapter 1

o Certain C++ functions take their input from cin (the standard input stream) which is normal ly the

keyboard, but c in can be connected to another device. Data i s output to cout (the standard out

put stream) which i s normally the computer screen, but cout can be connected to another device.

o The standard error stream i s referred to as cerr. The cerr stream (normal ly connected to the

screen) is used for displaying error messages.

o There are many variations between different C++ implementations and different computers that

make portabi l i ty an elusive goal .

o C++ provides capabi lities for object-oriented programming.

o Objects are essentially reusable software components that model items in the real world. Objects

are made from "blueprints" cal led c lasses.

o Single-l ine comments begin with / / . Programmers insert comments to document programs and

improve their readabil ity. Comments do not cause the computer to perform any action when the

program is run.

o The l ine #inc lude < iostream> tel l s the C++ preprocessor to incl ude the contents of the in

put/output stream header fi le in the program. This fi le contains information necessary to compile

programs that use std : : c in and std : : cout and operators < < and » .

o C++ programs begin executing at the function main.

o The output stream object std : : cout-normal ly connected to the screen-is used to output da

ta. Multiple data items can be output by concatenating stream insertion « <) operators .

o The input stream object std : : cin-normally connected to the keyboard-is used to input data.

M ultiple data items can be input by concatenating stream extraction (») operators.

o All variables in a C++ program must be declared before they can be used.

o A variable name in C++ is any valid identifier. An identifier is a series of characters consisting of

letters, digits and underscores (_) . Identifiers cannot start with a digit. C++ identifiers can be any

length; however, some systems and/or C++ implementations may impose some restrictions on the

length of identifiers.

o C++ i s case sensitive.

o Most calculations are performed in assignment statements.

o Every variable stored in the computer' s memory has a name, a value, a type and a size.

o Whenever a new value i s placed in a memory location, it replaces the previous value in that loca

tion. The previous value is lost.

o When a value i s read from memory, the process is nondestructive, i .e. , a copy of the value i s read

leaving the original value undisturbed in the memory location.

o C++ evaluates arithmetic expressions in a precise sequence determined by the rules of operator

precedence and associativity.

o The if statement allows a program to make a decision when a certain condition i s met. The format

for an if statement is

if (condition
statement ;

If the condition is true, the statement in the body of the i f is executed. If the condition is not met,

i .e . , the condition i s fal se, the body statement is skipped.

o Conditions in if statements are commonly formed by using equality operators and relational op

erators . The result of using these operators is always the observation of true or fal se .

Chapter 1 Introduction to Computers and C++ Programming

• The statements

us ing s td : : cout ;

us ing std : : c in;

us ing std : : endl ;

59

are using statements that el iminate the need to repeat the std : : prefix . Once we include these

us ing statements, we can write cout instead of std : : cout, c in instead of std : : c in and

endl instead of std : : endl, respectively, in the remainder of a program.

• Object-orientation is a natural way of thinking about the world and of writ ing computer programs.

• Objects have attributes (l ike size, shape, color, weight and the l ike) and they exhibi t behaviors .

• Humans learn about obj ects by studying their attributes and observing their behaviors .

• Different objects can have many of the same attributes and exhibit s imi lar behaviors.

• Object-oriented programming (OOP) models real-world objects with software counterparts . It

takes advantage of c lass relationships where objects of a certain class have the same characteristics

and behaviors . I t takes advantage of inheritance relationships and even multiple inheritance rela

tionships where newly created classes are derived by inheriting characteristics of existing classes,

yet contain unique characteristics of their own.

• Object-oriented programming provides an intuitive way to view the programming process, namely

by modeling real-world objects, their attributes and their behaviors .

• OOP also models communication between objects via messages.

• OOP encapsulates data (attributes) and functions (behavior) into objects.

• Objects have the property of information hiding. Although objects may know how to communicate

with one another across wel l-defined interfaces, objects normally are not al lowed to know imple

mentation detai l s of other objects (to eliminate unnecessary dependencies) .

• Information hiding is crucial t o good software engineering.

• In C and other procedural programming languages, programming tends to be action-oriented. Data

is certain ly important in C, but the view is that data exists primari ly in support of the actions that

functions perform.

• C++ programmers concentrate on creating their own user-defined types called c lasses. Each c lass

contains data as wel l as the set of functions that manipulate the data. The data components of a

c lass are called data members . The function components of a class are called member functions or

methods .

TERMINOLOGY

/ / comment

/ * . . . * / comment

abstraction

action

action-oriented programming

analysis

ANSI/ISO standard C

ANSIIISO standard C++

arithmetic and logic unit (ALU)

arithmetic operators

assembly language

assignment operator (=)

association

associativity of operators

attribute

attributes of an obj ect

behavior

behaviors of an object

binary operator

body of a function

Booch, Grady

C

C++

C++ standard library

60 Introduction to Computers and C++ Programming Chapter 1

case sensitive

central processing unit (CPU)

cerr object

cin obj ect

clarity

class

client/server computing

comma-separated l i st

comment (I I)
compile error

compile-time error

compiler

component

computer

computer program

condition

cout object

CPU

"crafting valuable c lasses"

data

data member

decision

declaration

design

distributed computing

editor

encapsulate

equal ity operators

== "is equal to"

! = "is not equal to"

escape character (\)

escape sequence

execution-time error

fatal error

file server

flow of control

function

hardware

high-level language

identifier

if structure

information hiding

inheritance

input device

input/output (I/O)

instantiate

int

integer (int)

integer division

interface

interpreter

iostream

Jacobson, Ivar

left-to-right associativity

l inking

logic error

machine dependent

machine independent

machine language

main

member function

memory

memory location

message

method

modeling

multiple inheritance

modulus operator (%)

multiple inheritance

multipl ication operator (*)
mUltiprocessor

multitasking

nested parentheses

newline character (\ n)

non-fatal error

nouns in a system specification

object

Object Management Group (OMG)

object-oriented analysis and design (OOAD)

object-oriented design (000)
object-oriented programming (OOP)

operand

operator

operator associativity

output device

parentheses ()

precedence

preprocessor

primary memory

procedural programming

procedural programming language

programming language

prompt

pseudocode

Rational Software Corporation

relational operators

< "is less than"

<= "is less than or equal to"

> "is greater than"

>= "is greater than or equal to"

Chapter 1 Introduction to Computers and C++ Programming

requirements

reserved words

requirements

reuse

right-to-Ieft associativity

rules of operator precedence

Rumbaugh, James

run-time error

semicolon (;) statement terminator

software

software asset

software reusabi l i ty

standard error obj ect (cerr)

standard input object (c in)

standard output obj ect (cout)

state

statement

statement terminator (;)

std : : cerr

SELF-REVIEW EXERCISES

std : : c in

std : : cout

std : : endl

string

structured programming

syntax error

translator program

UML Partners

Unified Modeling Language (UML)

us ing

using s td : : cerr ;

us ing s td : : c i n ;

us ing std : : cout ;

us ing std : : endl ;

variable

variable name

variable value

verbs in a system specification

white-space characters

1 . 1 Fi l l in the blanks in each of the following:

a) The company that popularized personal computing was ____ _

61

b) The computer that made personal computing legitimate in business and industry was the

c) Computers process data under the control of sets of i nstructions cal led computer

d) The six key logical units of the computer are the _____ _____ ____ _

_____ _____ and the ____ _

e) The three c lasses of languages discussed in the chapter are _____ _____ and

f) The programs that translate high-level language programs into machine language are

called ___ _

g) C is widely known as the development language of the operating system.

h) The language was developed by Wirth for teaching structured programming

in universities.

i) The Department of Defense developed the Ada language with a capabi l ity called

_____ , which allows programmers to specify that many activities can proceed in

paral lel .

1 .2 Fil l i n the blanks in each of the fol lowing sentences about the C++ environment.

a) C++ programs are normally typed into a computer using a(n) program.

b) In a C++ system, a(n) program executes before the compiler ' s translation

phase begins.

c) The program combines the output of the compiler with various l ibrary func-
tions to produce an executable image.

d) The program transfers the executable image of a C++ program from disk to
memory.

62

1 .3

I ntrod uction to Computers and C++ Progra mming Chapter 1

Fil l in the blanks in each of the following.
a) Every C++ program begins execution at the function ____ _

b) The begins the body of every function and the ____ ends the body of
every function.

c) Every statement ends with a(n) ___ _

d) The escape sequence \ n represents the character, which causes the cursor to
position to the beginning of the next line on the screen .

e) The statement is used to make decisions.

1 .4 State whether each of the fol lowing is true or false . If false , explain why. Assume the state-
ment using std : : cout ; is used.

a) Comments cause the computer to print the text after the l I on the screen when the pro
gram is executed.

b) The escape sequence \n when output with cout causes the cursor to position to the be-
ginning of the next line on the screen.

c) All variables must be declared before they are used.
d) All variables must be given a type when they are declared.
e) C++ considers the variables number and NuMbEr to be identical .
f) Declarations can appear almost anywhere in the body of a C++ function.
g) The modulus operator (%) can be used only with integer operands.
h) The arithmetic operators * , I , %, + and - all have the same level of precedence.
i) A C++ program that prints three lines o f output must contain three output statements us

ing cout o

1 .5 Write a single C++ statement to accomplish each of the following: (Assume that us ing

statements have not been used)
a) Declare the variables c, thi sI sAVariable, q7 6 3 5 4 and number to be of type int o

b) Prompt the user to enter an integer. End your prompting message with a colon (:) fol
lowed by a space and leave the cursor positioned after t h e space.

c) Read an integer from the user at the keyboard and store the value entered in integer vari
able age.

d) If the variable number i s not equal to 7, print " The variable number is not

equal to 7 " .

e) Print the message " Th i s i s a C++ program" on one l ine .
f) Print the message " Th i s i s a C + + program" on two l ines, in which the first l ine ends

with C + + .

g) Print the message " Th i s i s a C++ program" with each word o f the message on a
separate l ine .

h) Print the message " Th i s is a C++ program" with each word separated from the next
by a tab.

1 .6 Write a statement (or comment) to accomplish each of the fol lowing: (Assume that us ing

statements have been used)
a) State that a program calculates the product of three integers .
b) Declare the variables x, y, z and result to be of type int o

c) Prompt the user to enter three integers.
d) Read three integers from the keyboard and store them in the variables x, y and Z .

e) Compute the product o f the three integers contained in variables x , y and z , and assign
the result to the variable result.

f) Print " The product i s " fol lowed by the value of the variable result .

g) Return a value from main indicating that the program terminated successfu l ly .

Chapter 1 Introduction to Computers and C++ Programming 63

1 . 7 Using the statements you wrote in Exerc ise 1 .6, write a complete program that calculates and
displays the product of three integers . [Note : you will need to write the necessary u s ing statements .]

1 .8 Identify and correct the errors in each of the following statements (assume that the statement
us ing std : : eout ; i s used) :

a) if (e < 7) ;

eout « " e i s less than 7 \n " ;

b) i f (e = > 7)

eout « " e i s equal to or greater than 7 \ n " ;

1 .9 Fi l l the correct "object speak" term into the blanks in each of the fol lowing:
a) Humans can look at a TV screen and see dots of color, or they can step back and see three

people sitting at a conference table; this is an example of a capabi l ity cal led ____ _

b) If we view a car as an object, the fact that the car i s a convertible is a(n) attributelbehavior
(pick one) of the car.

c) The fact that a car can accelerate or decelerate, turn left or turn right, or go forward or
backward are al l examples of of a car object.

d) When a new class inherits characteristics from several different existing c lasses, thi s i s
cal led inheritance.

e) Objects communicate by sending each other ____ _

f) Objects communicate with one another across well -defined ____ _

g) Each object is ordinari ly not al lowed to know how other objects are implemented; this
property i s called ___ _

h) The in a system specification help the C++ programmer determine the class-
es that wil l be needed to implement the system.

i) The data components of a c lass are called and the function components of a
class are cal led ____ _

j) A n instance o f a user-defined type i s called a(n) ____ _

ANSWERS TO SELF-REVIEW EXERCISES

1 . 1 a) Apple. b) IBM Personal Computer. c) programs. d) input unit , output unit , memory
unit, arithmetic and logic unit, central processing unit, secondary storage unit . e) machine l anguages,
assembly languages, high-level languages . f) compilers. g) UNIX. h) Pascal . i) multitasking.

1 .2 a) editor. b) preprocessor. c) l inker. d) loader.

1 .3 a) main. b) Left brace ({) , right brace (}) . c) Semicolon. d) newline. e) i f .

1 .4 a) False. Comments do not cause any action to be performed when the program i s executed.
They are used to document programs and improve their readabil i ty.

b) True.
c) True.
d) True.
e) Fal se. C++ i s case sensitive, so these variables are unique.
f) True.
g) True.
h) False. The operators * , / and % have the same precedence, and the operators + and - have

a lower precedence.
i) False. A single output statement using cout containing multiple \ n escape sequences can

print several l ines .

1 .5 a) int e , thi s I sAVariable , q7 6 3 5 4 , numbe r ;

b) std : : eout « " Enter a n integer : " ;

64 Introduction to Computers and C++ Programming Chapter 1

c) std : : c in » age ;

d) i f (number ! = 7

std : : cout « " The variable number i s not equal to 7 \ n " ;

e) std : : cout « " Th i s i s a c++ program\n" ;

t)
g)

h)

std : : cout « " Thi s i s a C + + \ nprogram\n" ;

std : : cout « " Thi s \nis \na \ nC + + \ nprogram\n" ;

std : : cout « " Thi s \ t i s \ t a \ tC+ + \ tprogram\n " ;

1 .6 a) I I Calculate the product of three integers

b) int x;
int y;
int z ;
int result ;

c) cout « " Enter three integers : " ;

d) c in » x » y » z ;
e) result = x * y * z ;
t) cout « " The product i s " « result « endl ;

g) return 0 ;

1 . 7 I I Calculate the product of three integers

inc lude < iostream>

us ing std : : cout ;

using std : : c i n ;

using std : : endl ;

int main ()
{

int x ;
int y;
int z ;
int result ;

cout « " Enter three integers : " ;

c in » x » y » z ;
result = x * y * z ;
cout « " The product i s " « result « endl ;

return 0 ;

} I I end funct ion main

1 .8 a) Error: Semicolon after the right parenthesis of the condition in the i f statement. Correc-

tion: Remove the semicolon after the right parenthesis. [Note: The result of this error is

that the output statement will be executed whether or not the condition in the i f state

ment is true .] The semicolon after the right parenthesis is considered a null (or empty)

statement-a statement that does nothing. We will learn more about the null statement in

the next chapter.

b) Error: The relational operator = > . Correction: Change = > to > = .

1 .9 a) abstraction. b) attribute. c) behaviors . d) multiple. e) messages. t) interfaces. g) infor-

mation hiding. h) nouns. i) data members ; member functions or methods. j) object.

Chapter 1 Introduction to Computers and C++ Programming

EXERCISES

1 . 1 0 Categorize each of the following items as either hardware or software :
a) CPU
b) C++ compiler
c) ALU
d) C++ preprocessor
e) input unit
f) an editor program

65

1 . 1 1 Why might you want to write a program in a machine-independent language i nstead of writ
ing one in a machine-dependent language? Why might a machine-dependent language be more ap
propriate for writing certain types of programs?

1 . 1 2 Fil l in the blanks i n each of the fol lowing statements:
a) Which logical unit of the computer receives information from outside the computer for

use by the computer? ____ _

b) The process of instructing the computer to solve specific problems is cal led ____ _

c) What type of computer language uses Engl ish-l ike abbreviations for machine language
instructions? ____ _

d) Which logical unit of the computer sends information that has already been processed by
the computer to various devices so that the information may be used outside the comput
er?

e) Which logical unit of the computer retains information ? ____ _

f) Which logical unit of the computer performs calculations? ____ _

g) Which logical unit of the computer makes logical decisions?
h) The level of computer language most convenient to the programmer for writing programs

quickly and easily i s ____ _

i) The on ly language a computer directly understands is called that computer's ____ _

j) Which logical unit of the computer coordinates the activit ies of al l the other logical units?

1 . 1 3 Discuss the meaning of each of the following objects:
a) std : : c in

b) std : : cout

c) std : : cerr

1 . 1 4 Why is so much attention today focused on object-oriented programming in general and C++
in particular?

1 . 1 5 Fi l l in the blanks i n each of the fol lowing:
a) are used to document a program and improve i ts readabi l i ty .
b) The object used to print information on the screen i s ____ _

c) A C++ statement that makes a decision is ____ _

d) Calculations are normal ly performed by statements.
e) The object inputs values from the keyboard.

1 . 1 6 Write a single C++ statement or l ine that accompli shes each of the following:
a) Print the message " Enter two nwnbers " .

b) Assign the product of variables b and c to variable a.

c) S tate that a program performs a sample payrol l calculation (i .e . , use text that helps to doc
ument a program).

d) Input three integer values from the keyboard and into integer variables a, b and c.

66 Introduction to Computers and C++ Programming Chapter 1

1 . 1 7 State which of the fol lowing are true and which are false . If false , explain your answers.
a) C++ operators are evaluated from left to right.
b) The fol lowing are all valid variable names: _under_bar_, m9 2 8 1 3 4 , t 5 , j 7 ,

her_sales, h i s_account_total, a, b, c , z , z 2 .

c) The statement cout « " a = 5 ; " ; is a typical example of an assignment statement.
d) A valid C++ arithmetic expression with no parentheses is evaluated from left to right.
e) The fol lowing are a l l invalid variable names: 3g, 8 7 , 6 7 h2 , h2 2 , 2h.

1 . 1 8 Fil l in the blanks in each of the fol lowing:
a) What arithmetic operations are on the same level of precedence as mu lt ipl ication?

b) When parentheses are nested, which set of parentheses is evaluated first in an ari thmetic
expression? ____ _

c) A location in the computer's memory that may contain different values at various times
throughout the execution of a program is cal led a ____ _

1 . 1 9 What, if anything, prints when each of the fol lowing C++ statements is performed? If nothing
prints, then answer "nothjng." Assume x = 2 and Y = 3.

a) cout « x;

b) cout « x + x;

c) cout « " x= " ;

d) cout « " x = " « x ;

e) cout « x + Y « " " « Y + x;

f) z = x + Y;

g) c in » x » Y i

h) I I cout « " x + Y " « x + Yi

i) cout « " \n " i

1 .20 Which of the fol lowing C++ statements contain variables whose values are replaced?
a) c in » b » c » d » e » f ;

b) p = i + j + k + 7 ;

c) cout « " variables whose values are replaced" ;

d) cout « " a = 5 " ;

1 .2 1 Given the algebraic equation y = ax3 + 7, which of the fol l owing, i f any, are correct C++
statements for this equation?

a) Y a * x * x * x + 7 ;

b) Y a * x * x * x + 7) ;

o Y (a * x * x * x + 7) ;

d) Y (a * x) * x * x + 7 ;

e) Y a * (x * x * x + 7 ;

f) y a * x * x * x + 7) ;

1 .22 State the order of evaluation of the operators in each of the fol lowing C++ statements and
show the value of x after each statement i s performed.

a) x 7 + 3 * 6 I 2 - 1 ;

b) x = 2 % 2 + 2 * 2 - 2 I 2 ;

c) x = (3 * 9 * (3 + (9 * 3 I (3)))) ;

1 .23 Write a program that asks the user to enter two numbers, obtains the two numbers from the
user and prints the sum, product, difference, and quotient of the two numbers .

1 .24 Write a program that prints the numbers I to 4 on the same l ine with each pair of adjacent
numbers separated by one space. Write the program using the fol lowing methods:

Chapter 1 Introduction to Computers and C++ Programming 67

a) Using one output statement with one stream insertion operator.
b) Using one output statement with four stream insertion operators .
c) Using four output statements.

1 .25 Write a program that asks the user to enter two integers, obtains the numbers from the user,
then prints the l arger number fol lowed by the words " i s larger. " If the numbers are equal , print
the message "The s e nwnbers are equal."

1 .26 Write a program that inputs three integers from the keyboard and prints the sum, average,
product, smallest and largest of these numbers. The screen dialogue should appear as follows:

Input three di f ferent integers : 1 3 27 14

Sum is 54

Average is 1 8

Product i s 4 9 14

Smallest i s 1 3

Largest i s 2 7

1 .2 7 Write a program that reads i n the radius of a circle and prints the circ le ' s diameter, circum
ference and area. Use the constant value 3 . 1 4 1 59 for n . Do these calculations in output statements.
[Note: In this chapter, we have discussed only integer constants and variables . In Chapter 3 we discuss
floating-point numbers, i . e . , values that can have decimal points .]

1 .28 Write a program that prints a box, an oval , an arrow and a diamond as fol lows :

* * * * * * * * * * * * * *

* * * * * * * * *

* * * * * * * * * * *

* * * * * * *

* * * * * * *
* * * * * * *
* * * * * * *

* * * * * * *

* * * * * * * * * * * * * *

1 .29 What does the fol lowing code print?

cout « " * \ n* * \ n* * * \ n* * * * \n* * * * * \ n " ;

1 .30 Write a program that reads in five integers and determines and prints the largest and the
smallest integers in the group. Use only the programming techniques you learned in this chapter.

1 .3 1 Write a program that reads an integer and determines and prints whether i t is odd or even.
(Hint : Use the modulus operator. An even number is a multiple of two. Any multiple of two leaves a
remainder of zero when divided by 2 .)

1 .32 Write a program that reads in two integers and determines and prints if the first i s a multiple
of the second. (Hint : Use the modu lus operator.)

1 .33 Display the fol lowing checkerboard pattern with eight output statements, then di splay the
same pattern using as few output statements as possible .

68 Introduction to Computers and C++ Programming

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * • * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

* * * * * * * *

Chapter 1

1 .34 Distinguish between the terms fatal error and non-fatal error. Why might you prefer to expe-
rience a fatal error rather than a non-fatal error?

1 .35 Here is a peek ahead. In this chapter you learned about integers and the type into C++ can
also represent uppercase letters, lowercase letters and a considerable variety of special symbols . C++
uses small integers internal ly to represent each different character. The set of characters a computer
uses and the corresponding integer representations for those characters i s called that computer' s char
acter set. You can print a character by enclosing that character in single quotes as with

cout « ' A ' ;

You can print the integer equivalent of a character using stat ic_cast as follows:

cout « stat i c_cast < int > (' A ') ;

This i s cal led a cast operation (we formally introduce casts in Chapter 2). When the preceding state
ment executes, i t prints the value 65 (on systems that use the ASClI character set) . Write a program
that prints the integer equivalents of some uppercase letters, lowercase letters, digits and special
symbols. At a minimum, determine the integer equivalents of the following: A B C a b c 0 1

2 $ * + / and the blank character.

1 .36 Write a program that inputs a five-digit number, separates the number into its i ndividual dig
its and prints the digits separated from one another by three spaces each. (Hint: Use the integer divi
sion and modulus operators .) For example, if the user types in 42339 the program should print :

4 2 3 3 9

1 .37 Using only the techniques you learned in this chapter, write a program that calculates the
squares and cubes of the numbers from 0 to 1 0 and uses tabs to print the fol lowing table of values:

number square cube

0 0 0

1 1 1

2 4 8

3 9 2 7

4 1 6 6 4

5 2 5 1 2 5

6 3 6 2 1 6

7 4 9 3 4 3

8 6 4 5 1 2

9 8 1 7 2 9

1 0 1 0 0 1 0 0 0

Chapter 1 I ntroduction to Computers and C++ Progra m m i n g

1 .38 Give a brief answer to each of the fol lowing "object think" questions :

69

a) Why does this text choose to discuss structured programming in detai l before proceeding
wi th an in-depth treatment of object-oriented programming?

b) What are the typical steps (mentioned in the text) of an object-oriented design process?
c) How i s mul tiple inheritance exhibi ted by human beings?
d) What kinds of messages do people send to one another?
e) Objects send messages to one another across wel l -defi ned interfaces . What interfaces

does a car radio (object) present to i t s user (a person object)?

1 . 39 You are probably wearing on your wrist one of the world ' s most common types of objects
a watch. Discuss how each of the fol lowing terms and concepts appl ies to the notion of a watch : ob
ject, attributes, behaviors, c lass, inheritance (consider, for example, an alarm clock) , abstraction,
mode l ing, messages, encapsu lation, i nterface, information hiding, data members and member func
tions.

2
Control Structures

Objectives
• To understand basic problem- solving techniques.
• To be able to develop algorithms through the process

of top-down, stepwise refinement.
• To be able to use the i f , i f/e l s e and switch

selection structures to choose among alternative

actions.
• To be able to use the whi le, do/while and for

repetition structures to execute statements in a

program repeatedly.
• To understand counter-control led repetition and

sentinel-controlled repetition .
• To be able to use the increment, decrement,

assignment and logical operators .
• To be able to use the break and cont inue

program control statements .

Let 's all move one place on.

Lewis Carrol l

The wheel is come full circle.

Wil l iam Shakespeare

Who can control his fate ?

Wil l iam Shakespeare

The used key is always bright.

Benjamin Frankl in

Chapter 2

Outline

2. 1 IntroducHon

2.2 Algorithms

2.3 Pseudocode

2.4 Control Structures

2.5 if SelecHon Structure

2.6 i f/el s e SelecHon Structure

2.7 whi l e RepeHHon Structure

Control Structu res

2.8 FormulaHng Algorithms: Case Study 1 (Counter-Controlled

RepeHHon)

7 1

2.9 FormulaHng Algorithms with Top-Down, Stepwise Refinement: Case

Study 2 (SenHnel-Controlled RepeHHon)

2. 1 0 FormulaHng Algorithms with Top- Down, Stepwise Refinement: Case

Study 3 (Nested Control Structures)

2. 1 1 Assignment Operators

2. 1 2 Increment and Decrement Operators

2. 1 3 EssenHals of Counter-Controlled RepeHHon

2. 1 4 for RepeHHon Structure

2. 1 5 Examples Using the for Structure

2. 1 6 swi tch MulHple-SelecHon Structure

2. 1 7 do/whi le RepeHHon Structure

2. 1 8 break and cont inue Statements

2. 1 9 Logical Operators

2.20 Confusing Equality (= =) and Assignment (=) Operators

2.2 1 Structured-Programming Summary

2.22 (OpHonal Case Study) Thinking About Objects: IdenHfylng a

System's Classes from a Problem Statement

Summary • Terminology · Self-Review Exercises · Answers to Self-Review Exercises • Exercises

2. 1 I ntroduction

Before writing a program to solve a particular problem, it i s essential to have a thorough

understanding of the problem and a careful ly planned approach to solving the problem.

When writing a program, it i s equal ly essential to understand the types of bui lding blocks

that are avail able and to employ proven program-construction principles . This chapter dis

cusses all of these issues in our presentation of the theory and principles of structured pro

gramming. The techniques that you wi l l learn here are applicable to most high-level

languages, including C++. When we begin our treatment of object-oriented programming

72 Control Structures Chapter 2

in C++ in Chapter 6, we wi l l see that the control structures we study here in Chapter 2 are

helpful in bui lding and manipulating objects .

2.2 Algorithms

Any computing problem can be sol ved by executing a series of actions in a spec ific order.

A. procedure for solving a problem in terms of

I . the actions to execute and

2. the order in which these actions execute

is called an algorithm. The following example demonstrates that correctly specifying the

order in which the actions execute is important.

Consider the "ri se-and-shine algorithm" fol lowed by one j unior executive for getting

out of bed and going to work : (1) Get out of bed, (2) take off pajamas, (3) take a shower,

(4) get dressed, (5) eat breakfast, (6) carpool to work .

This routine gets the executive to work well prepared to make critical dec is ions. Sup

pose that the same steps are performed in a s l ightly different order: (I) Get out of bed, (2)

take off pajamas, (3) get dressed, (4) take a shower, (5) eat breakfast, (6) carpool to work.

In this case, our junior executive shows up for work soaking wet. Specifying the order

in which statements (actions) execute in a computer program is cal led program control.

This chapter investigates C++ ' s program-control capabi l i t ies .

2.3 Pseudocode

Pseudocode i s an artificial and informal language that helps programmers develop algo

rithms . The pseudocode we present here is particularly useful for developing algorithms

that wi l l be converted to structured portions of C++ programs. Pseudocode is s imi lar to

everyday Engl ish ; it is convenient and user friendly, although it is not an actual computer

programming language.

Pseudocode does not execute on computers. Rather, pseudocode helps the programmer

"think out" a program before attempting to write it in a programming language, such as

C++. This chapter provides several examples of how to use pseudocode effectively in

developing C++ programs.

The style of pseudocode we present consists purely of characters, so programmers can

type pseudocode conveniently, using any edi tor program . The computer can produce a

freshly printed copy of a pseudocode program on demand. A carefu l ly prepared
pseudocode program can easi ly be converted to a corresponding C++ program. In many

cases, th is requires simply replacing pseudocode statements with C++ equi valents.

Pseudocode normal ly describes only executable statements-the actions that occur

after a programmer converts a program from pseudocode to C++ and the program is run on

a computer. Declarations are not executable statements . For example, the declaration

int i ;

tel l s the compi ler variable i ' s type and instructs the compiler to reserve space in memory

for the variable. This dec laration does not cause any action-such as input, output or a cal

culation-to occur when the program executes. Some programmers choose to l i st variables

and mention their purposes at the beginning of the pseudocode representation of a program.

Cha pter 2 Control Structures 73

2.4 Control Structures

Normal ly , statements in a program execute one after the other in the order in which they

are written. This i s cal led sequential execution . Various C++ statements we will soon dis

cuss enable the programmer to specify that the next statement to execute may be other than

the next one in sequence. This i s called transfer of control.

During the 1 960s, it became c lear that the indiscriminate use of transfers of control was

the root of much difficu lty experienced by software-development groups . The finger of

blame was pointed at the goto statement, which al lows the programmer to specify a

transfer of control to one of a wide range of possible destinations in a program . The notion

of so-cal led structured programming became almost synonymous with "goto elimination ."

The research of Bohm and Jacopini I demonstrated that programs could be written

without any goto statements. The challenge of the era became for programmers to shift

their styles to "goto-Iess programming." It was not unti l the 1 970s that programmers

started taking structured programming seriously . The results have been impressive as soft

ware development groups have reported reduced development t imes, more frequent on

time delivery of systems and more frequent withi n-budget completion of software projects.

The key to these successes i s that structured programs are clearer, are easier to debug, test

and modify and are more l ikely to be bug-free in the fi rst place.

Bohm and Jacopin i ' s work demonstrated that all programs could be written in terms of

only three control structures, namely, the sequence structure, the selection structure and

the repetition structure . The sequence structure is built into C++. Unless directed other

wise, the computer executes C++ statements one after the other in the order in which they

are wri tten . The UML activity diagram of Fig. 2 . 1 i l l u strates a typical sequence structure

in which two calcu lations are performed in order. C++ al lows us to have as many actions

as we want in a sequence structure . As we will soon see, anywhere a single action may be

placed, we may place several actions in sequence.

Activity diagrams are part of the Un�fied Modeling Language (UML)-an industry

standard for mode l ing software systems. An activity diagram models the workflow (also

Fig. 2. 1

add g rade to total

add 1 to cou nter

Corresponding C++ statement:

total = total + grade ;

Corresponding C++ statement:

count er = count er + 1 ;

Sequence structu re activity d iagra m .

I . Bohm, C. and G . Jacopi ni , "Flow Diagrams, Turing Machines, and Languages with O n l y Two For
mation Rules," Communications of the ACM, Vol . 9, No. 5 , May 1 966, pp. 336-37 1 .

74 Control Structures Chapter 2

called the activity) of a portion of a software system. Such workflows may inc lude a portion

of an algorithm, such as the sequence structure in Fig. 2 . 1 . Activity diagrams are composed

of special-purpose symbols , such as action-state symbols (a rectangle with its left and right

sides replaced with arcs curving outward) , diamonds and small circles ; these symbols are

connected by transition arrows, which represent the flow of the activity.

Like pseudocode, activity diagrams help programmers develop and represent algo

rithms, although many programmers prefer pseudocode . Activity diagrams c learly show

how control structures operate .

Consider the activity diagram for the sequence structure in Fig. 2 . 1 . The activity dia

gram contains two action states that represent actions to perform. Each action state contains

an action expression--e.g . , "add grade to total" or "add 1 to counter"-that specifies a par

ticular action to perform. Other actions might include calculations or i nput/output opera

tions . The arrows in the activity diagram are called transition arrows. These arrows

represent transitions, which indicate the order i n which the actions represented by the

action states occur-the program that implements the activities i l lustrated by the activity

diagram in Fig. 2 . 1 first adds grade to total, then adds 1 to counter.

The solid circle located at the top of the activity diagram represents the activity ' s

initial state-the beginning o f the workflow before the program performs the modeled

activities. The solid circle surrounded by a hollow circle that appears at the bottom of the

activity diagram represents the final state-the end of the workflow after the program per

forms its activit ies .

Notice i n Fig. 2 . 1 the rectangles with the upper-right corners folded over. These are

cal led notes in the UML. Notes are explanatory remarks that describe the purpose of sym

bols i n the diagram. Notes can be used in any UML diagram-not just activity diagrams .

F ig . 2 . 1 uses UML notes to show the C++ code associated wi th each action state i n the

activity diagram. A dotted line connects each note with the element that the note describes .

Activity diagrams normal ly do not show the C++ code that implements the activity . We use

notes for this purpose here to i l l ustrate how the diagram relates to C++ code .

C++ provides three types of selection structures . The i f selection structure either per

forms (selects) an action if a condition (predicate) is true, or skips the action if the condition

i s fal se. The i f/el s e selection structure performs an action if a condition i s true, or per

forms a different action if the condition is fal se . The swi tch selection structure performs

one of many different actions, depending on the value of an integer expression.

The if selection structure i s a single-selection structure-it selects or ignores a s ingle

action . The i f/el s e selection structure i s a double-selection structure-it selects between
two different actions . The swi tch selection structure i s a multiple-selection structure-it

selects the action to perform from many different action states .

C++ provides three types of repetition structures (a l so cal l ed looping structures or

loops) , namely whi le, do/while and for. Each of the words if, e l se, swi tch,

whi le, do and for i s a C++ keyword. These words are reserved by the C++ programming

language to i mplement various features, such as C++ ' s control structures . Keywords must

not be used as identifiers, such as variable names. Figure 2 .2 contains a complete l i st of

C++ keywords.

Common Programming Error 2 . 1

Using a keyword a s a n identifier is a syntax error.

Chapter 2 Control Structu res

c++ Keywords

Keywords common to the C and C+ + programming languages

auto break

cont inue de fault

enum extern

i f int

short s i gned

switch typede f

volat i l e whi l e

C+ + only keywords

asm

delete

inline

private

bool

dynamic_cast

mutable

protected

static_cast template

try typeid

wchar_t

Fig. 2.2 C++ keywords .

case

do

f loat

long

s i zeof

union

catch

expl i c i t

name space

public

thi s

typename

Common Programming Error 2.2

char const

doubl e e l s e

for goto

register return

stat i c s t ruct

uns igned void

c l a s s const cast -

false friend

new operator

reinterpret_cast

throw t rue

us ing vi rtual

75

Spelling a keyword with an uppercase leller is a syntax error. A ll of C+ + 's reserved key
words contain only lowercase lellers.

c++ has only seven control structures : sequence, three types of selection (i f , i ff

e l s e and switch) and three types of repetition (whi le, for and do/while) . Each

C++ program combines as many of these contro l structures as is appropriate for the algo

rithm the program i mplements . As with the sequence structure of Fig. 2 . 1 , we can model

each control structure as an activity diagram. Each diagram contains an i nit ial state and a

final state, which represent a control structure ' s entry point and exit point, respectively .

These single-entrylsingle-exit control structures make i t easy to bu i ld programs-the con

trol structures are attached to one another by connecting the exit point of one control struc

ture to the entry point of the next. This i s s imi lar to the way a chi ld stacks building blocks,

so we cal l this control-structure stacking. We will learn short ly that there i s only one other

way to connect control structures--called control-structure nesting.

1

A ny C+ + program we will ever build can be constructed from only seven different types of
control structures (sequence, if, i f/else, swi tch, whi l e, do/whil e and for) com
bined in only two ways (control-structure stacking and control-structure nesting).

76 Control Structures Chapter 2

2.5 i f Selection Structure

Programs use selection structures to choose among alternative courses of action. For exam

ple, suppose the passing grade on an exam is 60. The pseudocode statement

If student 's grade is greater than or equal to 60
Print "Passed "

determines whether the condition "student ' s grade is greater than or equal to 60" is t rue

or false. If the condition i s true, then "Passed" i s printed and the next pseudocode state

ment in order i s "performed" (remember that pseudocode i s not a real programming lan

guage) . If the condition i s false, the print statement i s ignored and the next pseudocode

statement in order i s performed. Note that the second l ine of th is selection structure is in

dented. Such indentation is optional, but it is highly recommended because i t emphasizes

the inherent structure of structured programs. When you convert your pseudocode into C++

code, the C++ compiler ignores whitespace characters (l ike blanks, tabs and newlines)

used for indentation and vertical spacing.

Good Programming Practice 2. 1

Consistently applying reasonable indentation conventions throughout your programs great
ly improves program readability. We suggest a fixed-size lab of about /14 inch or three
blanks per indent.

The preceding pseudocode If statement can be wri tten in C++ as

if (grade > = 6 0)

cout « " Passed" ;

Notice that the C++ code corresponds closely to the pseudocode . This is one of the proper

t ies of pseudocode that makes i t such a useful program development tool .

Figure 2 .3 i l lustrates the single-selection i f structure. This activity diagram contains

what i s perhaps the most important symbol in an activity diagram-the diamond or decision

symbol, which indicates that a decision is to be made. A deci sion symbol indicates that the

workflow wi l l continue along a path determined by the symbol ' s associated guard condi

tions that can be true or fal se. Each transition arrow emerging from a decision symbol has a

guard condition (specified in square brackets above or next to the transition arrow) . If a par

ticular guard condition is true, the workflow enters the action state to which that transit ion

arrow points . In Fig. 2 .3 , if the grade is greater than or equal to 60, the program prints

"Passed" to the screen, then transitions to the final state of this activity. If the grade is less

than 60, the program immediately transitions to the final state without displaying a message.

We learned in Chapter I that deci sions can be based on conditions contain ing rela

tional or equal i ty operators. Actual ly , in C++, a deci sion can be based on any expression

if the expression evaluates to zero, i t is treated as fal se; if the expression eval uates to non

zero, i t i s treated as true . The C++ standard provides the data type bool for variables that

can hold only the values true and fal se. The values true and fal se are C++ key

words.

Portabil ity Tip 2 . 1

For compatibility with earlier versions of the C+ + standard, the bool value true also can
be represented by any nonzero value and the boo 1 value fal se also can be represented as
the value zero.

Chapter 2 Control Structu res 77

! [g ,ade > = 60J
print " Passed"

[grade < 60]

.�----------------�

Fig. 2.3 if s ing le-selection structure activity d iagra m .

Note that t h e i f structure i s a single-entry/single-exit structure. We w i l l see that the

act iv i ty diagrams for the remaining control structures also contain in it ial states , transit ion

arrows, action states that indicate actions to perform, decision symbols (with associated

guard conditions) that i ndicate decisions to be made and final states . This is consi stent with

the action/decision model of programming we have been emphasizing .

We can envision seven b ins , each contain ing on ly control structures of one of the seven

types. These control structures are empty. The programmer' s task, then, i s assembl ing a

program from as many of each type of control structure as the algori thm demands, com

bining those control structures in only two possible ways (stacking or nest ing) , then fi l l ing

in the action states and decisions with action expressions and guard condit ions i n a manner

appropriate for the algori th m . We will discuss the variety of ways in which actions and

decisions may be written .

2.6 i f/e l s e Selection Structu re

The i f selection structure performs an indicated action only when the condition is t rue ;

otherwise the action i s skipped. The i f/e l se selection structure al lows the programmer

to specify an action to perform when the condition is true and a different action to perform

when the condition is false . For example, the pseudocode statement

If student 's grade is greater than or equal to 60
Print "Passed "

else

Print "Failed "

prints Passed if the student ' s grade is greater than or equal to 60, but prints Failed if the

student ' s grade i s less than 60. In either case, after printing occurs, the next pseudocode
statement in sequence is "performed."

The preceding pseudocode IjIelse structure can be written in C++ as

i f (grade > = 6 0)

cout « " Passed" ;

e l s e

cout « " Fai led" ;

Note that the body of the e l se is also indented. Whatever indentation convention you
choose should be applied consi stently throughout your programs. I t is difficu l t to read pro
grams that do not obey uniform spacing conventions.

78 Control Structu res Chapter 2

� Good Programming Practice 2.2

� Indent both body statements of an i f/else structure.

� Good Programming Practice 2.3

If there are several levels of indentation, each level should be indented the same additional
amount of space.

Figure 2 .4 i l lustrates the flow of control in the i f/e l s e structure . Once again, note

that (besides the initial state, transition arrows and final state) the only other symbols in the

activity diagram represent action states and decisions. We continue to emphasize this

action/decision model of computing. Imagine again a deep bin containing as many empty

double-selection structures as might be needed to build any C++ program. The pro

grammer' s job is to assemble these selection structures (by stacking and nesting) with any

other control structures required by the algorithm. The programmer fil l s in the action states

and decision symbols with action expressions and guard conditions appropriate to the algo

rithm.

C++ provides the conditional operator (? :) , which is closely related to the i f/e l se

structure. The conditional operator i s C++ ' s only ternary operator-it takes three oper

ands . The operands, together with the conditional operator, form a conditional expression.

The first operand is a condition, the second operand i s the value for the entire conditional

expression if the condition is t rue and the third operand is the value for the entire condi

tional expression if the condition is false. For example, the output statement

cout « (grade >= 60 ? " Passed " : " Fa i l ed ") ;

contains a conditional expression, grade > = 6 0 ? " Pa s s ed " : " Fa i l ed " , that evalu

ates to the string " Passed " if the condition grade >= 60 is t rue, but evaluates to the

string " Fa i l ed " if the condition i s fal se. Thus, the statement with the conditional op

erator performs essential ly the same as the preceding i f/e l s e structure . As we wi l l see,

the precedence of the conditional operator is low, so the parentheses in the preceding ex

pression are required.

� Good Programming Practice 2.4

� For clarity, place conditional expressions in parentheses.

[grade < 60] [grade >= 60]

print " Fai led " print " Passed"

L-________________ ��.�------------------�

Fig. 2.4 i f/e l s e double-se lection structure activity d iagra m .

Chapter 2 Control Structures 79

The values in a conditional expression also can be actions to execute. For example, the

fol lowing conditional expression also prints " Pas sed " or " Fa i l ed " :

grade > = 6 0 ? cout « " Passed" : cout « " Fa i l e d " ;

The preceding conditional expression is read, "If grade i s greater than or equal to 6 0 , then
cout « " Pa s s ed " ; otherwise, cout « " Fa i l ed " ." This , too, is comparable to the

preceding i f/e l s e structure . We wi l l see that conditional expressions can appear in some

program locations where i f/el se statements cannot.

Nested i f/else structures test for multiple cases by placing i f/e l s e selection

structures inside i f/el s e selection structures . For example, the fol lowing pseudocode

i f/e l s e structure prints A for exam grades greater than or equal to 90, B for grades in the

range 80 to 89, C for grades in the range 70 to 79, D for grades in the range 60 to 69 and F

for al l other grades .

If student 's grade i s greater than or equal to 90
Print "A "

else

If student 's grade is greater than or equal to 80
Print "S "

else

If student 's grade is greater than or equal to 70
Print " e "

else

If student 's grade is greater than or equal to 60
Print "D "

else

Print "F "

Thi s pseudocode can be written in C++ as

i f (grade > = 9 0

cout « " A " ;

e l s e

i f (grade > = 8 0

cout « " B " ;

e l s e

i f (grade > = 7 0

cout « " e " ;
e l se

i f (grade > = 6 0

cout « " 0 " ;

I I 9 0 and above

I I 8 0 - 8 9

I I 7 0 - 7 9

I I 6 0 - 6 9

e l s e I I l e s s than 6 0
cout « " F " ;

If grade i s greater than or equal to 90, the first four conditions w i l l be t rue, but only the
cout statement after the first test wi l l execute. After that cout executes, the program

skips the e l se-part of the "outer" i f/e l s e structure . Many C++ programmers prefer to

write the preceding i f/e l s e structure as

80 Control Structures Chapter 2

i f (grade > = 9 0) I I 9 0 and above
cout « " A ll i

e l s e i f (grade > = 8 0 / I 8 0 - 8 9
cout « " B II ;

e l s e i f (grade > = 7 0 / I 7 0 - 7 9
cout « tl C II ;

e l s e i f (grade > = 6 0 1 / 6 0 - 6 9
cout « li D " ;

e l s e 1 / less than 6 0
cout « " F " ;

The two forms are identical except for the spacing and indentation, which the compiler ig
nores. The latter form is popular because it avoids deep indentation of the code to the right.
Such indentation often leaves l i ttle room on a l ine, forc ing l ines to be split and decreasing
program readabi l i ty .

Performance Tip 2. 1

A nested i f/else structure can pelfonn much faster than a series of single-selection i f
structures because of the possibility of early exit after one of the conditions is satisfied.

Performance Tip 2.2

In a nested i f/else structure, test the conditions that are more likely to be true at the be

ginning of the nested i f/else structure. This will enable the nested i f/else structure to
run faster and exit earlier than will testing infrequently occurring cases first.

The i f selection structure expects only one statement in its body. S i mi larly, the i f

and e l s e parts of an i f/e l s e structure each expect only one body statement. To include

several statements in the body of an if or either part of an i f/el s e , enclose the state

ments in braces ({ and }) . A set of statements contained within a pair of braces is cal led a

compound statement or a block. We use the term "block" from this point forward .

Software Engineering Observation

A block can be placed anywhere in a program that a single statement can be placed.

The fol lowing example incl udes a block in the e l s e part of an i f/e l s e structure .

i f (grade > = 6 0)

cout « " Passed . \ n " ;

e l s e {

cout « " Fa i l ed . \ n " ;

cout « " You must take thi s course again . \n " ;

In thi s case, if grade is less than 60, the program executes both statements in the body of

the e l s e and prints

Fai led .

You must take thi s course again .

Notice the braces surrounding the two statements in the e l s e clause. These braces are im

portant . Without the braces, the statement

cout « " You must take thi s course again . \ n " ;

Chapter 2 Control Structures 8 1

would be outside the body of the e l s e part of the i f and would execute regardless of

whether the grade i s less than 60.

Common Programming Error 2.3

Forgetting one or bOlh of the braces that delimit a block can lead to syntax errors or logic
errors in a program. � Good Progra m m i ng Practice 2.5

Always putting the braces in an if/else structure (or any control structure) helps prevel11
their accidental omission, especially when adding statements to an if or else clause at a

later time. To avoid omitting one or both of the braces, some programmers prefer to type the
beginning and ending braces of blocks before typing the individual statements within the
braces.

Just as a block can be placed anywhere a s ingle statement can be p laced, i t is also pos

sible to have no statement at al l-called an empty statement (or a n ull statement) . The

empty statement i s represented by placing a semicolon (;) where a statement would nor

mal ly be.

Common Programming Error 2.4

Placing a semicolon after the condition in an if structure leads to a logic error in single
selection i f structures and a syntax error in double-selection i f/else structures (when the
if part contains an actual body statement).

2 . 7 whi l e Repetition Structure

A repetition structure (also cal led a looping structure or a loop) allows the programmer to

specify that a program should repeat an action whi le some condit ion remains true . The

pseudocode statement

While there are more items on my shopping list

Purchase next item and cross it off my list

describes the repetit ion that occurs during a shopping trip . The condit ion, "there are more

items on my shopping l i st" is e ither true or fal se. If it is true, then the act ion, "Purchase next

item and cross i t off my l i st" is performed. This action wi l l be performed repeatedly whi le

the condition remains true . The statement contai ned in the whi l e repet i t ion structure con

stitutes the body of the whi le, which can be a s ingle statement or a block. Eventual ly , the

condition w i l l become false (when the last item on the shopping l i st has been purchased and

crossed off the l i sq . At th is point, the repetit ion terminates, and the fi rst pseudocode state

ment after the repet it ion structure executes .
As an example of an actual whi le, consider a program segment designed to find the

fi rst power of 2 larger than 1 000. Suppose the integer variable product has been i ni t ial
ized to 2 . When the fol lowing whi le repetit ion structure fin i shes execut ing, product
wil l contain the desired answer:

int product = 2 ;

whi l e (product < = 1 0 0 0)

product = 2 * product ;

82 Control Structures Chapter 2

When the whi le structure begins execution, the value of product i s 2 . Each repe

tit ion of the whi le structure multiplies product by 2, so product takes on the values 4,

8, 1 6, 32 , 64, 1 28 , 256, 5 1 2 and 1 024 successively. When product becomes 1 024, the

whi l e structure condition, product <= 1 0 0 0 , becomes false. This terminates the

repetition-the final value of product i s 1 024. Program execution continues with the

next statement after the whi le.

Common Programming Error 2.5

Not providing, in the body of a while structure, an action that eventually causes the con
dition in the while to becomefalse normally results in a logic error called an infinite loop,

in which the repetition structure never terminates.

The activity diagram of Fig. 2 .5 i l lustrates the flow of control that corresponds to the

preceding whi l e structure. Once again , note that (besides the init ial state , transition

arrows, a final state and two notes) the only other symbols in the diagram represent an

action state and a decis ion. Thi s diagram also i ntroduces the UML ' s merge symbol. The

UML represents both the merge symbol and the decision symbol as diamonds. The merge

symbol joins two flows of activity into one flow of activity. In this diagram, the merge

symbol joins the transitions from the initial state and from the action state, so they both flow

into the decision that determi nes whether the loop should begi n executing (or continue exe

cuting) . Although the UML represents decision and merge symbols with the diamond

shape, the symbols can be distinguished by the number of " incoming" and "outgoing" tran

sition arrows. A dec ision symbol has one transition arrow pointing to the diamond and two

trans ition arrows pointing out from the diamond to indicate possible transitions from that

point. In addition, each transition arrow pointing out of a decision symbol has a guard con

dition next to it . A merge symbol has two transition arrows pointing to the diamond and

only one transition arrow pointing from the diamond, to indicate multiple activity flows

merging to continue the activity. Note that, unl ike the decision symbol , the merge symbol

does not have a counterpart i n C++ code .

I mergeJ - - _ _ _

L
decision

[product >

[product < = 1 0 0 0]
double product value

Corresponding C++ statement:

product = 2 * product

Fig. 2.5 whi l e repetition structure activity d iagra m .

Chapter 2 Control Structu res 83

Imagine a deep bin of empty whi l e structures that can be stacked and nested with

other control structures to form a structured implementation of an algorithm' s flow of con

tro l . The programmer fi l l s in the action states and decision symbols with action expressions

and guard conditions appropriate to the algorithm. The diagram clearly shows the repeti

tion. The transition arrow emerging from the action state points to the merge, which tran

sitions back to the deci sion that i s tested each time through the loop unt i l the guard

condition product > 1 0 0 0 becomes true. Then, the whi l e structure exits (reaches its

final state) and control passes to the next statement in the program .

2.8 Formulating Algorithms: Case Study 1 (Counter-Controlled
Repetition)

To i l lustrate how programmers develop algorithms, this section and Section 2.9 solve two

variations of a c lass-averaging problem . Consider the fol lowing problem statement :

A class of ten students LOok a quiz. The grades (integers in the range a LO 100) for this quiz
are available /0 you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The

algorithm for solving this problem on a computer must input each of the grades , calcu late

the average and print the result .

Let us use pseudocode to l i s t the actions to execute and spec ify the order in which these

actions should execute. We use counter-controlled repetition to input the grades one at a

t ime. This technique uses a variable called a counter to control the number of t imes a

group of statements wi l l execute (also known as the number of iterations of the loop) .

Counter-control led repetition i s often called definite repetition because the number of

repetit ions is known before the loop begins executing. In this example , repetition termi

nates when the counter exceeds 1 0 . This section presents a pseudocode algorithm (Fig . 2 .6)

and the corresponding C++ program (Fig. 2 .7) . The next section shows how to use pseu

docode to develop an algorithm.

Note the references in the algorithm to a total and a counter. A total i s a variable used

to accumulate the sum of a series of values. A counter i s a variable used to count-in this

case, to count the number of grades entered. A variable used to store a total should normal l y

Set total to zero

Set grade counter to one

While grade counter is less than or equal to ten

input the next grade

Add the grade into the total

Add one to the grade counter J

Set the class average to the total divided by ten

Print the class average

Fig. 2.6 C lass-average problem pseudocode a lgorith m that uses c o u nter
contro l led repetitio n ,

84 Control Structures Chapter 2

be i nitial ized to zero before being used in a program; otherwise, the sum would include the

previous value stored in the total ' s memory location.

1

2

3

4

5

6

7

8

9

I I Fig . 2 . 7 : fig02_0 7 . cpp

I I C l a s s average program with counter-cont ro l l ed repet i t i on .

inc lude < iostream>

us ing std : : cout ;

us ing std : : c in;

us ing std : : endl ;

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20

2 1

22

23

24

25

26

27

28

29

30

3 1

32

33

34

35

36

37

I I funct ion main begins program execut ion

int main ()

{

int total ; I I sum of grades input by user

int gradeCounte r ;

int grade ;

I I number of grade to be entered next

I I grade value

int average ; I I average of grades

I I ini t i a l i zat ion phase

total = 0 ; / / ini t i a l i z e total

gradeCounter = 1 ; I I ini t i a l i z e loop counter

1 / proc e s s ing phase

whi l e (gradeCounter < = 10)

cout « " Enter grade : " ;

c i n » grade ;

}

total = total + grade ;

gradeCounter = gradeCounter + 1 ;

I I terminat ion phase

average = total / 1 0 ;

I I di splay result

/ / loop 10 t imes

1 / prompt for input

1 / read grade f rom user

/ / add grade to total

/ / increment counter

/1 integer divi s i on

cout « " Class average i s " « average « endl ;

return 0 ; 1 / indicate program ended succe s s fu l ly

} / 1 end funct ion main

Enter grade : 9 8

Enter grade : 7 6

Enter grade : 7 1

Enter grade : 8 7

Enter grade : 8 3

Enter grade : 9 0

Enter grade : 5 7

Enter grade : 7 9

Enter grade : 8 2

Enter grade : 9 4

C l a s s average i s 8 1

F ig. 2 . 7 C lass-average problem with cou nter-contro l led repetition .

Chapter 2 Control Structures 85

Lines 1 2- 1 5

int total ; I I sum of grades input by user

int gradeCounte r ; I I number of grades ent ered

int grade ; I I grade value

int average ; I I average of grade s

declare variables total, gradeCounter, grade and average to be of type int o

Notice that the preceding declarations appear in the body of function main. Variables

declared in a function definit ion ' s body are local variables and can be used only from the

l ine of their declaration in the function to the closing right brace (}) of the function defini

t ion . The declaration of a local variable in a function must appear before the variable i s used

in that function.

Lines 1 8- 1 9

I I c l ear total total = 0 ;

gradeCounter = 1 ; I I ini t i a l i ze loop counte r

are assignment statements that init ial ize total to 0 and gradeCounter to 1 .
Note that variables total and gradeCounter are init ial ized before they are used

in a calculation. Counter variables normal ly are init ial ized to zero or one, depending on

their use (we wi l l present examples showing each of these uses) . An uninit ial ized variable

contains a "garbage " value (also called an undefined value)-the value last stored in the

memory location reserved for that variable .

Common Programming Error 2.6

If a counter or total i s not in itialized, the results of your program probably will be incorrect.
This is an example of a logic error. Most variables in itially contain garbage values.

�.

Initialize counlers and tOlals.

Good Programming Practice 2.6 � Declare each variable on a separate line to make programs more readable.

Line 22

whi l e (gradeCounter < = 1 0) { I I loop 1 0 t ime s

indicates that the whi l e structure should continue as long as gradeCounter' s value i s

l e ss than or equal to 1 0 .
Lines 23-24

cout « " Enter grade : " ;

c i n » grade ;

I I prompt for input

I I read grade from user

correspond to the pseudocode statement "Input the next grade. " The first statement dis

plays the prompt "Enter grade : " on the screen . The second statement inputs the grade

value from the user. Variable grade was not initial ized earl ier in the program, because the

program obtains the value for grade from the user during each iteration of the loop .

86 Control Structures Chapter 2

Next, the program updates total with the new grade entered by the user. Line 25

total = total + grade ; I I add grade to total

adds grade to the previous value of total and assigns the result to total .

The program now i s ready to i ncrement the variable gradeCounter to prepare to

process the next grade, then read the next grade from the user. Line 26

gradeCounter = gradeCounter + 1 ; I I increment counter

adds 1 to gradeCounter, so the condition in the whi l e structure eventual ly wi l l be

come fal se and terminate the loop.

When the loop terminates, l ine 30

average = total I 1 0 ; I I integer divi s ion

assigns the results of the average calculation to variable average. Line 33

cout « "Class average is " « average « endl ;

displays the string " Class average i s " fol lowed by the value of variable average.

Note that the averaging calculation in the program produced an i nteger result . Actu

ally, the sum of the grades i n this example i s 8 1 7 , which, when divided by I 0, should yield

8 1 . 7-a number with a dec imal point. We wi l l see how to deal with such numbers (cal l ed

floating-point numbers) in the next section.

In Fig. 2 .7, if l ine 30 used gradeCounter rather than 1 0 for the calculation, the

output for this program would display an incorrect value, 74. [lJ Common Programming Error 2.7

Using a loop 's counter-control variable in a calculation after the loop often causes an off
by-one-error. In a counter-controlled loop that counts up by one each time through the loop,
the loop terminates when the counter-control variable 's value is one higher than its last le-
gitimate value (i .e . , 1 1 in the case of counting from 1 to 1 0).

2.9 Formulating Algorithms with Top- Down , Stepwise
Refinement: Case Study 2 (Sentinel -Controlled Repetition)

Let us generalize the class-average problem. Consider the fol lowing problem:

Develop a class-averaging program that will process an arbitrary number of grades each
time the program is run.

In the first class-average example, the problem statement specified the number of grades

(1 0) in advance . In thi s example, no indication is given of how many grades the user wi l l

enter during the program' s execution. The program must process an arbi trary number of

grades. How can the program determine when to stop the input of grades? How wi l l it know

when to calculate and print the class average?

One way to solve thi s problem is to use a special value cal led a sentinel value (also

called a signal value, a dummy value or a jZag value) to indicate "end of data entry ." The

user types grades in until all legitimate grades have been entered . The user then types the

sentinel value to indicate that the last grade has been entered. Sentinel -control led repetition

i s often called indefin ite repetition because the number of repetitions i s not known before

the loop begins executing.

Chapter 2 Control Structu res 87

Clearly, the sentinel value must be chosen so that it cannot be confused with an accept

able input value. Grades on a quiz are normally nonnegative i ntegers, so - 1 i s an acceptable

sentinel value for th i s problem. Thus, a run of the class-average program might process a

stream of i nputs such as 95, 96, 75 , 74, 89 and - I . The program would then compute and

print the c lass average for the grades 95, 96, 75, 74 and 89. Note that -1 i s the sentine l

value, so i t should not enter into the averaging calculation.

Common Programming Error 2.8

Choosing a sentinel value that i s also a legitimate data value i s a logic error.

We approach the c lass-average program with a technique called top-down, stepwise

refinement, a technique that is essential to the development of well -structured programs.

We begin with a pseudocode representation of the top:

Determine the class average for the quiz

The top i s a single statement that conveys the overal l function of the program. As such, the

top is, i n effect, a complete representation of a program. Unfortunately , the top (as in thi s

case) rarely conveys a sufficient amount o f detai l from which t o write the C++ program. S o

w e now begin the refinement process. W e divide the top into a series o f smaller tasks and

l i st these in the order in which they need to be performed. This results in the fol l owingfirst

refinement.

Initialize variables

Input. sum and count the quiz grades

Calculate and print the class average

This refinement uses only the sequence structure-the steps l i sted should execute in order,

one after the other.

Software Engineering Observation 2.3

Each refinement. as well as the top itself, i s a complete specification of the algorithm; only
the level of detail varies.

Software Engineerin g Observatio n 2.4

Many programs can be divided logically into three phases: an initialization phase that ini

tializes the program variables; a processing phase that inputs data values and adjusts pro

gram variables accordingly; and a termination phase that calculates and prints the final
results.

The preceding Software Engineering Observation is often all you need for the first
refinement in the top-down process . To proceed to the next level of refinement, i . e . , the

second refinement, we commit to specific variables. In this example, we need a running

total of the numbers, a count of how many numbers have been processed, a variable to

receive the value of each grade as it i s i nput by the user and a variable to hold the calculated

average . The pseudocode statement

Initialize variables

can be refined as fol lows:

Initialize total to zero

Initialize counter to zero

88 Control Structures Chapter 2

Notice that only the variables total and counter need to be in i t ia l ized before they are used;

the variables a verage and grade (for the calculated average and the user input, respect ively)

need not be in i t ia l ized, because their values wi l l be replaced as they are calcu lated or input .

The pseudocode statement

Input, sum and count the quiz grades

requires a repetition structure (i .e . , a loop) that successively inputs each grade. We do not

know in advance how many grades are to be processed, so we wi l l use sentinel -control led

repetition . The user enters legit imate grades one at a t ime. After entering the last legit imate

grade, the user enters the sentinel value. The program tests for the sentinel value after each

grade is i nput and terminates the loop when the user enters the sentinel value . The second

refinement of the preceding pseudocode statement i s then

Input the first grade (possibly the sentinel)

While the user has not yet entered the sentinel

Add this grade into the running total

Add one to the grade counter

Input the next grade (possibly the sentinel)

Notice that, in pseudocode, we do not use braces around the set of statements that form the

body of the while structure . We s imply indent the statements under the while to show that

they belong to the while. Again , pseudocode is only an informal program-development aid.

The pseudocode statement

Calculate and print the class average

can be refined as fol lows :

If the counter is not equal to zero

else

Set the average to the total divided by the counter

Print the average

Print "No grades were entered "

Notice that we are being careful here to test for the possib i l ity of d iv i sion by zero-normal

ly a fatal logic error that, i f undetected, would cause the program to fai l (often cal led

"bombing " or " crashing ") . The complete second refinement of the pseudocode for the

c lass-average problem is shown in Fig. 2 . 8 .

Common Programming Error 2.9

An attempt to divide by zero normally causes afatal error.

-

When pelforming division by an expression whose value could be zero, explicitly lest for this
possibility and handle it appropriately in your program (such as by printing an error mes
sage) rather than allowing the fatal error 10 occur.

In Fig . 2 .6 and Fig. 2 . 8 , we i nclude some completely blank l i nes and i ndentation i n the

pseudocode to make the pseudocode more readable. The blank l i nes separate the

pseudocode algorithms into their various phases and the indentation emphasizes the bodies

of the control structures.

Chapter 2

In itialize total to zero

Initialize counter to zero

Input the first grade (possibly the sentinel)

While the user has not yet entered the sentinel

Add this grade into the running total

Add one to the grade counter

Input the next grade (possibly the sentinel)

If the counter is not equal to zero

else

Set the average to the total divided by the counter

Print the average

Print "No grades were entered "

Control Structu res 89

Fig. 2.8 C lass-average problem pseudocode a lgorithm with senti n e l-contro l led
repetitio n .

The pseudocode algorithm in F ig . 2 . 8 solves the more general c lass-averaging

problem. This algorithm was developed after only two leve ls of refinement. Sometimes

more leve ls are necessary .

Software E r g

Terminate the top-down, stepwise refinement process when the pseudocode algorithm is
specified in sufficient detail to be able to convert the pseudocode to C+ +. Normally, imple
menting the C+ + program is then straightforward.

Figure 2 .9 shows the C++ program and a sample execution . Although only integer

grades are entered, the averaging calculation i s l i kely to produce a number with a dec imal

point-a real number. The type int cannot represent real numbers . This program intro

duces the data type doubl e to handle numbers with deci mal points (also called floating

point numbers) and introduces a spec ial operator cal led a cast operator to force the aver

aging calculation to produce a floating-point numeric result . These features are explained

in detai l after the program is presented.

1 I I Fig . 2 . 9 : f ig02_0 9 . cpp

2 I I C l a s s average program with sent ine l - control led repe t i t i on .

3 # inc lude < iostream>

4
5 us ing std : : cout ;

6 us ing s td : : cin;

7 using std : : endl ;

8 us ing s td : : f ixed ;

Fig. 2.9 C lass-average problem with senti nel-contro l led repetiti o n . (Part 1 of 3 .)

90

9

1 0

1 1

1 2

1 3

1 4

\ 5

1 6

1 7

1 8

1 9

20

2 1

22

23

24

25

26

2 7

28

29

30

3 1

32

33

34

35

36

37

38

39

40

4 1

42

43

44

45

46

47

48

49

50

5 1

52

53

54

55

56

57

58

59

60

Control Structu res Chapter 2

#inc l ude < iomanip> / / parameter i z ed s t ream manipu lators

us ing s td : : setprec i s ion ; // s e t s numeric output prec i s ion

/ / funct ion main begins program execut ion

int main ()

{
int total ; / / sum of grades

int gradeCounter;

int grade ;

/ / number of grades entered

/ / grade value

double average ; / / number with dec imal point for average

/ / ini t i a l i z at ion phase

total = 0 ; / / init ial i z e total

gradeCounter = 0 ; / / init ial i z e loop counter

/ / proc e s s ing phase

// get f irst grade from user

cout « " Enter grade , -1 to end : " ;

cin » grade ;

/ / prompt for input

/ / read grade f rom user

/ / loop unt i l sent inel value read f rom user

whi l e (grade 1 = -1) {

total = total + grade ; / / add grade to total

gradeCounter = gradeCounter + 1 ; / / increment counter

cout « " Enter grade , -1 to end : " ;

c in » grade ;

} / / end whi l e

/ / terminat i on phas e

// prompt f o r input

/ / read next grade

/ / i f user entered at least one grade • • •

i f (gradeCounter 1 = 0) {

/ / calculate average of all grades entered

average = stat i c_cast < double > (total) / gradeCounte r ;

/ 1 di splay average with two digi t s of prec i s ion

cout « " Class average i s " « setprec i s ion (2)

« f ixed « average « endl ;

} / / end i f part of i f / el se

else I I if no grades were entered , output appropriate mes sage

cout « " No grades were entered " « endl ;

return 0 ; I I indi cate program ended succ e s s fu l ly

} I I end funct ion main

Fig. 2.9 C lass-average problem with senti nel-contro l led repetition . (Pa rt 2 of 3 .)

Chapter 2 Control Structures 91

Enter grade, - 1 to end: 75

Enter grade, - 1 to end: 94
Enter grade, - 1 to end: 97

Enter grade, - 1 to end: 88

Enter grade, - 1 to end: 70

Enter grade, - 1 to end: 64
Enter grade, - 1 to end: 83

Enter grade, - 1 to end: 89

Enter grade, - 1 to end: -1

Class average is 82.50

Fig. 2.9 Class-average problem with sentinel-controlled repetition. (Part 3 of 3.)

In this example, we see that control structures can be stacked on top of one another (in

sequence) just as a child stacks building blocks. The while structure (lines 33-40) is

immediately followed by an if/else structure (lines 44-56) in sequence. Much of the

code in this program is identical to the code in Fig. 2.7, so we concentrate on the new fea

tures and issues.

Line 21 declares the double variable average. This change allows us to store the

class-average calculation's result as a floating-point number. Line 25 initializes the vari

able gradeCounter to 0, because no grades have been entered yet. Remember that this

program uses sentinel-controlled repetition. To keep an accurate record of the number of

grades entered, the program increments variable gradeCounter only when the user

enters a valid grade value (i.e., not the sentinel value) and the program completes the pro

cessing of the grade.

Notice that both input statements (lines 30 and 38) are preceded by an output statement

that prompts the user for input.

� Good Programming Practice 2.7

Prompt the user for each keyboard input. The prompt should indicate the form of the input

and any special input values. For example, in a sentinel-controlled loop, the prompts re

questing data entry should remind the user explicitly what the sentinel value is.

Compare the program logic for sentinel-controlled repetition in Fig. 2.9 with that of

counter-controlled repetition in Fig. 2.7. In counter-controlled repetition, we read a value

from the user during each pass of the while structure for the specified number of passes.

In sentinel-controlled repetition, we read one value (line 30) before the program reaches the

while structure. This value is used to determine whether the program's flow of control

should enter the body of the while structure. If the while structure condition is false

(i.e., the user typed the sentinel), the body of the while structure does not execute (no

grades were entered). If, on the other hand, the condition is true, the body begins execu

tion and processes the value entered by the user (i.e., adds that value to the total in this

example). After the value is processed, the next value is input from the user before the end

of the while structure's body. As the closing right brace (}) of the body is reached at line

41 , execution continues with the next test of the while structure condition, using the new

value just entered by the user to determine whether the while structure's body should exe

cute again. Notice that the next value always is input from the user immediately before the

92 Control Structures Chapter 2

while structure condition is evaluated. This allows us to determine whether the value just

entered by the user is the sentinel value before that value is processed (i.e., added to the

total). If the value entered is the sentinel value, the while structure terminates and the

value is not added to the total

Notice the block in the while loop in Fig. 2.9. Without the braces, the last three state

ments in the body of the loop would fall outside the loop, causing the computer to interpret

this code incorrectly, as follows:

while (grade != -1

total = total + grade;

gradeCounter = gradeCounter + 1;

cout « "Enter grade, - 1 to end: ";

cin » grade;

This would cause an infinite loop if the user does not input -1 for the first grade.

Averages do not always evaluate to integer values. Often, an average is a value that

contains a fractional part, such as 7.2 or -93.541. These values are referred to as f1oating

point numbers and are represented in C++ by data types such as float and double. A

variable of type double can store a value of much greater magnitude and with greater pre

cision than float. For this reason, we tend to use type double rather than type float

to represent floating-point values in our programs. Floating-point constants, such as

1000.0 and. 05, are treated as type double by C++.

The variable average is declared to be of type double (line 21) to capture the frac

tional result of our calculation. However, because total and gradeCounter are both

integer variables, the result of the calculation total / gradeCounter is an integer.

Dividing two integers results in integer division, in which any fractional part of the calcu

lation is lost (i.e., truncated). In the following statement:

average = total / gradeCounter;

the division calculation is performed first, so the fractional part of the result is lost before

it is assigned to average. To produce a floating-point calculation with integer values, we

must create temporary values that are floating-point numbers for the calculation. C++ pro

vides the unary cast operator to accomplish this task. Line 47 uses the cast operator

static_cast< double > (operand) to create a temporary floating-point copy of its

operand in parentheses-total. Using a cast operator in this manner is called explicit

conversion. The value stored in variable total is still an integer. The calculation now con

sists of a floating-point value (the temporary double version of total) divided by the

integer gradeCounter.

The C++ compiler knows how to evaluate only expressions in which the data types of

the operands are identical. To ensure that the operands are of the same type, the compiler

performs an operation called promotion (also called implicit conversion) on selected oper

ands. For example, in an expression containing values of data types int and double,

C++ promotes int operands to double values. In our example, after gradeCounter

is promoted to double, the calculation is performed and the result of the floating-point

division is assigned to average. Later in this chapter, we discuss all the standard data

types and their order of promotion.

Cast operators are available for any data type. The static_cast operator is formed

by following keyword static_cast with angle brackets « and» around a data type

Chapter 2 Control Structures 93

name. The cast operator is a unary operator-an operator that takes only one operand. In

Chapter l , we studied the binary arithmetic operators. C++ also supports unary versions of

the plus (+) and minus (-) operators, so that the programmer can write such expressions as

- 7 or +5. Cast operators have higher precedence than other unary operators, such as unary

+ and unary -. This precedence is higher than that of the multiplicative operators *, / and

%, and lower than that of parentheses. We indicate the cast operator with the notation

st atic_cast< type> () in our precedence charts.

The formatting capabilities in Fig. 2.9 are discussed here briefly and explained in

depth in Chapter 12. The call setprecision (2) in line 50 indicates that double

variable average should be printed with two digits of precision to the right of the decimal

point (e.g., 92.37). This call is referred to as a parameterized stream manipulator. Programs

that use these calls must contain the preprocessor directive (line 10)

#include <iomanip>

Line 12 specifies that the program uses the name setprecision from the <iomanip>

header fi Ie. Note that endl is a nonparameterized stream manipulator and does not require

the < iomanip> header file. If the precision is not specified, floating-point values are nor

mally output with six digits of precision (i.e., the default precision), although we will see

an exception to this in a moment.

The stream manipulator fixed (line 51) indicates that floating-point values should be

output in so-calledjixed-point format (as opposed to scientific notation, which we will dis

cuss in Chapter 12). Specifying fixed-point formatting also forces the decimal point and

trailing zeros to print, even if the value is a whole number amount, such as 88.00. Without

the fixed-point formatting option, such a value prints in C++ as 88 without the trailing zeros

and without the decimal point. When the preceding formatting is used in a program, the

printed value is rounded to the indicated number of decimal positions, although the value

in memory remains unaltered. For example, the values 87.946 and 67.543 are output as

87.95 and 67.54, respectively. Note that it also is possible to force a decimal point to appear

by using stream-manipulator showpoint. If showpoint is specified without fixed, then

trailing zeros will not print. Like endl, stream manipulators fixed and showpoint are

nonparameterized stream manipulators that do not require the <iomanip> header file.

Both can be found in header <iostream>.

Common Programming Error 2.10

Using floating-point numbers in a manner that assumes they are represented exactly can

lead to incorrect results. Floating-point numbers are represented only approximately by

most computers.

Despite the fact that floating-point numbers are not always" 100% precise," they have

numerous applications. For example, when we speak of a "normal" body temperature of

98.6 we do not need to be precise to a large number of digits. When we view the tempera

ture on a thermometer and read it as 98.6, it may actually be 98.5999473210643. The point

here is that calling this number simply 98.6 is fine for most applications.

Another way floating-point numbers develop is through division. When we divide 10

by 3, the result is 3.3333333 . . . with the sequence of 3s repeating infinitely. The computer

allocates a fixed amount of space to hold such a value, so clearly the stored floating-point

value can only be an approximation.

94 Control Structures Chapter 2

2.10 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 3 (Nested Control Structures)

Let us work another complete problem. We will once again formulate the algorithm by us

ing pseudocode and top-down, stepwise refinement and write a corresponding C++ pro

gram. We have seen that control structures can be stacked on top of one another (in

sequence) just as a child stacks building blocks. In this case study, we will see the only oth

er structured way control structures can be connected in C++, namely, by nesting of one

control structure within another.

Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real estate

brokers. Last year, several of the students who completed this course took the licensing

examination. Naturally, the college wants to know how well its students did on the exam. You

have been asked to write a program to summarize the results. You have been given a list of

these 10 students. Next to each name is written a J if the student passed the exam or a 2 if

the student failed.

Your program should analyze the results of the exam as follows:

I. Input each test result (i. e. , a J or a 2). Display the message "Enter result" on the

screen each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who passed

and the number of students who failed.

4. If more than 8 students passed the exam, print the message "Raise tuition. "

After reading the problem statement carefully, we make the following observations

about the problem:

l . The program must process test results for 10 students. A counter-controlled loop

will be used.

2. Each test result is a number-either a 1 or a 2. Each time the program reads a test

result, the program must determine whether the number is a 1 or a 2. We test for

a 1 in our algorithm. If the number is not a 1, we assume that it is a 2.

(Exercise 2.23 considers the consequences of this assumption.)

3. Two counters are used to keep track of the exam results-one to count the number

of students who passed the exam and one to count the number of students who

failed the exam.

4. After the program has processed all the results, it must decide if more than eight

students passed the exam.

Let us proceed with top-down, stepwise refinement. We begin with a pseudocode rep

resentation of the top:

Analyze exam results and decide if tuition should be raised

Once again, it is important to emphasize that the top is a complete representation of the pro

gram, but several refinements are likely to be needed before the pseudocode can be evolved

naturally into a C++ program.

Chapter 2

Our first refinement is

Initialize variabLes

Input the ten quiz grades and count passes and faiLures

Control Structures

Print a summary of the exam resuLts and decide if tuition shouLd be raised

95

Here, too, even though we have a complete representation of the entire program, further re

finement is necessary. We now commit to specific variables. Counters are needed to record

the passes and failures, a counter will be used to control the looping process and a variable

is needed to store the user input. The variable in which the user input will be stored is not

initialized, because its value is read from the user during each iteration of the loop.

The pseudocode statement

InitiaLize variables

can be refined as follows:

InitiaLize passes to zero

Initialize faiLures to zero

Initialize student counter to one

Notice that only the counters are initialized.

The pseudocode statement

Input the ten quiz grades and count passes and faiLures

requires a loop that successively inputs the result of each exam. Here it is known in advance

that there are precisely ten exam results, so counter-controlled looping is appropriate. In

side the loop (i.e., nested within the loop), a double-selection structure will determine

whether each exam result is a pass or a failure and will increment the appropriate counter.

The refinement of the preceding pseudocode statement is then

While student counter is less than or equaL to ten

Input the next exam result

If the student passed

Add one to passes

eLse

Add one to failures

Add one to student counter

Notice the use of blank lines to set off the If/eLse control structure to improve program read

ability.

The pseudocode statement

Print a summary of the exam results and decide if tuition shouLd be raised

can be refined as follows:

Print the number of passes

Print the number offaiLures

If more than eight students passed

Print "Raise tuition"

96 Control Structures Chapter 2

The complete second refinement appears in Fig. 2.10. Notice that blank lines are also

used to set off the While structure for program readability.

This pseudocode is now sufficiently refined for conversion to C++. The C++ program

and two sample executions are shown in Fig. 2.11.

Lines 13-16 declare the variables used in main to process the examination results.

Note that we have taken advantage of a feature of C++ that allows variable initialization to

be incorporated into declarations (passes is assigned 0, failures is assigned 0 and

studentCounter is assigned 1). Looping programs sometimes require initialization at

the beginning of each repetition; such initialization normally would occur in assignment

statements.

Initialize passes to zero

Initialize failures to zero

Initialize student counter to one

While student counter is less than or equal to ten

Input the next exam result

If the student passed

Add one to passes

else

Add one to failures

Add one to student counter

Print the number of passes

Print the number offailures

If more than eight students passed

Print" Raise tuition"

Fig. 2.10 Examination-results problem pseudocode algorithm.

1 II Fig. 2.1 1: fig02_1 1.cpp

2 II Analysis of examination results.

3 #include <iostream>

4
5 using std::cout;

6 using std::cin;

7 using std::endl;

8

Fig. 2.11 Nested control structures: Examination-results problem. (Part 1 of 3.)

Chapter 2 Control Structures 97

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

II function main begins program execution

int main ()

{
II initialize variables in declarations

int passes = 0; II number of passes

int failures = 0; II number of failures

int studentCounter 1 ; II student counter
int result; II one exam result

II process 10 students using counter-controlled loop

while (studentCounter <= 10) {

II prompt user for input and obtain value from user

cout « "Enter result (1 = pass, 2 = fail): II;

cin » result;

II if result 1, increment passes; iflelse nested in while

if (result == 1) II iflelse nested in while

passes = passes + 1 ;

else II if result not 1, increment failures

failures = failures + 1;

II increment studentCounter so loop eventually terminates

studentCounter = studentCounter + 1;

II end while

II termination phase; display number of passes and failures

cout « "Passed " « passes « endl;

cout « "Failed " « failures « endl;

II if more than eight students passed, print "raise tuition"

if (passes > 8)

cout « "Raise tuition " « endl;

return 0; II successful termination

II end function main

Enter result (1 pass, 2 fail) : 1

Enter result (1 pass, 2 fail) : 2

Enter result (1 pass, 2 fail): 2

Enter result (1 pass, 2 fail) : 1

Enter result (1 pass, 2 fail) : 1

Enter result (1 pass, 2 fail) : 1

Enter result (1 pass, 2 fail): 2

Enter result (1 pass, 2 fail): 1

Enter result (1 pass, 2 fail): 1

Enter result (1 pass, 2 fail): 2

Passed 6
Failed ,

Fig. 2.11 Nested control structures: Examination-results problem. (Part 2 of 3.)

98 Control Structures Chapter 2

Enter result (1 pass, 2 = fail): 1

Enter result (1 '" pass, 2 = fail): 1
Enter result (1 .. pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail) : 1

Enter result (1 '" pass, 2 = fail) : 2

Enter result (1 .. pass, 2 fail) : 1

Enter result (1 = pass, 2 = fail) : 1

Enter result (1 ill pass, 2 = fail): 1
Enter result (1 .. pass, 2 = fail) : 1

Enter result (1 .. pass, 2 fail) : 1

Passed 9

Failed 1

Raise tuition

Fig. 2.11 Nested control structures: Examination-results problem. (Part 3 of 3.)

Notice the if/else structure at lines 26-30 that is nested in the while structure

(lines 19-35). The remainder of the program uses concepts already presented in the pro

grams of Fig. 2.7 and Fig. 2.9.

� Good Programming Practice 2.8

Initializing local variables when they are declared in functions helps avoid errors from un

initialized data.

Software Engineering Observation 2.6

Experience has shown that the most difficult part of solving a problem on a computer is de

veloping the algorithm for the solution. Once a correct algorithm has been specified, the pro

cess of producing a working C++ program from the algorithm normally is straightforward.

Software Engineering Observation 2.7

Many experienced programmers write programs without ever using program-development

tools like pseudocode. These programmers feel that their ultimate goal is to solve the prob

lem on a computer and that writing pseudocode merely delays the production of.final out

puts. Although this method might work for simple and familiar problems, it can lead to

serious errors in large, complex projects.

2.11 Assignment Operators

C++ provides several assignment operators (Fig. 2.12) for abbreviating assignment expres

sions. For example, the statement

c = c + 3;

can be abbreviated with the addition assignment operator += as

C += 3;

The += operator adds the value of the expression on the right of the operator to the value

of the variable on the left of the operator and stores the result in the variable on the left of

the operator. Any statement of the form

variable = variable operator expression;

Chapter 2 Control Structu res 99

Assignment operator Sample expression Explanation Assigns

Assume: int c = 3 , d = 5, e = 4, f 6, g = 1 2;

+ = c + = 7 c = c + 7 1 0 to c
d 4 d d - 4 1 ta d

*= e *= 5 e e * 5 2 0 to e

/= f /= 3 f f / 3 2 to f

%= g %= 9 g g % 9 3 tog

Fig. 2.1 2 Arithmetic assignment operators .

in which the same variable appears on both sides of the assignment operator and operator

i s one of the binary operators +, -, *, /, or % (or others we wi l l discuss l ater in the text) ,

can be written i n the form

variable operator= expression ;

Thus the assignment c += 3 adds 3 to c . Figure 2 . 1 2 shows the arithmetic assignment op

erators, sample expressions using these operators and explanations .

Performance Tip 2. 3
Programmers can write programs a bit Jaster and compilers can compile programs a bit

Jaster when the "abbreviated" assignment operators are used. Some compilers generate

code that runs Jaster when "abbreviated" assignment operators are used.

Performance Tip 2.4

Many oJ the performance tips we mention in this text result in nominal improvements, so the

reader might be tempted to ignore them. When a nominal improvement is made on code that

executes many times in a loop, significant pelformance improvement often is realized.

2.12 Increment and Decrement Operators

In addition to the arithmetic assignment operators, C++ also provides the ++ unary incre

ment operator and the -- unary decrement operator, which are summarized in Fig. 2 .13 .

If a variable c is incremented by 1, the increment operator ++ can be used rather than the

expressions c = c + 1 or c += 1. If an increment or decrement operator i s p laced before a

variable, it is referred to as the preincrement or predecrement operator, respectively. If an

increment or decrement operator is placed after a variable, it is referred to as the postincre

ment or postdecrement operator, respectively. Preincrementing (predecrementing) a vari

able causes the variable to be incremented (decremented) by 1 ; after that, the new value of

the variable i s used in the expression in which it appears . Postincrementing (postdecre

menting) a variable causes the current value of the variable to be used in the expression in

which it appears ; then, the variable value is incremented (decremented) by 1.2

2. For now, only a simple variable name may be used as the operand of an increment or decrement
operator. We wi l l see that these operators can be used on so-called lvalues .)

100 Control Structu res Chapter 2

Operator Called Sample expression ExplanaHon

+ + preincrement ++a Increment a by I , then u s e t h e n e w value o f

a i n the expression in which a resides .

++ postincrement a++ Use the current value of a in the expression

in which a resides, then increment a by I.
predecrement - -b

postdecrement b - -

Decrement b b y I, then use the new value

of b in the expression in which b resides.

Use the current value of b i n the expression

in which b resides, then decrement b by I.

Fig. 2. 1 3 Increment and decrement operators,

Figure 2 . 1 4 demonstrates the difference between the preincrementing version and the

postincrementing version of the ++ operator. Postincrementing the variable c causes it to

be incremented after it is used in the output statement. Preincrementing the variable c

causes it to be incremented before it is used in the output statement. The program displays

the value of c before and after the ++ operator is used. The decrement operator (--) works

s imilarly .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27

I I Fig . 2 . 14 : f i g 0 2_1 4.cpp
I I Preincrement ing and postincrement ing .
inc lude < iostream>

using std : : cout ;
us ing std : : endl ;

I I funct ion main begins program execut ion
int main ()
{

int c ; I I declare variable

II demonstrate
c = 5;

pos t increment

cout « c « endl ;
cout « c++ « endl ;
cout « c « endl « endl ;

I I demonstrate pre increment

I I
I I
I I
I I

c = 5; I I
cout « c « endl ; I I
cout « ++c « endl ; I I
cout « c « endl ; I I

ass ign 5 t o c
print 5
print 5 then pos t i nc rement
print 6

ass ign 5 to c
print 5
pre increment then print 6

print 6

return 0 ; I I indicate succes s ful termination

} I I end funct ion main

Fig. 2.1 4 Pre incrementing and post incrementing . (Part 1 of 2 .)

Chapter 2

5
5
6

5
6
6

Control Structu res

Fig. 2.1 4 Pre increment ing and postincrementing. (Part 2 of 2.)

Good Programming Practice 2.9
[iIJ Unary operators should be placed next 10 their operands with no intervening spaces.

The three assignment statements in Fig. 2.11

pas s e s = pas s e s + 1 ;
fai lure s = fai lures + 1 ;
studentCount er = studentCounter + 1 ;

can be written more concisely with assignment operators as

pas s e s + = 1 ;
fai lure s + = 1 ;
studentCounter + = 1 ;

with preincrement operators as

+ +pas ses ;
+ + fa i lure s ;
+ + studentCounte r ;

or with postincrement operators as

pas s e s + + ;
fai lure s + + ;
studentCounter+ + ;

101

Note that, when incrementing (++) or decrementing (--) of a variable occurs in a

statement by itself, the preincrement and postincrement forms have the same effect, and the

predecrement and postdecrement forms have the same effect. It is only when a variable

appears in the context of a larger expression that preincrementing the variable and

postincrementing the variable have different effects (and s imi larly for predecrementing and

postdecrementing) .

Common Programming Error 2.11
A ttempting to use the increment or decrement operator on an expression other than a simple

variable name, e.g. , writing ++ (x + 1), is a syntax error.

Performance Tip 2.5

Preincrement and predecrement operate slightly faster than postincrement and postdecre

ment.

Figure 2.IS shows the precedence and associativity of the operators introduced to this

point. The operators are shown top-to-bottom in decreasing order of precedence. The second

102 Control Structures

Operators

()
++
+ +
*

+
«
<

? :

stat ic _cast <type> ()
+

/ %

»
< = > > =
1=

+= *= /= %=

Chapter 2

Associativity Type

left to right parentheses

left to right unary

right to left unary

left to right multipl icative

left to right addi tive

left to right i nsertion/extraction

left to right relational

left to right equality

right to left conditional

right to left assignment

Fig. 2.1 5 Operator precedence for the operators encountered so far i n the text .

column describes the associativity of the operators at each level of precedence. Notice that

the conditional operator (? :), the unary operators postincrement (++) , postdecrement (--),

plus (+) , minus (-) and casts, and the assignment operators = , +=, - =, * = , I = and %= asso

ciate from right to left . All other operators in the operator precedence chart of Fig. 2 . 1 5 asso

ciate from left to right. The third column names the various groups of operators.

2.13 Essentials of Counter-Controlled Repetition

Counter-contro lled repetition requires the fol lowing:

1. the name of a control variable (or loop counter) ;

2. the initial value of the control variable ;

3 . the condition that tests for the final value of the control variable (i .e . , whether

looping should continue) ;

4. the increment (or decrement) by which the control variable i s modified each time

through the loop.

Consider the simple program in Fig. 2 .16, which prints the numbers from 1 to 10. The

decl aration at line 11 names the control variable (counter), declares it to be an integer,

reserves space for it in memory and sets it to an initial value of 1. Decl arations that require

initialization are, in effect, executable statements. In C++, it is more precise to call a dec

laration that also reserves memory-as the preceding declaration does-a definition .

The declaration and initialization of counter also could have been accompl ished

with the statements

int counter ;
counter = 1 ;

We use both methods of initializing variables.

Chapter 2 Control Structures

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21

1
2
3
4
5
6
7
8
9
1 0

/ / Fig . 2 . 1 6 : f i g 0 2 _1 6 . cpp
/ / Counter-control led repet i t ion .
inc lude < iostream>

us ing s td : : c out ;
us ing std : : endl ;

/1 funct ion main begins program execut ion
int main ()
{

int counter = 1; / I init i a l i zat ion

whi l e (counter <= 1 0) { / I repe t i t ion condit i on
cout « counter « endl ; / I di splay counter
++count e r ; / I increment

// end whi le

return 0 ; 1/ indicate succes s ful terminat ion

} // end funct ion main

Fig. 2.1 6 Counter-control led repetition.

103

Line 15 increments the loop counter by I each time the loop is performed. The loop

continuation condition (l ine 1 3) in the whi l e structure determines whether the value of the

control variable is less than or equal to 10 (the last value for which the condition i s t rue).

Note that the body of this whi l e executes even when the control variable i s 10. The loop

terminates when the control variable is greater than 10 (i .e . , counter becomes 11).
Figure 2 . 1 6 can be made more concise by initializing counter to 0 and by repl acing

the whi l e structure with

whi l e (+ +counter < = 1 0)
cout « counter « endl ;

This code saves a statement, because the incrementing is done directly in the whi l e con

dition before the condition is tested. Also, this code el iminates the braces around the body

of the whi l e , because the whi le now contains only one statement. Coding in such a con

densed fashion takes some practice and can lead to programs that are more difficult to read,

debug, modify and maintain .

104 Control Structures Chapter 2

Common Programming Error 2.12

Floating-point values are approximate, so controiling counting loops with floating-point

variables can result in imprecise counter values and inaccurate tests for termination.

T 5
Control counting loops with integer values.

� Good Programming Practice 2.10

Ir:.2J Indent the statements in the body of each control structure.

� Good Programming Practice 2.11

Ir:.2J Put a blank line before and after each control structure to make it stand out in the program.

[iI Good Programming Practice 2.12

Too many levels of nesting can make a program difficult to understand. As a general rule,

try to avoid using more than three levels of indentation.

[iI Good Programming Practice 2.13

Vertical spacing above and below control structures, and indentation of the bodies of control

structures within the control-structure headers, give programs a two-dimensional appear

ance that greatly improves readability.

2.14 for Repetition Structure

The for repetition structure handles al l the detai l s of counter-control led repetition . To i l

lustrate the power of for, le t us rewrite the program of Fig . 2 . 1 6 . The resul t is shown in

Fig. 2 . 1 7 .

1
2
3
4
5
6
7
8
9

10
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9

I I Fig . 2 . 17 : f i g 0 2 _ 1 7 . cpp
I I Counter-control l ed repet i t ion with the for s t ructure .
inc lude < i ostream>

us ing std : : cout ;
us ing std : : endl ;

I I funct ion main begins program execution
int main ()
{

I I Init i a l i zation, repetit ion condit ion and increment ing
I I are a l l inc luded in the for structure header .

for (int counter = 1 ; counter < = 1 0 ; counter++)
cout « counter « endl ;

return 0 ; I I indicate succe s s ful terminat ion

I I end funct ion main

Fig. 2.1 7 Counter-control led repetition with the for structure . (Part 1 of 2.)

Chapter 2

1
2
3
4
5
6
7
8
9
1 0

Control Structures

Fig. 2.1 7 Cou nter-controlled repetition with the for structu re . (Part 2 of 2.)

105

When the for structure begins executing, the control variable counter is declared

and initial ized to I. Then , the loop-continuation condition counter <= 10 is checked.

The initial value of counter is I, so the condition is satisfied and the body statement

prints the value of count er, namely I. Then, the expression counter++ increments

control variable counter and the loop begins again with the loop-conti nuation test. The

control variable is now equal to 2, so the final value is not exceeded and the program per

forms the body statement again . This process continues until the control variable counter

is incremented to II-this causes the loop-continuation test to fai l and repetition to termi

nate . The program continues by performing the first statement after the for structure (in

this case, the return statement at line 1 7) .

Figure 2 . 1 8 takes a c loser look at the for structure o f Fig. 2 . 1 7 . Notice that the for

structure "does it al l"-it specifies each of the items needed for counter-control led repeti

tion with a control variable . If there i s more than one statement i n the body of the for,

braces are required to enclose the body of the loop.

Notice that Fig. 2 . 1 7 uses the loop-continuation condition counter <= 10. If the

programmer incorrectly wrote counter < 10, then the loop would execute only 9 times.

This i s a common logic error called an oflby-one error.

[lJ Common Programming Error 2.13

Using an incorrecl relalional operalor or using an incorrect final value of a loop counler in

the condition of a whi l e or for structure can cause off-by-one errors.

for keyword

\
for

Control
variable
name

\

Requ ired
semicolon
separ1tor

Final value of control Required
variable for which semicolon
the conditrn /seperator

(int count�' ; �' coun�+

Initia l value of Loop-continuation Increment of con-
control variable condition trol var iable

Fig. 2.1 8 for structure header components .

106 Control Structures Chapter 2

� Good Programming Practice 2.14 � Using the final value in the condition ofa whi l e or for structure and using the <= relation
al operator helps avoid off-by-one errors. For example, in a loop that prints the values J to

10, the loop-continuation condition should be coun t er <= 10 rather than coun t er < 10
(which is an off-by-one error) or count er < 11 (which is nevertheless correct). Many pro
grammers prefer so-called zero-based counting, in which, to count 10 times, coun t er would
be initialized to zero and the loop-continuation test would be count er < 10.

The general format of the for structure is

for (initialization ; 100pContinuationCondition ; increment
statement

where the initialization expression initializes the loop ' s control variable, loopContinua

tionCondition is the condition that determines whether the loop should continue executing

(this condition contains the final value of the control variable for which the condition is

true) and increment i ncrements the control variable. In most cases, the for structure can

be represented by an equivalent while structure, as fol lows :

initialization ;

while (loop Continuation Condition) {
statement
increment ;

}
There is an exception to this rule, which we will discuss in Section 2 . 1 8 .

If the initialization expression in the for structure header declares the control variable

(i . e . , the control variable ' s type is specified before the variable name) , the control variable

can be used only in the body of the for structure-the control variable wi l l be unknown

outside the for structure. This restricted use of the control variable name is known as the

variable ' s scope. The scope of a variable specifies where it can be used in a program. Scope

is discussed in detai l in Chapter 3, "Functions."

l! Common Programming Error 2.14
When the control variable of a for structure is defined in the initialization section of the for

structure header, using the control variable after the body of the structure is a syntax error.

fI Portability Tip 2.2

In the C++ standard, the scope of the control variable declared in the initialization section of

a for structure differs from the scope in older C++ compilers. In pre-standard compilers, the

scope of the control variable does not terminate at the end of the block defining the body of the

for structure; rather, the scope terminates at the end of the block that encloses the for struc

ture. C++ code created with pre-standard C++ compilers can break when compiled on stan

dard-compliant compilers. If you are working with pre-standard compilers and you want to be

sure your code will work with standard-compliant compilers, there are two defensive program

ming strategies that can be used to prevent this problem: either declare control variables with

different names in every for structure, or, if you prefer to use the same name for the control

variable in several for structures, define the control variable before the first for structure.

As we will see, the initialization and increment expressions can be comma-separated l ists

of expressions. The commas, as used in these expressions, are comma operators, which guar

antee that lists of expressions evaluate from left to right. The comma operator has the lowest

Chapter 2 Control Structu res 107

precedence of al l C++ operators . The value and type of a comma-separated list of expressions

is the value and type of the rightmost expression in the l i st . The comma operator most often

is used in for structures. Its primary appl ication is to enable the programmer to use multiple

initialization expressions and/or multiple increment expressions. For example, there may be

several control variables in a single for structure that must be initialized and incremented.

Good Programming Practice 2.15

Place only expressions involving the control variables in the initialization and increment

sections of a for structure. Manipulations of other variables should appear either before

the loop (if they should execute only once, like initialization statements) or in the loop body

(if they should execute once per repetition, like incrementing or decrementing statements).

The three expressions in the for structure header are optional . I f the loopContinua

tionCondition i s omitted, C++ assumes that the loop-continuation condition i s true, thus

creating an infi nite loop. One might omit the initialization expression if the control variable

i s init ial ized earlier i n the program. One might omit the increment expression if the incre

ment is calculated by statements in the body of the for or if no increment is needed. The

increment expression in the for structure acts as a stand-alone statement at the end of the

body of the for. Therefore, the expressions

counter = counter + 1
counter + = 1
++counter
counter+ +

are a l l equivalent as the for structure increment . Many programmers prefer counter++,

because for loops evaluate the increment expression after the loop body executes . The

postincrementing form therefore seems more natural . The variable being i ncremented here

does not appear in a larger expression, so both preincrementing and postincrementing ac

tually have the same effect. The two semicolons in the for structure header are required.

Common Programming Error 2.15

Using commas instead of the two required semicolons in a for header is a syntax error.

Common Programming Error 2.16

Placing a semicolon immediately to the right of the right parenthesis of a for header makes

the body of that for structure an empty statement. Normally, this is a logic error.

Software Engineering Observation 2.8
Placing a semicolon immediately after a for header is sometimes used to create a so-called

delay loop. Such a for loop with an empty body still loops the indicated number of times,

doing nothing other than the counting. For example, you might use a delay loop to slow down

a program that is producing outputs on the screen too quickly for you to read them.

The initial ization, loop-continuation condition and increment expressions of a for

structure can contain arithmetic expressions. For example, assume that x = 2 and y = 10.
If x and y are not modified in the loop body, the statement

for (int j = x; j <= 4 * x * y; j += Y / x)

is equivalent to the statement

for (int j = 2 ; j <= 80 ; j + = 5)

108 Control Structu res Chapter 2

The "increment" of a for structure can be negati ve, in which case it is real ly a decre

ment and the loop actual ly counts downwards (as shown in Section 2 . 1 5) .

If the loop-continuation condition is init ial ly false, the body o f the for structure i s not

performed. I nstead, execution proceeds with the statement fol lowing the for.

Frequently, the control variable i s printed or used in calculations in the body of a for

structure, but this i s not required. ft is common to use the control variable for contro l l ing

repetition whi le never mentioning it in the body of the for structure .

Te in n
A lthough the value of lhe control variable can be changed in lhe body of a for loop, avoid

doing so, because this practice can lead to subtle logic errors.

The for structure ' s act i vity diagram is s imi lar to that of the whi le structure ' s .

Figure 2 . 1 9 shows the activ i ty diagram of the for structure in Fig . 2 . 1 7 . The diagram

makes it clear that the initial ization occurs once before the loop-continuation test evaluates

the first time, and that i ncrementing occurs each t ime after the body statement executes.

Note that (besides an initial state, transition arrows, a merge, a final state and several notes)

the diagram contains only action states and a deci sion. I magine, again, that the programmer

has a bin of empty for structures-as many as needed to form a structured implementation

of an algorithm. The programmer fi l l s in the action states and decis ion symbols with act ion

expressions and guard conditions appropriate to the algorithm .

Establ ish init ial value

of control variable
- - - - I counter 1 J

[counter >

[counter <= 10] Output the
counter's value

cout « counter « endl ; J
Determine whether
the final value of
control variable has
been reached

Fig. 2.1 9 for repetition structure activity d iagram.

Increment the
control variable

counter++ J

Chapter 2 Control Structures 109

2.15 Examples Using the for Structure

The fol lowing examples show methods of varying the control variable in a for structure .

I n each case, we write the appropriate for structure header. Note the change in the rela

tional operator for loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.

for (int i = 1 ; i <= 100 ; i++)

b) Vary the control variable from 100 to 1 in increments of -1 (decrements of 1).

for (int i = 100 ; i >= 1 ; i--)

c) Vary the control variable from 7 to 77 i n steps of 7.

for (int i = 7 ; i < = 7 7 ; i += 7)

d) Vary the control variable from 20 to 2 in steps of -2.

for (int i = 20 ; i >= 2 ; i -= 2)

e) Vary the control variable over the fol lowing sequence of val ues: 2, 5, 8, 11, 14,
17,20.

for (int j = 2 ; j < = 2 0 ; j + = 3)

f) Vary the control variable over the fol lowing sequence of values : 99, 88, 77,66,
55,44,33,2 2,11,0.

for (int j = 9 9 ; j >= 0 ; j -= 1 1)

Common Programming Error 2.17 � Not using the proper relational operator in the loop-continuation condition of a loop that � counts downwards (such as incorrectly using i <= 1 in a loop counting down to I) is usually

a logic error that will yield incorrect results when the program runs.

The next two examples provide simple applications of the for structure . The program

of Fig. 2 .20 uses the for structure to sum all the even integers from 2 to 100. Each itera

tion of the loop (l ines 1 4- 1 5) adds the current value of the control variable number to vari

able sum.

1 II Fig . 2 . 2 0: f ig 0 2_20 . cpp
2 II Summat i on with for .
3 #include < io stream>
4
5 us ing std::cout ;
6 us ing std::endl ;
7
8 II funct ion ma in begins program execut ion
9 int main ()

1 0 {

Fig. 2.20 Summation with for. (Part 1 of 2.)

1 10

1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20

Control Structu res Chapter 2

int sum = 0 ; II init iali z e sum

II sum even integers from 2 through 1 0 0
for (int number = 2 ; number < = 1 0 0 ; number + = 2

sum + = number ; I I add number to sum

cout « "Sum i s " « sum « endl ; II output sum
return 0 ; II success ful terminat ion

} /1 end funct ion main

I s= i s 25SO

Fig. 2.20 Summation with for. (Part 2 of 2.)

Note that the body of the for structure in Fig. 2 .20 actual ly could be merged into the

rightmost portion of the for header, by using the comma operator as fol lows :

for (int number = 2 ; II ini t i alization
number < = 1 0 0 ; II cont inuat ion condit i on
sum += number, number += 2) II total and increment

I I empty body

� Good Programming Practice 2.16
A lthough statements preceding a Eor and statements in the body of a Eor often can be

merged into the Eor header, doing so can make the program more difficult 10 read, main

tain, modify and debug.

� Good Programming Practice 2.17
� Limit the size of control structure headers to a single line, if possible.

The next example computes compound interest using the for structure . Consider the

fol lowing problem statement

A person invests $1000.00 in a savings account yielding 5 percent interest. Assuming that

all interest is left on deposit in the account. calculate and print the amount of money in the

account at the end of each year for 10 years. Use the following formula for determin ing

these amounts:

a=p(l+ r)"

where

p is the original amount invested (i .e .• the principal).

r is the annual i nterest rate.

n is the number of years and

a is the amount on deposit at the end of the nth year.

This problem involves a loop that performs the indicated calculation for each of the 10

years the money remains on deposit. The solution is shown in Fig. 2 .21.

The for structure (l ines 31-40) executes its body to times, varying a control variabl e

from 1 t o 1 0 i n i ncrements o f 1 . C++ does not include a n exponentiation operator, so w e

u s e the standard library function pow (l ine 3 4) for this purpose. The function

pow (x, y) calculates the value of x raised to the yth power. In this example, the alge-

Chapter 2 Control Structu res 111

braic expression (I + r) n is written as pow (1.0 + rat e I year) where variable

rate represents r and variable year represents n . Function pow takes two arguments of

type double and returns a double value.

This program wil l not compile without including header file <cmath> (line 1 5) . Func

tion pow requires two double arguments . Note that year i s an integer. Header <cmath>
3

includes information that tel l s the compiler to convert the value of year to a temporary

double representation before cal l ing the function. This information is contained in pow's

function prototype. Function prototypes are explained in Chapter 3 . Chapter 3 also provides

a summary of other math l ibrary functions.

fI Common Programming Error 2.18
In general. forgetting to include the appropriate header file when using standard library

functions (e.g .• <cma th> in a program that uses math library functions) is a syntax error.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26

II Fig . 2 . 2 1 : f i g 0 2 _2 1 . cpp
II Calculating compound interest .
#inc1ude < iost ream>

us ing std : : cout ;
us ing std : : end1 ;
us ing std : : ios ;
using std : : f ixed ;

include < iomanip>

using s td : : setw;
us ing std : : setprecis ion ;

#include <cmath> I I enables program to u s e funct i on pow

II funct i on main begins program execution
int main ()
{

doubl e amount ;
doubl e principal 1 0 0 0 . 0 ;
double rate = . 0 5 ;

II output t able column heads

II amount on depo s i t
I I start ing principal
II intere st rate

cout « "Year" « setw (2 1) « "Amount on depos i t" « endl ;

Fig. 2.2 1 Compound interest calculations with for. (Part 1 of 2.)

3. All functions in the C++ Standard Library are part of namespace std. For this reason, Fig. 2.21
should include a us ing statement for function pow. A portion of the C++ standard l ibrary con
sists of functions, such as pow, that were absorbed into C++ from the C programming language .
Some compilers wi l l not compile us ing statements for those functions. However, most compi l
ers wi l l compile programs that do not provide using statements for such functions. To support a
wider range of compilers, we do not provide using statements for C l ibrary functions. Another
way to fix this problem would be to use the old-style C header file <math . h> rather than the C++
standard version of that header «cmath» . However, we made the decision to use only standard
C++ header files throughout this book.

112 Control Structu res

II set floating-point number format
cout « f ixed « setpreci sion (2) ;

II calculat e amount o n depos i t f o r each of t e n years
for (int year = 1 ; year <= 1 0 ; year+ +) {

I I calculate new amount for speci f ied year
amount = principal * pow (1 . 0 + rate, year) ;

// output one table row
cout « setw (4) « year

« setw (2 1) « amount « endl ;

} /1 end for

return 0 ; II indicate succes s ful terminat ion

Chapter 2

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 } I I end funct ion main

Year Amount on depo s i t
1 1 0 5 0 . 0 0
2 1 1 0 2 . 5 0
3 1 1 5 7 . 6 3
4 1 2 1 5 . 5 1
5 1 2 7 6 . 2 8
6 1 3 4 0 . 1 0
7 1 4 0 7 . 1 0
8 1 4 7 7 . 4 6
9 1 5 5 1 . 3 3

1 0 1 6 2 8 . 8 9

Fig. 2.21 Compound interest calculations with for. (Part 2 of 2.)

Lines 20-22 declare double variables amount, princ ipal and rate . We have

done this for simplicity because we are deal ing with fractional parts of dollars, and we need

a type that al lows decimal points in its values. Unfortunately , thi s can cause trouble. Here

is a simple explanation of what can go wrong when using f l oat or double to represent

dol lar amounts (assuming setprec i s ion (2) i s used to specify two digits of precision

when printing) : Two dollar amounts stored in the machine could be 1 4 .234 (which pri nts
as 14.23) and 18.673 (which prints as 18.67). When these amounts are added, they produce

the internal sum 32 .907 which prints as 32 .9 1 . Thus your pri ntout could appear as

1 4 . 2 3
+ 1 8 . 6 7

3 2 . 9 1

but a person adding the indiv idual numbers as printed would expect the sum 32 .90 ! You

have been warned !

� Good Programming Practice 2.18

Do not use variables of type fl oa t or double to peifonn monetary calculations. The impre

cision offloating-point numbers can cause errors that result in incorrect monetary values. In

Chapter 2 Control Structures 113

the exercises , we explore Ihe use oj integers 10 pe /j'orm monetary calculations. [Note : Some

third-party vendors sell C++ class libraries th aI pe iform precise monetary ca lc ulations.]

The output statement at l ine 28 before the for loop and the output statement at l i nes

37-38 in the for loop combine to print the values of the variables year and amount with

the formatting spec ified by the parameterized stream manipulators setprec i s ion and

setwand the nonparameterized stream man ipulator f ixed. The cal l setw (4) specifies

that the next value output should appear in afield width of 4-i .e . , cout prints the value

with at least 4 character posit ions. I f the value to be output i s less than 4 character positions

wide, the value i s right justified in the field by default . I f the value to be output is more than

4 character pos it ions wide, the field width is extended to accommodate the entire value. To

indicate that values should be output left justified, simply output non-parameterized stream

manipulator left (found in header < iost ream» .

The other formatting in the output statements indicates that variable amount i s printed

as a fixed-point value with a decimal point (specified in l ine 28 with the stream manipulator

fixed) right-justified in a field of 2 1 character positions (specified in l i ne 38 with

setw (21 ») and two digits of precis ion to the right of the decimal point (specified in l i ne

28 with manipulator setprec i s ion (2 »). We placed the stream manipulator f ixed and

setprec i s ion in a cout before the for loop because these sett ings remain in effect unti l

they are changed. Thus, they do not need to be appl ied during each i teration of the loop. How

ever, the field width specified with setw appl ies only to the next value output. We discuss

the powerful input/output formatting capabil ities of C++ in detail in Chapter 1 2 .

Note that the calculation 1 .0 + rate, which appears as an argument to the pow func

tion, i s contained in the body of the for statement. In fact, thi s calcu lation produces the

same result during each iteration of the loop, so repeating the calculation is wastefu l . Thi s

calculation should b e performed once before the loop.

Performance Tip 2.6
A void pla cing expressions whose values do nol change inside loops-b ut, even if you do,

many o j loday 's sophisti cated oplimizing compilers will a utomatically pla ce such ex

pressions o utside loops in the genera ted m achine-lang uage code.

Performance Tip 2.7
Many compilers conlain opti rni zation Je alures th aI improve the code yo u write , b UI it is still

better 10 write good code Jrom the start.

For fun, be sure to try our Peter Minuit problem in the Exercise 2 .65 . Thi s problem

demonstrates the wonders of compound interest.

2.16 swi tch Multiple-Selection Structure
We have discussed the i f s ingle-se lection structure and the i f/el s e double-selection

structure . Occasionally, an algorithm will contain a series of decis ions in which a variable

or expression i s tested separate ly for each of the constant integral values it can assume and

different actions are taken. C++ provides the swi tch multiple-selection structure to han

dle such deci s ion making.

The swi tch structure consi sts of a series of case label s and an optional de fault

case. The program in F ig . 2 .22 uses swi tch to count the number of each different letter

grade that students earned on an exam .

1 14 Control Structu res

1 1/ Fig . 2 . 2 2 : fig0 2_2 2 . cpp
2 II Counting letter grade s .
3 #inc lude < iostream>
4
5 using std::cout ;
6 using std::cin ;
7 us ing std::endl ;
8
9 II function main begins program execution

1 0 int main ()
11 {
1 2
1 3
1 4
1 5
1 6
1 7
1 8

int
int
int
int
int
int

grade ;
aCount
bCount
cCount =
dCount
fCount

1/ one grade
0 ; 1/ nwnber of As
0 ; 1/ nwnber of Bs
0 ; II nwnber of Cs
0 ; 1/ nwnber of Os
0 ; 1/ nwnber of Fs

1 9 cout « "Enter the letter grade s . " « endl

C h a pter 2

20 « "Enter the EOF character to end input . " « endl ;
21
22 II loop until user types end-of-file key s equence
23 whi l e ((grade = cin . get ()) != EOF) {
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

1/ determine which
switch (grade) {

case 'A':
case la' :

++aCount ;
break ;

case I B I:

case Ib' :
+ +bCount ;
break ;

case 'c I:

case 'e' :

+ +cCount ;
break ;

case ID' :
case 'd':

++dCount ;
break ;

case 'F' :
case If I :

++ fCount ;
break ;

grade was input
1/ swi tch structure ne sted

1/ grade was uppercase A
1/ or lowercase a
1/ increment aCount
1/ neces sary to exit switch

1/ grade was uppercase B
1/ or lowercase b
1/ increment bCount
1/ exit switch

1/ grade was uppercase C
1/ or lowercase c
1/ increment cCount
1/ exit switch

1/ grade was uppercase 0
1/ or lowercase d
1/ increment dCount
1/ exit switch

1/ grade was uppercase F
1/ or lowercase f
1/ increment fCount
1/ exit switch

in whi l e

Fig. 2.22 switch structure testing mult iple letter-grade values. (Part 1 of 2 .)

Chapter 2 Control Structures

case ' \ n ' : II ignore newlines,
case '\ t' : II tabs ,
case , , : II and space s in input

break ; II exit switch

de fault: II catch all other characters
cout « "Incorrect letter grade entered . "

« " Enter a new grade . " « endl ;

115

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

break ; II optional ; wil l exit switch anyway

II end switch

} II end while

II output summary of resu l t s
cout « "\n\nTotals for each letter grade are:"

« "\nA: " « aCount II display number o f
« "\nB: " « bCount II display number
« "\nC: " « cCount II display number
« "\nD: " « dCount II display number
« " \nF: " « fCount II display number
« endl ;

return 0 ; II indicate succ e s s ful termination

} II end function main

Enter the letter grade s .
Enter the EOF character to end input .
a
B
c
C
A
d
f
C
E
Incorrect letter grade entered . Enter a new grade .
D
A
b
AZ

Totals for each letter grade are:
A: 3
B: 2
C: 3
D: 2
F: 1

o f
o f
o f
o f

A grade s
B grade s
C grade s
D grade s
F grades

Fig. 2.22 switch structure testing multiple letter-grade va lues . (Part 2 of 2 .)

116 Control Structures C h a pter 2

In the program, the user enters letter grades for a class. I nside the whi l e header, at l ine

23 , the parenthesized assignment (grade = cin . get (» executes first. The

c in . get () function reads one character from the keyboard and stores that character in

integer variable grade. We explain the dot notation used in cin . get () in Chapter 6,

Classes and Data Abstraction. Characters normal ly are stored in variables of type char;
however, an important feature of C++ is that characters can be stored in any integer data type

because they are represented as I -byte integers in the computer. Thus, we can treat a character

either as an integer or as a character, depending on its use. For example, the statement

cout « "The character (" « 'a' « ") has the value "
« static_cast < int > ('a') « endl ;

prints the character a and its integer value as fol lows:

The character (a) has the value 97

The integer 97 i s the character' s numerical representation in the computer. Many comput

ers today use the ASClI (American Standard Code for Information Interchange) character

set, in which 97 represents the lowercase letter I a I . A l i st of the ASCII characters and their

decimal values is presented in Appendix B .

Assignment statements as a whole have the value that i s assigned to the variable on the

left side of the =. Thus, the value of the assignment expression grade = cin . get () i s

the same as the value returned by cin . get () and assigned to the variable grade.

The fact that assignment statements have values can be useful for init ial izing several

variables to the same value. For example,

a = b = c = 0 ;

first evaluates the assignment c = 0 (because the = operator associates from right to left) .

The variable b i s then assigned the value of the assignment c = 0 (which i s 0) . Then, the

variable a i s assigned the value of the assignment b = (c = 0) (which is also 0). In the

program, the value of the assignment grade = c in . get () is compared with the value

of EOF (a symbol whose acronym stands for "end-of-fi le") . We use EOF (which normal ly

has the value - 1) as the sentinel value. However, you do not type the value - J , nor do you

type the letters EOF as the sentinel value. Rather, you type a system-dependent keystroke

combination that means "end-of-fi le" to indicate that you have no more data to enter. EOF

i s a symbolic integer constant defined in the <iostream> header fi le . If the value as

signed to grade i s equal to EOF, the program terminates. We have chosen to represent the

characters entered into thi s program as ints, because EOF has an integer value.

On UNIX systems and many others , end-of-fi le is entered by typing the sequence

<ctrl-d>

on a l ine by itself. This notation means to simultaneously press both the ctrl key and the

d key . On other systems such as Microsoft Windows, end-of-fi le can be entered by typing

<ctrl-z>

[Note: I n some cases, you must press Enter after the preceding key sequence. Also, the

characters " Z sometimes appear on the screen to represent end-of-fi le , as i s shown in

Fig. 2 .22 .]

Chapter 2 Control Structu res 117

JJ1'!OI Portability Tip 2. 3 _ The keystroke combinations Jar entering end-o j-file are system dependent.

fI Portability Tip 2.4
Testing Jar the symbolic constant EOF rather than -J makes programs more portable. The

ANSI standard states that EOF is a negative integral value (but not necess arily -1). Thus,

EOF could have different values on different systems.

In this program, the user enters grades at the keyboard . When the user presses the Enter

(or Return) key, the characters are read by the c in . get () function, one character at a

time. If the character entered is not end-of-fi le , the flow of control enters the swit ch

structure . The keyword switch is fol lowed by the variable name grade in parentheses.

Thi s i s cal l ed the controlling expression. The swi tch structure compares the value of this

expression with each of the case labels i n the order they appear in the swi t ch. Assume

the user enters the letter C as a grade . The program compares C to each case in the

switch. If a match occurs (case I C I :) , the statements for that case execute. For the

letter C, the program increments cCount by 1 and the swi t ch structure exits imme

diately with the break statement. Note that, unl ike other control structures , i t i s not nec

essary to enclose a multiple-statement case in braces.

The break statement causes program control to proceed with the first statement after

the switch structure . The break statement is used because the cases in a swi tch

statement otherwi se would run together. If break i s not used anywhere in a swit ch

structure, then, each time a match occurs i n the structure, the statements for all the

remaining cases execute. (This feature is sometimes useful when performing the same

actions for several cases, as the program of Fig . 2.22 does for the lowercase and upper

case versions of the same letter.) If no match occurs, the de faul t case is executed and an

error message is printed.

Each case can have one or more actions. The swi tch selection structure i s different

from all other control structures in that braces are not required around mult iple actions in a

case of a switch. Figure 2 .23 shows the activity diagram for the general swi tch mul

tiple-selection structure . A majority of switch structures use a break in each case to

terminate the swi tch structure after processing the case. Figure 2 .23 emphasizes this by

including break statements in the activity diagram. Without the break statement, control

would not transition to the end of the swi tch structure after a case is processed. I nstead,

control would transition to the next case's actions .

The diagram makes i t c lear that the break statement at the end of a case causes con

trol to exit the swi tch structure immediately . Again , note that (besides an initial state,

transition arrows and a final state) the diagram contains action states and deci sions. Al so,

note that the diagram uses merge symbols to merge the transitions from the break state

ments to the final state .

Imagine, again , that the programmer has a bin of empty swi tch structures-as many

as needed to stack and nest with other control structures to form a structured i mplementa

tion of an algorithm. The programmer fi l ls in the action states and decision symbols with

action expressions and guard conditions appropriate to the algorithm. Note that, although

nested control structures are common, it is rare to find nested switch structures in a pro

gram.

118 Control Structu res

case b J - - - -

case Z J - - - -

(fa lse]

(true]

(true]

(true]

default action(s)

Chapter 2

case a action(s) break

case b action(s) break

case z action(s) break

.,�----------------------------------�

Fig. 2.23 swi tch mult iple-selection structure activity d iagram with break
statements .

Common Programming Error 2.1 9
� Forgetling a break statement when one is needed in a swi t ch structure is a logic error.

� Common Programming Error 2. 20
Omitting the space between the word case and the integral value being tested in a swi t ch

structure can cause a logic error. For example, writing case3 : instead o.f writing case

3 : simply creates an unused label. We will say more about this in Chapter 20. In this situa-

tion, the swi t ch structure will not perform the appropriate actions when the swi t ch 's

controlling expression has a value of 3.
Good Programming Practice 2.19
Provide a defaul t case in swi t ch statements. Cases not tested explicitly in a swi t ch

statement without a defaul t case are ignored. Including a defaul t case focuses the pro

grammer on the need to process exceptional conditions. There are situations in which no

defaul t processing is needed. Although the case clauses and the defaul t case clause

in a swi t ch structure can occur in any order, it is a good programming practice to place

the defaul t clause last.

Chapter 2 Control Structu res 119

� Good Programming Practice 2.20
In a swi t ch structure that lists the defaul t clause last, the defaul t clause does not

require a break statement. Some programmers include this breakfor clarity andfor sym

metry with other cases.

In the swi tch structure of Fig. 2 .22, l ines 53-56 cause the program to skip newline,

tab and blank characters . Reading characters one at a time can cause some problems. To

have the program read the characters , they must be sent to the computer by pressing the

Enter key on the keyboard . This places a newl ine character in the input after the character

we wish to process . Often, this newl ine character must be specially processed to make the

program work correctly. By including the preceding cases in our swi t ch structure, we

prevent the error message in the de fault case from being printed each time a newline,

tab or space i s encountered in the input .

[iJ Common Programming Error 2.21
Not processing newline and other whitespace characters in the input when reading charac

ters one at a time can cause logic errors.

Note that several case labels l i sted together (such as case I D I : case I d ' : i n

F ig . 2 . 22) simply means that the same set of actions i s to occur for each of the cases .

When us ing the swi tch structure, remember that i t can be used only for testing a con

stant integral expression-any combination of character constants and integer constants

that evaluates to a constant integer value. A character constant is represented as the specific

character in s ingle quotes such as I A I . An integer constant i s simply an i nteger value. Also,

each case label can specify only one constant integral expression .

Common Programming Error 2.22
Specifying an expression (e.g . , a + b) in a swi t ch structure 's case label is a syntax error.

In our discussion of object-oriented programming in Chapter 6-Chapter 1 0, we

present a more elegant way to i mplement switch logic. We wil l use a technique called

polymorphism to create programs that are often c learer, more concise, easier to maintain

and easier to extend than programs that use swi tch logic.

C++ has flexible data type sizes. Different applications, for example, might need integers

of different sizes. C++ provides several data types to represent integers . The range of integer

values for each type depends on the particular computer' s hardware. In addition to the types

int and char, C++ provides the types short (an abbreviation of short int) and long

(an abbreviation of long int) . The minimum range of values for short integers is -32,768

to 32,767. For the vast majori ty of integer calculations, long integers are sufficient. The min
imum range of values for long integers i s -2, 1 47,483,648 to 2 , 1 47,483,647 . On most com

puters, ints are equivalent either to short or to long. The range of values for an int is

at least the same as the range for short integers and no larger than the range for long inte

gers . The data type char can be used to represent any of the characters in the computer' s

character set. The data type char also can be used to represent small integers .

{I Portability Tip 2.5
Because ints vary in size between systems, use long integers if you expect to process in

tegers outside the range -32, 768 to 32, 767 and you would like to run the program on several

different computer systems.

1 20 Control Structures C h a pter 2

Performance Tip 2.8

In performance-oriented situations where memory is at a premium, it might be desirable to

use smaller integer sizes.

Performance Tip 2.9

Using smaller integer sizes can result in a slower program if the machine 's instructions for

manipulating them are not as efficient as those for the natural-size integers.

Common Programming Error 2.23

Providing identical case labels in a swi t ch structure is a syntax error.

2.1 7 do/whi l e Repetition Structure

The do/whi le repetition structure is simi lar to the whi l e structure . In the whi l e struc

ture, the loop-continuation condition test occurs at the begi nning of the loop before the

body of the loop executes . The do/whi le structure tests the loop-conti nuation condition

after the loop body executes ; therefore, the loop body executes at least once. When a dol

whi le terminates, execution continues with the statement after the whi le c lause. Note

that it i s not necessary to use braces in the do/while structure if there is only one state

ment in the body; however, most programmers incl ude the braces to avoid confusion be

tween the whi le and do/while structures. For example,

while (condition)

normal ly is regarded as the header to a whi le structure . A do/whi le with no braces

around the single statement body appears as

do
statement

whi le (condition) ;

which can be confusing. The last l ine-while (condition) ; -might be misinterpreted

by the reader as a whi le structure contai n ing an empty statement. Thus, the do/wh i l e

with one statement i s often written a s fol lows to avoid confusion:

do {

statement
} while (condition) ;

� Good Programming Practice 2.21

A lways including braces in a dalwhi l e structure helps eliminate ambiguity between the

whi l e structure and the do/whi l e structure containing one statement.

Figure 2 .24 uses a do/whi le structure to pri nt the numbers from I to 1 0. Note that

the program preincrements the control variable counter in the loop-continuation test.

A l so, note the use of the braces to enclose the single-statement body of the do/wh i l e

structure .

Chapter 2 Control Structu res

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1

I I Fig . 2 . 2 4 : fig 0 2_2 4 . cpp
I I Using the do l while repetition structure .
#inc lude < iost ream>

using s td : : cout ;
using std : : endl ;

I I function main begins program execution
int main ()
{

int counter 1 ;

do {
cout « counter « u u ;

} while (++counter < = 1 0) ;

cout « endl ;

I I initialize counter

II display counter
I I end do lwhile

return 0 ; I I indicate succe s s ful termination

I I end function main

I 1 2 3 • 5 • 7 8 • 1 0

Fig. 2.24 do/whi l e structure .

1 2 1

Figure 2 .25 contains the act ivity diagram for the do/whi le structure . Thi s diagram

makes it c lear that the loop-continuation condition does not evaluate unti l after the loop

performs the action state at least once. Agai n, note that (besides an in i t ial state, transit ion

arrows, a final state and a note) the diagram contains only an action state and a decis ion.

Imagine, again, that the programmer has access to a bin of empty do/wh i l e repeti t ion

structures-as many as the programmer might need to stack and nest with other control

structures to form a structured implementation of an algori thm. The programmer fi l l s in the

action states and dec i s ion symbols with action expressions and guard conditions appro

priate to the algorithm.

Fig. 2.25 do/whi l e repetition structu re activity d iagra m .

122 Control Structu res Chapter 2

2 . 1 8 break and continue Statements

The break and cont inue statements alter the flow of control . The break statement,

when executed in a whi le, for, do/whi le or switch structure, causes immediate exit

from that structure . Program execution continues with the first statement after the structure .

Common uses of the break statement are to escape early from a loop or to skip the re

mainder of a swi tch structure (as in Fig. 2 .22) . Figure 2 . 26 demonstrates the break

statement (line 1 9) in a for repetition structure . When the i f structure detects that x i s 5 ,
break executes . This terminates the for structure and the program continues with the

cout after the for. The loop body executes fully only four times. Note that the control

variable x in this program is defined outside the for structure header. This i s because we

intend to use the control variable both in the body of the loop and after the loop completes

its execution .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27
28
29

II Fig . 2 . 2 6 : f i g 0 2 _2 6 . cpp
II Using the break statement in a for s t ructure .
inc 1ude < iostream>

us ing std : : cout ;
us ing s td : : end1 ;

II funct ion main begins program execut i on
int main ()
{

int x ; / / x dec lared here so it can b e used a f t e r the loop

II loop 1 0 t ime s
for (x = 1 ; x < = 1 0 ; x++) {

/1 i f x i s 5 , terminate loop
i f (x = = 5)

break ; II break loop only i f x i s 5

cout « x « II
" ; 1 / display value of x

} II end for

cout « " \nBroke out of loop when x became II « x « end1 ;

return 0 ; /1 indicate succe s s ful terminat ion

} II end funct ion main

1
1 2 3 4
Broke out of loop when x became 5

Fig. 2.26 break statement exit ing a for structure .

Chapter 2 Control Structures 123

The cont inue statement, when executed in a whi le, for or do/whi le structure,

skips the remaining statements in the body of that structure and proceeds with the next i ter

ation of the loop. In whi l e and do/whi le structures, the loop-continuation test evaluates

immediately after the cont inue statement executes. In the for structure, the increment

expression executes, then the loop-continuation test evaluates . Earl ier, we stated that the

whi l e structure could be used in most cases to represent the for structure . The one

exception occurs when the increment expression in the whi l e structure follows the con

tinue statement. In this case, the increment does not execute before the program tests the

repetition-continuation condition and the whi le does not execute in the same manner as

the for. Figure 2 . 27 uses the cont inue statement (line 1 6) in a for structure to skip the

output statement in the structure and begin the next i teration of the loop.

S] Good Programming Practice 2. 22
Some programmers feel that break and con t inue violate structured programming. The

effects of these statements can be achieved by structured programming techn iques we soon

will learn, so these programmers do not use break and con tinue.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27

I I Fig . 2 . 2 7 : f ig02_2 7 . cpp
I I Using the cont inue s tatement in a for s t ructure .
#inc 1ude < iostream>

us ing s td : : cout ;
u s ing std : : end1 ;

I I func t ion main begins program execut i on
int main ()
{

I I loop 1 0 t imes
for (int x = 1 ; x < = 1 0 ; x+ +) {

I I i f x i s 5 , cont inue with next i terat i on of l oop
if (x == 5)

cont inue ;

cout « x « .. II .
,

} I I end for structure

I I skip remaining c ode in loop body

I I di splay value of x

cout « " \ nUsed cont inue to skip print ing the value 5 "
« end1 ;

return 0 ; I I indicate succe s s fu l t e rminat ion

} I I end funct ion main

1 2 3 4 6 7 8 9 10
Used cont inue t o skip print ing the value 5

Fig. 2.27 continue statement terminating a s ingle iteration of a for structure .

1 24 Control Structures C h a pter 2

Performance Tip 2. 1 0
The break and con t inue statements, when used properly, pelform faster than do the cor

responding structured techniques.

There is a tension between achieving quality software engineering and achieving the best

peiforming software. Often, one of these goals is achieved at the expense of the other. For

all but the most peiformance- intensive situations, apply the following rule of thumb: First,

make your code simple and correct; then make it fast and small, but only if necessmy.

2. 19 Logical Operators

So far we have studied only simple conditions, such as counter < = 10, total > 1000
and number ! = sent inel Value . We expressed these condit ions in terms of the re la

tional operators >, <, >= and < = , and the equal ity operators == and ! =. Each decis ion test

ed preci sely one condit ion. To test multiple conditions whi le making a dec is ion , we

performed these tests in separate statements or i n nested if or i f/el se structures .

C++ provides logical operators that are used to form more complex conditions by

combining s i mple condit ions. The logical operators are && (logical AND), I I (logical OR)

and ! (logical NOT, al so cal led logical negation).

Suppose we wish to ensure that two conditions are both t rue before we choose a cer

tain path of execution. [n th i s case, we can use the logical && operator as fol lows :

i f (gender == 1 && age >= 6 5)
+ + seniorFemal e s ;

Thi s i f structure contai ns two s i mple conditions. The condition gender = = 1 i s used here

to determine whether a person i s a female. The condition age > = 6 5 determi nes whether

a person is a senior cit izen. The s imple condition to the left of the && operator evaluates

fi rst, because the precedence of == i s h igher than the precedence of &&. I f necessary , the

s imple condition to the right of the && operator evaluates next, because the precedence of

> = is higher than the precedence of &&. As we wi l l d iscuss short ly, the right s ide of a logical

AND expression evaluates only if the left side i s true . The i f structure then considers

the combined condition

gender = = 1 && age >= 65

Thi s condition i s t rue i f and only if both of the s i mple conditions are t rue. Final ly , if

th i s combined condition i s indeed true, the statement in the i f structure ' s body incre

ments the count of seniorFemales. I f either of the s imple conditions are false (or

both are) , then the program skips the i ncrementing and proceeds to the statement fol lowing

the i f . The preceding combined condition can be made more readable by adding redundant

parentheses

(gender == 1) && (age >= 65)

Common Programming Error 2.24

A lthough 3 < x < 7 is a mathematically correct condition, it does not evaluate as you might

expect in C++. Use (3 < x GeGe x < 7) to get the proper evaluation in C++.

Chapter 2 Control Structu res 125

Figure 2 .28 summarizes the && operator. The table shows al l four possib le combina

tions of false and true values for expression] and expression2 . Such tables are often

called truth tables. C++ evaluates to false or true all expressions that include relational

operators, equality operators and/or logical operators .

Now let us consider the I I (logical OR) operator. Suppose we wish to ensure at some

point in a program that either or both of two conditions are true before we choose a cer

tain path of execution. I n this case, we use the I I operator, as in the fol lowing program

segment:

if (s emesterAverage >= 90 I I finalExam >= 90)
cout « " Student grade i s A" « endl ;

This preceding condition also contains two s imple conditions. The s imple condition

semesterAverage >= 90 evaluates to determine whether the student deserves an "A"

in the course because of a solid performance throughout the semester. The s imple condition

finalExam >= 9 0 evaluates to determine whether the student deserves an "A" in the

course because of an outstanding performance on the final exam. The if structure then

considers the combined condition

semesterAverage >= 90 I I finalExam >= 90

and awards the student an "A" if either or both of the simple conditions are t rue . Note

that the message "Student grade i s A" prints unless both of the s imple conditions are

fal se . Figure 2 . 29 is a truth table for the logical OR operator (I I) .

expression 1

false

false

t rue

t rue

expression2

false

t rue

false

true

Fig. 2.28 &:&: (log ica l AND) operator truth table .

expression 1 expression2

false false

false true

true false

t rue true

Fig. 2.29 I I (log ical OR) operator truth table .

expression 1 &:&: expression2

f a l s e

f a l s e

f a l s e

t rue

expression 1

f a l s e

t rue

t rue

t rue

I I expression2

126 Control Structures Chapter 2

The && operator has a higher precedence than the I I operator. Both operators asso

ciate from left to right . An expression containing && or I I operators evaluates only until

truth or fal sehood is known. Thus, evaluation of the expression

gender = = 1 && age >= 65

stops immediately if gender is not equal to 1 (i .e . , the entire expression is false) and

continues if gender is equal to 1 (i . e . , the entire expression could sti l l be t rue if the con

dition age >= 6S is true) . This performance feature for the evaluation of logical AND

and logical OR expressions is called short-circuit evaluation.

Performance Tip 2. 1 1

In expressions using operator &:&:, if the separate conditions are independent of one another,

make the condition most likely to be fal se the leftmost condition. In expressions using op

erator / /' make the condition most likely to be true the leftmost condition. This use of

short-circuit evaluation can reduce a program 's execution time.

c++ provides the ! (logical negation) operator to enable a programmer to "reverse"

the meaning of a condition . Unlike the && and I I binary operators, which combine two

conditions, the unary logical negation operator has only a single condition as an operand .

The unary logical negation operator is placed before a condition when we are interested in

choosing a path of execution if the original condition (without the logical negation oper

ator) is false, such as in the fol lowing program segment:

i f (! (grade = = sent inelValue))
cout « " The next grade i s II « grade « endl ;

The parentheses around the condition grade == sent inel Value are needed because

the logical negation operator has a higher precedence than the equality operator.

Figure 2 .30 is a truth table for the logical negation operator.

I n most cases, the programmer can avoid using logical negation by expressing the con

dition with an appropriate relational or equality operator. For example, the preceding i f

structure also can be written as fol lows:

i f (grade ! = sent ine lValue
cout « " The next grade i s " « grade « endl ;

This flexibil ity often can help a programmer express a condition in a more "natural" or con

venient manner.

Figure 2 . 3 1 shows the precedence and associativity of the C++ operators introduced to

this point. The operators are shown from top to bottom, in decreasing order of precedence .

expression 1 expression

false t rue
t rue false

Fig. 2 .30 (log ica l negation) operator truth table.

Chapter 2 Control Structu res 1 27

Operators Associativity Type

() left to right parentheses

++ stat i c _cast <type> () left to right unary

++ + right to left unary

* / % left to right multipl icative

+ left to right additive

« » left to right insertion/extraction

< < = > > = left to right

! = left to right

&:&: left to right

I I left to right

? : right to left

+= * = / = %= right to left

left to right

Fig. 2.3 1 Operator precedence and associativity .

relational

equality

logical AND

logical OR
conditional

assignment

comma

2.20 Confusing Equality (==) and Assignment (=) Operators
There is one type of error that C++ programmers, no matter how experienced, tend to make

so frequently that we felt it required a separate section . That error is accidentally swapping

the operators == (equality) and = (assignment) . What makes these swaps so damaging is

the fact that they ordinaril y do not cause syntax errors . Rather, statements with these errors

tend to compile correctly and the programs run to completion, probably generating incor

rect results through run-time logic errors . [Note: Some compilers issue a warning when =

is used in a context where = = normal ly is expected.]

There are two aspects o f C++ that cause these problems. O n e is that a n y expression

that produces a value can be used in the decis ion portion of any control structure . If the

value of the expression is zero, it is treated as false, and if the value i s nonzero, i t is

treated as t rue. The second is that C++ assignments produce a value-namely , the value

assigned to the variable on the left side of the assignment operator. For example, suppose

we intend to write

if (payCode 4)
cout « " You get a bonus ! " « endl ;

but we accidentally write

if (payCode = 4)
cout « " You get a bonus ! " « endl ;

The first i f structure properly awards a bonus to the person whose paycode is equal to

4. The second i f structure-the one with the error--evaluates the assignment expression

in the i f condition to the constant 4. Any nonzero value i s interpreted as t rue, so the con-

1 28 Control Structures Chapter 2

dition in th is i f structure is always true and the person always receives a bonus regard
less of what the actual paycode i s ! Even worse, the paycode has been modified when it was
only supposed to be exami ned !

Common Programming Error 2.25

Using operator == for assignment and using operator = for equality are logic errors.

Programmers normally write conditions such as x == 7 with the variable name on the left

and the constant on the right. By reversing these so that the constant is on the left and the

variable name is on the right, as in 7 == x, the programmer who accidentally replaces the

== operator with = will be protected by the compiler. The compiler treats this as a syntax

error because only a variable name can be placed on the left-hand side of an assignment

statement. This will prevent the potential devastation of a run-time logic error.

Variable names are said to be Ivalues (for "left values") because they can be used on

the left side of an assignment operator. Constants are said to be rvalues (for "right values")

because they can be used on only the right side of an assignment operator. Note that Ivalues

can also be used as rvalues, but not vice versa.

There is another equal ly unpleasant situation. Suppose the programmer wants to assign

a value to a variable with a simple statement l ike

x = 1 ;

but instead writes

x = = 1 ;

Here, too, this is not a syntax error. Rather, the compiler simply evaluates the conditional ex

pression. If x i s equal to 1, the condition is true and the expression evaluates to the value

t rue. [f x is not equal to 1, the condition is fal se and the expression evaluates to the value

fal se. Regardless of the expression ' s value, there is no assignment operator, so the value

simply is lost. The value of x remains unaltered, probably causing an execution-time logic

error. Unfortunately, we do not have a handy trick avai lable to help you with this problem !

Use your text editor to search for all occurrences of = in your program and check that you

have the correct operator in each place.

2.21 Structured-Programming Summary

Just as architects design bui ldings by employing the col lective wisdom of their profession,

so should programmers design programs. Our field is younger than architecture is and our

col lecti ve wisdom is considerably sparser. We have learned that structured programming

produces programs that are easier than unstructured programs to understand, test, debug,

modify, and even prove correct in a mathematical sense.

Figure 2.32 uses activ ity diagrams to summarize C++ ' s control structures . The init ial

and fi nal states indicate the single entry point and the single exit point of each control struc

ture . Arbitrari ly connecting individual symbols in an activity diagram can lead to unstruc

tured programs . Therefore, the programming profession has chosen a l imited set of control

structures that can be combined in only two simple ways to build structured programs.

Chapter 2

Sequence
if structure

(single selection)

i f/ e l s e structure
(double selection)

Selection

[f]

Control Structures

swi tch structure
(mult iple selection)

129

.�------------------�

whi l e structure

Repetition
do/while structure

[f]�

for structure

Fig. 2.32 C+ + ' s s ingle-entry/si ngle-exit sequence, selection and repetition
structures.

For simplicity, only single-entry/single-exit control structures are used--there is only

one way to enter and on ly one way to exit each control structure . Connecting control struc

tures in sequence to form structured programs is s imple--the final state of one control struc

ture is connected to the initial state of the next control structure--that is, the control structures

are placed one after another in a program. We have cal led thi s "control-structure stacking."

The ru les for forming structured programs also al low for control structures to be nested .

Figure 2 .33 shows the rules for forming structured programs. The ru les assume that

action states may be used to indicate any action. The ru les also assume that we begin wi th

1 30 Control Structures Chapter 2

the s implest activity diagram (Fig. 2 .34) consisting of only an initial state, an action state,

a final state and transition arrows.

Applying the rules of Fig. 2.33 always results in an activity diagram with a neat,

building-block appearance. For example, repeatedly applying rule 2 to the simplest activity

diagram results in an activ i ty diagram containing many action states in sequence

(Fig. 2 . 35) . Rule 2 generates a stack of control structures, so let us call rule 2 the stacking

rule. [Note: The vertical dashed l ines in Fig. 2 .35 are not part of the UML. We use them to

separate the four activity diagrams that demonstrate rule 2 of Fig. 2 .33 being appl ied .]

Rules for Forming Structured Programs

I) Begin with the "simplest activity diagram" (Fig. 2.34).
2) Any action state can be replaced by two action states in sequence.

3) Any action state can be replaced by any control structure (sequence, i f , i f/e l se,
swit ch, whi le, do/while or for).

4) Rules 2 and 3 can be applied as often as you l ike and in any order.

Fig. 2.33 Rules for forming structured programs.

Fig. 2.34 S implest activity d iagram.

F i g . 2.35 Repeatedly applying rule 2 of Fig . 2.33 to the s implest activity d iagra m .

Chapter 2 Control Structu res 131

Rule 3 is cal led the nesting rule. Repeatedly applying ru le 3 to the s implest activity dia

gram results in an activity diagram with neatly nested control structures . For example, in

F ig . 2 .36 , the action state in the simplest activity diagram is rep laced with a double-selec

tion (i f/e l se) structure . Then rule 3 i s applied again to the action states in the double

selection structure, replacing each of these action states with a double-selection structure .

The dashed action-state symbols around each of the double-selection structures represent

the action state that was replaced in the original s implest activity diagram . [Note: The

/
/

/
-/-

/ /
/ _ J _ _

/

/ I [f) [t)
!)-----,

' I
I I
\ \ '-------,----'
\ \

\\ -

/

" /
/

I

[f]

- � '-r--,----'

\

I

\

[f)

\
\

[t) \

\ -J I
\
\
\

\
\
f -

/

Fig. 2.36 Applying ru le 3 of F ig , 2 ,33 to the s implest activity d iagra m ,

1 32 Control Structures Chapter 2

dashed arrows and dashed action state symbols shown in Fig. 2 .36 are not part of the UML.

They are used here as pedagogic devices to i l lustrate that any action state may be replaced

with a control structure .]

Ru le 4 generates larger, more involved and more deeply nested structures . The dia

grams that emerge from applying the rules in Fig. 2 .33 constitute the set of a l l possible

activity diagrams and hence the set of al l possible structured programs . The beauty of the

structured approach is that we use only seven simple single-entry/single-exit control struc

tures and assemble them in only two simple ways.

If the rules in Fig. 2 .33 are fol lowed, an activity diagram with i l legal syntax (such as

that in Fig. 2 .37) cannot be created . If you are uncertain about whether a particular diagram

is legal , apply the rules of Fig. 2 .33 in reverse to reduce the diagram to the s implest activity

diagram. If the diagram is reducible to the s implest activity diagram, the original diagram

is structured; otherwise, it is not.

Structured programming promotes simplicity. Bohm and Jacopini have given us the

result that only three forms of control are needed:

Sequence

Selection

Repetition

The sequence structure i s trivial . S imply list the statements to execute in the order in which

they should execute.

Selection i s implemented in one of three ways :

if structure (s ingle selection)

i f/e l s e structure (double selection)

swi tch structure (multiple selection)

In fact , it i s straightforward to prove that the simple if structure i s sufficient to provide any

form of selection--everything that can be done with the i f/el s e structure and the

swi tch structure can be implemented by combining if structures (although perhaps not

as c learly and efficiently) .

F ig . 2 .37 Activity diagram with i l legal syntax.

Chapter 2

Repetition is implemented in one of three ways :

whi l e structure

do/wh i l e structure

for structure

Control Structures 133

It i s straightforward to prove that the whi l e structure is sufficient to provide any form of

repetition. Everything that can be done with the do/while structure and the for structure

can be done with the whi le structure (although perhaps not as smooth ly) .

Combining these results i l lustrates that any form of control ever needed in a C++ pro-

gram can be expressed in terms of the fol lowing:

sequence

i f structure (selection)

whi l e structure (repetition)

and that these control structures can be combined in only two ways-stacking and nesting.

Indeed, structured programming promotes simpl icity.

This chapter discussed how to compose programs from control structures containing

action states and decisions. In Chapter 3 , we wil l introduce another program-structuring unit

called the function. We will learn to compose large programs by combining functions that, in

turn, are composed of control structures. We also wil l discuss how functions promote soft

ware reusabi l ity. In Chapter 6, we wi l l introduce C++ ' s other program-structuring unit, cal led

the class. We then create objects from classes and proceed with our treatment of object-ori

ented programming. Now, we continue our introduction to object technology by introducing

a problem that the reader will attack with the techniques of object-oriented design.

2.22 (Optional Case Study) Thinking About Obiects: Identifying
a System's Classes from a Problem Statemenf4

Now we begin our optional, object-oriented design/implementation case study. These

"Thinking About Objects" sections at the ends of this and the next several chapters ease

you into object orientation by examjning an elevator-simulation case study . This case study

provides you with a substantia l , careful ly paced, complete design and implementation ex

perience. In Chapter 2-Chapter 5, we perform the various steps of an object-oriented de

sign (OOD) , using the UML. In Chapter 6, Chapter 7 and Chapter 9, we impl ement the

elevator s imulator, using the techniques of object-oriented programming (OOP) in C++.

We present this case study in a fu l ly solved format. This i s not an exercise ; rather, i t i s an

end-to-end learning experience that concl udes with a detailed walkthrough of the C++
code. We have provided this case study so you can become accustomed to the kinds of sub

stantial problems that are attacked in industry .

Problem Statement

A company intends to build a two-floor office building and equip it with an elevator. The

company wants you to develop an object-oriented software simulator in C++ that mode ls

the operation of the elevator to determine whether the elevator suits the company ' s needs.

4. The terminology for the optional "Thinking About Objects" sections appears at the end of the ter
minology section for each chapter.

134 Control Structu res Chapter 2

Your s imulator should include a clock that begins with its t ime, in seconds, set to zero .

The clock ticks (increments the time by one) every second, but it does not keep track of

hours and minutes. Your s imulator also should include a scheduler that begins the day by

schedul ing two times randomly: the time when a person first steps onto floor 1 and presses

the button on that floor to summon the elevator, and the time when a person first steps onto

floor 2 and presses the button on that floor to summon the elevator. Each of these times i s

a random integer in the range from 5 to 2 0 seconds, inclusive (i . e . , 5 , 6 , 7 , . . . , 20) . [Note:

We discuss how to schedule random times in Chapter 3 .] When the clock time equaJs the
earlier of these two times, the scheduler creates a person, who then walks onto the appro

priate floor and presses the floor button . [Note: I t is possible that these two randomly sched

uled times wi l l be identical , in which case people step onto both floors and press both floor

buttons at the same time .] The floor button i l luminates, indicating that it has been pressed.

[Note: The i l lumination of the floor button occurs automatical ly when the button i s pressed

and needs no programming; the l ight built into the button turns off automatically when the

button is reset .] At the beginning of the simulation, the elevator starts the day waiting with

its door c losed on floor 1 . To conserve energy, the elevator moves only when necessary .

The elevator alternates directions between moving up and moving down.

For s implicity, the elevator and each of the floors have a capacity of one person. The

scheduler first verifies that a floor is unoccupied before creating a person to walk onto that

floor. If the floor is occupied, the scheduler delays creating the person by one second (thus

al lowing the elevator an opportunity to pick up the person and move to the floor) . After a

person walks onto a floor, the scheduler creates the next random time (between 5 and 20

seconds into the future) for a person to walk onto that floor and press the floor button.

When the elevator arrives at a floor, it resets the elevator button and sounds the ele

vator bell (which is inside the elevator). The elevator then signal s its arrival to the floor.

The floor, in response, resets the floor button and turns on the floor' s elevator-arrival l ight.

The elevator then opens its door. [Note: The door on the floor opens automatical ly with the

elevator door and needs no programming.] The elevator' s passenger, if there is one, exits

the elevator, and a person, if there i s one waiting on that floor, enters the elevator. Although

each floor has a capacity of one person, assume there is enough room on each floor for a

person to wait on that floor while the elevator' s passenger exits .

A person entering the elevator presses the elevator button, which i l luminates (automat

ical ly, without programming) when pressed and turns off when the elevator arrives on the

floor and resets the elevator button. [Note: Because the bui lding has only two floors , only
one elevator button is necessary ; this button notifies the elevator to move to the other floor .]

Next, the elevator closes its door and begins moving to the other floor. When the elevator

arrives at a floor, if a person does not enter the elevator and the floor button on the other

floor has not been pressed, the elevator closes its door and remains on that floor unti l

another person presses a button on a floor.

For s impl icity, assume that all the activ ities that happen , from when the elevator

reaches a floor unti l the elevator closes its door, take zero t ime. [Note: Although these

activities take zero time, they sti l l occur sequential ly ; e .g . , the elevator door must open

before the passenger exits the e levator.] The elevator takes five seconds to move from one

floor to the other. Once per second, the simulator provides the time to the scheduler and

to the elevator. The scheduler and elevator use the time to determine what actions each

must take at that particu lar time, (e .g . , the scheduler might determine that it i s time to

Chapter 2 Control Structu res 135

create a person , and the elevator, if moving, might determine that it is time to arrive at its

destination floor) .

The simulator should display messages on the screen that describe the activities that

occur in the system. These include a person pressing a floor button, the elevator arriving on

a floor, the clock ticking, a person entering the elevator, etc . The output should resemble

the following (which i s a 30-second sample) :

* * * ELEVATOR S IMULATION BEGINS * * *

TIME : 1
elevator at rest on f loor 1

TIME : 2
elevator at rest on f loor 1

TIME : 3

elevator at re st on floor 1

TIME : 4
e levator at res t on f loor 1

TIME : 5

scheduler c reate s person 1
person 1 steps onto f loor 2
person 1 pre s s e s floor button on floor 2
f loor 2 button summons elevator
(scheduler s chedules next person for f loor 2 at t ime 1 1)
elevator begins moving up t o f loor 2 (arrive s at t ime 1 0)

TIME : 6
scheduler c reates person 2
person 2 s t eps onto f loor 1
person 2 pre s s e s floor but ton on f loor 1
floor 1 but ton summons elevator
(scheduler schedules next person for floor 1 at t ime 24)
elevator moving up

TIME : 7
elevator moving up

TIME : 8
e l evator moving up

TIME : 9
elevator moving up

TIME : 1 0
elevator arrives on f l oor 2
elevator re s e t s i t s button
elevator rings i t s bel l
f l oor 2 res e t s i t s button
f loor 2 l ight turns on
elevator opens i t s door on f loor 2

136 Control Structures

person 1 enters elevator from floor 2
person 1 presses elevator button
e levator button t e l l s elevator to prepare to leave
f l oor 2 l i ght turns o f f
e levator c loses i t s door o n floor 2
e l evator begins moving down to floor 1 (arrive s at t ime 1 5)

TIME : 1 1

scheduler c reates person 3

person 3 steps onto f loor 2
person 3 presses f loor button on floor 2
f loor 2 button summons elevator
(scheduler schedules next person for f loor 2 at t ime 2 7)
elevator moving down

TIME : 1 2
elevator moving down

TIME : 1 3

e levator moving down

TIME : 14

elevator moving down

TIME : 1 5

elevator arrives o n f loor 1

elevator resets i t s but ton
elevator rings i t s bel l
f loor 1 resets i t s button
f l oor 1 l i ght turns on
elevator opens i t s door on f loor 1

person 1 exi t s elevator on f loor 1

person 2 enters elevator from floor 1

person 2 presses elevator button
elevator button tel l s elevator to prepare to leave
f loor 1 l i ght turns o f f
e levator c loses i t s door o n f loor 1

elevator begins moving up to floor 2 (arrives at t ime 2 0)

TIME : 1 6

elevator moving up

TIME : 17
elevator moving up

TIME : 1 8
elevator moving up

TIME : 1 9
e levator moving up

TIME : 2 0
e levator arrives on f l oor 2
e l evator resets its button

Chapter 2

Chapter 2

elevator rings i t s be l l
f l oor 2 res e t s i t s button
f loor 2 l i ght turns on
elevator opens i t s door on f loor 2

person 2 exit s elevator on floor 2

person 3 enters e levator from f loor 2

person 3 pre s s e s e levator button

Control Structures

e l evator button tel l s elevator to prepare to leave
f loor 2 l i ght turns o f f
elevator c l o s e s i t s door o n floor 2

elevator begins moving down to f l oor 1 (arrives at t ime 2 5)

TIME: 2 1

elevator moving down

TIME: 2 2

elevator moving down

TIME: 2 3
elevator moving down

TIME: 2 4
scheduler c reate s person 4
person 4 steps onto f loor 1

person 4 pre s s e s f l oor button on floor 1

f loor 1 butt on summons elevator
(scheduler schedules next person for floor 1 at t ime 4 3)
elevator moving down

TIME: 2 5

elevator arrives on f loor 1

elevator reset s i t s button
elevator rings i t s be l l
f loor 1 reset s i t s but ton
f loor 1 l i ght turns on
elevator opens i t s door on f loor 1

person 3 exit s elevator on floor 1

person 4 enters elevator f rom f l oor 1

person 4 pre s s e s elevator button
elevator button t e l l s elevator to prepare to leave
f loor 1 l i ght turns o f f
elevator c l o s e s i t s door o n f loor 1

e levator begins moving up to f l oor 2 (arrives at t ime 3 0)

TIME: 2 6

elevator moving up

TIME: 2 7
scheduler c reate s person 5

person 5 steps onto f loor 2

person 5 pre s s e s f loor button on floor 2

f l oor 2 button summons elevator
(scheduler s chedules next person for f loor 2 at t ime 4 7)

elevator moving up

137

1 38 Control Structu res

TIME : 2 8

e levator moving up

TIME : 2 9

e levator moving up

TIME : 3 0

e levator arrives on f l oor 2

elevator re sets i t s but ton
e levator rings i t s bel l
f loor 2 resets i t s button
f l oor 2 l i ght turns on
elevator opens i t s door on f loor 2

person 4 exit s elevator on floor 2

person 5 enters elevator from f loor 2

person 5 presses elevator button
e levator button tel l s e levator to prepare to leave
f l oor 2 l i ght turns o f f
elevator c loses i t s door o n f loor 2

elevator begins moving down to f loor 1 (arrive s at t ime 3 5)

* * * ELEVATOR SIMULATION ENDS * * *

Chapter 2

Our goal (over these "Thinking About Objects" sections in Chapter 2-Chapter 7 and

in Chapter 9) is to implement a working software simulator that models the operation of the

elevator for the number of seconds entered by the simulator user.

Analyzing and Designing the System

In this and the next several "Thinking About Objects" sections, we perform the steps of an

object-oriented design process for the elevator system. The UML is designed for use with

any OOAD process-many such processes exist. One popular method i s the Rational Uni

fied Process™ developed by Rational Software Corporation . For this case study, we

present our own, simplified design process for your first OODIUML experience.

Before we begin , we must examine the nature of simulations . A simulation consists of

two portions. One contains all the elements that belong to the world we want to simulate .

These elements include the elevator, the door, the floors, the buttons and the l ights. We
refer to these elements collecti vely as the model. The other portion contains all the elements

needed to simulate this world. These elements include the clock and the scheduler. We refer

to these elements collectively as the controller. We keep these two portions in mind as we

design our system.

Use-Case Diagrams

When developers begin a project, they rarely start with a detailed problem statement, such

as the one we have provided at the beginning of this section (Section 2 .22) . This document

and others usually are the result of the object-oriented analysis (OOA) phase. In this phase,

you interview the people who want you to build the system and the people who eventuall y

w i l l use the system. You use the information gained i n these interviews t o compile a l ist of

system requirements . These requirements guide you and your fellow developers as you de-

Cha pter 2 Control Structu res 1 39

sign the system. In our case study, the problem statement contains a summary of the system

requirements for the elevator system. The output of the analysis phase is intended to specify

c learly what the system is supposed to do. The output of the design phase i s intended to

specify how the system should be constructed to do what is needed.

The UML provides the use-case diagram to fac i li tate the process of requirements gath

ering. The use-case diagram model s the interactions between the system' s external c lients

and the use cases of the system. Each use case represents a different capab i lity that the

system provides to its c lients. For example, in an automated-teller-machine system, the

bank customer interacts wi th the system through the use cases "Withdraw funds," "Deposit

funds" and "Query account ."

Figure 2.38 shows the use-case diagram for the elevator system. The stick figure rep

resents an actor. An actor defines the roles that an external entity, such as a person or

another system, p lays when interacting with the system. The only actors in our system are

the people who want to ride the elevator. We therefore model one actor cal led "Person ."

The actor' s "name" appears underneath the st ick figure .

The system box (i . e . , the enclosing rectangle i n the figure) contains the use cases for

the system. A ful l y formed use-case diagram does not require a system box. However, the

UML allows the designer the option to include a system box whose title provides more

i nformation about the system. In our example, the box is l abeled "Elevator System." This

tit le shows that this use-case diagram focuses on the behaviors of the system we want to

simulate (i . e . , the elevator transporting people), as opposed to the behaviors of the simula

tion (i . e . , creating people and scheduling arrivals) .

The UML models each use case as an oval . In our simple system, external entities use

the elevator for only one purpose: to move to another floor. The system provides only one

capabi l ity to its users ; therefore , "Move to another floor" i s the only use case in our elevator

system.

The use-case diagram acts as a key form of communication between the c l ient and the

system buil ders . As the system evolves, the use-case diagram helps ensure that all the c l i

ents ' needs are met . The goal of the use-case diagram i s to show the kinds of interactions

users have with a system without providing the detail s of those interactions. Our case study

contains only one use case. In larger systems, use-case diagrams are indispensable tools

that help system designers remain focused on satisfying the users ' needs.

Elevator System

Move to another floor

Person

Fig. 2.38 Use-case d iagram for elevator system .

1 40 Control Structures Chapter 2

Identifying the Classes in a System

The next step of our OOD process is to identify the classes in our problem. We eventually

describe these classes in a formal way and implement them in C++. (We begin i mplement

ing the elevator simulator in C++ in Chapter 6.) First, we review the problem statement and

locate all the nouns; with high likelihood, these represent most of the classes (or instances

of classes) necessary to implement the elevator simulator. Figure 2 .39 i s a list of these

nouns .

We extract only the nouns that perform important duties i n our system. For this reason,

we omit the following:

company

s imulator

time

energy

capacity

Ust of nouns in the problem statement

company

building

elevator

simulator

c lock

time

scheduler

person

floor I
floor button

floor 2
elevator door

energy

capacity

elevator button

e levator bel l

floor's e levator arrival l ight

person waiting on a floor

elevator's passenger

Fig. 2.39 List of nouns in problem statement .

Chapter 2 Control Structures 141

We do not need to model "company" as a class, because the company is not part of the

simulation; the company simply wants us to model the e levator. The "simulator" i s our

entire C++ program, not necessari ly an individual class . The "time" is a property of the

c lock, not an entity itself. We do not model "energy" in our simulation, and "capacity" is a

property of the elevator and of the floor-not a separate entity .

We determine the c lasses for our system by fi l tering the remaining nouns into catego

ries. To do this, we can analyze the noun phrases for simi larity . For example, the noun

phrases "floor I" and "floor 2" each refer to a floor. From these two noun phrases , we infer

that our system should have some way of representing a building' s floor. We therefore

create a category cal led "floor." We create all the fol lowing categories by combining l ike

noun phrases from the remaining items in Fig. 2 .39

• building

elevator

• clock

scheduler

person (person waiting on a floor, elevator' s passenger)

floor (floor 1, floor 2)

floor button

elevator button

bel l

l ight

• door

These categories are l ikely to be the classes we need to implement our system. Notice

that we create one category for the buttons on the floors and one category for the button on

the elevator. The two types of buttons perform different duties in our s imulation-the but

tons on the floors summon the elevator, and the button in the elevator notifies the elevator

to begin moving to the other floor. In Chapter 9, we explore how to describe the similarities

between the two types of buttons, while keeping their differences separate .

We now can model the classes in our system, using these categories . By convention,

we capitalize c lass names. If the name of a class contains more than one word, we concat

enate the words and capitalize each word (e .g . , Mult ipl eWordName) . Using this con

vention, we create classes Elevator, Clock, Scheduler, Person, Floor, Door,

Bui lding, FloorButton, ElevatorButton, Bel l and Light . We construct our

system, using all these c lasses as building blocks . Before we begin building the system,

however, we must gain a better understanding of how the c lasses relate to one another.

Class Diagrams

The UML enables us to model the c lasses in the elevator system and their relationships, via

the class diagram. Figure 2 .40 shows how to represent a c lass with the UML. Here, we

model class E l evator. I n a class diagram, each class i s modeled as a rectangle . The UML

allows us to divide each rectangle into three parts. The top part contains the name of the

class .

142 Control Structures

Fig. 2.40 Representing a c lass in the UML.

Chapter 2

The middle part contains the class ' s attributes (i . e . , the properties a c lass possesses) .

We discuss attributes in the "Thinking About Objects" section at the end of Chapter 3 . The

bottom contains the class ' s operations (i . e . , the services a c lass provides to other classes) .

We discuss operations i n the "Thinking About Objects" section at the end of Chapter 4 .

Classes can relate to one another via associations. Figure 2.4 1 shows how classes

Bui lding, Elevator and Floor relate to one another. Notice that we have not divided

the rectangles i n this diagram into three sections . The UML allows the suppression of c lass

symbols i n this manner to create more readable diagrams.

In thi s c lass diagram, a sol id l ine that connects c lasses represents an association-a

simple relationship among c lasses. The numbers along the l ines near the c lass rectangles

express multiplicity values. Multiplicity values indicate how many objects of a c lass partic

ipate i n the association. From the diagram, we see that two objects of c lass Floor partic

ipate i n an association with one object of class Bui lding. Therefore, class Bui lding

has a one-to-two relationship with class Floor; we also can say that c lass Floor has a

two-to-one relationship with class Building. The diagram also models a one-fo-one

rel ationship between classes Bui lding and Elevator. Using the UML, we can model

many types of multipl icity. Figure 2 .42 shows common multiplicity values and how to rep

resent them.

An association can be named. For example, the word "Services" above the l ine con

necting c lasses Floor and E l evator describes that association-the arrow shows the

direction of the association. This part of the diagram reads : "One object of c lass E l e

vator services two objects o f class Floor."

2
.---L-=FO:-'o-o-r -----, 2

Bui lding

.... Services

Fig. 2.41 Associations between classes in a c lass d iagra m .

Chapter 2 Control Structu res 1 43

The sol id diamond attached to the association lines of class Bui lding indicates that

class Bui lding has a composition relationship with classes Floor and Elevator. Com

position implies a whole/part relationship. The class that has the composition symbol (the

solid diamond) on its end of the association line is the whole (i .e . , class Bui lding) ; the class

on the other end of the association line is the part (i .e . , classes Floor and Elevator). 5
Figure 2 .43 shows the full class diagram for the elevator system. All the c lasses we cre

ated are modeled, as are the relationships between these classes. [Note: In Chapter 9, we

expand our class diagram by using the object-oriented concept of inheritance .]

Class Bui l ding i s represented near the top of the diagram and is composed of four

classes, i ncluding C lock and Scheduler. These two classes compose the controller por

tion of the simulation. The composite relationship between class Bui l ding and classes

Clock and Scheduler represents a design decision on our part. We consider class

Bui lding to be part of both the model and the controller portions of our simulation. In

our design, we give class Bui lding the responsibil ity of running the s imulation. Class

Bui lding also i s composed of class Elevator and class Floor (notice the one-to-two

relationship between class Bui lding and class Floor).

Classes Floor and Elevator are modeled near the bottom of the diagram. Class

Floor i s composed of one object each of classes Light and FloorButton. Class

Elevator is composed of one object each of class ElevatorButton, class Door and

class Bel l . Notice that we model the composite objects of classes Floor and Elevator

differently from the way we model the composite objects of class Bui lding. Whereas

class Bui l ding has a separate diamond symbol for each composite relationship, classes

Floor and Bui lding have one diamond symbol whose line branches into three com

posite objects. The two representations are equivalent. The way we represent composition

for classes Elevator and Floor allows us to make the diagram more readable by

reducing the number of symbols .

Symbol

o

1

m

o • • 1

m • • n

*

0 • • *

1 . . *

Fig. 2.42

Meaning

None.

One.

An integer value .

Zero or one.

At least m , but not more than n.

Any non-negative integer.

Zero or more (identical to the value *)

O n e or more

M u lt ip l iC ity values.

S . According to t h e UML 1 .4 specifications, c lasses in a composition relationship observe t h e fol lowing three
properties: I) only one class in the relationship may represent the whole (i . e . , the diamond can be placed on
only one end of the association l ine) ; 2) composition i mplies coincident l ifetimes of the parts with the whole,
and the whole is responsible for the creation and destruction of its parts; 3) a part may belong to only one whole
at a time, although the part may be removed and attached to another whole, which then assumes responsibi l i ty
for the part.

1 44 Control Structures

Scheduler

'"
Q) -0
!!! ()
T 0, , * 0" 1 r----'-----, 0" 1
Person

occupant passenger

- - - - - {xor}. - - - - -

2
2 ... Services

2 r--=-=:"'::':':'::':":':'-=-----'
r'-'----=-.L---,

Light

Door

Fig. 2.43 Full class diagram for elevator simulation.

Chapter 2

The c lasses involved in an association also can have roles . Roles help c larify the rel a

tionship between two classes. For example, c lass Person plays the "occupant" role in its

association with c lass Floor (because the person occupies the floor while waiting for the

elevator) . Class Person plays the "passenger" role in its association with c lass E l e

vator. In a class diagram, the name of a class 's role is placed on either side o f the associ
ation l ine, near the c lass 's rectangle. Each class in an association can play a different role.

The association between c lass Person and class Floor indicates that zero or one

objects of class Person can relate to an object of class Floor. Zero or one objects of c lass

Person also can relate to an object of class Elevator. The dashed l ine that bridges these

two association lines indicates a constraint on the relationship between c lasses Person,

Floor and Elevator. The constraint indicates that an object of class Person can par

ticipate in a relationship with an object of class Floor or with an object of c lass E l e

vator, but not with both objects at the same time. The notation for this relationship i s the

word "xor" (which stands for "exclusive or") placed inside braces.6 The association

between c lass Scheduler and class Person states that one object of c lass Scheduler

creates zero or more objects of class Person.

Chapter 2 Control Structures 145

Object Diagrams

The UML also defines object diagrams, which are similar to c lass diagrams except that

they model objects and links . Links are simple relationships between obj ects-associations

are to classes as l i nks are to objects. Like class diagrams, object diagrams model the struc

ture of the system. Object diagrams present a snapshot of the structure while the system i s

running-thi s provides information about which objects participate i n the system at a spe

cific point in time. Modelers do not use object diagrams often . The UML specification

states that object diagrams often are used to model examples of data structures (i . e . , objects

that store collections of data and provide operations for manipulating data) . A modeler also

might use an object diagram to model a complex configuration of interrelated objects. We

present an example of an object diagram in this section to introduce the diagram' s syntax .

When modell ing a system, it is not necessary to include every type of diagram-the mod

eler should provide enough i nformation so that the system may be implemented.

Figure 2 .44 models a snapshot of the system when no one is i n the building (i . e . , no

objects of class Person exist i n the system at this point in time) . Object names usually are

written in the form: obj ectName : Clas sName. The first word in an object name i s

not capitalized, but subsequent words are . A l l object names in a n object diagram are under

l ined. We omit the object name for some of the objects in the diagram (e .g . , objects of class

FloorBut ton) . In large systems, many names of objects can be used in the model . This

can cause c luttered, hard-to-read diagrams. If the name of a particular object i s unknown,

or if i t i s not necessary to include the name (i .e . , we care about only the type of the object),

we may omit the object name. In this instance, we display only the colon and the class

name.

I ; Scheduler

'"
(])
u .�
(])

C/)
"

I floor 1 ; Floor

I

I
I �
J.

I §
E
E
:J I C/)

; Bui lding

I
; E levator

I
I I � I I
I ; E levatorButton

'"
(])
u .�
(])

C/)
"

I ! § I floor2 ; F loor I
E
E
� I I I ; FloorButton I I ; F loorButton I l ;J.igb1 I

Fig. 2.44 Object diagram of empty building.

I

6. Constraints in UML diagrams can be written with the Object Constraint Language (OCL). The OCL
was created so that modelers could express constrai nts on a system in a c learly defined way. To learn more,
visit www- 4 • ibm . com/ software/ ad/ standards /ocl . html .

146 Control Structu res Chapter 2

Now we have identified the classes for this system (although we might discover others

in later phases of the design process) . We also have examined the system' s use case. In the

"Thinking About Objects" section at the end of Chapter 3, we use this knowledge to

examine how the system changes over time. As we expand our knowledge, we will dis

cover new information that enables us to describe our classes in greater depth .

Notes

l . We discuss how to implement randomness in the next chapter (Chapter 3) , where

we study random-number generation . Random-number generation helps simulate

random processes, such as coin tossing and dice roll ing. I t also helps simulate peo

ple arriving at random to use the elevator.

2. Because the real world is so object-oriented, it is quite natural for you to pursue

this project, even though you have not yet formally studied object orientation .

Questions

1. How might you decide whether the elevator is able to handle the expected traffic

volume?

2 . Why might i t be more complicated to implement a three-story (or taller) building?

3. It i s common for large buildings to have many elevators . We will see in Chapter 6

that, once we have created one elevator object, it is easy to create as many as we

want. What problems and/or opportunities do you foresee in having several eleva

tors, each of which may pick up and discharge passengers at every floor in a large

building?

4. For simplicity, we have given our elevator and each floor a capacity of one pas

senger. What problems and/or opportunities do you foresee in being able to in

crease these capacities?

SUMMARY
• A procedure for solving a problem in terms of the actions t o be executed a n d the order in which

these actions should be executed is called an algorithm.

• Specifying the order in which statements are to be executed in a computer program is called pro

gram control .

• Pseudocode helps the programmer "think out" a program before attempting to write i t in a pro

gramming language such as C++.
• Activity diagrams are part of the Unified Modeling Language (UML)-an industry standard for

modeling software systems.

• An activity diagram model s the workflow (also called the activity) of a software system.

• Activity diagrams are composed of special-purpose symbols, such as action-state symbols, dia

monds and small circles; these symbols are connected by transition arrows that represent the flow

of the activity.

• Like pseudocode, activity diagrams help programmers develop and represent algorithms, although

many programmers prefer pseudocode.

• An action state i s represented as parallel horizontal lines connected at each end with convex arc s .

T h e action expression appears inside the action state.

Cha pter 2 Control Structures 147

o The arrows in the activity diagram are called transition arrows. These arrows model transitions,

which indicate the order i n which the action states are performed.

o The solid circle located at the top of the activity diagram represents the init ial state-the beginning

of the workflow before the program performs the modeled activity.

o The solid circle surrounded by a hollow circle that appears at the bottom of the activ i ty diagram

represents the final state-the end of the workflow after the program performs the activity .

o Rectangles w ith the upper-right corners folded over are called notes in the UML. Notes are ex

planatory remarks that describe the purpose of symbols i n the diagram. A dotted line connects each

note with the element that the note describes .

o Declarations are messages to the compiler tel l ing it the names and attributes of variables and tel l

ing it to reserve space for variables .

o The most important symbol in an activity diagram-the diamond or decis ion symbol-indicates

that a decision is to be made. A decision symbol indicates that the workflow will continue along

a path determined by the associated guard conditions that can be true or false . Each transition ar

row emerging from a decision symbol has a guard condition (specified i n square brackets above

or next to the transition arrow). If a particular guard condition is true, the workflow enters the ac

tion state to which that transition arrow points.

o A selection structure i s used to choose among alternative courses of action .

o The if selection structure executes an indicated action only when the condition i s true.

o The i f/e l s e selection structure specifies separate actions to be executed when the condit ion is

true and when the condition is false .

o Whenever more than one statement is to be executed where normally only a s ingle statement i s

expected, these statements m u s t be enclosed in braces forming a b l o c k (o r compound statement) .

A block can be placed anywhere a single statement can be placed.

o Placing a semicolon (;) where a statement would normally be specifies an e mpty statement.

o A repetition structure specifies that an action is to be repeated while some condition remains true .

o The format for the whi l e repetition structure is

whi le (condition
statement

o A value that contain s a fractional part is referred to as a floating-point number and is represented

approximately by data types such as f loat or double.

o The unary cast operator stat i c_cas t < double > () creates a temporary floati ng-point copy

of its operand.

o C++ provides the arithmetic assignment operators + = , - = , * = , / = and %=, which help abbreviate

certain common expressions.

o C++ provides the i ncrement (++) and decrement (- -) operators to increment or decrement a vari

able by 1 . If the operator i s prefixed to the variable, the variable i s incremented or decremented by

I first, then used i n its expression. If the operator is postfi xed to the variable, the variable i s used

i n its expression, then i ncremented or decremented by I.
o A loop is a group of instructions the computer executes repeatedly until a terminating condition is

satisfied. Two forms of repetition are counter-controlled repetition and sentinel-controlled repetition.

o A loop counter i s used to count repetitions for a group of instructions. It i s i ncremented (or decre

mented) , usually by I , each time the group of instructions is performed.

o Sentinel values general ly are used to control repetition when the precise number of repeti tions is

not known i n advance and the loop includes statements that obtain data each t ime the loop i s per-

148 Control Structures Chapter 2

formed. A sentinel value is entered after al l valid data items have been supplied to the program.

Sentinels should be different from valid data items.

• The for repetition structure handles all the detai ls of counter-control led repetition. The general

format of the for structure is

for (in itialization ; loopContinuationCondition ; increment
statement

where initialization initializes the loop ' s control variable, loopContinuationCondition i s the i s the

condition that determines whether the loop should continue executing and increment increments

the control variable.

• The do/while repetition structure tests the loop-continuation condition at the end of the loop, so

the body of the loop will be executed at least once. The format for the do/whi le structure is

do
statement

whi l e (condition) ;

• The break statement, when executed in one of the repetition structures (for, whi l e and do/
whi le) , causes i mmediate exit from the structure.

• The cont inue statement, when executed in one of the repetition structures (for, whi l e and

do/while) , skips any remai ning statements in the body of the structure and proceeds with the

next iteration of the loop. In a whi l e or do/while structure, execution continues with the next

evaluation of the condition. In a for structure, execution continues with the increment expression

i n the for structure header.

• The swi tch statement handles a series of decisions in which a particular variable or expression

i s tested for values it can assume and different actions are taken . I n most programs, i t i s necessary

to include a break statement after the statements for each case. Several cases can execute the

same statements by listing the case labels together before the statements. The swi tch structure

can test only constant integral expressions. It is not necessary to enclose a multiple-statement

case in braces.

• On UNIX systems and many others, end-of-file is entered by typing the sequence

<ctrl-d>

on a l ine by itself. On Windows, end-of-fi le is entered by typing

<ctrl-z>

possibly fol lowed by pressing the Enter key .

• Logical operators can be used to form complex conditions by combining conditions . The logical

operators are &:&:, I I and ! -logical AND, logical OR and logical NOT (negation) , respectively.

• When used as a condition, any nonzero value implicitly converts to t rue; 0 (zero) implicit ly con

verts to false.

TERMINOLOGY
! operator

&:&: operator

I I operator

++ operator

- - operator

? : operator

action

action/deci sion model

action expression

action state

action-state symbol

activity

Chapter 2

activity diagram

algorithm

arithmetic assignment operators:

+= , - = , * = , /= and %=

ASCII character set

block

body of a loop

bool

break

case label

cast operator

char

cin . get () function

compound statement

conditional operator (? :)

cont inue

control structure

counter-controlled repetition

decision

decision symbol

decrement operator (- -)

default case in switch

definite repetition

definition

delay loop

do/while repetition structure

double

double-selection structure

empty statement (;)

EOF

false

fatal error

field width

final state

f ixed

fixed-point format

f l oat

for repetition structure

garbage value

i f selection structure

i f/e l s e selection structure

increment operator (++)

indefinite repetition

infinite loop

initialization

initial state

integer division

keyword

left

logic error

Control Structures

logical AND (&&)
logical negation (!)

logical operators

logical OR (I I)
long

loop counter

loop-continuation condition

lvalue ("left value")

merge symbol

multiple-selection structure

nested control structures

nonfatal error

note

off-by-one error

parameterized stream manipulator

postdecrement operator

postincrement operator

pow function

predecrement operator

preincrement operator

pseudocode

repetition

rvalue ("right value")

selection

sentinel value

sequential execution

setprec i s ion stream manipulator

setw stream manipulator

short

showpoint

single-entry/single-exit control structures

single-selection structure

stacked control structures

stat ic_cast< type > ()

structured programming

swi tch selection structure

syntax error

ternary operator

top-down, stepwise refinement

transfer of control

transition arrow

true

UML (Unified Modeling Language)

unary operator

undefined value

Unified Modeling Language (UML)

whi le repetition structure

whites pace characters

zero-based counting

149

150 Control Structu res Chapter 2

Terminology for Optional "Thinking About Objects" Section
actor Rational Unified Process
association

association name

class diagram

composition

constraint

rectangle symbol in UML class diagram

role

controller portion of a simulation

link

model portion of a simulation

multiplicity

Object Constraint Language (OCL)

object diagram

object-oriented analysis (OOA)

object-oriented analysis and design (OOAD)

object-oriented design (000)
one-to-one relationship

one-to-two relationship

SELF-REVIEW EXERCISES

software simulator

solid diamond symbol in UML class and

object diagram

solid line symbol in UML class and

object diagram

static structure of a system

system box

system requirements

two-to-one relationship

use case

use case diagram

"what vs. how"

xor

Exercise 2.1-Exercise 2.10 correspond to Section 2.1-Section 2.12.

Exercise 2.ll-Exercise 2.13 correspond to Section 2.13-Section 2.2l.

2. 1 Answer each of the following questions.

a) All programs can be written in terms of three types of control structures: _____ '

________ and ______ __

b) The selection structure is used to execute one action when a condition is

true or a different action when that condition is fal s e.

c) Repeating a set of instructions a specific number of times is called ______ repetition.

d) When it is not known in advance how many times a set of statements will be repeated, a

_____ value can be used to terminate the repetition.

2.2 Write four different C++ statements that each add I to integer variable x.

2.3 Write C++ statements to accomplish each of the following:

a) In one statement, assign the sum of the current value of x and y to z and increment the

value ofx.

b) Determine whether the value of the variable count is greater than 10. If it is, print

"Count i s greater than 10."
c) Decrement the variable x by I, then subtract it from the variable total.

d) Calculate the remainder after q is divided by divi sor and assign the result to q. Write

this statement two different ways.

2.4 Write a C++ statement to accomplish each of the following tasks.

a) Declare variables sum and x to be of type into

b) Initialize variable x to 1.
c) Initialize variable sum to O.
d) Add variable x to variable sum and assign the result to variable sum.

e) Print " The sum i s : " followed by the value of variable sum.

2.5 Combine the statements that you wrote in Exercise 2.4 into a program that calculates and

prints the sum of the integers from I to 10. Use the whi le structure to loop through the calculation

and increment statements. The loop should terminate when the value of x becomes 1 1.

Chapter 2 Control Structures 15 1

2.6 State the values of each variable after the calculation is performed. Assume that, when each

statement begins executing, all variables have the integer value 5.

a) product *= x++;

b) quot ient /= ++x ;

2.7 Write single C++ statements that do the following:

a) Input integer variable x with c in and » .

b) Input integer variable y with cin and » .

c) Initialize integer variable i to l.
d) Initialize integer variable power to 1.
e) Multiply variable power by x and assign the result to power.

f) Increment variable i by l.
g) Determine whether i is less than or equal to y.
h) Output integer variable power with cout and < < .

2.8 Write a C++ program that uses the statements in Exercise 2.7 to calculate x raised to the y
power. The program should have a while repetition structure.

2.9 Identify and correct the errors in each of the following:

a) whi l e (c < = 5) {

product *= c ;

++c ;

b) cin « value ;

c) i f (gender = = 1)
cout « It Woman It « endl ;

e l s e ;

cout « It Manit « endl ;

2. 1 0 What is wrong with the following while repetition structure?

whi l e (z > = 0)
sum += z;

2. 1 1 State whether the following are true or false. If the answer is false, explain why.

a) The default case is required in the swi tch selection structure.

b) The break statement is required in the default case of a swi t ch selection structure to

exit the structure properly.

c) The expression (x > Y && a < b) is true if either the expression x > y is t rue or

the expression a < b is true.

d) An expression containing the I I operator is true if either or both of its operands are

t rue.

2. 1 2 Write a C++ statement or a set of C++ statements to accomplish each of the following:

a) Sum the odd integers between 1 and 99 using a for structure. Assume the integer vari
ables sum and count have been declared.

b) Print the value 333.546372 in a field width of 15 characters with precisions of 1,2
and 3. Print each number on the same line. Left-justify each number in its field. What

three values print?

c) Calculate the value of 2.5 raised to the power 3 using function pow. Print the result with

a precision of 2 in a field width of 10 positions. What prints?

d) Print the integers from I to 20 using a whi le loop and the counter variable x. Assume
that the variable x has been declared, but not initialized. Print only 5 integers per line.

Hint: Use the calculation x % 5. When the value of this is 0, print a newline character;

otherwise, print a tab character.

e) Repeat Exercise 2. 1 2 (d) using a for structure.

152 Control Structures Chapter 2

2.13 Find the error(s) in each of the following code segments and explain how to correct it (them).

a) x = 1;

whi l e (x <= 1 0) ;

x++ ;
}

b) for (y = . 1; y 1= 1 . 0; y += .1)

cout « y « endl;

c) switch (n) {

case 1 :

cout « " The number i s 1 " « endl;

case 2 :

cout « " The number i s 2 " « endl;

break;

default :

cout « " The number i s not 1 or 2 " « endl;

break;

}

d) The following code should print the values I to 10.

n = 1;

whi l e (n < 1 0

cout « n++ « endl;

ANSWERS TO SELF-REVIEW EXERCISES
2.1 a) Sequence, selection and repetition. b) i f /el se. c) Counter-controlled or definite.

d) Sentinel, signal, flag or dummy.

2.2 x = x + 1;

2.3

x += 1;
++x ;
x++ ;

a) z = x++ +
b) i f (count

y;

> 1 0)

cout « " Count

c) total -. --x ;
d) q %= divi sor;

q = q % divi sor;

2.4 a) int sum, x;
b) x - 1;
c) sum = 0;

d) sum += x;
or

sum = sum + x;
e) cout « " The sum

2.5 See the following code:

i s

i s :

1 II Ex . 2 . 5 : ex02_0 5 . cpp

greater than 1 0 " « endl;

" « sum « endl;

2 II Calculate the sum of the integers from 1 to 1 0.
3 . include <iostream>
4

Chapter 2 Control Structures

5
6
7
8
9

1 0
1 1
12
13
1 4
1 5
16
1 7
1 8
1 9
20
21
22
23
24
25
26
27

2.6

2.7

2.8

1
2
3
4
5
6
7
8
9

10
11
12
13

us ing std : : cout;
us ing std : : endl;

II funct i on main begins program execut ion
int main ()
{

int sum;
int x;

x = 1;
sum 0;

whi l e (x <= 1 0) {
sum += x;
++x ;

} II end whi l e

II stores sum of integers 1 to 10
II counter

II count from 1
II initial i ze s um

II add x to s um
I I increment x

cout « "The sum i s : " « sum « endl;

return 0; II indicate succ e s s ful terminat i on

} II end funct ion main

a) product = 2 5 , x

b) quot ient = 0 , x

a) c in » x;
b) cin » y;

c) i = 1 ;

d) power = 1;

e) power *= x;

or

power = power * x ;

t) ++i ;
g) i f (i <= y)

6 ;

6 ;

h) cout « power « end1;

See the following code:

II Ex . 2 . 8 : ex02_0 8 . cpp
II Rai s e x to the y power .
#inc l ude <iostream>

u sing std : : cout;
u sing std : : c in;
using std : : endl;

II funct ion main begins program execut ion
int main ()
{

int x ;
int y;

I I base
II exponent

153

1 54

1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38

2.9

Control Structures Chapter 2

int i ; II count s from 1 to y
int power; / I used to calculate x rai s ed to power y

i = 1 ; / I init iali z e i to begin count ing from 1
power = 1; II ini t iali z e power

cout « " Enter base as an integer : " ; II prompt for base
cin » x; II input base

II prompt for exponent
cout « " Enter exponent as an integer : " ;
cin » y; I I input exponent

II count from 1 to y and mult iply power by x each t ime
whi le (i <= Y) {

power * = x ;
+ + i ;

II end whi le

cout « power « endl; II di splay result

return 0 ; II indicate succe s s ful terminat ion

} II end funct ion main

a) Error: Missing the closing right brace of the whi le body.

Correction: Add closing right brace after the statement ++c ; .

b) Error: Used stream insertion instead of stream extraction.

Correction: Change « to » .
c) Error: Semicolon after else results in a logic error. The second output statement will

always be executed.

Correction: Remove the semicolon after else.

2. 1 0 The value of the variable z is never changed in the whi le structure. Therefore, if the loop

continuation condition (z > = 0) is true, an infinite loop is created. To prevent the infinite loop,

z must be decremented so that it eventually becomes less than O.

2. 1 1 a) False. The de faul t case is optional. If no default action is needed, then there is no need

for a de fault case.
b) False. The break statement is used to exit the swi tch structure. The break statement

is not required when the de fault case is the last case.

c) False. When using the && operator, both of the relational expressions must be true for

the entire expression to be true.

d) True.

2. 1 2 a) sum = 0 ;

for (count = 1 ; count <= 9 9 ; count += 2)

sum += count ;

b) cout « f ixed « le ft

« setprec i s ion (1 « setw (1 5 « 3 3 3 . 546 3 7 2

« setprec i s i on (2 « setw (1 5 « 3 3 3 . 546 3 7 2

« setprec i s ion (3 « setw (1 5 « 3 3 3 . 5 4 6 3 7 2

« endl;

Chapter 2

Output is:

3 3 3 . 5 3 3 3 . 5 5 3 3 3 . 5 4 6

c) cout « f ixed « setprec ision (2)

« setw (1 0) « pow (2 . 5 , 3)

« endl ;

Output is:

1 5 . 6 3

d) x = 1 ;

whi le (x < = 2 0) {

cout « x;

i f (x % 5 = = 0)

cout « endl ;

e l s e

cout « ' \t ' ;

x+ + ;

� for (x = 1 ; x < = 2 0 ; x++) {

cout « x;

}

or

for

if (x % 5 = = 0)

cout « endl ;

e l s e

i f

cout « ' \t ' ;

x 1 ; x < = 2 0 ;

x % 5 -- 0

x++

cout « x « endl ;

e lse

cout « x « ,\t ' ;

)

Control Structu res

2.1 3 a) Error: The semicolon after the whi le header causes an infinite loop.

Correction: Replace the semicolon by a {, or remove both the; and the } .

b) Error: Using a floating-point number to control a for repetition structure.

155

Correction: Use an integer and perform the proper calculation in order to get the values

you desire.

for (y = 1 ; y ! = 1 0 ; y++
cout « (static_cast < double > (y) / 1 0) « endl ;

c) Error: Missing break statement in the statements for the first case.

Correction: Add a break statement at the end of the statements for the first case. Note

that this is not an error if the programmer wants the statement of case 2 : to execute

every time the case 1: statement executes.

d) Error: Improper relational operator used in the while repetition-continuation condition.

Correction: Use < = rather than <, or change 10 to 1 1.

156 Control Structures

EXERCISES
Exercise 2.14-Exercise 2.38 correspond to Section 2.1-Section 2.12.

Exercise 2.39-Exercise 2.63 correspond to Section 2.13-Section 2.21.

2. 1 4 Identify and correct the error(s) in each of the following:

a) i f (age > = 6 5) ;

cout « "Age i s

e l s e

cout « " Age i s

b) i f (age > = 6 5)

cout « "Age i s

e l se ;

cout « "Age i s

c) int x 1 , total ;

whi l e x < = 1 0

total + = x ;

++x;

}
d) Whi l e (x < = 1 0 0

total + = x ;

+ +x ;

e) whi l e (y > 0)

greater than

less than 6 5

greater than

less than 6 5

cout « y « endl ;

+ +y ;

}

or equal

« endl " ;

or equa l

« endl " ;

2.1 5 What does the following program print?

1
2
3
4
5
6
7
8
9

II Ex. 2 . 1 5 : ex0 2_1 5 .cpp
II What does thi s program print?
inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

II funct i on main begins program execut ion
int main ()

{
int y ;
int x = 1;
int total 0 ;

whi l e (x < = 1 0

II declare y
II ini t ial i ze x
II init ial i z e total

) { /I loop 1 0 t i me s

t o

to

y = x * x ; /I perform calculat ion
cout « y « endl ; /I output result
total + = y; /I add y to total
+ +x ; /I increment counter x

} II end whi le

6 5 "

6 5 "

Chapter 2

« endl ;

« endl ;

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
18
1 9
20
21
22
23 cout « " Total is " « total « endl ; II di splay re sult

Chapter 2 Control Structures

24
25 return 0 ; // indicat e successful terminat ion
26
27 } // end funct ion main

For Exercises 2.16 to 2.19, perform each of these steps:
a) Read the problem statement.

b) Formulate the algorithm using pseudocode and top-down, stepwise refinement.

c) Write a C++ program.

d) Test, debug and execute the C++ program.

157

2. 1 6 Drivers are concerned with the mileage obtained by their automobiles. One driver has kept

track of several tankfuls of gasoline by recording miles driven and gallons used for each tankful. De

velop a C++ program that uses a whi l e structure to input the miles driven and gallons used for each

tankful. The program should calculate and display the miles per gallon obtained for each tankful. Af

ter processing all input information, the program should calculate and print the combined miles per

gallon obtained for all tankfuls.

Enter the gal l ons used (-1 to end) : 12 . 8
Enter the mi les driven : 2 8 7
The mi les / gal l on for thi s tank was 2 2 . 42 18 7 5

Enter the gal lons used (-1 t o end) : 10 . 3
Enter the mi l e s driven : 2 0 0
The mi les / gal lon for thi s tank was 19 . 417 47 5

Enter the gal lons used (-1 to end) : 5
Enter the mi l e s dri ven : 12 0
The mi les / gal l on for thi s tank was 2 4 . 0 0 0 0 0 0

Enter the gal lons used (-1 t o end) : -1

The overal l average mi les/gal lon was 2 1 . 6 0 142 3

2. 1 7 Develop a C++ program that will determine whether a department-store customer has ex

ceeded the credit limit on a charge account. For each customer, the following facts are available:

a) Account number (an integer)

b) Balance at the beginning of the month

c) Total of all items charged by this customer this month

d) Total of all credits applied to this customer's account this month

e) Allowed credit limit

The program should use a whi l e structure to input each of these facts, calculate the new bal

ance (= beginning balance + charges - credits) and determine whether the new balance exceeds the

customer's credit limit. For those customers whose credit limit is exceeded, the program should dis

play the customer's account number, credit limit, new balance and the message "Credit limit

exceeded."

158 Control Structures

Enter account number (-1 to end) : 1 0 0
Enter beginning balanc e : 5 3 9 4 . 7 8
Enter total charges : 1 0 0 0 . 0 0
Enter total credi t s : 5 0 0 . 0 0
Enter credit limit : 5 5 0 0 . 0 0
Account : 1 0 0
Credit limi t : 5 5 0 0 . 0 0
Balance : 5 8 9 4 . 7 8
Credit Limit Exceeded .

Enter account number (-1 to end) :
Enter beginning balance : 1 0 0 0 . 0 0
Enter total charge s : 1 2 3 . 45
Enter total credit s : 3 2 1 . 0 0
Enter credit limit : 1 5 0 0 . 0 0

Enter account number (-1 to end) :
Enter beginning balance : 5 0 0 . 0 0
Enter total charge s : 2 7 4 . 7 3
Enter total credit s : 1 0 0 . 0 0
Enter credit l imit : 8 0 0 . 0 0

2 0 0

3 0 0

Enter account number (-1 t o end) : -1

Chapter 2

2. 1 8 One large chemical company pays its salespeople on a commission basis. The salespeople

receive $200 per week plus 9 percent of their gross sales for that week. For example, a salesperson

who sells $5000 worth of chemicals in a week receives $200 plus 9 percent of $5000, or a total of

$650. Develop a C++ program that uses a whi Ie structure to input each salesperson's gross sales for

last week and calculate and display that salesperson's earnings. Process one salesperson's figures at

a time.

Enter sales in dol l ars (-1 to end) : 5 0 0 0 . 0 0
Salary i s : $6 5 0 . 0 0

Enter sales in dol lars (-1 to end) : 6 0 0 0 . 0 0
Salary i s : $7 40 . 0 0

Enter sales in dol lars (-1 to end) : 7 0 0 0 . 0 0
Salary i s : $8 3 0 . 0 0

Enter sales in dol l ars (-1 to end) : -1

2. 1 9 Develop a C++ program that uses a whi le structure to determine the gross pay for each of

several employees. The company pays "straight-time" for the first 40 hours worked by each employee

and pays "time-and-a-half' for all hours worked in excess of 40 hours. You are given a list of the em

ployees of the company, the number of hours each employee worked last week and the hourly rate of

each employee. Your program should input this information for each employee and should determine

and display the employee's gross pay.

Chapter 2

Enter hours worked (-1 to end) : 3 9
Enter hourly rate o f the worker ($0 0 . 0 0) : 1 0 . 0 0
Salary i s $3 9 0 . 0 0

Enter hours worked (-1 to end) : 40
Enter hourl y rate of the worker ($0 0 . 0 0) : 1 0 . 0 0

Salary i s $40 0 . 0 0

Enter hours worked (- 1 to end) : 41
Enter hourly rate of the worker ($0 0 . 0 0) : 1 0 . 0 0
Salary i s $41 5 . 0 0

Enter hours worked (-1 to end) : -1

Control Structu res 159

2.20 The process of finding the largest number (i.e., the maximum of a group of numbers) is used

frequently in computer applications. For example, a program that determines the winner of a sales

contest would input the number of units sold by each salesperson. The salesperson who sells the most

units wins the contest. Write a pseudocode program, then a C++ program that uses a whi l e structure

to determine and print the largest number of 1 0 numbers input by the user. Your program should use

three variables, as follows:

counter : A counter to count to 10 (i.e., to keep track of how many numbers have
been input and to determine when all 1 0 numbers have been processed).

number : The current number input to the program.
largest : The largest number found so far.

2.21 Write a C++ program that uses a whi l e structure and the tab escape sequence \ t to print

the following table of values:

N 1 0 *N 1 0 0 *N 1 0 0 0 *N

1 1 0 1 0 0 1 0 0 0
2 2 0 2 0 0 2 0 0 0
3 3 0 3 0 0 3 0 0 0
4 40 40 0 40 0 0
5 50 5 0 0 5 0 0 0

2.22 Using an approach similar to that in Exercise 2.20, find the two largest values among the 1 0

numbers. [Note : You must input each number only once.]

2.23 The examination-results program of Fig. 2. 1 1 assumes that any value input by the user that

is not a I must be a 2. Modify Fig. 2. 1 1 to validate its inputs. On any input, if the value entered is

other than 1 or 2, keep looping until the user enters a correct value.

2.24 What does the following program print?

, II Ex . 2 . 2 5 : ex0 2_2 5 . cpp
2 II What doe s thi s program print?
3 #inc lude < iostream>
4

160

5
6
7
8
9

10
11
1 2
13
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24

Control Structures

us ing std : : cout ;
us ing std : : endl ;

II funct ion main begins program execution
int main ()
{

int count = 1 ; II init ial i z e count

whi le (count < = 10) { II loop 1 0 t imes

II output l ine of text
cout « (count % 2 ? .,****., : "+ + + + + + + +"

« endl ;
+ +count; II increment count

} II end whi l e

return 0 ; II indicate succes s ful terminat ion

} II end function main

Chapter 2

2.25 What does the following program print?

1
2
3
4
5
6
7
8
9

1 0
11
1 2
1 3
14
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27
28
29
30

II Ex . 2 . 2 5 : ex_0 2_2 5 . cpp
II What does thi s program print?
inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

II funct ion main begins program execut ion
int main ()
{

int row = 1 0 ;
int column;

II initialize row
II dec lare column

whi le (row >=
column .. 1 ;

1) { II loop unt i l row < 1
II set column to 1 as it erat ion begins

whi l e (column <= 10
cout « (row % 2 ? .,< .,
+ +column;

} II end inner while

II loop 10 t imes
" >") ; II output

II increment column

- -row; II decrement row
cout « endl ; II begin new output l ine

} II end outer whi l e

return 0 ; II indicate successful terminat ion

} II end funct ion main

Chapter 2 Control Structu res 16 1

2.26 (Dangling-Else Problem) State the output for each of the following when x is 9 and y is 1 1

and when x is 1 1 and y is 9 . Note that the compiler ignores the indentation i n a C++ program. Also,

the C++ compiler always associates an else with the previous i f unless told to do otherwise by the

placement of braces { }. On first glance, the programmer may not be sure which if and e l s e match,

so this is referred to as the "dangling else" problem. We eliminated the indentation from the following

code to make the problem more challenging. [Hint: Apply indentation conventions you have learned.]

a) i f (x < 1 0)

i f (y > 1 0)

cout « " * * * * * ..
e l s e

cout « "#####"
cout « " $$$$$"

b) i f (x < 1 0) {

i f (y > 1 0)

cout « " * * * * * "

}
e l s e {

cout « "#####"
cout « "$$$$$"
}

« endl ;

« endl ;

« endl ;

« endl ;

« endl ;

« endl ;

2.27 (Another Dangling-ELse Problem) Modify the following code to produce the output shown.

Use proper indentation techniques. You must not make any changes other than inserting braces. The

compiler ignores indentation in a C++ program. We eliminated the indentation from the following

code to make the problem more challenging. [Note: It is possible that no modification is necessary.]

CfNM
$$$$$
&:&:&:&:&:

MeN
r.&:&:&:r.

i f (y = = 8)
i f (x = = 5)
cout « "@@@@@" « endl ;
else
cout « "#####" « endl ;
cout « " $$$$$" « endl ;
cout « "&:&:&:&:&:" « endl ;

a) Assuming x = 5 and y = 8 , the following output is produced.

b) Assuming x = 5 and y = 8, the following output is produced.

c) Assuming x = 5 and y = 8 , the following output is produced.

1 62 Control Structures Chapter 2

d) Assuming x = 5 and y = 7 , the following output is produced. Note: The last three output

statements after the e l se are all part of a block.

IIIII
$$$$$
&:&:&:&:&:

2.28 Write a program that reads in the size of the side of a square and then prints a hollow square

of that size out of asterisks and blanks. Your program should work for squares of all side sizes be

tween 1 and 20. For example, if your program reads a size of 5, it should print

* *
* *
* *

2.29 A palindrome is a number or a text phrase that reads the same backwards as forwards. For

example, each of the following five-digit integers is a palindrome: 1232 1 ,55555,45554 and 1 1 6 1 1 .

Write a program that reads in a five-digit integer and determines whether it is a palindrome. (Hint:

Use the division and modulus operators to separate the number into its individual digits.)

2.30 Input an integer containing only Os and Is (i.e., a "binary" integer) and print its decimal

equivalent. Use the modulus and division operators to pick off the "binary" number's digits one at a

time from right to left. Much like in the decimal number system, where the rightmost digit has a po

sitional value of 1 , the next digit left has a positional value of 1 0, then 100, then 1000, and so on, in

the binary number system, the rightmost digit has a positional value of 1 , the next digit left has a po

sitional value of 2, then 4, then 8, and so on. Thus the decimal number 234 can be interpreted as 4 *

I + 3 * 10+ 2 * 100. The decimal equivalent of binary 1 1 0 1 is I * I + 0 * 2 + I * 4 + I * 8 or I + 0

+ 4 + 8, or 13. [Note: The reader not familiar with binary numbers might wish to refer to Appendix C.]

2.31 Write a program that displays the checkerboard pattern shown below. Your program must

use only three output statements, one of each of the following forms:

cout « "* II;

cout « I ' ;

cout « endl ;

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * * * *

* * * * * * * *
* * * * * • * *

* * * * * * * *
* * * * * * * *

Chapter 2 Control Structures 1 63

2.32 Write a program that prints the powers of the integer 2, namely 2, 4,8, 16,32,64, etc. Your

whi l e loop should not terminate (i.e., you should create an infinite loop). What happens when you

run this program?

2.33 Write a program that reads the radius of a circle (as a double value) and computes and

prints the diameter, the circumference and the area. Use the value 3.14159 for n.

2.34 What is wrong with the following statement? Provide the correct statement to accomplish

what the programmer was probably trying to do.

cout « + + (x + y) ;

2.35 Write a program that reads three nonzero double values and determines and prints whether

they could represent the sides of a triangle.

2.36 Write a program that reads three nonzero integers and determines and prints whether they

could be the sides of a right triangle.

2.37 A company wants to transmit data over the telephone, but is concerned that its phones could

be tapped. All of the data are transmitted as four-digit integers. The company has asked you to write

a program that encrypts the data so that it can be transmitted more securely. Your program should

read a four-digit integer and encrypt it as follows: Replace each digit by (the sum of that digit plus 7)

modulus 10. Then, swap the first digit with the third, swap the second digit with the fourth and print

the encrypted integer. Write a separate program that inputs an encrypted four-digit integer and de

crypts it to form the original number.

2.38 The factorial of a nonnegative integer n is written n! (pronounced "n factorial") and is de

fined as follows:

n! = n· (n - I)· (n - 2)· I (for values of n greater than to I)

and

n! = I (for n = 0 or n = 1).

For example, 5! = 5·4·3·2· I, which is 120. Use whi l e structures in each of the following:

a) Write a program that reads a nonnegative integer and computes and prints its factorial.

b) Write a program that estimates the value of the mathematical constant e by using the for

mula:

e
I 1 I

l+li+2i+f!+'"

c) Write a program that computes the value of ex by using the formula

x
e

2.39 Find the error(s) in each of the following:

a) For (x = 1 0 0 , x > = 1 , x++

cout « x « endl ;

b) The following code should print whether integer value is odd or even:

swi tch (value % 2) {
case 0 :

}

cout « "Even integer" « endl ;
case 1 :

cout « "Odd integer" « endl ;

164 Control Structures Chapter 2

c) The following code should output the odd integers from 19 to 1:

for (x = 1 9 ; x > = 1 ; x += 2)
cout « x « endl ;

d) The following code should output the even integers from 2 to 100:

counter = 2 ;

do {
cout « counter « endl ;
counter + = 2 ;

} Whi le (counter < 1 0 0) ;

2.40 Write a program that uses a for structure to sum a sequence of integers. Assume that the

first integer read specifies the number of values remaining to be entered. Your program should read

only one value per input statement. A typical input sequence might be

5 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

where the 5 indicates that the subsequent 5 values are to be summed.

2.4 1 Write a program that uses a for structure to calculate and print the average of several inte-

gers. Assume the last value read is the sentinel 9 9 9 9 . A typical input sequence might be

1 0 8 11 7 9 9 9 9 9

indicating that the program should calculate the average of all the values preceding 9 9 9 9 .

2.42 What does the following program do?

1 / / Ex . 2 . 4 2 : ex0 2_4 2 . cpp
2 II What does thi s program print?
3 #inc lude < iostream>
4
5 us ing std : : cout ;
6 using std : : c in;
7 us ing std : : endl ;
8
9 / / funct ion main begins program execut ion

1 0 int main ()
1 1 {
1 2 int x ; / / dec lare x
1 3 int y; 1 / dec l are y
1 4
1 5 1 / prompt user for input
1 6 cout « "Enter two integers in the range 1 - 2 0 : ";
1 7 cin » x » y; II read value s for x and y
1 8

for (int i = 1 ; i < = y; i ++) { 1/ count

for (int j = 1 ; j <= x; j++) 1 / count
cout « I @ I i 1/ output

f rom

f rom

@

1 to

1 to

1 9
20
2 1
22
23
24
25
26

cout « endl ; / / begin new l ine

} / / end outer for

y

x

Chapter 2 Control Structu res

27
28 return 0 ; II indicate succe s s ful termination
29
30 } II end funct ion main

165

2.43 Write a program that uses a for structure to find the smallest of several integers. Assume

that the first value read specifies the number of values remaining and that the first number is not one

of the integers to compare.

2.44 Write a program that uses a for structure to calculate and print the product of the odd inte-

gers from 1 to 15.

2.45 Thefactorial function is used frequently in probability problems. Using the definition of fac

torial in Exercise 2. 38, write a program that uses for structures to evaluate the factorials of the inte

gers from I to 5. Print the results in tabular format. What difficulty might prevent you from

calculating the factorial of 20?

2.46 Modify the compound-interest program of Section 2. I 5 to repeat its steps for the interest

rates 5 percent, 6 percent, 7 percent, 8 percent, 9 percent and 10 percent. Use a for loop to vary the

interest rate.

2.47 Write a program that uses for structures to print the following patterns separately, one be

low the other. Use for loops to generate the patterns. All asterisks (*) should be printed by a single

statement of the form cout « ' * ' ; (this causes the asterisks to print side by side). [Hint: The

last two patterns require that each line begin with an appropriate number of blanks. Extra credit:
Combine your code from the four separate problems into a single program that prints all four patterns

side by side by making clever use of nested for loops.]

(A) (B) (C) (D)
* * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * *

2.48 One interesting application of computers is the drawing of graphs and bar charts (sometimes

called "histograms"). Write a program that reads five numbers (each between 1 and 30). For each

number read, your program should print a line containing that number of adjacent asterisks. For ex
ample, if your program reads the number seven, it should print * * * * * * * .

2.49 A mail order house sells five different products whose retail prices are: product 1 - $2. 98,

product 2-$4.50, product 3-$9.98, product 4-$4.49 and product 5-$6.87. Write a program that

reads a series of pairs of numbers as follows:

a) Product number

b) Quantity sold for one day

\(m� program should use a swi tch statement to help determine the retail price for each product.

Your program should calculate and display the total retail value of all products sold last week.

2.50 Modify the program of Fig. 2.22 so that it calculates the grade-point average for the class. A

grade of 'A' is worth 4 points, 'B' is worth 3 points, etc.

166 Control Structures Chapter 2

2.51 Modify the program in Fig. 2.2 1 so it uses only integers to calculate the compound interest.

[Hint: Treat all monetary amounts as integral numbers of pennies. Then "break" the result into its dol

lar portion and cents portion by using the division and modulus operations. Insert a period.]

2.52 Assume i = 1, j = 2 , k = 3 and m = 2 . What does each of the following statements print?

Are the parentheses necessary in each case?

a) cout « (i 1) « end1 ;

b) cout « (j 3) « endl ;

c) cout « (i > = 1 && j < 4) « endl ;

d) cout « (m < = 9 9 && k < m) « end1 ;

e) cout « (j > = i I I k == m) « endl ;

f) cout « (k + m < j I I 3 - j > = k) « endl ;

g) cout « (!m) « endl ;

h) cout « (!(j - m « end1 ;

i) cout « (! (k > m)) « endl ;

2.53 Write a program that prints a table of the binary, octal and hexadecimal equivalents of the

decimal numbers in the range 1 through 256. If you are not familiar with these number systems, read

Appendix C first.

2.54 Calculate the value of 1t from the infinite series

1t

Print a table that shows the value of 1t approximated by 1 term of this series, by two terms, by three

terms, etc. How many terms of this series do you have to use before you first get 3.14? 3.141?

3. 1415? 3. 14 159?

2.55 (Pythagorean Triples) A right triangle can have sides that are all integers. A set of three in

teger values for the sides of a right triangle is called a Pythagorean triple. These three sides must sat

isfy the relationship that the sum of the squares of two of the sides is equal to the square of the

hypotenuse. Find all Pythagorean triples for s ide 1, s ide2 and hypotenuse all no larger than

500. Use a triple-nested for-loop that tries all possibilities. This is an example of brute force com

puting. You will learn in more advanced computer-science courses that there are many interesting

problems for which there is no known algorithmic approach other than sheer brute force.

2.56 A company pays its employees as managers (who receive a fixed weekly salary), hourly

workers (who receive a fixed hourly wage for up to the first 40 hours they work and "time-and-a

half'- 1.5 times their hourly wage-for overtime hours worked), commission workers (who receive
$250 plus 5.7% of their gross weekly sales), or pieceworkers (who receive a fixed amount of money
per item for each of the items they produce-each pieceworker in this company works on only one

type of item). Write a program to compute the weekly pay for each employee. You do not know the

number of employees in advance. Each type of employee has its own pay code: Managers have pay

code 1, hourly workers have code 2, commission workers have code 3 and pieceworkers have code

4. Use a switch to compute each employee's pay according to that employee's paycode. Within the

switch, prompt the user (i.e., the payroll clerk) to enter the appropriate facts your program needs

to calculate each employee's pay according to that employee's pay code.

2.57 (De Morgan's Laws) In this chapter, we discussed the logical operators &&, I I and!. De

Morgan's Laws can sometimes make it more convenient for us to express a logical expression. These

laws state that the expression! (condition] && condition2) is logically equivalent to the expression

(! condition] I I I condition2) . Also, the expression ! (condition] I I condition2) is logically

equivalent to the expression (! condition] && I condition2) . Use De Morgan's Laws to write equiv-

Chapter 2 Control Structures 167

alent expressions for each of the following, then write a program to show that the original expression

and the new expression in each case are equivalent:

� ! (x < 5) && ! (Y > = 7)

b) ! (a = = b) I I ! (g ! = 5)

c) ! (X <= 8) && (y > 4)

d) ! (i > 4) I I (j <= 6)

2.58 Write a program that prints the following diamond shape. You may use output statements

that print either a single asterisk (*) or a single blank. Maximize your use of repetition (with nested

for structures) and minimize the number of output statements.

*

******* **

* * * **
* **

*

2.59 Modify the program you wrote in Exercise 2.58 to read an odd number in the range I to 1 9

to specify the number of rows in the diamond. Your program should then display a diamond of the

appropriate size.

2.60 A criticism of the break statement and the continue statement is that each is unstruc

tured. Actually break statements and continue statements can always be replaced by structured

statements, although doing so can be awkward. Describe in general how you would remove any

break statement from a loop in a program and replace that statement with some structured equiva

lent. (Hint: The break statement leaves a loop from within the body of the loop. The other way to

leave is by failing the loop-continuation test. Consider using in the loop-continuation test a second

test that indicates "early exit because of a 'break' condition.") Use the technique you developed here

to remove the break statement from the program of Fig. 2.26.

2.6 1 What does the following program segment do?

1 for (i = 1 ; i <= 5 ; i++) {
2
3 for (j = 1; j <= 3 ; j++) {
4
5 for (k 1 ; k <= 4 ; k++)
6 cout « I * I . ,
7
8 cout « endl ;
9

1 0 } /I end inner for
1 1
'2 cout « endl ;
1 3
1 4 II end outer for

168 Control Structu res Chapter 2

2.62 Describe in general how you would remove any cont inue statement from a loop in a pro

gram and replace that statement with some structured equivalent. Use the technique you developed

here to remove the cont inue statement from the program of Fig. 2.27.

2.63 ("The Twelve Days of Christmas " Song) Write a program that uses repetition and switch

structures to print the song "The Twelve Days of Christmas." One swi tch structure should be used

to print the day (i.e., "First," "Second," etc.). A separate switch structure should be used to print

the remainder of each verse. Visit the Web site www . 12days . com/l ibrary/carols/

1 2 daysof xmas . htm for the complete lyrics to the song.

2.64 [Note: This exercise corresponds to Section 2.22, "Thinking About Objects."] Describe in

200 words or fewer what an automobile is and does. List the nouns and verbs separately. In the text,

we stated that each noun might correspond to an object that will need to be built to implement a sys

tem, in this case a car. Pick five of the objects you listed, and, for each, list several attributes and sev

eral behaviors. Describe briefly how these objects interact with one another and other objects in your

description. You have just performed several of the key steps in a typical object-oriented design.

2.65 (Peter Minuit Problem) Legend has it that, in 1626, Peter Minuit purchased Manhattan for

$24.00 in barter. Did he make a good investment? To answer this question, modify the compound

interest program of Fig. 2.2 1 to begin with a principal of $24.00 and to calculate the amount of inter

est on deposit if that money had been kept on deposit until this year (376 years through 2002). Run

the program with the interest rates 5%, 6%, 7%, 8%, 9% and 10% to observe the wonders of com

pound interest.

3
Functions

Objectives
• To understand how to construct programs modularly

from pieces called functions.
• To be able to create new functions.
• To understand the mechanisms used to pass

information between functions.
• To introduce simulation techniques using random

number generation.
• To understand how the visibility of identifiers is

limited to specific regions of programs.
• To understand how to write and use functions that call

themselves.
Form ever follows function.

Louis Henri Sullivan

E pluribus unum.

(One composed of many.)

Virgil

O! call back yesterday, bid time return.

William Shakespeare

Call me Ishmael.

Herman Melville

When you call me that, smile.

Owen Wister

170 Functions

Outline

3. 1 IntroducHon

3.2 Program Components In C++

3.3 Math Ubrary FuncHons

3.4 FuncHons

3.5 FuncHon OeflnlHons

3.6 FuncHon Prototypes

3.7 Header Files

3.8 Random Number GeneraHon

3.9 Example: Game of Chance and Introducing anum

3. 1 0 Storage Classes

3. 1 1 Scope Rules

3. 1 2 Recursion

3. 1 3 Example Using Recursion: Fibonacci Series

3. 1 4 Recursion vs. IteraHon

3. 1 5 FuncHons with Empty Parameter Usts

3. 1 6 Inllne FuncHons

3. 1 7 References and Reference Parameters

3. 1 8 OefauH Arguments

3. 1 9 Unary Scope ResoluHon Operator

3.20 FuncHon Overloading

3.2 1 FuncHon Templates

Chapter 3

3.22 (OpHonal Case Study) Thinking About Objects: IdenHfylng a Class's

Attributes

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

3. 1 Introduction

Most computer programs that solve real-world problems are much larger than the programs

presented in the first few chapters . Experience has shown that the best way to develop and

maintain a large program is to construct it from smaller pieces or components, each of

which is more manageable than the original program. This technique is called divide and

conquer. This chapter describes many key features of the C++ language that facil itate the

design, implementation, operation and maintenance of large programs .

3.2 Program Components in C++

Modules in C++ are cal led functions and classes. C++ programs are typically written by

combining new functions the programmer writes with "pre-packaged" functions avai lable

in the C+ + standard library and by combining new classes the programmer writes with

Chapter 3 Functions 17 1

"pre-packaged" classes available in various class libraries. In this chapter, we concentrate

on functions; we discuss classes in detail beginning with Chapter 6 .

The C++ standard l ibrary provides a rich collection of functions for performing

common mathematical calculations, string manipulations, character manipulations, input!

output, error checking and many other useful operations. This makes the programmer' s job

easier, because these functions provide many of the capabilities programmers need. The

C++ standard l ibrary functions are provided as part of the C++ programming environment.

Software Engineering Observation 3 . 1
Use the online documentation for your compiler to familiarize yourself with the rich collec
tion offunctions and classes in the C+ + standard library.

Software Engineerin g O bservation 3.2
Avoid reinventing the wheel. When possible, use C+ + standard library functions instead of

writing new functions. This reduces program development time.

D'1t1 Portab i l ity Tip 3 . 1
_ Using the functions in the C+ + standard library helps make programs more portable.

Performance Tip 3 . 1
D o not t ry to rewrite existing library routines to make them more efficient. You usually will
not be able to increase the peiformance of these routines and you may introduce errors.

Programmers can write functions to define specific tasks that could be used at many

points in a program. These are sometimes referred to as programmer-defined functions.

The actual statements defining the function are written only once, and these statements are

hidden from other functions.

A function i s invoked (i .e . , made to perform its designated task) by afunction call. The

function call specifies the function name and provides information (as arguments) that the

called function needs to do its job. A common analogy for this is the hierarchical form of

management. A boss (the calling function or caller) asks a worker (the called function) to

perform a task and return (i .e . , report back) the results when the task is done. The boss func

tion does not know how the worker function performs its designated tasks. The worker

might cal l other worker functions ; the boss wil l be unaware of this . We wi l l soon see how

this "hiding" of implementation detai ls promotes good software engineering. Figure 3 . 1

i l lustrates function main communicating with several worker functions in a hierarchical

manner. Note that workerl acts as a boss function to worker4 and worke r S . Relation

ships among functions can be other than the hierarchical structure shown in this figure .

3.3 Math Library Functions

Math library functions allow the programmer to perform certain common mathematical

calculations . We use various math library functions here to introduce the concept of func

tions . We discuss many other C++ standard l ibrary functions throughout the book.

Functions normally are called by writing the name of the function, fol lowed by a left

parenthesis, fol lowed by the argument (or a comma-separated l i st of arguments) of the

function, fol lowed by a right parenthesis . For example, a programmer desiring to calculate

and print the square root of 9 0 0 . 0 might write

172 F unctions Chapter 3

Fig. 3. 1 H ierarch ical boss function/worker function relationsh ip .

cout « sqrt (9 0 0 . 0);

When this statement executes, math library function sqrt is called to calculate the square

root of the number contained in the parentheses (9 0 0 . 0) . The number 9 0 0 . 0 is the argu
ment of function sqrt . The preceding statement would print 3 0 . Function sqrt takes an

argument of type double and returns a result of type double. All functions in the math

library return the data type double. To use the math library functions, include the header

file < cmath> .
'

Common Programming Error 3. 1
Forgetting to include the math header file when using math library junctions is a syntax error.

Function arguments can be constants, variables, or expressions . If c 1 = 1 3 . 0 ,

d = 3 . 0 and f = 4 . 0 , then the statement

cout « sqrt (c1 + d * f) ;

calculates and prints the square root of 13 . 0 + 3 . 0 * 4 . 0 = 2 5 . 0 , namely 5 . Note that

C++ ordinarily does not print trailing zeros or the decimal point in a floating-point number

that has no fractional part.

Some math l ibrary functions are summarized in Fig. 3 . 2 . In the figure, the variables x

and y are of type double.

Method

c e i l (x

cos (x)

Description

rounds x to the smallest inte

ger not less than x

trigonometric cosine of x
(x in radians)

Fig. 3.2 Math l ibrary functions. (Part 1 of 2 .)

Example

ceil (9 . 2) is 1 0 . 0

ceil (- 9 . 8) is - 9 . 0

cos (O . 0) is 1 . 0

I . The standard library actually provides multiple versions of these functions that work with each
floating-point data type (f loat, double and long double).

Chapter 3

Method

exp (x)

fabs (x)

floor (x

fmod (x , y

log (x

logl O (x

pow (x , y

s in (x)

sqrt (x)

tan (x)

Description

exponential function eX

absolute value of x

rounds x to the largest integer

not greater than x

remainder of x/y as a floating

point number

natural logarithm of x (base e)

logarithm of x (base 10)

x raised to power y (xY)

trigonometric sine of x

(x in radians)

square root of x

trigonometric tangent of x

(x in radians)

Fig. 3.2 Math l ibrary functions. (Part 2 of 2 .)

3.4 Functions

F unctions

Example

exp (1 . 0) is 2 . 7 1 8 2 8

exp (2 . 0) is 7 . 3 8 9 0 6

fabs (5 . 1) is 5 . 1

fabs (0 . 0) is 0 • 0

fabs (- 8 . 7 6) is 8 . 7 6

floor (9 . 2) is 9 • 0

floor (- 9 . 8) is - 1 0 . 0

173

fmod (1 3 . 6 5 7 , 2 . 3 3 3) is 1 . 9 9 2

log (2 . 7 1 8 2 8 2) is 1 . 0

log (7 . 3 8 9 0 5 6) is 2 . 0

log10 (1 0 . 0) is 1 . 0

log1 0 (1 0 0 . 0) is 2 . 0

pow (2 , 7) is 12 8

pow (9 , . 5) is 3

sin (0 . 0) is 0

sqrt (9 0 0 . 0) is 3 0 . 0

sqrt (9 . 0) is 3 • 0

tan (0 . 0) is 0

Functions allow the programmer to modularize a program. All variables defined in function

definitions are local variables-they are known only in the function in which they are de

fined. Most functions have a list of parameters that provide the means for communicating

information between functions . A function ' s parameters are also local variables of that

function .

Software Engineering Observation 3.3

In programs containing many functions, ma i n should be implemented as a group of calls to
- functions that perform the bulk of the program's work.

There are several motivations for "functionalizing" a program. The divide-and-con

quer approach makes program development more manageable. Another motivation is soft

ware reusability-using existing functions as building blocks to create new programs .

Software reusability is a major factor in object-oriented programming. With good function

naming and definition, programs can be created from standardized functions that accom

p\ish specific tasks, rather than being built by using customized code. Another motivation

is to avoid repeating code in a program. Packaging code as a function allows the code to be

executed from different locations in a program simply by calling the function.

174 Functions Chapter 3

Software Engineering Observation 3.4
Each function should be limited to peiforming a single, well-defined task, and the function

name should effectively express that task. This promotes software reusability.

Software Engineering Observation 3.5
If you cannot choose a concise name that expresses what the function does, it i s possible that

your function is attempting to peiform too many diverse tasks. It is usually best to break such
a function into several smaller functions. Then the original function can call the smaller

functions to pelform the complete task.

3.5 Function Defin itions

Each program we have presented consisted of function main calling standard library func

tions to accomplish its tasks. We now consider how programmers write their own custom

ized functions .

Consider a program, with a programmer-defined function square, that calculates and

displays the squares of the integers from 1 to 1 0 (Fig. 3 . 3) .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27
28

II Fig . 3 . 3 : fig0 3_0 3 . cpp
II Creat ing and us ing a programmer-def ined function .

include < iostream>

us ing std : : cout ;
us ing std : : endl ;

int square (int) ;

int main ()
{

II funct ion prototype

II loop 10 t imes and calculate and output
II square of x each t ime
for (int x = 1 ; x < = 1 0 ; x++)

cout « square (x) « " " ; II funct ion call

cout « endl ;

return 0 ; II indicates succes s ful terminat ion

} II end main

II square funct ion de f init ion returns square of an integer

int square (int y) II y is a copy of argument to func t ion

{
return y * y ; I I returns square of y as a n int

} II end funct ion square

I 1 • • , . 2 5 3 . • • •• 8 1 , • •

F ig. 3.3 Program mer-defined function square .

Chapter 3 F unctions 175

Function square is invoked or called in main with the expression square (x) in

l ine 1 5 . The parentheses () in the function cal l are an operator in C++ that causes the func

tion to be called. Function square (l ines 24-28) receives a copy of the value of argument

x and stores it in the parameter y. Then square calculates y * y (l ine 26) . Function

square passes the result back to the point in main where square was invoked (line 1 5)

and displays the result. Note that the function call does not change the value of x. The for

repetition structure repeats this process for each of the values 1 through 1 0.

The definition of square (l ines 24-28) shows that it uses integer parameter y. Key

word int preceding the function name indicates that square returns an integer result.

The return statement in square (line 26) passes the result of the calculation back to the

calling function.

Line 8 i s a/unction prototype. The data type int in parentheses informs the compiler

that function square expects an integer value from the caller. The data type int to the

left of the function name square informs the compiler that square returns an integer

result to the caller. The compiler refers to the function prototype to check that calls to

square contain the correct number and types of arguments and that the arguments are in

the correct order. In addition, the compiler uses the prototype to ensure that the data type

returned by the function can be used correctly in the expression that called the function. I f

the arguments passed to a function do not match the types specified in the function ' s pro

totype, the compiler attempts to convert the arguments to the types specified in the proto

type . Section 3 . 6 discusses the rules for these conversions . The function prototype is not

required if the definition of the function appears before the function ' s first use in the pro

gram. In such a case, the function header also acts as the function prototype. If l ines 24-28

in Fig. 3 . 3 appeared before main, the function prototype on line 8 would be unnecessary .

Function prototypes are discussed in detail in Section 3 .6 .

The format of a function definition is as follows:

return-value-type function-name (parameter-list
{

declarations and statements

The function-name is any valid identifier. The return-vaLue-type is the data type of the re

sult returned from the function to the caller. Return-vaLue-type void indicates that a func

tion does not return a value.

Common Programming Error 3.2
Forgetting to return a value from a function that i s supposed to return a value i s a syntax
error.

Common Progra m m i ng Error 3.3
Returning a value from afunction whose return type has been declared voi d i s a syntax er
ror.

The parameter-List is a comma-separated l ist containing the declarations of the param

eters received by the function when it is called. If a function does not receive any values,

parameter-List i s void or simply left empty . A type must be l isted explicitly for each

parameter in the parameter list of a function .

176 F unctions Chapter 3

Common Programming Error 3.4
Declaring function parameters of the same type, such as floa t x, y instead of fl oa t x,
float y, is a syntax error.

Common Programming Error 3.5
Placing a semicolon after the right parenthesis enclosing the parameter list of a function def

inition is a syntax error.

Common Progra mming Error 3.6
Defining a function parameter again as a local variable in the function is a syntax error.

Good Progra m m i ng Practice 3. 1
To avoid ambiguity, do not use the same names for the arguments passed to a function and

the corresponding parameters in the function definition.

The declarations and statements in braces form the function body also called a block

or compound statement. Variables can be declared in any block, and blocks can be nested.

A function cannot be defined inside another function.

Common Progra mming Error 3.7
Defining a function inside another junction i s a syntax error.

Good Progra m m i ng Practice 3.2
Place a blank line between function definitions to separate the functions and enhance pro

gram readability.

Good Progra m m i ng Practice 3.3
Choosing meaningful function names and meaningful parameter names makes programs

more readable and helps avoid excessive use of comments.

Software Engineering Observation 3 6
Try to keep functions small. Regardless of how long afunction is, it should peiform one task

well. Small junctions promote software reusability.

Software Engineering Observation 3 7
Programs should be written as collections of small functions. This makes programs easier to

write, debug, maintain and modify.

Software Engineeri n g Observation 3.8
A function requiring a large number of parameters might be peiforming too many tasks.

Consider dividing the function into smaller functions that peiform the separate tasks.

Common Programming Error 3.8
It i s a syntax error if the junction prototype, function header and junction calls do not all agree

in the number, type and order of arguments and parameters and in the return-value type.

There are three ways to return control to the point at which a function was invoked. If

the function does not return a result, control returns when the program reaches the function

ending right brace, or by executing the statement

Chapter 3 Functions 177

return;

If the function does return a result, the statement

return expression ;

evaluates expression and returns the value of expression to the caller.

Our second example (Fig. 3 .4) uses a programmer-defined function maximum to

determine and return the largest of three floating-point numbers .

1 / / Fig . 3 . 4 : f ig 0 3_0 4 . cpp
2 1 / Finding the maximum of three f loat ing-point numbers .
3 # inc lude < iostream>

4
5 us ing std : : cout ;
6 us ing std : : c in;
7 using std : : endl ;
8
9 doubl e max� (double , double , double) ; / / func t i on prototype

1 0
1 1 int main ()
1 2 {
1 3 doubl e numberl ;
1 4 doubl e number2 ;
1 5 double number3 ;

1 6
1 7 cout « " Enter three f loat ing-point numbers : " ;
1 8 c in » numberl » number2 » number3 ;

1 9
20 / 1 numberl , number2 and number3 are argument s to
21 / / the maximum funct ion call
22 cout « "Maximum i s : n

23 « max� (number 1 , number2 , number3) « endl ;
24
25 return 0 ; / / indicates succes s ful terminat ion
26
27 } / 1 end main
28
29 1 / funct ion maximum def init ion ;
30 / / x, y and z are parameters
3 1 double maximum (double x , double y, double z

32 {
33
34
35
36
37
38
39
40
4 1
42

double

i f (y
max

i f (z

max

return

max .. x ;

> max

= y ;

> max

z ;

max ;

/ I as sume x i s largest

1 / i f y i s larger,
/ I ass ign y to max

I I i f z i s larger,
/ / ass ign z to max

/ / max i s largest value

43 } / / end funct ion maximum

Fig. 3.4 Progra mmer-defined maximum function . (Part 1 of 2 .)

178 Functions

Ent er three f loat ing-point numbers : 9 9 . 3 2 3 7 . 3 2 7 . 1 9 2 8
Maximum i s : 9 9 . 3 2

Enter three float ing-point numbers : 1 . 1 3 . 3 3 3 2 . 2 2
Maximum i s : 3 . 3 3 3

Enter three floating-point numbers : 2 7 . 9 14 . 3 1 8 8 . 9 9
Maximum i s : 88 . 99

Fig. 3.4 Programmer-defined maximum function . (Part 2 of 2 .)

Chapter 3

The program prompts the user to input three floating-point numbers (line 1 5) , then

inputs the numbers (line 1 6) . Next, the program cal l s function maximum (line 2 1) , passing

the numbers as arguments. Function maximum determines the largest value, then the

return statement (line 39) returns that value to the point at which function main invoked

maximum (l ine 2 1) . Then the cout statement (l ines 20-2 1) outputs the returned value.

[Note: The commas used in l ine 2 1 to separate the arguments to function maximum are not

comma operators as discussed in Section 2 . 1 4 . The comma operator guarantees that its

operands are evaluated left to right ; however, the order of evaluation of a function ' s argu

ments is not defined.]

3.6 Function Prototypes

One of the most important features of c++ is the function prototype. A function prototype

tel ls the compiler the name of a function, the type of data returned by that function, the

number of parameters that function expects to receive, the types of those parameters and

the order in which the parameters of those types are expected. The compiler uses function

prototypes to validate function cal ls . Early versions of the C programming language did not

perform this kind of checking, so it was possible to call C functions with incorrect argu

ments and compilers would not detect the errors. Such cal l s could result in fatal execution

time errors or nonfatal errors that caused subtle logic errors that were difficult to detect.

Function prototypes correct this deficiency. The header fi les we include in C++ programs

contain function prototypes (and other information) , which enable the compiler to ensure

that a program uses functions correctly .

r a

Function prototypes are required in C+ +. Use #incl ude preprocessor directives to obtain
: function prototypes for the standard library functions from the header files for the appropri

ate libraries (e.g. , the prototype for math function sqrt is in header file <cma th>; a list of
standard library header files appears in Section 3. 7). A lso use #incl ude to obtain header
files containing function prototypes used by you or your group members.

Common Programming Error 3.9
Forgetting the semicolon at the end of a function prototype is a syntax error.

Chapter 3 Functions 179

Common Progra m m i ng Error 3. 1 0
A function call that does not match the function prototype is a syntax error.

Common Prog ra mming Error 3 . 1 1
Forgetting a function prototype when a function is not defined before it is first invoked is a
syntax error.

The function prototype for function maximum at line 9 of Fig. 3 .4 states that max

imum takes three arguments of type double and returns a result of type double. Notice

that this function prototype is the same as the header of the function definition of max

imum, except the names of the parameters (x, y and z) are not included.

Good Programming Practice 3.4
Although parameter names infunction prototypes are optional, many programmers use these

names for documentation purposes.

The portion of a function prototype that includes the name of the function and the types

of its arguments i s called the function signature or simply the signature . The function sig

nature does not include the function return type.

Common Programming Error 3 . 1 2
When compiling a function definition, it is an error if the return type and signature in the

function prototype and the function definition disag ree.

As an example of the preceding Common Programming Error, in Fig. 3 .4 , if the func

tion prototype had been written

void maximum (double , double , double) ;

the compiler would report an error, because the void return type in the function prototype

would differ from the double return type in the function header.

Another important feature of function prototypes is the argument coercion-i.e . ,

forcing arguments to the appropriate types specified by the parameter declarations . For

example, a program can call the math library function sqrt with an integer argument even

though the function prototype in <cmath> specifies a double argument and the function

still works correctly . The statement

cout « sqrt (4) ;

correctly evaluates sqrt (4.) and prints the value 2 . The function prototype causes the

compiler to convert the integer argument 4. to the doubl e value 4. • 0 before the value is

passed to sqrt.

In general, argument values that do not correspond precisely to the parameter types in

the function prototype are converted to the proper type before the function is called. These

conversions can lead to incorrect results if C++ ' s promotion rules are not fol lowed. The

promotion rules specify how to convert between types without losing data. In our eariler

sqrt example, an int can be converted to a double without changing its value. How

ever, a double converted to an int truncates the fractional part of the double value.

Converting l arge integer types to small integer types (e .g . , long to short) also can result

in changed values .

1 80 F unctions Chapter 3

The promotion rules apply to expressions containing values of two or more data types ;

such expressions are also referred to as mixed-type expressions. The type of each value in

a mixed-type expression is promoted to the "highest" type in the expression (actually a tem

porary version of each value is created and used for the expression-the original values

remain unchanged) . Promotion also occurs when the type of an argument to a function does

not match the parameter type specified in the function definition . Figure 3.5 l ists the built

in data types in order from "highest type" to "lowest type ."

Converting values to lower types can result in incorrect values . Therefore, a value can

be converted to a lower type only by explicitly assigning the value to a variable of lower

type or by using a cast operator (see Section 2 .9) . Function argument values are converted

to the parameter types in a function prototype as if they are being assigned directly to vari

ables of those types. If our square function that uses an integer parameter (Fig. 3 . 3) is

called with a floating-point argument, the argument is converted to int (a lower type) and

square usually returns an incorrect value . For example, square (4 . 5) would return

1 6 , not 2 0 . 2 5 .

Common Programming Error 3. 1 3
Converting from a higher data type in the promotion hierarchy to a lower type can change

the data value.

3.7 Header Fi les

The C++ standard l ibrary is divided into many portions, each with its own header file . The

header files contain the function prototypes for the related functions that form each portion

of the l ibrary. The header files also contain definitions of various data types and constants

needed by those functions . Figure 3 .6 lists some common C++ standard library header fi les,

most of which are discussed later in the book. The term "macro" that is used several times

in Fig. 3.6 is discussed in detail in Chapter 1 9, Preprocessor. Header file names ending in

Data types

long double

double

float

uns igned l ong

long int

uns igned int

int

uns igned short

short int

unsigned char

char

bool

int

int

(synonymous with uns igned long)

(synonymous with long)

(synonymous with unsi gned)

(synonymous with uns i gned short)

(synonymous with short)

(false becomes 0, true becomes 1)

Fig. 3.5 Promotion h ierarchy for bui lt- in data types .

Chapter 3 F unctions 1 8 1

• h are "old-style" header fi les that have been superseded by the C++ standard l ibrary head

er fi les .2

Standard library
header file

<cas sert >

<cctype >

< c f loat >

< c l imit s >

< cmath>

< c stdio>

< c stdlib>

<cstring>

<ctime >

< iostream>

< i omanip>

< f stream>

<ut i l i ty>

Explanation

Contains macros for adding diagnostics that aid program debugging.

This replaces header file <as sert . h> from pre-standard C++.

Contains function prototypes for functions that test characters for certain

properties, and function prototypes for functions that can be used to con

vert lowercase letters to uppercase letters and vice versa. This header file

replaces header file <ctype . h> .

Contains the floating-point size limits of the system. This header fi le

replaces header f i Ie < f loa t • h> .

Contains the integral size limits of the system. This header file replaces

header file < l imit s . h> .

Contains function prototypes for math library functions. This header fi l e

replaces header file <math . h> .

Contains function prototypes for the C-style standard input/output

library functions and information used by them. This header file replaces

header file < stdio . h> .

Contains function prototypes for conversions of numbers to text, text to

numbers, memory allocation, random numbers and various other utility

functions. This header file replaces header file < s tdl ib . h> .

Contains function prototypes for C-style string processing functions.

This header file replaces header file < string . h> .

Contains function prototypes and types for manipulating the time and

date. This header file replaces header file < t ime . h> .

Contains function prototypes for the C++ standard input and standard

output functions. This header file replaces header file < iost ream . h> .

Contains function prototypes for stream manipulators that format of

streams of data. This header file replaces header file < iomanip . h> .

Contains function prototypes for functions that perform input from files

on disk and output to files on disk (discussed in Chapter 1 4). This header

file replaces header file < f stream . h> .

Contains classes and functions that are used by many standard library

header files.

Fig. 3.6 Standard l ibrary header f i les. (Port 1 of 2 .)

2 . The programmer can create custom header files. Programmer-defined header file names often end in
. h, . hpp or . hxx. A program includes a programmer-defined header file by using the # include
preprocessor directive. For example, the header file square . h can be included in our program by
the directive # inc lude " square . h" in the program file. Note that programmer-defined header
files normally are enclosed in quotes (" ,,) rather than angle brackets « » . Section 6.7 and
Section 1 9.2 present additional information on including programmer-defined header files.

1 82 Functions

Standard library
header file

Chapter 3

Explanation

<vector> , < l i st > , These header files contain classes that implement the standard library

<deque > , <queue > , containers. Containers store data during a program's execution. We dis

< s tack>, <map> , cuss these header files in Chapter 21, Standard Template Library (STL).

< s e t > , <bitset>

< funct iona l >

<memory>

< iterator>

<algoritlun>

< except ion>,

< stdexcept >

< s tring>

< s stream>

< locale>

< l imit s >

< type info>

Contains classes and functions used by standard library algorithms.

Contains classes and functions used by the standard library to allocate

memory to the standard library containers.

Contains classes for accessing data in the standard library containers.

Contains functions for manipulating data in standard library containers.

These header files contain classes that are used for exception handling

(discussed in Chapter 13, Exception Handling).

Contains the definition of class string from the standard library (dis

cussed in Chapter 15, Strings).

Contains function prototypes for functions that perform input from strings

in memory and output to strings in memory (discussed in Chapter 1 5).

Contains classes and functions normally used by stream processing to

process data in the natural form for different languages (e.g., monetary

formats, sorting strings, character presentation, etc.).

Contains classes for defining the numerical data type limits on each

computer platform.

Contains classes for run-time type identification (determining data types

at execution time).

Fig. 3.6 Standard l ibrary header f i les, (Part 2 of 2.)

3.8 Random Number Generation

We now take a brief and, it i s hoped, entertaining diversion into a popular programming

appl ication, namely simulation and game playing. In this and the next section, we develop

a nicely structured game-playing program that includes multiple functions. The program

uses most of the control structures and concepts discussed to this point.

There i s something in the air of a gambling casino that invigorates every person-from

the high-rollers at the plush mahogany-and-felt craps tables to the quarter-poppers at the

one-armed bandits. It is the element of chance, the possibil ity that l uck wil l convert a pock

etful of money into a mountain of wealth . The element of chance can be introduced into

computer appl ications by using the standard l ibrary function rand.

Consider the fol lowing statement:

i = rand () ;

The function rand generates an unsigned integer between 0 and RAND_MAX (a symbolic

constant defined in the < c stdlib> header fi le) . The value of RAND_MAX must be at least

32767-the maximum positive value for a two-byte (l 6-bit) integer. I f rand truly produc-

Chapter 3 F unctions 1 83

es integers at random, every number between 0 and RAND_MAX has an equal chance (or

probability) of being chosen each time rand is called.

The range of values produced directly by rand often is different than what a specific

appl ication requires . For example, a program that simulates coin tossing might require only

o for "heads" and 1 for "tai ls ." A program that simulates rol ling a six-sided die would

require random integers in range I to 6. A program that randomly predicts the next type of

spaceship (out of four possibilities) that will fly across the horizon in a video game might

require random integers in the range I through 4.

To demonstrate rand, let us develop a program (Fig. 3 .7) to simulate 20 roll s of a six

sided die and print the value of each roll . The function prototype for the rand function can

be found in < c stdlib>. To produce integers in the range 0 to 5, we use the modulus oper

ator (%) with rand as fol lows:

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30

rand () % 6

I I Fig . 3 . 7 : fig0 3_07 . cpp
I I Shi fted , scaled integers produced by 1 + rand () % 6 .
include < iostream>

us ing std : : cout ;
us ing std : : endl ;

inc lude < iomanip>

us ing s td : : setw;

#inc lude < c stdlib> I I contains funct ion prototype for rand

int main ()
{

I I l oop 2 0 t imes
for (int counter = 1 ; counter < = 2 0 ; counter++) (

I I pick random number from 1 to 6 and output i t
cout « setw (1 0) « (1 + rand () % 6) ;

I I i f counter divi sible by 5 , begin new l ine o f output
i f (counter % 5 == 0)

cout « endl ;

} I I end for structure

return 0 ; I I indicates succe s s ful t erminat ion

II end main

6 6 5 5 6
5 1 1 5 3
6 6 2 4 2
6 2 3 4 1

Fig. 3.7 Shifted, scaled i ntegers produced by 1 + rand () % 6 .

1 84 Functions Chapter 3

This is called scaling. The number 6 is called the scaling factor. We then shift the range of

numbers produced by adding 1 to our previous result. Figure 3 .7 confirms that the results

are in the range 1 to 6.

To show that the numbers produced by function rand occur with approximately equal

likelihood, Fig . 3 . 8 simulates 6000 rol ls of a die. Each integer in the range 1 to 6 should

appear approximately 1 000 times. This is confirmed by the output window at the end of

Fig . 3 . 8 .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4 1
42

I I Fig . 3 . 8 : f ig0 3_0 8 . cpp
I I Rol l a s ix- s ided die 6 0 0 0 t imes .
#inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

#inc lude < iomanip>

us ing s td : : setw;

inc lude <cstdlib> II contains funct ion prototype for rand

int main ()
{

int frequency1 0 ;
int frequency2 0 ;
int frequency3 0 ;
int frequency4 0 ;
int frequencyS 0 ;
int frequency6 0 ;
int face ; 1/ repre sent s one rol l of the die

I I loop 6 0 0 0 t ime s and summari ze result s
for (int rol l = 1 ; rol l < = 6 0 0 0 ; rol l + +) {

face = 1 + rand () % 6 ; I I random number from 1 to 6

I I determine face value and increment appropriate counter
switch (face) {

case 1 :
++frequency1 ;
break ;

case 2 :
+ + frequency2 ;
break;

case 3 :
++frequency3 ;
break ;

I I rol led 1

I I rol led 2

I I rol led 3

F ig. 3.8 Rol l ing a six-sided die 6000 times . (Part 1 of 2 .)

Chapter 3 Functions 185

case 4 :
+ + f requency4 ;
break ;

case 5 :
+ + frequency5 ;
break ;

case 6 :
++frequency6 ;
break ;

default :

II rol led 4

I I rol led 5

I I rol led 6

II invalid value
cout « " Program should never get here ! " ;

} II end switch

} II end for

II display results in tabular format
cout « " Face " « setw (1 3) « " Frequency "

« " \n 1 " « setw (1 3) « frequency1
« " \n 2 " « setw (1 3) « frequency2
« " \n 3 " « setw (1 3) « frequency3
« " \n 4 " « setw (1 3) « frequency4
« " \n 5 " « setw (1 3) « frequency5
« " \n 6 " « setw (1 3) « frequency6 «

return 0 ; II indicates succe s s ful terminat ion

endl ;

43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73 } II end main

Face Frequency
1 1 0 0 3
2 1 0 17
3 9 8 3
4 9 9 4
5 1 0 0 4
6 9 9 9

Fig. 3.8 Rol l ing a six-sided d ie 6000 t imes . (Part 2 of 2 .)

As the program output shows, we can simulate the rol l ing of a six-sided die by scaling

and shifting the values produced by rand. Note that the program should never get to the

de fault case provided in the switch structure, because the swi tch' s controll ing

expression (face) always has values in the range 1 -6 ; however, we provide the de fault

case as a matter of good practice. After we study arrays in Chapter 4, we show how to

replace the entire switch structure in Fig. 3 . 8 elegantly with a single-line statement.

Provide a deEaul t case in a swi tch to catch errors even if you are absolutely, positively
certain that you have no bugs!

1 86 Functions

Executing the program of Fig. 3 .7 again produces

6
5
6
6

6
1
6
2

5
1
2
3

5
5
,
4

6
3
2
1

Chapter 3

Notice that the program prints exactly the same sequence of values shown in Fig . 3 . 7 . How

can these be random numbers? Ironically, this repeatabi lity is an important characteristic

of function rand. When debugging a simulation program, this repeatabi lity is essential for

proving that corrections to the program work properly.

Function rand actually generates pseudo-random numbers. Call ing rand repeat

edly produces a sequence of numbers that appears to be random. However, the sequence

repeats itself each time the program executes. Once a program has been thoroughly

debugged, it can be conditioned to produce a different sequence of random numbers for

each execution. This is called randomizing and is accompl ished with the standard library

function s rand. Function srand takes an uns igned integer argument and seeds the

rand function to produce a different sequence of random numbers for each execution of

the program.

Figure 3 . 9 demonstrates function srand. The program uses the data type

uns igned, which is short for uns igned int o An int is stored in at least two bytes of

memory and can have positive and negative values. A variable of type uns i gned int

i s also stored in at least two bytes of memory. A two-byte uns igned int can have only

nonnegative values in the range 0-65535 . A four-byte uns igned int can have only

nonnegative values in the range 0-4294967295 . Function s rand takes an uns igned

int value as an argument. The function prototype for the s rand function i s in header

fi le < c stdl ib> .

1 I I Fig . 3 . 9 : fig03_0 9 . cpp
2 I I Randomi z ing die - roll ing program .
3 #inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing s td : : c in ;
7 us ing s td : : endl ;
8
9 # inc lude < iomanip >

1 0
1 1 us ing std : : setw;
1 2
1 3 I I contains prototypes for functions srand and rand
1 4 #inc lude < c stdl ib>
1 5
1 6 I I main funct ion begins program execut ion
1 7 int main ()
1 8 {

Fig. 3.9 Randomizing the d ie-ro l l ing program. (Part 1 of 2 .)

Chapter 3

1 9 uns igned seed;
20
2 1 cout « " Enter seed : " ;
22 c in » seed ;
23 srand (seed) ; I I seed random number generator

24
25 I I loop 10 t imes

Functions

26 for (int counter = 1 ; counter <= 1 0 ; counter++) {
27
28 II p ick random number from 1 to 6 and output i t
29 cout « setw (10) « (1 + rand () % 6) ;
30
3 1 II i f counter divi s ible by 5 , begin new l ine of output
32 if (counter % 5 == 0)
33 cout « endl ;
34
35 } II end for
36
37 return 0 ; II indicates successful terminat ion
38
39 II end main

Enter seed : 6 7
6
1

Enter seed : 4 3 2
4
3

Enter seed : 6 7
6
1

1
6

6
1

1
6

4
1

3
5

4
1

6
6

1
4

6
6

Fig. 3.9 Randomizing the d ie-ro l l ing program , (Part 2 of 2 .)

2
4

6
2

2
4

187

Let us run the program several times and observe the results . Notice that the program

produces a different sequence of random numbers each time it executes, provided that the

user enters a different seed during each execution.

If we wish to randomjze without the need for entering a seed each time, we may use a

statement l ike

srand (t ime (0)) ;

This causes the computer to read its clock to obtain the value for the seed. Function t ime

(with the argument 0 as written in the preceding statement) returns the current "calendar

188 F unctions Chapter 3

time" in seconds. This value is converted to an unsigned integer and used as the seed to

the random number generator. The function prototype for t ime is in < c t ime > .

Common Progra mming Error 3. 1 4
Calling function srand more than once in a program restarts the pseudo-random-number

sequence and can affect the randomness of the numbers produced by rand

The values produced directly by rand are always in the range

o $ rand () $ RAND_MAX

Previously, we demonstrated how to write a single statement to simulate the rolling of a

six-sided die with the statement

face = 1 + rand () % 6 ;

which always assigns an integer (at random) to variable face in the range

1 :s; face :s; 6. Note that the width of this range (i .e . , the number of consecutive integers

in the range) is 6 and the starting number in the range is 1 . Referring to the preceding state

ment, we see that the width of the range is determined by the number used to scale rand

with the modulus operator (i .e . , 6), and the starting number of the range is equal to the num

ber (i .e . , 1) that is added to the expression rand % 6. We can generalize this result as

number = shifting Value + rand () % scalingFactor;

where shifting Value is equal to the first number in the desired range of consecutive integers

and scalingFactor is equal to the width of the desired range of consecutive integers . The

exercises show that it is possible to choose integers at random from sets of values other than

ranges of consecutive integers .

Common Progra mming Error 3. 1 5
Using srand in place of rand to attempt to generate random numbers is a syntax error

function srand does not return a value.

3.9 Example: Game of Chance and I ntroducing enum

One of the most popular games of chance is a dice game known as "craps," which is played

in casinos and back alleys worldwide. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain 1, 2, 3, 4, 5 and 6 spots.

After the dice have come to rest, the sum of the spots on the two upwardfaces is calculated. If
the sum is 7 or 1 1 on the first roll, the player wins. If the sum is 2, 3 or 1 2 on the first roll
(called "craps "), the player loses (i. e. , the "house " wins). If the sum is 4, 5, 6, 8, 9 or 1 0 on
the first roll, then that sum becomes the player's "point. " To win, you must continue rolling the

dice until you "make your point. " The player loses by rolling a 7 before making the point.

The program in Fig. 3 . 1 0 simulates the game of craps. Figure 3 . 1 1 shows several sample

executions.

1 / I Fig . 3 . 1 0 : f i g 0 3_1 0 . cpp
2 II Craps .
3 # inc1ude < iostream>
4

Fig. 3. 1 0 Craps s imu lation . (Part 1 of 3 .)

Chapter 3 F unctions

5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57

us ing std : : cout ;
us ing std : : endl ;

// contains func t ion prototypes for funct ions srand and rand

inc lude < c stdlib>

inc lude < c t ime > // contains prototype for func t ion t ime

int rol lDice (void) ; // funct ion prototype

int main ()

I I enumeration constant s repre sent game status
enum Status { CONTINUE , WON, LOST };

int sum;
int myPoint ;

Status gameStatus ; / / can contain CONTINUE , WON or LOST

/ / randomi ze random number generator us ing current t ime
s rand (t ime (0)) ;

sum = roI IDice () ; 1/ first rol l of the dice

1/ determine game status and point based on sum o f dice
switch (sum) {

1/ win on first roll
case 7 :
case 1 1 :

gameStatus
break;

WON;

I I lose on first rol l
case 2 :
case 3 :
case 12 :

gameStatus
break;

LOST;

/ / remember point
de faul t :

gameStatus = CONTINUE ;
myPoint = sum;
cout « " Point is " « mYPoint « endl ;
break; I I optional

} // end switch

// whi l e game not complete • • •

whi l e (gameStatus == CONTINUE) {
sum = roI IDice () ; / / rol l dice again

F ig . 3. 1 0 Craps s imu lation . (Part 2 of 3 .)

189

1 90

58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1
82
83
84
85
86
87
88
89
90
9 1
92
93
94
95

Functions

I I determine game status
if (sum == myPoint)

gameStatus = WON;
else

i f (sum == 7
gameStatus

} I I end whi l e

LOST ;

I I di splay won or lost me ssage
i f (gameStatus == WON)

I I win by making point

I I lose by rol l ing 7

cout « " Player wins " « endl ;
else

cout « " Player loses " « endl ;

return 0 ; I I indicates succe s s ful terminat ion

} I I end main

I I ro l l dice , calculate sum and di spl ay results
int rol lDice (void)
{

int die l ;
int die2 ;
int workSum;

die l = 1 + rand () % 6 ;
die2 = 1 + rand () % 6 ;
workSum = diel + die2 ;

I I pick random diel value
I I pick random die2 value
I I sum diel and die2

II di splay re sult s of thi s rol l
cout « " Player rol l ed " « diel « " + " « die2

« " = " « workSum « endl ;

return workSum; I I return sum of dice

} I I end funct ion rol lDice

Fig. 3. 1 0 Craps s imu lation . (Part 3 of 3 .)

Chapter 3

In the rules of the game, notice that the player must rol l two dice on the first rol l , and

must do the same on all subsequent rol ls . We define function rol lDice (l ines 79-95) to

roll the dice and compute and print their sum. Function rol lDice is defined once, but it

is called from two places (l ines 28 and 57) in the program. I nterestingly, rol lDice takes

no arguments, so we have indicated void in the parameter list . Function rol lDice does

return the sum of the two dice, so return type int is indicated in the function prototype

(l ine 1 3) and function header (line 79).

The game is reasonably involved. The player may win or lose on the first rol l , or may

win or lose on any subsequent rol l . The program uses variable gameStatus to keep track

of this . Variable gameStatus is declared to be of new type Statu s . Line 1 8 creates a

user-defined type called an enumeration. An enumeration, introduced by the keyword

Cha pter 3

Player rol led 2 + 5 .. 7
Player wins

Player rol led 6 + 6 .. 12
Player loses

Player rol led 3 + 3 6
Point is 6
Player rol led 5 + 3 .. 8
Player rol led , + 5 '" 9
Player rol led 2 + 1 = 3
Player rol led 1 + 5 6
Player wins

Player rol l ed 1 + 3 .. ,

Point is ,

Player rol l ed , + 6 1 0
Player rol l ed 2 + , '" 6
Player rol led 6 + , .. 1 0
Player rol led 2 + 3 .. 5
Player rol led 2 + , '" 6
Player rol led 1 + 1 .. 2
Player rol led , + , .. 8
Player rol led , + 3 .. 7
Player loses

Fig. 3 . 1 1 Sample outputs for the craps progra m .

F unctions 1 9 1

enum and fol lowed by a type name (in thi s case, Status) , is a set of integer constants rep

resented by identifiers . The values of these enumeration constants start at 0 , unless speci

fied otherwi se, and increment by 1 . In the preceding enumeration, the constant CONTINUE

has the value 0, WON has the value 1 and LOST has the value 2 . The identifiers in an enum

must be unique, but separate enumeration constants can have the same integer value.

� Good Programming Practice 3.5
� Capitalize the first letter of an identifier used as a user-defined type name.

� Good Progra m m i ng Practice 3.6
Use only uppercase letters in the names of enumeration constants. This makes these con
stants stand out in a program and reminds the programmer that enumeration constants are

not variables.

Variables of user-defined type Status can be assigned only one of the three values

declared in the enumeration . When the game is won, the program sets variable

gameStatus to WON (J ines 36 and 6 1) . When the game is lost, the program sets variable

1 92 F unctions Chapter 3

gameStatus to LOST (l ines 43 and 64) . Otherwise, the program sets variable

gameStatus to CONTINUE to indicate that the dice must be rolled again . � Good Progra m m i ng Practice 3.7
Using enumerations rather than integer constants can make programs clearer and more

maintainable. lfyou need to change the value of an enumeration constant, it can be changed

once in the enumeration declaration.

Common Programming Error 3. 1 6
Assigning the integer equivalent of an enumeration constant to a variable of the enumeration
type is a syntax error.

Common Programming Error 3 . 1 7
After an enumeration constant has been defined, attempting to assign another value to the

enumeration constant is a syntax error.

Another popular enumeration is

enum Months { JAN = 1 , FEB , MAR , APR , MAY , JUN, JUL , AUG ,
SEP , OCT , NOV, DEC } ;

which creates user-defined type Months with enumeration constants representing the

months of the year. The first value in the preceding enumeration is explicitly set to 1, so the

remaining values increment from 1, resulting in the values 1 through 1 2 . Any enumeration

constant can be assigned an integer value in the enumeration definition, and subsequent enu

meration constants each have a value 1 higher than the preceding constant in the list.

After the first rol l , if the game is won or lost, the program skips the body of the whi l e

structure (lines 56-66) because gameStatus is not equal t o CONTINUE. The program

proceeds to the i f/el s e structure at lines 69-72, which prints "Player wins" if

gameStatus is equal to WON and "Player loses" if gameStatus is equal to LOST.

After the first rol l , if the game is not over, the program saves the sum in myPoint

(l ine 49). Execution proceeds with the whi l e structure because gameStatus is equal to

CONTINUE. During each iteration of the whi le, the program calls rol lDice to produce

a new sum. If sum matches myPoint, the program sets gameStatus to WON (line 6 1) ,

the whi le-test fai ls , the i f/e l s e structure prints "Player wins" and execution termi

nates. If sum is equal to 7, the program sets gameStatus to LOST (line 64) , the whi l e

test fails , the i f/el s e structure prints "Player loses" and execution terminates .

Note the interesting use of the various program-control mechanisms we have dis

cussed. The craps program uses two functions-main and rol lDice-and the swi t ch,

whi le, i f/e l se and nested i f/else structures. In the exercises, we investigate various

interesting characteristics of the game of craps.

3. 1 0 Storage Classes

The programs of Chapter 1 through Chapter 3 use identifiers for variable names. The at

tributes of variables include name, type, size and value. This chapter also uses identifiers

as names for programmer-defined functions. Actually, each identifier in a program has oth

er attributes, including storage class, scope and linkage.

C++ provides five storage-class specifiers: auto, regi s ter, ext ern, mu t abl e
and s t a t i c. An identifier' s storage-class specifier helps determine its storage class and

Chapter 3 F unctions 193

l inkage. This section discusses storage-class specifiers auto, regi s ter, extern and

stat i c . Storage-class specifier mutable (discussed in detail in Chapter 22) is used

exclusively with C++ user-defined types called classes (introduced in Chapter 6 and

Chapter 7) .

An identifier' s storage class determines the period during which that identifier exists

in memory . Some identifiers exist briefly, some are repeatedly created and destroyed and

others exist for the entire execution of a program. This section discusses two storage

classes : static and automatic.

An identifier' s scope is where the identifier can be referenced in a program. Some

identifiers can be referenced throughout a program; others can be referenced from only l im

ited portions of a program. Section 3 . 1 1 discusses the scope of identifiers .

An identifier' s linkage determines for a multiple-source-file program (a topic we begin

investigating in Chapter 6) whether an identifier is known only in the current source file or

in any source file with proper declarations.

The storage-class specifiers can be split into two storage classes : automatic storage

class and static storage class. Keywords auto and register are used to declare vari

ables of the automatic storage class. Such variables are created when program execution

enters the block in which they are defined, they exist while the block is active and they are

destroyed when the program exits the block.

Only local variables of a function can be of automatic storage class. A function ' s local

variables and parameters normally are of automatic storage class. The storage class speci

fier auto explicitly declares variables of automatic storage class. For example, the fol

lowing declaration indicates that double variables x and y are local variables of

automatic storage class-they exist only in the body of the function in which the definition

appears :

auto double x , y ;

Local variables are of automatic storage class by default, so keyword aut o rarely is

used. For the remainder of the text, we refer to variables of automatic storage class simply

as automatic variables.

Performance Tip 3.2 � Automatic storage is a means of conserving memory because automatic storage class vari

ables exist in memory only when the block in which they are defined is executing.

Software Engineering Observation 3. 1 0
Automatic storage is an example of the principle of least privilege. Why have variables
stored in memory and accessible when they are not needed?

Data in the machine-language version of a program are normally loaded into registers

for calculations and other processing.

Performance Tip 3.3 � The storage-class specifier regi s t er can be placed before an automatic variable dec
laration to suggest that the compiler maintain the variable in one of the computer 's h igh
speed hardware registers rather than in memory. If intensely used variables such as counters
or totals can be maintained in hardware registers, the overhead of repeatedly loading the
variables from memory into the registers and storing the results back into memory can be
eliminated.

1 94 Functions Chapter 3

Common Programming Error 3. 1 8
Using multiple storage-class specifiers for an identifier is a syntax error. Only one storage

class specifier can be applied to an identifier. For example, if you include regi s ter, do

not also include auto.

The compiler might ignore regi ster declarations. For example, there might not be

a sufficient number of registers available for the compiler to use. The fol lowing declaration

suggests that the integer variable counter be placed in one of the computer ' s regi sters ;

regardless of whether the compiler does this, counter is initialized to 1 :

regi ster int counter = 1 ;

The reg i ster keyword can be used only with local variables and function parameters .

Performance Tip 3.4
Often, regi ster is unnecessary. Today 's optimizing compilers are capable of recognizing
frequently used variables and can decide to place them in registers without the need for a

regi ster declaration from the programmer.

Keywords extern and static declare identifiers for variables and functions of the

static storage class. Such variables exist from the point at which the program begins execu

tion . For static-storage class variables, storage is allocated and initialized once when the

program begins execution. For static-storage class functions, the name of the function

exists when the program begins execution. However, even though the variables and the

function names exist from the start of program execution, this does not mean that these

identifiers can be used throughout the program. Storage class and scope (where a name can

be used) are separate issues, as we will see in Section 3 . 1 1 .

There are two types of identifiers with static storage class-external identifiers (such

as global variables and function names) and local variables declared with the storage class

specifier stat i c . Global variables are created by placing variable declarations outside

any function definition. Global variables retain their values throughout the execution of the

program. Global variables and functions can be referenced by any function that follows

their declarations or definitions in the source fi le. Global variables and function names

default to storage-class specifier extern.

Software Enginee ing Observa ion . 1 1
Declaring a variable as global rather than local allows unintended side effects to occur when
a function that does not need access to the variable accidentally or maliciously modifies it.
In general, use of global variables should be avoided except in certain silualions wilh unique
performance requirements.

Variables used only in a particular function should be declared as local variables in that
function rather than as global variables.

Local variables declared with the keyword stat i c are sti l l known only in the func

tion in which they are defined, but, unl ike automatic variables, static local variables

retain their values when the function returns to its caller. The next time the function i s

called, the static local variables contain the values they had when the function last com

pleted execution. The following statement declares local variable count to be stat i c

and t o b e initialized to I :

Cha pter 3 Functions 1 95

stat ic int count = 1 ;

All numeric variables of the static storage class are initialized to zero if they are not explic

itly initialized by the programmer.

Storage-class specifiers extern and stat i c have special meaning when they are

applied explicitly to external identifiers such as global variables and function names. In

Chapter 20, C Legacy Code Topics, we discuss using extern and stat i c with external

identifiers and multiple-source-file programs.

3. 1 1 Scope Rules

The portion of the program where an identifier can be used is known as its scope. For ex

ample, when we declare a local variable in a block, it can be referenced only in that block

and in blocks nested within that block. This section discusses four scopes for an identifier

Junction scope, file scope, block scope and Junction-prototype scope. Later we wi l l see two

other scopes-class scope (Chapter 6) and namespace scope (Chapter 22) .

An identifier declared outside any function has file scope. Such an identifier is

"known" in all functions from the point at which the identifier i s declared until the end of

the fi le . Global variables, function definitions and function prototypes placed outside a

function all have fi le scope .

Labels (identifiers followed by a colon such as start :) are the only identifiers with

function scope. Labels can be used anywhere in the function in which they appear, but

cannot be referenced outside the function body. Labels are used in swi tch structures (as

case labels) and in goto statements (Chapter 20). Labels are implementation detai l s that

functions hide from one another. This hiding-more formally called information hiding

is one of the most fundamental principles of good software engineering.

Identifiers declared inside a block have block scope. B lock scope begins at the identi

fier' s declaration and ends at the terminating right brace (}) of the block in which the iden

tifier is declared. Local variables have block scope, as do function parameters, which are

also local variables of the function. Any block can contain variable declarations . When

blocks are nested and an identifier in an outer block has the same name as an identifier in

an inner block, the identifier in the outer block is "hidden" unti l the inner block terminates .

While executing in the inner block, the inner block sees the value of i ts own local identifier

and not the value of the identical ly named identifier in the enclosing block. Local variables

declared static still have block scope, even though they exist from the time the program

begins execution. Storage duration does not affect the scope of an identifier.

The only identifiers with Junction-prototype scope are those used in the parameter l i st

of a function prototype. As mentioned previously, function prototypes do not require names

in the parameter l i st-only types are required. If a name appears in the parameter list of a

function prototype, the compiler ignores the name. Identifiers used in a function prototype

can be reused elsewhere in the program without ambiguity . In a single prototype, a partic

ular identifier can be used only once.

Com mon Prog ra m m i ng Error 3. 1 9
Accidentally using the same name for an identifier in an inner block that is usedfor an iden

tifier in an outer block, when in fact the programmer wants the identifier in the outer block
to be active for the duration of the inner block, is normally a logic error.

1 96 Functions Chapter 3

Good Progra m m i ng Practice 3.8
� A void variable names that hide names in outer scopes. This can be accomplished by avoiding I(2J the use of duplicate identifiers in a program.

The program of Fig. 3 . 1 2 demonstrates scoping issues with global variables, automatic

local variables and stat i c local variables .

Line 1 2 declares and initial izes global variable x to 1 . This global variable is hidden in

any block (or function) that declares a variable named x. In main, l ine 16 declares a local

variable x and initial izes it to 5. Line 1 8 outputs this variable to show that the global x is

hidden in main. Next, l ines 20-26 define a new block in main in which another local vari

able x is initialized to 7. Line 24 outputs this variable to show that it hides x in the outer

block of main. When the block exits, the variable x with value 7 is destroyed automati

cal ly . Next, l ine 28 outputs the local variable x in the outer block of main to show that it

is no longer hidden.

To demonstrate other scopes, the program defines three functions, each of which takes

no arguments and returns nothing. Function useLocal (l ines 44-54) defines automatic

variable x (l ine 46) and initializes it to 25 . When the program cal l s useLoca l , the func

tion prints the variable, increments it and prints i t again before the function returns program

control to its caller. Each time the program calls this function, the function recreates auto

matic variable x and initializes it to 25 .

us ing std : : cout ;
us ing std : : endl ;

void useLocal (void) ;
void useStat icLocal (void) ;
void useGlobal (void) ;

int x = 1 ;

int main ()
{

int x = 5 ;

Fig. 3. 1 2 Seoping example . (Part 1 of 3 .)

II function prototype
II funct ion prototype
II function prototype

Chapter 3 F u nctions 197

29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1

useLocal () ; I I
useStat icLocal () ; II
useGlobal () ; I I
useLocal () ;
useStat icLocal () ;
useGlobal () ;

II
I I
I I

useLocal has local x
useStat icLocal has stat i c local x
useGlobal uses global x
useLocal reinit i al i ze s i t s local x
stat ic local x retains i t s prior value
global x also retains i t s value

cout « " \nlocal x in main i s " « x « endl ;

return 0 ; I I indicates successful termination

} II end main

I I useLocal re init ial i ze s local variable x during each cal l
void useLocal (void)
{

int x = 2 5 ; II initial i z ed each t ime useLocal i s cal l ed

cout « endl « " local x i s " « x
« " on entering useLocal " « endl ;

++x;
cout « " local x i s " « x

« " on exit ing useLocal " « endl ;

} II end funct ion useLocal

I I useStat i cLocal ini t ial i zes stat ic local var iable x only the
I I first t ime the func t ion i s cal led; value of x i s saved
II between cal l s to thi s function
void useStat icLocal (void)
{

I I ini t i a l i zed only f irst t ime useStat icLocal i s c a l l ed
stat i c int x 5 0 ;

cout « endl « " local stat i c x i s " « x
« " on entering useStat icLocal " « endl ;

++x;
cout « " local static x i s " « x

« " on exit ing useStat i cLocal " « endl ;

} I I end funct ion useStat icLocal

I I useGlobal modi f i e s global variable x during each cal l
void useGlobal (void)
{

cout « endl « " global x i s " « x
« " on entering useGlobal " « endl ;

x * = 1 0 ;
cout « " global x i s " « x

« " on exi t ing useGlobal " « endl ;

} I I end funct ion useGlobal

Fig. 3. 1 2 Scoping example . (Part 2 of 3 .)

1 98 Functions

local x in main ' s outer scope i s 5
local x in main ' s inner scope i s 7
local x in main ' s outer scope i s 5

local x i s 2 5 on entering useLocal
local x i s 2 6 on exit ing useLocal

local stat i c x i s 5 0 on entering useStat icLocal
local stat ic x i s 5 1 on exit ing useStaticLocal

global x i s 1 on entering useGlobal
global x i s 1 0 on exit ing useGlobal

local x i s 2 5 on entering useLocal
local x i s 2 6 on exit ing useLocal

local stat ic x i s 51 on entering useStat icLocal
local static x i s 5 2 on exit ing useStat icLocal

global x is 1 0 on entering useGlobal
global x is 1 0 0 on exit ing useGlobal

local x in main is 5

Fig. 3. 1 2 Seoping example . (Part 3 of 3 .)

Chapter 3

Function useStat icLocal (l ines 59-70) declares stat i c variable x and initial

izes it to SO. Local variables declared as stat i c retain their values even when they are

out of scope (i .e . , the function in which they are defined is not executing) . When the pro

gram calls useStat icLocal, the function prints x, increments it and prints it again

before the function returns program control to its caller. In the next cal l to this function,

stat i c local variable x contains the value 5 I .
Function useGlobal (l ines 73-8 1) does not declare any variables. Therefore, when

it refers to variable x, the global x is used. When the program cal l s useGlobal, the func

tion prints the global variable x, multiplies it by 10 and prints again before the function

returns program control to its caller. The next time the program cal l s useGlobal, the

global variable has its modified value, l O . After executing functions useLocal,

useStat icLocal and useGlobal twice each, the program prints the local variable x

in main again to show that none of the function cal ls modified the value of x in main,

because the functions all referred to variables in other scopes.

3. 1 2 Recursion

The programs we have discussed are generally structured as functions that call one another

in a disciplined, hierarchical manner. For some problems, it is useful to have functions call

themselves. A recursive function i s a function that cal ls itself, either directly, or indirectly

(through another function). 3 Recursion is an important topic discussed at length in upper-

3. A lthough many compilers allow function main to call itself, Section 3. 6.1, paragraph 3 of the
C++ standard document indicates that main should not be used within a program. Its sole purpose
is to be the starting point for program execution.

Chapter 3 Functions 199

level computer science courses. This section and the next present simple examples of re

cursion. This book contains an extensive treatment of recursion. Figure 3.17 (at the end of

Section 3. 1 4) summarizes the recursion examples and exercises in the book.

We first consider recursion conceptually, then we examine two programs containing

recursive functions. Recursive problem-solving approaches have a number of elements in

common. A recursive function is called to solve a problem. The function actually knows

how to solve only the simplest case(s), or so-called base case(s). If the function is called

with a base case, the function simply returns a result. If the function is called with a more

complex problem, the function divides the problem into two conceptual pieces-a piece

that the function knows how to do and a piece that the function does not know how to do.

To make recursion feasible, the latter piece must resemble the original problem, but be a

slightly simpler or slightly smaller version of the original problem. This new problem looks

like the original problem, so the function launches (calls) a fresh copy of itself to work on

the smaller problem-this is referred to as a recursive call and is also called the recursion
step. The recursion step often includes the keyword return, because its result will be

combined with the portion of the problem the function knew how to solve to form a result

that will be passed back to the original caller, possibly main.

The recursion step executes while the original call to the function is still open, i.e., it

has not yet finished executing. The recursion step can result in many more such recursive

calls as the function keeps dividing each new subproblem with which the function is called

into two conceptual pieces. In order for the recursion to eventually terminate, each time the

function calls itself with a slightly simpler version of the original problem, this sequence of

smaller and smaller problems must eventually converge on the base case. At that point, the

function recognizes the base case and returns a result to the previous copy of the function,

and a sequence of returns ensues all the way up the line until the original function call even

tually returns the final result to main. All of this sounds quite exotic compared to the kind

of conventional problem solving we have been using to this point. As an example of these

concepts at work, let us write a recursive program to perform a popular mathematical cal

culation.

The factorial of a nonnegative integer n, written n! (and pronounced "n factorial"), is

the product

n . (n - I) . (n - 2) I

with I! equal to I, and O! defined to be I. For example, 5! is the product 5 . 4 . 3 . 2 . 1,
which is equal to 120.

The factorial of an integer, number, greater than or equal to 0, can be calculated iter
atively (nonrecursively) by using for as follows:

factoria l = 1;

for (int counter = number; counter > = 1; count e r --)
factoria l *= counter;

A recursive definition of the factorial function is arrived at by observing the following

relationship:

n!=n· (n-I)!

200 Functions

For example, 5! is clearly equal to 5 * 4! as is shown by the following:

5!=5· 4·3·2·'
5!=5·(4·3·2·')
5!=5·(4!)

Chapter 3

The evaluation of 5! would proceed as shown in Fig. 3. 1 3. Figure 3. 1 3(a) shows how

the succession of recursive calls proceeds until I! is evaluated to be \, which terminates the

recursion. Figure 3. 1 3(b) shows the values returned from each recursive call to its caller

until the final value is calculated and returned.

The program of Fig. 3. 1 4 uses recursion to calculate and print the factorials of the inte

gers 0- 1 0. (The choice of the data type uns igned long is explained momentarily.) The

recursive function factorial (lines 27-37) first determines whether the terminating

condition number <= 1 (line 30) is true. If number is indeed less than or equal to \, func

tion factorial returns 1 (line 3 1), no further recursion is necessary and the function ter

mjnates. If number is greater than 1 , line 35 expresses the problem as the product of

number and a recursive call to factorial evaluating the factorial of number - 1. Note

that factoria l (number - 1) is a slightly simpler problem than the original calcula

tion factorial (number) .

Final value = 120

1 returned

(a) Procession of recursive calls. (b) Values returned from each recursive call.

Fig. 3.13 Recursive evaluation of 5!.

1 II Fig. 3.14: fig03_14.c pp
2 II Recursive factorial funct ion.
3 #include <io stream>

4
5 u sing std::cout ;
6 using std::e nd l ;
7
8 #inc lu de <iomanip>
9

1 0 u sing std::setw;

Fig. 3. 1 4 Factorial calculations with a recursive function. (Part 1 of 2.)

Chapter 3 Functions 201

1 1

12 unsigned long fact orial(unsigned long) ; II funct ion prot ot ype
1 3

1 4 int main ()
1 5 (
1 6 II L oop 10 t ime s. During each iteration, calculat e
1 7 II factorial(i) and display r esult .
1 8 for (int i = 0; i <= 10; i++)
1 9 cout « setw(2) « i « II I = II

20 « fact orial (i « endl ;
2 1

22 ret urn 0; II indicat es succe ssful t erminat ion

23

24 } II end main
25

26 II r ecursive definition of funct ion fact orial
27 unsigne d long factorial(unsigne d long number
28 {
29 II base case
30 if (n umbe r <= 1)
3 1 r et urn 1;
32

33 II r ecur sive st ep

34 else
35 r et urn number * fact orial (number - 1) ;

36

37 } II end funct ion fact orial

01 1
11 .. 1
21 .. 2
31 '" 6
41 .. 24

51 = 120

61 .. 720

71 .. 5040
81 = 40320

91 '" 362880
101 3628800

Fig. 3. 1 4 Factorial calculations with a recursive function. (Part 2 of 2.)

Function factorial has been declared to receive a parameter of type uns igned

l ong and return a result of type uns igned l ong. This is shorthand notation for

uns igned l ong into The C++ language specification requires that a variable of type

uns igned l ong int be stored in at least four bytes (32 bits) ; thus, it can hold a value in

the range 0 to at least 4294967295. (The data type l ong int is also stored in at least four

bytes and can hold a value at least in the range -2147483648 to 2147483647.) As can be

seen in Fig. 3. 1 4, factorial values become large quickly. We chose the data type

uns igned l ong so that the program can calculate factorials greater than 7! on computers

with small (such as two-byte) integers. Unfortunately, function factorial produces

202 Functions Chapter 3

large values so quickly that even unsi gned long does not help us compute many facto

rial values before the size of an unsigned long variable is exceeded.

The exercises explore using variables of data type doubl e to calculate factorials of

larger numbers. This points to a weakness in most programming languages, namely, that

the languages are not easily extended to handle the unique requirements of various appli

cations. As we will see in the section of the book on object-oriented programming, C++ is

an extensible language that allows us to create arbitrarily large integers if we wish.

Common Programming Error 3.20

Either omitting the base case, or writing the recursion step incorrectly so that it does not con
verge on the base case, causes "infinite" recursion, eventually exhausting memory. This is
analogous to the problem of an infinite loop in an iterative (nonrecursive) solution.

3.13 Example Using Recursion: Fibonacci Series

The Fibonacci series

0,1,1,2,3,5,8,13,21, ...

begins with 0 and I and has the property that each subsequent Fibonacci number is the sum

of the previous two Fibonacci numbers.

The series occurs in nature and, in particular, describes a form of spiral. The ratio of

successive Fibonacci numbers converges on a constant value of 1 .6 1 8 This number, too,

repeatedly occurs in nature and has been called the golden ratio or the golden mean.
Humans tend to find the golden mean aesthetically pleasing. Architects often design win

dows, rooms, and buildings whose length and width are in the ratio of the golden mean.

Postcards are often designed with a golden mean length/width ratio.

The Fibonacci series can be defined recursively as follows:

fibonacci(°) = °
fibonacci(1) = I
fibonacci(n) = fibonacci(n - 1) + fibonacci(n - 2)

The program of Fig. 3. 1 5 calculates the nth Fibonacci number recursively by using function

f ibonacc i. Notice that Fibonacci numbers tend to become large quickly. Therefore, we

chose the data type unsigned l ong for the parameter type and the return type in function

f ibonacc i . Figure 3. 1 5 shows 1 1 executions of the program.

1 II Fig. 3.15 : fig03 15 .c pp
2 II Recur s ive fibonac c i funct ion.

3 #inc lude <iostream>
4

5 u s ing std::cout ;
6 u s ing std::cin;
7 u s ing std::endl;
8
9 unsigned long fibonacci(uns igned long) ; II func t ion protot ype

1 0

Fig. 3. 1 5 Fibonacci numbers generated with a recursive function. (Part 1 of 3.)

Chapter 3

int main()

(
unsigned long r esult , number;

II obt ain int eger from user
cout « "Ent er an int eger: ";
cin » n umber;

Functions

II calculat e fibonacci val ue for number input by user

re sult = fibonacci(number) ;

II displ ay re sul t

203

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20

2 1

22

23

24

25

26

27

28

29

30

3 1

32

33

34

35

36

37

38

39

40

cout « "Fibonacci(" « number « ") = " « r esult « endl;

r et urn 0; II indicat es successful t e rminat ion

II en d main

II r ecursive definit ion of funct ion fibonacci

unsigned long fibonacci(unsigned long n)

{
II base case
if (n == 0 II n

r et urn n;

II re cursive st ep
else

1)

r et urn fibonacci(n - 1) + fibonacci(n - 2) ;

} II end funct ion fibonacci

I
�t .r an int ••• r, 0

. Fibonacci (0) = 0

Ent er an int eger: 1
Fibonacci (1) = 1

Ent er an int eger: 2
Fibonacci (2) = 1

Ent er an int eger: 3
Fibonacci (3) = 2

Ent er an int eger: 4
Fibonacci (4) = 3

Fig. 3. 1 5 Fibonacci numbers generated with a recursive function. (Part 2 of 3.)

204 Functions

Ent er an int eger: 5
Fibonacci (5) = 5

Ent er an int eger: 6
Fibonacci (6) = 8

Enter an int eger : 10
Fibonacci (10) = 55

Ent er an int eger: 20
Fibonacci (20) = 6765

Ent er an int eger : 30
Fibonacci (30) = 83204 0

Ent er an int eger: 35
Fibonacci (35) = 92274 65

Chapter 3

Fig. 3. 1 5 Fibonacci numbers generated with a recursive function. (Part 3 of 3.)

The call to f ibonac c i (line 20) from main is not a recursive call, but all subsequent

calls to f ibonac c i are recursive. Each time the program invokes f ibonacc i (lines

30--40), the function immediately tests the base case to determine whether n is equal to 0
or 1 (line 33). If this is true, line 34 returns n.lnterestingly, ifn is greater than 1, the recur

sion step (line 38) generates two recursive cal ls, each is for a slightly simpler problem than

the original call to f ibonac c i. Figure 3.16 shows how function f ibonac c i would

evaluate f ibonac c i (3).
This figure raises some interesting issues about the order in which C++ compilers will

evaluate the operands of operators. This is a different issue from the order in which operators

are applied to their operands, namely, the order dictated by the rules of operator precedence.

Figure 3.16 shows that evaluating f ibonac c i (3) causes two recursive calls, namely,

f ibonac c i (2) and f ibonacc i (1) . But in what order are these calls made?

Most programmers simply assume the that operands are evaluated left to right. The C++

language does not specify the order in which the operands of most operators (including +)
are to be evaluated. Therefore, the programmer must make no assumption about the order in

which these calls execute. The calls could in fact execute f ibonacc i (2) first, then

f ibonac c i (1) , or the calls could execute in the reverse order, f ibonacc i (1) , then

f ibonac c i (2) . In this program and in most other programs, it turns out the final result

would be the same. However, in some programs the evaluation of an operand can have side
effects (changes to data values) that could affect the final result of the expression.

Chapter 3

I r et urn I ret urn

Fig. 3.16 Set of recursive calls to method Fibonacci,

Functions 205

I r et urn

The C++ language specifies the order of evaluation of the operands of only four oper

ators-namely, &&, II, the comma (,) operator and?: . The first three of these are binary

operators whose two operands are guaranteed to be evaluated left to right. The last operator

is C++' s only ternary operator. Its leftmost operand is always evaluated first; if the leftmost

operand evaluates to nonzero (true), the middle operand evaluates next and the last operand

is ignored; if the leftmost operand evaluates to zero (false), the third operand evaluates next

and the middle operand is ignored.

Common Programming Error 3.21

Writing programs that depend on the order oj evaluation oJthe operands oj operators other

than lielie, II, ?: and the comma (I) operator can lead to logic errors.

Portability Tip 3.2

Programs that depend on the order oj evaluation oJthe operands oj operators other than lielie,

II, ?: and the comma (,) operator can Junction differently on systems with different com

pilers.

A word of caution is in order about recursive programs like the one we use here to gen

erate Fibonacci numbers. Each level of recursion in function f ibona c c i has a doubling

effect on the number of function calls, i.e., the number of recursive calls that are required

to calculate the nth Fibonacci number is on the order of 2n. This rapidly gets out of hand.

Calculating only the 20th Fibonacci number would require on the order of 220 or about a

million calls, calculating the 30th Fibonacci number would require on the order of 230 or

about a billion calls, and so on. Computer scientists refer to this as exponential complexity.
Problems of this nature humble even the world's most powerful computers! Complexity

issues in general, and exponential complexity in particular, are discussed in detail in the

upper-level computer science curricul um course generally called "Algorithms."

Performa n ce Tip 3.5

Avoid Fibonacci-style recursive programs that result in an exponential "explosion" oj calls.

206 Functions Chapter 3

3.14 Recursion vs. Iteration

In the two previous sections, we studied two functions that easily can be implemented ei

ther recursively or iteratively. This section compares the two approaches and discusses why

the programmer might choose one approach over the other in a particular situation.

Both iteration and recursion are based on a control structure: Iteration uses a repetition

structure; recursion uses a selection structure. Both iteration and recursion involve repeti

tion: Iteration explicitly uses a repetition structure; recursion achieves repetition through

repeated function calls. Iteration and recursion both involve a termination test: Iteration ter

minates when the loop-continuation condition fails; recursion terminates when a base case

is recognized. Iteration with counter-controlled repetition and recursion both gradually

approach termination: Iteration modifies a counter until the counter assumes a value that

makes the loop-continuation condition fail; recursion produces simpler versions of the orig

inal problem until the base case is reached. Both iteration and recursion can occur infi

nitely: An infinite loop occurs with iteration if the loop-continuation test never becomes

false; infinite recursion occurs if the recursion step does not reduce the problem during each

recursive call in a manner that converges on the base case.

Recursion has many negatives. It repeatedly invokes the mechanism, and consequently

the overhead, of function calls. This can be expensive in both processor time and memory

space. Each recursive call causes another copy of the function (actually only the function' s

variables) to be created; this can consume considerable memory. Iteration normally occurs

within a function, so the overhead of repeated function calls and extra memory assignment

is omitted. So why choose recursion?

Any problem that can be solved recursively can also be solved iteratively (nonrecursively).

A recursive approach is normally chosen in preference to an iterative approach when the re

cursive approach more naturally mirrors the problem and results in a program that is easier

to understand and debug. Another reason to choose a recursive solution is that an iterative

solution is not apparent.

Performance Tip 3.6

Avoid using recursion in peiformance situations. Recursive calls take time and consume ad

ditional memory.

Common Programming Error 3.22

Accidentally having a nonrecursive function call itself, either directly or indirectly (through

another function), is a logic error.

Most programming textbooks introduce recursion much later than we have done here.

We feel that recursion is a sufficiently rich and complex topic that it is better to introduce

it earlier and spread the examples over the remainder of the text. Figure 3. 1 7 summarizes

the recursion examples and exercises in the text.

Let us reconsider some observations that we make repeatedly throughout the book.

Good software engineering is important. High performance is important. Unfortunately,

these goals are often at odds with one another. Good software engineering is key to making

more manageable the task of developing the larger and more complex software systems we

need. High performance in these systems is key to realizing the systems of the future that

will place ever greater computing demands on hardware. Where do functions fit in here?

Chapter 3

Chapter

Chapter 3

Chapter 4

Chapter 5

Chapter 17

Recursion Examples and Exercises

Factorial function

Fibonacci function

Greatest common divisor

Sum of two integers

Multiply two integers

Raising an integer to an integer power

Towers of Hanoi

Printing keyboard inputs in reverse

Visual izing recursion

Sum the elements of an array

Print an array

Print an array backwards

Print a string backwards

Determine whether a string is a palindrome

Minimum value in an array

Selection sort

Eight Queens

Linear search

Binary search

Quicksort

Maze traversal

Printing backwards a string input at the keyboard

Linked-list insert

Linked-list delete

Search a l i nked l i st

Print a l i nked l ist backwards

Binary tree insert

Preorder traversal of a binary tree

Inorder traversal of a binary tree

Postorder traversal of a binary tree

Functions

Fig. 3.17 Summary of recursion examples and exercises in the text,

207

Functionalizing programs in a neat, hierarchical manner promotes good software engi

neering, but it has a price,

208 Functions Chapter 3

Performance Tip 3.7

A heavily functionalized program-as compared to a monolithic (i. e. , one-piece) program

without functions-makes potentially large numbers of function calls that can slow down a

program's execution speed. However, monolithic programs are difficult to program, test, de

bug, maintain and evolve.

So functionalize your programs judiciously, always keeping in mind the delicate balance

between performance and good software engineering.

3.15 Functions with Empty Parameter Lists

In C++, an empty parameter list is specified by writing either void or nothing at all in pa

rentheses. The prototype

vo id print () ;

specifies that function print does not take arguments and does not return a value.

Figure 3. 1 8 demonstrates both ways to declare and use functions that do not take arguments.

1

2

3

4

5

6

7

8
9

1 0

1 1

1 2

1 3

1 4
1 5

1 6

1 7

1 8

1 9

20

2 1

22

23

24

25

26

Software Engineering Observation 3.1

Always provide function prototypes, even though it is possible to omit them when functions

are defined before they are used (in which case the first line of the function definition acts as

the function prototype as well). Providing the prototypes avoids tying the code to the order

in which functions are defined (which can easily change as a program evolves).

II Fig. 3.18: fig03_18.cpp
II Funct ions t hat t ake no arguments.
#include <iostr eam>

u sing std::cout ;
u sing std::endl;

void funct ion1() ;
void funct ion2(void) ;

II funct ion protot ype
II funct ion pro tot ype

int main ()

{
funct ion1() ;
funct ion2() ;

r eturn 0;

II end main

II call funct ion1 wit h no argument s
II call funct ion2 wit h no argument s

II indicat es successfu l t erminat ion

II funct ion1 u ses an empt y paramet er list to spe cify t hat
II t he funct ion r eceives no argument s
vo id funct ion1()

{
cout « "funct ion1 takes no argument s" « endl;

II end funct ion1

Fig. 3. 1 8 Functions that take no arguments. (Part 1 of 2.)

Chapter 3 Functions

27
28 II funct ion2 u ses a void par ameter list to specify t hat
29 II t he funct ion r eceiv es no argument s

30 void funct ion2(vo id)
3 1 {
32 cout « "funct ion2 also t akes no argument s" « endl ;

33

34 } II end funct ion2

funct ion1 t akes no argument s
funct ion2 also t akes no argument s

Fig. 3. 1 8 Functions that take no arguments. (Part 2 of 2.)

209

fI Portability Tip 3.3

The meaning of an empty function parameter list in C++ is dramatically different than in C.
In C. it means all argument checking is disabled (i.e. , the function call can pass any argu

ments it wants). In C++, it means that the function takes no arguments. Thus, C programs

using this feature might report syntax errors when compiled in C++.

Com mon Program ming Error 3.23

C++ programs do not compile unless function prototypes are providedfor every function or

each function is defined before it is called.

3.16 Inline Functions

Implementing a program as a set of functions is good from a software engineering stand

point, but function cal ls involve execution-time overhead. C++ provides inline functions to

help reduce function-cal l overhead-especially for small functions. The qualifier inl ine

before a function' s return type in the function definition "advises" the compiler to generate

a copy of the function's code in place (when appropriate) to avoid a function call. The

trade-off is that mUltiple copies of the function code are inserted in the program (often mak

ing the program larger) rather than having a single copy of the function to which control is

passed each time the function is called. The compiler can ignore the inl i ne qualifier and

typically does so for all but the smallest functions.

Software Engineering Observation 3 16

Any change to an inlinefunctiol1 could require all clients of thefunction to be recompiled.

This can be significant in some program-development and maintenance situations.

� Good Program ming Practice 3.9

� The inline qualifier should be used only with small,f requel1lly used functions.

Performance Tip 3.8

Using inlinefunctions can reduce execution time, but often increases program size.

210 Functions Chapter 3

Figure 3.19 uses inl ine function cube (lines 14-18) to calculate the volume of a

cube of side s i de. Keyword const in the parameter list of function cube (line 1 4) tells

the compiler that the function does not modify variable side. This ensures that the value

of s ide is not changed by the function when the calculation is performed. Keyword

c onst is discussed in detail in Chapter 4, Chapter 5 and Chapter 7 .

Many programmers do not bother to declare value parameters as const, even though the
, called function should not be modifying the passed argument. Keyword const in this con

text would only protect a copy of the original argument, not the original argument itself.

1 II F ig . 3. 19: fig03 19.c pp
2 II Using an inline funct ion to calculat e.

3 II the volume of a cu be.

4 #include <iostream>
5

6 usin g std::cout;
7 u sing std::cin;
8 using std::endl;
9

1 0 II Definit ion of inline func t ion cu be. Definit ion of func t ion
1 1 1/ a ppears before funct ion is ca lled, so a funct ion protot ype
1 2 // is not required. First line of funct ion definition ac t s as
1 3 // the protot ype.

1 4 inline d ouble cube(const double side)

1 5 {
1 6 r eturn side * side * side; II calculat e cube

1 7

1 8 } II end funct ion cu be
1 9

20 int ma in ()
2 1 {
22 cout « "Ent er t he side lengt h of your cu be: ";

23

24 double sideValue;

25

26 cin » sideValu e;
27
28 II c a lculat e cube of sideValue and displa y resu lt

29 cout « "volume o f cube wit h side "
30 « sideValu e « " is " « cube(sideValue) « endl;

3 1
32 r eturn 0; II indicat es succ essful t erminat ion

33

34 } II end main

Enter the side length of you r cube: 3.5
Volume of cube with side 3.5 is 4 2.875

Fig. 3. 1 9 inline function that calculates the volume of a cube.

Chapter 3 Functions 211

3. 1 7 References and Reference Parameters

Two ways to invoke functions in many programming languages are pass-by-value and

pass-by-reference. When an argument is passed by value, a copy of the argument' s value

is made and passed to the called function. Changes to the copy do not affect the original

variable' s value in the caller. This prevents the accidental side effects that so greatly hinder

the development of correct and reliable software systems. Each of the arguments that have

been passed in the programs in this chapter so far have been passed by value.

Performance Tip 3.9

One disadvantage of pass-by-value is that, if a large data item is being passed, copying that

data can take a considerable amount of execution time and memory space.

This section introduces reference parameters-the first of two means C++ provides

for performing pass-by-reference. With pass-by-reference, the caller gives the called func

tion the ability to access the caller' s data directly, and to modify that data if the called func

tion chooses to do so.

Performance Tip 3.10

Pass-by-reference is good for performance reasons, because it can eliminate the overhead

of copying large amounts of data.

Software Engineering Ob e vation 3.18

Pass-by-reference can weaken security, because the calied function can corrupt the calier's

data.

We show how to achieve the performance advantage of pass-by-reference while simul

taneously achieving the software engineering advantage of protecting the caller' s data from

corruption.

A reference parameter is an alias for its corresponding argument in a function call. To

indicate that a function parameter is passed by reference, simply follow the parameter' s

type i n the function prototype by an ampersand (&:) ; use the same convention when listing

the parameter' s type in the function header. For example, the following declaration in a

function header

int &count

when read from right to left is pronounced "count is a reference to an int." In the func

tion call, simply mention the variable by name to pass it by reference. Then mentioning the

variable by its parameter name in the body of the called function actually refers to the orig

inal variable in the calling function, and the original variable can be modified directly by

the called function. As always, the function prototype and header must agree.

Figure 3.20 compares pass-by-value and pass-by-reference with reference parameters.

The "styles" of the arguments in the calls to function squareByValue and function

squareByRe f erence are identical-both variables are simply mentioned by name in

the function calls. Without checking the function prototypes or function definitions, it is not

possible to tell from the calls alone whether either function can modify its arguments.

Because function prototypes are mandatory, however, the compiler has no trouble

resolving the ambiguity.

212

1

2

3

4

5

6
7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20

2 1

22

23

24

25

26

27

28

29

30

3 1

32

33

34

35

36

37

38

39

40

4 1

42
43

44
45

46

Functions

// Fig. 3.20: fig03_20 . cpp
// Co mpar ing pass-by-valu e and pass-by-reference
/1 with r eferences.

#include <iostream>

u sing std::cout ;
u sing std::endl;

int squareByValue(int) ;
void squareByReference(int &) ;

int ma in ()

{
int x 2;
int z = 4 ;

II d emonstrat e squareByValu e

II funct ion prototype
II funct ion pro tot ype

cout « "x = " « x « " before squareByValue\n";
cout « "Valu e r eturned by squareByValu e: "

« squareByValue(x) « endl;

Chapter 3

cout « "x = " « x « " after squareByValu e\n" « endl;

II demonstrate squareByReference
cout « lIZ = " « z « " before squareByReference" « endl;
squareByReference(z) ;
cout « lIZ = " « z « " after squar eByReference" « endl;

return 0; II indicat es su ccessfu l termination

} II end main

II squareByValu e mu lt iplies number by itself, stores the
II r esu lt in number and returns t he new valu e of number
int squareByValu e(int number)

{
return number *= number; II caller's argument n ot modified

} II end function squareByValue

II squareByReference multiplies numberRef by itself and
II stores the result in the variable to which n umberRef
II r efer s in funct ion main
void squareByReference(int &numberRef)
{

numberRef *= numberRef; II caller's argument modified

} II end function squareByReference

x = 2 before squareByValue
Value r eturned by squareByValu e: ,
x • 2 aft er squareByValue

z = , before squareByReference
z = 16 after squareByReference

Fig. 3.20 Passing arguments by value and by reference.

Chapter 3 Functions 213

Common Progra m ming Error 3.24

Because reference parameters are mentioned only by name in the body o.llhe called function,

the programmer might inadvertently treat reference parameters as pass-by-value pa

rameters. This can cause unexpected side effects if the original copies of the variables are

changed by the calling function.

Chapter 5 discusses pointers; we will see that pointers enable an alternate form of pass

by-reference in which the style of the call clearly indicates pass-by-reference (and the

potential for modifying the caller' s arguments).

Performance Tip 3.11

For passing large objects, use a constant reference parameter to simulate the appearance

and security of pass-by-value and avoid the overhead of passing a copy of the large object.

To specify a reference to a constant, place the const qualifier before the type speci

fier in the parameter declaration.

Note in line 42 of Fig. 3.20 the placement of &: in the parameter list of function

squareByReference. Some C++ programmers prefer to write int&: numbe rRe f .

Software Engineering Observation 3.19

For the combined reasons of clarity and peliormance, many C++ programmers prefer that

modifiable arguments be passed to functions by using pointers, small nonmodifiable argu

ments be passed by value and large nonmodifiable arguments be passed to functions by using

references to constants.

References can also be used as aliases for other variables within a function, although

they typically are used with functions as shown in Fig. 3.20. For example, the code

int c o unt
int &:cRe f

+ +c Re f;

1;
c o unt ;

II dec lare int e ger var iable c o unt
// c reate cRe f a s an a l ia s for c o unt
// increment c o unt (using it s a l ia s)

increments variable c ount by using its alias cRe f . Reference variables must be initialized

in their declarations (see Fig. 3.2 1 and Fig. 3.22) and cannot be reassigned as aliases to oth

er variables. Once a reference is declared as an alias for another variable, all operations sup

posedly performed on the alias (i.e., the reference) are actually performed on the original

variable. The alias is simply another name for the original variable. Taking the address of

a reference and comparing references do not cause syntax errors; rather, each operation ac

tually occurs on the variable for which the reference is an alias. A reference argument must

be an lvalue (e.g. , a variable name), not a constant or expression that returns an rvalue (e.g.,

the result of a calculation). See Section 2.20 for definitions of the terms lvalue and rvalue .

1 /1 F ig. 3.21: fig03_21.c pp
2 // Re fe renc e s must be init ial ized.
3 #inc l ude <io stream>
4

5 using std::c o ut ;
6 using std::endl ;
7

Fig. 3.2 1 Initializing a reference. (Part 1 of 2.)

214 Functions

8 int ma in {)
9 {

1 0 int x = 3;
1 1

1 2 II y refers to (is an a l ias for) x

1 3 int &y = x;
1 4

1 5

1 6

17

1 8

1 9

20

2 1 }

x ... 3

y = 3
x .. 7
y = 7

c o ut « "x

y = 7;
c o ut « "x

ret urn 0;

II end ma in

" « x « endl « "y

" « x « endl « "y

II indicates s ucces s ful

Fig. 3.2 1 Initializing a reference. (Part 2 of 2.)

Chapter 3

" « y « endl;

= " « y « endl;

t e rminat ion

Functions can return references, but this can be dangerous. When returning a reference

to a variable declared in the called function, the variable should be declared stat i c

within that function. Otherwise, the reference refers t o an automatic variable that i s dis

carded when the function terminates; such a variable is said to be "undefined," and the pro

gram's behavior would be unpredictable. (Some compilers issue warnings when this is

done.) References to undefined variables are called dangling references.

Common Programming Error 3.25

Not initializing a reference variable when it is declared is a syntax error (unless the decla

ration is part of a function 's parameter list).

Common Programming Error 3.26

Attempting to reassign a previously declared reference to be an alias to another variable is

a logic error. The value of the other variable is simply assigned to the variable for which the

reference is already an alias.

Common Programming Error 3.27

Returning a reference to an automatic variable in a called function is a logic error. Some

compilers issue a warning when this occurs in a program.

Note that the C++ standard does not specify the error messages that compilers use to indi

cate particular errors. For this reason, Fig. 3.22 shows the error messages from both the Bor

land C++ 5.5 command-line compiler and the Microsoft Visual C++ 6 compiler.

1 II Fig. 3.22: fig03 22. c pp
2 II Re ferenc e s mu s t be init ialized.

3 #inc lude <io stream>

Fig. 3.22 Uninitialized local reference causes a syntax error. (Part 1 of 2.)

Chapter 3

4

5

6
7

8

9

u s ing std::cout ;
u s ing std::end l ;

int main()

{
int x = 3;

Functions

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

int &y; II Error: y must be initia lized

c out « "x
y = 7 ;
c out « "x

" « x « endl « "y

" « x « endl « "y

" « y « endl;

" « y « e ndl;

return 0; II indicates succ e s s fu l t e rminat ion

} II end main

Borland C++ command-line compiler error message:

E rror E 2304 Fig03_22.c pp 11: Re ference var iable 'y' must be
initialized in funct ion main()

Microsoft Visual C++ compiler error message:

D:\cpphtp4_exampl es\c h03\Fig03_22.c pp(11)
refere nce s must be init ial ized

error C2530: ' y '

Fig. 3.22 Uninitialized local reference causes a syntax error. (Part 2 of 2.)

3.18 Default Arguments

215

It is not uncommon for a program to invoke a function repeatedly with the same argument

value for a particular parameter. In such cases, the programmer can specify that such an ar

gument is a default argument, and the programmer can provide a default value for that ar

gument. When a program omits a default argument in a function call, the compiler rewrites

the function call and inserts the default value of that argument to be passed as an argument

to the function call.

Default arguments must be the rightmost (trailing) arguments in a function's parameter

list. When one is calling a function with two or more default arguments, if an omitted argu

ment is not the rightmost argument in the argument list, then all arguments to the right of

that argument also must be omitted. Default arguments should be specified with the first

occurrence of the function name-typically, in the function prototype. Default values can

be constants, global variables or function calls. Default arguments also can be used with

inl ine functions.

Figure 3.23 demonstrates using default arguments in calculating the volume of a box.

The function prototype for boxVolume (line 9) specifies that all three arguments have

been given default values of 1. Note that the default values should be defined only in the

function prototype. Also note that we provided variable names in the function prototype for

readability. As always, variable names are not required in function prototypes.

216 Functions

II Fig . 3 . 23 : f i g 03_23 . cpp
II Us ing de fault argument s .
#inc lude < i ostream>

u s ing s td : : cout ;
u s ing s td : : endl ;

II funct ion prototype that spec i f ie s de fault argument s

Chapter 3

1

2

3

4

5

6

7

8

9 int boxVolume (int length = 1 , int width = 1 , int he ight 1);
1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20

2 1

22

23

24

25

26

27

28

29

30

3 1

32

33

34

35

36

37

38

int main ()

{
II no argument s--use de fault value s for al l dimens ions
cout « "The de fau l t box volume i s : " « boxVolume () ;

II spec i fy length; de fault width and he i ght
cout « " \ n \ nThe volume of a box with l ength 1 0 , \ n"

« "width 1 and he ight 1 i s : " « boxVolume (1 0) ;

/1 spec i fy length and width ; default he i ght
cout « " \ n \ nThe vo lume of a box with l ength 1 0 , \ n"

« "width 5 and he ight 1 i s : " « boxVolume (1 0 , 5) ;

II spec i fy all argument s
cout « " \ n \ nThe volume of a box with l ength 1 0 , \n"

« "width 5 and he ight 2 i s : " « boxVolume (1 0 , 5 , 2)
« endl ;

return 0 ; /1 indicates succ e s s ful terminat ion

II end main

II funct i on boxVolume calculates the volume of a box
int boxVolume (int length , int width , int height)

{
return length * width * he ight ;

/1 end funct ion boxVolume

The de fault box volume i s : 1

The volume of a box with l ength 1 0 ,

width 1 and height 1 i s : 1 0

The volume o f a box with length 1 0 ,

w idth 5 and he ight 1 i s : 5 0

The volume of a box with l ength 1 0 ,

width 5 and he ight 2 i s : 1 0 0

Fig. 3.23 Default arguments to a function.

Chapter 3 Functions 217

The first call to boxVolume (line 1 4) specifies no arguments, thus using all three

default values. The second call (line 1 8) passes a l ength argument, thus using default

values for the width and he i ght arguments. The third call (line 22) passes arguments

for l ength and width, thus using a default value for the he i ght argument. The last call

(line 26) passes arguments for l ength, width and he i ght , thus using no default

values. Note that any arguments passed to the function explicitly are assigned to the func

tion ' s parameters from left to right. Therefore, when boxVolume receives one argument,

the function assigns the value of that argument to its l ength parameter (i.e. , the leftmost

parameter in the parameter list) . When boxVolume receives two arguments, the function

assigns the values of those arguments to its l ength and width parameters in that order.

Finally, when boxVo lume receives all three arguments, the function assigns the values of

those arguments to its l ength, width and he ight parameters, respectively.

� Good Progra mming Practice 3. 1 0

Using default arguments can simplify writing function calls. However, some programmers

feel that explicitly specifying all arguments is clearer. If the default values for a function

change, the program may not yield the desired results.

Common Progra mming Error 3.28

Specifying and attempting 10 use a default argument that is not a rightmost (trailing) ar

gwnent (while not simultaneously defaulting all the rightmost arguments) is a syntax error.

3.19 Unary Scope Resolution Operator

It is possible to declare local and global variables of the same name. C++ provides the una
ry scope resolution operator (: :) to access a global variable when a local variable of the

same name is in scope. The unary scope resolution operator cannot be used to access a local

variable of the same name in an outer block. A global variable can be accessed directly

without the unary scope resolution operator if the name of the global variable is not the

same as the name of a local variable in scope. In Chapter 6, we discuss the use of the binary
scope resolution operator with classes.

Figure 3.24 demonstrates the unary scope resolution operator with local and global

variables of the same name. To emphasize that the local and global versions of constant

variable PI are distinct, the program declares one variable doubl e and one f l oat .

1 II Fig . 3 . 2 4 : f ig03_2 4 . cpp
2 II U s i ng the unary scope resolut ion operator .
3 # inc lude < io s t ream>
4

5 us ing s td : : cout ;
6 u s ing s td : : endl ;
7

8 # inc lude < iomanip>
9

1 0 us ing s td : : setprec i s ion ;
1 1

1 2 II de f i ne global constant PI
1 3 const double PI = 3 . 1 4 1 5 9 2 6 53 5 8 9 7 9 ;

Fig. 3.24 Unary scope resolution operator. (Part 1 of 2 .)

218

1 4

1 5

1 6

1 7

1 8

1 9

20

2 1

22

23

24

25

26

27

Functions

int ma in ()

{
II de f ine local constant P I
const float P I = static_cast < float > (: : P I) ;

II di splay values of local and global P I constant s
cout « setprec i s ion (2 0)

« " Local f l oat value of PI = n « P I

Chapter 3

« n \nGl obal double value of P I n « : : P I « e ndl ;

return 0 ; I I indicates success ful terminat ion

II end main

Borland C+ + command-line compiler output:

Local f l oat val ue of PI 3 . 1 4 1 5 9 2 7 4 1 0 1 2 5 7 3 2 4 2
Gl obal double val ue of P I = 3 . 14 1 5 9 2 6 5 3 5 8 9 7 9 0 0 0 7

Microsoft Visual C+ + compiler output:

Local f l oat val ue of P I
Gl obal double val ue of P I =

3 . 1 4 1 5 9 2 7 4 1 0 1 2 5 7 3 2
3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9

Fig. 3.24 Unary scope resolution operator. (Part 2 of 2 .)

Using the unary scope resolution operator (: :) with a given variable name is optional

when the only variable with that name is a global variable.

tIJ Common Programming Error 3.29

It is a syntax error to use the unary scope resolution operator (: :) to access a global vari

able if a global variable of that name does not exist.

Common Programming Error 3.30

It is an error to attempt to use the unary scope resolution operator (: :) to access a non-glo

bal variable in an outer block-it is a syntax error if no global variable with that name exists;

it is a logic error if a global variable with that name exists (because the unary scope resolu

tion operator will cause the program to refer to the global variable when, in fact, you are

trying to improperly access the non-global variable in the outer block).

Always using the unary scope resolution operator (: :) to refer to global variables

makes programs clearer, easier to modify and avoids subtle errors.

Good Progra m ming Practice 3. 1 1

Always using the unary scope resolution operator (: :) to refer to global variables makes

programs easier to read and understand, because it makes it clear that you are intending to

access a global variable rather than a non-global variable.

Always using the unary scope resolution operator (: :) to refer to global variables makes

programs easier to modify by reducing the risk of name collisions with non-global variables.

Chapter 3 Functions 219

Testin g and Debugging Tip 3.2

Always using the unary scope resolution operator (: :) to refer to a global variable eliminates

possible logic errors that might occur if a non-global variable hides the global variable.

Testing and Debugging Tip 3.3

Avoid using variables of the same name for different purposes in a program. Although this

is allowed in various circumstances, it can lead to errors.

3.20 Function Overloading

c++ enables several functions of the same name to be defined, as long as these functions

have different sets of parameters (at least as far as the parameter types or the number of

parameters or the order of the parameter types are concerned). This capability is called

function overloading. When an overloaded function is called, the C++ compiler selects the

proper function by examjning the number, types and order of the arguments in the call.

Function overloading is commonly used to create several functions of the same name that

perform similar tasks, but on different data types. For example, many functions in the math

library are overloaded for different numeric data types.4

� Good Progra m ming Practice 3. 1 2

Overloading functions that perform closely related tasks can make programs more readable

and understandable.

Figure 3.25 uses overloaded square functions to calculate the square of an i nt

(lines 9-14) and the square of a doubl e (lines 1 7-22). In function main, line 26 invokes

the int version of function square by passing the literal value 7 . C++ treats whole

number literal values as type int by default. Similarly, line 27 invokes the doubl e ver

sion of function s quare by passing the literal value 7 . 5 , which C++ treats as a doubl e

value by default. I n each case, the compiler chooses the proper function t o call based o n the

type of the argument. The last two lines of the output window confirm that the proper func

tion was called in each case.

Overloaded functions are distinguished by their signatures-a signature is a combina

tion of a function's name and its parameter types (in order). The compiler encodes each

function identifier with the number and types of its parameters (sometimes referred to as

name mangling or name decoration) to enable type-safe linkage. Type-safe linkage ensures

that the proper overloaded function is called and that the types of the arguments conform

to the types of the parameters.

1 II Fig. 3 . 25 : fig0 3_25 . cpp
2 I I Us in g over loaded funct ions .
3 # inc lude < io s t ream>
4
5 u s ing s td : : cout ;
6 using s td : : endl ;

Fig. 3.25 Overloaded function definitions. (Part 1 of 2.)

4. The C++ standard requires fl oat , dou bl e and long dou bl e overloaded versions of the math
l ibrary functions discussed i n Section 3 . 3 .

220 Functions

7

8 II func t ion square for int values
9 int square (int x)

1 0 {

Chapter 3

1 1 cout « "Ca l l ed square with int argument : " « x « endl ;
1 2 return x * x;
1 3

1 4 II end int ver s ion o f funct ion square
1 5

1 6 II func t ion square for doubl e value s
1 7 double square (double y)

1 8 {
1 9 cout « "Called square with double argument : n « y « endl ;
20 return y * y;
2 1

22 } II end double ver s i on of funct ion square

23

24 int main ()

25 {
26 int intRe sult = square (7) ; II cal l s int vers i on
27 doubl e doubleRe sult = square (7 . 5) ; II cal l s double vers ion
28

29 cout « " \ nThe square of integer 7 is " « intResult
30 < < " \ nThe square of doubl e 7 . 5 is " < < doubleRe sul t
3 1 « endl ;
32

33 return 0 ; II indicates succe s s ful terminat ion
34

35 II end main

Cal l ed square with int argument : 7
Called square with double argument : 7 . 5

The square of integer 7 i s 4 9
The square o f double 7 . 5 i s 5 6 . 2 5

Fig. 3.25 Overloaded function definitions. (Part 2 of 2.)

Figure 3.26 was compiled on the Borland C++ compiler. Rather than showing the exe

cution output of the program (as we normally would) , we show the mangled function names

produced in assembly language by Borland C++. Each mangled name begins with @ fol

lowed by the function name. The function name is then separated from the mangled param

eter list by $q. In the parameter list for function nothing2 (line 25), c represents a char,

i represents an int , pf represents a f l oat * (i.e. , a pointerS to a f l oat) and pd repre

sents a doubl e * . In the parameter list for function nothing l , i represents an int ,

f represents a f l oat , c represents a char and pi represents an int * . The two

5 . Some of the function parameters and function return types in this example are declared with types
that include the * character. This indicates that the parameter or return value is a pointer. Poi nters
are discussed in Chapter 5. We use them here only to show how a variety of types are encoded to
enable function overloading.

Chapter 3 Functions 221

square functions are distinguished by their parameter lists ; one specifies d for double and

the other specifies i for int o The return types of the functions are not specified in the man

gled names. Overloaded functions can have different return types, but must have different

parameter lists. Note that function name mangling is compiler specific. Also note that func

tion main is not mangled, because it cannot be overloaded.

Com mon Programming Error 3.31

Creating overloaded functions with identical parameter lists and different return types i s a

syntax error.

1 II Fig . 3 . 2 6 : f i g 0 3_2 6 . cpp
2 II Name mangl ing .
3

4 II func t i on square for int values
5 int square (int x)

6 {
7 return x * x;
8
9

1 0 II funct i on square for double values
1 1 doubl e square (double y)
1 2 {
1 3 return y * y ;
1 4 }
1 5

1 6 II funct ion that rece ives argument s of type s
1 7 II int , f l oat , char and int *
1 8 vo id nothingl (int a , float b , char c , int * d
1 9 {
20 II empty func t ion body
2 1 }
22

23 II funct ion that rece ive s argument s of type s

24 II char , int , f l oat * and double *
25 char * nothing2 (char a , int b , f l oat * c , double *d)
26 {
27 return 0 ;
28 }
29

30 int main ()
3 1 {
32 return 0 ; II indicates succe s s ful termina t i on
33

34 } II end ma in

_main
9nothing2 $qc ipfpd
9nothingl$qifcpi
9square $qd
9square $qi

Fig. 3.26 Name mangling to enable type-safe linkage.

222 Functions Chapter 3

The compiler uses only the parameter lists to distinguish between functions of the

same name. Overloaded functions need not have the same number of parameters. Pro

grammers should use caution when overloading functions with default parameters, because

this may cause ambiguity.

� Common Programming Error 3.32

A function with default arguments omilled might be called identically to another overloaded

function; this is a syntax error. For example, having in a program both a function that ex

plicitly takes no arguments and a function of the same name that contains all default argu-

ments results in a syntax error when an allempt is made to use that function name in a call

passing no arguments. The compiler does not know which version of the function to choose.

In Chapter 8, we discuss how to overload operators to define how they should operate

on objects of user-defined data types. (In fact, we have been using many overloaded oper

ators to this point, including the stream insertion operator < < and the stream extraction

operator » . We say more about overloading « and » in Chapter 8.) Section 3.2 1 intro

duces function templates for automatically generating overloaded functions that perform

identical tasks on different data types.

3.21 Function Templates

Overloaded functions are normally used to perform similar operations that involve different

program logic on different data types. If the program logic and operations are identical for

each data type, overloading may be performed more compactly and conveniently by using

function templates. The programmer writes a single function template definition. Given the

argument types provided in calls to this function, C++ automatically generates separate

function-template specializations to handle each type of call appropriately. Thus, defining

a single function template defines a whole family of solutions.

All function template definitions begin with the t emp l a t e keyword followed by a

list of formal type parameters to the function template enclosed in angle brackets « and

» . Every formal type parameter is preceded by keyword typename or keyword c l a s s

(which are synonyms). The formal type parameters are placeholders for built-in types or

user-defined types. These placeholders are used to specify the types of the arguments to the

function, to specify the return type of the function and to declare variables within the body

of the function definition. The function definition follows and is defined like any other

function, using the formal type parameters as placeholders for actual data types.

The following function template definition is also used in Fig. 3 .27 (lines 1 0-23) :

template < c l a s s T > I I o r template < typename T >

T maximum (T value l , T value2 , T value 3)

{
T max = value l ;

i f (value2 > max

max = value2 ;

i f (value 3 > max

max = value3 ;

return max ;

) I I end func t ion template maximum

Chapter 3 Functions 223

This function template declares a single formal type parameter T as a placeholder for the

type of the data to be tested by function maximum. When the compiler detects a maximum

invocation in the program source code, the type of the data passed to maximum is substi

tuted for T throughout the template definition, and C++ creates a complete function for de

termining the maximum of three values of the specified data type. Then the newly created

function is compiled. Thus, templates are a means of code generation. In Fig. 3.27, three

functions are created as a result of the calls in lines 35, 45 and 55-one expects three i nt

values, one expects three doubl e values and one expects three char values. The special

ization created for type int replaces each occurrence of T with int as follows:

int maximum (int value l , int value2 , int value3)

{
int max = value 1 ;

i f (value2 > max
max = value2 ;

i f (value3 > max
max = value 3 ;

return max ;

} I I end func t ion template maximum

The name of a type parameter must be unique in the formal parameter list of a partic

ular template definition. Figure 3.27 demonstrates the maximum template function to

determine the largest of three int values, three doub l e values and three char values.

1 I I Fig . 3 . 2 7 : f ig 0 3 _2 7 . cpp
2 I I Using a func t ion templat e .

3 # i nc lude < io s t ream>
4

5 u s ing s td : : cout ;
6 us ing s td : : c i n ;
7 us ing std : : endl ;
8

9 II de f init 10n of func t 1 0n template maximum
1 0 t emplate < c l a s s T > I I or template < typename T >
1 1 T maximum (T value l , T value2 , T value 3)
1 2 {
1 3 T max = value l ;
1 4

1 5 i f (value2 > max
1 6 max = value2 ;
1 7

1 8 i f (value3 > max
1 9 max = value 3 ;
20

2 1 return max ;
22

23 } I I end func t ion template maximum

Fig. 3.27 Using a function template. (Part 1 of 2.)

224 Functions

24

25 int main ()
26 {
27 / / demonstrate maximum w i t h i n t values
28 int int 1 , int 2 , int 3 ;
29

30 cout « " Input three integer value s : " ;
3 1 cin » int 1 » int 2 » int 3 ;
32

33 I I invoke int ver s i on of maximum
34 cout « " The maximum integer value i s : "
35 « maximum (int 1 , int 2 , int 3) ;
36

37 1 / demonstrate maximum with double values
38 doubl e doubl e 1 , double2 , doubl e3 ;
39

40 cout « " \ n \ nInput three double value s : " ;
4 1 c i n » doub l e 1 » double2 » double3 ;
42

43 I I invoke doubl e vers ion of maximum
44 cout « " The maximum double value i s : "

45 « maximum (double 1 , double2 , doub l e 3) ;
46

47 I I demonstrate maximum with char value s
48 char char 1 , char2 , char3 ;
49

50 cout « " \n \ nInput three characters : " ;
5 1 c i n » char 1 » char2 » char3 ;
52

53 I I invoke char ver s i on of maximum
54 cout « " The maximum character value i s : "
55 « maximum (char 1 , char2 , char3
56 « endl ;
57

58 return 0 ; I I indicates succe s s ful terminat ion
59

60 I I end main

Input three integer value s : 1 2 3
The max� integer value i s : 3

Input three double value s : 3 . 3 2 . 2 1 . 1
The max� double value i s : 3 . 3

Input three characters : A C B
The max� character value i s : C

Fig. 3.27 Using a function template. (Part 2 of 2.)

Common Program ming Error 3.33

Chapter 3

Not placing either keyword class or keyword typename before every formal type param

eter of a function templale (e. g. , < class S, class T » is a syntax error.

Chapter 3 Functions 225

3.22 (Optional Case Study) Thinking About Objects: Identifying
a Class's Attributes

In the "Think jng About Objects" section at the end of Chapter 2, we began the first phase

of an object-oriented design (000) for our elevator simulator-identifying the classes

needed to implement the simulator. We began by listing the nouns in the problem state

ment, and we created a separate class for each category of nouns that performs an important

duty in the elevator simulation. We then represented the classes and their relationships in a

UML class diagram. Classes have atlributes and operations . A class's attributes are imple

mented in C++ programs as data; whereas a class's operations are implemented as func

tions. Tn this section, we determine many of the class attributes needed to implement the

elevator simulator. In Chapter 4, we determine the operations. In Chapter 5, we concentrate

on the interactions and sets of interactions (often called collaborations) , among the objects

in the elevator simulator.

Consider the attributes of some real-world objects. A person's attributes include height

and weight. A radio's attributes include its station setting, its volume setting and whether

it is set to AM or FM. A car's attributes include its speed and mileage readings, the amount

of gas in its tank, what gear it is in, etc. A personal computer's attributes include manufac

turer (e.g., Apple, I B M or Dell), processor speed, main-memory size (which can be

expressed in megabytes), hard-disk size (which can be expressed in gigabytes), etc.

Attributes describe classes. An object's attribute values help differentiate that object

from other objects in the system. We can identify the attributes of the classes in our system

by looking for descriptive words and phrases in the problem statement. For each descriptive

word or phrase, we create an attribute and assign that attribute to a class. We also create

attributes to represent any data that a class may need. For example, class Schedu l e r

needs to know the times to create the next person to step onto each of the floors. Figure 3 .28

is a table that lists the words or phrases from the problem statement that describe each class.

Closs

E l evator

Descriptive words and phrases

starts the day wai t i n g . . . on fl oor I of the bui ld ing

al ternates d i rect ion : mov i n g up and mov i n g down

capacity of I
takes 5 seconds to move from one fl oor to the other

e levator moving

C lock beg i n s the day set to time 0
Scheduler creates the n e x t random t i me for a person to walk o n t o a fl oor (between 5

and 20 seconds l ater)

Per son person n u mber (as indicated in the sample output)

F l oor capac i ty of I
is u noccu pi ed/occupied

FloorButton has been pressed/reset

El evatorButton has been pressedlreset

Fig. 3.28 Descriptive words and phrases in problem statement. (Part 1 of 2.)

226 Functions

Closs

Door

Be l l

Light

Bui lding

Descriptive words and phrases

door shuUdoor open

none in problem statement

l ight off/on

none in problem statement

Chapter 3

Fig. 3.28 Descriptive words and phrases in problem statement. (Part 2 of 2.)

Note that classes Be l l and Bui lding list no attributes. As we progress through thi s

case study, we continue to add, modify and delete information about each class in our

system.

Figure 3.29 is a class diagram that lists some of the attributes for each class in our

system-we create these attributes from the descriptive words and phrases in Fig. 3.28. In

the UML class diagram, we place a class' s attributes in the middle compartment of the

class's rectangle. Consider the following attribute of class E l evator:

capac i ty : Integer = 1

This listing contains three pieces of information about the attribute. The attribute has a

name-capac i ty. The attribute also has a type-Integer. The UML defines data

types (e.g., Integer, S t ring, Bool ean) that we can use to indicate what kind of value

a certain attribute may take. When we implement the system in a particular language, we

choose language-specific data types that match those suggested by the UML diagram.

Elevator

currentFloor : I nteger = 1
direction : Integer

capacity : I nteger = 1
arrivalTime : Integer

moving : Boolean = false

Scheduler

floorl ArrivalTime : Integer

floor2ArrivaiTime : Integer

Person

I D : Integer

Clock

time : Integer = 0

Floor

capacity : Integer = 1
occupied : Boolean = false

FloorButton

pressed : Boolean = false

ElevatorButton

pressed : Boolean = false

Fig. 3.29 Class d iagram showing attributes.

Door

open : Boolean = false

Bell

<none yet>

Light

on : Boolean = false

Bui lding

<none yet>

Cha pter 3 Functions 227

We also can indicate an initial value for each attribute. The capacity attribute has

an initial value of 1. If the designer does not know the initial value of a particular attribute

at design time, the UML diagram need show only its name and type (separated by a colon).

For example, the floor1ArrivalTime attribute of class Scheduler is of type

Integer. Here we show no initial value, because the value of this attribute is a random

number that we do not know; the scheduler determines this value at execution time. For

now, we do not overly concern ourselves with the types or initial values of the attributes.

We include only the information we can glean from the problem statement.

Statechart Diagrams
Objects in a system can have states. States describe the condition of an object (e.g., the val

ues of the object's attributes) at a given point in time. Statechart diagrams (also called state

diagrams) give us a way to express how, and under what conditions, the objects in a system

change state.

Figure 3.30 is a statechart diagram that models the states of an object of class Floor

Button or of class ElevatorButton. Each state in a statechart diagram is represented

as a rounded rectangle that contains the state's name. A solid circle with an attached arrow

head points to the initial state (i.e., the "Not pressed" state). An object's initial state is the

default state of the object after it has been created. The arrows indicate transitions between

states. An object can transition from one state to another in response to an event. For

example, objects of classes FloorButton and ElevatorButton change from the

"Not pressed" state to the "Pressed" state in response to a "button press" event. In a state

chart diagram, we place the name of the event that causes a transition near the line that cor

responds to that transition. (We can include more information about events, as in Fig. 3.3 1 .)
Figure 3.31 shows the statechart diagram for an object of class Elevator. The ele

vator has three possible states: "Waiting," "Servicing Floor" (i.e., the elevator is stopped

on a floor, but is busy resetting the elevator button or communicating with the floor, etc.)

and "Moving." The elevator begins in the "Waiting" state. Events that trigger transitions

are indicated next to the appropriate transition lines.

Let us examine the events in this statechart diagram. The text

elevator button press

tells us that the "elevator button press" event causes the elevator to transition from the "Ser

vicing Floor" state to the "Moving" state. The guard condition in square brackets states that

the transition occurs only if the elevator needs to move. The complete event text states that

the elevator transitions from the "Servicing Floor" state to the "Moving" state in response to

the "elevator button press" event. Similarly, the elevator transitions from the "Waiting" state

to the "Servicing Floor" state when a person presses a button on the elevator's current floor.

The text next to the transition line from the "Waiting" state to the "Moving" state indi

cates that this transition occurs in the event of a floor button press (if the button is pressed

on the other floor). The forward slash (I) indicates that an action accompanies this state

change. The elevator performs the action of calculating and setting the time at which it will

arrive at the other floor.6

6. In a real-world elevator system, a sensor on the elevator might cause it to stop on a floor. In our elevator sim
ulator, we know that the elevator takes five seconds to move from one floor to another. Thus, in our simulation,
the elevator can simply schedule its own arrival to a floor, and the elevator stops at that scheduled time.

228 Functions

button press

button reset

Fig. 3.30 Statechart d iagram for c lasses FloorButton and
ElevatorButton.

Moving

Chapter 3

floor button press [otherfloor]/
arrivalTime := currentTime + 5

elevator button press

[currentTime = arrivalTime]

floor button press [current floor]

Waiting

[no further requests]

Fig. 3.31 Statechart d iagram for c lass Elevator.

Servicing Floor

exit/ close door

A state transition also can occur on the event that a certain condition is true . The text

[currentT ime = arrivalTime]

indicates that the e levator transit ions from the "Moving" state to the "Servic ing Floor" state

when the current time of the s imulation becomes equal to the time at which the elevator i s

scheduled t o arrive o n a floor.

The text that accompan ies the transit ion l i ne from the "Serv ic ing Floor" state to the

"Waiting" state i ndicates that the elevator enters the "Waiting" state from the "Servic ing

Floor" state on the condition that no further requests for the elevator's service exist.1

An object also can perform actions whi le in a part icular state (e .g . , the "Servic ing

Floor" state in Fig . 3 . 3 1) . We model these actions by spl i tting the appropriate state into two

compartments . The top compartment contains the state name, and the bottom compartment

contains the state actions . The UML defines special action-labels that describe the condi

tions under which certain actions may take place. One such action- label i s cal l ed exit. The

7. In a real-world elevator system, the elevator probably transitions between these states after a certain amount
of time expires. We want to program a simulator, but we do not want to concern ourselves with the details of
how the elevator "knows" when no further requests for its services exist. Therefore, we say that the elevator
changes state in the event that no more requests exist.

Cha pter 3 Functions 229

exit action indicates an action that is performed when the object exits a state . Other action

labe ls incl ude the entry action- label (which describes an action performed when an obj ect

enters the state) and the do action- label (which describes an ongoing action performed

while an object is in the state) . In our model , the e levator must perform the "close door"

action when it exits the "Servicing Floor" state . If the elevator needs to move, it must first

c lose its door. If the elevator has no more requests (i . e . , button presses) to satisfy , it closes

its door and enters the "Waiting" state .

Activity Diagrams

The activity diagram is a variation of the statechart diagram . The activity diagram focuses

on the actions that an object performs; in other words, the activity diagram mode l s what an

object does during its l ifetime. We first introduced activity diagrams in Chapter 2 , where

we used them to model control structures . In this section, we focus on the diagram's more

conventional use, which is to model the "internal work flow" of an object .

The statechart diagram in the previous figure (Fig. 3 . 3 1) conveys no information about

the internal logic that the elevator employs to decide if it needs to move. The activity dia

gram in Fig . 3 . 32 adds to the information presented in the statechart diagram by modeling

the actions the elevator performs in response to a request for service.

An action state is represented as two paral le l l ines connected by convex segments.

Each action state contains an action-expression that describes an action the object can per

form. A solid line with an arrowhead, cal led a transition , connects two action states . After

an obj ect performs an action, the object fol lows the transition to the next action state in the

diagram and performs the corresponding action. As with statechart diagrams , the solid

circ le indicates the initial state of the diagram . A solid circ le surrounded by another circ le

(sometimes cal led a "bul l's-eye") represents the final state of an activity diagram. The

action in an activity diagram begins at the initial state and fol lows transitions to the various

action states until the action terminates by fol lowing a transition to the final state .

The sequence of actions modeled in Fig . 3 . 32 occurs whenever a floor button is

pressed (i. e . , if either of the floor's buttons are currently in the "Pressed" state) . When this

condition is true, the elevator must make a decision (represented by the diamond) . The ele

vator can transition to one of many action states at this point, based on certain conditions .

Each transition extending from the diamond represents the choice of one of these different

action states . A guard condition placed next to each transition indicates under what circum

stances that transition wi II occur.

In our diagram, the elevator performs one of four different activities when a button is

pressed. If the elevator is in motion (i.e . , in the "Moving" state) and if the elevator has not

arrived at its destination floor (i . e . , currentTime is less than arrivalTime) , the ele

vator cannot immediately perform any more activities. In this case, the sequence of action s

on the current path terminates . If the elevator has arrived a t its destination floor (i. e . , cur

rentTime equal s arrivalTime), then the elevator stops moving, resets the elevator

button, rings the bel l and opens the door on the destination floor.

If the floor button is pressed on the elevator's current floor, the e levator resets its

button, rings its be l l and opens its door. If the button on the elevator's current floor is not

pressed, the e levator must first c lose its door, move to the other floor and then stop at the

other floor before it can service the other floor. Notice that the UML models the merging

of decision paths (e .g . , see just above the final state) with another smal l diamond symbol .

After the elevator opens its door, the sequence of actions terminates .

230 Functions

[in motion)

[currentTime =

arrivalTime)
[current floor button
not pressed)

[currentTime <

arrivalTime)

Close door

Move to other floor

Stop moving

Reset elevator button

Ring bell

Open door

Chapter 3

[current floor
button pressed)

Fig. 3.32 Activity diagram that models the elevator's logic for responding to f loor
button presses.

Conclusion

In this "Thinking About Objects" section, we expanded our knowledge of the c lasses i n our

system (as we continue to do i n the next several chapters) , and we represented this new

knowledge in our class d iagram. We also used statechart and act iv ity diagrams to gain more

information about how the system's objects change over t ime and how the objects perform

their tasks. Even though we have not yet discussed the detail s of object-oriented program

ming i n C++, we already have a significant amount of information about our system. In the

"Th inking About Objects" sections at the ends of Chapter 4 and Chapter 5 , we determine

the operations associated wi th our c lasses and how our c lasses interact wi th one another.

Cha pter 3 Functions 231

Note

I n this chapter, we discussed how to implement "randomness ." The statement

arrivalTime = currentTime + (5 + rand () % 1 6) ;

can be used to randomly schedule the next arrival of a person on a floor.

SUMMARY

• The best way to develop and maintain a large program is to divide it into several smaller program

modules, each of which is more manageable than the original program. Modules are written in

C++ as classes and functions.

• A function is invoked by a function call. The function call mentions the function by name and pro

vides information (as arguments) that the called function needs to perform its task.

• The purpose of information hiding is for functions to have access only to the information they need

to complete their tasks. This is a means of implementing the principle of least privilege, one of the

most important principles of good software engineering.

• Data type double is a floating-point type like float. A variable of type doubl e can store a

value of much greater magnitude and precision than f loat can store.

• Each argument of a function may be a constant, a variable, or an expression.

• A local variable is known only in a function definition. Functions are not allowed to know the im

plementation details of any other function (including local variables).

• The general format for a function definition is

return-value-type fun ction -name (pa rameter-list

{
declarations and statements

The return- value- type states the type of the value returned to the calling function. If a function

does not return a value, the return- value -type is declared as void. Thejimction -name is any valid

identifier. The parameter-list is a comma-separated list containing the declarations of the variables

that will be passed to the function. If a function does not receive any values, parameter- list is de

clared as void (or simply as empty parentheses). Thefun ction-body is the set of declarations and

statements that constitutes the function.

• The arguments passed to a function should match in number, type and order with the parameters

in the function definition.

• When a program encounters a function call, control is transferred from the point of invocation to

the called function, the function is executed and control returns to the caller.

• A called function can return control to the caller in one of three ways. If the function does not re

turn a value, control is returned when the function-ending right brace is reached or by executing

the statement

return ;

If the function does return a value, the statement

return expression ;

returns the value of expression .

• A function prototype declares the return type of the function and declares the number, the types

and the order of the parameters the function expects to receive.

232 Functions Cha pter 3

o Function prototypes enable the compiler to verify that functions are called correctly.

o The compiler ignores variable names mentioned in the function prototype.

o Each standard library has a corresponding header file containing the function prototypes for all the

functions in that library, as well as definitions of symbolic constants needed by those functions.

o When an argument is passed by value, a copy of the variable's value is made, and the copy is

passed to the called function. Changes to the copy in the called function do not affect the original

variable's value.

o Function rand generates an integer between 0 and RAND_MAX (defined to be at least 32767).

o Values produced by rand can be scaled and shifted to produce values in a specific range.

o To randomize the output of rand, use the standard library function srand.

o The function prototypes for rand and srand are contained in <c stdl ib> .

o To randomize without the need for entering a seed each time, use srand (t ime (0)). Func

tion t ime normally returns "calendar time" in seconds. Function t ime's prototype is located in

header < c t ime > .

o The general equation for scaling and shifting a random number is

n umber = sh ifting Value + rand () % scalin gFaclOr;

where shifting Value is equal to the first number in the desired range of consecutive integers and

scaling Factor is equal to the width of the desired range of consecutive integers.

o An enumeration, introduced by the keyword enum and followed by a type name, is a set of integer

constants represented by identifiers.

o The values of enumeration constants start at 0 , unless specified otherwise, and increment by l.

o The identifiers in an enum must be unique, but separate enumeration constants can have the same

integer value.

o Any enumeration constant can be assigned an integer value in the enumeration definition.

o Each variable identifier has the attributes storage class, scope and linkage.

o C++ provides storage-class specifiers auto, register, extern, mut able and stat i c .

o A n identifier's storage class determines when that identifier exists in memory.

o An identifier's scope is where the identifier can be referenced in a program.

o An identifier's linkage determines for a multiple-source-file program that an identifier is known

either only in the current source file or in any source file with proper declarations.

o Variables of automatic storage class are created when the block in which they are defined is en

tered, exist while the block is active and are destroyed when the block is exited. A function's local

variables are of automatic storage class by default.

o The storage-class specifier regi ster can be placed before an automatic variable declaration to

suggest that the compiler maintain the variable in one of the computer's high-speed hardware reg

isters. The compiler might ignore regi ster declarations. Keyword regi ster can be used

only with variables of the automatic storage class.

o Keywords extern and static declare identifiers for static storage class variables and functions.

o Static storage class variables are allocated and initialized when the program begins execution.

o Two types of identifiers have static storage class-external identifiers and local variables declared

with the storage-class specifier static .

o Global variables are created by placing variable declarations outside any function definition, and

they retain their values throughout the execution of the program.

Cha pter 3 Functions 233

• Local variables declared stat ic retain their values when the function in which they are declared

is exited.

• All numeric variables of static storage class are initialized to zero if they are not explicitly initial

ized by the programmer.

• Identifier scopes include function scope, file scope, block scope and function-prototype scope.

• Labels are the only identifiers with function scope. Labels can be used anywhere in the function

in which they appear, but cannot be referenced outside the function body.

• An identifier declared outside any function has file scope. Such an identifier is "known" from the

point at which the identifier is declared until the end of the file.

• Identifiers declared inside a block have block scope. Block scope ends at the terminating right

brace ()) of the block.

• Local variables have block scope, as do function parameters, which are considered to be local vari

ables.

• Any block can contain variable declarations. When blocks are nested and an identifier in an outer

block has the same name as an identifier in an inner block, the identifier in the outer block is "hid

den" until the inner block terminates.

• The only identifiers with function-prototype scope are those used in a function prototype's param

eter list.

• A recursive function is a function that calls itself either directly or indirectly.

• If a recursive function is called with a base case, the function simply returns a result. If the function

is called with a more complex problem, the function divides the problem into two conceptual piec

es-a piece that the function knows how to do and a slightly smaller version of the original prob

lem. Because this new problem looks like the original problem, the function launches a recursive

call to work on the smaller problem.

• For recursion to terminate, each time the recursive function calls itself with a slightly simpler ver

sion of the original problem, the sequence of smaller and smaller problems must converge on the

base case. When the function recognizes the base case, the result is returned to the previous func

tion call, and a sequence of returns ensues all the way up the line until the original call of the func

tion eventually returns the final result.

• The C++ standard does not specify the order in which the operands of most operators are to be

evaluated. C++ specifies the order of evaluation of the operands of the operators &&, I I, the com

ma (,) operator and?:. The first three are binary operators whose operands are evaluated left to

right. The last operator is C++'s only ternary operator. Its leftmost operand evaluates first; if it

evaluates to nonzero (true), the middle operand evaluates next, and the last operand is ignored; if

it evaluates to zero (false), the third operand evaluates next, and the middle operand is ignored.

• Both iteration and recursion are based on a control structure: Iteration uses a repetition structure;

recursion uses a selection structure.

• Both iteration and recursion involve repetition: Iteration explicitly uses a repetition structure; re

cursion achieves repetition through repeated function calls.

• Both iteration and recursion involve a termination test: Iteration terminates when the loop-contin

uation condition fails; recursion terminates when a base case is recognized.

• Iteration and recursion can occur infinitely: An infinite loop occurs with iteration if the loop-con

tinuation test never becomes false; infinite recursion occurs if the recursion step does not reduce

the problem in a manner that converges on the base case.

• Recursion repeatedly invokes the mechanism, and consequently the overhead, of function calls.

This can be expensive in both processor time and memory space.

234 Functions Cha pter 3

• c++ programs do not compile unless a function prototype is provided for every function or a func

tion is defined before it is first called.

• A function that does not return a value is declared with a void return type. An attempt to return

a value from the function or to use the result of the function invocation in the calling function is a

syntax error.

• An empty parameter list is specified with empty parentheses or void in parentheses.

• Inline functions eliminate function-call overhead. The programmer uses the keyword inl ine to

advise the compiler to generate function code in line to minimize function calls. The compiler

could choose to ignore inl ine.

• C++ offers a direct form of pass-by-reference using reference parameters. To indicate that a func

tion parameter is passed by reference, follow the parameter's type in the function prototype by an

50. In the function call, mention the variable by name and to pass it by reference. In the called func

tion, mentioning the variable by its local name actually refers to the original variable in the calling

function. Thus, the original variable can be modified directly by the called function.

• Reference variables can be created for local use as aliases for other variables within a function.

Reference variables must be initialized in their declarations, and they cannot be reassigned as

aliases to other variables. Once a reference variable is declared as an alias for another variable, all

operations performed on the alias actually are performed on the variable.

• C++ allows the programmer to specify default arguments to functions. If a default argument is

omitted in a call to a function, the default value of that argument is used. Default arguments must

be the rightmost (trailing) arguments in a function's parameter list. Default arguments should be

specified with the first occurrence of the function name. Default values can be constants, global

variables, or function calls.

• The unary scope resolution operator (: :) enables a program to access a global variable when a

local variable of the same name is in scope.

• It is possible to define several functions with the same name, but with different parameter types.

This is called function overloading. When an overloaded function is called, the compiler selects

the proper function by examining the number and types of arguments in the call.

• Overloaded functions can have different return values and must have different parameter lists.

Two functions differing only by return type result in a compilation error.

• Function templates enable the creation of functions that perform the same operations on different

data types, but the function template is defined only once.

TERMINOLOGY

ampersand (50) suffix

argument in a function call

auto storage-class specifier

automatic storage

automatic storage class

automatic variable

base case in recursion

block scope

C++ standard library

call a function

called function

caller

calling function

coercion of arguments

component

const

constant variable

dangling reference

default function argument

divide and conquer

enum

enumeration

enumeration constant

extern storage-class specifier

factorial function

file scope

Cha pter 3

function

function call

function declaration

function definition

function overloading

function prototype

function scope

function signature

function template

function-template specialization

global variable

header file

infinite recursion

information hiding

inl ine function

invoke a function

iteration

linkage

linkage specification

local variable

math library functions

mixed-type expression

modular program

mutable storage-class specifier

name decoration

name mangling

named constant

optimizing compiler

overloading

parameter in a function definition

pass-by-reference

pass-by-value

principle of least privilege

programmer-defined function

promotion hierarchy

rand function

random number generation

randomize

Functions

RAND_MAX symbolic constant

read-only variable

recursion

recursive call

recursive function

reference parameter

reference type

register storage-class specifier

return

return value type

scaling

scope

shifting

side effect

signature

simulation

software engineering

software reusability

srand function

standard library header files

stat ic storage-class specifier

static storage duration

static variable

storage-class specifier

storage class

template

t ime function

type-safe linkage

typename

unary scope resolution operator (: :)

uns igned

void

Terminology for Optional "Thinking About Objects" Section
action exit action-label

action state final state

action-expression guard condition

action-label initial state

activity diagram Integer

Boolean rounded rectangle

decision solid circle

diamond state

do action-label statechart diagram

entry action-label String

event transitions

235

236 Functions Chapter 3

SELF-REVIEW EXERCISES

3. 1 Answer each of the following:

a) Program components in C++ are called and, ____ _

b) A function is invoked with a ____ _

c) A variable that is known only within the function in which it is defined is called a

d) The statement in a called function passes the value of an expression back to

the calling function.

e) The keyword is used in a function header to indicate that a function does not

return a value or to indicate that a function contains no parameters.

f) The of an identifier is the portion of the program in which the identifier can

be used.

g) The three ways to return control from a called function to a caller are ____ _

_____ and ____ _

h) A allows the compiler to check the number, types and order of the arguments

passed to a function.

i) Function is used to produce random numbers.

j) Function is used to set the random number seed to randomize a program.

k) The storage-class specifiers are mutable, and ___ _

I) Variables declared in a block or in the parameter list of a function are assumed to be of

storage class unless specified otherwise.

m) Storage-class specifier is a recommendation to the compiler to store a vari-

able in one of the computer's registers.

n) A variable declared outside any block or function is a variable.

0) For a local variable in a function to retain its value between calls to the function, it must

be declared with the storage-class specifier.

p) The four possible scopes of an identifier are and __ _

q) A function that calls itself either directly or indirectly (i .e., through another function) is

a function.

r) A recursive function typically has two components: One that provides a means for the

recursion to terminate by testing for a case and one that expresses the prob-

lem as a recursive call for a slightly simpler problem than the original call.

s) In C++, it is possible to have various functions with the same name that operate on dif-

ferent types or numbers of arguments. This is called function ____ _

t) The enables access to a global variable with the same name as a variable in

the current scope.

u) The qualifier is used to declare read-only variables.

v) A function enables a single function to be defined to perform a task on many

different data types.

3.2 For the program in Fig. 3 . 3 3, state the scope (either function scope, file scope, block scope

or function-prototype scope) of each of the following elements:

a) The variable x in main.

b) The variable y in cube.

c) The function cube.

d) The function main.

e) The function prototype for cube.

f) The identifier y in the function prototype for cube.

3.3 Write a program that tests whether the examples of the math library function calls shown in

Fig. 3 .2 actually produce the indicated results.

Chapter 3

1 II Exerc i s e 3 . 2 : ex0 3_0 2 . cpp
2 #inc lude < iostream>
3
4 us ing std : : cout ;
5 us ing std : : endl ;

6
7 II funct ion prototype
8
9

1 0
1 1
1 2

Functions

1 3 II loop 1 0 t ime s , calculate cube of x and output resu l t s
1 4 for (x = 1 ; x < = 1 0 ; x++)
1 5 cout « cube (x) « endl ;

1 6
1 7 return 0 ; II indicates successful termination
1 8
1 9 II end main

20
2 1 II def init ion o f funct ion cube
22 int cube (int y)

23 (
24 return y * y * y ;
25

Fig. 3.33 Sample program for Exercise 3.2.

3.4 Give the function header for each of the following functions:

237

a) Function hypotenuse that takes two double-precision, floating-point arguments,

s ide1 and side 2 , and returns a double-precision, floating-point result.

b) Function smallest that takes three integers, x, y and z, and returns an integer.

c) Function instruct ions that does not receive any arguments and does not return a

value. (Note: Such functions are commonly used to display instructions to a user .)

d) Function intToDouble that takes an integer argument, nwnber, and returns a double

precision, floating-point result.

3.5 Give the function prototype for each of the following:

a) The function described in Exercise 3 .4a .

b) The function described in Exercise 3 .4b.

c) The function described in Exercise 3.4c.

d) The function described in Exercise 3 .4d.

3.6 Write a declaration for each of the following:

a) Integer count that should be maintained in a register. Initialize count to O.
b) Double-precision, floating-point variable lastVal that is to retain its value between

calls to the function in which it is defined.

c) External integer nwnber, whose scope should be restricted to the remainder of the file

in which it is defined.

3. 7 Find the error in each of the following program segments, and explain how the error can be

corrected (see also Exercise 3 . 5 3):

a) int g (void) {

cout « " Ins ide function g " « endl ;

238 Functions

}

int h (void)

{

cout « " Inside funct ion h " « endl ;

}

b) int sum (int x , int y)

{

int result ;

result = x + y ;

c) int sum (int n

{

i f (n -- 0

return 0 ;

e l s e

n + sum (n - 1) ;

}

d) void f (double a) ;

f loat a ;

cout « a « endl ;

e) void product (void)

{

}

int a ;

int b ;

int c ;

int re sult ;

cout « " Enter three integers : " ;

cin » a » b » c ;

result = a * b * c ;

cout « " Result i s " « resul t ;

return resul t ;

Cha pter 3

3.8 Why would a function prototype contain a parameter type declaration such as double &?

3.9 (TruelFalse) A l l arguments to function call s in C++ are passed by value.

3.10 Write a complete program that prompts the user for the radius of a sphere, and calculates and
prints the volume of that sphere . Use an inl ine function sphereVolume that returns the result

of the fol lowing expression : (4 . 0 / 3 . 0) * 3 . 14 1 5 9 * pow (radius , 3) .

ANSWERS TO SELF-REVIEW EXERCISES

3. 1 a) functions, classes. b) function cal l . c) local variable. d) return. e) void. f) scope.

g) return ; , return expression; or encounter the closing right brace of a function. h) function pro

totype. i) rand. j) srand. k) auto, register, extern, stat ic. I) auto. m) regi ster.

n) global . 0) static. p) function scope, file scope, block scope, function-prototype scope.
q) recursive. r) base. s) overloading. t) unary scope resolution operator (: :). u) const. v) template.

Chapter 3 Functions 239

3.2 a) Block scope. b) Block Scope. c) File scope. d) File scope. e) File scope. t) Function-

prototype scope.

3.3 See the fol lowing program:

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50

II Exerc i s e 3 . 3 : ex0 3 0 3 . cpp
II Test ing the math l ibrary functions .
inc lude <iostream>

us ing std::cout;

us ing std::endl;

us ing std::fixed;

inc lude <iomanip>

using std::setprecision;

inc lude <cmath>

int main ()
{

cout « fixed « setprecision(1) ;

cout « "sqrt(" « 9 0 0 . 0 « ")
« " \nsqrt (" « 9 . 0 « ")

" « sqrt(9 0 0 . 0)
" « sqrt(9 . 0) ;

cout « "\nexp (" « 1 . 0 « ") = " « setprecision(6
« exp(1 . 0) « " \nexp (" « setprecision(1) « 2 . 0
« ") = " « setprecision(6) « exp (2 . 0) ;

cout « "\nlog (" « 2 . 7 1 8 2 8 2 « ") = " « setprecision(1
« l oge 2 . 7 1 8 2 8 2)
« " \ nlog (" « setprecision(6) « 7 . 3 8 9 0 5 6 « ")
« setprec i s ion (1) « loge 7 . 3 8 9 0 5 6) ;

cout « "\nlog1 0 (" « 1 . 0 « ") = " « log10(1 . 0
« " \n1og 1 0 (" « 1 0 . 0 « ") = " « log10(1 0 . 0

« " \nlog 1 0 (" « 1 0 0 . 0 « ") = " « log10(1 0 0 . 0
cout « " \nfabs (" « 13 . 5 « ") = " « fabs(1 3 . 5)

« "\nfabs (" « 0 . 0 « ") = " « fabs(0 . 0)
« " \nfabs (" « - 1 3 . 5 « ") = " « fabs (- 1 3 . 5) ;

cout « "\nce i l (" « 9 . 2 « ") = " « c e i l (9 . 2)
« "\nce i l (" « - 9 . 8 « ") = " « ceil(- 9 . 8);

cout « " \nfloor (" « 9 . 2 « ") = " « floor (9 . 2)
« "\nf loor (" « - 9 . 8 « ") = " « floor (- 9 . 8) ;

cout « " \npow (" « 2 . 0 « " , " « 7 . 0 « ") = "

« pow (2 . 0, 7 . 0) « " \npow (" « 9 . 0 « "
« 0 . 5 « ") = " « pow (9 . 0, 0 . 5) ;

cout « setprecision(3) « "\nfmod ("
« 1 3 . 6 7 5 « " , " « 2 . 3 3 3 « ") = "

« fmod(1 3 . 67 5, 2 . 3 3 3) « setprecision(1);

cout « " \nsin (" « 0 . 0 « ") n « s ine 0 . 0) ;
cout « " \ ncos (" « 0 . 0 « ") " « cos(0 . 0) ;
cout « " \ntan (" « 0 . 0 « ") n « tan (0 . 0) « endl;

return 0 ; II indicates success ful terminat ion

} II end main

"

240 Functions

sqrt(900.0) .. 30.0

sqrt(9.0) .. 3.0

exp(1.0) .. 2.718282

exp(2.0) • 7.389056

log(2.718282) .. 1.0

log(7.389056) .. 2.0

log10(1.0) = 0.0

log10(10.0) .. 1.0

log10(100.0) .. 2.0

fabs(13.5) .. 13.5

fabs(O.O) .. 0.0

fabs(-13.5) .. 13.5

cail(9.2) .. 10.0

cail(-9.8) .. -9.0

floor(9.2) .. 9.0

floor(-9.8) '" -10.0

pow(2.0, 7.0) .. 128.0

pow(9.0, 0.5) .. 3.0

fmod(13.675, 2.333) = 2 . 0 1 0
sin(O.O) '" 0.0

cos (0 • 0) = 1. 0

tan(O.O) .. 0.0

3.4 a) double hypotenuse (double side l , double s ide2)

b) int smal lest (int x , int y, int z)

Cha pter 3

c) void instruct ions (void) / / in C + + (void) can be written ()

d) double intToDouble (int number)

3.5 a) double hypotenuse (double , double) ;

b) int smal lest (int , int , int) ;

c) void instructions (void) ; / / in C + + (void) can be written ()

d) double intToDouble (int) ;

3.6 a) regi ster int count = 0 ;

b) static double lastVal ;

c) static int number ;

Note: This would appear outside any function definition.

3.7 a) Error: Function h i s defined in function g.

Correction: Move the definition of h out of the definition of g.

b) Error: The function i s supposed to return an integer, but does not.
Correction : Delete variable result and place the fol lowing statement in the function :

return x + y ;

c) Error: The result ofn + s um (n - 1) i s not returned; sum returns a n improper result .

Correction : Rewrite the statement in the e l se clause as

return n + sum (n - 1) ;

d) Errors : Semicolon after the right parenthesis that encloses the parameter l i st, and re

defining the parameter a in the function definition.

Corrections : Delete the semicolon after the right parenthesis of the parameter l i st, and de

lete the declaration f l oat a ; .

Chapter 3 Functions 241

e) Error: The function returns a value when it is not supposed to.

Correction: Eliminate the return statement.

3.8 This creates a reference parameter of type "reference to double" that enables the function

to modify the original variable in the calling function.

3.9 False. C++ enables pass-by-reference using reference parameters (and pointers, as we dis-

cuss in Chapter 5) .

3. 1 0 See the following program:

1 II Exerc i s e 3 . 1 0 : ex0 3_1 0 . cpp
2 II Inl ine funct ion that calculates the volume of a sphere .
3 # inc lude < iostream>

4
5 us ing std : : cout ;
6 us ing std : : cin;
7 us ing std : : endl ;
8
9 # inc lude < cmath>

1 0
1 1 II def ine global constant PI
1 2 const doubl e PI = 3 . 14 1 5 9 ;

1 3
1 4 II calculates volume o f a sphere
1 5 inl ine doubl e sphereVolume (const doubl e radius
16 {
1 7 return 4 . 0 I 3 . 0 * PI * pow (radius , 3) ;
1 8
1 9 II end inl ine funct ion sphereVolume
20
2 1 int main ()
22 {
23 double radiusValue ;
24
25 II prompt user for radius
26 cout « " Enter the l ength of the radius o f your sphere : " ;

27 c i n » radiusValue ; II input radius

28
29 II use radiusValue to calculate volume of sphere
30 II and di splay result
31 cout « " Volume of sphere with radius " « radiusValue

32 « .. i s " « sphereVolume (radiusValue) « endl ;

33
34 return 0 ; II indicates succ e s s ful terminat ion
35
36 II end main

EXERCISES

3. 1 1 Show the value of x after each of the following statements is performed:

a) x fabs (7 . 5)

b) x = f l oor (7 . 5)

242 Functions Chapter 3

c) x fabs (0 . 0)

d) x c e i l (0 . 0)

e) x fabs (-6 . 4)

t) x c e i l (-6.4)

g) x c e i l (- fabs (-8 + floor (-5.5)))

3. 1 2 A parking garage charges a $2.00 minimum fee to park for up to three hours . The garage

charges an additional $0.50 per hour for each hour or part thereofin excess of three hours . The max

imum charge for any given 24-hour period is $ 1 0.00. Assume that no car parks for longer than 24

hours at a t ime. Write a program that calculates and prints the parking charges for each of three cus

tomers who parked their cars in thi s garage yesterday. You should enter the hours parked for each

customer. Your program should print the results in a neat tabular format and should calcu late and

print the total of yesterday ' s receipts. The program should use the function calculateCharges

to determine the charge for each customer. Your outputs should appear in the following format:

Car Hours Charge

1 1.5 2 . 0 0
2 4 . 0 2 . 5 0
3 24 . 0 1 0 . 0 0
TOTAL 2 9 . 5 14 . 5 0

3. 1 3 An application of function floor i s rounding a value to the nearest integer. The statement

y = f loor (x + . 5) ;

rounds the number x to the nearest integer and assigns the result to y. Write a program that reads

several numbers and uses the preceding statement to round each of these numbers to the nearest

integer. For each number processed, print both the original number and the rounded number.

3. 1 4 Function f l oor can be used to round a number to a specific decimal place. The statement

y = f loor (x * 10 + .5) / 1 0 ;

rounds x to the tenths position (the first position to the right of the decimal point). The statement

y = f l oor (x * 1 0 0 + .5) / 1 0 0 ;

rounds x to the hundredths position (the second position to the right of the deci mal point). Write a

program that defines four functions to round a number x in various ways :

a) roundToInteger (number)

b) roundToTenths (number)

c) roundToHundredths (number

d) roundToThousandths (number)

For each value read, your program should print the original value, the number rounded to the

nearest integer, the number rounded to the nearest tenth, the number rounded to the nearest hun

dredth and the number rounded to the nearest thousandth .

3. 1 5 Answer each of the following questions :

a) What does it mean to choose numbers "at random?"

b) Why is the rand function usefu l for simulating games of chance?

c) Why would you randomize a program by using srand? Under what circumstances i s it

desirable not to randomize?

d) Why i s it often necessary to scale or shift the values produced by rand?

e) Why is computerized simulation of real-world situations a useful technique?

Chapter 3 Functions

3. 1 6 Write statements that assign random i ntegers t o the variable n i n the following ranges :

a) 1 :::; n :::; 2

b) I :::; n :::; 1 00

c) 0 :::; n :::; 9

d) 1000 :::; n :::; 1 1 1 2

e) -1 :::; n :::; I

f) -3 :::; n :::; II

243

3. 1 7 For each of the following sets o f i ntegers, write a single statement that prints a number a t ran

dom from the set:

a) 2, 4, 6, 8, 1 0.

b) 3, 5, 7, 9, II.

c) 6, 1 0, 14, 18, 22.

3. 1 8 Write a function integerPower (base, exponent) that returns the value of

base exponent

For example, integerPower (3, 4) = 3 * 3 * 3 * 3. Assume that exponent i s a positive, non

zero integer and that base i s an integer. The function integerPower should use for or whi l e to

control the calculation. Do not use any math l ibrary functions .

3. 1 9 Define a function hypotenuse that calculates the length of the hypotenuse of a right trian

gle when the other two sides are given. Use this function in a program to determine the length of the

hypotenuse for each of the triangles shown below. The function should take two doubl e arguments

and return the hypotenuse as a double.

Triangle

2

3

Side 1

3.0

5 .0

8 .0

Side 2

4.0

1 2 .0

1 5.0

3.20 Write a function mul t iple that determines for a pair of integers whether the second i nteger

is a multiple of the first. The function should take two integer arguments and return t rue if the sec

ond is a multiple of the first, false otherwise. Use this function in a program that inputs a series of

pairs of i ntegers.

3.2 1 Write a program that i nputs a series of integers and passes them one at a t ime to function

even, which uses the modulus operator to determine whether an i nteger i s even. The function should
take an integer argument and return t rue i f the i nteger i s even and f a l s e otherwise .

3.22 Write a function that displays at the left margin of the screen a solid square of asterisks whose

side is specified in i nteger parameter side. For example, if s ide is 4, the function displays the fol

lowing:

244 Functions Chapter 3

3.23 Modify the function created in Exercise 3.22 to form the square out of whatever character i s

contained in character parameter f i l lCharacter. Thus, if s ide i s 5 and f i l lCharacter i s

" i , " then this function should pri nt the fol lowing:

IIIII
ilill
IIIII
11#11
11#11

3.24 Use techniques s imi lar to those developed in Exercise 3.22 and Exercise 3.23 to produce a

program that graphs a wide range of shapes.

3.25 Write program segments that accomplish each of the fol lowing:

a) Calculate the integer part of the quotient when integer a i s divided by i nteger b.

b) Calculate the integer remainder when integer a i s divided by integer b.

c) Use the program pieces developed i n (a) and (b) to write a function that inputs an i nteger

between 1 and 3 2 7 6 7 and prints it as a series of digits, each pair of which is separated

by two spaces . For example, the integer 4 5 6 2 should print as fol lows:

, 5 6 2

3 .26 Write a function that takes the time as three integer arguments (hours, minutes and seconds)

and returns the number of seconds since the last time the clock "struck 1 2 ." Use this function to cal

culate the amount of time in seconds between two times, both of which are within one 1 2-hour cycle

of the clock.

3.27 Implement the fol lowing integer functions :

a) Function c e l s ius returns the Celsius equivalent of a Fahrenheit temperature .

b) Function fahrenhe it returns the Fahrenheit equivalent of a Celsius temperature .

c) Use these functions to write a program that prints charts showing the Fahrenheit equiva

lents of all Celsius temperatures from a to 1 00 degrees, and the Celsius equivalents of al l

Fahrenheit temperatures from 32 to 2 1 2 degrees. Print the outputs in a neat tabular format

that minimizes the number of l ines of output while remaining readable .

3.28 Write a program that inputs three double-precision, floating-point numbers and passes them

to a function that returns the smal lest number.

3.29 An integer is said to be a peifecl number if the sum of its factors, inc luding I (but not the

number itse lf), i s equal to the number. For example, 6 i s a perfect number, because 6 = I + 2 + 3.

Write a function perfect that determines whether parameter nwnber i s a perfect number. Use thi s

function i n a program that determines and prints a l l the perfect numbers between I a n d 1 000. Print

the factors of each perfect number to confirm that the number is indeed perfect. Challenge the power

of your computer by testing numbers much larger than 1 000.

3.30 An integer is said to be prime if it is divi sible by only I and itself. For example, 2, 3, 5 and
7 are prime, but 4, 6, 8 and 9 are not.

a) Write a function that determines whether a number is prime.

b) Use thi s function i n a program that determines and prints a l l the prime numbers between
2 and 1 0,000. How many of these numbers do you real ly have to test before being sure

that you have found al l the primes?

Chapter 3 Functions 245

c) Initial ly, you might think that nl2 is the upper l imit for which you must test to see whether

a number i s prime, but you need only go as high as the square root of n. Why? Rewrite

the program, and run it both ways . Estimate the performance improvement.

3.3 1 Write a function that takes an integer value and returns the number with its digits reversed .

For example, given the number 763 1 , the function should return 1 367.

3.32 The greatest common divisor (GCD) of two integers is the l argest integer that evenly divides

each of the numbers . Write a function gcd that returns the greatest common divisor of two integers.

3.33 Write a function qual i tyPoint s that inputs a student' s average and returns 4 if a stu
dent ' s average i s 90- 1 00, 3 if the average i s 80--89, 2 if the average is 70--79, I i f the average i s 60-

69 and 0 if the average is l ower than 60.

3.34 Write a program that s imulates coin tossing. For each toss of the coin, the program should

print Heads or Tai l s . Let the program toss the coin 1 00 times and count the number of times each

side of the coin appears. Print the results . The program should cal l a separate function f l ip that takes

no arguments and returns 0 for tai l s and 1 for heads. [Note: If the program real i stical ly s imulates the

coin tossing, then each side of the coin should appear approximately half the t ime.]

3.35 Computers are playing an increasing role in education. Write a program that helps an elemen

tary school student learn multipl ication. Use rand to produce two positive one-digit i ntegers. I t

should then type a question such as

How much i s 6 t ime s 7 ?

The student then types the answer. Your program checks the student ' s answer. I f it i s correct, print

" Very good ! ", then ask another mUltiplication question. If the answer is wrong, print " No .

P l ease t ry again . " , then let the student try the same question repeatedly unti l the student final ly

gets i t right.

3.36 The use of computers in education is referred to as computer-assisted instruction (CAl). One

problem that develops in CAl environments i s student fatigue. Thi s can be e l iminated by varying the

computer' s dialogue to hold the student 's attention. Modify the program of Exercise 3 .35 so the var

ious comments are printed for each correct answer and each incorrect answer as fol lows:

Responses to a correct answer

Very good !
Exc e l lent !
Nice work !
Keep up the good work !

Responses to an incorrect answer

No . Please t ry again .
Wrong . Try once more .
Don ' t give up !
No . Keep trying .

Use the random number generator to choose a number from 1 to 4 to select an appropriate

response to each answer. Use a swi tch structure to i ssue the responses.

3.37 More sophisticated computer-aided instruction systems monitor the student' s performance

over a period of time. The decision to begin a new topic often is based on the student ' s success with

previous topics . Modify the program of Exercise 3 .36 to count the number of correct and incorrect

responses typed by the student. After the student types 1 0 answers, your program should calculate the

percentage of correct responses. If the percentage is lower than 75 percent, your program should print

" Please ask your inst ructor for extra help " and terminate.

246 Functions Cha pter 3

3.38 Write a program that plays the game of "guess the number" as fol lows: Your program choos

es the number to be guessed by selecting an integer at random i n the range I to 1 000. The program

then displays the fol lowing:

I have a number between 1 and 1 0 0 0 .
Can you gues s my number?
P l ease type your f irst gues s .

The player then types a first guess. The program responds with one of the fol lowing:

1 . Exc e l l ent I You gues s ed the number l
Would you l ike to play again (y or n) ?

2 . Too low . Try again .
3 . Too high . Try again .

If the player' s guess is incorrect , your program should loop unti l the player finally gets the number

right. Your program should keep tel l ing the player Too high or Too low to help the player "zero

in" on the correct answer.

3.39 Modify the program of Exercise 3 .38 to count the number of guesses the player makes. If the

number is 1 0 or fewer, print Ei ther you know the secret or you got lucky I If the player

guesses the number in 10 tries, then print Ahah ! You know the secret I If the player makes

more than 1 0 guesses, then print You should be able to do better ! Why should i t take no

more than 10 guesses? Wel l , with each "good guess" the player should be able to e l iminate ha l f of

the numbers. Now show why any number from I to 1 000 can be guessed i n 10 or fewer tries .

3.40 Write a recursive function power (base , exponent) that, when i nvoked, returns

base expollellt

For example, power (3 , 4) = 3 * 3 * 3 * 3 . Assume that exponent is an in teger greater than

or equal to I . Hint: The recursion step would use the relationship

base expol/el/ t = base . base expol/ent . I

and the terminating condition occurs when exponent is equal to 1 because

basel = base

3.4 1 The Fibonacci series

0, 1 , 1 , 2 , 3 , 5 , 8 , 1 3 , 2 1 , . . .

begins with the terms 0 and I and has the property that each succeeding term i s the sum of the two

preceding terms. (a) Write a nonrecursive function fibonacc i (n) that calculates the nth Fi

bonacci number. (b) Determine the largest int Fibonacci number that can be prin ted on your system.

Modify the program of part (a) to use double instead of int to calculate and return Fibonacci num
bers, and use this modified program to repeat part (b) .

3.42 (Towers of Hanoi) Every budding computer scientist must grapple with certa in class ic prob

lems. The Towers of Hanoi (see Fig. 3 . 34) is one of the most famous of these. Legend has it that in a

temple in the Far East, priests are attempting to move a stack of disks from one peg to another. The

in itial stack had 64 disks threaded onto one peg and arranged from bottom to top by decreasing size.

Chapter 3

Fig. 3.34 Towers of Hanoi for the case with four d isks .

Functions 247

The priests are attempting to move the stack from this peg to a second peg under the constraints that
exactly one disk is moved at a time, and at no time may a larger disk be placed above a smaller disk.

A third peg i s available for temporari ly holding disks. Supposedly, the world wil l end when the priests

complete their task, so there i s l i ttle incentive for us to faci l itate their efforts .

Let us assume that the priests are attempting to move the disks from peg I to peg 3 . We wish to

develop an algorithm that prints the precise sequence of peg-to-peg disk transfers .

If we were to approach this problem with conventional methods, we would rapidly find our

selves hopelessly knotted up in managing the disks. Instead, if we attack the problem with recursion

in mind, i t i mmediately becomes tractable . Moving n disks can be v iewed i n terms of moving only

n - I disks (hence, the recursion), as fol lows :

a) Move n - I disks from peg 1 to peg 2, us ing peg 3 as a temporary holding area.

b) Move the last disk (the l argest) from peg I to peg 3 .

c) Move the n - I disks from peg 2 t o peg 3 , using peg I a s a temporary holding area.

The process ends when the last task i nvolves moving n = 1 disk, i . e . , the base case. This is

accomplished by trivia l ly moving the disk without the need for a temporary holding area.

Write a program to solve the Towers of Hanoi problem. Use a recursive function with four

parameters :

a) The n umber of disks to be moved

b) The peg on which these disks are initially threaded

c) The peg to which this stack of disks is to be moved
d) The peg to be used as a temporary holding area

Your program should print the precise instructions it wi l l take to move the disks from the start

ing peg to the destination peg. For example, to move a stack of three disks from peg I to peg 3, your

program should print the following series of moves:

I --7 3 (This means move one disk from peg 1 to peg 3 .)

1 --7 2
3 --7 2

--7 3
2 --7 1
2 --7 3

--7 3

248 Functions Chapter 3

3.43 Any program that can be implemented recursively can be implemented iterati vely, although

sometimes with more difficu lty and less clarity . Try writing an iterative version of the Towers of Ha

noi. If you succeed, compare your iterative version with the recursive version developed in

Exercise 3 .42. I nvestigate issues of performance, clarity and your abi l ity to demonstrate the cor

rectness of the programs .

3.44 (Visualizing Recursion) I t is interesting to watch recursion " in action ." Modify the factorial

function of Fig. 3 . 1 4 to print its local variable and recursive call parameter. For each recursive cal l ,

di splay the outputs on a separate l ine and add a level of indentation . Do your utmost to make the out

puts c lear, in teresting and meaningfu l . Your goal here is to design and implement an output format

that helps a person understand recursion better. You may want to add such display capabi l ities to the

many other recursion examples and exerci ses throughout the text.

3.45 (Recursive Createst Common Divisor) The greatest common divisor of integers x and y is

the largest in teger that evenly divides both x and y. Write a recursive function gcd that returns the

greatest common divisor of x and y, which is defined recursively as fol lows: If y i s equal to 0 , then

gcd (x, y) i s x; otherwise, gcd (x, y) is gcd (y I X % y) , where % is the modulus operator.

3.46 Can main be cal led recursively on your system? Write a program contai n ing a function

main. Include stat i c local variable count and in itial ize it to I . Post increment and print the value

of count each time main is called. Compi le your program. What happens?

3.47 Exercise 3 . 35-Exercise 3 .37 developed a computer-assisted instruction program to teach an

elementary school student mu ltipl ication. This exercise suggests enhancements to that program.

a) Modify the program to allow the user to enter a grade-level capabi l ity. A grade level of

I means to use only s ingle-digit numbers in the problems, a grade level of two means to

use numbers as large as two digits, etc .

b) Modify the program to allow the user to pick the type of arithmetic problems he or she

wishes to study. An option of I means addition problems only, 2 means subtraction prob

lems only, 3 means mult ipl ication problems only, 4 means divis ion problems only and 5

means to random ly intermix problems of al l these types.

3.48 Write function di stance that calculates the di stance between two points (xl , y f) and (x2,

y2). All numbers and return values should be of type double.

3.49 What is wrong with the fol lowing program?

1 II Exerc i s e 3 . 4 9 : ex0 3_4 9 . cpp
2 II What i s wrong with this program?
3 # inc lude < iostream>
4
5 us ing std : : c in;
6 us ing std : : cout ;
7
8 int main ()
9 {

1 0 int c ;
1 1
1 2 i f ((c = cin . get ()) ! = EOF) {
1 3 main () ;
1 4 cout « c ;
1 5 }
1 6
1 7 return 0 ;
1 8 }

Chapter 3

3.50 What does the fol lowing program do?

1 I I Exerc i s e 3 . 5 0 : ex0 3_5 0 . cpp
2 I I What does thi s program do?
3 # inc lude < iostream>

4
5 using std : : cout ;
6 using std : : cin;
7 using std : : endl ;
8
9 int mystery (int , int) ; I I function prototype

1 0
1 1 int main ()
1 2 {
1 3 int x ;
1 4 int y ;
1 5
1 6 cout « " Enter two integers : " ;

1 7 c i n » x » y ;

Functions

1 8 cout « " The result i s " « mystery (x , y) « endl ;
1 9 return 0 ; I I indicates succ e s s ful terminat ion
20
2 1 } I I end main
22
23 I I Parameter b mus t be a pos i t ive
24 I I integer to prevent infinite recursion
25 int mystery (int a , int b)
26 {
27 I I base case
28 i f (b = = 1)
29 return a ;
30
3 1 I I recurs ive step
32 e l s e
33 return a + mystery (a , b - 1) ;
34
35 } I I end funct ion mystery

249

3.51 After you determine what the program of Exercise 3 .50 does, modify the program to function

properly after removing the restriction that the second argument be nonnegative.

3.52 Write a program that tests as many of the math l ibrary functions in Fig. 3.2 as you can. Ex

ercise each of these functions by having your program print out tables of return values for a diversity

of argument values.

3.53 Find the error in each of the fol lowing program segments and explain how to correct i t :

a) f l oat cube (f loat) ; I I func t i on prototype

doubl e cube (f l oat number

{

I I funct i on de f in i t i on

return number * number * numbe r ;

}

250 Functions

b) regi ster auto int x = 7 ;

c) int randomNumber = srand () ;

d) f l oat y = 1 2 3 . 4 5 6 7 8 ;

int x ;

x = y ;

cout « stat ic_cast < float > (x) « endl ;

e) double square (double number)

{
double numbe r ;

return number * number ;

}

f) int sum (int n

{
i f (n = = 0

return 0 ;

else

return n + sum (n) ;

}

Cha pter 3

3.54 Modify the craps program of Fig. 3 . 1 0 to allow wagering. Package as a function the portion

of the program that runs one game of craps. Initialize variable bankBalance to 1 000 dollars.

Prompt the player to enter a wager. Use a whi le loop to check that wager i s less than or equal to

bankBalance and, if not, prompt the user to reenter wager until a valid wager i s entered. After

a correct wager is entered, run one game of craps. If the player wins, i ncrease bankBalance by

wager and print the new bankBalance. If the player loses, decrease bankBalance by wager,

print the new bankBalance, check on whether bankBalance has become zero and, if so, print

the message " Sorry . You busted I " As the game progresses, print various messages to create

some "chatter" such as " Oh , you ' re going for broke , huh? " , "Aw cmon , take a

chance I " or " You ' re up big . Now ' s the t ime to cash in your chips ! " .

3.55 Write a C++ program that uses an inl ine function circleArea to prompt the user for

the radius of a circle and to calculate and print the area of that circle .

3.56 Write a complete C++ program with the two alternate functions specified below, of which

each simply triples the variable count defined in main. Then compare and contrast the two ap

proaches. These two functions are

a) function tripleByValue that passes a copy of count by value, triples the copy and

returns the new value and

b) function tripleByReference that passes count by reference via a reference pa
rameter and triples the original value of count through its alias (i .e . , the reference pa

rameter) .

3.57 What is the purpose of the unary scope resolution operator?

3.58 Write a program that uses a function template called min to determine the smaller of two

arguments. Test the program using integer, character and floating-point number arguments.

3.59 Write a program that uses a function template called max to determine the largest of three

arguments. Test the program using integer, character and floating-point number arguments .

3.60 Determine whether the fol lowing program segments contain errors . For each error, explain

how i t can be corrected. [Note: For a particular program segment, it i s possible that no errors are

present in the segment.]

Chapter 3

a) template < c l a s s A >

int sum (int numl , int num2 , int num3 }

{

return numl + num2 + num3 ;

}

b) void printResults (int x , int y

{

cout « " The sum i s " « x + y « ' \ n ' ;

return x + y ;

c) template < A >

A product (A numl , A num2 , A num3

{

return numl * num2 * num3 ;

d) doubl e cube (int } ;

int cube (int } ;

Functions 251

4
Arrays

Objectives
• To introduce the array data structure .

• To understand the use of arrays to store, sort and

search l ists and tables of values.

• To understand how to declare an array, initialize an

array and refer to individual elements of an array.

• To be able to pass arrays to functions .

• To understand basic sorting techniques.

• To be able to declare and manipulate multiple-

subscript arrays .

With sobs and tears he sorted out

Those of the largest size . . .

Lewi s Carrol l

Attempt the end, and never stand to doubt;

Nothing 's so hard, but search will find it out.

Robert Herrick

Now go, write i t before them in a table,

and note it in a book.

Isaiah 30 :8

'Tis in my memory lock 'd,

And you yourself shall keep the key of it.

Wil l iam Shakespeare

Cha pter 4

Outline

4. 1 Introduction

4.2 Arrays

4.3 Declaring Arrays

4.4 Examples Using Arrays

4.5 Passing Arrays to Functions

4.6 Sorting Arrays

Arrays

4.7 Case Study: Computing Mean, Median and Mode Using Arrays

4.8 Searching Arrays: Linear Search and Binary Search

4.9 Multiple-Subscripted Arrays

4. 1 0 (Optional Case Study) Thinking About Objects: Identifying the

Operations of a Class

253

Summary · Terminology · Self-Review Exercises · Answers to Self-Review Exercises · Exercises ·

Recursion Exercises

4. 1 I ntroduction

This chapter serves as an introduction to the important topic of data structures . Arrays are

data structures consisting of related data items of the same type . I n Chapter 6, we discuss the

notions of structures and classes-each capable of holding related data items of possibly dif

ferent types . Arrays, structures and classes are "static" entities in that they remain the same

size throughout program execution. (They may, of course, be of automatic storage c lass and

hence created and destroyed each time the blocks in which they are defined are entered and

exited .) In Chapter 1 7 , we introduce dynamic data structures such as l i sts , queues, stacks,

and trees that may grow and shrink as programs execute . The style of arrays we use in this

chapter are C-style pointer-based arrays . (We wil l study pointers in Chapter 5 .) I n Chapter 8,

Operator Overloading, and in Chapter 2 1 , Standard Template Library , we w i l l cover arrays

as ful l -fledged objects using the techniques of object-oriented programming. We wi l l dis

cover that these object-based arrays are safer and more versati le than the C- I ike , pointer

based arrays we discuss here in Chapter 4.

4.2 Arrays

An array is a consecuti ve group of memory locations that all have the same name and the

same type . To refer to a part icular location or element in the array , we specify the name of

the array and the position number of the part icular element in the array .

Figure 4 . 1 shows an integer array cal led c . This array contains 1 2 elements. Any one

of these e lements may be referred to by giv ing the name of the array fol l owed by the posi

tion number of the particu lar element in square brackets ([]) . The first e lement in every

array is the zeroth element. Thus, the first element of array c is referred to as c [0] , the

second element of array c i s referred to as c [1] (one element from the beginn ing of the

array) , the seventh element of array c is referred to as c [6] (six elements from the begin

ning of the array) , and, in genera l , the ith element of array c i s referred to as c [i - 1] .

Array names fol low the same conventions as other variable names.

254

Fig. 4. 1

Arrays

Name of array (Note that all

elements of this array have the

same name, c)

�
c [0 - 4 5

c [1 6

c [2 0

c [3 7 2

c [4 1 5 4 3

c [5 - 8 9

c [6 0

c [7 62

c [8 - 3

c [9 1

c [1 0 6 4 5 3

c [1 1 7 8

t
Position number of the element
within array c

Array of 1 2 elements

Chapter 4

The position number contained within square brackets i s more formall y cal led a sub

script or index (this number specifies the number of e lements from the beginning of the

array) . A subscript must be an i nteger or integer expression (using any integral type) . If a

program uses an expression as a subscript, then the program evaluates the expression to

determine the subscript. For example, if we assume that variable a is equal to 5 and that

variable b is equal to 6, then the statement

c [a + b] += 2 ;

adds 2 to array element c [1 1] . Note that a subscripted array name i s an lvalue-it can

be used on the left s ide of an assignment.

Let us examine array c i n Fig. 4. 1 more closely , The name of the entire array i s c. Its

1 2 e lements are named c [0] , c [1] , c [2] , . . . , c [11] . The value of c [0] is - 4 5 ,

the value o f c [1] i s 6 , the value of c [2] i s 0 , the value o f c [7] i s 6 2 , and the value

of c [1 1] i s 7 8 . To print the sum of the values contained i n the first three elements of

array c, we would write

cout « c [0] + c [1] + c [2] « endl ;

Chapter 4 Arrays 255

To divide the value of the seventh element of array c by 2 and assign the result to the vari

able x, we would write

x = c [6] 1 2 ;

Common Programming Error 4. 1

It is important to note the difference between the "seventh element of the array " and "array
element seven. " Array subscripts begin at 0, so the "seventh element of the array " has a sub
script of 6, while "array element seven " has a subscript of 7 and is actually the eighth ele
ment of the array. Unfortunately, this distinction frequently is a source of "off-by-one "
errors.

The brackets used to enclose the subscript of an array are actually an operator in C++.
Brackets have the same level of precedence as parentheses. Figure 4.2 shows the prece

dence and associativity of the operators introduced so far. They are shown top to bottom in

decreasing order of precedence with their associativity and type.

4.3 Declaring Arrays

Arrays occupy space in memory. The programmer specifies the type of each element and

the number of elements required by an array as follows:

type arrayName [arraySize] ;

and the compiler reserves the appropriate amount of memory. For example, to tell the com

piler to reserve 1 2 elements for integer array c , use the declaration

int c [12] ;

Operators Associativity Type

() £] left to right highest

+ + stat i c_cast < type > (operand) left to right unary

+ + + right to left unary

* 1 % left to right multiplicative

+ left to right additive

« » left to right insertion/extraction

< < = > > = left to right relational

1 = left to right equal ity

&:&: left to right logical AND

I I left to right logical OR

? : right to left conditional

+ = * = 1 = %= right to left assignment

left to right comma

Fig. 4.2 Operator precedence and associativity .

256 Arrays Chapter 4

Memory can be reserved for several arrays with a single declaration . The fol l owing decla

ration reserves 1 00 elements for the integer array b and 27 e lements for the i nteger array x.

int b [1 0 0] , x [27] ; � Good Programming Practice 4. 1

We prefer to declare one array per line for readability, ease of commenting and for modifi

ability.

Arrays can be dec lared to contain any data type. For example, an array of type char

can be used to store a character string. Section 4.4 introduces using character arrays to store

strings. Character strings and their s imi larity to arrays (a relationship C++ inherited from

C) , and the re lationship between pointers and arrays, are discussed in Chapter 5 . After we

introduce object-oriented programming, we wi l l consider strings and arrays as ful l - fledged

objects.

4.4 Examples Using Arrays

Thi s section presents many examples that demonstrate how to declare arrays , how to in i

t ial ize arrays and how to perform many common array manipulations .

Declaring a n Array and Using a Loop to Initialize the Array 's Elements

The program in Fig. 4 .3 dec lares 1 0-element integer array n (l ine 1 4) . Lines 1 7- 1 8 use a

for repetition structure to ini tial ize the array elements to zeros . The first output statement

(l i ne 20) di splays the column headi ngs for the columns pri nted in the subsequent for struc

ture (l ines 23-24) , which pri nts the array in tabular format. Remember that setw spec ifies

the fie ld width in which only the next value i s to be output.

1 I I Fig . 4 . 3 : fig04_0 3 . cpp
2 I I Ini t i a l i z ing an array .
3 # inc lude < iostream>
4
5 using std : : cout ;
6 using std : : endl ;
7
8 # inc lude < iomanip>
9

1 0 using std : : setw;
1 1
1 2 int main ()
1 3 {
1 4 int n [1 0] ; I I n i s an array of 1 0 integers
1 5
1 6 I I ini t i a l i z e element s of array n to 0
1 7 for (int i 0 ; i < 1 0 ; i + +)
1 8 n [i] = 0 ; I I set element at locat ion i to 0
1 9
20 cout « " El ement " « setw (13) « " Value " « endl ;
2 1

Fig. 4.3 I n it ia l iz ing an array' s elements to zeros and pr int ing the array. (Part 1 of 2 .)

Cha pter 4

22 I I output content s of array n in tabular format
23 for (int j = 0 ; j < 1 0 ; j + +)

Arrays

24 cout « setw (7) « j « setw (13) « n [j] « endl ;
25
26 return 0 ; I I indicates succes s ful terminat ion
27
28 I I end main

Element
o
1
2
3
4
5
6
7
8
9

Value
o
o
o
o
o
o
o
o
o
o

257

Fig. 4.3 I n it ia l iz ing a n array' s elements to zeros and pr int ing the array. (Part 2 of 2 .)

Initializing a n Array i n a Declaration with an Initializer List

The elements of an array also can be in i t ial ized in the array declarat ion by fol lowing the

dec laration with an equals sign and a comma-separated l i st (enclosed in braces) of in itial

izers. The program in Fig. 4.4 uses an initializer list to in i t ial i ze an integer array wi th 1 0

values (l ine 1 5) and prints the array in tabular format (l i nes 1 7-2 1) .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22

I I Fig . 4 . 4 : f ig04_0 4 . cpp
I I Ini t i a l i z ing an array with a dec larat ion .
inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

inc lude < iomanip>

us ing std : : setw;

int main ()

{
I I use init i a l i z e r l i st to ini t i a l i z e array n
int n [1 0] = { 3 2 , 2 7 , 6 4 , 1 8 , 9 5 , 14 , 9 0 , 7 0 , 6 0 , 3 7 } ;

cout « " E l ement " « setw (1 3 « " Value " « endl ;

I I output content s of array n in tabular format
for (int i = 0 ; i < 1 0 ; i++)

cout « setw (7) « i « setw (1 3) « n [i] « endl ;

Fig. 4.4 I n it ia l iz ing the elements of an array with a declaration . (Part 1 of 2 .)

258 Arrays Chapter 4

23 return 0 ; I I indicates succe s s ful terminat ion
24
25 } I I end main

Element
o

1

2

3

4
5

6
7

8

9

Fig. 4.4

Value
32

27

6 4
18

95

14
9 0
7 0
6 0
37

I n it ia l iz ing the elements of an array with a declaration . (Part 2 of 2 .)

If there are fewer init ia l izers than elements in the array, the remaining array e lements

are init iali zed to zero . For example, the elements of the array n in Fig. 4.3 could have been

init ia lized to zero with the declaration

int n [10] = { 0 } ;

The decl aration explicit ly init ial izes the first element to zero and impl ic i t ly in i tial izes the

remaining nine elements to zero, because there are fewer ini tia l izers than elements in the

array. Remember that automatic arrays are not i mplicit ly init ia l ized to zero . The program

mer must at least in it iali ze the first element to zero with an init ia l izer l i st for the remaining

e lements to be i mpl ic it ly set to zero . The initial ization method shown in Fig . 4 .3 can be per

formed repeatedly as a program executes, whereas an init ial izer l i st can be used only when

an array i s decl ared and has its effect only at compile t ime.

If the array s ize i s omitted from a declaration with an init ial izer l i st , the compi ler deter

mines the number of elements in the array by counting the number of e lements in the in i

t ia l izer l i s t . For example ,

int n [] = { 1, 2 , 3 , 4 , 5 } ;

creates a five-element array .

Performance Tip 4. 1

If, instead oj initializing an array with execution · time assignment statements, you initialize

the array at compile time with an array initializer list, your program will execute Jaster.

If the array s ize and an init ial izer l i st are specified i n an array declaration, the number

of init ial izers must be less than or equal to the array size. The array decl aration

int n [5] = { 3 2 , 2 7 , 6 4 , 18 , 9 5 , 14 } ;

causes a syntax error, because there are s ix init ial izers and only five array elements .

Common Programming Error 4.2

Providing more initializers in an array initializer list than there are elements in the array is

a syntax error.

Cha pter 4 Arrays 259

Common Programming Error 4.3

Forgetting to initialize the elements of an array whose elements should be initialized is a log

ic error.

Specifying an Array 's Size with a Constant Variable and Initializing Array Elements

with Calculations

The program in Fig. 4.5 initializes the e lements of a 1 O-element array s to the integers 2 ,

4 , 6 , . . . , 2 0 (lines 1 9-20) and prints the array in tabular format (l ines 2 1 -26) . These num

bers are generated (l ine 20) by mUltiplying each successive value of the l oop counter by 2

and adding 2 .

Line 1 5 uses the const qualifier to declare a so-cal led constant variable '
array

Size with the value 10 . Constant variables must be init ia l ized with a constant expression

when they are declared and cannot be modified thereafter (as shown in Fig . 4.6 and

Fig. 4.7) . Constant variables are also called named constants or read-only variables.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30

I I Fig . 4 . 5 : f i g 0 4 0 5 . cpp
I I Ini t i a l i z e array s to the even integers from 2 to 2 0 .
#inc lude < iostream>

using std : : cout ;
us ing std : : endl ;

inc lude < iomanip>

us ing s td : : setw;

int mai n ()

{
I I constant variable can be used to spe c i fy array s i z e
const int arraySi z e = 1 0 ;

int s [arraySi z e] ; I I array s has 1 0 e l ement s

for
s [

int i
i]

0 ; i < arraySi z e ;
2 + 2 * i ;

i + + I I s e t t h e values

cout « " E l ement " « setw (1 3) « " Value " « endl ;

I I output cont ent s of array s in t abular format
for (int j = 0 ; j < arraySi ze ; j + +)

cout « setw (7) « j « setw (1 3) « s [j] « endl ;

return 0 ; I I indicates succe s s ful terminat ion

I I end main

Fig. 4 .5 Generating values to be placed into elements of an array . (Part 1 of 2 .)

1 . Note that the term "constant variable" is an oxymoron-a contradiction in terms l ike "j umbo
shrimp" or "freezer burn ." Please send your favorite oxymorons to our e-mai l address l i sted in the
Preface. Thanks !

260 Arrays

E lement
o
1
2
3
4
5
6
7
8
9

Value
2
4

6
8

1 0
1 2
14
1 6
1 8
2 0

Chapter 4

Fig. 4.5 Generating values to be placed into elements of an array . (Part 2 of 2 .)

1 I I Fig . 4 . 6 : f i g 0 4_0 6 . cpp
2 I I Us ing a properly ini t i a l i zed constant vari able .

3 #inc lude < iostream>
4
5 us ing s td : : cout ;
6 us ing std : : endl ;
7
8 int main ()
9 {

1 0 const int x = 7 ; I I ini t i a l i zed constant variable
1 1
1 2 cout « " The value o f constant variable x i s : II

1 3 « x « endl ;
1 4
1 5 return 0 ; I I indicates succes s ful terminat ion
1 6
1 7 } I I end main

The value o f const ant variable x i s : 7

Fig. 4.6 I n it ia l iz ing and us ing a constant variable .

1 I I Fig . 4 . 7 : f i g 0 4_0 7 . cpp
2 I I A const obj ect mus t be init ial i zed .

3
4 int main ()
5 {
6 const int x ; I I Error : x must be ini t i a l i zed
7
8 x = 7 ; I I Error : cannot modi fy a const variable
9

1 0 return 0 ; I I indicates succe s s ful terminat ion
1 1
12 } I I end main

Fig. 4 . 7 const variables must be in it ial ized . (Part 1 of 2 .)

Chapter 4

d : \ cpphtp4_examples \ ch0 4 \ Fig04_07 . cpp (6) :
const obj ect must be ini t ia l i zed i f not

d : \ cpphtp4_examples \ ch0 4 \ Fig04_0 7 . cpp (8)
l -value spec i f ies const obj ect

error C 2 7 3 4 :
extern
error C2 l 6 6 :

Fig. 4.7 const variables must be in it ia l ized . (Part 2 of 2 .)

Common Progra mming Error 4.4

Arrays

' x '

Assigning a value to a constant variable in an executable statemenl is a syntax error.

261

Constant variables can be placed anywhere a constant expression is expected. I n

Fig. 4 . 5 , constant variable arrayS i z e specifies the s ize o f array s i n l ine 1 7 .

Common Programming Error 4.5

Only constants can be used to declare the size of automatic and static arrays. Not using a

constant for this purpose is a syntax error.

Using constant variables to specify array sizes makes programs more scalable. I n

F ig . 4 .5 , the first f o r loop could fi l l a I OOO-element array by s imp ly changing the value of

arrayS i z e in its declaration from 10 to 1 0 0 0 . [f the constant variable arrayS i z e had

not been used, we would have to change l i nes 1 7 , 1 9 and 25 of the program to scale the

program to handle 1 000 array e lements. As programs get l arger, thi s technique becomes

more u sefu l for writing clearer, easier-to-modify programs .

Defining the size of each array a s a constanl variable instead of a literal constant makes pro

grams more scalable.

Good Progra m m i ng Practice 4.2

Defining the size of an array as a constant variable instead of a literal constant makes pro

grams clearer. This technique eliminates so-called magic n umbers. For example, repeatedly

mentioning the size 10 in array-processing code for a l a-element array gives the number 1 0

a n artificial significance and can unfortunately confuse the reader when the program in

cludes other l as that have nothing to do with the array size.

Summing the Elements of an Array

The program in Fig . 4 .8 sums the val ues contained i n the 1 0-element in teger array a. Line

1 8 i n the for loop does the total ing . The values being suppl ied as in i t ia l izers for array a

also could be read in to the program from the user at the keyboard, or from a fi le on disk

(see Chapter 1 4, Fi le Process ing) . For example, the for structure

for (int j = 0 ; j < arrayS i ze ; j + +)
cin » a [j] ;

reads one value at a time from the keyboard and stores the value i n element a [j] .

1 I I Fig . 4 . 8 : f ig04_0 8 . cpp
2 I I Comput e the sum of the e lement s of the array .
3 # include < iost ream>

Fig. 4.8 Computing the sum of the elements of an array. (Part 1 of 2 .)

262 Arrays

4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 int main ()
9 {

1 0 const int arrayS i ze = 1 0 ;
1 1

Chapter 4

1 2 int a [arrayS i z e] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 } ;
1 3
1 4 int total = 0 ;
1 5
1 6 I I sum content s o f array a
1 7 for (int i = 0 ; i < arraySi z e ; i + +
1 8 total + = a [i] ;
1 9
20 cout « " Total of array element values i s " « total « endl ;
2 1
22 return 0 ; I I indicates successful terminat ion
23
24 } I I end main

I Total of array element values i s 5 5

Fig. 4.8 Computing the sum of the elements of an array, (Part 2 of 2 .)

Graphing Array Element Values with Histograms

Figure 4 .9 reads numbers from an array and graphs the information in the form of a bar

chart , or h is togram-each number is printed (l ines 22-23) fol lowed by a bar consist ing of

that many asteri sks (l ines 25-26) . The nested for loop (l i nes 25-26) actual ly draws the

bars . Note the use of endl (l ine 28) to end a hi stogram bar and begin a new l ine of output.

Common Programming Error 4.6

A lthough it is possible to use the same control variable in a for loop and a second for loop

nested inside, this is normally a logic error.

1 I I Fig . 4 . 9 : f i g 0 4 0 9 . cpp
2 I I Histogram print ing program .
3 #inc lude < iostream>
4
5 using std : : cout ;
6 using std : : endl ;
7
8 #inc lude < iomanip>
9

1 0 us ing std : : setw;
1 1
1 2 int main ()
1 3 {
1 4 const int arraySi z e = 1 0 ;

Fig. 4.9 H istogram pr int ing program. (Part 1 of 2 .)

Cha pter 4 Arrays 263

1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34

int n [arrayS i z e] = { 1 9 , 3 , 1 5 , 7 , 1 1 , 9 , 1 3 , 5 , 17 , 1 } ;

cout « " El ement " « setw (13) « " Value "
« setw (17) « " Hi stogram" « endl ;

I I for each element of array n , output a bar in histogram
for (int i = 0 ; i < arraySi z e ; i + +) {

cout « setw (7) « i « setw (13)
< < n [i] < < setw (9) ;

for (int j = 0 ; j < n [i] ; j + +

cout « ' * ' ;

I I print one bar

cout « endl ; I I start next l ine of output

I I end outer for structure

return 0 ; I I indicates succes s ful terminat ion

} I I end main

Element
o
1
2
3
4
5
6
7
8
9

Value
1 9

3
1 5

7
1 1

9
1 3

5
17

1

Histogram
* * * * * * * * * * * * * * * * * * *

* * *

* * * * * * * * * * * * * * *

* * * * * * *

* * * * * * * * * * *

* * * * * * * * *

* * * * * * * * * * * * *

* * * * *

* * * * * * * * * * * * * * * * *

*

Fig. 4.9 H istogram pr int ing progra m . (Part 2 of 2 .)

Rolling a Die 6000 Times and Summarizing the Results in an Array

Chapter 3 stated that we would show a more elegant version of the dice-rol l ing program of

Fig. 3 . 8 . The problem was to rol l a single six-sided die 6000 times to test whether the random

number generator evenly distributes the random numbers it produces. An array version of this

program i s shown in Fig . 4. 1 0 . L ine 24 replaces the switch structure in Fig. 3 .8 . The calcu

lation 1 + rand () % 6 produces a random integer between 1 and 6 inc lusive, which deter

mines the subscript of the array element that corresponds to a pruticular side of the die . For

example, if the calculation produces the value 3 , l i ne 24 increments frequency [3]) .

1 I I Fig . 4 . 1 0 : f ig 0 4 1 0 . cpp
2 I I Rol l a s ix - s ided die 6 0 0 0 t ime s .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;

Fig. 4. 1 0 Dice-ro l l ing program us ing an array instead of swi tch. (Part 1 of 2 .)

264 Arrays

7
8
9

inc lude < i omanip>

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36

u s ing std : : setw;

inc lude <c stdl ib>
inc lude <ct ime >

int main ()

{

Face
1
2

3
4
5
6

const int arrayS i z e = 7 ;
int frequency [arraySize] = { 0 } ;

srand (t ime (0) ; I I seed random-number generator

1 / rol l die 6 0 0 0 t imes
for (int rol l = 1 ; rol l < = 6 0 0 0 ; rol l + +)

+ + frequency [1 + rand () % 6] ; I I replaces 2 0 - l ine

I I of Fig . 3 . 8

cout « " Face " « setw (13) « " Frequency " « endl ;

I I output frequency element s 1 - 6 in t abular format
for (int face = 1 ; face < arraySi z e ; fac e + +)

cout « setw (4) « face
« setw (13) « frequency [face] « endl ;

return 0 ; I I indicates successful terminat ion

I I end main

Frequency
1 0 0 3
1 0 0 4

9 9 9
9 8 0

1 0 13
1 0 0 1

Cha pter 4

swi tch

Fig. 4. 1 0 Dice-ro l l ing program using an array instead of switch. (Part 2 of 2 .)

Using Arrays t o Summarize Survey Results

Our next example (Fig . 4 . 1 1) uses arrays to summarize the results of data col lected in a sur

vey. Consider the fol lowing problem statement:

Forty students were asked to rate the quality of the food in the student cafeteria on a scale of

1 to 1 0 (I meaning awful and 10 meaning excellent). Place the 40 responses in an integer

array and summarize the results of the poll.

This is a typical array appl ication. We wish to summarize the number of responses of

each value (i . e . , I through 1 0) . Array re sponses is a 40-element array of the students '

responses. We use an I I -element array frequency to count the number of occurrences

of each response. We ignore the first element, frequency [0] , because it i s more

logical to have the response val ue 1 increment element f requency [1] than element

Chapter 4 Arrays 265

f requency [0] . This al lows us to use each response value directly as a subscript on the

frequency array .

Good Programming Practice 4.3

� Strive for program clarity. It is sometimes worthwhile to trade off the most efficient use of"

� memory or processor time in favor of writing clearer programs.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42

Performance Tip 4.2

Sometimes peiformance considerations far outweigh clarity considerations.

I I Fig . 4 . 1 1 : f i g 0 4_1 1 . cpp
I I Student pol l program .

inc lude < iostream>

using std : : cout ;
us ing std : : endl ;

inc lude < i omanip>

us ing s td : : setw;

int main ()
{

I I def ine array s i z e s
const i n t responseSize = 4 0 ;
const int f requencyS i z e = 1 1 ;

I I s i z e of array responses
I I size o f array f requency

I I place survey re sponse s in array responses
int response s [responseSize] = { 1 , 2 , 6 , 4 , 8 , 5 , 9 , 7 , 8 ,

1 0 , 1 , 6 , 3 , 8 , 6 , 1 0 , 3 , 8 , 2 , 7 , 6 , 5 , 7 , 6 , 8 , 6 , 7 ,
5 , 6 , 6 , 5 , 6 , 7 , 5 , 6 , 4 , 8 , 6 , 8 , 1 0 } ;

I I ini t i a l i z e f requency counters to 0
int frequency [f requencySi z e] = { 0 } ;

I I for each answer , select value of an e lement o f array
I I response s and use that value as subscript in array
I I f requency to determine element to increment

for (int answer = 0 ; answer < responseS i z e ; answe r + +
+ + frequency [responses [answe r]] ;

I I d i sp l ay resu l t s
cout « " Rat ing " « setw (17) « " Frequency" « endl ;

I I output frequenc ies in tabular format

for (int rat ing = 1 ; rat ing < f requencySi z e ; rat ing + +
cout « setw (6) « rat ing

« setw (1 7) « frequency [rat ing] « endl ;

return 0 ; I I indicates succe s s ful terminat ion

I I end main

Fig. 4. 1 1 Student-pol l-analysis progra m . (Part 1 of 2 .)

266 Arrays Chapter 4

Rat ing Frequency
1 2
2 2
3 2
4 2
5 5
6 1 1
7 5
8 7
9 1

1 0 3

Fig. 4. 1 1 Student-pol l-analysis program. (Part 2 of 2 .)

The first for loop (l i nes 29-30) takes the responses one a t a t ime from the array

re sponses and increments one of the 1 0 counters (frequency [1] through

f requency [10]) in the frequency array . Line 30 is the key statement in the loop.

This statement i ncrements the appropriate frequency counter, depending on the value of

response s [answer] . For example, when counter answer i s 0, the value of

re sponses [answer] (l i ne 1 9) is 1, so the program actual l y interprets the statement

+ + f requency [response s [answer]] ; as

+ + f requency [1] ;

which i ncrements array e lement one. When answer i s 1 , re sponse s [answer] (l i ne

1 9) i s 2 , so + + f requency [re sponses [answer]] ; i s interpreted as

+ + f requency [2] ;

which increments array element two. When answer i s 2 , re sponse s [answer] (l i ne

1 9) i s 6 , so + + frequency [responses [answer]] ; i s interpreted as

+ + frequency [6] ;

which i ncrements array element six, and so on. Note that regardless of the number of re

sponses processed in the survey, only an I I -e lement array is requ i red (ignoring element ze

ro) to summarize the resul ts . If the data contained inval id values such as 1 3 , the program

would attempt to add 1 to f requency [13] . This would be outside the bounds of the

array . C+ + has no array bounds checking to prevent the computer from referring to an el

ement that does not exist. Thus, an executing program can walk off either end of an array

without warning . The programmer should ensure that al l array references remain withi n the

bounds of the array .

Common Programming Error 4.7

Referring to a n element outside the array bounds i s an execution-time logic error. I t i s n o t a

syntax error.

T S '"g and Debug in Tip 4 1

When looping through an array, the array subscript should never go below 0 and should al

ways be less than the total number of elements in the array (one less than the size of the array).

Make sure that the loop-terminating condition prevents accessing elements outside this range.

Chapter 4 Arrays 267

@ Testing and Debugging Tip 4.2

Programs should validate the correctness of all input values to prevent erroneous infor

mation from affecting a program 's calculations. fI Portabi l ity Tip 4. 1

The (normally serious) effects of referencing elements outside the a rray bounds are system

dependent. Often this results in changes to the value of an unrelated variable or a fatal error

that terminates program execution.

c++ is an extensible l anguage. In Chapter 8, we w i l l extend C++ by implementing an

array as a user-defined type with a class. Our new array defin it ion w i l l enable us to perform

many operations that are not standard for C++' s bui l t- in arrays. For example , we w i l l be

able to compare arrays directly, assign one array to another, input and output entire arrays

with c i n and cout, in itial ize arrays when they are created, prevent access to out-of-range

array elements and change the range of subscripts (and even their subscript type) so that the

first element of an array is not required to be e lement O. @ Testing and Debugging Tip 4.3

When we study classes (Chapter 6 through Chapter 8) , we will see how to develop a "smart

array, " which checks that all subscript references are in bounds at run time. Using such

smart data types helps eliminate bugs.

Using Character Arrays to Store and Manipulate Strings

To thi s point, we have discussed only i nteger arrays . However, arrays may be of any type.

We now introduce storing character strings in character arrays . (Chapter 5 discusses strings

i n more detai l .) The only string-processing capabi l ity shown to thi s point i s outputt ing a

string with cout and « . A string such as "he l lo" is real l y an array of characters . Char

acter arrays that represent strings have several unique features .

A character array can be i nitial ized us ing a string l i teral . For example, the declaration

char stringl [] = " f irst " ;

in it ial izes the e lements of array s tringl to the individual characters i n the string l i teral

" f i rst " . The s ize of array stringl in the preceding declaration is determined by the

compiler based on the length of the string. I t is i mportant to note that the string " f i r s t "

contains five characters plus a special string termination character cal led the null character.

Thus , array s t ringl actual ly contains six elements. The character constant representa

tion of the nu l l character is ' \ 0 ' (backslash fol l owed by zero) . A l l strings end with this

character. A character array representing a string should always be declared l arge enough

to hold the number of characters in the stri ng and the terminating null character.

Character arrays also can be in it ial ized with individual character constants in an in i

t ial izer l i st . The preceding declaration i s equivalent to the more tedious form

char stringl [] = { ' f ' , ' i ' , ' r ' , ' s ' , ' t ' , ' \ 0 ' } ;

Note the use of s ingle quotes to deli neate each character constant. A l so, note that we ex
p l ici t ly provided the terminating nul l character as the l ast in itial izer value . Without it , this
array would s imply represent an array of characters, not a string . As we discuss in
Chapter 5 , no t providing a terminating nu l l character for a stri ng can be problematic .

268 Arrays Chapter 4

Because a string is an array of characters, we can access i ndividual characters i n a
string directly with array subscript notation . For example, stringl [0] is the character
I f I , stringl [3] is the character I s I and stringl [5] is the nu l l character.

We also can i nput a string directly into a character array from the keyboard us ing c i n

and > > . For example, the declaration

char string2 [20] ;

creates a character anay capable of storing a string of 1 9 characters and a terminating nu l l

character. The statement

c in » string2 ;

reads a string from the keyboard i nto string2 and appends the nu l l character to the end

of the string i nput by the user. Note in the preceding statement that only the name of the

anay is suppl ied; no information about the size of the anay i s provided. I t is the program

mer' s responsibi l ity to ensure that the anay into which the string is read is capable of hold

ing any string the user types at the keyboard. By default, cin reads characters from the

keyboard until the first whitespace character i s encountered-regardless of the anay size .

Thus, inputting data with cin and > > can insert data beyond the end of the array (see

Section 5 . 1 2 for information on preventing insertion beyond the end of a char anay) .

Common Programm ing Error 4.8

Not providing cin » with a character array large enough to store a string typed at the key

board can result in loss of data in a program and other serious run-time errors.

A character anay representing a nu l l -terminated string can be output wi th cout and

< < . The statement

cout « string2 « endl ;

prints the array s tring2 . Note that cout « , l ike cin » , does not care how large the

character anay is. The characters of the string are output until a terminating nu l l character

is encountered. [Note: c in and cout assume that character anays should be processed as

strings terminated by null characters ; c in and cout do not provide s imil ar input and out

put processing capabi l i ties for other array types .]

Figure 4 . 1 2 demonstrates in it ial izing a character array wi th a string l i teral , reading a

string i nto a character array , printing a character array as a stri ng and access ing individual

characters of a string .

1 I I Fig . '_12 : f ig04_12 . cpp
2 I I Treat ing character arrays as strings .
3 # inc lude < iostream>
4
5 us ing s td : : cout ;
6 us ing s td : : c in;

7 using std : : endl ;
8

F ig. 4. 1 2 Character arrays processed as stri ngs. (Part 1 of 2 .)

Chapter 4

9 int main ()

1 0 {

Arrays 269

1 1 char s t ringl [2 0] , I I reserves 2 0 characters

1 2 char s tring2 [] " st ring l itera l " ; I I re serves 1 5 characters

1 3
1 4 I I read string f rom user into array string2
1 5 cout « " Enter the string \ " he l lo there \ " : ,, ;

1 6 c i n » stringl ; I I reads " he l l o " [space terminates input]

1 7
1 8 I I output strings
1 9 cout « " stringl i s : " « stringl

20 « " \nstring2 i s : " « string2 ;

2 1
22 cout « " \nstringl with space s between characters i s : \ n " ;

23
24 I I output characters unt i l nul l character i s reached
25 for (int i = 0 ; stringl [i] ! = ' \ 0 ' ; i + +)

26 cout « stringl [i] « , , ;

27
28 cin » stringl ; I I reads " there "
29 cout « " \nstringl i s : " « stringl « endl ;

30
3 1 return 0 ; I I indicates succe s s ful t erminat ion
32
33 } I I end main

Enter the string " he l l o there " : he l l o there
stringl i s : hel lo
string2 i s : string l iteral
stringl with spaces between characters i s :
h e l l 0

stringl i s : there

Fig. 4. 1 2 Character a rrays processed as strings. (Part 2 of 2 .)

Lines 25-26 of F ig . 4. 1 2 use a for structure to loop through the s tringl array and

print the individual characters separated by spaces . The condition in the for structure,

s tringl [i] ! = , \ 0 ' , i s true unti l the loop encounters the term inating nu l l character

of the string .

Static Local Arrays and Automatic Local Arrays

Chapter 3 discussed the storage c lass specifier stat i c . A s t at i c local variab le i n a

function defi nit ion ex ists for the duration of the program, but is v is ib le only i n the function

body .

Performance Tip 4.3
We can apply static to a local array declaration so the array is not created and initialized

each time the program calls the function, and the array is not destroyed each time the func

tion terminates in the program. This can improve performance, especially when using large

arrays.

270 Arrays Chapter 4

A program in it ia l izes static arrays when the program begins execution . If a

stat i c array i s not in i t ial i zed expl ic i tly by the programmer, each element of that array i s

in i ti al ized t o zero b y the compi ler when the array i s created.

Figure 4 . 1 3 demonstrates function stat icArraylni t (l i nes 27-45) with a

static local array (l ine 30) and function automaticArraylnit (l i nes 48-66) w i th

an automatic local array (l ine 5 1) .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45

I I Fig . 4 . 1 3 : f ig04_1 3 . cpp
I I Stat ic arrays are initial i z ed to zero .
inc lude < iostream>

us ing std : : cout ;
u s ing std : : endl ;

void stat icArraylnit (void) ;
void automaticArraylnit (void) ;

int main ()

{

I I funct ion prototype
I I funct ion prototype

cout « " First call to each funct ion : \n " ;
staticArraylnit () ;
automat icArraylnit () ;

cout « " \n\nSecond call to each funct ion : \n " ;
stat icArraylnit () ;
automaticArraylnit () ;
cout « endl ;

return 0 ; I I indicates succes s ful t erminat ion

} I I end main

I I func t ion to demonstrate a stat ic local array

void stati cArraylnit (void

{
I I ini t i a l i zes e l ement s to 0 f irst t ime funct ion i s cal led
stat ic int array1 [3] ;

cout « " \nValues on entering staticArraylnit : \ n " ;

I I output content s of array1
for (int i = 0 ; i < 3 ; i + +)

cout « " array1 [" « i « "] = " « array1 [i] « "

cout « " \nValues on exiting staticArraylni t : \ n " ;

I I modify and output content s of array1

for (int j = 0 ; j < 3 ; j + +)
cout « " array1 [" « j « "] = "

« (array1 [j] += 5) « " " ;

} I I end funct ion stat icArraylnit

" .
,

F ig. 4. 1 3 stat i c array in it ia l ization and automatic array in it ia l ization . (Part 1 of 2 .)

Chapter 4

I I func t i on to demonstrate an automatic local array
void automaticArrayInit (void

{

Arrays

46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66

I I ini t i a l i z e s e l ement s each t ime funct ion i s c a l l ed

int array2 [3] = { 1 , 2 , 3 } ;

cout « " \n\nValues on entering automaticArrayInit : \ n " ;

I I output content s of array2
for (int i = 0 ; i < 3 ; i + +)

cout « " array2 [" « i « "] = " « array2 [i] « "

cout « " \ nValues on exit ing automaticArrayInit : \n " ;

I I modi fy and output content s of array2
for (int j = 0 ; j < 3 ; j + +)

cout « " array2 [" « j « "]
« (array2 [j] + = 5) « II

} I I end func t ion automaticArrayInit

First cal l to each function :

Values on entering staticArrayInit :
array1 [0] = 0 array1 [1] = 0 array1 [2] = 0
Values on exit ing staticArrayInit :
array1 [0] = 5 array1 [1] = 5 array1 [2] 5

Value s on
array2 [0]
Values on
array2 [0]

entering automaticArrayInit :
= 1 array2 [1] = 2 array2 [2] 3
exit ing automat icArrayInit :

6 array2 [1] = 7 array2 [2] = 8

Second cal l to each function :

Values on entering stat icArrayInit :
array1 [0] = 5 array1 [1] = 5 array1 [2] 5
Values on exit ing staticArrayInit :

II ;

array1 [0] = 1 0 array1 [1] = 10 array1 [2] 1 0

Values on entering automat icArrayInit :
array2 [0] = 1 array2 [1] = 2 array2 [2] 3
Values on exit ing automaticArrayInit :
array2 [0] = 6 array2 [1] = 7 array2 [2] 8

27 1

" . ,

Fig. 4 . 1 3 static array in it ia l ization and automatic array in it ia l ization . (Part 2 of 2 .)

Function staticArraylnit i s cal led twice (l i nes 14 and 1 8) . The s t a t i c local

array i s i nit ial ized to zero by the compiler the first time the function i s called. The function

prints the array, adds 5 to each element and prints the array again . The second t ime the func

tion i s cal led, the stat ic array contai ns the modified values stored during the first func

tion cal l . Function automati cArraylnit also is cal led twice (l i nes 1 5 and 1 9) . The

272 Arrays Chapter 4

e lements of the automatic local array are in itial ized (l i ne 5 1) with the values 1 , 2 and 3 . The

function prints the array , adds 5 to each element and prints the array again . The second t ime

the function i s cal led, the array elements are reinitial ized to 1 , 2 and 3 . The array has auto

matic storage class, so the array i s recreated during each cal l to automatiCArrayIni t .

Common Prog ramming Error 4.9

Assuming that elements of afunction ' s local s t a t i c array are initialized to zero every time

the function is called can lead to logic errors in a program.

4.5 Passing Arrays to Functions

To pass an array argument to a function, specify the name of the array without any brackets .

For example, if array hourlyTemperature s has been declared as

int hourlyTemperatures [2 4] ;

the function cal l

modi fyArray (hourlyTemperature s , 2 4) ;

passes array hourlyTemperatures and its size to function modi fyArray. When

passing an array to a function, the array size i s normal ly passed as wel l , so the function can

process the specific number of elements in the array. (Otherwise , we would need to bui ld

this knowledge into the cal led function itself or , worse yet , p lace the array size in a global

variab le .) In Chapter 8 , when we introduce our own Array c lass , we w i l l bu i ld the s ize of

the array into the user-defined type-every Array object that we create wi l l "know" its

own size. Thus, when we pass an Array object into a function, we no longer w i l l have to

pass the s ize of the array as an argument.

C++ passes arrays to functions using simu lated pass-by-reference-the cal led func

tions can modify the element values in the cal lers ' origi nal arrays . The value of the name

of the array is the address in the computer' s memory of the first e lement of the array .

Because the starting address of the array is passed, the cal led function knows precisely

where the array i s stored in memory . Therefore, when the cal led function modifies array

e lements in its function body, it is modifying the actual e lements of the array in their orig

inal memory locations.

Performance Tip 4.4

Passing arrays by simulated pass-by-reference makes sense for performance reasons. If ar

rays were passed by value, a copy of each element would be passed. For large, fi'equently

passed arrays, th is would be time consuming and would require considerable storage for the

copies of the array elements.

Software Engineering Observation 4 2

It is possible to pass an array by value (by using a simple trick we explain in Chapter 1 8)

this is rarely done.

Although entire arrays are passed by s imulated pass-by-reference, individual array ele

ments are passed by value exactly as s imple variables are . Such simple single pieces of data

are cal led scalars or scalar quantities. To pass an element of an array to a function, use the

subscripted name of the array element as an argument in the function cal l . In Chapter 3, we

Chapter 4 Arrays 273

showed how to pass scalars (i . e . , indiv idual variables and array elements) by reference with

references. In Chapter 5, we show how to pass scalars by reference with pointers .

For a function to rece ive an array through a function cal l , the function ' s parameter l i st

must specify that the function expects to recei ve an array. For example, the function header

for function modi fyArray might be written as

void modi fyArray (int b [] , int arrayS i z e

indicating that modi fyArray expects to receive the address of an array of integers in pa

rameter b and the number of array elements in parameter arrayS i ze . The s ize of the ar

ray is not required between the array brackets . If it is inc luded, the compi ler ignores it .

Because C++ uses pass-by-reference to pass arrays to functions , when the cal led function

uses the array name b, it w i l l in fact be referring to the actual array in the caller (i . e . , array

hourlyTemperature s discussed at the beginning of thi s section) .

Note the strange appearance of the function prototype for modi fyArray

void modi fyArray (int [] , int) ;

This prototype could have been wri tten

void modi fyArray (int anyArrayName [] , int anyVariabl eName) ;

but as we learned in Chapter 3 , C++ compilers ignore variable names in prototypes . Re

member, the prototype te l l s the compiler the number of arguments and the types of each

argument (in the order in which the arguments are expected to appear) .

The program in Fig. 4 . 1 4 demonstrates the difference between pass ing an entire array

and passing an array element. Lines 24-25 print the five original elements of integer array

a. Line 30 passes a and its size to function modi fyArray (l ines 55-6 1) , which mult ipl ies

each of a' s e lements by 2 (through parameter b) . Then, l ines 35-36 print array a agai n in

main. As the output shows, the elements of a are indeed modified by modi fyArray.

Next, l ine 4 1 pri nts the value of a [3] , then l i ne 44 passes element a [3] to function

modi fyEl ement (l ines 65-7 1) , which multiplies its argument by 2 and pri nts the new

value. Note that when line 47 again prints a [3] i n main, the value has not been modi

fied, because indiv idual array elements are passed by value.

There may be situations in your programs in which a function should not be a l lowed

to modify array elements. Because arrays are always passed by s imulated pass-by-refer

ence, modification of values in an array is difficult to control . C++ provides the type qual

ifier cons t that can be used to prevent modification of array values in a function. When a

function specifies an array parameter that is preceded by the const qual ifier, the elements

1 II Fig . 4 . 14 : f ig04_14 . cpp
2 I I Pas s ing arrays and individual array e l ement s to funct ions .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 # inc lude < i omanip>

Fig. 4. 1 4 Pass ing a rrays and ind iv idual array elements to functions, (Part 1 of 3 ,)

274

9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1

Arrays

us ing std : : setw;

void modi fyArray { int [] , int) ; / / appears s trange
void modi fyE1ement (int) ;

int main ()

{

Chapter 4

const int arraySi z e = 5 ;
int a [arrayS i z e] = { 0 , 1 , 2 , 3 , 4 } ;

/ 1 s i z e of array a
/ / ini t i a l i z e a

cout « " E f fects of pass ing ent i re array by reference : "
« " \n\nThe values of the original array are : \n " ;

/ / output original array
for (int i = 0 ; i < arraySi z e ; i + +

cout « setw (3) « a [i] ;

cout « end1 ;

/ 1 pass array a to modi fyArray by reference
modi fyArray (a , arraySi z e) ;

cout « " The values of the modi f ied array are : \ n " ;

/ / output modif ied array
for (int j = 0 ; j < arraySi z e ; j + +

cout « setw (3) « a [j] ;

/ / output value of a [3
cout « " \n\n\n"

« " E f fect s of pass ing array e l ement by value : "
« " \n\nThe value of a [3] i s " « a [3] « ' \n ' ;

/ / pas s array e l ement a [3] by value
modi fyE1ement (a [3]) ;

/ / output value of a [3]
cout « " The value of a [3] i s " « a [3] « end1 ;

return 0 ; / / indicates succe s s ful terminat ion

1 / end main

/ 1 in funct ion modi fyArray, "b" point s to
/ / the original array "a" in memory
void modi fyArray (int b [] , int s i zeOfArray

{
/ / mul t iply each array element by 2
for (int k = 0 ; k < s i z eOfArray ; k++

b [k] * = 2 ;

} / / end funct ion modi fyArray

Fig. 4 . 1 4 Passing arrays and ind ividual array elements to functions, (Part 2 of 3 ,)

Cha pter 4

62
63 I I in funct i on modi fyElement , " e " i s a local copy of
64 II array e l ement a [3] pas sed from main

65 void modi fyE l ement (int e }
66 {
67 I I mUl t iply parameter by 2
68 cout « " Value in modi fyElement i s "
69 « (e * = 2) « endl ;

70
7 1 } I I end function modi fyElement

E f fects of pas s ing ent ire array by reference :

The value s of the original array are :
0 1 2 3 4

The values of the modif ied array are :
0 2 4 6 8

E f fect s of pas s ing array e l ement by value :

The value of a [3] i s 6
Value in modi fyE l ement i s 12
The value of a [3] i s 6

Arrays

Fig. 4. 1 4 Pass ing arrays and ind iv idual array elements to functions , (Part 3 of 3 ,)

275

of the anay become constant i n the function body, and any attempt to modify an element

of the array i n the function body results in a compi ler error. This enables the programmer

to correct a program so it does not attempt to modify array elements .

Figure 4 . 1 5 demonstrates the const qual ifier. Function t ryToModi fyArray

(l i nes 24-30) is defined with parameter const int b [] , which specifies that array b i s

constant and cannot be modified. Each of the three attempts by the function to modify array

b' s e lements (l ines 26-28) results in the compiler error "Cannot modi fy a const

obj ect ." Note that compiler error messages vary between compilers . The const qual i

fier wi l l be discussed again in Chapter 7 .

1 II Fig . 4 . 1 5 : fig04 1 5 . cpp
2 I I Demonstrat ing the const type qual i f ier .
3 # inc 1ude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 void t ryToModi fyArray (const int [] } ; I I func t i on prototype
9

1 0 int main (}
1 1 {
1 2 int a [] = { 1 0 , 2 0 , 3 0 } ;
1 3
1 4 tryToModi fyArray (a } ;

Fig. 4. 1 5 const type qua l if ier appl ied to an array parameter , (Part 1 of 2 ,)

276 Arrays Chapter 4

1 5
1 6 cout < < a [0] < < I I < < a [1] < < I I < < a [2] < < I \n I ;

1 7
1 8 return 0 ; I I indicates succe s s ful terminat ion
1 9
20 I I end main
2 1
2 2 I I In funct ion t ryToModi fyArray , " b " c annot be used
23 I I to modi fy the original array " a " in main .

24 void t ryToModi fyArray { const int b [])
25 {
26
27
28
29
30 }

b [
b [
b [

/ I

0 1 = 2 ; / I error
1 1 = 2 ; / I error
2 1 = 2 ; / I error

end funct ion tryToModi fyArray

d : \ cpphtp4_examples \ ch04 \Fig04_1 S . cpp (2 6)
I -value spec i f ie s const obj ect

d : \ cpphtp4_examples \ ch04 \ Fig04_1 S . cpp (2 7)
I -value spec i f ie s const obj ect

d : \ cpphtp4_examples \ ch0 4 \ Fig04_1 5 . cpp (2 8)
l -value spec i f ies const obj ect

error C2 1 6 6 :

error C2 1 6 6 :

error C2 1 6 6 :

Fig. 4. 1 5 cons t type qual if ier appl ied to an array parameter. (Part 2 of 2 .)

Common Prog ramming Error 4. 1 0

Forgetting that arrays are passed by reference, and hence can be modified, may result in log

ic errors.

5

Applying the const type qualifier to an array parameter in a function definition to prevent

the original array from being modified in the function body is another example of the prin

ciple of least privilege. Functions should not be given the capability to modify an array un

less it is absolutely necessary.

4.6 Sorting Arrays

Sorting data (i .e . , p lac ing the data i nto some part icular order such as ascending or descend

ing) i s one of the most important computing appl icat ions . A bank sorts al l checks by ac

count number so that it can prepare indiv idual bank statements at the end of each month.

Telephone companies sort the ir l i sts of accounts by last name and, with in that, by first name

to make i t easy to find phone numbers . V i rtual ly every organ ization must sort some data

and, in many cases, massive amounts of data. Sort ing data is an i ntrigu ing problem that has

attracted some of the most intense research efforts i n the fie ld of computer science. In this

chapter, we discuss the s i mplest known sorting scheme. I n the exerc i ses and i n Chapter 1 7 ,

we i nvestigate more complex schemes that yield superior performance.

� Performance ip 4.5

Sornetimes, simple algorithms perform poorly. Their virtue is that they are easy to write, test

• and debug. More complex algorithms are sometimes needed to realize ma.ximum peliormance.

Chapter 4 Arrays 277

The program in Fig . 4 . 1 6 sorts the values of the IO-element array a into ascending

order. The technique we use i s cal led the bubble sort, or the sinking sort, because the

smaller values gradual ly "bubble" their way upward to the top of the array l ike air bubbles

r is ing in water, whi le the larger values s ink to the bottom of the array . The bubble sort

makes several passes through the array . On each pass , successi ve pairs of e lements are

compared. If a pair is in increasing order (or the values are identical) , we leave the values

as they are . If a pair i s i n decreasing order, thei r values are swapped i n the array .

1 II F i g. 4.16: fig04_16.cpp

2 II Thi s program sort s an array's value s into ascending order.

3 #include <iost ream>
4
5 u s ing std::cout;

6 us ing std::endl;

7
8 #include <iomanip>

9
10 u s ing std::s etw;

11
12 i nt main ()

13 {

14 const i nt arraySize = 10; II s ize of array a

15 int a[arraySize] = { 2 , 6, 4, 8, 10 , 12 , 89, 68, 45, 37 };

16 int hol d; II temporary locat ion used to swap a rray e l ement s
17
18 cout « "Data i t ems in original order\n";
19
20 II output origina l array

21 for (i nt i = 0; i < arraySize ; i++

22 cout « setw(4) « a [i];
23
24 II bubbl e sort

25 II l oop to cont rol number of pas se s

26 for (i nt pas s = 0; pas s < arraySize - 1; pas s++)
27
28 II l oop to control number of compari sons per pas s

29 for (int j = 0; j < arraySize - 1; j++)
30
31 II compare s ide -by - s ide e l ement s and swap them if
32 II first e l ement i s greater than second e l ement
33 i f (a[j] > a[j + 1]) {
34 ho ld a[j];
35 a[j a[j + 1];
36 a[j + 1] = ho ld;
37
38 II end i f
39
40 cout « "\nData i t ems in ascending order\n";
41
42 II output sorted array

43 for (int k = 0 ; k < arrayS ize ; k++)
44 cout « setw(4) « a[k];

Fig. 4.16 Sorting an array with bubble sort. (Part 1 of 2.)

278 Arrays

45
46 c out « endl;

47
48 return 0; II indicates successful termination
49
50 } II end main

Data i t ems in original order

2 6 4 8 10 12 89 68 45 37

Data i t ems i n ascending order

2 4 6 8 10 12 37 45 68 89

Fig. 4.16 Sorting an array with bubble sort. (Part 2 of 2.)

Chapter 4

First the program compares a [0] with a [1] , then a [1] w ith a [2] , then

a [2] with a [3] , and so on until i t completes the pass by comparing a [8] to a [9] .
A l though there are 10 elements, only n i ne comparisons are performed. Because of the

manner in which bubble sort performs the successive compari sons, a l arge value can move

down the array many posit ions on a single pass, but a small value can move up only one

posit ion. O n the first pass , the largest value is guaranteed to sink to the bottom element of

the array , a [9] . On the second pass, the second largest value is guaranteed to sink to

a [8] . On the n inth pass , the n inth largest value sinks to a [1] . Thi s leaves the smallest

value i n a [0] , so only nine passes are needed to sort a l O-element array .

The sorting is performed by the nested for loop (li nes 26-38) . If a swap is necessary , i t

i s performed by l ines 34-36 i n which the extra variable hold temporarily stores one of the

two values being swapped. The swap cannot be performed with only the two assignments

a[j a[j + 1];

a[j + 1] = a[j];

I f, for example , a [j] is 7 and a [j + 1] is 5, after the first assignment both values w i l l

be 5 , and the value 7 wi l l be lost; hence the need for the extra variable hol d.

The chief v irtue of the bubble sort is that it is easy to program, however, i t runs slowly .

Th is becomes apparent when sorting large arrays . I n the exerc i ses , we w i l l develop more

efficient versions of the bubble sort and investigate some far more effic ient sorts than the

bubble sort . More advanced courses investigate sorting and searching in greater depth .

4.7 Case Study: Computing Mean, Median and Mode USing
Arrays

We now consider a larger example. Computers are commonly used to compi le and analyze

the results of surveys and opinion pol l s . The program i n Fig. 4 . 17 uses array re sponse

(l ines 29-39) i n i ti al i zed with 99 responses to a survey. The program represents the s i ze of

this array with constant variable re sponseSize. Each of the responses i s a number from

1 to 9. The program computes the mean , median and mode of the 99 values .

The mean i s the arithmetic average of the 99 values. Funct ion mean (l i nes 5 1 -7 3)

totals the 99 elements (l ines 5 8-5 9) and div ides the result by 99 (l ine 7 0) to compute the

mean.

Chapter 4 Arrays

1 1/ Fig. 4.17: fig04 17. cpp

2 II Thi s program introduces the topic of survey data ana l y s i s.

3 II It c ompute s the mean, median, and mode of the data.

4 #inc1ude < i ostream>

5
6 us ing std::cout;

7 us ing std::endl;

8 us ing std::fixed;

9 using std::showpo int;

10
11 #inc lude < i omanip>

12
13 us ing std::setw;

14 u s ing std::setprec i s ion;

15
16 void mean(const int [], int);
17 void medi an(int [], int);

18 voi d mode(int [], int [], int);
19 void bubbleSort(int[], int);

20 void printArray(const int [], int);
21
22 int ma in ()
23 {
24 const int responseS ize = 99; II s ize of array re sponses
25

279

26 int frequency [10] = { O}; II initia l ize array frequency

27
II initi a l ize array re spons e s 28

29
30
31
32
33
34
35
36
37
38
39
40

int re sponse [responseS ize]

{ 6, 7, 8, 9,

7, 8, 9, 5,

6, 7, 8, 9,
7, 8, 9, 8,

6, 7, 8, 7,

7, 8, 9, 8,

5, 6, 7, 2,

7, 8, 9, 6,

7, 4, 4, 2,

4, 5, 6, 1,

41 II proc e s s re sponse s

8, 7, 8,

9, 8, 7,

3, 9, 8,

9, 8, 9,

8, 7, 9,

9, 8, 9,

5, 3, 9,

8, 7, 8,

5, 3, 8,

6, 5, 7,

=

9,

8,

7,
7,

8,

7,

4,

9,

7,

8,

42 mean (response, re spons eS ize);

43 medi an (re sponse, re sponseS ize);

8, 9,

7, 8,

8, 7,

8, 9,

9, 2,

5, 3,

6, 4,

7, 8,

5, 6,

7 } ;

44 mode (frequency, re sponse, re sponseS ize);
45
46 return 0; II indicates succe s s ful termination
47
48 II end ma in
49
50 II calculate average of a l l response value s

51 vo id mean(const int answer [], int arrayS ize

52 {
53 int total = 0;

Fig. 4.17 Survey data analysis program, (Part 1 of 4,)

280

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

Arrays

c out « "* * * * * * * *\n Mean\n******** \n";

II total re sponse values

for (int i = 0; i < arraySize; i++

tota l += answer[i];

II format and output re sults

c out « fixed « setprec i s i on(4);

cout « "The mean i s the average value of the data\n"

« "items. The mean i s equal to the total of\n"

« "al l the data items divided by the number\n"

« "of data items (" « arraySize

« ") . The mean value for\nthi s run i s: "

« total « " I " « arrayS ize « " = "

« static_cast< double >(total) I arrayS ize

« "\n\n";

} II end function mean

II sort array and determine medi an e l ement 's value

void medi an(int answer[], int s ize)

(
cout « "\n* * * * * * * * \n Median\n********\n"

« "The unsorted array of responses i s";

Chapter 4

printArray(answer, s ize); II output unsorted array

bubbleSort(answer, s ize); II sort array

cout « "\n\nThe sorted array i s";

printArray(answer, s ize); II output sorted array

II di splay median e lement

cout « "\n\nThe median i s e l ement " « s ize I 2

« " of\nthe sorted " « s ize

« " e l ement array.\nFor thi s run the median i s "

« answer [s ize I 2] « "\n\n";

} /1 end function medi an

II determine most frequent response

void mode(int freq[], int answer[], int s ize

{
int l arge st 0;

int modeValue = 0;

1/ repre sents l arge st frequency

II repre sents most frequent re sponse

cout « "\n********\n Mode\n********\n";

II initial ize frequenc i e s to 0
for (int i = 1 ; i <= 9; i++)

freq[i] = 0;

Fig. 4.17 Survey data analysis program. (Part 2 of 4.)

Chapter 4

107
108 II summarize frequenc i e s

109 for (int j = 0; j < s ize; j++

110 ++freq [answer [j]];

111
112 II output header s for result columns

113
114
115
116
117

c out « "Re spons e" « setw(11) « "Frequency"
« setw(19
« "1 1
« "5 0

118 II output results

) «

2

5

"Hi stogram\n\n" « setw(

2\n" « setw(56)

0 5\n\n";

119 for (int rating 1; rating <= 9; rating++)

120 c out « setw(8) « rating « s etw(11)

121 « freq [rating] « " ";
122

Arrays

55

123 II keep track of mode value and l argest fequency value

124 if (freq [rating] > l argest) {
125 largest = freq [rating];

126 modeVa lue = rating;

127
128 } II end i f

129
130 II output hi stogram bar representing frequency value

131 for (int k = 1; k <= freq [rating]; k++)

132 cout « '* ';

133
134 cout « '\n '; II begin new l ine of output
135
136 } II end outer for

137
138 II di splay the mode value

139 c out « "The mode i s the most frequent value. \n"

140 « "For thi s run the mode i s " « modeValue

281

141 « " which occurred " « large st « " time s." « endl;

142
143 } II end function mode

144
145 II funct i on that sorts an array with bubbl e sort a l gorithm
146 vo id bubbl e Sort (int a [], int s ize)

147 {
148 i nt hold; II temporary location used to s wap e l ements

149
150 II l oop to c ontrol number of pas se s
151 for (i nt pas s = 1; pas s < s ize; pas s++

152
153 II l oop to c ontro l number of compari sons per pa s s

154 for (int j = 0; j < s ize - 1; j ++)

155
156 II swap e l ements if out of order

157 if (a [j] > a [j + 1]) {

158 hold a [j];

159 a [j = a [j + 1];

Fig. 4.17 Survey data analysis program. (Part 3 of 4.)

282 Arrays

a [j + 1 ho ld;

} /I end if

} II end function bubbl eSort

II output array contents (20 value s per row)

vo id printArray(const int a[], int s ize)

{

for (int i 0; i < s ize; i++)

Chapter 4

160
161
162
163
164
165
166
167
168
\69
170
171
172
173
174
175
176
177
178

if (i % 20 == 0

cout « endl;

II begin new l ine every 20 values

c out « setw(2) « a[i];

} II end for

} II end function printArray

Fig. 4.17 Survey data analysis program. (Part 4 of 4.)

The median is the "middle value." Function median (l i nes 76-94) determines the

median by cal l i ng bubbleSort (l i ne 83) to sort array response and picking the middle

element (l i ne 92), answer [s i ze / 2] , of the sorted array . Note that when there i s an

even number of elements, the median shou ld be calculated as the average of the two middle

elements . Function median does not provide this capabil ity. Lines 81 and 86 cal l print

Array (l i nes 167-178) to output array re sponse before and after its elements are sorted.

The mode is the most frequent value among the 99 responses. Function mode (l ines 97-

143) counts the responses of each type then selects the value with the greatest count (l ines

119-136). This version of function mode does not handle a tie (see Exercise 4.14). Function

mode also produces a histogram to aid in determining the mode graphical ly . Fig. 4.18 con

tains a sample execution of this program. This example demonstrates most of the common

manipulations required in array problems , including passing arrays to functions.

Mean

The mean i s the average value of the data

items. The mean i s equal to the total of

a l l the data items divided by the number

of data items (99). The mean value for

thi s run i s: 681 I 99 = 6.8788

(continued top of next page)

Fig. 4.18 Sample run for the survey data analysis program. (Part 1 of 2.)

Chapter 4 Arrays 283

(continued from prevIOUS page)

Median

The unsorted array of re sponses is

6 7 8 9 8 7 8 9 8 9 7 8 9 5 9 8 7 8 7

6 7 8 9 3 9 8 7 8 7 7 8 9 8 9 8 9 7 8

6 7 8 7 8 7 9 8 9 2 7 8 9 8 9 8 9 7 5

5 6 7 2 5 3 9 4 6 4 7 8 9 6 8 7 8 9 7

7 4 4 2 5 3 8 7 5 6 4 5 6 1 6 5 7 8 7

The sorted array i s

1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5

5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

The median is e l ement 49 of

the sorted 99 e l ement array.

For thi s run the median is 7

Mode

Response Frequency Histogram

5

1 *

2 ***

3 ****

4 *****

5 ********

6

1

3

4

5

8

9 *********

1

o

8

9

3

8

5

7

8

8

1

5

2

o

7 ***********************

2

5

8

23

27

19

9 *******************

The mode i s the most frequent value.

For this run the mode i s 8 which occurred 27 t imes.

Fig. 4. 18 Sample run for the survey data analysis program. (Part 2 of 2.)

4.8 Searching Arrays: Linear Search and Binary Search

Often , a programmer wi l l be working with l arge amounts of data stored i n arrays . It may be

necessary to determine whether an array contains a value that matches a certa in key value. The

process of finding a particular element of an array is called searching. In this section, we dis

cuss two searching techniques-the simple linear search technique and the more complex,

yet more efficient , binwy search technique. Exercise 4.33 and Exercise 4.34 at the end of this

chapter ask you to implement recursive versions of the l inear search and the binary search.

284 Arrays Chapter 4

Linear Search
The l inear search (Fig . 4 . 19, l ines 39-48) compares each element of an array with a search

key. Because the array is not in any part icular order, it i s j ust as l i kely that the value w i l l be

found i n the first element as the last. On average, therefore , the program must compare the

search key with half the e lements of the array. To determine that a value i s not in the array,

the program must compare the search key to every element i n the array .

1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18
19

20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45

// Fig. 4.19: fig04_1 9 . cpp

/ / Linear search of an array.

#include <iostream>

u s ing std::cout;

u s ing std: :cin;

us ing std::endl;

i nt l inearSearch(const int [], int, int) ; / / prototype

i nt main()
{

const int arraySize

int a[arraySize];

int searchKey;

100; // s ize of array a

// create array a

// value to l ocate in a

for
a[

int i 0; i < arrayS ize ; i++)

i] 2 * i;
/ / create some data

cout « "Enter i nteger search key: ";

cin » searchKey;

// attempt to l ocate searchKey in array a

int e lement = l inearSearch(a, searchKey, arraySize) ;

/ / di splay results

if (e l ement != - 1
cout « "Found value in e l ement " « e l ement « endl;

e l se
cout « "Va lue not found" « endl;

return 0; / / i ndicate s succe s sful termination

// end main

// compare key to every e l ement of array unt i l l ocation i s

/ / found o r unt i l end of array i s reached; return subscript of

// e lement if key or -1 if key not found

int l inearSearch(const int array[], int key, int s izeOfArray)

{

for (int j = 0; j < sizeOfArray; j++

if (array [j

return j;

== key) // if found,

/1 return l ocation of key

Fig. 4. 19 Linear search of an array. (Part 1 of 2.)

Chapter 4

46 return - 1; II key not found

47
48 II end function linearSearch

Ente r integer search key: 36

Found value in element 18

Ente r integer search key: 37

Value not found

Fig. 4.19 Linear search of an array. (Part 2 of 2.)

Binary Search

Arrays 285

The l inear searching method works well for small arrays or for unsorted arrays . However,

for large arrays , l inear searching i s inefficient. If the array i s sorted, the high-speed binary

search technique can be used.

The binary search algorithm e l imjnates one-half of the elements i n the array being

searched after each comparison . The algorithm locates the m jddle element of the array and

compares i t w i th the search key . If they are equal , the search key is found, and the array

subscript of that e lement is returned. Otherwise, the problem is reduced to searching one

half of the array . I f the search key i s less than the middle element of the array, the first half

of the array i s searched; otherwise, the second half of the array i s searched. I f the search

key is not the middle element in the specified subarray (piece of the orig inal array) , the

algorithm is repeated on one-quarter of the original array . The search continues unt i l the

search key is equal to the middle element of a subarray or unt i l the subarray consists of one

element that is not equal to the search key (i . e . , the search key is not found) .

I n a worst-case scenario, searching an array of 1023 elements wi l l take only 10 com

pari sons us ing a binary search . Repeatedly d iv id ing 1024 by 2 (because after each compar

i son, we are able to e l imi nate half of the array) yields the values 512, 256, 128, 64, 32, 16,

8, 4, 2 and I. The number 1024 (210) i s d ivided by 2 only 10 t imes to get the value I.
Dividing by 2 is equivalent to one compari son in the binary search algorith m . An array of
1048575 (220) elements takes a maximum of 20 comparisons to find the search key . An
array of one b i l l ion elements takes a maximum of 30 compari sons to find the search key .
Thi s i s a tremendous increase in performance over the l i near search that requ ired com
pari ng the search key to an average of half the e lements i n the array . For a one-bi l l ion-ele
ment array, th is i s a difference between an average of 500 m i l l ion compari sons and a
maximum of 30 compari sons! The maximum number of compari sons needed for the binary
search of any sorted array can be determined by fi nding the first power of 2 greater than the
n umber of elements in the array .

Performance Tip 4.6
The tremendous performance gains of the binary search over the linear search do not come

without a price. Sorting an array is an expensive operation compared with searching an en

tire array once for one item. The overhead of sorting an array becomes worthwhile when the

array will need to be searched many times at high speed.

286 Arrays Chapter 4

Figure 4.20 presents the i terative version of function binarySearch (l i nes 48-81).

The function receives five arguments-an in teger array b, an in teger searchKey, the

low array subscript, the high array subscript and the s ize of the array . I f the search key

does not match the middle element of a subarray , the low subscript or high subscript i s

adjusted s o a smaller subarray c a n b e searched. I n l i nes 63-76, i f the search key i s l ess than

I
2
3
4
5
6
7
8
9

10
II
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

II Fig. 4.20: fig04_20.cpp

II Binary search of an array.

#include < iost ream>

using std::cout;

using std: :cin;

using std::endl;

#include <iomanip>

using std::setw;

II function prototypes

int binarySearch(const int [], int, int, int, int);

void printHeader(int);

void printRow(const int [], int, int, int, int);

int main ()
{

const int arraySize

int a[arraySize];

int key;

15; II size of array a

II c reate array a

II value to locate in a

for

a[

int i 0; i < arraySize; i++

i] 2 * i;

II c reate some data

cout « "Ente r a number between 0 and 28: ";

cin » key;

print Header(arraySize);

II search for key in array a

int result =

binarySearch(a, key, 0, arraySize - 1, arraySize);

II display results

if (result != -1)
cout « '\n' « key « " found in array element "

« result « endl;

else
c out « '\n' « key « " not found" « endl;

return 0; II indicates successful termination

} II end main

Fig. 4.20 Binary search of a sorted array. (Part 1 of 4.)

Chapter 4 Arrays

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

II function to perform binary search o f an array

int binarySearch(canst int b[], int s earchKey, int low,

int high, int size)

{

int middle;

II loop until low subscript is greate r than high subscript

while (low <= high) {

II determine middle element of subarray being searched

middle = (low + high) I 2;

II display subarray used in this loop it eration

print Row(b, low, middle, high, size);

II if searchKey matche s middle element, return middle

if (s earchKey == b[middle]) II match

return middle;

else

II if searchKey le s s than middle element,

II set new high element

if (s earchKey < b[middle])

high = middle - 1; II search low end of array

II if s earchKey great er than middle element ,

II set new low element

else

low = middle + 1; II search high end o f array

return - 1; II searchKey not found

II end funct i on binarySearch

I I print header for output

void print Header(int size

{

cout « "\nSubscripts:\n";

II output column heads

for (int j = 0; j < size; j++

cout « setw(3) « j « ' ';

cout « '\n'; II s t art new line of output

II output line of - characters

for (int k = 1; k < = 4 * size; k++)
cout « '-';

cout « endl; II s t art new line of output

Fig. 4.20 Binary search of a sorted array. (Part 2 of 4.)

287

288 Arrays

} II end funct ion printHeader

II print one row of output showing the current

II part of the array being processed

void printRow(const int b[J, int low, int mid,
int high, int size)

II loop through ent i re array

for (int m = 0; m < size; m++

Chapter 4

99
100
101
102
103
104
105
106 {
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

II display spaces i f outside current subarray range

i f (m < low I 1 m > high)

cout «
II " . ,

II display middle element marked w i th a *

else

i f (m = = mid) /I mark middle

cout « setw(3) « b[m J « I * I . ,

/I display other elements in subarray

else

cout « setw(3) « b[m J « , , . ,

cout « endl; II start new line of output

II end funct i on printRow

Enter a number between 0 and 28: 6

value

Subscripts:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

o

o

2

2

4

4

6 8 10 12 14* 16 18 20 22 24 26 28

6* 8 10 12

6 found in array element 3

Enter a number between 0 and 28: 25

Subscripts:
0 1 2

0 2 4

25 not found

3 4

6 8

5 6 7 8

10 12 14* 16

16

9 10 11 12 13 14

18 20 22 24 26 28

18 20 22 * 24 26 28

24 26* 28

24*

Fig. 4.20 Binary search of a sorted array. (Part 3 of 4.)

Chapter 4 Arrays

Ent er a number between 0 and 28: 8

Subscripts:

0 1 2

o
o

2

2

4

4

3 4 5 6 7 8 9 10 11 12 13 14

6 8 10 12 14* 16 18 20 22 24 26 28

6* 8 10 12

8 10* 12

8*

8 found in array element 4

Fig. 4.20 Binary search of a sorted array. (Part 4 of 4.)

289

the middle element, the high subscript is set to middle - 1 (l i ne 71), and the search con

t inue on the elements from low to middle - 1 . If the search ke y i s greater than the middle

element, the low subscript i s set to middle + 1 (l i ne 76), and the search cont inues on the

elements from middle + 1 to high. The program uses an array of 15 elements . The first

power of 2 greater than the number of elements in this array i s 16 (24), so the b inary search

requires a max imum of 4 compari sons to fi nd the search key . Function printHeader

(l i nes 84-100) pri nts the array subscripts across the top of the output and function

printRow (l i nes 104-126) outputs each subarray during the b inary search process . The

middle element in each subarray is marked with an asteri sk (*) to i ndicate the element with

which the search key is compared.

4.9 Multiple-Subscripted Arrays

Arrays in C++ can have mu ltiple subscripts. A common use of multiple-subscripted arrays i s

to represent tables of values consisting of information arranged i n rows and columns. To iden

tify a particular table element, we must specify two subscripts : The first (by convention) iden

tifies the element's row, and the second (by convention) identifies the element ' s column.

Tables or arrays that require two subscripts to identify a part icular e lement are cal led

double-subscripted arrays. Note that mult iple-subscripted arrays can have more than two

subscripts. Figure 4.21 i l l ustrates a double-subscripted array, a. The array contains three

rows and four columns , so i t i s said to be a 3-by-4 array . In general , an array with m rows

and n columns is cal led an m-by-n array.

Every e lement in array a is identified in Fig. 4.21 by an e lement name of the form

a [i] [j] ; a is the name of the array, and i and j are the subscripts that u n iquely iden

tify each element i n a. Notice that the names of the elements in the fi rst row al l have a first

subscript of 0; the names of the e lements in the fourth column all have a second subscript

of 3 .

Common Programming Error 4.11
Referencing a double-subscripted array element a [x] [y] incorrectly as a [x, y] is

an error. Actually, a [x, y] is treated as a [y], because C++ evaluates the expression

X, y (containing a comma operator) simply as y (the last of the comma-separated expres

sions).

290 Arrays

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

a[O] [0] a[O] [1] a[O] [2] a[O] [3]

a[l] [0] a [1] [1] a[l] [2] a[l] [3]

a[2] [0] a[2] [1] a[2] [2] a[2] [3]

L Column subscript

Row subscript

Array name

Fig. 4.21 Double-subscripted array with three rows and four columns.

Chapter 4

A mult ip le-subscripted array can be in it ial i zed in its dec laration much l i ke a s ingle sub

scripted array . For example , a double-subscripted array b [2] [2] could be dec lared and

i nit ial ized with

int b[2] [2] = { { 1, 2 L { 3, 4 } };

The values are grouped by row in braces. So, 1 and 2 i n it ial i ze b [0] [0] and

b [0] [1] , and 3 and 4 i n i tial i ze b [1] [0] and b [1] [1] . I f there are not enough

i ni t ia l izers for a given row, the remaining elements of that row are in it ial i zed to O. Thus ,

the decl aration

int b[2] [2] = { { 1 }, { 3, 4 } };

in i t ial i zes b [0] [0] to 1, b [0] [1] to 0, b [1] [0] to 3 and b [1] [1] to 4.

Fig. 4.22 demonstrates ini t ial i zing double-subscripted arrays i n declarations. Lines

12-14 declare three arrays , each with two rows and three columns .

1 I I Fig. 4.22: fig04_22.cpp

2 I I Initializing multidimensional arrays.

3 #include < iost ream>

4
5 using std::cout;

6 using std: :endl;

7
8 void printArray(int [] [3]);

9
10
11
12
13
14
15

int main()

{
int arrayl [

int array2[

int array3[

2

2

2

] [3 { 1,

][3 1, 2,

][3 { 1,

2, 3 } ,

3, 4,

2 L {

{
5
4

Fig. 4.22 Initializing multidimensional arrays. (Part 1 of 2.)

4, 5, 6 } };

} ;

} };

Chapter 4

16 cout « "Values in arrayl by row are:" « endl;

17 printArray(arrayl);

18
19 cout « "Values in array2 by row are:" « endl;

20 printArray(array2);

2 1
22 cout « "Values in array3 by row are:" « endl;

23 printArray(array3);

24
25 return 0; II indicate s succe ssful termination

26
27 II end main

28

Arrays

29 II function to output array with two rows and three c olumns

30 void printArray(int at] [3])

3 1 {
32 for (int i = 0; i < 2; i++) II for each row
33

291

34 for (int j = 0; j < 3; j++ II output column values
35 cout « a [i] [j] « ' ';
36
37 c out « endl; II start new line of output
38
39 } II end outer for s t ructure

40
4 1 II end function printArray

Values in a rrayl by row are:
1 2 3

, 5 6

Values in array2 by row are:

1 2 3

, 5 0

Value s in array3 by row are:

1 2 0

, 0 0

Fig. 4.22 Initializing multidimensional arrays, (Part 2 of 2,)

The dec laration of arrayl (l ine 1 2) provides s ix in i t ial i zers i n two subl i sts . The first

subl ist in i t ial i zes the first row of the array to the values 1, 2 and 3; and the second sublist

i ni t ial i zes the second row of the array to the values 4, 5 and 6. If the braces around each

subl ist are removed from the arrayl in i t ia l izer l i st , the compiler i n i t ial i zes the elements

of the first row fol lowed by the elements of the second row.

The declaration of array2 (l i ne 13) provides five in i t ial i zers . The i n it ial i zers are

assigned to the first row and then the second row . Any elements that do not have an expl ic i t

in i t ial i zer are in i t ial i zed to zero, so array2 [1] [2] i s in i t ial i zed to zero.

The decl aration of array3 (l ine 14) provides three i n i t ial i zers in two subl ists . The
sublist for the first row expl ic i t ly in i t ial i zes the first two e lements of the first row to 1 and

2 ; the third element is i mpl ic i t ly i n it ial i zed to zero. The sub l i st for the second row expl ic i t ly
i n it ial i zes the first element to 4 and impl icit ly in i t ial i zes the l ast two elements to zero.

292 Arrays Chapter 4

The program calls function printArray to output each array ' s elements. Notice that

the function defin i tion (l ines 30-41) speci fies the parameter int a [] [3] . When we

receive a s ingle-su bscripted array as an argument to a function, the array brackets are empty

in the function ' s parameter l i st . The s ize of the flfst subscript of a multiple-subscripted array

is not required either, but al l subsequent subscript sizes are required. The compiler u ses these

s izes to determine the locations in memory of elements in mult iple-subscripted arrays. A l l

array elements are stored consecutively in memory, regardless of the number of subscripts. I n

a double-subscripted array, the flfst row is stored in memory fol lowed by the second row. I n

a double-subscripted array, each row is a single-subscripted array . To locate an element in a

particular row, the function must know exactly how many elements are in each row so it can

skip the proper number of memory locations when accessing the array . Thus, when accessing

a [1] [2], the function knows to skip the first row' s three elements i n memory to get to

the second row (row I). Then, the function accesses the thi rd element of that row (element 2) .

Man y common array manipulations use for repetit ion structures. For e xample, the

fol lowing for structure sets a l l the elements in the third row of array a in Fig. 4 .21 to zero:

for (column = 0; column < 4; column++)

a [2] [column] = 0;

We spec ified the third row, and therefore we know that the first subscript is always 2-0

is the first row subscript and 1 i s the second row subscript. The for l oop varies only the

second subscript (i . e . , the column subscript) . The preceding for structure is equ ivalen t to

the fol lowing assignment statements :

a[2][0 0;

a[2][1 0;

a[2][2 0;

a[2][3 0;

The fol lowing nested for structure determines the total of all the e lements i n array a:

total = 0;

for (row = 0; row < 3; row++

for (column = 0; column < 4; column++

total += a[row] [column];

The for structure totals the elements of the array one row at a t i me . The outer for struc

ture begins by setting row (i . e . , the row subscript) to 0, so the elements of the first row may
be totaled by the inner for structure. The outer for structure then increments row to 1,

so the e lements of the second row can be totaled. Then, the outer for struc ture i ncrements

row to 2 , so the e lements of the third row can be totaled. When the nested for structure

terminates, total contains the sum of al l the array elements.

The program of Fig . 4 .23 performs several other common array manipulations on 3-

by-4 array s tudentGrades . Each row of the array represents a student, and each column

represents a grade on one of the four exams the students took during the semester. The array

manipulations are performed by four functions. Function minimum (l ines 56-69) deter

m i nes the lowest grade of any student for the semester. Function maximum (l i nes 72-85)

determines the highest grade of any student for the semester. Function average (lines 88-

98) determines a part icular student ' s semester average . Function printArray (l i nes

101-118) outputs the double-subscripted array in a neat, tabular format.

Chapter 4 Arrays

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

18
19
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5 1
52
53

II Fig. 4.23: fig04_2 3.cpp

II Double - subscripted array exampl e.

#include <ios t ream>

using std::cout;

using std::endl ;
using std::fixed;

using std::l eft;

#inc lude <iomanip>

using std::setw;

using std::setprecision;

const int students = 3;
const int exams = 4;

II function prototype s

II number of student s

II number of exams

int minimum(int [] [exams], int, int);
int maximum(int [] [exams], int, int);
doubl e average(int [], int);
void printArray(int [] [exams], int, int);

int main()

{
II initia lize s tudent grades for three student s (row s)
int studentGrades[student s] [exams]

{ {77, 68, 86, 73},
{ 96, 87, 89, 78 },

{ 70, 90, 86, 81 } };

II output array studentGrade s

cout « "The array is:\n";

printArray(studentGrade s, student s, exams);

II determine smal l e s t and large st grade value s

c out « "\n\nLowest grade: "

« minimum (studentGrade s, student s, exams

« "\nHighe st grade: "

« maximum (studentGrade s, student s, exams

cout « fixed « s etprecision(2) ;

II c al cu l ate average grade for each student

for (int person = 0; person < student s; person++

«

cout « "The average grade for student " « person
« .. is ..

« average(studentGrade s[person], exams)
« endl;

return 0; II indica t e s suc c e s sfu l termination

II end main

'\n' ;

Fig. 4.23 Double-subscripted array manipulations. (Part 1 of 3.)

293

294

54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1
82
83
84
85
86
87
88
89
90
9 1
92
93
94
95
96
97
98
99
100
10 1
102
103
104
105

Arrays Chapter 4

II find minimum grade

int minimum (int grade s[] [exams], int pupi l s , int t e s t s)

{
int lOwGrade = 100; II initialize to highe st po s sible grade

for (int i = 0; i < pupils; i++)

for (int j = 0; j < te sts; j++

if (grade s [i] [j] < lowGrade

lowGrade = grade s[i] [j];

return lowGrade;

II end function minimum

II find maximum grade

int maximum (int grade s[] [exams], int pupi l s , int t e s t s)

{
int highGrade = 0; II initialize to l owe st pos sibl e grade

for (int i = 0; i < pupils; i++)

for (int j = 0; j < te sts; j++

if (grade s [i

highGrade

return highGrade;

] [j] > highGrade

grade s[i] [j];

II end function maximum

II determine average grade for particular student

doubl e average(int setOfGrade s[], int t e sts)

{
int total = 0;

II total a l l grade s for one student

for (int i = 0; i < tests; i++)

total += setOfGrade s[i];

return st atic_cast< doubl e >(tot a l) I t e s t s; II average

} II end function maximum

II Print the array

void printArray(int grade s[] [exams], int pupi l s , int tests)

{
II s et l eft justification and output column heads

cout « l eft « " [0] [1] [2] [3]";

Fig. 4.23 Double-subscripted array manipulations, (Part 2 of 3,)

Chapter 4

106 II output grade s in tabular format

107 for (int i = 0; i < pupil s; i++) {

108
109 II output l abe l for row

1 10 cout « l\ns tudentGrades[" « i « II] ";

1 1 1
1 12 II output one grade s for one student

1 13 for (int j = 0; j < te sts; j++

1 14 cout « setw(5) « grades [i] [j];

1 15
1 16 I I end outer for

1 17
1 18 1/ end function printArray

The array is:

[0] [1] [2]

student Grades [0] 77 68 86

studentGrade s[l] 96 87 89

studentGrade s[2] 70 90 86

Lowest grade: 68

Highe st grade: 96

The average grade for student 0

The average grade for student 1

The average grade for student 2

[3]

73

78

81

is 76.00

is 87.50

is 81. 75

Fig . 4.23 Double-subscripted array manipulations. (Part 3 of 3.)

Arrays 295

Functions minimum, maximum and printArray each receive three arguments

the s tudentGrade s array (cal led grade s i n each function) , the n umber of students

(rows of the array) and the number of exams (columns of the array). Each function loops

through array grade s using nested for structures . The fol l owing nested for structure is

from function minimum (l ines 60-65):

for (i = 0; i < pupil s; i++

for (j 0; j < te sts; j++

if grade s [i] [j] < lowGrade

l owGrade = grade s [i] [j];

The outer for structure begins by sett ing i (i .e . , the row subscript) to 0, so the elements

of the fi rst row can be compared with variable lowGrade i n the body of the i nner for

structure . The inner for structure loops through the four grades of a part icu lar row and

compares each grade with lowGrade. If a grade is less than lowGrade, lowGrade i s

set to that grade . The outer for structure then i ncrements the row subscript to 1. The ele

ments of the second row are compared with variable lowGrade. The outer for structure

then increments the row subscript to 2 . The elements of the third row are compared wi th

variable lowGrade. When execution of the nested structure i s complete, lowGrade con

tains the smallest grade i n the double-subscripted array . Function maximum works s im i

larly to function minimum.

296 Arrays Chapter 4

Function average (l ines 88-98) takes two arguments-a s ingle-subscripted array of

test results for a part icular student and the number of test results in the array . When

average i s cal led (l i ne 48), the fi rst argument is studentGrades [student] ,

which specifies that a part icular row of the double-subscripted array studentGrades i s

to be passed to average. For example, the argument studentGrade s [1] represents

the four values (a single-subscripted array of grades) stored in the second row of the

double-subscripted array studentGrade s . A double-subscripted array could be consid

ered an array with e lements that are si ngle-subscripted arrays . Function average calcu

l ates the sum of the array elements, div ides the total by the number of test resul ts and

returns the floating-point result .

4. 1 0 (Optional Case Study) Th in king About Objects: Identifying
the Operations of a Class

In the "Thi n king About Objects" sections at the ends of Chapter 2 and Chapter 3, we per

formed the fi rst few steps of an object-oriented design for our elevator s imulator. I n

Chapter 2 , we identified the c lasses w e need t o implement, and w e created a c lass d iagram

that model s the structure of our system. In Chapter 3, we determined many of the attributes

of our c lasses and we investigated the possible states of c lass Elevator and represented

them in a statechart diagram. We also modeled in an acti vi ty diagram the logic the elevator

uses to respond to button presses.

I n this section, we concentrate on determ ining the c lass operations (or behaviors)

needed to i mplement the e levator s imulator. One object interacts with a second object by

i nvoking the second object ' s operations. In Chapter 5, we further investigate the interac

tions between objects in our system.

An operation of a c lass i s a service that the c lass provides to "c l ients" (users) of that

class . Let us consider the operations of some real -world c lasses. A radio' s operations

inc lude setting its station and volume (typical ly invoked by a l i stener adjust ing the radio' s

contro ls) . A car' s operations include accelerating (which may be invoked by pressing the

accelerator peda l) , dece lerating (which may be in voked by pressing the brake pedal) ,

turning a n d shifting gears.

Objects ordinari l y do not perform their operations spontaneous ly . Rather, a receiv ing

object (often cal led a server object) performs an operation when the object receives a mes

sage from a sending object (often called a client object) . In this section, we identify many
of the operations the c lasses offer in our system.

We can derive many of the operations of each c lass d i rectly from the problem state

ment. To do so, we examine the verbs and verb phrases from the problem statement . We

then relate each of these phrases to a part icular c lass in our system. Many of the verb

phrases in the table in Fig. 4.24 help determine the operations of our c lasses .

To create operations from these verb phrases , we exami ne the verb phrases l i sted with

each class . The "moves" verb l i sted with c lass Elevator refers to the activ ity i n which

the elevator moves between floors . Should "moves" be an operation of class E l evator?

No message tel l s the elevator to move; rather, the elevator decides to move in response to

a button press based on the condition that the door i s c losed . Therefore, "moves" does not

correspond to an operation. The "arri ves at a floor" phrase also i s not an operat ion, because

the e levator itself decides when to arrive on the floor, based on the t ime.

Chapter 4 Arrays 297

Class Verb phrases

E l evator moves, arrives at a fl oor, resets the e levator button, sounds the e l evator

be l l , s ignals its arrival to a floor, opens its door, c loses its door

C lock

Scheduler

Person

t icks every second

randomly schedules ti mes, creates a person, verifies that a fl oor is unoc

cupied, de l ays creat ing a person by one second

steps onto floor, presses floor button, presses e levator button, enters ele

vator, exits e levator

Floor resets floor button, turns off l i ght, turns on l ight

F loorButton summons e levator

E l evatorButton signals e levator to move

Door (opening of door) s ignals person to exit elevator, (ope n i ng of door) s ig-

nals person to enter elevator

Be l l none i n problem state ment

L i ght none in problem statement

Bui lding none in problem statement

Fig. 4.24 Verb phrases for each class in our elevator s imulator.

These choices represent a decis ion on our part to differentiate between public (c1ient

accessible) function of a c lass and private (c l ient-i naccessible) functions . A publ ic function

corresponds to an operation-a c l ient invokes an object ' s operation by cal l i ng the object ' s

corresponding publ ic function . A private function corresponds t o self- in it iated act iv i ties

(such as the e levator deciding to move)-we do not consider such a function to be an oper

ation . Beginn ing in Chapter 6, we discuss how to use C++ to designate a class member as

publ ic (meaning a c l ient can access the member) or pri vate (meaning a c l ient cannot access

the member) .

Now we return to the verb phrases so we can determine the operations our c lasses

should provide. The "resets elevator button" phrase implies that the elevator sends a mes

sage to the elevator button notifying the button to reset. Therefore, c lass E l evator

But t on needs an operation to provide this service to the elevator. We place th is operation

in the bottom compartment of c lass ElevatorButton i n our c lass d iagram (Fig . 4.25).

We represent the name of an operation as a function name, such as :

resetButtonO

The operation name is written fi rst, fol lowed by parentheses contain ing a comma-sep

arated l i st of the parameters that the operation takes (i n this case, none) . If we know the

return type of the operation, a colon fol lows the parameter l i st , fol lowed by the operation ' s

return type . I f the operation does not return a value (i . e . , the operation has return type

void), we omit the colon and return type. Note that most of our operations appear to have

no parameters and no return type; this might change as our design and implementation pro

cesses proceed .

298 Arrays

Elevator
currentFloor : I nteger = 1
direction : I nteger
capacity : I nteger = 1
a rriva lTime : I nteger
moving : Boolean = false
processTime(t ime : Integer)
personEnters()
personExits()
summonElevator()
prepare T oLeave()

Scheduler

f loor 1 ArrivalTime : Integer
floor2ArrivaiTime : Integer
processTime(t ime : Integer)

Person

ID : Integer

exitElevator()
enterElevator()

Clock

time : Integer = 0

getTime() : Integer
tick()

Floor

capacity : Integer = 1
occupied : Boolean = false
elevator Arrived()
isOccupied() : Boolean
personArrivesO

FloorButton

pressed : Boolean = fa lse

pressButton()
resetButton()

E levatorButton

pressed : Boolean = false

pressButton()
resetButton()

Chapter 4

Door

open : Boolean = false

openDoor()
closeDoor()

Bel l

<none yet>

r ingBel l()

Light

on : Boolean = false

turnOff()
turnOn()

Bu i ld ing

<none yet>

runSimu lation()

Fig. 4 .25 Class diagram that includes attributes and operations.

From the "sounds the elevator bel l" phrase l i sted with c lass Elevator, we conclude

that class Be l l should have an operation that provides a serv ice for r inging . We l i st the

ringBe l l operation under c lass Be l l .

When the elevator arrives at a floor, i t "signals i ts arrival t o a floor," and the floor

responds by performing its various act ivi t ies (i .e . , resetting the floor button and turn ing on

the l ight) . Therefore, c lass Floor needs an operation that prov ides th is service . We cal l

th is operation e levatorArri ved and place the operation name i n the bottom compart
ment of class Floor i n Fig. 4.25 .

The remain ing two verb phrases for c lass Elevator state that the elevator needs to

open and close its door. Therefore , class Door needs to provide these operat ions . We place

the openDoor and c loseDoor operations in the bottom compartment of class Door.

Class Clock l i sts the phrase "ticks every second." Thi s phrase br ings up an i nteresting

point . Certain ly "gett ing the t ime" i s an operat ion that the clock provides, so we must

decide whether the t icking of the clock also i s an operat ion .

The problem statement i ndicates that the scheduler must know the current t ime to

deci de whether the scheduler should create a person on a floor. The elevator needs the t ime
value to dec ide whether i t i s t ime to arrive at a floor. We a lso dec ided that the Bui lding

c lass bears the respons ib i l i ty for runn ing the s imulation and for pass ing the t ime to the

scheduler and to the elevator. We now begin to see how our s imulation operates . The oper-

Chapter 4 Arrays 299

ation of our s imulation i s becoming c learer. The bui lding repeats the fol lowing steps once

per second for the duration of the s imulation :

I. Get the t ime from the clock.

2 . Give the t ime to the scheduler so that the scheduler can create a person, if necessary .

3. Give the t ime to the elevator so that the elevator can decide to arrive at a floor, if

the e levator i s moving.

We decided that the bui ld ing has fu l l responsibi l i ty for running a l l parts of the s imula

tion . Therefore, the bui lding also must increment the c lock once per second; then the t ime

shoul d be passed to the scheduler and the elevator.

This leads us to create operations getTime and t ick, and to l i st them under c lass

Clock. Operation getTime returns as an i nteger the value of the c loc k ' s t ime attribute.

I n the preceding items 2 and 3, we see the phrases "Give the t ime to the scheduler" and

"Give the time to the elevator." Thus we can add operation proc e s sTime to c l asses

Scheduler and E levator. We also can add operation runSimu l at ion to c l ass

Bui lding.

Class Scheduler l i sts the verb phrases "randomly schedules t imes" and "delays cre

ating a person by one second." The scheduler decides to perform these actions i tself and

does not provide these serv ices to c l ients. Therefore, these two phrases do not correspond

to operations, but i nstead may be private functions.

The phrase "creates a person" l i sted with c lass Scheduler presents a special case.

A lthough we can model an object of c lass Scheduler sending a "create" message, an

object of c lass Person cannot respond to a "create" message because that obj ect does not

yet exist . In this case, the creation of objects is left to i mplementation detai l s and is not rep

resented as an operation of a c lass . We discuss the creation of objects when we discuss

i mplementation i n Chapter 7.

The phrase "verifies that a floor is unoccupied" impl ies that c lass F l oor must provide

a service that reports whether the floor i s occupied. The operation of this service should

return true if the floor i s occupied and false if not. We p lace the operation

isOccupied() : Boolean

in the bottom compartment of c lass Floor.

Class Person l i sts the phrase "steps onto floor ." We might therefore i magine a mes

sage called personArrive s , which a Person object sends to a F l oor when the

person first enters the s imulation . For this reason, we place the personArri ve s message

under c lass Floor in Fig. 4 .25 . For the "presses floor button" and "presses elevator

button" verb phrases, we inc lude the pre s sButton operation under c l asses Floor

Button and E levatorButton. The "enters elevator" and "exi ts e levator" phrases

l i sted with c lass Person suggest that c lass El evator needs operations that correspond

to these actions .

Class Floor also l i sts "resets floor button" in its verb phrases column, so we place the

appropriate re setButton operation under c lass FloorButton. C l ass Floor also

l i sts "turns off l i ght" and "turns on l ight," so we create the turnOf f and turnOn opera

tions and inc lude them under c lass Light.

The "summons elevator" phrase l i sted under c lass FloorButton impl ies that c lass

Elevator needs a swnmonE levator operat ion. The phrase "signals e levator to move"

300 Arrays Chapter 4

l isted wi th c lass E levatorButton implies that class Elevator needs to provide a

"move" service . Before the elevator can move, however, the elevator must close its door.

Therefore, a prepareToLeave operation, wherein the elevator performs the necessary

act ions before moving, seems a more appropriate choice to l i st u nder c lass E l evator.

The phrases l i sted with c lass Door imply that the door sends a message to a person to

tel l the person to exit or enter the elevator. We create two operations for class Person to

cover these behaviors-exi tElevator and enterEl evator.

For now we do not concern ourselves too much with the parameters or return types; we

attempt to gain only a basic understanding of the operations of each class. As we continue our

design process, the number of operations belonging to each c lass might vary-we might find

that additional operations are needed or that some current operations are unnecessary .

Sequence Diagrams
We can use the UML sequence diagram (Fig . 4 .26) to model the steps from the preceding

discussion that the bu i ld ing repeats during the s imulation . The sequence diagram focuses

on how messages are sent among objects over time.

Each object i s represented by a rectangle at the top of the d iagram . The name of the

object i s placed i nside the rectangle . We write object names i n the sequence diagram using

the convention we introduced with the object diagram i n the "Thi nlUng About Obj ects" sec

tion at the end of Chapter 2 (Fig. 2 .44) . The dashed line that extends vertical ly from an

object ' s rectangle i s that object ' s lifeline. This l ifel ine represents the progression of t ime .

Actions happen along an object ' s l i fe l ine i n chronological order from top to bottom-an

action near the top of a l ife l ine happens before an action near the bottom .

{ cu rrentTime < totalTime I

: Bui lding I I � I I : Scheduler I
tick()

getTime() ,
. '

processTime(currentTime : int)
, ,

: E levator

Fig. 4 .26 Sequence diagram that models the steps the bui lding repeats during the
simulation .

Chapter 4 Arrays 301

A message between two objects in a sequence diagram is represented as a l i ne wi th an

arrowhead that extends from the object sending that message to the object receiv ing that

message. The message invokes the corresponding operation in the receiv ing object . The

arrowhead points to the l ifel i ne of the object receiv ing the message. The name of the mes

sage appears above the message l i ne and should inc lude any parameters being passed . For

example, the obj ect of c l ass Bui lding sends the proces sTime message to the object

of c lass E l evator. The name of the message appears above the message l i ne, and the

name of the parameter (currentTime) appears inside parentheses to the right of the mes

sage; each parameter name i s fol lowed by a colon and the parameter type.

I f an object returns the flow of control or if an object returns a value, a return message

(represented as a dashed l i ne with an arrowhead) extends from the obj ect return ing control

to the object that in i t ial ly sent the message . For example, the object of c l ass C lock returns

t ime i n response to the getTime message recei ved from the object of c lass Bui lding.

We also cou ld use the notation

time : = getTimeO

for the getTime message that the Bui l ding object sends to the C lock object . In thi s

case, w e would omit the return message, because the origi nal message notat ion contained

information about how the Bui lding obtains the return value .

I f a message cal l returns no value, the flow of control returns to the cal l i ng object when

the cal led object ' s acti vation ends. In this case, we may omit the dashed return message (as

i n the t ick and proces sTime messages i n Fig. 4 .26) .

The rectangles a long the objects' l i fe lines-called activations-each represent the

duration of an act iv i ty . An activation is in i t iated when an object receives a message and is

denoted by a rectangle on that object ' s l ife l ine . The height of the rectangle corresponds to

the duration of the act ivi ty or activit ies i n it iated by the message-the longer the duration

of the act iv i ty , the tal ler the rectangle .

The text to the far left of the diagram in Fig. 4.26 indicates a t iming constraint . Whi le

the current t ime i s less than the total s imulation t ime (currentTime < total Time) , the

objects continue sending messages to one another i n the sequence modeled i n the diagram.

Figure 4 .27 models how the scheduler handles the t ime and creates people to walk onto

floors . For this d iagram, we assume the scheduler has scheduled a person to walk onto each

of the two floors at a time that matches the time supplied by the bu i ld ing . Let us fol l ow the

flow of messages through this sequence diagram.

The object of c lass Bui lding fi rst sends the proces sTime message to the obj ect

of c lass Scheduler, passing the current t ime. The Scheduler object then must decide
whether to create a person on the first floor (represented by the f l oorl object of c lass
Floor) . The problem statement te l l s us that the scheduler first must verify that the floor i s
unoccupied before the scheduler can create a person on that floor. The Scheduler object
therefore sends an i sOccup ied message to the f loor l object .

The f l oorl object returns either t rue or fal se (i ndicated by the dashed return

message l i ne and the bool type) . At th i s point, the Scheduler object ' s l i fe l ine spl i ts i n to

two paral le l l i fe l i nes to represent each possible sequence of messages that the obj ect can

send, based on the value returned by object f loor l . An object ' s l i fe l i ne can split into two

or more l i fe l i nes to indicate the conditional execution of activities. A condit ion must be

suppl ied for each l i fe l ine . The new l ife l ine(s) run paral le l to the mai n l i fe l i ne , and the l i fe

l i nes may converge at some later point .

302 Arrays Chapter 4

: Bu i ld ing : Scheduler I f loorl : F loor I I floor2 : F loor I
processTime(t ime)

[occupied = true)

delayTime(floor l)

�

[occupied = true)

delayTime(floor2)

�

isOccupied() : bool

occupied : bool -E- -

. [occupied = fa lse)

:personArrives() :
I

.0
scheduleTime(floor l)

,

isOccupied() : bool

' occupied : bool ' � - - - - - - - - - -. - - - - - - - - - - - - -I - - - - - - - - - 1

" [occupied = false)

,

personArrives()

scheduleTime(�loor2)

Fig. 4 .27 Sequence diagram for scheduling process.

If the floorl object returns true (i . e . , the floor is occupied) , the Scheduler cal l s

i t s own delayTime function, passing a parameter indicating that the f loorl arrival t ime

needs to be rescheduled. This function is not an operation of c lass Scheduler, because i t

i s not invoked by another object . The de layTime function is instead a private act iv ity that

object Scheduler performs inside an operation. Notice that when the Scheduler obj ect

Chapter 4 Arrays 303

sends a message to itself (i . e . , i nvokes one of its own member functions) , the act ivation bar

for that message i s centered on the edge of the current act ivation bar.
If the floor! object returns false (i .e . , the floor i s unoccupied) , the Scheduler

object creates an object of c lass Person. To denote object creation i n a sequence diagram,
we place the created object ' s rectangle at a vertical posit ion that corresponds to the time at
which the object is created . A large "X" at the end of an object ' s l i fe l ine denotes the
destruction of that object . [Note: Our sequence diagram does not model the destruction of
any objects of c lass Person; therefore , no "X" appears in the d iagram. We discuss cre
ating and destroying objects dynamical ly , us ing C++' s new and delete operators, i n
Chapter 7 .]

After the Scheduler creates the object of c lass Person, t he person nex t mus t step
onto the first floor. Therefore, the new Person object sends a personArri ves message
to the floor! object . Thi s message notifies the floor! object that a person is stepping
onto the floor.

After the Scheduler object has created an object of class Person, i t schedules a
new arrival for floor!. The Scheduler object invokes i ts own scheduleTime func
t ion, and the act ivation bar for this cal l i s centered on the r ight of the current act ivat ion bar.
The scheduleTime function i s not an operat ion, but rather an act iv i ty that c lass
Scheduler performs i ns ide an operat ion . At th is poi nt , the two l ife l i nes converge . The
Scheduler object then handles the second floor i n the same manner as the first. When
the scheduler has fin i shed with floor2 , control returns to the Bui lding object.

Conclusion

I n th i s sect ion, we d i scussed the operations of c lasses and i ntroduced the UML sequence
d iagram to i l l ustrate these operat ions . In the "Thinking About Objects" section at the end
of Chapter S, we examine how objects i n a system in teract with one another to accompl ish
specific tasks .

SUMMARY
• c++ can store lists of values in arrays. An array is a group of consecutive memory locations that

are related by the fact that they all have the same name and the same type. To refer to a particular

location or element within the array, we specify the name of the array and the subscript. The sub

script indicates the number of elements from the beginning of the array.

• A subscript may be an integer or an integer expression. Subscript expressions are evaluated to de

termine the particular element of the array.

• [t is important to note the difference when referring to the seventh element of the array as opposed

to array element seven. The seventh element has a subscript of 6, while array element seven has a

subscript of 7 (actually the eighth element of the array). This is a source of "off-by-one" errors.

• The elements of an array can be initialized by declaration, by assignment and by input.

• When initializing an array with an initializer list, if there are fewer initializers than elements in the

array, the remaining elements are initialized to zero.

• C++ does not prevent referencing elements beyond the bounds of an array.

• An array of type char can be used to store a character string.

• A character array can be initialized using a string literal.

• All strings end with the null character (, \ 0 ') .

304 Arrays Chapter 4

• Character arrays can be initialized with character constants in an initializer list.

• Individual characters in a string stored in an array can be accessed directly using array subscript

notation.

• To pass an array to a function, the name of the array is passed. To pass a single element of an array

to a function, simply pass the name of the array followed by the subscript (contained in square

brackets) of the particular element.

• Arrays are passed to functions using simulated pass-by-reference-the called functions can mod

ify the element values in the callers' original arrays. The value of the name of the array is the ad

dress in the computer's memory of the first element of the array. Because the starting address of

the array is passed, the called function knows precisely where the array is stored in memory.

• To receive an array argument, the function's parameter list must specify that an array will be re

ceived. The size of the array is not required in the brackets for a single-subscripted array parameter.

• C++ provides the type qualifier const that enables programs to prevent modification of array val

ues in a function. When an array parameter is preceded by the const qualifier, the elements of

the array become constant in the function body, and any attempt to modify an element of the array

in the function body is a compiler error.

• An array can be sorted using the bubble-sort technique. Several passes of the array are made. On
each pass, successive pairs of elements are compared. If a pair is in order (or the values are iden

tical), it is left as is. If a pair is out of order, the values are swapped. For small arrays, the bubble

sort is acceptable, but for larger arrays it is inefficient compared to other more sophisticated sort

ing algorithms.

• The linear search compares each element of an array with a search key. If the array is not in any par

ticular order, it is just as likely that the value will be found in the first element as the last. On average,

therefore, the program will have to compare the search key with half the elements of the array. The

linear searching method works well for small arrays and is acceptable for unsorted arrays.

• The binary search requires a sorted array. Binary search eliminates from consideration half the el

ements in the array after each comparison by locating the middle element of the array and com

paring it with the search key. If they are equal, the search key is found, and the array subscript of

that element is returned. Otherwise, the problem is reduced to searching one-half of the array. In

a worst-case scenario, searching an array of 1023 elements will take only 10 comparisons using a

binary search. One billion elements requires a maximum of 30 comparisons.

• Arrays may be used to represent tables of values consisting of information arranged in rows and

columns. To identify a particular element of a table, two subscripts are specified. The first (by con

vention) identifies the row in which the element is contained, and the second (by convention) iden

tifies the column in which the element is contained. Tables or arrays that require two subscripts to

identify a particular element are called double-subscripted arrays.

• When we receive a single-subscripted array as an argument to a function, the array brackets are

empty in the function's parameter list. The size of the first subscript of a multiple-subscripted array

is not required either, but all subsequent subscript sizes are required The compiler uses these sizes

to determine the locations in memory of elements in multiple-subscnpted arrays.

• To pass one row of a double-subscripted array to a function that receives a single-subscripted ar

ray, simply pass the name of the array followed by the first subscript.

TERMINOLOGY
a [i

a [i] [j]

array

array initializer list

binary search of an array

bounds checking

Chapter 4

bubble sort

column subscript

constant variable

const type qualifier

declare an array

double-subscripted array

element of an array

initialize an array

initializer

initializer list

linear search of an array

magic number

m-by-n array

multiple-subscripted array

name of an array

named constant

null character (, \ 0 ,)

off-by-one error

passing arrays to functions

pass-by-reference

pass of a bubble sort

position number

row subscript

scalability

scalar

search an array

search key

simulated pass-by-reference

single-subscripted array

sinkjng sort

sort an array

square brackets []

string

subscript

table of values

value of an element

"walk off' an array

zeroth element

tabular format

Arrays

temporary area for exchange of values

Terminology for Optional "Thinking About Objects" Section

activation rectangle in UML sequence diagram

behavior

client object

conditional execution of activities

dotted line with arrowhead in UML

sequence diagram

duration of activity

flow of messages in UML sequence diagram

line with solid arrowhead in UML

sequence diagram

message

object lifeline in UML sequence diagram

SELF-REVIEW EXERCISES

4,1 Answer each of the following:

object rectangle in UML sequence diagram

operation

public function

private function

return message

return type of an operation

sequence diagram

server object

service that an object provides

simulation loop

splitting an object's lifeline

verb phrase in a problem statement

a) Lists and tables of values can be stored in ____ _

305

b) The elements of an array are related by the fact that they have the same _____ and

c) The number used to refer to a particular element of an array is called its ____ _

d) A should be used to declare the size of an array, because it makes the pro-

gram more scalable.

e) The process of placing the elements of an array in order is called the array.

f) The process of determining if an array contains a certain key value is called

_____ the array.

g) An array that uses two subscripts is referred to as a _____ array.

4.2 State whether the following are true or false. If the answer isfalse, explain why.

a) An array can store many different types of values.

b) An array subscript should normally be of data type f loat.

306 Arrays Chapter 4

c) If there are fewer initializers in an initializer list than the number of elements in the array,
the remaining elements are initialized to the last value in the list of initializers.

d) It is an error if an initializer list contains more initializers than there are elements in the

array.
e) An individual array element that is passed to a function and modified in that function will

contain the modified value when the called function completes execution.

4.3 Answer the following questions regarding an array called frac t i ons:

a) Define a constant variable arrayS i z e initialized to 10.
b) Declare an array with arrayS i z e elements of type double, and initialize the ele-

ments to O.

c) Name the fourth element of the array.

d) Refer to array element 4.

e) Assign the value 1 . 6 6 7 to array element 9.

f) Assign the value 3 . 3 3 3 to the seventh element of the array.

g) Print array elements 6 and 9 with two digits of precision to the right of the decimal point,

and show the output that is actually displayed on the screen.

h) Print all the elements of the array using a for repetition structure. Define the integer

variable i as a control variable for the loop. Show the output.

4.4 Answer the following questions regarding an array called table:

a) Declare the array to be an integer array and to have 3 rows and 3 columns. Assume that

the constant variable arrayS i z e has been defined to be 3.
b) How many elements does the array contain?

c) Use a for repetition structure to initialize each element of the array to the sum of its sub

scripts. Assume that the integer variables i and j are declared as control variables.

d) Write a program segment to print the values of each element of array t able in tabular

format with 3 rows and 3 columns. Assume that the array was initialized with the declara

tion

int tabl e [arrayS i z e] [arrayS i z e] =

{ { 1 , 8 }, { 2 , 4 , 6 }, { 5 } };

and the integer variables i and j are declared as control variables. Show the output.

4.5 Find the error in each of the following program segments and correct the error:

a) # inc lude < iostream> ;

b) arrayS i z e = 1 0 ; II arrayS i z e was declared canst

c) Assume that int b [10] = { 0 };

for (int i = 0 ; i < = 1 0 ; i++

b [i] = 1 ;

d) Assume that int a [2] [2] = { { 1 , 2 }, { 3, 4 } };
a [1 , 1] = 5;

ANSWERS TO SELF-REVIEW EXERCISES

4.1 a) arrays. b) name, type. c) subscript (or index) . d) constant variable. e) sorting.

f) searching. g) double-subscripted.

4.2 a) False. An array can store only values of the same type.

b) False. An array subscript should be an integer or an integer expression.

c) False. The remaining elements are initialized to zero.

d) True.

e) False. Individual elements of an array are passed by call-by-value. If the entire array is

passed to a function, then any modifications will be reflected in the original.

Chapter 4

4.3 a) const int array S i z e = 1 0 ;

b) doubl e fract ions [array S i z e { 0 . 0 };

c) fract ions [3]

d) frac t i ons [4]

� fract ions [9] 1. 6 6 7 ;

f) frac t i ons [6 3.333;
g) cout « f ixed « setprec i s i on (2) ;

Arrays 307

cout « fract ions [6] « ' , « frac t i ons [9] « endl ;

Output: 3.33 1 . 67 .

4.4

h) for (int i = 0 ; i < array S i z e ; i++)

a)

b)

c)

d)

cout « " f ract i ons [" « i « "] = " « frac t ions [i

« endl ;

Output:

frac t i ons [0

frac t i ons [1

frac t i ons [2

frac t i ons [3

fractions [4

fractions [5
frac t i ons [6

frac t i ons [7

frac t i ons [8

frac t i ons [9

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

0 . 0

3.333
0 . 0

0 . 0

1 . 6 6 7

int t able [array S i ze] [array S i z e] ;

Nine.

for (i = 0 ; i < array S i z e ; i++)

for (j = 0 ; j < array S i z e ; j++

table [i] [j] = i + j ;

cout « " [0] [1] [2] " « endl ;

for (int i 0 ; i < array S i z e ; i++)

cout « ' [' « i « "] " ;

for (int j = 0 ; j < array S i z e ; j ++

cout « setw (3) « table [i] [j] « "

cout « endl ;

Output:

[0] [1] [2]

[0] 1 8 0

[1] 2 4 6

[2] 5 0 0

" . ,

4.5 a) Error: Semicolon at end of #inc lude preprocessor directive.

Correction: Eliminate semicolon.

b) Error: Assigning a value to a constant variable using an assignment statement.

Correction: Assign a value to the constant variable in a const int array S i z e dec

laration.

c) Error: Referencing an array element outside the bounds of the array (b [10]).

Correction: Change the final value of the control variable to 9.

d) Error: Array subscripting done incorrectly.

Correction: Change the statement to a [1] [1] = 5;

308 Arrays Chapter 4

EXERCISES

4.6 Fill in the blanks in each of the following:

a) The names of the four elements of array p (int p [4] ;) are _____ ____ _

_____ and ____ _

b) Naming an array, stating its type and specifying the number of elements in the array is

called the array.

c) In a double-subscripted array, the first subscript (by convention) identifies the

_____ of an element, and the second subscript (by convention) identifies the

_____ of an element.

d) An m-by-n array contains _____ rows, _____ columns and _____ el-

ements.

e) The name of the element in row 3 and column S of array d is ____ _

4.7 State which of the following are true and which are false; for those that are false, explain why

they are false.

a) To refer to a particular location or element within an array, we specify the name of the

array and the value of the particular element.

b) An array declaration reserves space for the array.

c) To indicate that 1 00 locations should be reserved for integer array p, the programmer

writes the declaration

p [1 0 0] ;

d) A C++ program that initializes the elements of a IS-element array to zero must contain

at least one for structure.

e) A C++ program that totals the elements of a double-subscripted array must contain nest

ed for structures.

4.8 Write C++ statements to accomplish each of the following:

a) Display the value of the seventh element of character array f.

b) Input a value into element 4 of single-subscripted floating-point array b.

c) Initialize each of the S elements of single-subscripted integer array g to 8.

d) Total and print the elements of floating-point array c of 1 00 elements.

e) Copy array a into the first portion of array b. Assume double a [1 1] , b [3 4] ;

f) Determine and print the smallest and largest values contained in 99-element f1oating

point array w.

4.9 Consider a 2-by-3 integer array t.

a) Write a declaration for t.

b) How many rows does t have?

c) How many columns does t have?
d) How many elements does t have?

e) Write the names of all the elements in the second row of t.

f) Write the names of all the elements in the third column of t.

g) Write a single statement that sets the element of t in row I and column 2 to zero.
h) Write a series of statements that initialize each element of t to zero. Do not use a loop.

i) Write a nested for structure that initializes each element of t to zero.

j) Write a statement that inputs the values for the elements oft from the terminal.

k) Write a series of statements that determine and print the smallest value in array t.

I) Write a statement that displays the elements of the first row of t.

m) Write a statement that totals the elements of the fourth column oft.
n) Write a series of statements that prints the array t in neat, tabular format. List the column

subscripts as headings across the top and list the row subscripts at the left of each row.

Chapter 4 Arrays 309

4.10 Use a single-subscripted array to solve the following problem. A company pays its salespeo

ple on a commission basis. The salespeople receive $200 per week plus 9 percent of their gross sales

for that week. For example, a salesperson who grosses $5000 in sales in a week receives $200 plus 9

percent of $5000, or a total of $650. Write a program (using an array of counters) that determines how

many of the salespeople earned salaries in each of the following ranges (assume that each salesper

son's salary is truncated to an integer amount):

a) $200-$299

b) $300-$399

c) $400-$499

d) $500-$599

e) $600-$699

f) $700-$799

g) $800-$899

h) $900-$999

i) $ 1 000 and over

4.11 The bubble sort presented in Fig. 4. 1 6 is inefficient for large arrays. Make the following sim-

ple modifications to improve the performance of the bubble sort:

a) After the first pass, the largest number is guaranteed to be in the highest-numbered ele

ment of the array; after the second pass, the two highest numbers are "in place," and so

on. Instead of making nine comparisons on every pass, modify the bubble sort to make

eight comparisons on the second pass, seven on the third pass, and so on.

b) The data in the array may already be in the proper order or near-proper order, so why

make nine passes if fewer will suffice? Modify the sort to check at the end of each pass

if any swaps have been made. If none have been made, then the data must already be in

the proper order, so the program should terminate. If swaps have been made, then at least

one more pass is needed.

4.12 Write single statements that perform the following single-subscripted array operations:

a) Initialize the 1 0 elements of integer array count s to zero.

b) Add I to each of the 1 5 elements of integer array bonus.

c) Read 1 2 values for double array monthlyTemperature s from the keyboard.

d) Print the 5 values of integer array be st Scores in column format.

4.13 Find the error(s) in each of the following statements:

a) Assume that: char str [5] ;

c in » s t r ; I I User types "he l lo"

b) Assume that: int a [3] ;

cout « a [1 < < " " < < a [2] < < " " < < a [3] < < endl ;

c) double f [3] {1 . 1 , 1 0 . 01 , 1 0 0 . 0 01 , 1 0 0 0 . 0 0 01 };
d) Assume that: double d [2] [10] ;

d [1 , 9] = 2 . 3 4 5 ;

4.14 Modify the program of Fig. 4. 1 7 so function mode is capable of handling a tie for the mode

value. Also modify function median so the two middle elements are averaged in an array with an

even number of elements.

4.15 Use a single-subscripted array to solve the following problem. Read in 20 numbers, each of

which is between 1 0 and 1 00, inclusive. As each number is read, print it only if it is not a duplicate
of a number already read. Provide for the "worst case" in which all 20 numbers are different. Use the

smallest possible array to solve this problem.

310 Arrays Chapter 4

4.16 Label the elements of 3-by-5 double-subscripted array sales to indicate the order in which

they are set to zero by the following program segment:

for (row = 0 ; row < 3 ; row+ +

for (column = 0 ; column < 5 ; column + +
sales [row] [column] = 0 ;

4.17 Write a program that simulates the rolling of two dice. The program should use rand to roll

the first die and should use rand again to roll the second die. The sum of the two values should then

be calculated. [Note: Each die can show an integer value from I to 6, so the sum of the two values

will vary from 2 to 12 , with 7 being the most frequent sum and 2 and 12 being the least frequent sums.]

Fig. 4.28 shows the 36 possible combinations of the two dice. Your program should roll the two dice

36,000 times. Use a single-subscripted array to tally the numbers of times each possible sum appears.

Print the results in a tabular format. Also, determine if the totals are reasonable (i.e., there are six ways

to roll a 7, so approximately one sixth of all the rolls should be 7).

4.18 What does the following program do?

1 // Ex. 4.18 : ex0 4_18 . cpp
2 / / What does th i s program do?
3 #inc lude < iostream>

4
5 us ing s td : : cout ;
6 us ing std : : endl ;
7
8 int whatI sTh i s (int [] , int) ; / / funct ion prototype

9
10 int main ()
11 {
12 const int arraySi ze = 1 0 ;

13 int a [arrayS i z e] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 };
14
15 int result = whatI sTh i s (a , arraySi z e) ;

16
17 cout « " Result i s " « result « endl ;

18
19 return 0 ; /1 indi cates succe s s ful terminat ion

20
21 / / end main
22
23 / / What does th i s func t i on do?
24 int whatI sTh i s (int b [] , int s i z e

25 {

26 /1 base ca se
27 i f (s i z e 1
28 retu rn b [0] ;
29
30 r ecur sive step
31 e l s e
32 return b [s i ze - 1] + whatI sTh i s (b , s i z e - 1) ;

33
34 } II end funct i on whatI sTh i s

Chapter 4

2

3

4

5

6

2

3

4

5

6

7

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

6 7 8 9 10

7 8 9 10 1 1

8 9 10 11 12

Fig. 4.28 The 36 possible outcomes of rolling two d ice.

Arrays 3 1 1

4. 1 9 Modify the program of Fig. 3. 10 to play 1000 games of craps. The program should keep track

of the statistics and answer the following questions:

a) How many games are won on the 1st roll, 2nd roll, ... , 20th roll, and after the 20th roll?

b) How many games are lost on the 1st roll, 2nd roll, ... , 20th roll, and after the 20th roll?

c) What are the chances of winning at craps? (Note: You should discover that craps is one

of the fairest casino games. What do you suppose this means?)

d) What is the average length of a game of craps?

e) Do the chances of winning improve with the length of the game?

4.20 (Airline Reservations System) A small airline has just purchased a computer for its new au

tomated reservations system. You have been asked to program the new system. You are to write a

program to assign seats on each flight of the airline's only plane (capacity: 10 seats).

Your program should display the following menu of alternatives-Please type 1 for

" First C l as s " and Please type 2 for " Economy ". If the person types 1, your program

should assign a seat in the first class section (seats 1 -5). If the person types 2, your program should

assign a seat in the economy section (seats 6- 10). Your program should print a boarding pass indicat

ing the person's seat number and whether it is in the first class or economy section of the plane.

Use a single-subscripted array to represent the seating chart of the plane. Initialize all the ele

ments of the array to 0 to indicate that all seats are empty. As each seat is assigned, set the corre

sponding elements of the array to I to indicate that the seat is no longer available.

Your program should, of course, never assign a seat that has already been assigned. When the

first class section is full, your program should ask the person if it is acceptable to be placed in the

economy section (and vice versa). If yes, then make the appropriate seat assignment. If no, then print

the message "Next f l i ght leaves in 3 hours . "

4.2 1 What does the following program do?

1 II Ex . 4 . 2 1 : ex0 4 21 . cpp
2 II What does thi s program do?
3 # inc lude < iostream>
4
5 us ing s td : : cout ;
6 us ing std : : end1 ;
7
8 void someFunct i on (int [] , int , int) ; II funct i on prototype

3 1 2 Arrays

9
10 int main ()
11 {
12 const int arrayS i z e = 1 0 ;

Chapter 4

13 int a [arrayS i z e] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 };
14
15 cout « " Th e values in the array are: " « end1 ;
16 someFunct ion (a , 0 , arrayS i z e) ;

17 cout « end1 ;
18

19 return 0 ; II indicates successful terminat ion
20
21 II end main
22
23 II What doe s th i s function do?

24 vo id someFunct ion (int b [] , int current , int s i z e
25 {
26 if (current < s i z e) {
27 someFunction (b , current + 1 , s i z e) ;
28 cout « b [current] « " " ;
29
30
31 II end function someFunct ion

4.22 Use a double-subscripted array to solve the following problem. A company has four sales

people (I to 4) who sell five different products (I to 5) . Once a day, each salesperson passes in a slip

for each different type of product sold. Each slip contains the following:

a) The salesperson number

b) The product number

c) The total dollar value of that product sold that day

Thus, each salesperson passes in between 0 and 5 sales slips per day. Assume that the information

from all of the slips for last month is available. Write a program that will read all this information for

last month's sales and summarize the total sales by salesperson by product. All totals should be

stored in the double-subscripted array sales. After processing all the information for last month,

print the results in tabular format with each of the columns representing a particular salesperson and

each of the rows representing a particular product. Cross total each row to get the total sales of each

product for last month; cross total each column to get the total sales by salesperson for last month.

Your tabular printout should include these cross totals to the right of the totaled rows and to the bot

tom of the totaled columns.

4.23 (Turtle Graphics) The Logo language, which is particularly popular among personal comput
er users, made the concept of turtle graphics famous. Imagine a mechanical turtle that walks around

the room under the control of a C++ program. The turtle holds a pen in one of two positions, up or

down. While the pen is down, the turtle traces out shapes as it moves; while the pen is up, the turtle

moves about freely without writing anything. In this problem, you will simulate the operation of the

turtle and create a computerized sketchpad as well.

Use a 20-by-20 array floor that is initialized to zeros. Read commands from an array that

contains them. Keep track of the current position of the turtle at all times and whether the pen is cur

rently up or down. Assume that the turtle always starts at position 0,0 of the floor with its pen up.

The set of turtle commands your program must process are shown in Fig. 4.29.

Suppose that the turtle is somewhere near the center of the floor. The following "program"

would draw and print a 12-by-12 square and end with the pen in the up position:

Chapter 4 Arrays 3 1 3

Command Meaning

I

2

3

4

5,1 0

6

9

Pen up

Pen down

Turn right

Turn left

Move forward 10 spaces (or a number other than 10)

Print the 20-by-20 array

End of data (sentinel)

Fig. 4.29 Turtle graphics commands,

2
5 , 1 2

3
5 , 1 2
3
5 , 1 2
3
5 , 1 2
1
6
9

As the turtle moves with the pen down, set the appropriate elements of array f l oor to l' s. When

the 6 command (print) is given, wherever there is a 1 in the array, display an asterisk or some other

character you choose. Wherever there is a zero, display a blank. Write a program to implement the

turtle graphics capabilities discussed here, Write several turtle graphics programs to draw interesting

shapes. Add other commands to increase the power of your turtle graphics language.

4.24 (Knight 's Tour) One of the more interesting puzzlers for chess buffs is the Knight's Tour

problem. The question is this: Can the chess piece called the knight move around an empty chess

board and touch each of the 64 squares once and only once? We study this intriguing problem in depth

here.

The knight makes L-shaped moves (over two in one direction and then over one in a perpendic

ular direction) . Thus, from a square in the middle of an empty chessboard, the knight can make eight

different moves (numbered 0 through 7) as shown in Fig. 4,30,

a) Draw an 8-by-8 chessboard on a sheet of paper and attempt a Knight's Tour by hand, Put

a 1 in the first square you move to, a 2 in the second square, a 3 in the third, etc. Before
starting the tour, estimate how far you think you will get, remembering that a full tour

consists of 64 moves. How far did you get? Was this close to your estimate?

b) Now let us develop a program that will move the knight around a chessboard. The board

is represented by an 8-by-8 double-subscripted array board. Each of the squares is ini

tialized to zero, We describe each of the eight possible moves in terms of both their hor

izontal and vertical components. For example, a move of type 0, as shown in Fig, 4 .30,

consists of moving two squares horizontally to the right and one square vertically up

ward. Move 2 consists of moving one square horizontally to the left and two squares ver

tically upward. Horizontal moves to the left and vertical moves upward are indicated with

negative numbers. The eight moves may be described by two single-subscripted arrays,

hori z ontal and vert ical, as follows:

314 Arrays Chapter 4

o 2 3 4 5 6 7

o

2 1

2 3 0

3 K

4 4 7

5 5 6

6

7

Fig. 4.30 The eight possible moves of the knight.

hori zontal [0 2
hori zontal [1 1
hori z ontal [2 -1
horizontal [3 - 2
hori z ontal [4 - 2
hori z ontal [5 -1
hori zontal [6 1
hori zontal [7 2

vertical [0 -1
vertical [1 - 2
vertical [2 - 2
vert ical [3 -1
vert ical [4 1
vert ical [5 2
vert ical [6 2
vert ical [7 1

Let the variables currentRow and currentColwnn indicate the row and col

umn of the knight's current position. To make a move of type moveNUmber, where

moveNwnber is between 0 and 7, your program uses the statements

currentRow += vert ical [moveNwnber] ;
currentColwnn += hori zontal [moveNwnber] ;

Keep a counter that varies from 1 to 64. Record the latest count in each square the

knight moves to. Remember to test each potential move to see if the knight has already

visited that square, and, of course, test every potential move to make sure that the knight

does not land off the chessboard. Now write a program to move the knight around the

chessboard. Run the program. How many moves did the knight make?

Chapter 4 Arrays 3 1 5

c) After attempting to write and run a Knight's Tour program, you have probably developed

some valuable insights. We will use these to develop a heuristic (or strategy) for moving

the knight. Heuristics do not guarantee success, but a carefully developed heuristic great

ly improves the chance of success. You may have observed that the outer squares are

more troublesome than the squares nearer the center of the board. In fact, the most trou

blesome, or inaccessible, squares are the four corners.

Intuition may suggest that you should attempt to move the knight to the most trou

blesome squares first and leave open those that are easiest to get to, so when the board

gets congested near the end of the tour, there will be a greater chance of success.

We may develop an "accessibility heuristic" by classifying each of the squares

according to how accessible they are and then always moving the knight to the square

(within the knight's L-shaped moves, of course) that is most inaccessible. We label a

double-subscripted array acce s s ib i l i ty with numbers indicating from how many

squares each particular square is accessible. On a blank chessboard, each center square

is rated as 8, each corner square is rated as 2 and the other squares have accessibility

numbers of 3, 4 or 6 as follows:

2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4

4 6 8 8 8 8 6 4

4 6 8 8 8 8 6 4

3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2

Now write a version of the Knight's Tour program using the accessibility heuristic.

At any time, the knight should move to the square with the lowest accessibility number.

In case of a tie, the knight may move to any of the tied squares. Therefore, the tour may

begin in any of the four corners. (Note: As the knight moves around the chessboard,

your program should reduce the accessibility numbers as more and more squares

become occupied. In this way, at any given time during the tour, each available square's

accessibility number will remain equal to precisely the number of squares from which

that square may be reached.) Run this version of your program. Did you get a full tour?

Now modify the program to run 64 tours, one starting from each square of the chess

board. How many full tours did you get?

d) Write a version of the Knight's Tour program which, when encountering a tie between

two or more squares, decides what square to choose by lookjng ahead to those squares

reachable from the "tied" squares. Your program should move to the square for which

the next move would arrive at a square with the lowest accessibility number.

4.25 (Knight's Tour: Brute-Force Approaches) In Exercise 4.24, we developed a solution to the

Knight's Tour problem. The approach used, called the "accessibility heuristic," generates many solu

tions and executes efficiently.

As computers continue increasing in power, we will be able to solve more problems with sheer

computer power and relatively unsophisticated algorithms. This is the "brute force" approach to

problem solving.

a) Use random-number generation to enable the knight to walk around the chessboard (in

its legitimate L-shaped moves, of course) at random. Your program should run one tour
and print the final chessboard. How far did the knight get?

b) Most likely, the preceding program produced a relatively short tour. Now modify your

program to attempt 1000 tours. Use a single-subscripted array to keep track of the number

316 Arrays Chapter 4

of tours of each length. When your program finishes attempting the 1 000 tours, it should

print this information in neat tabular format. What was the best result?

c) Most likely, the preceding program gave you some "respectable" tours, but no full tours.

Now "pull all the stops out" and simply let your program run until it produces a full tour.

(Caution : This version of the program could run for hours on a powerful computer.) Once

again, keep a table of the number of tours of each length, and print this table when the

first full tour is found. How many tours did your program attempt before producing a full

tour? How much time did it take?

d) Compare the brute-force version of the Knight's Tour with the accessibility-heuristic

version. Which required a more careful study of the problem? Which algorithm was more

difficult to develop? Which required more computer power? Could we be certain (in ad

vance) of obtaining a full tour with the accessibility heuristic approach? Could we be cer

tain (in advance) of obtaining a full tour with the brute-force approach? Argue the pros

and cons of brute-force problem solving in general.

4.26 (Eight Queens) Another puzzler for chess buffs is the Eight Queens problem. Simply stated:

Is it possible to place eight queens on an empty chessboard so that no queen is "attacking" any other,

i.e. , no two queens are in the same row, the same column, or along the same diagonal? Use the think

ing developed in Exercise 4.24 to formulate a heuristic for solving the Eight Queens problem. Run

your program. (Hint: [t is possible to assign a value to each square of the chessboard indicating how

many squares of an empty chessboard are "eliminated" if a queen is placed in that square. Each of the

corners would be assigned the value 22, as in Fig. 4.3 1 .) Once these "elimination numbers" are placed

in all 64 squares, an appropriate heuristic might be: Place the next queen in the square with the small

est elimination number. Why is this strategy intuitively appealing?

4.27 (Eight Queens: Brute-Force Approaches) In this exercise, you will develop several brute

force approaches to solving the Eight Queens problem introduced in Exercise 4.26.

a) Solve the Eight Queens exercise, using the random brute-force technique developed in

Exercise 4.25.

b) Use an exhaustive technique, i.e. , try all possible combinations of eight queens on the

chessboard.

c) Why do you suppose the exhaustive brute-force approach may not be appropriate for

solving the Knight's Tour problem?

d) Compare and contrast the random brute-force and exhaustive brute-force approaches in

general.

4.28 (Knight's Tour: Closed-Tour Test) In the Knight's Tour, a full tour occurs when the knight

makes 64 moves touching each square of the chess board once and only once. A closed tour occurs when

the 64th move is one move away from the location in which the knight started the tour. Modify the

Knight's Tour program you wrote in Exercise 4.24 to test for a closed tour if a full tour has occurred.

* * * * * * * *
* *
*
*
*
*
*
*

Fig. 4.31

*
*

*
*

*
*

The 22 squares elim inated by placing a queen In the upper-left corner.

Chapter 4 Arrays 317

4.29 (The Sieve of Eratosthenes) A prime integer is any integer that is evenly divisible only by

itself and I . The Sieve of Eratosthenes is a method of finding prime numbers. It operates as follows:

a) Create an array with all elements initialized to I (true). Array elements with prime sub

scripts will remain I . All other array elements will eventually be set to zero.

b) Starting with array subscript 2, every time an array element is found whose value is I ,

loop through the remainder of the array and set to zero every element whose subscript is

a mUltiple of the subscript for the element with value I . For array subscript 2, all elements

beyond 2 in the array that are multiples of 2 will be set to zero (subscripts 4, 6, 8, 10, etc.) ;

for array subscript 3, all elements beyond 3 in the array that are multiples of 3 will be set

to zero (subscripts 6, 9, 12, 15, etc.) ; and so on.

When this process is complete, the array elements that are still set to one indicate that the subscript is a

prime number. These subscripts can then be printed. Write a program that uses an array of 1000 ele

ments to determine and print the prime numbers between 2 and 999. Ignore element 0 of the array.

4.30 (Bucket Sort) A bucket sort begins with a single-subscripted array of positive integers to be

sorted and a double-subscripted array of integers with rows subscripted from 0 to 9 and columns sub

scripted from 0 to n - I , where n is the number of values in the array to be sorted. Each row of the

double-subscripted array is referred to as a bucket. Write a function bucket Sort that takes an in

teger array and the array size as arguments and performs as follows:

a) Place each value of the single-subscripted array into a row of the bucket array based on

the value's ones digit. For example, 97 is placed in row 7, 3 is placed in row 3 and L OO

is placed in row O. This is called a "distribution pass."

b) Loop through the bucket array row by row, and copy the values back to the original array.

This is called a "gathering pass." The new order of the preceding values in the single

subscripted array is 100, 3 and 97 .

c) Repeat this process for each subsequent digit position (tens, hundreds, thousands, etc.).

On the second pass, 100 is placed in row 0, 3 is placed in row 0 (because 3 has no tens digit) and 97

is placed in row 9. After the gathering pass, the order of the values in the single-subscripted array is

100, 3 and 97. On the third pass, 100 is placed in row I , 3 is placed in row zero and 97 is placed in

row zero (after the 3) . After the last gathering pass, the original array is now in sorted order.

Note that the double-subscripted array of buckets is L O times the size of the integer array being

sorted. This sorting technique provides better performance than a bubble sort, but requires much

more memory. The bubble sort requires space for only one additional element of data. This is an

example of the space-time trade-off: The bucket sort uses more memory than the bubble sort, but

performs better. This version of the bucket sort requires copying all the data back to the original

array on each pass. Another possibility is to create a second double-subscripted bucket array and

repeatedLy swap the data between the two bucket arrays.

RECURSION EXERCISES
4.31 (Selection Sort) A selection sort searches an array looking for the smallest element in the ar

ray. Then, the smallest element is swapped with the first element of the array. The process is repeated

for the subarray beginning with the second element of the array. Each pass of the array results in one

element being placed in its proper location. This sort performs comparably to the bubble sort-for an

array of n elements, n - I passes must be made, and for each subarray, n - I comparisons must be

made to find the smallest value. When the subarray being processed contains one element, the array

is sorted. Write recursive function selectionSort to perform this algorithm.

4.32 (Palindromes) A palindrome is a string that is spelled the same way forwards and backwards.

Some examples of palindromes are "radar," "able was i ere i saw elba" and (if blanks are ignored) "a

man a plan a canal panama." Write a recursive function testPalindrome that returns t rue if the

3 1 8 Arrays Chapter 4

string stored in the array is a palindrome, and false otherwise. The function should ignore spaces

and punctuation in the string.

4.33 (Linear Search) Modify the program in Fig. 4. 1 9 to use recursive function l inearSearch

to perform a linear search of the array. The function should receive an integer array and the size of

the array as arguments. If the search key is found, return the array subscript; otherwise, return - I .

4.34 (Binary Search) Modify the program of Fig. 4 .20 to use a recursive function binary

Search to perform the binary search of the array. The function should receive an integer array and

the starting subscript and ending subscript as arguments. If the search key is found, return the array

subscript; otherwise, return - I .

4.35 (Eight Queens) Modify the Eight Queens program you created in Exercise 4 .26 to solve the

problem recursively.

4.36 (Print an array) Write a recursive function printArray that takes an array and the size of

the array as arguments and returns nothing. The function should stop processing and return when it

receives an array of size zero.

4.37 (Print a string backwards) Write a recursive function stringReverse that takes a char

acter array containing a string as an argument, prints the string backwards and returns nothing. The

function should stop processing and return when the terminating null character is encountered.

4.38 (Find the minimum value in an array) Write a recursive function recurs iveMinimum

that takes an integer array and the array size as arguments and returns the smallest element of the ar

ray. The function should stop processing and return when it receives an array of 1 element.

5
Pointers and Strings

Objectives
• To be able to use pointers .
• To be able to use pointers to pass arguments to

functions by reference.
• To understand the close relationships among pointers,

arrays and strings.
• To understand the use of pointers to functions .
• To be able to declare and use arrays of strings.
Addresses are given to us to conceal our whereabouts.

Saki (H. H. Munro)

By indirections find directions out.

Wil l iam Shakespeare

Many things, having full reference

To one consent, may work contrariously.

William Shakespeare

You will find it a very good practice always to verify your

references, sir!

Dr. Routh

You can 't trust code that you did not totally create yourself.

(Especially code from companies that employ people like

me.)

Ken Thompson

320 Pointers and Strings

Outline

5. 1 Introduction

5.2 Pointer Variable Declarations and Initialization

5.3 Pointer Operators

5.4 Calling Functions by Reference

5.5 Using const with Pointers

5.6 Bubble Sort Using Pass-by-Reference

5.7 Pointer Expressions and Pointer Arithmetic

5.8 Relationship Between Pointers and Arrays

5.9 Arrays of Pointers

5. 1 0 Case Study: Card Shuffling and Dealing Simulation

5. 1 1 Function Pointers

5. 1 2 Introduction to Character and String Processing

5. 1 2. 1 Fundamentals of Characters and Strings

Chapter 5

5. 1 2.2 String Manipulation Functions of the String- Handling Ubrary

5. 1 3 (Optional Case Study) Thinking About Objects: Collaborations

Among Objects

Summary • Terminology • Self-Review Exercises · Answers to Self-Review Exercises · Exercises ·

Special Section: Building Your Own Computer · More Pointer Exercises · String-Manipulation

Exercises · Special Section: Advanced String-Manipulation Exercises · A Challenging String

Manipulation Project

5. 1 Introduction

This chapter di scusses one of the most powerful features of the C++ programming lan
guage , the poi nter. Poi nters are among C++ ' s most difficul t capab i l i t ies to master. In
Chapter 3 , we saw that references can be used to perform pass-by-reference. Pointers en
able programs to s imulate pass-by-reference and to create and manipu late dynamic data
structures (i .e . , data structures that can grow and shrink) , such as l i nked l i sts , queues, stacks
and trees . Thi s chapter explains basic pointer concepts. This chapter also reinforces the i n
t i mate re lat ionsh ip among arrays , pointers and strings and inc ludes a substantial collection
of stri ng-processing exerc i ses .

Chapter 6 examines the use of pointers with structures and c lasses . I n Chapter 9 and
Chapter 1 0, we wi l l see that the so-called "polymorphic process ing" of object-oriented pro
gramming i s performed wi th poi nters and references. Chapter 1 7 presents examples of cre
ati ng and us ing dynamic data structures .

The view of arrays and stri ngs as pointers derives from C. Later i n the book, we w i l l

d i scuss arrays and strings a s fu l l -fledged objects.

5.2 Poi nter Variable Declarations and In itial ization

Pointer variables contain memory addresses as the ir va lues . Normal ly , a variable d i rectly
contai ns a spec ific value . A pointer, on the other hand, contains the address of a variable

Chapter 5 Pointers and Str ings 32 1

that contai ns a specific value. I n this sense, a variable name directly references a value, and
a pointer indirectly references a value (Fig . 5 . 1) . Referencing a value through a poi nter is
often cal led indirection. Note that diagrams typical ly represent a pointer as an arrow from
the variable that contai ns an address to the variable located at that address in memory .

Poi nters , l i ke any other variab les, must be declared before they can be used. For
example, the dec larat ion

int * c ount pt r , count ;

declares the variable countptr to be of type int * (i . e . , a pointer to an int value) and
is read, "countptr i s a poin ter to int" or "countptr points to an object of type int ."
Also, variable count i n the preced ing dec laration i s dec lared to be an int, not a poin ter
to an int o The * i n the dec laration appl ies only to countptr. Each variable be ing de
c lared as a pointer must be preceded by an asteri sk (*) . For example, the dec larat ion

double *xPtr , *ypt r ;

i ndicates that both xPtr and yptr are pointers t o double val ues . When * appears i n a
dec larat ion, it is not an operator; rather, it indicates that the variable being declared is a
pointer. Pointers can be dec lared to point to objects of any data type.

Common Programming Error 5. 1

Assuming that the " used to declare a pointer distributes to all variable names in a declara

tion 's comma-separated list of variables can lead to errors. Each pointer must be declared

with the " prefixed to the name. � Good Programming Practice 5. 1
Although it is not a requirement, including the leiters Ptr in pointer variable names makes

it clear that these variables are pointers and that they must be handled appropriately.

Pointers should be i n it ial ized ei ther when they are dec lared or in an assignment state
ment. A pointer may be i n it ial ized to 0, NULL or an address . A pointer wi th the value 0 or
NULL points to noth ing . Sy mbol ic constant NULL i s defined i n header fi le < iostream>
(and in several other standard l ibrary header fi les) to represent the value O. l n i tia l iz ing a

Fig. 5. 1

count

countptr count

B---D

count d i rectly

references a variable

that conta ins the value 7

countptr i n d i rectly

references a var iable

that contains the va lue 7

Di rectly and ind i rectly referencing a variab le .

322 Pointers and Str ings Chapter 5

pointer to NULL i s equivalent to in itial iz ing a poi nter to 0 , but i n C++, 0 i s used by con
vent ion . When 0 i s assigned, i t i s converted to a poi nter of the appropriate type. The value
o i s the on ly i nteger value that can be assigned directly to a pointer variable wi thout cast ing
the in teger to a poi nter type fi rst. Assigning a variable ' s address to a poi nter i s di scussed in
Section 5 . 3 .

Initialize pointers to prevent pointing to unknown o r u n in itialized areas of memory.

5.3 Pointer Operators

The address operator (&) is a unary operator that returns the memory address of its oper
and. For example, assuming the declarations

int y = 5 ;
int *yptr ;

the statement

yPt r = &y ;

assigns the address of the variable y to pointer variable yPtr. Then variable yptr is said
to "point to" y. Now, ypt r indirectly references variable y' s value. Note that the & i n the
preceding assignment statement i s not the same as the & in a reference variable declarat ion ,
which i s a lways preceded by a data-type name .

Figure 5 . 2 shows a schematic representation of memory after the preceding assign
ment. I n the figure, we show the "point ing re lat ionship" by drawing an alTow from the box
that represents the pointer ypt r in memory to the box that represents the variable y in
memory .

Figure 5 . 3 shows another representation of the poi nter i n memory , assumi ng that
i nteger variable y is stored at location 6 0 0 0 0 0 and that pointer variable ypt r is stored at
location 5 0 0 0 0 0 . The operand of the address operator must be an ivalue (i . e . , something
to which a value can be ass igned, such as a variable name) ; the address operator cannot be
appl ied to constants or to expressions that do not result in references.

yptr y

G-------0
Fig. 5.2 Graphical representation of a pointer point ing to a var iable in memory.

yptr y

5 0 0 0 0 0 1 6 0 0 0 0 0 6 0 0 0 0 0 1'---___ 5 __ -'

Fig. 5 .3 Representation of y and yPt r i n memory .

Chapter 5 Pointers and Strings 323

The * operator, commonly referred to as the indirection operator or dereferencing

operator, returns a synonym (i . e . , an alias or a n ickname) for the object to which its pointer
operand points . For example (referri ng agai n to Fig. 5 .2) , the statement

cout « *yptr « endl ;

prints the value of variable y, namely , S , just as the statement

cout « y « endl ;

would. Us ing * i n th i s manner is cal led dereferencing a pointer. Note that a dereferenced
pointer may also be used on the left side of an assignment statement , as in

*yptr = 9 ;

which would assign 9 to y in Fig. 5 . 3 . The dereferenced poi nter may also be used to receive
an i nput va lue as i n

c in » *yptr ;

The dereferenced pointer is an {value.

Common Programming Error 5.2
Dereferencing a pointer that has not been properly initialized or that has not been assigned

to point to a specific location in memory could cause afatal execution -time error, or it could

accidentally modify important data and allow the program to run to completion, possibly

with incorrect results.

Common Programming Error 5.3
An attempt to dereference a variable that is not a pointer is a syntax error.

Common Programming Error 5.4
Dereferencing a a pointer is normally a fatal execution-time error.

The program in Fig. 5 .4 demonstrates the & and * pointer operators. Memory locat ions
are output by < < i n th is example as hexadecimal integers . (See Appendix C, N umber Sys
tems, for more information on hexadec imal in tegers .) Note that the hexadec i mal memory
addresses output by this program are compi ler and operati ng-system dependent .

Portabi l ity Tip 5. 1
The forl11at in which a pointer is output is machine dependent. Some systems output poimer

values as hexadecimal integers. while others use decimal integers.

1 II Fig . 5 . 4 : f ig 0 5 0 4 . cpp
2 II Using the & and * operators .

3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7

Fig. 5.4 Pointer operators & and * , (Port 1 of 2 ,)

324

8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28

Pointers and Strings

int main {)

{
int a ; I I a i s an integer

int *aPt r ; I I aPtr i s a pointer to a n integer

a = 7 ;
aPtr &a ; II aPtr assigned addres s of a

cout « " The address of a i s " « &a
« " \nThe value of aPtr i s " « aptr ;

cout « " \n\ nThe value of a i s " « a
« " \nThe value of *aptr i s " « *aPtr ;

cout « " \n\nShowing that * and & are inverses of "

« " each other . \n& * aPtr = " « & * aPtr

« " \ n* &aPtr = " « *&aPtr « endl ;

return 0 ; I I indi cates succe s s ful terminat ion

I I end main

The addres s of a is 0 0 12 FED4
The value of aPtr is 0 0 12 FED4

The value of a i s 7
The value of * aPtr i s 7

Showing that * and & are inverses of each other .
& * aPtr 0 0 12 FED4
* &aPtr = 0 0 12 FED4

Fig. 5.4 Pointer operators &: and * . (Part 2 of 2 .)

Chapter 5

Notice that the address of a and the value of aPtr are identical i n the output, con
firming that the address of a i s i ndeed assigned to the pointer variable aPtr. The & and *
operators are i nverses of one another-when they are both appl ied consecut ively to aPtr
i n ei ther order, the same resul t i s printed.

Figure 5 . 5 l i sts the precedence and assoc iativ i ty of the operators in troduced to this
point . Note that the address operator (&) and the dereferencing operator (*) are unary oper
ators on the third level of precedence in the chart .

Operators Associativity Type

() [] left to r ight highest

++ stat ic -cast< type > (operand) left to right unary

+ + + & * right to left unary

Fig. 5.5 Operator precedence and associativity . (Part 1 of 2.)

Chapter 5 Poi nters and Str ings 325

Operators Associativity Type

* 1 % left to right multiplicative

+ left to right additive

« » left to right insertion/extraction

< < = > > = left to right relational

! = left to right equality

&& left to right logical AND

I I left to right logical OR

? : right to left conditional

+ = * = 1 = %= right to left assignment

left to right comma

Fig. 5.5 Operator precedence and associativity . (Part 2 of 2.)

5.4 Call ing Functions by Reference

There are three ways i n C++ to pass arguments to a function-pass-by- value , pass-by-ref

erence with reference arguments and pass-by-reference with pointer arguments . Chapter 3
compared and contrasted pass-by-value and pass-by-reference w i th reference arguments .
Thi s chapter concentrates on pass-by-reference wi th pointer arguments.

As we saw i n Chapter 3 , return can be used to return one value from a cal led func
t ion to a cal ler (or to return control from a called function w i thout pass ing back a value) .
We a l so saw that arguments can be passed to a function us ing reference arguments . Such
arguments enable the function to modify the orig inal values of the arguments (thus, more
than one value can be "returned" from a function) . Reference arguments also enable pro
grams to pass l arge data objects to a function and avoid the overhead of pass ing the objects
by value (which, of course, requires making a copy of the object) . Pointers, l i ke references,
also can be used to modify one or more variables i n the cal ler or to pass pointers to large
data objects to avoid the overhead of passing the objects by value.

I n C++, programmers can use pointers and the indirection operator to s imulate pass
by-reference (exact ly as pass-by-reference i s accomplished i n C programs, because C does
not have references) . When cal l ing a function wi th arguments that shou ld be modified, the
addresses of the arguments are passed. Thi s i s normal ly accompl i shed by apply ing the
address operator (&:) to the name of the variable whose value w i l l be modified.

As we saw in Chapter 4, arrays are not passed using operator &:, because the name of
the array is the start ing location i n memory of the array (i . e . , an array name is already a
pointer) . The name of an array i s equivalent to &:arrayName [0] . When the address of
a variable is passed to a function, the indirection operator (*) can be used in the function to
form a synonym (i . e . , an al ias or a n ickname) for the name of the variab le-thi s in turn can
be used to modify the value of the variable at that l ocation in the cal ler ' s memory .

Figure 5 . 6 and Fig. 5 . 7 present two versions of a function that cubes an i n teger
cubeByValue and cubeByReference. Figure 5 .6 passes variab le number by val ue
to function cubeByValue (l ine 1 7) . Function cubeByValue (l ines 26-30) cubes i ts

326 Pointers and Str ings Chapter 5

argument and passes the new value back to main using a return statement (l ine 28) . The
new value is assigned to number in main. Note that you have the opportun i ty to examine
the result of the function call before modifying variable number' s value. For example , i n
this program, we could have stored the result o f cubeByValue i n another variable, exam
i ned its value and assigned the result to number after determ i ning whether the returned
va lue was reasonable .

Figure 5 .7 passes the variable number to function cubeByReference us ing pass
by-reference wi th a pointer argument (l ine 1 8)-the address of number i s passed to the
function . Funct ion cubeByReference (l ines 27-3 1) specifies parameter nPt r (a
pointer to int) to receive i ts argument. The function dereferences the pointer and cubes
the value to which nPtr points (l i ne 29) . This changes the value of number in main.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30

Common Prog ramming Error 5.5
Not dereferencing a pointer when i t is necessary to do so to obtain the value to which the

pointer points is an error.

II Fig . 5 . 6 : fig0 5 0 6 . cpp
I I Cube a variable us ing pass -by-value .
inc lude < iostream>

us i ng std : : cout ;
using std : : endl ;

int cubeByvalue (int) ; I I prototype

int main ()

int nwnber 5 ;

cout « " The original value of nwnber i s " « nwnbe r ;

I I p a s s nwnber by value to cubeByValue
nwnber = cubeByvalue (nwnber) ;

cout « " \nThe new value of nwnber i s " « nwnber « endl ;

return 0 ; I I indicates successful termination

I I end main

II calculate and return cube of integer argument
int cubeByvalue (int n)

{
return n * n * n ; I I cube local variable n and return result

} I I end funct ion cubeByValue

The original value of nwnber is 5
The new value of nwnber i s 12 5

Fig. 5.6 Pass-by-va lue used to cube a variable's va lue .

Chapter 5 Pointers and Str ings 327

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1

I I Fig . 5 . 7 : f ig 0 5_0 7 . cpp
I I Cube a variable us ing pas s -by-reference

I I with a pointer argument .

#inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

void cubeByReference (int *) ; I I prototype

int main ()

{
int number 5 ;

cout « " The original value of number i s " « number ;

I I pas s addres s of number to cubeByReference
cubeByRe f erence (&number) ;

cout « " \nThe new value of number i s " « number « endl ;

return 0 ; I I indicates succe s s ful t erminat ion

} I I end main

I I calculate cube of * npt r ; modi f i e s variable number i n main
void cubeByRe ference (int *nPtr)

{
*nPtr = *nptr * * nptr * *npt r ; I I cube * npt r

} I I end funct ion cubeByRef erence

The original value of number i s 5
The new value of number i s 1 2 5

Fig. 5 .7 Pass-by-reference with a pointer argument used to cube a variable 's value.

A function receiv ing an address as an argument must define a pointer parameter to
receive the address . For example , the header for function cubeByReference (l ine 27)
speci fies that cubeByReference receives the address of an int variabl e (i . e . , a pointer
to an int) as an argument, stores the address local l y i n nPtr and does not return a value .

The function prototype for cubeByRe ference (l i ne 9) contain s int * i n paren
theses . As wi th other variable types, it i s not necessary to i nc lude names of pointer param
eters i n function prototypes . Parameter names inc luded for documentation purposes are
ignored by the compiler.

Figure 5 . 8 and Fig. 5 . 9 analyze graphical l y the execution of the programs in Fig . 5 . 6
and F i g . 5 .7 , respect ive ly .

Software Engineering Observatio n 5 1

Use pass-by-value to pass arguments to a function unless the caller explicitly requires that

the called function modify the value of the argument variable in the caller 's environment.

This is another example of the principle of least privilege.

328 Pointers and Str ings

Before main cal ls cubeByValue :

int main ()

{

I int number = 5 ; I

number

number = cubeByValue (number) ;

After cubeByValue receives the cal l :

int main ()

{

int number = 5 ;

number

number = cubeByValue (number) ;

}

Chapter 5

int cubeByValue (int n)

{

return n * n * n ;

n

I u ndefined I

int cubeByValue (lint n I)

{

return n * n * n ;

n

1 5
After cubeByVal ue c u bes parameter n and before cubeByVal ue retu rns to main:

int main ()

{

int number = 5 ;

number

number = cubeByValue (number) ;

int cubeByValue (int n

{ [U5J
return In * n * n ; I

n

After cubeByValue retu rns to main and before assign ing the result to nwnber:

int main ()

{

int number = 5 ;

number

number = I cubeByValue (number) ; 1
}

int cubeByValue (int n

{

return n * n * n ;

n

I undefined I

After main completes the assign ment to nwnber:

int main ()

{

int number = 5 ;

number

�
I number = cubeByValue (number) ; 1

}

,------------------------,
int cubeByValue (int n)

{

return n * n * n ;

n

I u ndefined \

Fig. 5.8 Pass-by-value analysis of the program of F ig . 5 . 6 .

Chapter 5

Before main cal l s cubeByReference :

int main ()

{

1 int numbe r = 5 ; 1

nwnber

cubeByRe ference (&number) ;

Poi nters and Stri ngs 329

,----------------------------------,
void cubeByRe ference (int *nPtr)

{

*nptr = *nptr * *nptr * * nPt r ;

} nPtr

I u ndefined I
After cubeByReference receives the cal l and before *nPtr is c u be d :

int main () nwnber void cubeBYRe ferenc e (l int *nptr l)

{ 1 5 {

int number = 5 ; *nptr = *nptr * * nPtr * * nPt r ;

\ } nPtr
cubeByRe ference (&number) ; 1\ call establishes this pointer I I } I

After *nPtr is c u bed a n d before program control returns to main:

int main () nwnber void cubeByRe ference (int *nptr)

{ 1 12 5 1 { 1 125 1
int number = 5 ; I *nptr = *nptr * *nptr * * nPtr ;1

\
[\

}
called function modifies nPtr

cubeByRe ference (&number) ; 1\ caller's variable I I } I

Fig. 5.9 Pass-by-reference analysis (with a pointer argument) of the program of
F ig . 5 . 7 .

I n the function header and in the prototype for a function that expects a s ingle-sub
scripted array as an argument, the pointer notation in the parameter l i st of cubeByRe f
erence may be used. The compi ler does not different iate between a function that receives
a poi nter and a function that receives a s ingle-subscripted array . This , of course, means that
the function must "know" when i t is receiv ing an array or s imply a s ing le variable for which
i t i s to perform pass-by-reference. When the compi ler encounters a function parameter for
a s ingle-subscripted array of the form int b [] , the compi ler converts the parameter to the
pointer notat ion int * const b (pronounced "b i s a constant pointer to an in teger"-
const pointers are explai ned in Section 5 . 5) . B oth forms of declari ng a function param
eter as a s ingle-subscripted array are interchangeable .

5.5 Using c on s t with Pointers

The con s t qualifier enables the programmer to inform the compiler that the value of a
part icular variable should not be modified.

330 Pointers and Str ings Chapter 5

Software Engineering Observation 5.2
The const qualifier can be used to enforce the principle of least privilege. Using the p rin

ciple of least privilege to properly design sofnvare can greatly reduce debugging time and

improper side effects and can make a program easier to modify and maintain. fI Portabi l ity Tip 5.2
A lthough const i s well defined i n ANSI C and C+ +, some compilers do n o t enforce i t prop

erly. So a good rule is, "know your compiler. "

Over the years, a l arge base of legacy code was written i n early vers ions of C that d id
not use const, because i t was not avai lable. For th i s reason, there are great opportuni t ies
for i mprovement i n the software engineering of old (also cal led "legacy") C code . A l so ,
many programmers current ly us ing ANSI C and C++ do not u se const i n the ir programs ,
because they began programming in early versions of C . These programmers are miss ing
many opportunit ies for good software engineering.

Many poss ib i l i ties exis t for using (or not us ing) const with function parameters .
How do you choose the most appropriate of these poss ib i l i t ies? Let the pri nciple of least
priv i l ege be your guide. A lways award a function enough access to the data in i ts parame
ters to accompl i sh i ts specified task, but no more . Thi s section d i scusses how to combine
const with pointer dec larat ions to enforce the principle of least pri v i lege.

Chapter 3 explained that when a function i s called using pass-by-vaJ ue, a copy of the
argument (or arguments) i n the function cal l i s made and passed to the function. If the copy
is modified in the function, the original value i s maintained i n the ca l ler wi thout change. In
many cases, a value passed to a function i s modified so the function can accompl i sh i ts task .
However, i n some instances, the value should not be altered i n the cal led function, even
though the cal led function man ipulates only a copy of the orig inal value .

For example, consider a function that takes a single-subscripted array and its s ize as argu
ments and subsequently prints the aJTay. Such a function should loop through the aJTay and
output each array element i ndividual ly . The size of the array i s used in the function body to
determine the h ighest subscript of the array so the loop can terminate when the printing com
pletes . The size of the array does not change in the function body, so i t should be declared
const . Of course, because the array is only being printed, it, too, should be declared const .

Software Eng neenng Obs rvation 5.3
If a value does not (or should not) change in the body of a function to which it is passed, the

parameter should be declared const to ensure that it is not accidentally modified.

If an attempt is made to modify a const value, a warn ing or an error is i ssued,
depending on the part icular compi ler.

So�are Engineering Observation 5.4
Only one value can be returned to the caller when pass-by-value is used. To modify multiple

values in a calling function, several arguments can be passed by reference. � Good Programming Practice 5.2
Before using a function, check its function prototype to determine the parameters that i t can

modify.

There are four ways to pass a pointer to a function : a nonconstant poi nter to noncon
stant data (Fig . 5 . 1 0) , a nonconstant poi nter to constant data (Fig . 5 . 1 1 and Fig . 5 . 1 2) , a

Chapter 5 Pointers and Stri ngs 33 1

constant pointer to non-constant data (Fig . 5 . 1 3) and a constant pointer to constant data
(Fig . 5 . 1 4) . Each combinat ion provides a different level of access priv i l eges.

Nonconstant Pointer to Nonconstant Data

The h ighest access is granted by a nonconstant pointer to nonconstant data-the data can
be modified through the dereferenced poi nter, and the pointer can be modified to poin t to
other data. Decl arat ions for nonconstant pointers to nonconstant data do not inc l ude
const . S uch a poin ter can be used to recei ve a stri ng in a function that changes the pointer
value to process (and poss ib ly modify) each character in the stri ng . In Fig. 5 . 1 0, function
convertToUppercase (J i nes 27-38) declares parameter sPtr (l i ne 27) to be a non
constant pointer to nonconstant data. The function processes the string phrase one char
acter at a t ime (l ines 29-36) . Function i s l ower (l ine 3 1) takes a character argument and
returns true i f the character i s a lowercase letter and fal se otherwise . Characters in the range

I a I through I z I are converted to their corresponding uppercase letters by funct ion
toupper (l i ne 32) ; others remain unchanged. Funct ion toupper takes one character as
an argument . I f the character i s a lowercase letter, the corresponding uppercase l etter i s re
turned; otherwi se , the original character is returned. Function toupper and funct ion i s
lower are part o f the character handl ing l ibrary <cctype > . (See Chapter 1 8 , B its ,
Characters, S trings and Structures .) After processing one character, l i ne 34 i ncrements
sPtr by l . When operator + + i s appl ied to a pointer that points to an array, the memory
address stored i n the pointer is modified to point to the next element of the array (i n th is
case, the next character i n the string) . Adding one to a poin ter i s one val i d operat ion in
pointer arithmetic, which i s covered i n detai l i n Section 5 .7 and Section 5 . 8 .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25

I I Fig . 5 . 1 0 : f i g 0 5_1 0 . cpp
I I Convert ing lowercase letters to uppercase letters
// us ing a non-constant pointer to non- constant data .
inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

#inc lude < cctype > /1 prototypes for i s lower and toupper

void convertToUppercase (char *) ;

int main ()

{
char phrase [] = " characters and $ 3 2 . 9 8 " ;

cout « " The phrase before convers ion i s : " « phrase ;
convertToUppercase (phrase) ;
cout « " \ nThe phrase after convers i on i s :

« phrase « endl ;

return 0 ; 1/ indicates succe s s ful terminat ion

I I end main

F ig. 5. 1 0 Converting a str ing to uppercase . (Part 1 of 2 ,)

332 Pointers and Stri ngs

I I convert string to uppercase letters
void convertToUppercase (char * sPtr)

{

Chapter 5

26
27
28
29
30
3 1
32
33
34
35
36
37
38

whi l e * sptr ! = ' \ 0 ') { I I current character i s not ' \ 0 '

i f i s lower (* sPtr » I I i f character i s lowercas e ,
* sptr = toupper (* sPtr) ; I I convert to uppercase

+ + s Pt r ; I I move sPtr t o next character in string

I I end whi l e

} I I end funct ion convertToUppercase

The phrase be fore convers ion i s : characters and $ 3 2 . 9 8
The phrase after convers ion i s : CHARACTERS AND $ 3 2 . 9 8

Fig. 5. 1 0 Convert ing a str ing to uppercase . (Part 2 of 2 .)

Nonconstant Pointer t o Constant Data

A nonconstant pointer to constant data is a pointer that can be modified to point to any data
item of the appropriate type, but the data to which it points cannot be modified through that
pointer. Such a pointer mjght be used to receive an array argument to a function that w i l l
process each element of the array, but should not be al lowed to modify the data. For exam
ple, function printCharacters (l i nes 25-30 of Fig. 5 . 1 1) dec lares parameter sPtr
(l ine 25) to be of type const char * . The declaration i s read from right to left as "sptr
i s a pointer to a character constant ." The body of the function uses a for structure (l ines 27-
28) to output each character in the string until the null character i s encountered. After each
character is printed, pointer sPtr i s incremented to point to the next character i n the string.

1 I I Fig . 5 . 1 1 : f i g O S_1 1 . cpp
2 I I Print ing a string one character at a t ime u s ing
3 I I a non- constant pointer to constant data .
4 #inc lude < iostream>

5
6 us ing std : : cout ;
7 us ing std : : endl ;
8
9 void printCharacters (const char *) ;

1 0
1 1 int main ()
1 2 {
1 3 char phrase [] = "print characters of a string " ;
1 4
1 5 cout « " The s t ring i s : \n" ;
1 6 printCharacters (phrase) ;
1 7 cout « endl ;

1 8

F ig. 5. 1 1 Print ing a string one character at a time using a nonconstant pointer to
constant data . (Part 1 of 2 .)

Chapter 5 Pointers and Strings

1 9
20
2 1
22
23
24
25
26
27
28
29
30

return 0 ; II indicates succ e s s ful termination

} II end main

II sPtr cannot modi fy the character to which it point s ,
II i . e . , sPtr i s a " read-only " pointer

void printCharacters (const char * sPtr

{
for (; * sptr ! = ' \ 0 ' ; sPtr++

cout « * spt r ;

} I I end funct ion printCharacters

II no ini t i a l i zat i on

The string i s :
print characters of a string

333

Fig. 5 . 1 1 Print ing a string one character at a t ime us ing a nonconstant pointer to
constant data . (Part 2 of 2 .)

Figure 5 . 1 2 demonstrates the syntax error messages produced when attempting to
compile a function that receives a nonconstant pointer to constant data, then tries to u se that
pointer to modify the data.

1 II Fig . 5 . 1 2 : fig0 5 1 2 . cpp
2 II Att empt ing to modi fy data through a

3 II non- constant pointer to constant data .

4
5 void f (const int *) ; II prototype
6
7 int main ()
8 {
9 int y ;

1 0
1 1 f (&y) ; II f attempt s i l l egal modif icat ion
1 2
1 3 return 0 ; II indicates succe s s ful t ermination
1 4
1 5 I I end main
1 6
1 7 I I xPtr cannot modi fy the value of the variable
1 8 II t o which i t point s
1 9 void f (const int *xPtr)
20 {
2 1 *xPtr = 1 0 0 ; II error : cannot modi fy a const obj ect
22
23 II end func t i on f

d : \ cpphtp4_exampl e s \ ch0 5 \ Fig05_12 . cpp (2 1)
I -value spec i f ie s const obj ect

error C2 1 6 6 :

Fig. 5. 1 2 Attem pting to modify data through a nonconstant pointer to constant
data .

334 Pointers and Strings Chapter 5

As we know, arrays are aggregate data types that store related data items of the same type
under one name. Chapter 6 discusses another form of aggregate data type called a structure

(sometimes called a record in other languages) . A structure can store data items of different
data types under one name (e .g . , storing information about each employee of a company) .
When a function i s called wi th an array as an argument, the array i s passed to the function by
reference. However, structures are always passed by value-a copy of the entire structure i s
passed. This requires the execution-time overhead o f making a copy o f each data item i n the
structure and storing i t on the function cal l stack (the place where the local automatic vari
ables used in the function cal l are stored while the function is executing) . When structure data
must be passed to a function, we can use a pointer to constant data (or a reference to constant
data) to get the performance of pass-by-reference and the protection of pass-by-value. When
a pointer to a structure i s passed, only a copy of the address at which the structure i s stored
must be made; the structure itself i s not copied. On a machine with four-byte addresses, a
copy of four bytes of memory is made rather than a copy of a possibly large structure.

Performance Tip 5. 1
Pass large objects such as structures using pointers to constant data, or references to con

stant data, to obtain the performance benefits of pass-by-reference.

So a re Eng neer "g Observation 5 5
Pass large objects such as structures using pointers to constant data, or references to con

stant data, to obtain the security of pass-by- value.

Constant Pointer to Nonconstant Data

A constant pointer to nonconstant data is a pointer that always points to the same memory
locat ion; the data at that location can be modified through the pointer. Thi s i s the defaul t
for an array name. An array name is a constant pointer to the beginning of the array . Al l
data in the array can be accessed and changed by using the array name and array subscript
ing. A constant poi nter to nonconstant data can be used to receive an array as an argument
to a function that accesses array e lements using array subscript notat ion. Pointers that are
dec lared canst must be i ni t ia l ized when they are dec lared . (If the pointer is a function pa
rameter, it is i n it ial ized w i th a pointer that is passed to the funct ion .) The program of
Fig. 5 . 1 3 attempts to modify a constant pointer. Line 1 2 dec l ares pointer ptr to be of type
int * canst . The declaration i n the figure i s read from right to l eft as "ptr is a constant
pointer to an i nteger." The pointer i s in i t ia l ized with the address of i nteger variab le x. Line
1 5 attempts to assign the address of y to ptr, but the compi ler generates an error message.
Note that no error occurs when l i ne 14 assigns the value 7 to *ptr-the nonconstant val ue
to which ptr points can be modified us ing ptr.

I I / Fig . 5 . 1 3 : f ig0 5_1 3 . cpp
2 I I Attempt ing to modi fy a constant pointer to
3 I I non-constant data .
4
5 int main ()
6 {
7 int x , y ;
8

F ig. 5 . 1 3 Attem pting to modify a constant pointer to nonconstant data . (Part 1 of 2 .)

Chapter 5 Poi nters and Str ings

I I ptr is a constant pointer to an integer that can

I I be modi f ied through ptr , but ptr always point s to the

I I same memory locat ion .
int * const ptr = &x ;

I I allowed : *ptr i s not const

335

9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9

*ptr = 7 ;
ptr = &y ; I I error : ptr i s const ; cannot a s s i gn new addre s s

return 0 ; I I indicates succes s ful terminat ion

I I end main

d : \ cpphtp4_example s \ ch0 5 \ Fig0 5_1 3 . cpp (1 5)
I -value spec i f ies const obj ect

error C2 1 6 6 :

Fig. 5. 1 3 Attempting to modify a constant pointer to nonconstant d ata . (Part 2 of 2 .)

� Common Programming Error 5.6
� Not initializing a pointer that is declared const is a syntax error.

Constant Pointer to Constant Data

The l east amount of access priv i lege is granted by a constant pointer to constant data. Such
a pointer always points to the same memory location, and the data at that memory location
cannot be modified using the pointer. This i s how an array should be passed to a function
that only reads the array, us ing array subscript notation, and does not modify the array . The
program of Fig. 5 . 1 4 declares pointer variable ptr to be of type const int * const
(l i ne 1 5) . This declaration is read from right to left as "ptr i s a constant pointer to an in
teger constant ." The fjgure shows the error messages generated when an attempt i s made to
modify the data to which ptr points (l ine 1 9) and when an attempt i s made to modify the
address stored i n the pointer variable (l ine 20) . Note that no errors occur when the program
attempts to dereference ptr, or when the program attempts to output the value to which
ptr points (l ine 1 7) , because neither the pointer nor the data i t points to i s being modified
i n this statement .

1 I I Fig . 5 . 14 : fig0 5_14 . cpp
2 I I Att empt ing to modi fy a constant pointer to const ant data .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 int main ()
9 {

1 0 int x = 5 , y ;
1 1
1 2 I I ptr i s a constant pointer to a const ant integer .
1 3 I I ptr always point s to the same locat ion ; the integer
1 4 I I at that locat ion cannot be modi f ied .

Fig. 5 . 1 4 Attempting to modify a constant pOinter to constant data . (Part 1 of 2 .)

336 Pointers and Stri ngs Chapter 5

const int *const ptr = &x ;

cout « *ptr « endl ;

1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24

*ptr = 7 ;
ptr = &y ;

I I error : *ptr i s const ; cannot ass ign new value
I I error : ptr is const ; cannot ass ign new addre s s

return 0 ; I I indicates successful terminat ion

} I I end main

d : \ cpphtp4_examp le s \ ch0 5 \ Fig0 5_14 . cpp (1 9)
l -value spec i f i e s const obj ect

d : \ cpphtp4_example s \ ch0 5 \ Fig0 5_14 . cpp (2 0)
l -value spec i f i e s const obj ect

error C2 1 6 6 :

error C 2 1 6 6 :

Fig. 5. 1 4 Attem pting to modify a constant pointer to constant data . (Part 2 of 2 .)

5.6 Bubble Sort Using Pass-by- Reference

Let us modify the bubble sort program of Fig. 4 . 1 6 to use two functions-bubbleSort
and swap (Fig . 5 . 1 5) . Function bubbleSort (l ines 40-52) performs the sort of the array.
Function bubbleSort cal l s function swap (l ine 50) to exchange the array elements
array [k] and array [k + 1] . Remember that C++ enforces information hiding be
tween functions, so swap does not have access to individual array elements in bubbl e
Sort . Because bubbleSort wants swap to have access t o the array elements t o be
swapped, bubbleSort passes each of these elements by reference to swap-the ad
dress of each array element is passed expl ic i t ly . Although ent ire arrays are passed by ref
erence, ind iv idual array e lements are scalars and are ordinari l y passed by value . Therefore ,
bubbleSort uses the address operator (&) on each array element in the swap cal l (l i ne
50 to effect pass-by-reference) . Function swap (l ines 56-62) receives &array [k] i n
pointer variable e lement lptr. Information h id ing prevents swap from "knowing" the
name array [k] , but swap can use *element lptr as a synonym for array [k] .

Thus, when swap references * e l ement lPtr, it is actual l y referencing array [k] i n
bubbl eSort . S imi larly, when swap references * e l ement 2 ptr, i t i s actual ly refer
encing array [k + 1] in bubbleSort .

1 / I Fig . 5 . 1 5 : f i g 0 5_1 5 . cpp
2 I I Thi s program put s values into an array , sort s the values into
3 I I ascending order and print s the resulting array .

4 # inc lude < iostream>
5
6 us ing std : : cout ;
7 u sing std : : endl ;
8
9 #inc lude < iomanip>

1 0

Fig. 5 . 1 5 Bubble sort with pass-by-reference. (Part 1 of 3.)

Chapter 5

us ing std : : setw ;

void bubbleSort (i n t * , const int) ;
void swap (int * const , int * const) ;

int main ()

{
const int arraySi z e = 1 0 ;

Pointers and Stri ngs

II prototype

I I prototype

337

1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62

int a [arrayS i z e] = { 2 , 6 , 4 , 8 , 1 0 , 1 2 , 8 9 , 6 8 , 4 5 , 37 } ;

cout « " Data items in original order\n" ;

for (int i = 0 ; i < arraySi z e ; i + +)
cout « setw (4 « a [i] ;

bubbleSort (a , arrayS i z e) ; I I sort the array

cout « " \nData items in ascending orde r \ n " ;

for (int j = 0 ; j < arrayS i z e ; j + +)
cout « setw (4 « a [j] ;

cout « endl ;

return 0 ; I I indicates succe s s ful ter.mination

I I end main

I I sort an array of integers us ing bubble sort a lgorithm
void bubbleSort (int * array , const int s i z e)

{
I I loop to control passes

for (int pas s = 0 ; pas s < s i z e - 1 ; pas s + +)

I I loop to control compari sons during each pas s
for (int k = 0 ; k < s i z e - 1 ; k++)

I I swap adj acent element s i f they are out of order
if (array [k] > array [k + 1])

swap (&array [k] , &array [k + 1]) ;

} I I end function bubbleSort

I I swap values at memory locat ions to which
II e l ement lptr and e lement 2 ptr point
void swap (int * const element lptr , int * const e l ement 2 pt r)

{
int hold = * e l ement lPtr ;
* e l ement lptr * e l ement 2 P t r ;
* e l ement 2 ptr = hol d ;

} I I end func t i on swap

Fig. 5. 1 5 Bubble sort with pass-by-reference. (Port 2 of 3.)

338 Poi nters and Stri ngs

Dat a items in original order
2 6 4 8 10 12 89 68 45 3 7

Data items in ascending order
2 4 6 8 10 12 3 7 45 68 8 9

Fig. 5. 1 5 Bubble sort with poss-by-reference. (Part 3 of 3 .)

Even though swap i s not a l lowed to use the statements

hold = array [k] ;
array [k] = array [k + 1] ;
array [k + 1] = hold;

precise ly the same effect i s ach ieved by

int hold = * e l ement 1ptr ;
* e l ement 1ptr = * e l ement2Ptr;
* e l ement 2 ptr = hold;

i n the swap function of Fig . 5 . 1 5 .

Chapter 5

Several features of function bubbleSort should be noted. The function header (l ine
40) decl ares array as int * array, rather than int array [] , to indicate that function
bubbleSort recei ves a s ingle-subscripted array as an argument (again , these notat ions
are in terchangeable) . Parameter s i ze i s dec lared const to enforce the principle of least
priv i l ege. A l though parameter s i z e receives a copy of a value in main and modifying the
copy cannot change the value in main, bubbleSort does not need to al ter s i z e to
accompl i sh i ts task. The array size remains fixed during the execution of bubbleSort .
Therefore, s i z e i s declared const to ensure that it i s not modified. If the s ize of the array
is modified during the sort ing process, the sorting algori thm w i l l not run correctl y .

Note that function bubbleSort receives the size o f the array a s a parameter, because
the function must know the s ize of the array to sort the array . When an array is passed to a
function, the memory address of the fi rst e lement of the array i s received by the function .
The array s ize must be passed separately to the function .

By defi n i ng function bubbleSort so it receives the array size as a parameter, we
enable the function to be used by any program that sorts s ingle-subscripted int arrays of
arbitrary s ize . The s ize of the array could have been programmed directl y into the funct ion.
This would restrict the use of the function to an array of a specific s ize and reduce the func
t ion ' s reusab i l i ty . Only programs processing single-subscripted int arrays of the spec ific
s ize "hard coded" in to the function could use the function .

Software Engineering Observation 5.6
When passing an array to afunction, also pass the size of the array (rather Ihan building into

the function knowledge of the array size). This helps make the function more general. Gen

eralfunctions are often reusable in many programs.

c++ provides the unary operator si zeof to determine the s ize of an array (or of any
other data type, variable or constant) in bytes during program compilation. When appl ied to
the name of an alTay, as in Fig. 5 . 1 6 (l ine 1 6) , the si zeof operator returns the total number
of bytes in the array as a value of type size_t (which i s usual ly unsigned int) . The
computer we used to compile this program stores variables of type double i n 8 bytes of
memory, and array i s declared to have 20 elements, so array uses 1 60 bytes in memory .

Chapter 5 Pointers and Strings 339

When appl ied to a pointer parameter (l ine 28) in a function that receives an array as an argu
ment, the si zeof operator returns the size of the pointer in bytes (4) , not the size of the array .

Common Programming Error 5.7
Using the si zeof operator in a function to find the size in bytes of an array parameter re

sults in the size in bytes of a pointer, not the size in bytes of the array.

The number of elements in an array also can be determined us ing the results of two
s i zeof operat ions . For example, consider the fol lowing array declarat ion :

doubl e realArray [2 2] ;

If variables of data type double are stored in eight bytes of memory , array realArray
contains a total of 1 76 bytes . To determ ine the number of elements in the array, the fol l ow
i ng expression can be used:

s i z eof realArray I s i zeof (double)

1 I I Fig . 5 . 1 6 : f ig0 5 16 . cpp
2 I I S i zeof operator when used on an array name
3 I I returns the number of bytes in the array .
4 # inc lude < iostream>
5
6 using std : : cout ;
7 us ing std : : endl ;
8
9 s i z e_t get S i z e (doubl e *) ; I I prototype

1 0
1 1 int main ()
1 2 {
1 3 double array [2 0] ;
1 4
1 5 cout « " The number of byte s in the array i s II

1 6 « s i zeof (array) ;
1 7
1 8 cout « " \nThe number of byte s returned by get S i z e i s II

1 9 « get S i z e (array) « endl ;
20
2 1 return 0 ; I I indicates succe s s ful terminat ion
22
23 I I end main
24
25 I I return s i z e of ptr
26 s i z e_t get S i z e (doubl e *ptr
27 {
28 return s i zeof (ptr) ;
29
30 } I I end funct i on get S i z e

The number of bytes in the array i s 1 6 0
Th e number of byte s returned by get S i z e i s 4

Fig. 5. 1 6 s i z eo f operator when appl ied to a n array name returns the number of
bytes in the array.

340 Pointers and Stri ngs Chapter 5

The expression determines the number of bytes i n array realArray and d iv ides that val
ue by the n umber of bytes used i n memory to store a double value; the result is the num
ber of elements i n realArray.

The program of Fig . 5 . 1 7 uses the si zeof operator to calculate the number of bytes
used to store each of the standard data types . fI Portabi l ity Tip 5.3

The number of bytes used to store a particular data type may vary between systems. When

writing programs that depend on data type sizes, and that will run on several computer sys

tems, use si zeof to determine the number of bytes used to store the data types.

Fig. 5 . 1 7 s i z eof operator used to determine standard data type sizes. (Part 1 of 2 .)

Chapter 5 Pointers and Strings 34 1

s i zeof
s i zeof
s i zeof
s i zeof
s i zeof
s i zeof
s i zeof
s i zeof
s i zeof

c 1
s = 2

i 4
1 4
f 4
d = 8
ld =

array
ptr =

8

4

s i z eof (char) = 1
s i z eo f (short) = 2

s i zeof (int) = 4
s i zeof (long) = 4
s i zeof (f loat) = 4
s i zeof (double) = 8
s i zeof (long double) 8

8 0

Fig. 5. 1 7 s i z eof operator used to determine standard data type sizes. (Part 2 of 2 .)

Operator s i zeof can be appl ied to any variable name, type name or constant value .
When s i z eof i s appl ied to a variable name (which i s not an array name) or a constant
value, the number of bytes used to store the spec ific type of variab le or constant is returned.
Note that the parentheses used with si zeof are required only if a type name i s suppl ied
as i ts operand . The parentheses used with si zeof are not required when s i zeof ' s
operand i s a variable name o r constant. Remember that s i zeof i s an operator, not a func
t ion, and that i t has i ts effect at compi le t ime, not execution t ime. lJ Common Programming Error 5.8

Omitting the parentheses in a si zeof operation when the operand i s a type name i s a syntax

error.

Perform a n ce Tip 5.2
Because si zeof i s a compile-time unary operator, not an execution -time operator, using

si zeof does not negatively impact execution performance.

To avoid errors associated with omitting the parentheses around the operand of operator

sizeof, many programmers include parentheses around every si zeof operand.

5.7 Poi nter Expressions and Pointer Arithmetic

Pointers are valid operands i n ari thmetic expressions, assignment express ions and compar
i son express ions . However, not al l the operators normal ly used in these express ions are val
id wi th pointer variables . Thi s section describes the operators that can have pointers as
operands and how these operators are used with poi nters .

Several ari thmetic operations may be performed on pointers. A pointer may be i ncre
mented (+ +) or decremented (- -) , an integer may be added to a pointer (+ or + =) , an integer
may be subtracted from a pointer (- or - =) or one pointer may be subtracted from another.

Assume that array int v [5] has been declared and that its fi rst e lement is at location
3 0 0 0 i n memory . Assume that poi nter vPtr has been in i t ia l ized to point to v [0] (i .e . ,
that the value of vPtr i s 3 0 0 0) . Figure S . 1 8 diagrams th i s s i tuation for a machine with
four-byte i ntegers . Note that vPtr can be i ni t ia l ized to point to array v with e ither of the
fol lowing statements :

vPtr
vPt r

V ;
& v [0] ;

342 Pointers and Stri ngs

location

3 0 0 0 3 0 04 3 0 0 8 3 0 12 3 0 1 6

v [O] v [l] v [2] v [3] v [4]

pointer var iable vPtr

Fig. 5 . 1 8 Array v and a pointer variable vPt r that pOints to v.

Chapter 5

fI Portabil ity Tip 5.4
Most computers today have two-byte or four-byte integers. Some of the newer machines use

eight-byte integers. Because the results of pointer arithmetic depend on the size of the objects

a pointer points to, pointer arithmetic is machine dependent.

In conventional arithmetic, the addition 3 0 0 0 + 2 yie lds the value 3 0 0 2 . This is nor
mal ly not the case with pointer ari thmetic. When an integer i s added to, or subtracted from,
a pointer, t he pointer i s not s imply incremented or decremented by that i nteger, bu t by that
in teger t imes the s ize of the object to which the poi nter refers. The number of bytes depends
on the object ' s data type . For example, the statement

vPtr += 2 ;

would produce 3 0 0 8 (3 0 0 0 + 2 * 4) , assuming that an int is stored i n four bytes of
memory . I n the array v, vPtr would now point to v [2] (Fig . 5 . 1 9) . If an i nteger i s stored
in two bytes of memory, then the preceding calculation would resu l t in memory location
3 0 0 4 (3 0 0 0 + 2 * 2) . If the array were of a different data type , the preceding statement
would i ncrement the pointer by twice the number of bytes i t takes to store an object of that
data type . When performing poi nter arithmetic on a character array, the resul ts w i l l be
consi stent wi th regu lar arithmetic, because each character is one byte long.

location

3 0 0 0 3 0 04 3 0 0 8 3 0 12 3 0 1 6

v [O] v [l] v [2]

--

pointer variable vPtr

F ig . 5. 1 9 Pointer vPt r after pOinter arithmetic .

v [3] V [4 1 1

Chapter 5 Pointers and Str ings 343

If vPtr had been incremented to 3 0 1 6 , which points to v [4] , the statement

vPt r -= 4 ;

would set vPtr back to 3 0 0 0-the beginning of the array . If a pointer is being incre
mented or decremented by one, the increment (+ +) and decrement (- -) operators can be
used. Each of the statements

+ +vPt r ;
vPt r + + ;

i ncrements the pointer to point to the next e lement of the array . Each of the statements

- -vPt r ;
vPtr- - ;

decrements the pointer to point to the previous e lement of the array .
Pointer variables pointing to the same array may be subtracted from one another. For

example, if vPtr contain s the location 3 0 0 0 and v2 Ptr contains the address 3 0 0 8 , the
statement

x = v2 Ptr - vPtr ;

would assign to x the n umber of array elements from vPtr to v2 Ptr, in this case, 2 .
Pointer arithmetic i s mean ingless unless performed on a pointer that points to an array . We
cannot assume that two variables of the same type are stored contiguously i n memory un
less they are adj acent e lements of an array .

Common Programming Error 5.9
Using pointer arithmetic on a pointer that does not refer to an array of values is a logic error.

[lJ Common Programming Error 5. 1 0
Subtracting or comparing two pointers that do not refer to elements of the same array is a

logic error.

Common Programming Error 5. 1 1
Using pointer arithmetic to increment or decrement a pointer such that the pointer refers to

an element past the end of the array or before the beginning of the array is normally a logic

error.

A pointer can be ass igned to another pointer if both pointers are of the same type . Oth
erwise, a cast operator must be used to convert the value of the pointer on the right of the
assignment to the pointer type on the left of the assignment. The exception to this rule is
the pointer to void (i .e . , void *) , which i s a generic pointer capable of representing any
pointer type. All poi nter types can be assigned to a pointer of type void * wi thout casting.
However, a pointer of type void * cannot be assigned directly to a pointer of another
type-the pointer of type void * must first be cast to the proper pointer type.

A void * pointer cannot be dereferenced. For example, the compiler "knows" that a
pointer to int refers to four bytes of memory on a machine wi th four-byte i ntegers , but a
pointer to void s imply contains a memory address for an unknown data type-the preci se
number of bytes to which the pointer refers is not known by the compiler. The compiler must

344 Pointers and Strings Chapter 5

know the data type to determine the number of bytes to be dereferenced for a part icu lar
pointer. For a pointer to void, this number of bytes cannot be determined from the type. [lJ Common Programming Error 5. 1 2

Assigning a pointer of one type to a pointer of another (other than voi d *) without casting

the first pointer to the type of the second pointer is a syntax error.

Common Prog ramming Error 5. 1 3
A ll operations on a void * pointer are syntax errors, except comparing voi d * pointers

with other pointers, casting void * pointers to valid pointer types and assigning addresses

to voi d * pointers.

Pointers can be compared using equality and relational operators. Compari sons us ing
relational operators are meaningless unless the pointers point to members of the same array .
Pointer comparisons compare the addresses stored in the pointers . A compari son of two
pointers pointing to the same array could show, for example, that one pointer poi nts to a
h igher numbered element of the array than the other pointer does. A common use of poi nter
compari son i s determjn ing whether a pointer i s 0 (i .e . , the pointer does not point to anything) .

5.8 Relationship Between Pointers and Arrays

Arrays and pointers are in t imately related in C++ and may be used almost i nterchangeably .
An array name can be thought of as a constant poi nter. Poi nters can be used to do any op
erat ion involv ing array subscripti ng.

Assume the fol lowing dec larations :

int b [5] i
int *bPt r i

Because the array name (without a subscript) i s a pointer t o the fi rst element o f the array,
we can set bPtr to the address of the fi rst element in array b with the statement

bPtr = bi

This i s equivalent to tak ing the address of the fi rst element of the array as fo l lows :

bPtr = &b [0] i

Array element b [3] can alternatively be referenced wi th the poi nter expression

* (bPtr + 3)

The 3 i n the preceding expression is the offset to the pointer. When the pointer points to the
beginning of an array, the offset indicates which element of the array should be referenced,
and the offset value i s identical to the array subscript. The preceding notat ion i s referred to
as pointer/offset notation. The parentheses are necessary , because the precedence of * i s

higher than the precedence o f + . Without the parentheses, the above expression would add
3 to the value of the expression *bPtr (i . e . , 3 would be added to b [0] , assuming that
bPtr points to the begi nn ing of the array) . Just as the array element can be referenced with
a poi nter express ion, the address

&b [3]

Chapter 5 Pointers and Strings 345

can be written with the pointer expression

bPtr + 3

The alTay name can be treated as a pointer and used i n poi nter arithmetic . For example,

the expression

* (b + 3)

also refers to the array element b [3] . I n general , al l subscripted array express ions can be
written with a pointer and an offset. In this case, poi nter/offset notat ion was u sed with the
name of the array as a poi nter. Note that the preceding expression does not modify the array
name in any way ; b st i l l points to the fi rst element in the array .

Poi nters can be subscri pted exact ly as arrays can. For example, the express ion

bPtr [1]

refers to the array element b [1] ; this expression uses pointer/subscript notation.

Remember that an array name i s essential ly a constant pointer; i t always points to the
beg inn ing of the array . Thus, the expression

b + = 3

is inval id , because it attempts to modify the value of the array name with poi nter arithmetic .

Common Programming Error 5. 1 4
� A lthough array names are pointers to the beginning of the array and pointers can be modi

� fled in arithmetic expressions, array names cannot be modified in arithmetic expressions, be

cause array names are constant pointers.

r:JlI Good Programming Practice 5.3
� For clarity, use array notation instead of pointer notation when manipulating arrays.

Figure 5 .20 uses the four notat ions di scussed in th is section for referri ng to array ele
ments-array subscript notat ion, poi nter/offset notation with the array name as a poi nter,
poi nter subscript notation and pointer/offset notation wi th a pointer-to prin t the four ele
ments of the in teger array b.

1 I I Fig . 5 . 2 0 : f i g 0 5_2 0 . cpp
2 I I Using subscript ing and pointer notat ions with arrays .
3
4 # inc lude < iostrearn>
5
6 us ing std : : cout ;
7 us ing std : : endl ;
8
9 int main ()

1 0

Fig. 5.20 Referencing array elements with the array name and with pointers. (Part 1
of 3 .)

346 Pointers and Stri ngs

int b [] =
int *bPtr

1 0 , 2 0 , 3 0 , 40 } ;

b ; / / set bPtr t o point to array b

/ / output array b us ing array subscript notation

cout « " Array b printed with : \n "
« " Array subscript notat ion\n" ;

for (int i = 0 ; i < 4 ; i + +)

cout « " b [" « i « II] = II « b [i] « ' \n ' ;

/ / output array b us ing the array name and
/ / pointer/offset notat ion
cout « " \nPointer/offset notation where II

« li the pointer is the array name \ n " ;

for (int o f f set 1 = 0 ; offset1 < 4 ; o f f set 1 + +
cout « " * (b + I I « o f f s e t 1 « ")

« * (b + offset1) « ' \n ' ;

Chapter 5

1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45

/ / output array b us ing bPtr and array subscript notat ion
cout « " \nPointer subscript notat ion \ n " ;

for (int j = 0 ; j < 4 ; j + +)

cout « " bptr [" « j « II] = II « bPtr [j] « ' \n ' ;

cout « " \nPointer/off set notation \ n " ;

/ / output array b us ing bPtr and pointer / o f f set notat ion
for (int offset2 = 0 ; offset2 < 4 ; o f f s et 2 + +)

cout « " * (bPtr + II « offset2 « ")
« * (bPtr + offset2) « ' \n ' ;

return 0 ; / / indicates succe s s ful terminat ion

} / / end main

Array b printed with :

Array subscript notat ion
b [0] 1 0
b [1] 2 0
b [2] = 3 0
b [3] = 4 0

Pointer / o f f set notat ion where the pointer i s the array name
* (b + 0) 1 0

* (b + 1) 2 0

* (b + 2) 3 0
* (b + 3) 4 0

(Continued on top o.f next page)

Fig. 5 .20 Referencing array elements with the array name and with pointers. (Part 2
of 3 .)

Chapter 5 Pointers and Stri ngs 347

(Continued from previous page)

Pointer subscript notat ion
bPtr [O] = 1 0
bPtr [l] = 2 0
bPtr [2] 3 0
bPtr [3] 4 0

Pointer / o f f s e t notat ion
* (bPtr + 0) 1 0
* (bPtr + 1) = 2 0
* (bPtr + 2) 3 0

* (bPtr + 3) = 4 0

Fig. 5.20 Referencing array elements with the array name and with pointers. (Part 3
of 3 .)

To further i l l ustrate the interchangeabi l i ty of arrays and pointers, let u s look at the two
string copying functions-copyl and copy2-in the program of Fig . 5 .2 1 . Both func
t ions copy a string i nto a character array . After a compari son of the function prototypes for
copyl and copy2 , the functions appear identical (because of the i nterchangeab i l ity of
arrays and pointers) . These functions accompl i sh the same task, but they are implemented
differentl y .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27

I I Fig . 5 . 2 1 : f i g 0 5_2 1 . cpp
I I Copying a string us ing array notat ion
I I and pointer notation .
inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

void copyl (char * , const char *) ;
void copy2 (char * , const char *) ;

int main ()

{
char s tringl [1 0] ;
char * s t ring2 = " He l l o " ;
char s t ring3 [1 0] ;
char string4 [] = " Good Bye " ;

copyl (stringl , string2) ;

I I prototype
I I prototype

cout « " st ringl = " « stringl « endl ;

copy2 (string3 , string4) ;
cout « " string3 = " « string3 « endl ;

return 0 ; I I indicates succe s s ful termination

I I end main

F ig . 5.2 1 String copying us ing array notation and pointer notation . (Part 1 of 2 .)

348 Pointers and Strings

28
29 I I copy s2 to sl us ing array notat ion
30 void copy1 (char * s l , const char * s 2)
3 1 {
32 for (int i = 0 ; (s l [i] = s2 [i]) ! = ' \ 0 ' ; i + +
33 1 / do nothing in body
34
35 } I I end funct ion copy1
36
37 I I copy s2 to s l using pointer notat ion

38 void copy2 (char * s l , const char * s2)
39 {
40 for (; (* s l = * s 2) ! = ' \ 0 ' ; 8 1 + + , s 2 + +)
4 1 I I do nothing i n body
42
43 } I I end funct ion copy2

I
string1 = He l l o

s t ring3 = Good Bye

Chapter 5

Fig. 5.2 1 Str ing copying using array notation and pointer notation . (Part 2 of 2 .)

Function copy1 (l i nes 30-35) uses array subscript notation to copy the string in s 2
t o the character array s l . The function dec lares a n integer counter variable i t o use a s the
array subscript. The for structure header (l ine 32) performs the entire copy operation-its
body is the empty statement. The header spec ifies that i i s i n i t ia l ized to zero and i ncre
mented by one on each i teration of the loop. The condition i n the for, (sl [i] =

s2 [i]) ! = ' \ 0 ' , performs the copy operation character by character from s 2 to s l .
When the nu l l character i s encountered in s2 , i t i s assigned t o s l , and the loop term inates ,
because the nul l character i s equal to ' \ 0 ' . Remember that the value of an assignment
statement is the value assigned to its left operand.

Funct ion copy2 (l i nes 38-43) uses pointers and poi nter arithmetic to copy the stri ng
in s2 to the character array s l . Agai n , the for structure header (l ine 40) performs the
ent ire copy operat ion. The header does not include any variable in i t ia l izat ion . As in func
tion copy1, the condi t ion (* s l = * s2) ! = ' \ 0 ' performs the copy operat ion. Pointer
s2 is dereferenced, and the resul t ing character i s assigned to the dereferenced pointer s l .
After the ass ignment i n the condit ion, the loop increments both pointers, s o they point to
the next e lement of array sl and the next character of string s 2 , respectively . When the
loop encounters the nu l l character i n s2 , the nu l l character is assigned to the dereferenced
pointer sl and the loop terminates . Note that the "increment portion" of thi s for structure
has two i ncrement expressions separated by a comma operator.

The first argument to both copy1 and copy2 must be an array l arge enough to hold
the string i n the second argument. Otherwise, an error may occur when an attempt i s made
to write i nto a memory location beyond the bounds of the array . A lso, note that the second
parameter of each function i s declared as const char * (a pointer to a character con
stant-i .e . , a constant string) . In both functions, the second argument i s copied i n to the first
argument-characters are copied from the second argument one at a t ime, but the charac
ters are never modified. Therefore, the second parameter is declared to point to a constant

Chapter 5 Pointers and Stri ngs 349

value to enforce the principle of least priv i lege-neither function needs to modify the
second argument, so neither function i s al lowed to modify the second argument .

5.9 Arrays of Pointers

Arrays may contai n pointers. A common use of such a data structure i s to form an array of
strings, referred to s imply as a string array. Each entry in the array is a string, but in C++
a string i s essential l y a pointer to its fi rst character, so each entry in an array of strings is
actual ly a pointer to the fi rst character of a string. Consider the dec laration of string array
sui t that might be usefu l in representing a deck of cards :

const char * suit [4] =
{ " Heart s " , " Diamonds " , " Clubs " , " Spade s " } ;

The sui t [4 1 portion of the dec laration indicates an array of four elements . The char *
port ion of the declaration indicates that each element of aJTay suit i s of type "pointer to
char." The four values to be placed i n the array are " Heart s " , " Diamonds " ,
" C lubs " and " Spades " . Each of these i s stored i n memory as a nu l l -terminated charac
ter string that is one character longer than the number of characters between quotes . The
four strings are seven, n ine, six and seven characters long, respect ively . A l though i t appeaJ's
as though these strings are being p laced in the suit array , only poi nters are actual ly stored
in the array, as shown in Fig. 5 .22 . Each pointer points to the fi rst character of its corre
sponding string . Thus, even though the suit array is fixed in s ize , it provides access to
chaJ'acter strings of any length. This flex ib i l i ty is one example of C++ ' s powerfu l data
structuring capab i l i t ies .

The sui t strings could be placed i nto a double-subscripted array i n which each row rep
resents one su i t and each column represents one of the letters of a su i t name. S uch a data
structure must have a fixed number of columns per row, and that number must be as l arge
as the largest string . Therefore, cons iderable memory is wasted when a large number of
stri ngs i s stored wi th most strings shorter than the longest string , We use arrays of strings
to help represent a deck of cards i n the next sect ion.

String aJTays are commonly used with command-line arguments that aJ'e passed to
function main when a program begins execut ion , Such arguments fol low the program
name when a program is executed from the command l ine . A typical use of command-l i ne

-
sui t [0 1 __ : +--l� I H I I ' e ' I I a I I I r I I I t I I ' s ' I ' \ 0 ' I

-
suit [1 1 : I D I I I i I I I a I I I m I I I 0 I I I n I I I d I I I S I I ' \ 0 ' I

-
sui t [2 1 � :t--l�I�C�' � I I�l�I�I�l u�l ll�l!b�I��l l s�lll�I �\�Oj' l

-
suit [3 1 � - t--l�I�S�' � I I�p�I�I�l a�l ll�l�d�I��l l e�lll�l�s�I�LI I�\�O�' 1

Fig. 5.22 Graphical representation of the sui t array .

350 Poi nters and Stri ngs Chapter 5

argu ments is to pass options to a program. For example, from the command l ine on a Win
dows computer, the user can type

dir I P

to l i st the contents of the current directory and pause after each screen of information. When
the dir command executes, the option IP i s passed to dir as a command-l ine argument .
Such arguments are p laced i n a string array that main recei ves as an argument. We discuss
command-l i ne arguments i n Section 2004 .

5. 1 0 Case Study: Card Shuffl ing and Deal ing Simulation

This section uses random-number generation to develop a card shuffling and dealing simula
tion program. Thi s program can then be used to i mplement programs that p lay specific card
games. To reveal some subtle performance problems, we have intentionall y used suboptimal
shuffling and dealing algorithms. In the exercises, we develop more efficient algorithms.

Using the top-down , stepwise-refinement approach, we develop a program that w i l l
shuffle a deck o f 52 playing cards and then deal each o f t h e 52 cards . The top-down
approach i s particularly usefu l in attacking larger, more complex problems than we have
seen in the early chapters .

We use a 4-by- 1 3 double-subscripted array deck to represent the deck of p lay ing
cards (F ig . 5 .23) . The rows correspond to the suits-row 0 corresponds to hearts , row 1 to
diamonds, row 2 to c lubs and row 3 to spades. The columns correspond to the face values
of the cards-columns 0 through 9 correspond to faces ace through 1 0, respective ly , and
columns 1 0 through 1 2 correspond to j ack, queen and king, respectively . We shall l oad
string array suit with character strings representing the four suits and string array face
with character strings representing the 1 3 face values.

This s imulated deck of cards may be shuffled as fol lows . First the array deck is in i
t ial ized to zeros . Then, a row (0-3) and a column (0- 1 2) are each chosen a t random. The
n umber 1 i s i nserted in array element deck [row] [column] to indicate that this card
is going to be the first one dealt from the shuffled deck. This process continues wi th the
n umbers 2 , 3, . . . , 52 being randomly inserted in the deck array to indicate which cards are

Hearts

Diamonds

C l u bs

Spades

Q) 0 u 3 « >--
0 1

� I I I

Q)
f!!

.c >--
2

� Q)
0 > x

l.L u::: U5
3 4 5

c c
+- Q) Q) Q) � Q) .c u OJ > OJ C C ::J C Q) Z Q) 0 Cll (J) iIi >-- -, 52

6 7 8 9 1 0 1 1 1 2

deck [2] [12] represents the King of C l u bs

/ "
Clubs King

Fig. 5.23 Double-subscripted array representation of a deck of cards.

Chapter 5 Pointers and Str ings 35 1

to be placed second, third, . . . , and 52nd in the shuffled deck. As the deck array begin s to
fi l l wi th card numbers, i t i s possible that a card w i l l be selected twice (i .e . ,
deck [row] [colwnn] w i l l be nonzero when i t i s selected) . Th i s selection i s s imply
ignored, and other rows and colwnns are repeatedly chosen at random unt i l an unselected
card i s found . Eventual ly , the numbers l through 52 w i l l occupy the 52 s lots of the deck
array . At th is po in t , the deck of cards i s fu l l y shuffled.

Thi s shuffl i ng algorithm could execute for an i ndefi n itely long period if cards that have
already been shuffled are repeatedly selected at random . Thi s phenomenon i s known as
indefinite postponement. In the exerc i ses , we discuss a better shuffl ing algorithm that e l im
inates the possib i l i ty of indefi n i te postponement.

Performance Tip 5.3
Sometimes algorithms that emerge in a "natural " way can contain subtle performance prob

lems such as indefinite postponement. Seek algorithms that avoid indefinite postponement.

To deal the first card, we search the array for deck [row] [colwnn] matching 1 .
This i s accompl ished with a nested for structure that varies row from 0 t o 3 and colwnn
from 0 to 1 2 . What card does that s lot of the array correspond to? The sui t array has been
preloaded with the four suits, so to get the suit, we print the character string suit [row] .

Simi larly, to get the face value of the card, we print the character string face [colwnn] .
We also print the character string " of " . Printing this information i n the proper order enables
us to print each card in the form " King of Clubs " , "Ace of Diamonds " and so on.

Let us proceed wi th the top-down, stepwise-refinement process . The top i s s imply

Shuffle and deal 52 cards

Our first refinement yie lds

Initialize the suit array

Initialize the face array

Initialize the deck array

Shuffle the deck

Deal 52 cards

"Shuffle the deck" may be expanded as fol lows :

For each of the 52 cards

Place card number in randomly selected unoccupied slot of deck

"Deal 52 cards" may be expanded as fol lows :

For each of the 52 cards

Find card number in deck array and print face and suit of card

I ncorporat ing these expansions y ie lds our complete second refinement :

Initialize the suit array

In itialize the face array

In itialize the deck array

For each of the 52 cards

Place card number in randomly selected unoccupied slot of deck

For each of the 52 cards

Find card number in deck array and print face and suit of card

352 Pointers and Strings Chapter 5

"Place card number i n randomly selected unoccupied s lot of deck" may be expanded
as fol lows:

Choose slot of deck randomly

While chosen slot of deck has been previously chosen

Choose slot of deck randomly

Place card number in chosen slot of deck

"Find card number in deck array and print face and suit of card" may be expanded as fol lows:

For each slot of the deck array

If slot contains card n umber

Print the face and suit of the card

I ncorporating these expans ions yields our th i rd refinement :

Initialize the suit array

Initialize the face array

Initialize the deck array

For each of the 52 cards

Choose slot of deck randomly

While slot of deck has been previously chosen

Choose slot of deck randomly

Place card number in chosen slot of deck

For each of the 52 cards

For each slot of deck array

ff slot contains desired card number

Print the face and suit of the card

This completes the refinement process. Figure 5 .24 contain s the card shuffl ing and
deal ing program and a sample execution. Note the output formatting (l i nes 8 1 -84) used i n
function deal . The output statement causes the face to be output right j ustified i n a fie ld of
five characters and the suit to be output left j ustified in a field of eight characters . The output
i s printed in two-column format-if the card being output i s in the fi rst column (l ine 84), a
tab is output after the card to move to the second column ; otherwise, a newl i ne is output.

1 I I Fig . 5 . 2 4 : f i g 0 5_2 4 . cpp
2 I I Card shu f f l ing deal ing program .
3 #inc lude < iostream>

4
5 us ing std : : cout ;
6 us ing std : : left ;
7 us ing std : : right ;
8
9 # inc lude < i omanip>

1 0
1 1 us ing std : : setw;
1 2

F ig. 5 .24 Cord shuff l ing and deal ing program . (Part 1 of 3 .)

Chapter 5 Pointers and Strings 353

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

#inc lude < c stdl ib> II prototypes for rand and srand

#inc lude < c t ime > II prototype for t ime

II prototypes
void shu f f l e (int [] [13]) ;
void deal(const int [] [13] , const char * [] , const char * []) ;

int main ()
{

II ini t i a l i z e suit array
const char * suit [4] =

{ " Heart s " , " Diamonds " , "Clubs " , " Spade s " } ;

II init i a l i z e face array
const char * face [13] =

{ " Ace " , " Deuce " , " Three " , " Four " ,
IIFive " , " Six " , " Seven " , " Eight " ,
" Nine " , " Ten " , " Jack " , " Queen " , " King " } ;

II init i a l i z e deck array

int deck [4] [13] = { 0 } ;

srand(t ime (0) ; II seed random-number generator

shu f f l e (deck) ;
deal (deck , fac e , suit) ;

return 0 ; II indicates successful terminat ion

II end main

II shu f f l e cards in deck
void shu f f le(int wDeck [] [13])

{
int row ;

int column ;

II for each of the 52 cards , choose s lot of deck randomly
for (int card 1; card <= 52; card+ +) {

II choose new random locat ion unt i l unoccupied s lot found

do {
row = rand() % 4 ;
column = rand() % 13;

} whi l e (wDeck [row] [column ! = 0) ; II end dolwhi l e

I I place card number i n chosen s l ot o f deck
wDeck [row] [column] = card ;

II end for

II end funct i on shu f f l e

Fig. 5.24 Card shuffl ing and deal ing program. (Part 2 of 3.)

354 Pointers and Strings

65
66 II deal cards in deck

67 void dea1(canst int wDeck [] [13] , canst char *wFace [] ,
68 canst char *wSuit [])
69
70 II for each of the 52 cards

71 for (int card = 1; card <= 52; card++

72
73 II loop through rows of wDeck
74 for (int row = 0 ; row <= 3; row+ +

75

Chapter 5

76 II loop through columns of wDeck for current row

77 for (int column = 0 ; column <= 12; co1umn + +

78
79 II i f s lot contains current card, display card
80 if (wDeck [row] [column] == card) {
81 cout « setw(5) « right « wFace [column
82 « .. of .. « setw(8) « left

83 « wSuit[row]

84 « (card % 2 == 0 ? ' \n ' : ' \t ') ;
85
86 } II end i f

87
88 } II end funct ion deal

Nine of Spades Seven

Five o f Spades Eight

Queen o f Diamonds Three

Jack o f Spades Five

Jack of Diamonds Three

Three of Clubs Six

Ten of Clubs Nine

Ace of Hearts Queen

Seven o f Spades Deuce

Six of Hearts Deuce

Ace o f Clubs Deuce

Nine of Hearts Seven

Six of Spades Eight

Ten of Spades King
Four of C lubs Ace

Ten o f Hearts Four

Eight of Hearts Eight

Jack of Hearts Ten

Four of Diamonds King

Seven o f Hearts King

Queen of Spades Four

Nine of Clubs Six

Deuce of Hearts Jack

K ing of Clubs Three

Queen o f Clubs Five

Five o f Hearts Ace

of Clubs

of Clubs

of Hearts

of Diamonds

of Diamonds
of Clubs

of Diamonds

of Heart s
of Spades
of Clubs
of Diamonds

of Diamonds

of Diamonds

of Heart s
of Spade s
of Spades
of Spades

of Diamonds

of Diamonds
of Spade s
of Heart s
of Diamonds
of Clubs

of Spades

of Clubs
of Diamonds

Fig. 5.24 Card shuffl ing and deal ing program . (Part 3 of 3.)

Chapter 5 Pointers and Strings 355

There is also a weakness in the dealing algorithm. Once a match is found, even if it is

found on the first try, the two inner for structures continue searching the remaining ele

ments of deck for a match. In the exercises, we conect this deficiency.

5.11 Function Pointers

A pointer to a function contains the address of the function in memory. In Chapter 4, we

saw that an anay name is really the address in memory of the first element of the anay. Sim

ilarly, a function name is really the starting address in memory of the code that performs

the function's task. Pointers to functions can be passed to functions, returned from func

tions, stored in arrays and assigned to other function pointers.

Multipurpose Bubble Sort Using Function Pointers

To illustrate the use of pointers to functions, Fig. 5.25 modifies the bubble sort program of

Fig. 5.15. Figure 5.25 consists of main (lines 19-57) and the functions bubble (lines

61-74), swap (lines 78-84), ascending (lines 88-92) and descending (lines 96-

100). Function bubble receives a pointer to a function-either function ascending or

function descending-as an argument in addition to an integer array and the size of the

array. Functions ascending and descending determine the sorting order. The pro

gram prompts the user to choose whether the array should be sorted in ascending order or

in descending order. If the user enters 1, a pointer to function ascending is passed to

function bubble (line 38), causing the array to be sorted into increasing order. If the user

enters 2, a pointer to function descending is passed to function bubble (line 45), caus

ing the array to be sorted into decreasing order.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

II Fig . 5.25: f ig05_25. cpp

II Mult ipurpose sort ing program us ing func t i on pointers .
#inc lude < iostream>

us ing std::cout ;
us ing std: :c in;
us ing std::endl ;

#inc lude < iomanip>

us ing std::setw ;

II prototypes

void bubble (int [] , const int , bool (*) (int , int)) ;
void swap(int * const , int * const) ;
bool ascending (int , int) ;
bool descending (int , int) ;

int main ()
{

const int arrayS i ze 1 0 ;
int orde r ;
int counte r ;

int a [arraySiz e] = { 2 , 6 , 4 , 8 , 1 0 , 1 2 , 8 9 , 6 8 , 45 , 37 } ;

Fig. 5.25 Mult ipurpose sort ing program using function pointers. (Part 1 of 3.)

356 Pointers and Strings

25
26 cout « " Enter 1 to sort in ascending order , \n "
27 « " Enter 2 to sort in descending order: " ;

28 cin » order;

29 cout « " \nData i tems in original order\n " ;

30
31 II output original array

32 for (counter = 0 ; counter < arraySi z e; counter++)
33 cout « setw{ 4) « a(counter] ;

34

Chapter 5

35 II sort array in ascending orde r ; pass funct ion ascending

36 II as an argument to spe c i fy ascending sort ing order

37 if (order == 1) {
38 bubble { a , arraySize , ascending) ;

39 cout « " \nData items in ascending order\n " ;

40 }
41
42 II sort array in descending order; pa s s funct ion descending

43 II as an agrument to spec i fy descending sort ing order
44 e lse {
45 bubbl e { a, arraySize, descending) ;
46 cout « " \nData items in descending order\n " ;

47
48
49 II output sorted array
50 for (counter = 0 ; counter < arraySi z e; counter++)

51 cout « setw{ 4) « a(counter] ;

52
53 cout « endl;

54
55 return 0 ; II indicates successful terminat ion

56
57 II end main
58
59 II mUl t ipurpose bubble sort; parameter compare i s a pointer to

60 II the comparison funct ion that determines sort ing order

61 void bubble{ int work(] , const int s i z e ,
62 bool (*compare) { int , int))

63 {
64 II loop to control passes
65 for (int pas s = 1; pas s < s i z e; pas s + +)

66
67 II loop to control number of comparisons per pass
68 for (int count = 0 ; count < s i z e - 1 ; count + +)

69
70 II if adj acent elements are out of orde r , swap them
71 if { (*compare) (work(count] , work(count + 1]))

72 swap { &work(count] , &work(count + 1]) ;

73
74 } II end funct ion bubbl e
75

Fig. 5.25 Mult ipurpose sorting program using function pointers. (Part 2 of 3.)

Chapter 5 Pointers and Strings

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

II swap values at memory locat ions to which

II e lement 1ptr and e lement2ptr point

void swap (int * const element 1pt r , int * const e l ement2ptr)

{
int hold = *e l ement 1Pt r ;

*element 1ptr *element 2 Ptr ;
*element 2 ptr = hold;

} II end funct ion swap

II det ermine whether e lements are out of order

II for an ascending order sort

bool ascending (int a, int b)

{
return b < a ; II swap i f b i s less than a

II end funct ion ascending

II det ermine whether e l ement s are out of order

II for a des cending order sort
bool des cending (int a, int b)

{
return b > a ; II swap i f b is greater than a

} II end func t ion descending

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 1

Data items in original order
2 6 4 8 1 0 12 89 68 45 37

Data items in ascending order

2 4 6 8 1 0 12 37 45 68 89

Enter 1 to sort in ascending order ,

Enter 2 to sort in de scending order: 2

Dat a items in original order
2 6 4 8 1 0 12 89 68 45 37

Data items in descending order
89 68 45 3 7 1 2 1 0 8 6 4 2

Fig. 5.25 Multipurpose sorting program using function pOinters. (part 3 of 3.)

The following parameter appears in the function header for bubble:

bool (*compare) (int , int)

357

This tells bubble to expect a parameter that is a pointer to a function that receives two

integer parameters and returns a bool result. Parentheses are needed around *compare

to indicate that compare is a pointer to a function. If we had not included the parentheses,

the declaration would have been

358 Pointers and Strings Chapter 5

boo! * compare (int , int)

which declares a function that receives two integers as parameters and returns a pointer to

a bool value.

The corresponding parameter in the function prototype of bubble is

boo! (*) (int , int)

Note that only types have been included. However, for documentation purposes, the pro

grammer can include names that the compiler will ignore.

The function passed to bubble is called in line 71 as follows:

(*compare) (work [count] , work [count + 1])

Just as a pointer to a variable is dereferenced to access the value of the variable, a pointer

to a function is dereferenced to execute the function.

The call to the function could have been made without dereferencing the pointer, as in

compare (work [count] , work [count + 1])

which uses the pointer directly as the function name. We prefer the first method of calling

a function through a pointer, because it explicitly illustrates that compare is a pointer to

a function that is dereferenced to call the function. The second method of calling a function

through a pointer makes it appear as though compare is the name of an actual function in

the program. This may be confusing to a user of the program who would like to see the def

inition of function compare and finds that it is never defined in the file.

Arrays of Pointers to Functions

One use of function pointers is in menu-driven systems. The program prompts a user to se

lect an option (e.g., from 1 to 5) from a menu. Each option is serviced by a different func

tion. Pointers to each function are stored in an array of pointers to functions. In this case,

all the functions to which the array points must have the same return type and same param

eter types. The user's choice is used as a subscript into the array of function pointers, and

the pointer in the array is used to call the function.

Figure 5.26 provides a generic example of the mechanics of declaring and using an array

of pointers to functions. Three functions are defined-functionl, function2 and

function3-that each take an integer argument and do not return a value. Line 18 stores

pointers to these three functions in array f. The declaration is read beginning in the leftmost

set of parentheses as, "f is an array of three pointers to functions that each take an int as an

argument and return void." The array is initialized with the names of the three functions

(which, again, are pointers). When the user enters a value between 0 and 2, the value is used

as the subscript into the array of pointers to functions. Line 30 invokes one of the functions

in array f. In the call, f [choice] selects the pointer at location choice in the array. The

pointer is dereferenced to call the function, and choice is passed as the argument to the

function. Each function prints its argument's value and its function name to indicate that the

function is called correctly. In the exercises, you will develop a menu-driven system.

1 II Fig. 5.26: f i g 0 5_26.cpp
2 II Demonstrating an array of pointers to funct ions .

Fig. 5.26 Array of pointers to functions. (Part 1 of 3.)

Chapter 5

3 #inc lude <iostream>
4
5 us ing std: : cout;
6 us ing std: : c in;

7 us ing std: : endl;
8
9 II funct ion prototypes

10 void func t i onl (int);

11 void funct i on2 (int);

12 void funct i on3 (int);
13
14 int main ()
15 {

Pointers and Strings

16 II ini t i a l i ze array of 3 pointers to funct ions that each

17 II take an int argument and return void

359

18 void (* f[3]) (int) = { funct ionl, funct ion2, function3 } ;
19
20 int choice;
21
22 cout « " Enter a number between 0 and 2, 3 to end: " ;

23 cin » choice;

24
25 II proce s s user ' s choice

26 whi le (choice >= 0 && choice < 3) {
27
28 II invoke funct ion at locat ion choice in array f

29 II and pass choice as an argument

30 (*f[choice]) (choice) ;
31
32 cout « " Enter a number between 0 and 2, 3 to end: " ;

33 cin » choice;

34
35
36 cout « " Program execution completed . " « endl;
37
38 return 0; II indicates successful terminat ion
39
40 } II end main

41
42 void funct ionl (int a)
43
44 cout « " You entered " « a

45 « " so func t ionl was cal led\n\n " ;
46
47 } II end funct ionl
48
49 void func t ion2 (int b)
50 {
51 cout « " You entered " « b
52 « " so funct ion2 was cal led\n\n " ;
53
54 } II end funct ion2
55

Fig. 5.26 Array of painters to functions. (Part 2 of 3.)

360 Pointers and Strings

56 void function3 (int c)
57 {
58 cout « " You entered " « c
59 « " so function3 was cal led\n\n " ;
60
61 } / I end funct ion3

Enter a number between 0 and 2, 3 to end: 0

You entered 0 so funct ion1 was called

Enter a number between 0 and 2, 3 to end: 1
You entered 1 so func t ion2 was called

Enter a number between 0 and 2 , 3 to end: 2
You entered 2 so function3 was cal led

Enter a number between 0 and 2, 3 to end: 3

Program execut ion completed .

Fig. 5.26 Array of pointers to functions. (Part 3 of 3.)

5.12 Introduction to Character and String Processing

Chapter 5

In this section, we introduce some common standard library functions that facilitate string

processing. The techniques discussed here are appropriate for developing text editors, word

processors, page layout software, computerized typesetting systems and other kinds of text

processing software. We use pointer-based strings here. Chapter 8 introduces strings as

full-fledged objects, and Chapter IS explains strings as full-fledged objects in detail.

5.12.1 Fundamentals of Characters and Strings

Characters are the fundamental building blocks of C++ source programs. Every program is

composed of a sequence of characters that-when grouped together meaningfully-is in

terpreted by the compiler as a series of instructions used to accomplish a task. A program

may contain character constants. A character constant is an integer value represented as a

character in single quotes. The value of a character constant is the integer value of the char

acter in the machine's character set. For example, I z I represents the integer value of z

(122 in the ASCII character set; see Appendix B), and I \n I represents the integer value

of newline (10 in the ASCII character set).

A string is a series of characters treated as a single unit. A string may include letters,

digits and various special characters such as +, -, *, land $. String literals, or string con

stants, in C++ are written in double quotation marks as follows:

" John Q. Doe "
" 9 9 9 9 Main Street "
" Maynard , Mas sachusett s "
" (2 0 1) 5 5 5 - 12 12 "

(a name)
(a street address)
(a city and state)
(a telephone number)

A string in C++ is an array of characters ending in the null character (, \ 0 '), which

specifies where the string terminates in memory. A string is accessed via a pointer to the

first character in the string. The value of a string is the (constant) address of its first char-

Chapter 5 Pointers and Strings 361

acter. Thus, in C++, it is appropriate to say that a string is a constant pointer-in fact, a

pointer to the string's first character. In this sense, strings are like arrays, because an array

name is also a (constant) pointer to its first element.

A string may be assigned in a declaration to either a character array or a variable of

type char *. The declarations

char color [] = " blue " ;
const char *colorptr = " blue " ;

each initialize a variable to the string "blue". The first declaration creates a five-element

array color containing the characters ' b' , ' 1 ', ' u' , ' e' and ' \ 0' . The second dec

laration creates pointer variable colorptr that points to the letter b in the string "blue"

somewhere in memory.

fI Portability Tip 5.5
When a variable of type char * is in itialized with a string literal, some compilers may place

the string in a location in memory where the string cannot be modified. If a string literal must

be modified in a program, it should be stored in a character array to ensure modifiability on

all systems.

The declaration char color [] = "blue"; could also be written

char color [] = { , b ' I ' 1 ' I ' u " ' e " ' \ 0' } ;

When declaring a character array to contain a string, the array must be large enough to store

the string and its terminating null character. The preceding declaration determines the size

of the array, based on the number of initializers provided in the initializer list.

Common Programming Error 5.15
Not allocating sufficient space in a character array to store the null character that terminates

a string is an error.

Common Programming Error 5.16
Creating or using a "string" that does not contain a terminating null character is an error.

When storing a string of characters in a character array, be sure that the array is large

enough to hold the largest string that will be stored. C++ allows strings of any length to be

stored. If a string is longer than the character array in which it is to be stored, characters

beyond the end of the array will overwrite data in memory following the array.

A string can be stored in an array using stream extraction with cin. For example, the

following statement can be used to store a string to character array word [20] :

cin » word ;

The string entered by the user is stored in word. The preceding statement reads characters

until a whitespace character or end-of-file indicator is encountered. Note that the string

should be no longer than 19 characters to leave room for the terminating null character. The

setw stream manipulator introduced in Chapter 2 can be used to ensure that the string read

into word does not exceed the size of the array. For example, the statement

362 Pointers and Strings Chapter 5

cin » setw (20) » word;

specifies that cin should read a maximum of 19 characters into an-ay word and save the

20th location in the array to store the terminating null character for the string. The setw

stream manipulator applies only to the next value being input.

In some cases, it is desirable to input an entire line of text into an array. For this pur

pose, C++ provides the function cin.getline. The cin.getline function takes

three arguments-a character array in which the line of text will be stored, a length and a

delimiter character. For example, the program segment

char sentence[80] ;

cin . get l ine (sentenc e , 80 , ' \n ') ;

declares array sentence of 80 characters and reads a line of text from the keyboard into

the array. The function stops reading characters when the delimiter character' \n' is en

countered, when the end-of-file indicator is entered or when the number of characters read

so far is one less than the length specified in the second argument. (The last character in the

array is reserved for the terminating null character.) If the delimiter character is encoun

tered, it is read and discarded. The third argument to cin. getline has' \n' as a default

value, so the preceding function call could have been written as follows:

c in . getl ine (sentence , 80) ;

Chapter 12, Stream Input/Output, provides a detailed discussion of cin. get line and

other input/output functions.

� Common Programming Error 5.17
Processing a single character as a string can lead to a fatal runtime error. A string is a point

er-probably a respectably large integer. However, a character is a small integer (ASCII

values range 0-255). On many systems, this causes an error, because low memory addresses

are reserved for special purposes such as operating system interrupt handlers-so "access

violations" occur.

� Common Programming Error 5.18
� Passing a string as an argument to a function when a character is expected is a syntax error.

5.12.2 String Manipulation Functions of the String-Handling Library

The string-handling library provides many useful functions for manipulating string data,

comparing strings, searching strings for characters and other strings, tokenizing strings

(separating strings into logical pieces) and determining the length of strings. This section

presents some common string-manipulation functions of the string-handling library (from

the C++ standard library). The functions are summarized in Fig. 5.27. The prototypes for

these functions are located in header file <cstring>.

Note that several functions in Fig. 5.27 contain parameters with data type size_to

This type is defined in the header file <cstring> to be an unsigned integral type such as

unsigned int or unsigned long.

Common Programming Error 5.19
Forgetting to include the <cstring> header file when using functions from the string han

dling library causes compilation errors.

Chapter 5 Pointers and Strings 363

Function prototype Function description

char * st rcpy{ char * sl , canst char * s 2) ;

Copies the string s 2 i nto the character array sl. The value of sl i s

returned.

char * strncpy{ char * sl , canst char * s 2 , s i z e_t n) ;

Copies at most n characters of the string s 2 i nto the character array

sl. The value of sl is returned.

char * st rcat{ char * sl , canst char * s 2) ;

Appends the string s 2 to the string sl. The fi rst character of s 2 over

writes the termi nating nu ll character of s 1 . The value of sl is returned.

char * st rncat{ char * sl , canst char * s 2 , s i z e_t n) ;

Appends at most n characters of string s2 to string sl. The first char

acter of s2 overwrites the terminat ing nu ll character of sl. The value

of sl i s returned.

int strcmp (canst char * sl , canst char * s2) ;

Compares the string sl with the string s 2 . The funct ion returns a value

of zero, less than zero or greater than zero if sl i s equal to, less than or

greater than s 2 , respectively.

int strncmp (canst char * sl , canst char * s 2 , s i z e_t n) ;

Compares up to n characters of the string sl with the string s 2 . The

function returns zero, less than zero or greater than zero i f the n-charac

ter port ion of sl is equal to, less than or greater than the corresponding

n-character port ion of s2, respectively.

char * strtak (char * sl , canst char * s 2) ;

A sequence of calls to strtak breaks string sl into "tokens"-Iogical

pieces such as words i n a l i ne of text---del i m i ted by characters contained

in string s 2 . The first call contains sl as the first argument, and subse

quent cal l s to continue tokenizing the same string contain NULL as the

first argument. A pointer to the current token i s returned by each cal l . If

there are no more tokens when the function is cal led, NULL i s returned.

s i z e_t st rlen (canst char *s) ;

Determines the length of string s . The number of characters precedi n g

the termi nating nu l l character i s returned.

Fig. 5 .27 String-manipu lation functions of the string-hand l ing l ibrary .

Copying Strings with strcpyand strncpy

Function strcpy copies its second argument-a string-into its first argument-a char

acter array that must be large enough to store the string and its terminating null character,

(which is also copied). Function strncpy is equivalent to strcpy, except that

strncpy specifies the number of characters to be copied from the string into the array.

Note that function strncpy does not necessarily copy the terminating null character of its

second argument-a terminating null character is written only if the number of characters

364 Pointers and Strings Chapter 5

to be copied is at least one more than the length of the string. For example, if "test" is

the second argument, a terminating null character is written only if the third argument to

strncpy is at least 5 (four characters in "test" plus one terminating null character). If

the third argument is larger than 5, null characters are appended to the array until the total

number of characters specified by the third argument is written.

� Common Programming Error 5.20
Not appending a terminating null character to the first argument of a strncpy (in a state

ment after the strncpycall) when the third argument is less thall or equal to the length of

the string in the second argument can cause fatal run-time errors.

Figure 5.28 uses strcpy (line 16) to copy the entire string in array x into array y and

uses strncpy (line 22) to copy the first 14 characters of array x into array z. Line 23

appends a null character (, \ 0 ,) to array z, because the call to strncpy in the program

does not write a termjnating null character. (The third argument is less than the string length

of the second argument plus one.)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

The
The
The

II Fig. 5.28: f i g 0 5_2 8 . cpp

// Us ing strcpy and strncpy .

#inc lude <iostream>

us ing std::cout ;

us ing std::endl ;

#inc lude <cstring> /1 prototypes for strcpy and strncpy

int main ()
{

char x [] " Happy Birthday to You " ;

char y [25] ;

char z [15] ;

strcpy (y , x) ; /1 copy content s of x into y

cout « " The string in array x i s: " « x
« " \nThe string in array y is: " « y « ' \n ' ;

/1 copy f irst 14 characters of x into z

st rncpy (z , x , 14); // does not copy nul l character

z [14] = ' \0' ; // append ' \0 ' to z's content s

cout « " The string in array z is: " « z « endl ;

return 0 ; // indicates succe s s ful terminat ion

} // end main

string in array x i s: Happy Birthday to You

string in array y i s: Happy Birthday to You

string in array z i s: Happy Birthday

Fig. 5 .28 strcpy and strncpy.

Chapter 5 Pointers and Strings 365

Concatenating Strings with strcat and strncat

Function strcat appends its second argument (a string) to its first argument (a character

array containing a string). The first character of the second argument replaces the null char

acter (, \ 0 ,) that terminates the string in the first argument. The programmer must ensure

that the array used to store the first string is large enough to store the combination of the first

string, the second string and the terminating null character (copied from the second string).

Function strncat appends a specified number of characters from the second string to the

first string and appends a terminating null character to the result. The program of Fig. 5.29

demonstrates function strcat (lines 18 and 29) and function strncat (line 24).

Comparing Strings with strcmp and strncmp

Figure 5.30 compares three strings using strcmp (lines 22, 24 and 25) and strncmp

(lines 28, 29 and 3 1). Function strcmp compares its first string argument with its second

string argument character by character. The function returns zero if the strings are equal, a

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

// Fig. 5.29: f ig 0 5_29.cpp

II Us ing s t rcat and strncat.

#inc lude <iostream>

uaing atd: : cout ;
uaing atd: : endl ;

#inc lude <cst ring> II prototypes for atrcat and s t rncat

int main ()

{
char s l [20] = " Happy " ;

char s2 [] = " New Year " ;
char s 3 [40 " " ;

cout « " a 1 " « s l « " \ns2 = " « s2 ;

atrcat (a 1 , a2) ; 1 / concatenate a2 to sl

cout « U\n\nAfter atrcat (s l , s2) : \na1 = " « s l
« " \na2 = " « s2 ;

// concatenate f i rs t 6 characters of sl to s3

strncat (a3 , a1 , 6) ; 1/ places '\0' a fter laat character

cout « " \n\nAfter atrncat (a 3 , a1, 6) : \na1 = " « a 1
« " \na3 = " « s3 ;

atrcat (a3 , s l) ; // concatenate a 1 to a3

cout « " \n\nAfter atrcat (a3 , a 1): \na1 " « s l
« " \na3 = " « a3 « endl ;

return 0 ; II indicates succ e s s ful terminat ion

} // end main

Fig. 5.29 strcat and strncat. (Part 1 of 2.)

366 Pointers and Strings

sl Happy
s2 New Year

After strcat (sl , s2) :

sl Happy New Year

s2 = New Year

After strncat (s 3 , sl , 6) :

sl Happy New Year
s3 = Happy

After strcat (s 3 , sl) :
sl = Happy New Year

s3 = Happy Happy New Year

Fig. 5.29 strcat and strncat. (Part 2 of 2.)

Chapter 5

negative value if the first string is less than the second string and a positive value if the first

string is greater than the second string. Function strncmp is equivalent to strcmp, ex

cept that strncmp compares up to a specified number of characters. Function strncmp

stops comparing characters if it reaches the null character in one of its string arguments.

The program prints the integer value returned by each function call.

Fig. 5.30 strcmp and strncmp. (Part 1 of 2.)

Chapter 5 Pointers and Strings

cout « II \n\ns trncmp (sl, s3, 6) = II « setw (2

« strncmp (sl, s3, 6) « " \nstrncmp (sl, s 3 ,

« setw (2) « strncmp (sl, s3, 7)

« " \nstrncmp (s3, sl, 7) = II

27
28
29
30
31
32

« setw (2) « strncmp (s3, sl, 7 « endl;

33 return 0; II indicates succ e s s ful term inat ion

34
35 II end main

sl = Happy New Year

s2 = Happy New Year

s 3 Happy Hol idays

strcmp{sl, s2) 0

strcmp (sl, s3) = 1

strcmp{s3, sl) - 1

strncmp{sl, s3, 6)

strncmp{sl, s3, 7)
strncmp{s3, sl, 7)

= 0

1
- 1

Fig. 5.30 strcmp and strncmp. (Part 2 of 2.)

Common Programming Error 5.21

7)

367

Assuming that strcmp and strncmp return one (a true value) when their arguments are

equal is a logic error. Both functions return zero (C++ 's false value) for equality. Therefore,

when testing two strings for equality, the result of the strcmp or strncmpfunction should

be compared with zero to determine whether the strings are equal.

To understand just what it means for one string to be "greater than" or "less than" another

string, consider the process of alphabetizing a series of last names. The reader would, no

doubt, place "Jones" before "Smith," because the first letter of "Jones" comes before the first

letter of "Smith" in the alphabet. But the alphabet is more than just a list of 26 letters-it is

an ordered list of characters. Each letter occurs in a specific position within the list. "z" is

more than just a letter of the alphabet; "z" is specifically the 26th letter of the alphabet.

How does the computer know that one letter comes before another? All characters are

represented inside the computer as numeric codes; when the computer compares two

strings, it actually compares the numeric codes of the characters in the strings.

In an effort to standardize character representations, most computer manufacturers

have designed their machines to utilize one of two popular coding schemes-ASCII or

EBCDIC. ASCII stands for "American Standard Code for Information Interchange," and

EBCDIC stands for "Extended Binary Coded Decimal Interchange Code." There are other

coding schemes, but these two are the most popular.

ASCII and EBCDIC are called character codes, or character sets. Most readers of this

book will be using desktop or notebook computers that use the ASCII character set. IBM

mainframe computers use the EBCDIC character set. As Internet and World Wide Web usage

becomes pervasive, the newer Unicode character set is growing rapidly in popularity. For

more information on Unicode, visit www.unicode. org. String and character manipula-

368 Pointers and Strings Chapter 5

tions actually involve the manipulation of the appropriate numeric codes and not the charac

ters themselves. This explains the interchangeability of characters and small integers in C++.

Since it is meaningful to say that one numeric code is greater than, less than or equal to

another numeric code, it becomes possible to relate various characters or strings to one

another by referring to the character codes. Appendix B contains the ASCII character codes.

fI Portability Tip 5.6
The internal numeric codes used to represent characters may be different on different com

puters, because these computers may use different character sets.

fI Portability Tip 5.7
Do not explicitly test for ASCII codes, as in if (rating == 65) ; rather, use the corre

sponding character constant, as in if (rating == 'A') .

Tokenizing a String with strtok

Function strtok breaks a string into a series of tokens. A token is a sequence of characters

separated by delimiting characters (usually spaces or punctuation marks). For example, in

a line of text, each word can be considered a token, and the spaces separating the words can

be considered delimiters.

Multiple calls to strtok are required to break a string into tokens (assuming that the

string contains more than one token). The first call to strtok contains two arguments, a

string to be tokenized and a string containing characters that separate the tokens (i.e., delim

iters). Line 19 in Fig. 5.31 assigns to tokenPtr a pointer to the first token in sentence.

The second argument, " ", indicates that tokens in sentence are separated by spaces.

Function strtok searches for the first character in sentence that is not a delimiting

character (space). This begins the first token. The function then finds the next delimiting

character in the string and replaces it with a null (, \ 0 ,) character. This terminates the cur

rent token. Function strtok saves a pointer to the next character following the token in

sentence and returns a pointer to the current token.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

II Fig . 5 . 31: f ig05_31.cpp

II Us ing strtok.

#inc lude <iostream>

us ing std: : cout ;
us ing std::endl ;

#inc lude <c string> II prototype for strtok

int main ()
{

char sentence []
char * t okenPtr ;

" This i s a sentence with 7 tokens " ;

cout « " The string to be tokenized i s: \n " « sentence
< < " \n \nThe tokens are: \n \n " ;

Fig. 5.31 strtok. (Part 1 of 2.)

Chapter 5

18 II begin token i z at ion of sentence

19 tokenptr = strtok (sentence , " ") ;

20

Pointers and Strings 369

21 II cont inue token i z ing sentence unt i l tokenptr become s NULL

22 whi l e (tokenptr ! = NULL) {
23 cout « tokenptr « ' \n ' ;

24 tokenpt r = st rtok (NULL, " ") ; I I get next t oken
25
26 II end whi le
27
28 cout « " \nAfter strtok, sentence = " « sentence « endl ;

29
30 return 0 ; II indicates succe s s ful terminati on

31
32 } 1/ end ma in

The string to be tokeni zed i s:
Thi s i s a sentence with 7 tokens

The tokens are:

Thi s

i s

a

sentence

with

7
tokens

After strtok, sentence = Thi s

Fig. 5.31 strtok. (Part 2 of 2.)

Subsequent calls to strtok to continue tokenjzing sentence contain NULL as the

first argument (ljne 24). The NULL argument indicates that the call to strtok should con

tinue tokenizing from the location in sentence saved by the last call to strtok. Note that

strtok maintajns this saved information in a manner that is not visible to the programmer.

If no tokens remajn when strtok is called, strtok returns NULL. The program of

Fig. 5.31 uses strtok to tokenize the string "This is a sentence wi th 7 tokens".

The program prints each token on a separate line. Line 28 outputs sentence after tokeni

zatjon. Note that strtok modifies the input string; therefore, a copy of the string should be

made if the program requires the original after the calls to strtok. When sentence is

output after tokenization, note that only the word "This" prints, because strtok replaced

each blank in sentence with a null character (, \0 ,) during the tokenization process.

Common Programming Error 5.22
Not realizing that strtok modifies the string being tokenized and then attempting to use

that string as if it were the original unmodified string is a logic error.

Determining String Lengths

Function strlen takes a string as an argument and returns the number of characters in the

string-the terminating null character is not included in the length. The program of

Fig. 5.32 demonstrates function strlen.

370

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Pointers and Strings

II Fig. 5. 32: f ig05_32. cpp
II Us ing strlen.
#inc lude <iostream>

us ing std: : cout;
us ing std: : endl;

#include <cstring> II prototype for strlen

int main ()
{

char * stringl

char * string2

char * st ring3

" abcdefghijklmnopqrstuvwxyz ";

" four " ;
" Boston ";

cout « " The l ength of \ ' 1 " « stringl
« " \ " i s " « strlen (stringl)
« " \nThe l ength of \" .. « string2
« " \ " i s " « strlen (string2)
« " \nThe l ength of \ " " « string3
« " \ " i s " « strlen (string3) « endl;

return 0; II indicates succe s s ful termination

II end main

The length o f " abcde fghijklmnopqrstuvwxyz " is 26

The length o f " four " is 4
The length of " Boston " i s 6

Fig. 5.32 strlen.

5.13 (Optional Case Study) Thinking About Objects:
Collaborations Among Objects

Chapter 5

This is the last of our object-oriented design sections before we begin our study of c++ ob

ject-oriented programming in Chapter 6. After we discuss the interactions among objects in

this section and discuss creating classes and objects in Chapter 6, we begin coding the ele

vator simulator in C++. To complete the elevator simulator, we also use the C++ techniques

discussed in Chapter 7 and Chapter 9. We have included at the end of this section a list of

Internet and World Wide Web UML resources and a bibliography of UML references.

In the "Thinking About Objects" section at the end of Chapter 4, we began to investigate

how objects interact by discussing how a Scheduler object interacts with other objects to

schedule a person to step onto a floor. In this section, we concentrate on the interactions

among other objects in the system. When two or more objects communicate with one another

to accomplish a task, they interact with one another by sending and receiving messages.

When two objects interact, a message sent by one object invokes an operation of the

second object Gust as pressing down the accelerator pedal in a car signals the car to "go faster"

and pressing the brake pedal signals the car to "go slower"). In the "Thinking About Objects"

section at the end of Chapter 4, we determined many of the operations of the classes in our

system. In this section, we concentrate on the messages that invoke these operations.

Chapter 5 Pointers and Strings 371

Figure 5 .33 is the table of classes and verb phrases from Section 4.10. We removed all the

verb phrases that do not correspond to a message sent between two objects. (For example, we

eliminate "moves" in the E levator because the Elevator sends this message to itself.)

The remaining phrases are likely to correspond to the interactions between objects in our

system. We associate the phrases "provides the time to the scheduler" and "provides the time

to the elevator" with class Building, because we decided in Chapter 4 that the building

controls the simulation. We associate the phrases "increments the clock time" and "gets the

time from the clock" with class Building for the same reason .

We examine the list of verbs to determine the interactions in our system. For example,

class Elevator lists the phrase "resets the elevator button." To accomplish this task, an

object of class E levator must send the resetButton message to an object of class

E levatorButton, invoking the resetButton operation of that class. Figure 5.34
lists all the interactions that can be gleaned from our table of verb phrases.

Class

Elevator

Clock

Scheduler

Person

Floor

FloorButton

ElevatorButton

Door

Be l l

Light

Bui l ding

Verb phrases

resets the e levator button, sounds the e levator bel l , s ignals i ts arrival

to a floor, opens i ts door, c loses i ts door

none in problem statement

verifies that a floor i s unoccupied

steps onto a floor, presses floor button, presses e levator button ,

enters e levator, exits e levator

resets floor button, turns off l i ght, turns on l ight

summons elevator

signals e levator to prepare to leave

(opening of door) s ignals person to exit elevator, (opening of door)

s ignals person to enter e levator

none in problem statement

none in problem statement

i ncrements the clock time, gets the t ime from the c lock, provides the

t ime to the scheduler, provides the time to the elevator

Fig. 5.33 Modified l i st of verb phrases for c lasses in the system .

A n object of class

Elevator

Sends the message

resetButton

ringBe l l

e levatorArrived

openDoor

c loseDoor

To an object of class

E levatorButton

Be l l

Floor

Door

Door

Fig. 5.34 Col laborations that occur in the elevator system . (Part 1 of 2 .)

372 Pointers and Strings

An object of class

C l ock

Scheduler

Person

Floor

FloorButton

E levatorButton

Door

Bel l

Light

Bui lding

Sends the message

stepOntoFloor

i sOccupied

pres sButton

pressButton

pas sengerEnters

pas sengerExit s

personArrives

resetButton

turnOff

turnOn

swnmonElevator

prepareToLeave

exitElevator

enterElevator

tick

getTime

proce s sTime

proce s sTime

To an object of class

Person

Floor

FloorButton

E levatorButton

El evator

E levator

Floor

FloorBut ton

Light

Light

Elevator

E levator

Person

Person

Clock

Clock

Scheduler

Elevator

Fig. 5.34 Col laborations that occur in the elevator system. (Part 2 of 2 .)

Collaboration Diagrams

Chapter 5

Now let us consider the objects that must interact so that people in our simulation can enter

and exit the elevator when it arrives on a floor. A collaboration consists of a collection of

objects that work together to perform a task. The UML enables us to model such objects,

and their interactions, with collaboration diagrams. Collaboration diagrams and sequence

diagrams both provide information about how objects interact, but each diagram emphasiz

es different information. Sequence diagrams emphasize when interactions occur. Collabo

ration diagrams emphasize which objects participate in the interactions and the

relationships among those objects.

Figure 5.35 shows a collaboration diagram that models the interaction among objects

in our system as objects of class Person enter and exit the elevator. The col laboration

begins when the elevator arrives on a floor. As in a sequence diagram, an object in a col

laboration diagram is represented as a rectangle that encloses the object' s name.

Interacting objects are connected with solid lines, and objects pass messages to one

another along these lines in the direction shown by the arrows. Each message's name and

a message number appear next to the corresponding arrow.

The sequence of messages in a collaboration diagram progresses in numerical order from

least to greatest. In this diagram, the numbering starts with message 1. When the elevator

Chapter 5 Pointers and Strings 373

3 . 1 : resetButton() \\ I 3 . 2 : turnOn()

I : F loor J

4 . 2 . 1 : passengerEnters()

t 3: elevatorArrived()

4 . 1 . 1 : passengerExits()

I waiting Passenger : Per�on
�

: E levator
...

Qassenger : Person I

" ,e.,tBcHon() JI
/

� 2, , ;ngBeI l()

\
I : E levatorButton I I : Bel l I

4: open Door()
,

4 .2 : enterElevator() 4 . 1 : exitE levator()
...

: Door
•

Fig. 5.35 Col laboration d iagram for loading and unloading passengers.

arrives at a floor, the first thjng it does is send tills message (resetButton) to the elevator

button to reset the button. The elevator then sends the ringBell message (message 2) to the

bell. Then the elevator notifies the floor of its arrival (message 3), so that the floor can reset

its button and turn on its light (messages 3. 1 and 3.2, respectively).

After the floor has reset its button and turned on its light, the elevator opens its door

(message 4). At this point, the door sends the exitElevator message (message 4.1) to

the passenger object. I The passenger object notifies the elevator of its intent to exit

via the passengerExits message (message 4. l . 1).

After the person riding the elevator has exited, the person waiting on the floor (the

waitingPassenger object) can enter the elevator. Notice that the door sends the

enterElevator message (message 4.2) to the waitingPassenger object after the

pas senger object sends the pas sengerExi t s message to the elevator (message

4. l . 1). This sequence ensures that a person on the floor waits for an elevator passenger to

exit before the person on the floor enters the elevator. The waitingPassenger object

enters the elevator via the passengerEnters message (message 4.2. 1). Determining

the sequence of these messages and modeling them with a diagram will aid us as we imple

ment the various classes in our system.

I . In the real world, a person riding on the elevator waits unti l the door opens before exit ing the elevator. We
must model this behavior; therefore, we have the door send a message to the pas s enger obj ect i n the ele
vator. This message represents a v i sual cue to the person i n the elevator. When the person receives the cue,
the person can exit the elevator.

3 74 Pointers and Strings Chapter 5

Summary

We now have a reasonably complete listing of the classes and objects to implement our el
evator simulator, as well as the interactions among the objects of these classes. In the next
chapter, we begin our study of object-oriented programming in C++. After reading
Chapter 6, we wil l be ready to write a substantial portion of the elevator simulator in C++.

After completing Chapter 7, we implement a complete, working elevator simulator. In

Chapter 9, we discuss how to use inheritance to exploit commonality among classes to min

imize the amount of software needed to implement a system.

Let us summarize our simplified object-oriented development process2 that we have

presented in Chapter 2-Chapter 5 :

1 . In the analysis phase, meet with the clients (the people who want you to build their

system) and gather as much information as possible about the system. With this

information, create the use cases that describe the ways in which users interact

with the system. (In our case study, we do not concentrate on the analysis phase.

The results of this phase are represented in the problem statement, and the use cas

es derive from this statement.) We note again that real-world systems often have

many use cases. Throughout the remaining steps, we continually evaluate our de

sign against the use cases to be sure that our end product matches the information

we obtained from analyzing the system requirements.

2. Begin identifying the classes in the system by listing the nouns in the problem

statement. Filter the list by eliminating nouns that represent obvious attributes of

classes and other nouns that have no relevance to the software system being mod

eled. Create a class diagram that models the classes in the system and their rela

tionships (associations).

3. Extract the attributes of each class from the problem statement by listing words

and phrases that describe each class in the system.

4. Learn more about the dynamic nature of the system. Create statechart diagrams to

learn how the objects in the system change over time.

5. Examine verbs and verb phrases associated with each class. Use these phrases to

extract the operations of the classes in our system. Activity diagrams can help

model the details of these operations.

6. Examine the interactions among various objects. Use sequence and col laboration

diagrams to model these interactions. Add attributes and operations to the classes

as the design process reveals the need for them.

7. At this point, our design probably stil l has a few missing pieces. These will be

come apparent as we begin to implement our elevator simulator in C++ in the

"Thinking About Objects" section at the end of Chapter 6.

2. We created this basic OOD process to introduce readers to object-oriented design using the UML.
Readers who wish to pursue this topic i n more depth can study the more formal and detailed Ra
tional U nified Process. For more information on this software-design methodology, we recom
mend reading The Rational Unified Process: An Introduction (2nd Edition) by Philippe Kruchten
and The Unified Software Develpment Process by Ivar Jacobson, Grady Booch and James Rum
baugh. For online resources, v i s i t www . therat ionaledge . com. which contains n umerous
articles on this process.

Chapter 5 Pointers and Strings 375

UML Resources on the Internet and World Wide Web

The following is a collection of Internet and World Wide Web resources for the UML.

These include the UML 1.4 specification and other reference materials, general resources,

tutorials, FAQs, articles, whitepapers and software.

References
www . omg . org

This is the Object Management Group (OMG) site. The OMG is responsible for overseeing mainte

nance and future revis ions of the UML. The s i te contain s information about the UML and other ob

j ect-oriented technologies .

www . rational . com

Rational Software Corporation developed the UML. Its Web s i te contain s information about the UML

and the creators of the U ML-Grady Booch, James Rumbaugh and I var Jacobson.

www . omg . org/technology/document s/formal/uml . htm

This s i te contain s the offic ial UML 1 .4 spec ification .

www . rational . com/uml/re source s/quick/index . j tmpl

Rational Software Corporation's UML quick-reference guide can be found at this s i te .

www . holub . com/c lass/uml/uml . html

This site provides a detai led UML quick-reference card with addit ional commentary.

softdocwi z . com/UML . htm

Kendall Scott, an author of several U M L resources, maintains a UML dict ionary at th is s i te .

Resources
www . omg . org/uml/

Thi s s i te contai ns the OMG UML resource page.

www . rational . com/uml/index . j sp

Rational Software Corporation's UML resource page

www . platinum . com/corp/uml/uml . htm

U M L Partners member Plat inum Technology maintains this UML resource site .

www . cetus - l inks . org/oo_uml . html

This site contains hundreds of l inks to other UML sites, i ncluding information, tutoria ls and software.

www . embarcadero . com/support/uml_central . asp

This s i te contains l i n ks to several UML-related items, including references, tutorials and art ic les .

www . devx . com/uml

This s i te contains a wealth of UML information, inc luding art ic les and l i nks to news groups and to

other s i tes.

www . ce l igent . com/uml

This s i te contains general information and l inks to important s i tes on the Web.

www . methods - t ool s . com/cgi -bin/Di scussionUML . cgi

This s i te provides access to several UML discussion groups.

www . po l s . co . uk/usecasezone/index . htm

This s i te provides resources and art ic les about applying use cases .

www . ic s . uc i . edu/pub/arch/uml/uml_books_and_tool s . html

Thi s s i te contains l inks to information about books on the UML, as wel l as a l i s t of tools that support

UML notat ion.

376 Pointers and Strings Chapter 5

home . earthl ink . net/- salhir

S i nan S i Alh ir, author of UML in a Nutshell, maintains this site; i t inc l udes l i nks to many UML re

sources.

www . rational . com/product s/rup/index . j sp

This is the main s i te for the Rational Unified Process (RUP), Rationa l ' s OOA D methodology.

www . cetus - l inks . org/oo_ooa_ood_methods . html

This s i te contains l i nks to many software development methodologies, including RUP, Extreme Pro
gramming, the Booch methodology and many more .

Software
www . rational . com/product s/rose/index . j sp

This s i te is the home page for Rational Software Corporat ion's U M L v i sual model ing tool , Rational

Rose.™ You can download a trial vers ion from this location and use i t free for a l i m ited t ime.

www . sparxsystems . com . au/ea . htm

Sparx Systems offers Enterprise Archi tect, a U M L OOAD too l . The professional vers ion provides

code generation and reverse-engineering support for C++, Java and C#, among others.

www . vi sualobj ect . com

Visual Object Modelers has created a vi sual U M L model ing too l . You can download a l i m ited dem

onstration vers ion from this Web site and use i t free for a l im i ted t i me .

www . embarcadero . com/downloads/download . asp

Embarcadero provides Desribe™ Enterprise, a UML design too l .

www . microgold . com/version2/stage/product . html

M icrogold Software, Inc . has created WithClass, a software design app l ication that supports the U M L

notation.

dir . lycos . com/Computers/Software/Obj ect_Oriented/Methodologies/

UML/Tool s

This s i te l i sts dozens o f U M L model ing tools and their home pages.

www . methods - tool s . com/tools/mode l ing . html

This s i te contai ns a l i st ing of many object mode l ing tools , including those that support the U M L .

Articles and Whitepapers

www . omg . org/news/pr9 9 /UML_2 0 0 1_CACM_Oct9 9-p2 9 -Kobryn . pdf

This art ic le , written by Cris Kobryn, explores the past, present and future of the UML.

www . db . informat ik . uni-bremen . de/umlbib

The U M L Bib l iography prov ides names and authors of many U ML-related art ic les . You can search

art ic les by author or t i t le .

www . ratio . co . uk/white . html

You can read a whitepaper that out l i nes a process for OOA D using the U M L at th i s s i te . The paper

also incl udes some i mplementat ion i n C++.

www . cona l l en . com/whitepapers/webapps/Mode l ingWebAppl icat ions . htm

This s i te contains a case study that mode ls Web appl ications using the UML.

www . sdmagaz ine . com

The Software Development Magazine On l ine site has a reposi tory of many art ic les on the U M L . You

can search by subject or browse art ic le t i t les .

Chapter 5

FAQs
www . rational . com/urnl /gstart / faq . j sp

This is the location of Rational Software Corporat ion's UML FAQ.

www . j guru . com/ faq

Enter UML in the search box to access a th is site's UML FAQ.

Bibliography

Pointers and Strings

Alhir, S. UML in a Nutshell. Cambridge : O'Re i ly & Associates, Inc . , 1 998 .

377

Booch, G . , Rumbaugh, J . and Jacobson, I . The Unified Modeling Language User Guide. Readi ng,

MA: Addison-Wesley, 1 999.

Firesmith, D.G., and Henderson-Sel lers, B . "Clarify ing Spec ia l ized Forms of Association in U M L

and OML." lournal of Object-Oriented Programming M a y 1 998 : 47-50.

Fowler, M. , and Scott, K . UML Distilled: Applying the Standard Object Modeling Language. Read

ing, M A : Addison-Wesley, 1 997.

Johnson, LJ. "Model Behavior." Enterprise Development May 2000: 20-28 .

McLaugh l i n , M. , and A . Moore. "Real-Time Extensions to the UML." D,: Dobb 's lournal Decem

ber 1 998 : 82-93 .

Melewski , D . " U M L Gains Ground." Application Development Trends October 1 998 : 34-44.

Melewski , D . "UML: Ready for Prime Ti me?" Application Development Trends November 1 997:

30-44.

Melewski , D. "Wherefore and what now, UM L?" Application Development Trends December 1 999:

6 1 -68.

M u l ler, P. lnstant UML. B i rmingham, U K : Wrox Press Ltd, 1 997.

Perry, P. "U M L Steps to the Plate ." Application Development Trends M ay 1 999: 3 3-36 .

Rumbaugh, J . , Jacobson, I . and Booch, G . The Unified Modeling Language Reference Manual.

Reading, M A : Addison-Wesley, 1 999.

Schmul ler, J . Sam 's Teach Yourself UML in 24 Hours. I ndianapo l i s : M ac m i l lan Computer Pub l i sh

i ng, 1 999.

The Unified Modeling Language Specification: Version 1 . 4. Frami ngham, MA: Object M anagement

Goup (OMG), 200 1 .

SUMMARY
• Poi nters are variab les that contain a s the ir values addresses o f other variables .

• The decl arat ion

int *pt r ;

declares p t r t o b e a pointer t o a variable o f type int and i s read, "ptr i s a pointer t o int ." The

* as used here in a declarat ion indicates that the variable i s a pointer.

• There are three values that can be used to i n i t ia l ize a pointer: 0, NULL or an address of an object

of the same type. I n i t ia l iz ing a poi nter to 0 and in i t ial iz ing that same pointer to NULL are ident i
cal-O i s the convention in C++.

• The only in teger that can be assigned to a poi nter wi thout casting i s zero.

• The & (address) operator returns the memory address of its operand .

3 78 Pointers and Strings Chapter 5

• The operand of the address operator must be a variable name (or another Ivalue) ; the address op

erator cannot be appl ied to constants or to expressions that do not return a reference.

• The * operator, referred to as the indirection (or dereferencing) operator, returns a synonym, a l ias

or n ickname for the name of the object that its operand points to in memory . This is cal led deref

erencing the pointer.

• When cal l ing a function with an argument that the caller wants the cal led function to modify , the

address of the argument may be passed. The called function then uses the i ndirection operator (*)
to dereference the pointer and modify the value of the argument i n the cal l i ng function.

• A function receiving an address as an argument must have a pointer as its corresponding parameter.

• The const qual ifier enables the programmer to inform the compiler that the value of a part icular

variable cannot be modified through the specified identifier. If an attempt is made to modify a

const value, the compi ler issues either a warning or an error, depending on the particular compiler.

• There are four ways to pass a pointer to a function-a nonconstant pointer to nonconstant data, a

nonconstant pointer to constant data, a constant pointer to nonconstant data and a constant pointer

to constant data.

• The value of the array name is the address of (a pointer to) the array ' s first element .

• To pass a s ingle element of an array by reference using pointers, pass the address of the spec ific

array element.

• C++ provides unary operator s i z eof to determi ne the s ize of an array (or of any other data type,

variable or constant) i n bytes at compi le t ime.

• When app l ied to the name of an array, the s i zeof operator returns the total number of bytes in

the array as an i nteger.

• The arithmetic operations that may be performed on pointers are i ncrementing (+ +) a pointer, dec

rementing (- -) a pointer, adding (+ or + =) an integer to a poin ter, subtract ing (- or - =) an in teger

from a pointer and subtracting one pointer from another.

• When an integer i s added or subtracted from a pointer, the pointer i s incremented or decremented

by that i nteger times the s ize of the object to which the pointer refers.

• Pointer arithmetic operations should only be performed on contiguous portions of memory such

as an array . All e lements of an array are stored contiguously in memory .

• Pointers can be assigned to one another if both pointers are of the same type. Otherwise, a cast

must be used. The exception to this is a void * pointer, which i s a generic pointer type that can

hold pointer values of any type. Pointers to void can be assigned pointers of other types . A void

* pointer can be assigned to a pointer of another type only wi th an expl ic i t type cast.

• The only val i d operations on a void * pointer are comparing void * pointers wi th other poi n ters,

assigning addresses to void * pointers and casting void * pointers to valid poi nter types .

• Pointers can be compared using the equality and re lational operators . Compari sons using relational

operators are meaningfu l only if the pointers point to members of the same array .

• Pointers that point to arrays can be subscripted exactly as array names can.

• An array name i s equivalent to a constant pointer to the first e lement of the array .

• I n pointer/offset notation, if the pointer points to the first element of the array, the offset is the same

as an array subscript.

• All subscripted array expressions can be written with a pointer and an offset, using e i ther the name

of the array as a pointer or us ing a separate pointer that points to the array .

• Arrays may contain poin ters .

• A pointer to a function is the address where the code for the function resides.

Chapter 5 Pointers and Strings 379

• Pointers to functions can be passed to functions, returned from functions, stored in arrays and as

signed to other pointers.

• A common use of function pointers is in so-called menu-driven systems . The function pointers are

used to select which function to cal l for a part icular menu item.

• Function s trcpy copies its second argument-a string-into its first argument-a character ar

ray . The programmer must ensure that the target array is large enough to store the string and its

termjnating n u l l character.

• Function s trncpy i s equivalent to strcpy, except that a cal l to strncpy specifies the n u mber

of characters to be copied from the string into the array . The terminating n u l l character w i l l be cop

ied only if the number of characters to be copied is at least one more than the length of the string.

• Function strcat appends its second str ing argument-including the termi nating nul l charac

ter-to its first string argument. The first character of the second string rep laces the n u l l (, \ 0 ')

character of the first string . The programmer must ensure that the target array used to store the first

string i s l arge enough to store both the first string and the second string .

• Function strncat i s equivalent to strcat, except that a cal l to s t rncat appends a specified

number of characters from the second string to the fi rst string. A terminating n u l l character is ap

pended to the resul t .

• Function st rcmp compares its first string argument with its second string argument character by

character. The function returns zero if the strings are equal , a negative value if the fi rst string is

less than the second stri ng and a positive value if the first s tr ing is greater than the second string .

• Function strncmp i s equivalent to strcmp, except that strncmp compares a specified number

of characters . If the number of characters in one of the strings is less than the number of characters

specified, strncmp compares characters unti l the nu l l character in the shorter string is encountered.

• A sequence of cal l s to strtok breaks a string into tokens that are separated by characters con

tained i n a second string argument. The first cal l specifies the string to be tokenized as the fi rst

argument, and subsequent cal ls to continue tokenizing the same string specify NULL as the first

argument. The function returns a pointer to the current token from each cal l . If there are no more

tokens when s t rtok is cal led, NULL is returned.

• Function strlen takes a string as an argument and returns the number of characters i n the

string-the terminating n u l l character is not included i n the length of the string.

TERMINOLOGY
add a pointer and an integer

address operator (&)

appending strings to other strings

array of pointers

array of strings

ASCII

<cctype >

character code

character constant

character pointer

character set

comparing strings

const

constant pointer

constant pointer to constant data

constant pointer to nonconstant data

copy ing strings

<cst ring>

decrement a pointer

de l i mjter

dereference a poi nter

dereferencing operator (*)

directly reference a variable

EBCDIC

function pointer

increment a poi nter

indefin i te postponement

indirection

indirection operator (*)

indirectly reference a variabl e

in i t ia l ize a pointer

i s lower

380 Pointers and Strings

length of a str ing

l i teral

nonconstant pointer to constant data

nonconstant pointer to nonconstant data

NULL poin ter

n umeric code of a character

offset

pass-by-reference

pass-by-value

pointer

pointer ari thmetic

pointer assignment

poin ter compari son

pointer expression

poin ter/offset notation

pointer subscripting

poi nter to a function

pointer to void (void *)
pointer types

pri nciple of least priv i lege

s i zeof

strcat

strcmp

strcpy

string

string concatenation

string constant

string l i teral

string processing

strlen

strncat

strncmp

strncpy

strtok

subtracting an in teger from a pointer

subtracting two poi n ters

token

tokenizing strings

toupper

void * (pointer to void)

word processing

Terminology for Optional "Thinking About Objects" Section
col laboration rectangle symbol i n UML

col laborat ion d iagram col laboration d iagram

in teraction sequence of messages

Chapter 5

message sol id l ine wi th arrowhead symbol in UML

numbers in UML coll aboration d iagram col laboration d iagram

objects that parti c ipate in i n teraction when in teractions occur

SELF-REVIEW EXERCISES

5.1 Answer each of the fol lowing:

a) A pointer i s a variable that contains as i ts value the _____ of another variab le .

b) The three values that can be used to in i t ia l ize a pointer are and

c) The only integer that can be assigned direct ly to a pointer is ____ _

5.2 State whether the fol lowi ng are true or false . If the answer i sfalse, explain why.

a) The address operator & can be appl ied only to constants and to expressions .

b) A pointer that i s declared to be of type void can be dereferenced.

c) Poi n ters of different types may not be assigned to one another wi thout a cast operation .

5 .3 For each of the fol lowing, write C++ statements that perform the specified task. Assume that

double-precis ion, floating-point numbers are stored in eight bytes and that the start ing address of the

array i s at location 1 002500 i n memory . Each part of the exerc i se should use the resul ts of previous

parts where appropriate .

a) Declare an array of type double called numbers w i th 1 0 elements, and i n i tia l ize the

e lements to the values 0 . 0 , 1 . 1 , 2 . 2 , . . . , 9 . 9 . Assume that the symbol ic constant

S I ZE has been defined as 1 0 .

b) Declare a pointer nPtr that points t o a variable o f type double.

c) Use a for structure to pr int the e lements of array numbers us ing array subscript nota

t ion . Print each number wi th one position of preci sion to the right of the dec imal point .

Chapter 5 Pointers and Strings 38 1

d) Write two separate statements that each assign the start ing address of array nwnbers to

the pointer variab l e nPt r.

e) Use a for structure to print the e lements of array nwnbers using poi nter/offset notat ion

with pointer nPt r.

f) Use a for structure to pri nt the e lements of array nwnbers u s i ng pointer/offset notation

wi th the array name as the pointer.

g) Use a for structure to pri nt the e lements of array nwnbers using poi nter/subscript no

tation with pointer nPt r.

h) Refer to the fourth e lement of array nwnbers using array subscript notat ion, poi nter/off

set notat ion with the array name as the poi nter, poi nter subscri pt notation with nPtr and

pointer/offset notation wi th nPt r.

i) Assuming that nPtr points t o the beginning o f array nwnbers, what address i s refer

enced by nPtr + 8? What value is stored at that locat ion?

j) Assuming that nPt r points to nwnbers [5 1 , what address i s referenced by nPt r after

nPtr - = 4 is executed? What is the value stored at that l ocat ion?

5.4 For each of the fol lowing, write a s ingle statement that performs the spec ified task. Assume

that float ing-point variables nwnber1 and nwnber2 have been declared and that nwnber1 has

been i n i t ia l ized to 7 • 3. Assume that variable ptr i s of type char * . Assume that arrays sl and s2

are each I DO-element char arrays that are in i t ial i zed with string l itera l s .

a) Dec lare t h e variable fptr t o be a poi nter t o an object of type double.

b) A s s i g n t h e address o f variable nwnber1 t o pointer variable fptr.

c) Print t h e value o f t h e object poi nted t o by fptr.

d) Ass ign the value of the object poi nted to by fptr to variable nwnber 2 .

e) Pri n t the value o f nwnber2 .

f) Print the address of nwnber1.

g) Print t h e address stored in fptr. l s the value printed t h e same as the address o f nwnber 1 ?

h) Copy the string stored in array s2 i nto array s l .

i) Compare the string i n s l with the string i n s 2 , and pri nt the resu l t .

j) Append the first 10 characters from the string i n s 2 to the stri ng i n s l .

k) Determine the length o f the stri ng i n s l , and pri nt the res u l t .

I) Ass ign to ptr the location of the first token i n s2. The tokens de l i miters are commas (,) .

5.5 Perform the task specified by each of the fol lowing statements :

a) Write the function header for a function cal led exchange that takes two poi nters to dou

ble-prec is ion , float i ng-point numbers x and y as parameters and does not return a value.

b) Write the function prototype for the function in part (a) .

c) Write the function header for a function cal led evaluate that returns an i n teger and

that takes as parameters integer x and a poi nter to function poly. Function poly takes

an i nteger parameter and returns an i n teger.

d) Write the function prototype for the function in part (c) .

e) Write t w o statements that each in i t ia l i ze character array vowe l w i t h t h e string of vow

e l s , I AE I OU " .

5.6 Find the error i n each of the fol l owing program segments . Assume the fol lowing dec l arat ions

and statements :

int * z pt r ; I I zptr wi l l reference array z
int *aPtr = 0 ;
void * sptr = 0 ;
int nwnber ;

int z [5 1 { 1 , 2 , 3 , 4 , 5 } ;

sPtr = z ;

382 Pointers and Strings

a)

b)

c)

d)

+ + z P t r ;

II use pointer to get f irst value of

nwnber = zptr;

II a s s ign array element 2 (the value

nwnber = * z Ptr [2] ;

II print ent ire array z

for (int i = 0 ; i < = 5 ; i + +

cout « zptr [i] « endl ;

array

3) to nwnber

e) II a s s ign the value pointed to by sPtr to nwnber

nwnber = * sptr ;

f) + + z ;

g) char s [1 0] ;

cout « st rncpy (s , " hel l o " , 5) « endl ;

h) char s [1 2] ;

strcpy (s , " We lcome Home ") ;

i) i f (strcmp (string1 , string2))

cout « " The strings are equal " « endl ;

Chapter 5

5 .7 What (i f anything) pri nts when each of the fol low ing statements is performed? If the state

ment conta ins an error, describe the error and indicate how to correct it. Assume the fol lowing var i

able declarat ions :

char s 1 [50] = " j ack" ;
char s 2 [5 0] = " j i l l " ;
char s 3 [5 0] ;

a) cout « strcpy (s 3 , s2) « endl ;

b) cout « strcat (strcat (strcpy (

« endl ;

c) cout « strlen (s 1 + strlen (

d) cout « strlen (s 3 « endl ;

ANSWERS TO SELF-REVIEW EXERCISES

5.1 a) address . b) 0 , NULL, an address . c) o .

s 3 ,

s2)

s 1) , " and ") , s 2)

« endl ;

5.2 a) Fal se. The operand of the address operator must be an ivaiue; the address operator cannot

be app l ied to constants or to expressions that do not resul t i n references .

b) False. A pointer to void cannot be dereferenced. S uch a poi nter does not have a type

that enables the compi ler to determine the number of bytes of memory to dereference.

c) False. Pointers of any type can be assigned to void pointers. Poi n ters of type void can

be assigned to pointers of other types only with an expl icit type cast .

5.3 a) double nwnbers [S I ZE] =

{ 0 . 0 , 1 . 1 , 2 . 2 , 3 . 3 , 4 . 4 , 5 . 5 , 6 . 6 , 7 . 7 , 8 . 8 , 9 . 9 } ;

b) doubl e *nPtr ;

c) cout « f ixed « showpoint « setprec i s ion (1) ;

for (int i = 0 ; i < SIZE ; i + +)

cout « nwnbers [i] « ' ' ;

d) nPtr = nwnbers ;

nPt r = &nwnbers [0] ;

e) cout « f ixed « showpoint « setprec i s ion (1) ;

for (int j = 0 ; j < SIZE ; j + +)

cout « * (nPtr + j) « ' ' ;

Chapter 5 Pointers and Strings

o cout « f ixed « showpoint « setprec i s ion (1) ;

for (int k = 0 ; k < S I ZE ; k++)

cout « * (numbers + k) « ' ' ;

g) cout « f ixed « showpoint « setprec i s ion (1) ;

for (int m = 0 ; m < S I ZE ; m+ +)

cout « nPtr [m] « ' ' ;

h) numbers [3]

* (numbers + 3

nPt r [3]

* (nPt r + 3)

i) The address is 1 0 0 2 5 0 0 + 8 * 8 = 1 0 0 2 5 6 4 . The value i s 8 . 8 .

j) The address of numbers [5] is 1 0 0 2 5 0 0 + 5 * 8 = 1 0 0 2 5 4 0 .

The address of nptr - = 4 i s 1 0 0 2 5 4 0 - 4 * 8 = 1 0 0 2 5 0 8 .

The value a t that location i s 1 . 1 .

5.4 a) doubl e * fptr;

b) fptr = &number1 ;

c) cout « " The value of * fPtr i s " « * fPtr « endl ;

d) number2 = * fPtr;

e) cout « " The value of number2 i s " « number2 « endl ;

383

f) cout « " The addre s s of number1 is " « &number 1 « endl ;

g) cout « " The addres s stored in fptr i s " « fptr « endl ;

Yes, the value is the same .

h) s trcpy (s l , s2) ;

i)

j)

k)

I)

cout « " strcmp (s l , s2) = " « st rcmp (s l , s 2) « endl ;

strncat (s l , s2 , 1 0) ;

cout « " strlen (s l) " « strlen (s l) « endl ;

ptr = st rtok (s2 , " , ") ;

5.5 a) void exchange (double *x, double *y)

b) void exchange (double * , double *) ;

c) int evaluate (int x , int (*poly) (int))

d) int evaluate (int , int (*) (int)) ;

e) char vowe l [] = " AE IOU " ;

char vowe 1 [] = { , A ' , , E " ' I ' , , 0 ' , , U ' , , \ 0 ' } ;

5.6 a) Error: zptr has not been in i t ia l ized.

Correct ion : In i t ia l ize zptr with zptr = z ;

b) Error: The pointer i s not dereferenced.

Correction : Change the statement to number = * zptr ;

c) Error: zptr [2] i s not a pointer and should not be dereferenced.

Correct i o n : Change * zptr [2] to zptr [2] .

d) Error: Referri ng to an array e lement outside the array bounds with pointer subscri pt ing.

Correct ion: Change the re lational operator in the for structure to < to prevent walking

off the end of the array.

e) Error: Dereferencing a void poi nter.

Correction : To dereference the void pointer, it must first be cast to an i nteger pointer.

Change the preceding statement to number = * ((int *) sPtr) ;

o Error: Trying to modify an array name with pointer ari thmet ic .

Correctio n : Use a pointer variable instead of the array name to accomp l i sh pointer ari th

metic, or subscript the array name to refer to a speci fic e lement .

g) Error: Funct ion st rncpy does not write a terminating n u l l character to array s , because

i ts third argument i s equal to the length of the stri ng " he l lo " .

384 Pointers and Strings Chapter 5

Correct ion: Make 6 the third argument of strncpy or assign ' \ 0 ' to s [5] to ensure

that the term inating n u l l character is added to the stri ng.

h) Error: Character array s i s not large enough to store the terminating nul l character.

Correct ion: Decl are the array with more e lements.

i) Error: Function st rcmp w i l l return 0 if the stri ngs are equal ; therefore, the condit ion i n

the i f structure w i l l b e false, and the output statement w i l l not b e executed.

Correction : Expl ic i t ly compare the resul t of strcmp with 0 i n the condition of the i f

structure .

S.7 a) j i l l

b) j ack and j i l l

c) 8

d) 1 3

EXERCISES

S.8 State whether the fol lowing are true or false. If false, explain why.

a) Two pointers that point to different arrays cannot be compared mean i ngfu l l y .

b) B ecause t h e name o f an array i s a pointer t o the first e lement of t h e array, array names

can be manipulated i n precisely the same manner as poi nters.

S.9 For each of the fol lowing, write C++ statements that perform the specified tas k . Assume that

uns igned integers are stored in two bytes and that the start ing address of the array is at location

1 002500 i n memory .

a) Decl are an array of type uns igned int cal led value s w i th five elements, and i n i tia l

i ze the e lements to the even i ntegers from 2 to 1 0 . Assume that the symbol ic constant

S I ZE has been defined as 5 .

b) Declare a pointer vPtr that points t o a n object o f type uns igned int o

c) Use a for structure to print the elements of array values using array subscript notation.

d) Write two separate statements that assign the start ing address of array value s to poi nter

variable vPt r.

e) Use a for structure to pri nt the e lements of array values using pointer/offset notat ion.

f) Use a for structure to pri nt the e lements of array value s using poi nter/offset notation

with the array name as the pointer.

g) Use a for structure to print the elements of array values by subscript ing the pointer

to the array .

h) Refer to the fifth e l ement of value s using array subscript notat ion poi nter/offset nota

tion with the array name as the poi nter, poi nter subscript notat ion and pointer/offset

notat ion.

i) What address i s referenced by vPtr + 3? What value i s stored at that locat ion?

j) Assuming that vPtr points to values [4 1 , what address i s referenced by vPt r - =

4 ? What value i s stored at that location?

S.10 For each of the fol lowing, write a s ingle statement that performs the spec ified task. Assume

that long integer variables value 1 and value2 have been declared and that value 1 has been

in i t ia l ized to 2 0 0 0 0 0 .

a) Dec lare the variable longptr to be a poi nter to a n object of type long.

b) Assign the address of vari able value 1 to pointer variable longPtr.

c) Print the value of the object pointed to by longptr.

d) Assign the value of the obj ect poi nted to by longPtr to variable value2 .

e) Pri nt the value of value 2 .

f) Print the address o f value 1 .

g) Pri nt t h e address stored in longPtr. I s the value printed t h e same as value 1 ' s address?

Chapter 5 Pointers and Strings

5 .11 Perform the task specified by each of the fol lowing statements :

385

a) Write the function header for function zero that takes a long i nteger array parameter

bigIntegers and does not return a value.

b) Write the function prototype for the function i n part (a) .

c) Write the function header for function addlAndSum that takes an i nteger array pa

rameter oneTooSma l l and returns an integer.

d) Write the function prototype for the function described i n part (c) .

Note: Exercise 5. 12 through Exercise 5. 15 are reasonably challenging. Once you have

solved these problems, you ought to be able to implement most popular card games.

5.12 Modify the program in Fig . 5 .24 so that the card deal ing function deal s a fi ve-card poker

hand. Then write functions to accompl ish each of the fol lowing:

a) Determ ine whether the hand contains a pair.

b) Determi n e whether the hand contains two pairs.

c) Determi n e whether the hand contains three of a kind (e . g . , three j ac k s) .

d) Determ ine whether t h e hand contains four o f a k ind (e . g . , four ace s) .

e) Determ ine whether t h e hand contains a fl ush (i . e . , a l l five cards of t h e s a m e su i t) .

f) Determ ine whether the hand contains a straight (i .e . , five cards of consecutive face

values) .

5 .13 Use the functions developed i n Exercise 5 . 1 2 to wri te a program that deals two fi ve-card

poker hands, evaluates each hand and determines which i s the better hand.

5.14 Modify the program developed in Exerc i se 5 . 1 3 so that i t can s i m u late the dealer. The deal

er' s five-card hand i s dealt "face down" so the player cannot see i t . The program should then evaluate

the dealer' s hand, and, based on the qual i ty of the hand, the dealer shoul d draw one, two or three more

cards to repl ace the corresponding number of unneeded cards in the orig inal hand. The program

should then reeval uate the dealer' s hand. [Caution: Th is is a diffi c u l t problem !)

5.15 Modify the program developed in Exerc i se 5 . 1 4 s o that i t handles the dealer' s hand, b u t the

p l ayer is a l lowed to dec i de which cards of the player' s hand to rep l ace. The program should then eval

uate both hands and determine who wins . Now use th is new program to p l ay 20 games agai nst the

computer. Who wins more games, you or the computer? Have one of your friends p l ay 20 games

against the computer. Who wins more games? B ased on the results of these games, make appropriate

modifications to refi ne your poker-playing program . [Note: This, too, i s a d iffi c u l t prob l e m .) Play 20

more games . Does your modified program play a better game?

5.16 I n the card-shuffl i n g and deal ing program of Fig . 5 . 24, we intentional ly used an i neffic ient

shuffl i ng algorithm that introduced the poss ib i l ity of i ndefi n i te postponement . I n th is problem, you

wi l l create a h igh-performance shuffl i ng algorithm that avoids i ndefi n i te postponement .

Modify Fig . 5 . 24 as fol lows. I n it ia l ize the deck array as shown in F ig . 5 . 36 . Modify the

shu f f l e fu nction to loop row-by-row and column-by-column through the array, touch ing every e le

ment once. Each element shou l d be swapped with a randomly selected e lement of the array. Print the

result ing array to determine whether the deck i s satisfactori ly shuffled (as in Fig. 5 .37 , for example) . You

may want your program to cal l the shu f f l e function several t imes to ensure a satisfactory shuffle .

Note that although the approach i n this problem i mproves the shuffl i ng algorithm, the dea l i ng
algorithm st i l l req u i res searching the deck array for card I , then card 2, then card 3 and so on.
Worse yet, even after the deal ing algorithm locates and deals the card, the algori thm cont inues
searching through the remai nder of the deck. Modify the program of Fig . 5 .24 so that once a card is
dealt , no further attempts are made to match that card number, and the program i mmediately pro

ceeds with deal ing the next card.

386 Pointers and Strings Chapter 5

Unshuffled deck array

0 2 3 4 5 6 7 8 9 1 0 1 1 1 2

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

I 14 1 5 1 6 1 7 18 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6

2 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9

3 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2

Fig. 5.36 Unshuffled deck array.

Sample shuffled deck array

0 2 3 4 5 6 7 8 9 1 0 I I 1 2

0 1 9 4 0 2 7 2 5 3 6 4 6 1 0 3 4 3 5 4 1 1 8 2 4 4

1 1 3 2 8 1 4 1 6 2 1 3 0 8 1 1 3 1 1 7 2 4 7 1

2 1 2 3 3 1 5 4 2 4 3 2 3 4 5 3 2 9 3 2 4 4 7 2 6

3 5 0 3 8 5 2 3 9 4 8 5 1 9 5 3 7 4 9 2 2 6 2 0

Fig. 5.37 Sample shuffled deck array.

5.17 (Simulation: The Tortoise and the Hare) In this exercise , you w i l l re-create the c lass ic race

of the tortoise and the hare. You w i l l use random-number generation to develop a s i m u l ation of th i s

memorabl e event.

Our contenders begin the race at "square I" of 70 squares . Each square represents a poss ib le

position a long the race course. The finish l i ne i s at square 70. The first contender to reach or pass

square 70 i s rewarded wi th a pai l of fresh carrots and lettuce. The course weaves i ts way up the s i de

of a s l ippery mountain , so occasional ly the contenders lose ground.

There is a clock that ticks once per second. With each tick of the c lock, your program should

adj ust the posi t ion of the animals according to the ru les in Fig . 5 . 3 8 .

Percentage of

Animal Move type the time Actual move

Tortoi se Fast plod 50% 3 squares to the right

S l i p 20% 6 squares to the left

S low plod 30% 1 square to the right

Hare S leep 20% No move at a l l

B i g hop 20% 9 squares to the right

Big s l ip 1 0% 1 2 squares to the left

S m a l l hop 30% I square to the right

S m a l l s l ip 20% 2 squares to the left

Fig. 5.38 Rules for moving the tortoise and the hare.

Chapter 5 Pointers and Strings 387

Use variables to keep track of the posit ions of the animals (i .e . , pos i t ion n umbers are 1 -70) .

Start each animal at pos i t ion I (i .e . , the "start ing gate") . If an animal s l i p s left before square I , move

the animal back to square I .

Generate the percentages i n the preceding table by producing a random i n teger i i n the range

I 5, i 5, 1 0 . For the tortoise, perform a "fast plod" when I 5, i 5, 5, a "s l ip" when 6 5, i 5, 7 or a "slow

plod" when 8 5, i 5, 1 0 . Use a s i m i lar technique to move the hare .

Begin the race by print ing

BANG ! ! ! ! !
AND THEY ' RE OFF I ! ! ! !

For each t ick of the clock (i . e . , each repetit ion of a loop) , print a 70-posi t ion l i ne showing the

letter T i n the torto ise 's pos i t ion and the letter H in the hare ' s pos i t ion . Occas ional ly, the contenders

land on the same square . I n this case, the tortoise bi tes the hare and your program shoul d print

OUCH ! ! ! beg i n n i ng at that posit ion. All print pos it ions other than the T, the H or the OUCH ! ! ! (i n

case o f a t i e) shou l d b e blank.

After print ing each l i ne, test i f e ither animal has reached or passed square 70. If so, pri nt the

w i n ner and terminate the s i m ulat ion. If the tortoise wins , print TORTOISE WINS ! ! ! YAY !-! ! If

the hare w i n s , pr in t Hare wins . Yuch . If both an imals win on the same c lock t ick, you may want

to favor the turtle (the "underdog"), or you may want to pri nt It ' s a t i e . I f ne i ther animal w i n s ,

perform t h e l o o p agai n t o s i m u l ate t h e next t ick o f t h e clock. W h e n you are ready to run y o u r pro

gram, assemble a group of fans to watch the race. You ' l l be amazed how i nvolved the audience gets !

SPECIAL SECTION: BUILDING YOUR OWN COMPUTER
In the next several problems, we take a temporary divers ion away from the world of high- leve l - l an

guage programming. We "peel open" a computer and look at i ts i nternal structure . We i ntroduce

mac h i ne- language programming and write several machine- language program s . To make this an

espec ia l ly valuable experience, we then bu i l d a computer (us ing software-based simulation) on

which you can execute your machine- language programs !

5.18 (Machine-Language Programming) Let us create a computer we w i l l cal l the S i m pletron . As

i ts name impl ies , i t i s a s imple machine, but , as we wi l l soon see, a powerful one as wel l . The Sim

pletron runs programs written i n the only language it d irect ly understands, that i s , S i mp l etron Ma

chine Language, or SML for short.

The S i mpletron contains an accumulator-a "spec ial regis ter" in which i nformation is put

before the S impletron uses that i nformation in calcu lations or examines i t i n various way s . All infor

mation in the S impletron is handled in terms of words. A word is a s igned four-digi t decimal num

ber, such as + 3 3 6 4 , - 12 9 3 , + 0 0 0 7 , - 0 0 0 1 , etc . The Si mpletron i s equi pped with a 1 00-word

memory and these words are referenced by their location numbers 0 0 , 0 1 , . . . , 9 9 .

Before running a n S M L program, w e must load, or place, the program i nto memory. The first

instruction (or statement) of every SML program i s always p laced i n location 0 0 . The s i m u l ator w i l l

start executing a t t h i s locat ion .

Each i nstruction written i n S M L occupies one word of the S i m pl etron ' s memory ; thus, i n struc

tions are signed four-digit deci mal numbers. Assume that the sign of an S M L i nstruct ion i s always

plus , but the s ign of a data word may be e ither p lus or minus. Each location i n the S impletro n ' s

memory m a y contain an i n struction, a data value u s e d by a program or an unused (and h e n c e unde

fi ned) area of memory. The first two digits of each SML i nstruction are the operation code that spec

ifies the operation to be performed. SML operation codes are shown i n Fig. 5 .39 .

The l a s t t w o d i g i t s o f an S M L instruction are t h e operand-the address of t h e memory location

contain ing the word to which the operation appl ies .

388 Pointers and Strings

Operation code

Input/output operations:

const int READ 1 0 ;

const int WRITE 1 1 ;

Load and store operations:

const int LOAD = 2 0 ;

const int STORE

A rithmetic operations:

const int ADD

2 1 ;

3 0 ;

const int SUBTRACT 3 1 ;

const int DIVIDE 3 2 ;

const int MULTIPLY 3 3 ;

Transfer-of-control operations:

const int BRANCH = 4 0 ;

const int BRANCHNEG = 4 1 ;

const int BRANCHZERO 4 2 ;

const int HALT = 4 3 ;

Chapter 5

Meaning

Read a word from the keyboard into a speci fi c loca
tion in memory.

Write a word from a speci fi c location in memory to

the screen .

Load a word from a spec i fi c locat ion i n memory

into the accumulator.

Store a word from the accumulator i nto a spec i fi c

location in memory.

Add a word from a spec ific location in memory to

the word in the accumulator (leave resul t in accu

mulator) .

S ubtract a word from a spec ific locat ion i n memory

from the word in the accumulator (leave resu l t in

accumulator) .

Divide a word from a spec i fi c locat ion i n memory

into the word in the accumulator (leave resul t i n

accumulator) .

Mul t ip ly a word from a spec i fic location in memory

by the word in the accumulator (leave resu l t i n

accumulator) .

Branch to a spec ific location i n memory.

Branch to a speci fic location i n memory if the accu

mulator is negat ive.

Branch to a specific l ocation i n memory i f the accu

mulator i s zero.

Halt-the program has completed its task.

Fig. 5.39 S impletron Machine Language (SML) operation codes.

Now let u s consider two s imple S M L programs. The fi rst S M L program (Fig . 5 .40) reads two

numbers from the keyboard and computes and prints their sum. The i n struction + 1 0 0 7 reads the

first number from the keyboard and places i t into location 0 7 (which has been i n i tia l i zed to zero) .

Instruction + 1 0 0 8 reads t h e next number into location 08 . The load i n struction, + 2 0 07 , p l aces

(copies) the first number i nto the accumulator, and the add i n struct ion, + 3 0 0 8 , adds the second

number to the n umber i n the accumulator. All SML arithmetic instructions leave their results in the

accumulator. The store instruction, + 2 1 0 9 , places (copies) the resu l t back i nto memory location 0 9 .

Then the write i n struction, + 1 1 0 9 , takes the number and prints i t (as a s igned four-digit deci mal

n umber) . The halt i n struct ion, + 4 3 0 0 , term inates execution.

Chapter 5 Pointers and Strings 389

Location Number Instruction

0 0 + 1 0 0 7 (Read A)

0 1 + 1 0 08 (Read B)

0 2 + 2 0 0 7 (Load A)

03 +30 08 (Add B)

04 + 2 1 0 9 (Store C)

0 5 + 1 1 0 9 (Write C)

0 6 +430 0 (Halt)

0 7 + 0 0 0 0 (Variable A)

08 + 0 0 0 0 (Variable B)

0 9 + 0 0 0 0 (Result C)

Fig. 5.40 SML Example 1 .

The SML program in Fig. 5.41 reads two numbers from the keyboard, then determines and

prints the larger value. Note the lise of the instruction + 4 1 0 7 as a conditional transfer of control,

much the same as C++'s i f statement.

Now write SML programs to accomplish each of the following tasks:

a) Use a sentinel-controlled loop to read positive numbers and compute and print their sum.

Terminate input when a negative number is entered.

b) Use a counter-controlled loop to read seven numbers, some positive and some negative,

and compute and print their average.

c) Read a series of numbers, and determine and print the largest number. The first number

read indicates how many numbers should be processed.

Location Number Instruction

0 0 + 1 0 0 9 (Read A)

0 1 + 1 0 1 0 (Read B)

0 2 + 2 0 0 9 (Load A)

03 +31 1 0 (Subtract B)

04 +4107 (Branch negative to 0 7)

0 5 + 1 1 0 9 (Write A)

0 6 +430 0 (Halt)

0 7 +1 1 1 0 (Write B)

08 +430 0 (Halt)

0 9 + 0 0 0 0 (Variable A)

1 0 + 0 0 0 0 (Variable B)

Fig. 5.41 SML Example 2.

390 Pointers and Strings Chapter 5

5.19 (Computer Simulator) It may at first seem outrageous, but in this problem, you are going to

build your own computer. No, you will not be soldering components together . Rather, you will use

the powerful technique of software·based simulation to create a software model of the Simpletron.

You will not be disappointed. Your Simpletron simulator will turn the computer you are using into a

Simpletron, and you actually will be able to run, test and debug the SML programs you wrote in

Exercise 5.18.

When you run your Simpletron simulator, it should begin by printing

* * *

* * *
* * *
* * *
* * *
* * *
* * *

We lcome t o S impletron ! * * *

Please enter your program one instruct ion
(or data word) at a t ime . I wi l l type the
locat ion number and a question mark (?).
You then type the word for that locat i on .
Type the sent ine l - 9 9 9 9 9 to stop entering
your program . * * *

* * *
* * *
* * *
* * *
* * *

Your program should simulate the Simpletron's memory with a single-subscripted, IOO-ele

ment array memory. Now assume that the simulator is running, and let us examine the dialog as we

enter the program of Example 2 of Exercise 5.18:

0 0 ? + 1 0 0 9
0 1 ? + 1 0 1 0
0 2 ? + 2 0 0 9
03 ? +31 1 0
0 4 ? +41 0 7
0 5 ? + 1 1 0 9
0 6 ? +430 0
0 7 ? + 1 1 1 0
08 ? +430 0
0 9 ? + 0 0 0 0
1 0 ? + 0 0 0 0
1 1 ? - 9 9 9 9 9

* * * Program loading completed * * *
* * * Program execut ion begins * * *

Note that the numbers to the right of each? in the preceding dialog represent the SML program

instructions input by the user.

The SML program has now been placed (or loaded) into array memory. Now the Simpletron

executes your SML program. Execution begins with the instruction in location 0 0 and, like C++,

continues sequentially, unless directed to some other part of the program by a transfer of control.

Use variable accumulator to represent the accumulator register. Use variable counter to

keep track of the location in memory that contains the instruction being performed. Use variable

operat i onCode to indicate the operation currently being performed (i.e., the left two digits of the

instruction word). Use variable operand to indicate the memory location on which the current

instruction operates. Thus, operand is the rightmost two digits of the instruction currently being

performed. Do not execute instructions directly from memory. Rather, transfer the next instruction to

be performed from memory to a variable called instruc t i onRegi ster. Then "pick off' the

left two digits and place them in operationCode, and "pick off' the right two digits and place

them in operand. When Simpletron begins execution, the special registers are all initialized to

zero.

Now let us "walk through" the execution of the first SML instruction, + 1 0 0 9 in memory loca

tion 0 0. This is called an instruction executiol1 cycle.

Chapter 5 Pointers and Strings 39 1

The counter tells us the location of the next instruction to be performed. We fetch the con

tents of that location from memory by using the C++ statement

instruct ionRegi ster = memory[counter] ;

The operation code and operand are extracted from the instruction register by the statements

operat i onCode = instruc t i onRegi ster I 100;
operand = ins t ruc t i onRegister % 100;

Now, the Simpletron must determine that the operation code is actually a read (versus a write, a

load, etc.). A swi tch differentiates among the 12 operations of SML.

[n the swi tch structure, the behavior of various SML instructions is simulated as follows (we

leave the others to the reader):

read:

load:

add:

branch:

halt:

c i n » memory[operand] ;

accumulator = memory [operand] ;

accumulator += memory [operand] ;

We will discuss the branch instructions shortly.

This instruction prints the message

* * * S impletron execution terminated * * *

The halt instruction also causes the Simpletron to print the name and contents of each register, as

well as the complete contents of memory. Such a printout is often called a computer dump (and, no,

a computer dump is not a place where old computers go). To help you program your dump function,

a sample dump format is shown in Fig. 5.42. Note that a dump after executing a Simpletron program

would show the actual values of instructions and data values at the moment execution terminated. To

format numbers with their sign as shown in the dump, use stream manipulator showpos. To disable

the display of the sign use stream manipulator noshowpos. For numbers that have fewer than four

digits, you can format numbers with leading zeros between the sign and the value by using the fol

lowing statement before outputting the value:

cout « setf i l l (' 0 ') « internal ;

Parameterized stream manipulator setEill (from header < i omanip» specifies the fill character

that will appear between the sign and the value when a number is displayed with a field width of five

characters, but does not have four digits. (One position in the field width is reserved for the sign.)

Stream manipulator int ernal indicates that the fill characters should appear between the sign and

the numeric value.

Let us proceed with the execution of our program's first instruction-+1009 in location 00. As

we have indicated, the swi tch structure simulates this by performing the C++ statement

c i n » memory[operand];

A question mark (?) should be displayed on the screen before the cin statement executes to

prompt the user for input. The Simpletron waits for the user to type a value and press the Enler key.

The value is then read into location 09.

At this point, simulation of the first instruction is complete. All that remains is to prepare the

Simpletron to execute the next instruction. The instruction just performed was not a transfer of con

trol, so we need merely increment the instruction counter register as follows:

++count e r ;

This completes the simulated execution o f the first instruction. The entire process (i.e., the

instruction execution cycle) begins anew with the fetch of the next instruction to execute.

392 Pointers and Strings Chapter 5

REGI STERS :
accumu l ator + 0 0 0 0
c ounter 0 0
instruc t i onRegister + 0 0 0 0
operat i onCode 0 0
operand 0 0

MEMORY :
0 1 2 3 4 5 6 7 8 9

0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0
10 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0
2 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0
3 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0
4 0 + 0 0 0 0 + 0 0 0 0 +00 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0
5 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0
6 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0
7 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0
8 0 + 0 0 0 0 +0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 +0 0 0 0
9 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0 + 0 0 0 0

Fig. 5.42 A sample dump.

Now let u s consider how t o simulate the branching instructions (i.e., the transfers o f control).

All we need to do is adjust the value in the instruction counter appropriately. Therefore, the uncondi

tional branch instruction (4 0) is simulated in the swi tch as

counter = operand ;

The conditional "branch if accumulator is zero" instruction is simulated as

i f (accumulator == 0
counter = operand ;

At this point, you should implement your Simplelron simulator and run each of the SML pro

grams you wrote in Exercise 5.18. You may embellish SML with additional features and provide for

these in your simulator.

Your simulator should check for various types of errors. During the program loading phase, for

example, each number the user types into the Simpletron's memory must be in the range -9 9 9 9 to

+ 9 9 9 9. Your simulator should use a whi l e loop to test that each number entered is in this range

and, if not, keep prompting the user to reenter the number until the user enters a correct number.

During the execution phase, your simulator should check for various serious errors, such as

attempts to divide by zero, attempts to execute invalid operation codes, accumulator overflows (i.e.,

arithmetic operations resulting in values larger than + 9 9 9 9 or smaller than - 9 9 9 9) and the like.

Such serious errors are called fatal errors. When a fatal error is detected, your simulator should print

an error message such as

* * * Attempt to divide by zero * * *
* * * S impletron execut ion abnormal ly terminated * * *

and should print a full computer dump in the format we have discussed previously. This will help the

user locate the error in the program.

Chapter 5 Pointers and Strings 393

MORE POINTER EXERCISES

5.20 Modify the card-shuffling and dealing program of Fig. 5.24 so the shuffling and dealing op

erations are performed by the same function (shuffleAndDeal). The function should contain one

nested looping structure that is similar to function shuf fle in Fig. 5.24.

5.2 1 What does this program do?

1 I I Ex . 5 . 2 1 : ex0 5_2 1 . cpp
2 I I What doe s thi s program do ?
3 #inc lude < iostream>
4

5 us ing std : : cout ;
6 u s ing s td : : c i n ;
7 us ing s td : : endl ;
8
9 void mystery1 (char *, const char *) ; I I prototype

1 0

1 1 int main ()
1 2 {
1 3 char string1 [8 0] i
1 4 char string2 [8 0] ;
1 5

1 6 cout « " Enter two st rings : " ;
1 7 cin » s t ring 1 » string2 ;
1 8 mys t e ry1 (string1, st ring2) ;
1 9 cout « string1 « endl ;
20

2 1 return 0 ; / 1 indicates success ful t e rminat ion
22

23 } // end ma i n
24

25 // What doe s thi s funct ion do?
26 void mystery1 (char * s l, const char * s 2)
27 {
28 whi l e (* s l ! = ' \ 0 ')
29 + + s l ;
30

3 1 for (; * s l = * s 2 ; s l ++, s 2 + +
32 I I empty statement
33

34 } // end funct ion mystery1

5.22 What does this program do?

1 / I Ex . 5 . 2 2 : exO 5 2 2 . cpp
2 1/ What doe s thi s program do ?
3 # i nc lude < iostream>
4
5 us ing std : : couti
6 us ing s td : : c i n ;
7 us ing s td : : endl ;
8

9 int myst ery2 (const char *) ; 1 / prototype

394

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20

2 1

22

23

24

25

26

27

28

29

30

3 1

32

33

Pointers and Strings

int main ()

{
char string1[8 0] ;

cout « " Enter a string : " ;
c i n » string1 ;
cout « mystery2 (string1) « endl ;

return 0 ; I I indicates succes sful terminat ion

} I I end main

I I What doe s thi s funct ion do?
int mystery2 (const char * s)

{
int x ;

for (x
+ +x ;

return x ;

0 ; * s ! = ' \ 0 ' ; s + +)

I I end funct i on mys tery2

Chapter 5

5.23 Find the error in each of the following segments. If the error can be corrected, explain how.

a) int *nwnbe r ;

cout « nwnber « endl ;

b) double * realpt r ;

long * integerpt r ;

integerPt r = realPt r ;

c) int * x , y ;

x = y ;

d) char s [] " thi s i s a character array " ;

for (; * s ! = '\0' ; s + +)

cout « * s « ' ' ;

e) short *numPtr , resul t ;

void * genericPtr = numP t r ;

result = * genericPtr + 7 ;

f) double x = 1 9 . 34 ;

double xPt r = &x ;

cout « xPt r « endl ;

g) char * s ;

cout « s « endl ;

5.24 (Quicksort) In the examples and exercises of Chapter 4, we discussed the sorting techniques

of the bubble sort, bucket sort and selection sort. We now present the recursive sorting technique

called Quicksort. The basic algorithm for a single-subscripted array of values is as follows:

a) Partitioning Step: Take the first element of the unsorted array and determine its final 10-
cation in the sorted array (i .e., all values to the left of the element in the array are less than

the element, and all values to the right of the element in the array are greater than the el

ement) . We now have one element in its proper location and two unsorted subarrays .

b) Recursive Step: Perform step I on each unsorted subarray.

Chapter 5 Pointers and Strings 395

Each time step I is performed on a subarray, another element is placed in its final location of the

sorted array, and two unsorted subarrays are created. When a subarray consists of one element, that

subarray must be sorted; therefore, that element is in its final location .

The basic algorithm seems simple enough, but how do we determine the final position of the

first element of each subarray? As an example, consider the following set of values (the element in

bold is the partitioning element-it will be placed in its final location in the sorted array):

37 2 6 4 89 8 10 12 68 45

a) Starting from the rightmost element of the array, compare each element with 37 until an

element less than 37 is found. Then swap 37 and that element. The first element less than

37 is 12, so 37 and 12 are swapped . The values now reside in the array as follows:

12 2 6 4 89 8 10 37 68 45

Element 12 is in italics to indicate that it was just swapped with 37.
b) Starting from the left of the array, but beginning with the element after 12, compare each

element with 37 until an element greater than 37 is found. Then swap 37 and that element.

The first element greater than 37 is 89, so 37 and 89 are swapped. The values now reside

in the array as follows:

12 2 6 4 37 8 10 89 68 45

c) Starting from the right, but beginning with the element before 89, compare each element

with 37 until an element less than 37 is found. Then swap 37 and that element. The first

element less than 37 is 10, so 37 and 10 are swapped. The values now reside in the array

as follows:

12 2 6 4 10 8 37 89 68 45

d) Starting from the left, but beginning with the element after 10, compare each element

with 37 until an element greater than 37 is found. Then swap 37 and that element. There

are no more elements greater than 37, so when we compare 37 with itself, we know that

37 has been placed in its final location of the sorted array.

Once the partition has been applied to the array, there are two unsorted subarrays. The subarray with

values less than 37 contains 12, 2, 6, 4, 10 and 8. The subarray with values greater than 37 contains

89, 68 and 45. The sort continues with both subarrays being partitioned in the same manner as the

original array.

Based on the preceding discussion, write recursive function qui ckSort to sort a single-sub

scripted integer array. The function should receive as arguments an integer array, a starting subscript

and an ending subscript. Function part i t ion should be called by qui ckSort to perform the

partitioning step.

5.25 (Maze Traversal) The grid of hashes (#) and dots (.) in Fig. 5.43 is a double-subscripted ar

ray representation of a maze. In the double-subscripted array, the hashes (#) represent the walls of the

maze and the dots represent squares in the possible paths through the maze. Moves can be made only

to a location in the array that contains a dot.

There is a simple algorithm for walking through a maze that guarantees finding the exit (assuming
that there is an exit) . If there is not an exit, you will arrive at the st3Jting location again. Place your right
hand on the wall to your right and begin walking forward. Never remove your hand from the wall. If
the maze turns to the right, you follow the wall to the right. As long as you do not remove your hand
from the wall, eventually you will arrive at the exit of the maze. There may be a shorter path than the

one you have taken, but you are guaranteed to get out of the maze if you follow the algorithm.

396 Pointers and Strings Chapter 5

• # # # # #
• # #
• # # # # •

• # • # #
• • # # # • # #

• # # # #

Fig. 5.43 Double-subscripted array representation of a maze .

Write recursive function mazeTraverse to walk through the maze. The function should

receive as arguments a 12-by-12 character array representing the maze and the starting location of

the maze. As maz eTraverse attempts to locate the exit from the maze, it should place the charac

ter X in each square in the path. The function should display the maze after each move so the user

can watch as the maze is solved.

5.26 (Generating Mazes Randomly) Write a function mazeGenerator that takes as an argu

ment a double-subscripted 12-by-12 character array and randomly produces a maze. The function

should also provide the starting and ending locations of the maze. Try your function mazeTra

verse from Exercise 5.25 using several randomly generated mazes.

5.27 (Mazes of Any Size) Generalize functions mazeTraverse and mazeGenerator of

Exercise 5.25 and Exercise 5.26 to process mazes of any width and height.

5.28 (Arrays of Pointers to Functions) Rewrite the program of Fig. 4.23 to use a menu-driven in

terface. The program should offer the user five options as follows (these should be displayed on the

screen):

Enter a choice :
o Print the array of grade s
1 Find the minimum grade
2 Find the maximum grade
3 Print the average on a l l tests for each student
4 End program

One restriction on using arrays of pointers to functions is that all the pointers must have the same

type. The pointers must be to functions of the same return type that receive arguments of the same

type. For this reason, the functions in Fig. 4.23 must be modified so they each return the same type

and take the same parameters. Modify functions minimum and maximum to print the minimum or

maximum value and return nothing. For option 3, modify function average of Fig. 4.23 to output

the average for each student (not a specific student). Function average should return nothing and

take the same parameters as printArray, minimum and maximum. Store the pointers to the four

functions in array proces sGrade s, and use the choice made by the user as the subscript into the

array for calling each function.

5.29 (Modifications to the Simpletron Simulator) In Exercise 5.19, you wrote a software simula

tion of a computer that executes programs written in Simpletron Machine Language (SML). In this

Chapter 5 Pointers and Strings 397

exercise, we propose several modifications and enhancements to the Simpletron Simulator. In

Exercise 17.26 and Exercise 17.27, we propose building a compiler that converts programs written in

a high-level programming language (a variation of BASIC) to SML. Some of the following modifi

cations and enhancements may be required to execute the programs produced by the compiler. (Note:

Some modifications may conflict with others and therefore must be done separately.)

a) Extend the Simpletron Simulator's memory to contain 1000 memory locations to enable

the Simpletron to handle larger programs.

b) Allow the simulator to perform modulus calculations. This requires an additional Sim

pletron Machine Language instruction.

c) Allow the simulator to perform exponentiation calculations. This requires an additional

Simpletron Machine Language instruction.

d) Modify the simulator to use hexadecimal values rather than integer values to represent

Simpletron Machine Language instructions.

e) Modify the simulator to allow output of a newline. This requires an additional Simpletron

Machine Language instruction.

f) Modify the simulator to process floating-point values in addition to integer values.

g) Modify the simulator to handle string input. [Hint: Each Simpletron word can be divided

into two groups, each holding a two-digit integer. Each two-digit integer represents the

ASCII decimal equivalent of a character. Add a machine-language instruction that will

input a string and store the string beginning at a specific Simpletron memory location.

The first half of the word at that location will be a count of the number of characters in

the string (i.e., the length of the string). Each succeeding half-word contains one ASCII

character expressed as two decimal digits. The machine-language instruction converts

each character into its ASCII equivalent and assigns it to a half-word.]

h) Modify the simulator to handle output of strings stored in the format of part (g). [Hint:

Add a machine-language instruction that will print a string beginning at a certain Sim

pletron memory location. The first half of the word at that location is a count of the num

ber of characters in the string (i.e., the length of the string). Each succeeding half-word

contains one ASCII character expressed as two decimal digits. The machine-language in

struction checks the length and prints the string by translating each two-digit number into

its equivalent character.]

i) Modify the simulator to include instruction SML_DEBUG that prints a memory dump af

ter each instruction executes. Give SML_DEBUG an operation code of 4 4 . The word

+4 4 0 1 turns on debug mode, and + 4 4 0 0 turns off debug mode.

5.30 What does this program do?

1 I I Ex. 5 . 3 0 : ex0 5 3 0 . cpp
2 I I What does thi s program do?
3 # inc lude < iostream>
4

5 us ing std : : cout ;
6 us ing std : : c i n ;
7 us ing std : : endl ;
8

9 bool mystery3 (const char * , const char *) ; I I prototype
10
1 1 int main ()
1 2 {
1 3 char s t ring1 [8 0] , string2 [8 0] ;
1 4

398

1 5

1 6

1 7

1 8

1 9

20
2 1

22

23

24

25

26

27

28

29

30

3 1

32

33

34

Pointers and Strings

cout « " Enter two strings : " ;
c i n » string1 » string2 ;
cout « " The result i s "

« mystery3 (string 1 , string2) « endl ;

return 0 ; II i ndicates succe s s ful t erminat ion

I I end main

I I What does thi s funct ion do?
bool mystery3 (const char * s l , const char * s 2)
{

for (

i f

* s l ! = ' \0 ' & & * s 2 ! = ' \0 ' ; s l + + , s 2 + +

* s l ! = * s 2)
return f a l s e ;

return true ;

} II end funct ion mystery3

STRING-MANIPULA TlON EXERCISES

Chapter 5

5.3 1 Write a program that uses function st rcmp to compare two strings input by the user. The

program should state whether the first string is less than, equal to or greater than the second string.

5.32 Write a program that uses function st rncmp to compare two strings input by the user. The

program should input the number of characters to compare. The program should state whether the first

string is less than, equal to or greater than the second string.

5.33 Write a program that uses random-number generation to create sentences. The program

should use four arrays of pointers to char called art ic le, noun, verb and prepos i t i on. The

program should create a sentence by selecting a word at random from each array in the following or

der: art i c le, noun, verb, preposition, art icle and noun. As each word is picked, it

should be concatenated to the previous words in an array that is large enough to hold the entire sen

tence. The words should be separated by spaces. When the final sentence is output, it should start with

a capital letter and end with a period. The program should generate 20 such sentences.

The arrays should be filled as follows: The art icle array should contain the articles " the " ,

" a " , " one " , " some " and " any " ; the noun array should contain the nouns " boy " , " gi r l " ,

" dog " , " town " and " car " ; the verb array should contain the verbs " drove " , " j umped " ,

" ran " , " walked " and " skipped " ; the prepo s i t ion array should contain the prepositions

lit o " , 11 from " , " over " , " underll and lion " .

After completing the program, modify it to produce a short story consisting o f several o f these

sentences. (How about the possibility of a random term-paper writer!)

5.34 (Limericks) A limerick is a humorous five-line verse in which the first and second lines

rhyme with the fifth, and the third line rhymes with the fourth. Using techniques similar to those de

veloped in Exercise 5.33, write a C++ program that produces random limericks. Polishing this pro

gram to produce good limericks is a challenging problem, but the result will be worth the effort!

5.35 Write a program that encodes English language phrases into pig Latin. Pig Latin is a form of

coded language often used for amusement. Many variations exist in the methods used to form pig Lat

in phrases. For simplicity, use the following algorithm: To form a pig-Latin phrase from an English

language phrase, tokenize the phrase into words with function strtok. To translate each English

Chapter 5 Pointers and Strings 399

word into a pig-Latin word, place the first letter of the English word at the end of the English word

and add the letters "ay." Thus, the word "j ump" becomes "umpj ay," the word "the" becomes

"hetay" and the word "computer" becomes "omputercay." Blanks between words remain as

blanks. Assume that the English phrase consists of words separated by blanks, there are no punctua

tion marks and all words have two or more letters. Function printLat inWord should display each

word. (Hint: Each time a token is found in a call to st rtok, pass the token pointer to function

printLat inWord and print the pig-Latin word.)

5.36 Write a program that inputs a telephone number as a string in the form (5 5 5) 5 5 5 - 5 5 5 5.

The program should use function st rtok to extract the area code as a token, the first three digits of

the phone number as a token, and the last four digits of the phone number as a token. The seven digits

of the phone number should be concatenated into one string. Both the area code and the phone number

should be printed.

5. 37 Write a program that inputs a line of text, tokenizes the line with function s t rtok and out

puts the tokens in reverse order.

5.38 Use the string comparison functions discussed in Section 5.12.2 and the techniques for sort

ing arrays developed in Chapter 4 to write a program that alphabetizes a list of strings. Use the names

of 10 or 15 towns in your area as data for your program.

5.39 Write two versions of each string copy and string concatenation function in Fig. 5.27. The

first version should use array subscripting, and the second should use pointers and pointer arithmetic.

5.40 Write two versions of each string comparison function in Fig. 5.27. The first version should

use array subscripting, and the second version should use pointers and pointer arithmetic.

5 . 4 1 Write two versions of function strlen in Fig. 5.27. The first version should use array sub

scripting, and the second version should use pointers and pointer arithmetic.

SPECIAL SECTION: ADVANCED STRING-MANIPULATION EXERCISES
The preceding exercises are keyed to the text and designed to test the reader's understanding of fun

damental string-manipulation concepts. This section includes a collection of intermediate and

advanced string-manipulation exercises. The reader should find these problems challenging, yet

enjoyable. The problems vary considerably in difficulty. Some require an hour or two of program

writing and implementation. Others are useful for lab assignments that might require two or three

weeks of study and implementation. Some are challenging term projects.

5.42 (Text Analysis) The availability of computers with string-manipulation capabilities has re

sulted in some rather interesting approaches to analyzing the writings of great authors. Much attention

has been focused on whether William Shakespeare ever lived. Some scholars believe there is substan

tial evidence indicating that Christopher Marlowe or other authors actually penned the masterpieces

attributed to Shakespeare. Researchers have used computers to find similarities in the writings of

these two authors. This exercise examines three methods for analyzing texts with a computer.

a) Write a program that reads several lines of text from the keyboard and prints a table in

dicating the number of occurrences of each letter of the alphabet in the text. For example,

the phrase

To be , or not to be : that i s the quest ion :

contains one "a," two "b's," no "e's," etc.

b) Write a program that reads several lines of text and prints a table indicating the number

of one-letter words, two-letter words, three-letter words, etc., appearing in the text. For

example, the phrase

Whether 't i s nobler in the mind to suffer

400 Pointers and Strings

contains the following word lengths and occurrences:

Word length

2

3

4

5

6

7

Occurrences

o

2

2 (including' t i s)

o
2

Chapter 5

c) Write a program that reads several lines of text and prints a table indicating the number

of occurrences of each different word in the text. The first version of your program

should include the words in the table in the same order in which they appear in the text.

For example, the lines

To be , or not to be : that is the que s t i on :
Whether ' t i s nobler in the mind to suffer

contain the words "to" three times, the word "be" two times, the word "or" once, etc. A

more interesting (and useful) printout should then be attempted in which the words are

sorted alphabetically.

5.43 (Word Processing) One important function in word-processing systems is type justifica

tion-the alignment of words to both the left and right margins of a page. This generates a profes

sional-looking document that gives the appearance of being set in type rather than prepared on a

typewriter. Type justification can be accomplished on computer systems by inserting blank characters

between each of the words in a line so that the rightmost word aligns with the right margin.

Write a program that reads several lines of text and prints this text in type-justified format.

Assume that the text is to be printed on 8- 1/2-inch-wide paper and that one-inch margins are to be

allowed on both the left and right sides of the printed page. Assume that the computer prints 10 char

acters to the horizontal inch. Therefore, your program should print 6- 1/2 inches of text, or 65 charac

ters per line.

5.44 (Printing Dates in Various Formats) Dates are commonly printed in several different formats

in business correspondence. T wo of the more common formats are

0 7 /2 1/1 9 5 5
July 2 1 , 1 9 5 5

Write a program that reads a date in the first format and prints that date i n the second format.

5.45 (Check Protection) Computers are frequently employed in check-writing systems such as

payroll and accounts payable applications. Many strange stories circulate regarding weekly pay

checks being printed (by mistake) for amounts in excess of $ 1 million. Weird amounts are printed by

computerized check-writing systems, because of human error or machine failure. Systems designers

bui Id controls into their systems to prevent such erroneous checks from being issued.

Another serious problem is the intentional alteration of a check amount by someone who

intends to cash a check fraudulently. To prevent a dollar amount from being altered, most computer

ized check-writing systems employ a technique called check protection.

Chapter 5 Pointers and Strings 40 1

Checks designed for imprinting by computer contain a fixed number of spaces in which the

computer may print an amount. Suppose that a paycheck contains eight blank spaces in which the

computer is supposed to print the amount of a weekly paycheck. If the amount is large, then all eight

of those spaces will be filled, for example,

1 , 230 . 6 0 (check amount)

12345 6 7 8 (position numbers)

On the other hand, if the amount is less than $1000, then several of the spaces would ordinarily

be left blank. For example,

9 9 . 87

1 2 345 6 7 8

contains three blank spaces. If a check i s printed with blank spaces, i t i s easier for someone to alter

the amount of the check. To prevent a check from being altered, many check-writing systems insert

leading asterisks to protect the amount as follows:

* * * 9 9 . 87

1 2 345 6 7 8

Write a program that inputs a dollar amount to b e printed on a check and then prints the amount

in check-protected format with leading asterisks if necessary. Assume that nine spaces are available

for printing an amount.

5.46 (Writing the Word Equivalent of a Check Amount) Continuing the discussion of the previous

example, we reiterate the importance of designing check-writing systems to prevent alteration of

check amounts. One common security method requires that the check amount be written both in num

bers and "spelled out" in words. Even if someone is able to alter the numerical amount of the check,

it is extremely difficult to change the amount in words.

Write a program that inputs a numeric check amount and writes the word equivalent of the

amount. Your program should be able to handle check amounts as large as $99 .99. For example, the

amount 112.43 should be written as

ONE HUNDRED TWELVE and 43/1 0 0

5.47 (Morse Code) Perhaps the most famous of all coding schemes is the Morse code, developed

by Samuel Morse in 1832 for use with the telegraph system. The Morse code assigns a series of dots

and dashes to each letter of the alphabet, each digit and a few special characters (such as period, com

ma, colon and semicolon). In sound-oriented systems, the dot represents a short sound, and the dash

represents a long sound. Other representations of dots and dashes are used with light-oriented systems

and signal-flag systems.

Separation between words is indicated by a space, or, quite simply, the absence of a dot or dash.

In a sound-oriented system, a space is indicated by a short period of time during which no sound is

transmitted. The international version of the Morse code appears in Fig. 5.44.

Write a program that reads an English-language phrase and encodes the phrase into Morse

code. Also write a program that reads a phrase in Morse code and converts the phrase into the

English-language equivalent. Use one blank between each Morse-coded letter and three blapks

between each Morse-coded word.

402 Pointers and Strings

Character Code

A

B

C

D

E

F

G

H

K

L

M

N

o

p

Q
R

S

- . -

. - . .

Fig. 5.44 Morse code a lphabet.

Character

T

U

V

W

X

Y

Z

Digits

I

2

3

4

5

6

7

8

9

o

Chapter 5

Code

- . --

5.48 (A Metric Conversion Program) Write a program that will assist the user with metric con

versions. Your program should allow the user to specify the names of the units as strings (i.e., cen

timeters, liters, grams, etc., for the metric system and inches, quarts, pounds, etc., for the English

system) and should respond to simple questions such as

" How many inche s are in 2 meters? "
" How many l i ters are in 1 0 quart s? "

Your program should recognize invalid conversions. For example, the question

" How many feet in 5 kilograms? "

is not meaningful, because" feet " are units of length, while " ki lograms " are units of weight.

A CHALLENGING STRING-MANIPULATION PROJECT

5.49 (A Crossword Puzzle Generator) Most people have worked a crossword puzzle, but few have

ever attempted to generate one. Generating a crossword puzzle is a difficult problem. It is suggested

here as a string-manipulation project requiring substantial sophistication and effort. There are many

issues that the programmer must resolve to get even the simplest crossword puzzle generator program

working. For example. how does one represent the grid of a crossword puzzle inside the computer')

Chapter 5 Pointers and Strings 403

Should one use a series of strings, or should double-subscripted arrays be used? The programmer

needs a source of words (i.e., a computerized dictionary) that can be directly referenced by the pro

gram. In what form should these words be stored to facilitate the complex manipulations required by

the program? The really ambitious reader will want to generate the "clues" portion of the puzzle in

which the brief hints for each "across" word and each "down" word are printed for the puzzle worker.

Merely printing a version of the blank puzzle itself is not a simple problem.

6
Classes and

Data Abstraction

Objectives
• To understand the software engineering concepts of

encapsulation and data hiding.

• To understand the notions of data abstraction and

abstract data types (ADTs) .

• To b e able t o create C++ ADTs, namely, classes .

• To understand how to create, use and destroy class

obj ects .

• To be able to control access to obj ect data members

and member functions.

• To begin to appreciate the value of object orientation.

My object all sublime

I shall achieve in time.

W. S. Gilbert

Is it a world to hide virtues in ?

William Shakespeare

Your public servants serve you right.

Adlai Stevenson

Private faces in public places

Are wiser and nicer

Than public faces in private places.

W. H. Auden

Chapter 6

Outl ine

6. 1 Introduction

6.2 Structure Defin itions

6.3 Accessing Structure Members

Classes and Data Abstraction

6.4 Implementing User- Defined Type Time with a C-l ike s t ruct

6.5 I mplementing Abstract Data Time Type with a c l a s s

6.6 Class Scope and Accessing Class Members

6.7 Separating Interface from Implementation

6.8 Controll ing Access to Members

6.9 Access Functions and Util ity Functions

6. 1 0 In itializing Class Objects: Constructors

6. 1 1 Using Default Arguments with Constructors

6. 1 2 Destructors

6. 1 3 When Constructors and Destructors Are Called

6. 1 4 Using Set and Get Functions

405

6. 1 5 Subtle Trap: Returning a Reference to a pri va te Data Member

6. 1 6 Default Memberwise Assignment

6. 1 7 Software Reusabil ity

6. 1 8 (Optional Case Study) Thinking About Objects: Starting to Program

the Classes for the Elevator Simulator

Summary · Terminology · Self-Review Exercises ' Answers to Self-Review Exercises ' Exercises

6. 1 I ntroduction

Now we begin our i ntroduction to object orientation in C++. Why have we deferred object

oriented programming i n C++ until Chapter 67 The answer i s that the obj ects we wi l l bu i ld

w i l l be composed i n part of structured program pieces, so we needed to estab l i sh a bas is i n

structured programming first .

Through our "Thinking About Objects" sections at the ends of Chapter 1 through

Chapter 5, we have introduced the basic concepts (i . e . , "object th ink") and terminology

(i . e . , "object speak") of object-oriented programming in C++. In these special sections, we

also discussed the techniques of object-oriented design (OOD) : We analyzed a typical

problem statement that required a system (an elevator s imulator) to be bui l t , determi ned

what c lasses were needed to implement the system, determined what attributes obj ects of

these c lasses needed to have, determined what behaviors obj ects of these c lasses needed to

exhibit and specified how the objects needed to in teract with one another to accompl ish the

overal l goals of the system .

Let us briefly review some key concepts and terminology of object orientat ion . Obj ect

oriented programming (OOP) encapsulates data (attributes) and funct ions (behavior) i nto

packages cal led classes ; the data and functions of a c lass are int i mately tied together. A

406 Classes and Data Abstraction Chapter 6

c lass i s l i ke a blueprint. Out of a bl uepri nt, a bui lder can bui ld a house. Out of a c lass , a

programmer can create an object . One blueprint can be reused many t imes to make many

houses . One c lass can be reused many t imes to make many objects of the same class . In

Section 6.5, we defi ne c lass Time that can be used to create many Time obj ects (e . g . ,

wakeupTime, breakfastTime, lunchTime, dinnerTime , bedTime, etc .) .

C lasses have the property o f information hiding. Thi s means that although c l ass

objects may know how to communicate with one another across wel l -defi ned interfaces,

c lasses normal ly are not a l lowed to know how other c lasses are i mplemented-implemen

tat ion detai l s are h idden with in the classes themselves . Surely i t i s poss ib le to drive a car

effect ively w i thout knowing the detai ls of how engines, transmissions and exhaust systems

work internal ly . We wi l l s ee why information h id ing i s so crucia l to good software engi

neering .

I n C and other procedural programming languages, programming tends to be action

oriented, whereas ideal ly i n C++ programming is object-oriented. I n C, the un i t of pro

gramming i s the function. In C++, the unit of programming is the class from which objects

are eventual ly instantiated (i . e . , created) .

C programmers concentrate o n writ ing functions. Groups o f act ions that perform some

task are formed into funct ions, and functions are grouped to form programs . Data are cer

tain ly i mportant i n C, but the v iew i s that data exis t pri mari l y i n support of the act ions that

functions perform. The verbs i n a system specification help the C programmer determine

the se t of functions that wi l l work together to i mplement the system.

C++ programmers concentrate on creat ing the i r own user-defined types cal led classes.

Classes are also referred to as programmer-defined types. Each c lass contain s data as wel l

as the se t of functions that manipulate the data. The data components of a c lass are cal led

data members. The function components of a c lass are cal led member functions (or methods

i n other object-oriented languages) . Just as an i nstance of a bu i l t - in type such as int i s

cal led a variable, a n i nstance o f a user-defi ned type (i .e . , a c lass) i s cal led a n object. In the

C++ community, the terms variable and object are often used in terchangeab ly . The focus

of attent ion i n C++ i s on c lasses rather than functions. The nouns i n a system specificat ion

help the C++ programmer determine the set of c lasses that wi l l be used to create the obj ects

that wil l work together to implement the system.

Classes i n C++ are a natural evolution of the C notion of s t ruc t . Before proceeding

wi th the spec ifics of developing c lasses i n C++, we discuss structures, and we bui ld a user

defi ned type based on a C-style structure. I n subsequent sect ions , the weaknesses we

expose i n this approach w i l l help motivate the notion of a c lass .

6.2 Structure Defin itions

Structures are aggregate data types-that i s , they can be bui l t using elements of other types

i nc luding other structs . Consider the fol lowing structure defi n i t ion :

s t ruct Time {
int hour ;
int minute ;
int second ;

I I 0 - 23 (2 4 - hour c l ock format)
/I 0 - 5 9
I I 0 - 5 9

} ; I I end struct Time

Chapter 6 Classes and Data Abstraction 407

Keyword s truc t i ntroduces the structure defin i t ion . The ident ifier Time is the structure

tag that names the structure defi n i t ion and is used to declare variables of the structure type.

I n this example, the new type name i s Time . The names declared i n the braces of the struc

ture defin i t ion are the structure ' s members. Members of the same structure must have

unique names, but two different structures may contain members of the same name w ithout

confl ic t . Each structure defi n it ion must end with a semicolon . The preceding explan at ion

i s val id for c lasses also; as we wi l l soon see , structures and c lasses are qu i te s im i l ar in C++.

The defi n i t ion of Time contains three members of type int-hour, minute and

second. Structure members can be of any type, and one structure can contain members of

many differen t types. A structure cannot, however, contai n an i nstance of i tself. For

example, a member of type Time cannot be declared in the structure defi ni t ion for T ime .

A pointer t o another Time structure, however, can b e inc luded . A structure contain i ng a

member that is a pointer to the same structure type is referred to as a self- referential struc

ture. Self-referent ia l structures are usefu l for forming l i nked data structures such as l i n ked

l i sts , queues, stacks and trees, as we wi l l see in Chapter 1 7 .

The preceding structure defi n i t ion does not reserve any space i n memory ; rather, the

defi n i t ion creates a new data type that i s used to declare variables . Structure variables are

declared l i ke variables of other types. The declarat ions

Time t imeObj ect ; I I obj ect o f cla s s T ime
T ime t imeArray [1 0] ; / I array of T ime obj e c t s
T ime * t imePtr &t imeObj ect ; /I pointer to a T ime obj ect
Time &t imeRe f = t imeObj ect ; / I reference to a T ime obj ect

dec lare t imeObj ect to be a variable of type Time, t imeArray to be an array w i th 1 0
elements of type Time, t imeptr to be a pointer to a Time obj ect that i s in i t ia l i zed wi th
the address of t imeObj ect and t imeRe f to be a reference to a Time obj ect that i s in i
t ial i zed w i th t imeObj e c t .

6.3 Accessing Structu re Members

Members of a structure (or of a c lass) are accessed us ing the member access operators
the dot operator (.) and the arrow operator (- » . The dot operator accesses a structure or
c lass member v ia the variable name for the object or v ia a reference to the object . For ex
ample , to pri nt member hour of t imeObj ect, use the statement

cout « t imeObj ect . hour ;

To pri nt member hour of the Time object referenced by t imeRe f , use the statement

cout « t imeRe f . hour ;

The arrow operator-which consists of a minus s ign (-) and a greater than s ign (»
with n o i nterven ing whitespace-accesses a structure member or c lass member v ia a
pointer to an object . Assume that the pointer t imePtr has been declared to poin t to a
Time object , and that the address of t imeObj ect has been assigned to t imePtr. To
print member hour of t imeObj ect with pointer t imePtr, use the statement

cout « t imept r - >hour ;

408 Classes and Data Abstraction Chapter 6

The express ion t imeptr- >hour i s equivalent to (* t imePt r) • hour, which

dereferences the pointer and accesses the member hour us ing the dot operator. The paren

theses are needed here because the dot operator (.) has a h igher precedence than the poi nter

dereferencing operator (*) . The arrow operator and dot operator, a long wi th parentheses

and brackets ([]) , have the second h ighest operator precedence (after the scope reso lut ion

operator i n troduced i n Chapter 3) ; these operators associ ate from left to r ight .

Common Programming Error 6. 1

The expression (* t imePt r) . hour refers to the hour member of the struct pointed to

by t imePtr. Operator . has a higher precedence than *, so omitting the parentheses would

cause the expression to be evaluated as if parenthesized as * (t imePtr . hour) . This

would be a syntax error because with a pointer you must use the arrow operator to refer to

a member.

6.4 I mplementing User- Defined Type Time with a C - l i ke
s t ruc t

Figure 6. 1 creates the u ser-defi ned structure type Time (l i nes 1 4- 1 9) wi th three i n teger

members : hour, minute and second. The program defines a s ingle T ime structure

cal led dinnerTime (l ine 26) and uses the dot operator to i n i t ia l i ze the structure members

w i th the values 18 for hour, 3 0 for minute and 0 for second (l i nes 28-30) . Line 33

then pri nts the time in un iversal format (also cal led 24-hour c lock format) , and l i ne 35

prints the time in standard format (i . e . , 1 2-hour clock format) . Note that functions print

Universal (l i nes 50-56) and print Standard (l ines 59-67) receive references to

constant Time objects . Thi s causes the Time objects to be passed to the pri nt funct ions by

reference-thus e l im inating the copying overhead associated with pass ing structure obj ects

to functions by value-and us ing const prevents the Time obj ects from bei ng modified

by the prin t functions . A l so, note that functions printUni versal and printStan

dard u s e parameterized stream manipulator s e t fi l l t o speci fy t h e fill character that i s

d isp layed when a n i n teger i s output in a fie ld w idth larger than t h e number o f d ig i ts i n the

value . By default , the fi l l characters appear before the digits in the number. In this example,

i f the minute value i s 2 , i t w i l l be displayed as 02. I f the number being output fi l l s the

spec ified fie ld width, the fi l l character wi l l not be d isp layed. Note that once the fi l l charac

ter is spec ified wi th set f i l l , it appl ies for al l subsequent fie lds bei n g printed. Thi s is i n

contrast t o setw, which o n l y app l ies t o the next fie ld being printed.

1 I I F i g . 6 . 1 : f i g 0 6_0 1 . cpp
2 I I Create a structure , set i t s members , and print i t .
3 # inc lude < iostream>
4

5 us ing std : : cout ;
6 using std : : endl ;
7

8 # inc lude < iomanip>
9

1 0 us ing s td : : set f i l l ;
1 1 us ing s td : : setw;

Fig. 6. 1 Creating a structure, setting its members and pr int ing the structure . (Port 1
of 3 ,)

Chapter 6 Classes and Data Abstraction 409

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20

2 1

22

23

24

25

26

27

28

29

30

3 1

32

33

34

35

36

37

38

39

40

4 1
42

43

44

45

46

47

48

49

50

5 1

52

53

54
55
56
57

58

59

60

6 1

62

63

I I s t ructure def in i t i on
struct Time {

int hour ;
int minute ;
int second ;

I I 0 - 2 3 (2 4 -hour c lock format)

I I 0 - 5 9

I I 0 - 5 9

} ; I I end s t ruct T ime

void printUniversal (const Time &) ;

void print S t andard (const Time &) ;
I I prototype
I I prototype

int ma in ()
{

Time dinnerTime ; I I vari able of new type T ime

dinnerTime. hour = 1 8 ;
dinnerTime. minute 3 0 ;
dinnerTime. second = 0 ;

I I set hour member of dinnerTime

I I set minute

I I set second

cout « " Dinner wi l l be held at " ;
printUniversal { dinnerTime) ;
cout « " universal t ime , \nwhich i s " ;
print S tandard (dinnerTime) ;
cout « " standard t ime. \n " ;

member o f dinnerTime
member o f dinnerTime

dinnerTime. hour = 2 9 ; I I set hour to inva l i d value
dinnerTime. minute = 7 3 ; I I set minute to i nva l i d value

cout « " \nTime with invalid value s : " ;
printUniversal { dinnerTime) ;
cout « endl ;

return 0 ;

I I end mai n

I I print t ime i n universal - t ime format
void printUniversal (const Time &t)

{
cout « set f i l l (' 0 ') « setw (2) « t. hour « " : "

« setw (2) « t . minute « " : "
« setw { 2) « t. second ;

} I I end funct i on printUniversal

I I print t ime in s tandard- t ime format
void print Standard { const Time &t)

{
cout « ((t. hour = = 0 I I t. hour = = 1 2) ?

12 : t. hour % 1 2) « " : " « set f i l l (' 0 ')
« setw (2) « t . minute « " : "

Fig. 6. 1 Creating a structure, sett ing its members and pr int ing the structu re . (Part 2
of 3 .)

4 1 0 Classes and Data Abstraction

64 « setw (2) « t . second
65 « (t . hour < 12 ? " AM "
66

67 } I I end funct ion printStandard

" PM") ;

Dinner wi l l be he ld at 1 8 : 3 0 : 0 0 universal t ime ,
which i s 6 : 3 0 : 0 0 PM standard t ime .

T ime with inva l id value s : 2 9 : 7 3 : 0 0

Chapter 6

Fig. 6. 1 Creating a structu re, setting its members and printing the structure . (Part 3
of 3 .)

Performance Tip 6. 1

By default, structures are passed by value. To avoid the overhead o./copying a structure, pass

the structure by reference.

Software Engineerin Observation 1

To avoid the overhead of pass-by-value yet st ill gain the benefit that the caller 's original data

are protected from modification, pass large-size arguments as cons t references.

There are drawbacks to creat ing new data types wi th structures i n th is manner. I n i t ia l

ization i s not spec ifical l y requ i red, so i t i s poss ib le to have un in i t ia l i zed data and the con

sequent problems . Even i f the data are i n i t ial i zed, they might not be in i t i al i zed correctl y .

I n va l id values can b e ass igned t o the members o f a structure (a s we d i d i n Fig . 6 . 1) because

the program has d irect access to the data. I n l i nes 38-39, for example, the program was

eas i l y able to assign bad values to the hour and minute members of the T ime object

dinnerTime .

I f the programmer changes the implementation o f the s t ruct (e . g . , the t i me cou ld be

represented as the number of seconds s i nce midnight) , a l l programs that use the s t ruct

must be changed accord ing ly . Thi s i s because the programmer d i rect ly man ipu lates the data

representat ion . There is no "i nterface" to the data representat ion to ensure that the pro

grammer uses the data type ' s services correctly and to ensure that the data remains in a con

s i stent state .

Software Engineeri ng Observation 6 2
It is important to write programs that are understandable and easy lO maintain. Change is

the rule rather than the exception. Programmers should anticipate that their code will be

modified. As we will see, classes can facilitate program modifiability.

There are other problems associated wi th C-style structures . In C, structures cannot be

pri nted as a un i t ; rather, the i r members must be printed and formatted one at a t ime . A func

t ion could be written to print the members of a structure in some appropriate format .

Chapter 8, Operator Overloading ; String and Array Objects, i l l ustrates how to overload the

« operator to enable objects of a structure type or c lass type to be pri nted eas i l y . I n C ,

structures may n o t b e compared in the i r ent irety ; they must b e compared member b y

member. Chapter 8 a l so i l l ustrates how t o overload equal i ty operators a n d re lat ional oper

ators to compare objects of (C++) structure and c lass types .

Chapter 6 Classes and Data Abstraction 4 1 1

The next section re i mplements our Time structure as a C++ c lass and demonstrates

some of the advantages of creat ing so-ca l led abstract data types as c l asses . We w i l l see

that c lasses and structures can be used al most identical l y in C++. The d ifference between

the two is in the defaul t access ib i l i ty assoc iated wi th the members of each . Thi s w i l l be

explained short l y .

6.5 I mplementing Abstract Data Type Time with a c l a s s

Classes enable the programmer to model objects that have attributes (represented as data

members) and behaviors or operations (represented as member functions) . Types contain

ing data members and member functions are defined i n C++ us ing the keyword c l a s s .

Member funct ions are someti mes cal led methods i n other object-oriented program

ming l anguages and are i nvoked in response to messages sent to an obj ect . A message cor

responds to a member-funct ion cal l sent from one object to another or sent from a funct ion

to an object .

Once a c lass has been defi ned, the c lass name i s now a type name, which can be used

to dec l are obj ects of that c l ass . Figure 6 .2 contai ns a s i mple defi n i t ion for c l ass T ime .

O u r T ime c l ass defi n i t ion begi ns w i t h the keyword c l a s s (l i ne 1) . The body o f the

c l ass defi n i t ion is del i neated w i th left and right braces ({ and }) at l i nes I and 1 4 . The c lass

defi n i t ion terminates with a semicolon (l i ne 1 4) . Like the T ime structur e defi n i t ion in

Fig . 6 . 1 , our T ime c l ass defi n it ion contai ns the three in teger members hour, minute and

second (l i nes 1 0- 1 2) .

� Common Programming Error 6.2

� Forgetting the semicolon at the end of a class (or structure) definition is a syntax error.

The remai n ing parts of the c lass defin it ion are new. The publ i c : and privat e :

l abe l s (l i nes 3 and 9) are cal l ed member access specifiers. Any data member or member

funct ion declared after member access spec ifier pub l i c (and before the next member

access spec i fier) is access ib le wherever an object of c lass T ime is in scope . Any data

member or member function dec lared after member access specifier pri vat e (and before

the next member access spec ifier) is access ib le on ly to member funct ions of the c lass .

1

2

3

4
5
6

7

8

9

c l a s s T ime {

publ i c :
Time () ;
void setTime (int , int , int) ;
voi d printUniversal () ;
voi d printStandard () ;

private :

I I constructor
II set hour , minute , s econd
I I print universal - t ime format
I I print s tandard- t ime format

1 0

1 1

1 2
1 3

1 4

int hour ; I I 0 - 23 (24 - hour c lock format)
int minute ; I I 0 - 59
int second ; I I 0 - 59

} ; II end class T ime

Fig. 6.2 Class Time defin ition .

4 1 2 Classes and Data Abstraction Chapter 6

Member access speci fiers are always fol lowed by a colon (:) and can appear mul t ip le

t imes and in any order i n a c lass defin i t ion . For the remainder of the text , when we refer to

the member access speci fiers public and privat e i n our d iscuss ions of programs , we

w i l l omit the colons as we d id i n thi s sentence. Chapter 9 i n troduces a th ird member access

specifier, protected, as we study inheritance and the part i t plays in obj ect-oriented pro

gramming .

The c lass defi ni t ion conta ins prototypes for the fol lowing four member functions after

the publ i c member access specifier-Time, setTime, printUniversal and

print St andard. These are the publ i c member functions of the c lass (also known as

the publ i c services, publ i c behaviors or interface of the c lass) . These funct ions w i l l

be used by clients (i . e . , port ions o f a program that are u sers) of t h e c lass t o manipu late the

c lass ' s data. We w i l l soon see that c lasses can have non-pub l i c member functions as

wel l . The data members of the c lass support the del ivery of the services the c lass provides

to the c l ients of the c lass w i th i ts member functions . These services al low the c l ient code to

i nteract with an obj ect of the c lass . � Good Programming Practice 6. 1

For clarity and readability, use each member access specifier only once in a class definition.

Place publ i c members first where they are easy to locate.

Notice the member function with the same name as the c lass ; i t i s cal led a constructor

function of that class . A constructor is a speci al member funct ion that i n i t ia l izes the data

members of a c lass object . A c lass ' s constructor is called when a program creates an obj ect

of that class. We w i l l see that i t i s common to have several constructors for a c lass ; this i s

accompl ished through function overloading. Note that n o return type can b e spec ified for

the constructor.

� Common Programming Error 6.3

� Specifying a return type or a return value for a constructor is a syntax error.

The three i nteger members appear after the pri vat e member access speci fier . Thi s

i ndicates that these data members o f the c lass are access ible o n l y t o member functions

and, as we w i l l see in the next chapter, "friends"-of the c lass . Thus , c lass Time ' s data

members can be accessed only by the four functions whose prototypes appear in the c lass

defi ni t ion . Normally , data members are l i sted i n the private port ion of a class and

member functions are l i sted i n the pub l i c port ion. I t is possible to have private

member functions and pub l i c data, as we wil l see later; using pub l i c data is

uncommon and i s considered poor software engineering.

Once the c lass has been defi ned, i t can be used as a type in object, array , pointer and

reference dec larat ions as fol lows :

T ime sunset ;
Time arrayOfTime s [5] ,
Time &dinnerTime = sunset ;
Time * t imePtr = &dinnerTime ,

I I obj ect of type T ime
I I array of Time obj e c t s
I I reference to a Time obj ect

I I pointer to a T ime obj ec t

T h e c lass name becomes a n e w type speci fier . There c a n b e many obj ects o f a c lass , j ust a s

there can be many variables o f a type such a s int o The programmer c a n create new c lass

types as needed. Th i s i s one reason why C++ i s sa id to be an extensible language.

Chapter 6 Classes and Data Abstraction 4 1 3

Figure 6 .3 uses c lass T ime (defined at l i nes 1 4-27) . L ine 6 8 i n stant iates a s ingle

object of c lass T ime cal led t. When the object i s i nstant iated, the T ime constructor (l i nes

3 1 -35) i s called to i n it ial i ze each private data member to o. Then, l i nes 7 2 and 7 S print

the t ime i n u n iversal and standard formats to confirm that the members were i n i tia l ized

properly . L ine 77 sets a new t i me by cal l i ng member function setTime, and l ines 8 1 and

84 print the t i me again in both formats . Line 86 attempts use set T ime to set the data mem

bers to i nval i d values . Function setTime recogn izes this and sets the i nval id values to 0

to maintain the object i n a consistent state. Final ly , l i nes 9 1 and 94 print the t ime again i n

both formats .

1

2

3
4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20

2 1

22

23

24

25

26

27

28

29

30

3 1
32
33

34

35

36
37

38

39
40
4 1

I I Fig . 6 . 3 : f ig 0 6_0 3 . cpp
I I Time c l a s s .
i nc 1ude < iostream>

us ing s td : : cout ;
us ing std : : end1 ;

inc 1ude < iomanip>

using s td : : set f i 1 1 ;
us ing std : : setw;

I I Time abs t ract dat a type (ADT) def in i t i on
c l a s s T ime {

pub l i c :
Time () ;
voi d setTime (int , int , int) ;
void printUniversa1 () ;
void printStandard () ;

private :

I I const ructor
II set hour , minute , second
I I print universal - t ime format
I I print s tandard- t ime format

int hour ;
int minute ;
int second ;

I I 0 - 2 3 (2 4 -hour c lock format)
II 0 - 5 9
I I 0 - 5 9

} ; I I end c l a s s T ime

I I Time const ructor ini t i a l i z e s each dat a member to z ero and
II ensures a l l T ime obj ect s start in a cons i s t ent state
T ime : : T ime ()
{

hour = minute = second 0 ;

I I end T ime const ructor

I I set new Time value u s ing universal t ime , perform val id i ty
I I checks on the data values and set inva l i d values to z e ro
void T ime : : setTime (int h , int m, int s)
{

hour = (h > = 0 && h < 2 4) ? h : 0 ;

Fig. 6.3 Time abstract data type implementation as a c lass. (Part 1 of 3 .)

4 1 4

42

43

44

45

46

47

48

49

50

5 1

52

53

54

55

56

57

58

59

60
6 1
62

63

64

65

66

67

68

69

70

7 1

72

73

74

75

76

7 7

78

79

80

8 1

82
83

84

85

86
87

88

89

90
9 1

92

93

94

Classes and Data Abstraction

minute
second

m > = 0 && m < 6 0
s > = 0 & & s < 6 0

} I I end funct ion setTime

I I print T ime in universal format
void Time : : printUniversal ()

{

? m
? s

0 ;
0 ;

cout « set f i l l (' 0 ') « setw (2) « hour « " : "
« setw (2) « minute « " : "
« setw (2) « second ;

} I I end funct ion printUniversal

I I print Time i n standard format
void Time : : print Standard ()

{
cout « ((hour - - 0 I I hour - - 1 2) ? 1 2 : hour %

« It : " « set f i l l (' 0 ') « setw (2) « minute
« n : " « setw (2) «
« (hour < 1 2 ? " AM "

} I I end func t i on print Standard

int main ()

{

second
" PM") ;

Time t ; I I instant iate obj ect t of c l a s s T ime

I I output Time obj ect t ' s ini t ial values
cout « " The i n i t i a l universal t ime is " ;
t . printUniversal () ; I I 0 0 : 0 0 : 0 0

cout « " \nThe initial standard t ime i s " ;
t . print Standard () ; I I 1 2 : 0 0 : 0 0 AM

t . setTime (1 3 , 2 7 , 6) ; I I change t ime

I I output T ime obj ect t ' s new value s
cout « " \n\nUniversal t ime after setTime i s " ;
t . printUniversal () ; I I 1 3 : 2 7 : 0 6

cout « " \ nStandard t ime after setTime i s " ;
t . printStandard () ; I I 1 : 2 7 : 0 6 PM

Chapter 6

1 2

t . setTime (9 9 , 9 9 , 9 9) ; I I att empt inva l i d sett ings

I I output t ' s value s after speci fying inva l i d values
cout « " \n\nAfter attempt ing inva l i d sett ings : "

« " \nUniversal t ime : " ;
t . printUniversal () ; I I 0 0 : 0 0 : 0 0

cout « " \nStandard t ime : " ;
t . printStandard () ; I I 1 2 : 0 0 : 0 0 AM

Fig. 6.3 Time abstract data type implementation as a c lass. (Part 2 of 3 .)

Chapter 6

95 cout « endl ;
96

97 return 0 ;
98

99 I I end main

Classes and Data Abstraction

The init i a l universal t ime i s 0 0 : 0 0 : 0 0
The ini t ial s tandard t ime i s 1 2 : 0 0 : 0 0 AM

Universal t ime after setTime i s 1 3 : 2 7 : 0 6
Standard t ime after setTime i s 1 : 2 7 : 0 6 PM

After att empt ing inval id sett ings :
Universal t ime : 0 0 : 0 0 : 0 0
Standard t ime : 1 2 : 0 0 : 0 0 AM

Fig. 6.3 Time abstract data type implementation as a c lass . (Part 3 of 3 .)

4 1 5

Note that the data members hour, minute and second (l i nes 23-2 5) are preceded

by the privat e member access spec ifier (l i ne 22) . A c lass ' s privat e data members

normal ly are not access ib le outside the c lass . (Again , we w i l l see i n Chapter 7 that friends

of a c lass may access the c lass ' s privat e members .) The ph i losophy here i s that the data

representat ion used wi th in the c lass i s of no concern to the c lass ' s c l ients . For example , i t

would b e perfect l y reasonable for the c lass t o represent the t i m e i nternal l y a s the n umber

of seconds s i nce midn ight . C l ients could use the same pub l i c member funct ions and get

the same resu l t s w i thout be ing aware of th i s . [n this sense, the i m plementat ion of a c l ass i s

said to b e hidden from i t s c l ients . Such information hiding promotes program modifiab i l i ty

and s impl i fies the c l ient ' s perception of a c lass .

Software Engineering Observation 6 3

CLients of a class use the class without knowing the internal details of how the class is imple

rnented. If the class irnplementation changes (to improve performance, for example), provided

the class 's intelface remains constant, the class 's client source code need not change (although

the client code will need to be re-linked). This makes it much easier to modify systems.

I n Fig . 6 . 3 , the Time constructor (l i nes 3 1 -35) i n i t i a l i zes the data members to 0 (i . e . ,

t h e un iversal t i me equivalent o f 1 2 A M) . Th i s ensures that t h e obj ect i s i n a consi stent state

when it is created. I nval id values cannot be stored i n the data members of a Time obj ect

because the constructor i s ca l led when the Time object i s created and al l subsequent

attempts by a c l ient to modify the data members are scru t in ized by funct ion setTime .

Sof ware n ine�r n Obs rvation 6 4

Member jimctions are usually shorter thall functiolls ill non-abject-oriented programs be

cause the data stored in data members have ideally been validated by a constructor or by

m.ember functions that store new data. Because the data are already in the object, the mem

ber jimction calls ojien have no argurnents or al least have fewer arguments than typical

function calls in non-objecl-oriented languages. Thus, the calls are shorter, the function def

initions are shorter and the jimction proto(ypes are shorler.

Note thaI the data mem bers of a c l ass can not be i n i t i a l i zed where they are declared in

the c lass body . These data me mbers shou ld be i n i t i a l i zed by the c lass ' s constructor, or they

can be assigned values by set funct ions (such as setT ime i n l i nes 39-45 of Fig. 6 . 3) .

4 1 6 Classes and Data Abstraction Chapter 6

tI Common Programming Error 6.4

Attempting to initialize a data member of a class explicitly in The class definition is a syntax

error.

A funct ion w i th the same name as the c lass, but preceded with a tilde character (-) i s

ca l led the destructor o f that c l ass . (This example does not expl ic i t ly inc lude a destructor,

so the C++ implementation "plugs one in" for you.)\ The destructor does "termi nat ion

housekeep ing" on each c lass object before the system rec la ims the memory for the object .

Destructors cannot take arguments and hence cannot be overloaded. We wi l l d iscuss con

structors and destructors i n more detai l l ater in th is chapter and in Chapter 7 .

Software Engineering Observation 6.5

Clients have access to a class 's inlelface, but should noT have access to a class 's imple

mentation.

The c lass defi n i t ion contai ns dec larat ions of the class ' s data members and the c lass ' s

member funct ions . The member function dec l arations are the function prototypes w e d is

cussed i n ear l ier chapters . Member functions can be defi ned i ns ide a c lass , but i t i s good

software engineering to defi ne these functions outside the c l ass defi n i t ion .

Software Engineering Observation 6 6

Declaring member fim.ctions inside a class definiTion (via Their fimcTion prototypes) and de

.fining those member functions outside that class definition separaTes the intelface ola class

from its implementation. This promotes good software engineering. Clients of a class cannot

see the implementation of that class 's member functions and need not recompile if that im

plementation changes.

Note the use of binary scope resolution operator (: :) in each member-function defin i

t ion (l i nes 3 1 , 39, 48 and 57) fol lowi ng the c lass defini t ion in F ig . 6 .3 . Once a c lass i s defined

and its member functions are declared, the member functions must be defi ned. For each

member function defined after its corresponding c lass defin i t ion, the function name is pre

ceded by the c lass name and the binary scope resolution operator (: :) . This "ties" the

member name to the class name to uniquely identify the functions of a part icular c lass . tI Common Programming Error 6.5

When defining a class 's member functions outside that class, om.itling the class name and

scope resolution operator on the function name is an error.

Even though a member funct ion dec lared i n a c l ass defi n i t ion may be defined outs ide

that c lass defi n it ion (and "tied" to the c lass v ia the bi nary scope resolut ion operator) , that

member funct ion i s st i l l wi th in that class 's scope, i .e . , i ts name i s known on ly to other mem

bers of the c lass un less referred to v ia an object of the c lass, a reference to an obj ect of the

class or a pointer to an object of the class . We wi l l say more about c l ass scope short l y .

I f a member function i s defi ned i n the body of a c lass defin i t ion, the C++ compi ler

attempts to i n l i ne cal l s to the member function . Member funct ions defi ned outs ide a c l ass

defi ni t ion can be i n l i ned by exp l ic i t ly us ing keyword inl ine . Remember that the com

p i ler reserves the r ight not to i n l ine any function .

Performance Tip 6.2

Defining a small member function inside the class definition in lines the member function (if

the compiler chooses to do so). This can improve pelformance.

Chapter 6 Classes and Data Abstraction 41 7

Software Engineering Observation 6.7

Defining a sm.all member function inside the class definiTion does nOT promote the best soft

ware engineering because clients of the class will be able to see The implementaTion of the

jimcTion and the clienT code musT be recompiled if the function definition changes.

Software Engineering Observation 6.8

Only The simplest and mOST stable member funcTions (i. e. , The implementation is unlikely 10

change) should be dejined in The class header.

I t i s i nterest ing that the printUni versa! and print S t andard member func

t ions take no arguments . Th i s i s because these member functions imp l i c i t l y know that they

are to print the data members of the part icu lar Time object for which they are i nvoked. This

makes member funct ion cal l s more conci se than conventional funct ion cal l s in procedural

program m i ng .

� i n g nd

The fact that mem.ber funcTion calls generally take eiTher no arguments or substantially fewer

argumenTs than conventional funcTion calls in non-object-oriented languages reduces the

likelihood of passing the wrong arguments, the wrong types ofargurnents or the wrong num

ber of arguments.

Softwa re Engineering Observation 6.9

Using an object-oriented programming approach can often simplify function calls by re

ducing the number of parameters to be passed. This benejit of object-oriented programming

derives from the fact that encapsulating data members and member functions within an ob

ject gives the member functions the right to access the data members.

C l asses s imp l i fy programming because the c l ient (or user of the c l ass object) need on ly

be concerned w i th the operat ions encapsu lated or embedded i n the obj ect . Such operat ions

are usual ly des igned to be c l ient oriented rather than implementation oriented . C l ients need

not be concerned with a c l ass ' s imp lementation (a l though the c l ient, of course, wants a cor

rect and effic ient implementation) . I nterfaces do change, but less frequent ly than i mple

mentations . When an i mplementation changes, i mplementat ion-dependent code must

change accord ing ly . H id ing the i mplementation e l i m inates the poss ib i l i ty of other program

part s becoming dependent on the detai l s of the c lass i mplementat ion .

Often , c lasses do not have to be created "from scratch . " Rather, they can i nc lude

objects of other c l asses as members or they may be derived from other c l asses that prov ide

attributes and behav iors the new c lasses can use . Such software reuse can great l y enhance

programmer product iv i ty . I nc luding c lass objects as members of other c l asses i s cal l ed

composition (or aggregmion) and i s d i scussed in Chapter 7 . Deriv ing new c l asses from

exis t ing c lasses i s cal led inheritance and i s d i scussed i n Chapter 9 .

Software Engineering Observation 6 1 0

A central theme o.fthis book is "reuse, reuse, reuse. " We will carejitlly discuss a number o.ltech

niques for "polishing " classes to encourage reuse. We focus 011 "crafting valuable classes " and

creating valuable "software assets. "

People new to object-oriented programming often express concern at the fact that
objects must be qu i te large because they contain data and funct ions . Logica l l y , this i s true
the programmer may th ink of objects as contai n ing data and funct ions . Phys ica l ly , how
ever, this i s not true .

4 1 8 Classes and Data Abstraction Chapter 6

Performance Tip 6.3

Objects contain only data, so objects are much sm.a/ler than if they also contained jimctions.

Applying operator si zeof to a class name or to an object o./' thal class will report only the

size of the class 's data. The compiler creates one copy (only) o.l the member jimctions sepa

rate from all objects of the class. All objects of the class share this one copy o./, the member

functions. Each object, of course, needs its own copy o.l the class 's data because Ihese data

can vary among the objects. The function code is non modifiable (also called reentrant code

or pure procedure) and, hence, can be shared arnong all objects ol one class.

6.6 Class Scope and Accessing Class Members

A c lass ' s data members (variables dec l ared in the c lass defin i t ion) and member funct ions

(funct ions declared i n the class defin i t ion) belong to that class 's scope. Nonmember func

t ions are defi ned at file scope.

With in a class ' s scope, c lass members are immediate ly accessible by all of that c lass ' s

member functions and can b e referenced b y name . Outside a c lass ' s scope, c lass members are

referenced through one of the handles on an object-an object name, a reference to an object

or a pointer to an object . [We wi l l see in Chapter 7 that an impl ic i t handle i s inserted by the

compiler on every reference to a data member or member function from within an object .]

Member functions of a c l ass can be overloaded, but on ly by other member funct ions

of that c lass . To overload a member function, si mply provide i n the c lass defin i t ion a pro

totype for each version of the overloaded function, and provide a separate function defi n i

t i o n for each vers ion o f t h e funct ion .

Variables dec lared i n a member function havefunction scope-they are known only to

that function . If a member function defi nes a variable with the same name as a variable with

c lass scope, the c lass-scope variable is h idden by the function-scope variable i n the funct ion

scope . Such a h idden variable can be accessed by preceding the vari able name with the

c lass name fol lowed by the scope resolut ion operator (: :) . H idden global vari ables can be

accessed wi th the unary scope resolution operator (see Chapter 3) .

The operators used t o access class members are identical t o the operators used t o access

structure members . The dot member selection operator (.) i s preceded by an object ' s name

or wi th a reference to an object to access the object ' s members . The arrow member selection

operator (- » is preceded by a pointer to an object to access that object ' s members .

Figure 6 .4 uses a s i mple c lass cal led Count (l i nes L 1 -2 1) wi th publ i c data member

x of type int (l ine 1 4) and publ ic member function print (l ines 1 6- 1 9) to i l l ustrate

accessing the members of a c l ass with the member selection operators . L ines 25-27 create

three variables related to type Count-count er (a Count object) , c ount erRe f (a

reference t o a Count obj ect) and count erptr (a pointer t o a Count object) . Variable

count erRe f refers to count er, and vari able count erptr po in ts 10 counter . I t i s

important t o note that c l ass Count declares data member x a s publ i c here s i mply to

demonstrate how pub l i c members are accessed off handles (i . e . , a name, a reference or

a poi nter) . As we have stated, data typical ly are made private, as we w i l l do i n most sub

sequent examples . Beg inn ing in Chapter 9, Inheritance, we w i l l somet i mes make data

prot ected. In l i nes 30-3 1 and 34-35 , note that the program can access member variable

x and i n voke member function print by us ing the name of the object (count er) or a

reference to the object (c ount erRe f) together with the dot (.) member select ion oper

ator. S i m i l arly, l i nes 3 8-39 demonstrate that the program can access member variab le x

Chapter 6 Classes and Data Abstraction 4 1 9

and i nvoke member function print by us ing a poi nter (c ount ptr) and the arrow (- »
member select ion operator.

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7
1 8

1 9

20

2 1

22

23

24

25

26

27

28

29

30

3 1

32

33

34

35

36

37

38

39

40
4 1

42
43

I I Fig . 6 . 4 : fig0 6_0 4 . cpp
I I Demonstrat ing the c l a s s member acce s s operators . and - >

I I

I I CAUTION : IN FUTURE EXAMPLES WE AVOID PUBLIC DATA !
inc lude < iostream>

u s ing s td : : cout ;
using s td : : endl ;

I I c l a s s Count de f init ion
c l a s s Count {

pub l i c :
int x ;

voi d print ()
{

cout « x « endl ;

} ; I I end c l a s s Count

int main ()

{
Count counte r ;
Count * counterptr
Count &counterRe f

I I create counte r obj ect
&counte r ; I I create point e r to c ounter
counte r ; I I create reference t o c ounter

cout « " As s i gn 1 to x and print us i ng the obj ect ' s name : " ;
counter . x = 1 ; I I a s s i gn 1 to data member x
counter . print () ; I I call member funct ion print

cout « " As s i gn 2 to x and print us ing a reference : " ;
counterRe f . x = 2 ; I I a s s i gn 2 to data member x
counterRe f . print () ; I I cal l member func t ion print

cout « " As s i gn 3 to x and print us i ng a pointer : " ;
counterPtr - >x = 3 ; I I a s s i gn 3 to data member x
counterPt r - >print () ; I I call member funct ion print

return 0 ;

I I end main

Ass ign 1 to x and print u s i ng the obj ect ' s name : 1
As sign 2 to x and print u s ing a reference : 2
Ass ign 3 to x and print u s i ng a pointer : 3

Fig. 6.4 Access ing an object's data members and member funct ions through each
type of object handle-the object ' s name, a reference to the object and
a pOinter to the object .

420 Classes and Data Abstraction Chapter 6

6.7 Separating I nterface from Implementation

One of the fundamental pri ncip les of good software engi neeri ng i s to separate i nterface

from implementat ion . Thi s makes it easier to modify programs. As far as c l ients of a c l ass

are concerned, changes i n the c lass ' s implementation do not affect the c l ient as long as the
c l ass ' s i nterface orig i nal l y prov ided to the c l ient remai ns unchanged.

o En In e

Place the class declaration in a header (• h) file 10 be included by any client that wants to

use the class. This forms the class 's publ i c intefjace (and provides the client code with the

jimction prototypes it needs to be able to call the class 's member functions). Place the defi

nitions of the class rnernber functions in a source (. cpp)file. This forms the implem.entation

of the class.

o Eng'n

Clients of a class d o not need access to the class 's source code i n order t o use the class. The

clients do, however, need to be able to link 10 the class 's object code (i. e. , the compiled ver

sion of the class). This encourages independent software vendors (IS Vs) to provide class li

braries for sale or license. The ISVs provide in their products only the header files and the

object modules. No proprietary information is revealed-as would be the case ilsource code

were provided. The C+ + user comm.unity benefits by having more IS V-produced class librar

ies available.

Actual ly , th ings are not qu i te th is rosy . Header fi les do contain some port ions of the

imp lementation and hints about others . I n l i ne member funct ions, for example, need to be

in a header fi le , so that when the compi ler compiles a c l ient , the c l ient can inc lude the

inl ine function defi n i t ion i n p lace. A c lass ' s pr ivat e members are l i sted i n the c l ass

defi n i t ion i n the header fi le , so these members are vis ible to c l ients even though the c l ients

may not access the private members . I n Chapter 7 , we show how to use a so-cal led

proxy class to hide even the pri va te data of a c lass from c l ients of the c l ass .

S a E n

Information important to the intelface to a class should be included in the header file. In

formation that will be used only internally in the class and will not be needed by clients of

the class should be included in the unpublished source jile. This is yet another example of the

principle of Least pri vilege.

The next program (F ig . 6 . S-Fig. 6 . 7) demonstrates separat ing i n terface from i mple

mentat ion by spl i tt ing Fig . 6 .3 i nto mul t ip le fi les , a good software engineering convent ion

that we fol low i n the majority of the code examples throughout the rest of th i s book . When

bu i ld ing a C++ program, each c lass defin i t ion i s normal ly p laced in a header file, and that

c lass ' s member-funct ion defin i t ions are placed in a source-code file of the same base name

(by convention) . The header fi les are inc luded (via # inc lude) i n each fi le in which the

c lass i s used, and the source-code fi le i s compiled and l inked with the fi l e contain i ng the

main program. See your compi l er' s documentation to determine how to compi le and l i nk

programs consist ing of mul t ip le source fi les .

The program cons is ts of the header fi le t ime ! . h (Fig . 6 .5) i n which c l ass T ime i s

defi ned, the source fi l e t ime ! . cpp (Fig . 6 .6) in which the member funct ions of c l ass

Time are defi ned and the source fi le f i g 0 6_0 7 • cpp (F ig . 6 . 7) i n which funct ion ma i n

i s defined. The output for th is program i s identical to the output of Fig . 6 . 3 .

Chapter 6 Classes and Data Abstraction

1

2

3

4

5

6

7

8

9

I I Fig . 6 . 5 : t ime l . h
I I Dec l arat i on o f c l a s s Time .
I I Member func t ions are de f i ned in t ime l . cpp

I I prevent mult iple inc lusions of header f i l e
i fnde f TIME1_H
#def ine TIME1_H

I I Time abs t ract data type de f init ion
c l a s s T ime

pub l i c :
Time () ; I I const ructor

I I set hour , minute , second

42 1

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20
2 1

22

23

24

25

void setTime (int , int , int) ;
voi d printUniversal () ;
voi d pr int Standard () ;

I I print universal - t ime format
I I print s tandard- t ime format

private :
int hour ; / I 0 - 2 3 (2 4 -hour c lock format)
int minute ; / I 0 - 5 9
int second ; I I 0 - 5 9

} ; I I end c l a s s T ime

#endi f

Fig. 6.5 Time class defin it ion .

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20
2 1
22

I I Fig . 6 . 6 : t ime l . cpp
I I Member- funct i on de f initions for c l a s s T ime .

inc lude < iostream>

using std : : cout ;

i nc lude < iomanip>

us ing s td : : set f i l l ;
using s td : : setw;

I I inc lude de f in i t i on of class Time from t ime l . h
include " t ime l . h "

I I Time const ructor init ial i z e s each dat a member t o z ero .
I I Ensures a l l Time obj ect s st art in a cons i s t ent state .

Time : : Time ()
{

hour = minute = second o · ,

} I I end T ime const ructor

Fig. 6.6 Time class member-function defin it ions, (Part 1 of 2 .)

422 Classes and Data Abstraction Chapter 6

23

24

25

26

2 7

2 8

29

30

3 1

32

33

34

35

36

37

38

39

40

4 1

42
43

44

45

46

47

48

49

50

I I Set new T ime value us ing universal t ime . Perform val idity
I I checks on the data value s . Set inva l i d values to zero .
void Time : : setTime (int h, int m, int s

{
hour =
minute
second

h > = 0 && h < 2 4) ? h 0 ;
(m > = 0 && m < 6 0) ? m 0 ;
(s > = 0 && s < 6 0) ? s : 0 ;

I I end funct ion setTime

I I print Time in universal format
void Time : : printUniversal ()

{
cout « set f i l l (' 0 ') « setw (2) « hour « " : "

« setw (2) « minute « " : "
« setw (2) « second ;

} I I end func t i on printUniversal

I I print Time in s tandard format
void T ime : : print Standard ()

{
cout « ((hour = = 0 I I hour - - 1 2) ? 1 2 : hour %

« II : If « set f i l l (' 0 ') « setw (2) « minute
« II : " « setw (2) « second
« (hour < 1 2 ? " AM " " PM ") ;

} I I end funct ion printStandard

Fig. 6.6 Time class member-function definit ions. (Part 2 of 2 .)

1 I I Fig . 6 . 7 : f i g 0 6 0 7 . cpp
2 I I Program to test c l a s s Time .
3 I I NOTE : Thi s f i l e must be comp i led with t ime 1 . cpp .
4 # inc lude < iostream>
5

6 us ing std : : cout ;
7 u s ing s td : : endl ;
8
9 I I inc lude de f in i t ion of class Time f rom t ime 1 . h

1 0 #inc lude " t ime 1 . h "
1 1

1 2 int main ()

1 3 {
1 4 Time t ; I I instant iate obj ect t o f c l a s s T ime
1 5
1 6 I I output Time obj ect t ' s ini t ial values
1 7 cout « " The ini t ial universal t ime i s " ;
1 8 t . printUniversal () ; I I 0 0 : 0 0 : 0 0
1 9 cout « " \ nThe initial standard t ime i s " ;
20 t . printStandard () ; I I 1 2 : 0 0 : 0 0 AM
2 1

Fig. 6. 7 Program to test c lass Time . (Part 1 of 2 .)

1 2

Chapter 6 Classes and Data Abstraction

t . setTime (1 3 , 2 7 , 6) ; I I change t ime

1 / output Time obj ect t ' s new value s
cout « " \n \ nUniversal t ime after setTime i s " ;
t . printUniversal () ; / / 1 3 : 2 7 : 0 6
cout « " \ nStandard t ime after setTime i s " ;
t . print St andard () ; I I 1 : 2 7 : 0 6 PM

t . setTime (9 9 , 9 9 , 9 9) ; I I attempt inva l i d s e t t ings

/ 1 output t ' s value s after spe c i fying inva l id value s
cout « " \ n\nAfter attempt i ng invalid sett ings : "

« " \ nUniversal t ime : " ;
t . printUniversal () ; I I 0 0 : 0 0 : 0 0
cout « " \nStandard t ime : " ;
t . printStandard () ; / / 1 2 : 0 0 : 0 0 AM
cout « endl ;

return 0 ;

22

23

24

25

26

27

28

29

30

3 1

32

33

34

35

36

37

38

39

40

4 1
42 } 1 / end main

The ini t i a l universal t ime i s 0 0 : 0 0 : 0 0
The ini t i a l s tandard t ime i s 1 2 : 0 0 : 0 0 AM

Universal t ime after setTime i s 1 3 : 2 7 : 0 6
Standard t ime after setTime i s 1 : 2 7 : 0 6 PM

After att empt i ng inva l id sett ings :
Universal t ime : 0 0 : 0 0 : 0 0
Standard t ime : 1 2 : 0 0 : 0 0 AM

Fig. 6 . 7 Program to test c lass Time . (Part 2 of 2 .)

423

N ote that l i ne 1 3 of t ime l . cpp and l i ne 1 0 of f i g 0 6_0 7 • cpp both inc lude header

fi l e t ime l . h. A l so note, that the name of the header fi le i s enc losed i n quotes (" ") rather

than angle brackets « » . Normal ly , programmer-defined header fi l e s are p l aced in the

same directory as the fi les that i nc l ude the header fi les . When the preprocessor encounters

a header fi le name in quotes, i t assumes that the header fi le is in the same d i rectory as the

fi le in which the # inc lude directive appears . If the preprocessor cannot find the header

fi le in the current d i rectory , it searches for the header fi l e in the same l ocat ion as the header

fi les of the C++ Standard Li brary . When the preprocessor encounters a header fi l e name i n

angle brackets, i t s i mply assumes that the header i s part o f the C + + Standard L ibrary and

does not look i n the l ocal d i rectory . Tn t ime 1 . cpp, the compi ler uses the i nformat ion i n

t ime l . h t o ensure that the member function headers are defi ned correct ly and that the

member funct ions use the c lass ' s data correct ly . I n f i g 0 6_0 7 . cpp, the compi ler uses the

information i n t ime l . h to ensure that the c l ient code (i . e . , main) creates and m an ipu lates
the Time object correct l y . For example, to create Time object t i n l i ne 1 4, the compi ler
must know the s ize of a Time c lass object . Recal l that on ly an obj ect ' s data i s i n the

object-the member funct ions are stored e l sewhere . By inc lud ing t ime . h in l i ne 1 0, we

give the compiler access to the information i t needs (F ig . 6 . 5 , l i nes 1 9-2 1) to determjne the

s ize of a Time class object .

424 Classes and Data Abstraction Chapter 6

I n Fig . 6 . 5 , note that the c lass defin i t ion is enclosed in the fol lowing preprocessor code

(l ines 5-7 and 2 5) :

I I prevent mul t iple inc lus ions of header f i le
i fnde f TIME 1_H
#de f ine TIME 1_H

#endi f

When we bui ld l arger programs, other defin i t ions and declarat ions w i l l a lso be p laced i n

header fi l es . The preceding preprocessor d irect ives prevent the code between # i fnde f

(which means " if not defi ned") and #endi f from being inc luded i f the name TIME 1_H

has been defined. If the header has not been inc l uded prev ious ly in a fi l e , the name

TIME 1_H i s defi ned by the #de f ine directive and the header fi l e statements are i nc lud

ed. I f the header has been inc l uded previous ly , TIME 1_H i s defi ned al ready and the header

fi le i s not inc luded again . Attempts to inc l ude a header fi l e mu l t ip le t imes (i nadvertent ly)

typical l y occur i n l arge programs wi th many header fi les that may themselves inc lude other

header fi les . [Note: The convention we use for the symbol ic constant name in the prepro

cessor d irect ives is s imply the header fi le name with the underscore character replac ing the

period .]

ti 6

Use #i fndef, #define and #endi f preprocessor directives to prevent header jiles from

being included more than once in a program. � Good Programming Practice 6.2

Use the name of the headerfile with the period replaced by an underscore in the #i fndef

and #define preprocessor directives of a headerfile.

6.8 Control l ing Access to Members

The member access spec i fiers publ i c and privat e (and prot ected, as we w i l l see

in Chapter 9) control access to a c lass ' s data members and member funct ions . The default

access mode for c lasses i s private so a l l members after the c lass header and before the

first member access spec ifier are privat e . After each member access spec i fier , the mode

that was i n voked by that member access spec ifier app l ies unt i l the next member access

spec ifier or unt i l the termi nati ng right brace (}) of the c lass defi n i t ion . The member access

spec ifiers pub l i c , private and prot ected may be repeated, but such usage i s rare

and can be confus ing .

A c l ass ' s privat e members can be accessed only by member funct ions (and friends,

as we w i l l see i n Chapter 7) of that c lass . The pub l i c members of a c lass may be accessed

by any function in the program that holds a handle on an object of that c lass .

Common Programming Error 6.6

An attempt by a function, which is not a member of a particular class (or a friend of that

class), to access a pri va t e member of that class is a compiler error.

Software Engineering Observation 6. 1 4

Each element of a class should have pri va t e visibility unless it can be proven that the el

ement needs public visibility.

Chapter 6 Classes and Data Abstraction 425

Figure 6 . S demonstrates that private c lass members are not access ib le outs ide the

c lass . When th is program is compi led, the compi ler generates two errors stat ing that the

pri vate member spec ified in each statement is not access ib le . Figure 6 . S inc ludes

t ime l . h from Fig. 6.5 and i s compiled with t ime l . cpp from Fig. 6 .6 .

Good Programming Practice 6.3

� If you choose to list the priva t e members first in a class definition, explicitly use the pri

I.[2J va t e member access specifier despite the fact thai pri va t e is assumed by default. This

improves program clarity.

Good Programming Practice 6.4

� Despite the fact that the public and pri va t e member access specifiers may be repeated

I.[2J and intermixed, lisl all the public members of a class first in one group and then list all

the priva t e members in anolher group. This focuses the cliel1l 's attention on the class 's

public interface, rather Ihan on the class 's impiemenlation.

A c l ient of a c l ass may be a member function of another c l ass or it may be a g lobal

funct ion (i .e . , a C - l i ke " loose" or "free" function i n the fi le , such as ma in, that i s not a

member function of any c l ass) .

1 I I Fig . 6 . 8 : f ig 0 6_0 8 . cpp
2 I I Demonstrate errors result ing from attempt s
3 I I to acc e s s private class members .
4 # inc lude < iostream>
5

6 us ing std : : cout ;
7

8 I I inc lude de f init ion of c l a s s Time from t ime l . h
9 # inc lude " t ime l . h "

1 0

1 1 int main ()
1 2 {
1 3 Time t ; I I create Time obj ect
1 4

1 5

1 6 t . hour = 7 ; I I error : ' Time : : hour ' i s not acce s s ible
1 7

1 8 I I error : ' Time : : minute ' i s not acc e s s ible
1 9 cout « " minute = " « t . minute ;
20
2 1 return 0 ;
22

23 } I I end main

D : \ cpphtp4_examp le s \ ch0 6 \ Fig6_0 6 \ Fig0 6_0 6 . cpp (l 6) : error C 2 2 4 8 :
' hour ' : cannot acce s s private member dec lared in c l a s s ' Time '

D : \ cpphtp4_examp le s \ ch0 6 \ Fig6_0 6 \ Fig0 6_0 6 . cpp (l 9) error C 2 2 4 8 :
' minut e ' : cannot acce s s private member dec lared in c l a s s ' Time '

Fig. 6.8 private members of a c lass are not accessib le outside the c lass .

426 Classes and Data Abstraction Chapter 6

Access to members of a c lass may be impl ic i t ly set to private by defau l t , or exp l ic

i t l y se t to pub l i c , protected (as we wi l l see i n Chapter 9) or pri vat e . The defau l t

access for s t ruct members i s publ i c . Access to members of a s t ruct also can be

expl i c i t l y se t to pub l i c , prot ected or private and can be i mpl ic i t ly se t to pub l i c

b y defaul t .

J ust because c l ass data i s privat e does not necessari l y mean that c l ients cannot

effect changes to that data. The data can be changed by member funct ions or friends of that

c l ass . As we w i l l see, these functions should be designed to ensure the i ntegri ty of the data.

Access to a c lass ' s pri vat e data should be carefu l l y control led by the use of member

funct ions, cal led access functions (al so cal led accessor methods) . For example, to a l low c l i

ents t o read the value o f privat e data, the c lass can provide a get function. T o enable

c l ients to modify private data, the c lass can provide a set function. Such modificat ion

would seem to v io late the notion of pri vate data. But a set member function can provide

data val idation capab i l i t ies (such as range checking) to ensur e that the value i s set properly .

A se t function can also trans late between the form o f the data used i n the i nterface and the

form used in the i mplementat ion . For example, a c l ient might view a Time as hav ing hour,

m i nute and second components, but c lass Time might represent the t i me as the number of

seconds s i nce midn ight . A get function need not expose the data in "raw" format; rather,

the get funct ion can edit the data and l i m i t the view of the data the c l ient w i l l see.

Software Engineering Observation 6 1 5

Keep all the data members of a class pri va te. Provide publ i c member functions to set

the values ofpri va t e data members and to get the values ofpri va t e data members. This

architecture helps hide the implementation ofa class from its clients, which reduces bugs and

improves program modifiability.

Softwa re Engineerin g Observation 6 1 6

The class designer need not provide set or get functions for each pri va t e data item; these

capabilities should be provided only when appropriate. If a service is useful to the client

code, that service should be provided in the class 's publ i c interlace.

Testing and De ug ng ip

Making the data members of a class pri va te and the member functions of the class pub

l i c facilitates debugging because problems with data manipulations are localized to either

the class 's member functions or the friends of the class.

6.9 Access Functions and Uti l ity Functions

Not al l member functions need be made public to serve as part of the i nterface of a c l ass .

Some member functions remain pr ivate and serve as utility functions to the other func

t ions of the c lass (and to friends of the c lass) .

Software Engineering Observation 6. 1 7

Member functions tend to fall into a number of different caregorie5�get functions that read

and return the value ol pri va te data members; functions that set the value of pri va t e

data members; functions that implement the services of the class; functions that peljorm var

ious mechanical chores for the class such as initializing class objects, assigning class ob

jects, converting between classes and built- in types (or between classes and other classes)

and handling memory for class objects.

Chapter 6 Classes and Data Abstraction 427

Access funct ions can read or d isp lay data. Another common use for access funct ions

i s to test the truth or fal s i ty of condit ions-such funct ions are often cal l ed predicate func

tions. An example of a predicate function would be an i sEmpty funct ion for any conta iner

c lass-a c lass capable of hold ing many objects-such as a l i nked l i s t , a stack or a queue .

A program would test i sEmpty before attempting to read another i tem from the contai ner

object . An i s Ful l predicate function might test a contai ner c l ass object to determine

whether i t has no addi t ional room. U sefu l predicate funct ions for our Time c lass might be

i sAM and i s PM.

The program of Fig. 6 .9-Fig . 6 . 1 1 demonstrates the notion of a utility fitnction (al so

called a helper function) . A uti l i ty function is not part of a c lass ' s pub l i c i nterface ; rather,

it is a private member function that supports the operation of the c l ass ' s publ i c

member funct ions . Ut i l i ty funct ions are not i ntended to be used by c l i ents of a c l ass .

Class SalesPerson (Fig . 6 .9) declares an array of 1 2 monthl y sa les figures (l ine 1 7)

and the prototypes for the class ' s constructor and member functions that manipu late the array .

I n Fig . 6 . 1 0, the Sal e s Person constructor (l i nes 1 8-23) i n i t ia l i zes array s a l e s to

zero. The pub l i c member function setSales (l i nes 4 1 -50) sets the e lements of array

s a l e s to user-suppl ied values . The pub l i c member function printAnnua l S a l e s

(l i nes 5 3-59) pri nts t h e total sales for t h e last 1 2 months . The private ut i l i ty funct ion

totalAnnual S a l e s (l i nes 62-7 1) total s the 1 2 monthl y sales figures for the benefit of

printAnnual Sa l e s . Member function printAnnual S a l e s edits the sales figures

i nto dol lar amount format .

I n Fig . 6 . 1 1 , notice that the appl ication ' s main function inc ludes on ly a s i mple

sequence of member function cal l s-there are no control structures . The logic of manipu

l at ing the sales array i s complete ly encapsu lated in c lass S a l e s Person' s member

funct ions .

1

2

3

4

5

6

7

8

9

1 0

1 1
1 2
1 3
1 4

1 5

1 6

1 7

1 8

1 9

20
2 1

I I Fig . 6 . 9 : salesp . h
I I SalesPerson c l a s s de f init ion .
I I Member funct ions de f ined in salesp . cpp .
i fnde f SALES P_H
#de f ine SALESP_H

c l a s s SalesPerson {

pub l i c :
SalesPerson () ;
void get SalesFromUser () ;
void setSales (int , double) ;
voi d printAnnualSale s () ;

private :
doubl e totalAnnualSales () ;
double sales [1 2] ;

} ; I I end c l a s s SalesPerson

#endi f

I I constructor
I I input s a l e s f rom keyboard
I I set sales for a month
I I summari ze and print sales

I I ut i l i ty func t i on
I I 12 monthly sales f i gures

Fig. 6.9 SalesPerson c lass definit ion .

428

1

2

3

4

5

6

7

8
9

1 0
1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20

2 1

22

23

24

25

26

27

28

29

30
3 1

32

33

34

35

36

37

38

39

40
4 1

42

43

44

45

46

47

48
49

50
5 1

Classes and Data Abstraction

I I F i g . 6 . 1 0 : salesp . cpp
I I Member funct ions for class SalesPerson .

inc lude < iostream>

u s i ng s td : : cout ;
using std : : c in;
u s ing std : : endl ;
u s ing s td : : f ixed ;

inc lude < iomanip>

using s td : : setprec i s ion ;

I I inc lude Sal e s Person c l a s s de f init ion f rom salesp . h

inc lude " salesp . h "

I I ini t i a l i z e e l ement s o f array sales t o 0 . 0
SalesPerson : : SalesPerson ()

{
for (int i

sales [i
0 ; i < 1 2 ; i + +
= 0 . 0 ;

} I I end SalesPerson constructor

I I get 1 2 sales f i gures from the user at the keyboard
void SalesPerson : : get SalesFromUser ()

{
doubl e salesFigure ;

for (int i = 1 ; i < = 1 2 ; i + +) {

Chapter 6

cout « " Enter sales amount for month " « i « " : " ;
cin » salesFigure ;
setSales (i , salesFigure) ;

I I end for

I I end funct ion get SalesFromUser

I I set one of the 1 2 monthly sales f igure s ; func t ion subt rac t s
I I one f rom month value for proper subscript i n sales array
voi d SalesPerson : : setSales (int month , doubl e amount)

{
I I t e s t for val i d month and amount values
i f (month > = 1 && month < = 12 && amount > 0)

sales [month - 1] = amount ; I I adj ust for subscript s 0 - 1 1

e l s e I I invalid month or amount value
cout « " Inval id month or sales f igure " « endl ;

} I I end funct ion setSales

F ig. 6. 1 0 SalesPerson class member-function defin it ions. (Part 1 of 2 .)

Chapter 6 Classes and Data Abstraction 429

52

53

54

55

56

57

58
59
60
6 1
62

63

64

65

66

67

68

69

70

7 1

/ / print total annual sales (with he lp of ut i l ity func t ion)
void Sa1esPerson : : printAnnua1 Sa1e s ()

{
cout « setprec i s ion (2) « f ixed

« " \nThe total annual sales are : $ "
« totalAnnua1Sa1es () « end1 ; / / cal l ut i l i ty func t i on

} I I end funct ion printAnnua1Sa1es

I I private ut i l i ty funct i on to total annual sales
double Sa1es Person : : tota1Annua1Sa1e s ()

{
doubl e total = 0 . 0 ;

for (int i = 0 ; i < 1 2 ; i + +
total + = sa1es [i] ;

return total ;

/ / end funct i on tota1Annua1Sa1es

// ini t i a l i ze total

/1 summar i z e sales resu l t s

F ig . 6. 1 0 SalesPerson class member-function defin it ions. (Part 2 of 2 .)

1

2

3

4

5

6

7

8
9

1 0

1 1

1 2

1 3
1 4

1 5

1 6
1 7

Soft a re Engineering Observation 6 1 8

A phenomenon of object-oriel1led programming is that once a class is defined, creating and

manipulating objects of that class usually involves issuing only a simple sequence of member

function calls-few, if any, control structures are needed. By contrast, it is common to have

control structures in the implementation of a class 's member functions.

/ 1 Fig . 6 . 1 1 : f ig 0 6_1 1 . cpp
I I Demonstrat ing a ut i l i ty funct ion .
I I Comp i l e thi s program with sa1esp . cpp

/ / inc lude SalesPerson c l ass def in i t i on f rom s a 1 e sp . h
inc 1ude " sa 1 e sp . h "

int mai n ()
{

SalesPerson s ;

s . getSa1e s FromUser () ;
s . printAnnualSales () ;

return 0 ;

} I I end main

I I create SalesPerson obj ect s

I I not e s impl e s equent ial code ; no
I I control s t ructures in mai n

F ig . 6. 1 1 Uti l ity function demontration . (Part 1 of 2 .)

430 Classes and Data Abstraction Chapter 6

Ente r s a l e s amount for month 1 : 5 3 14 . 7 6
Ente r s a l e s amount for month 2 : 4 2 9 2 . 3 8
Ente r s a l e s amount for month 3 : 4 5 8 9 . 8 3
Ente r s a l e s amount for month 4 : 5 5 3 4 . 0 3
Ente r s a l e s amount for month 5 : 4 3 7 6 . 3 4
Enter sales amount for month 6 : 5 6 9 8 . 4 5
Enter sales amount for month 7 : 4 4 3 9 . 2 2
Enter sales amount for month 8 : 5 8 9 3 . 5 7
Enter sales amount for month 9 : 4 9 0 9 . 6 7
Enter sales amount for month 1 0 : 5 1 2 3 . 4 5
Enter sales amount for month 1 1 : 4 0 2 4 . 9 7
Enter sales amount for month 1 2 : 5 9 2 3 . 9 2

The total annual sales are : $ 6 0 12 0 . 5 9

Fig. 6. 1 1 Uti l ity function demontration . (Part 2 of 2 .)

6. 1 0 I n itializing Class Objects: Constructors

When a c lass object is created, i ts members can be in i t ia l i zed by a constructor function of

that c lass . A constructor i s a spec ia l member function with the same name as the c lass and

no return data type . The programmer prov ides the constructor, which is then i n voked each

t i me an obj ect of that class is created (i nstantiated) . Constructors may be overloaded to pro

v ide a variety of means for i n i t ia l i z ing objects of a c lass . Data members can be in i t i a l i zed

i n a constructor of the c lass or their values may be set later after the object i s created. How

ever, i t i s a good software engineeri ng practice to ensure that an object i s fu l l y i n i t i a l i zed

before the c l ient code invokes the object ' s member funct ions . In genera l , you shou ld not

re ly on the c l ient code to ensure that an object gets in i t i a l i zed properly .

Good Programming Practice 6.5

� When appropriate (almost always), provide a constructor to ensure that every object is prop

� erly initialized with meaning/it! values. Pointer data members, in particular, should be ini

tialized to some legitimate pointer value or to O.

Testing and Debugging Tip 6 4

Every member function (and friend) that modifies the pri va t e data members of an object

should ensure that the data rem.ains in a consistent state.

When an object of a c l ass is dec lared, initializers can be provided i n parentheses to the

right of the object name and before the sem icolon. These in i t i a l i zers are passed as argu

ments to the c lass ' s constructor. In the next sect ion, Fig. 6 . 1 4 demonstrates these imp l i c i t

constructor calls. [Note: Although programmers normal ly do no t cal l constructors, pro

grammers can st i l l provide data that get passed to constructors as arguments .]

6. 1 1 Us ing Default Arguments with Constructors

The program of Fig. 6. 1 2-Fig . 6 . 1 4 enhances c lass Time to demonstrate how arguments

are i mp l ic i t ly passed to a constructor. The constructor defi ned i n t ime l . cpp (F ig . 6 .6)

i n i t ia l ized hour, minute and second to 0 (i . e . , midn ight i n un iversal t ime) . L ike other

fu nct ions, constructors can spec ify default arguments . Line 1 3 of Fig . 6 . 1 2 declares the

Chapter 6 Classes and Data Abstraction 43 1

Time constructor to inc l ude default arguments, spec ify ing a defau l t value of zero for each

argument passed to the constructor. In Fig. 6 . 1 3 , l i nes 1 7-2 1 defi ne the new version of the

Time constructor that recei ves values for parameters hr, min and sec that w i l l be used

to i n i ta l ize pri vat e data members hour, minute and second, respective ly . By spec

i fy i ng defaul t arguments for the constructor, even if no values are prov ided in a constructor

cal l , the object is st i l l guaranteed to be in i t ial i zed to a consi stent state. A programmer-sup

p l ied constructor that defau lts a l l i ts arguments (or expl ic i t ly requ i res no arguments) i s

cal led a default constructor-i . e . , a constructor that can b e i nvoked w i th no arguments .

There can be only one default constructor per c lass .

I n F ig . 6 . 1 3 , l i ne 1 9 of the constructor cal l s member function setTime with the

values passed to the constructor (or the default values) to ensure that the va lue supp l i ed for

hour is i n the range 0-23 , and that the values for minute and second are each i n the

range 0-59 . I f a value i s out of range, that value i s set to zero by setTime (to ensure that

each data member remains i n a consistent state) .

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6
1 7

1 8

1 9

20

2 1

22

23

24

25

I I F i g . 6 . 1 2 : t ime2 . h
I I Dec l arat i on o f c l a s s Time .
I I Member func t i ons de f ined in t ime2 . cpp .

I I prevent mul t iple inc lus i ons of header f i l e
i fndef T IME2_H
#de f ine TIME2_H

I I Time abs t ract data type de f i n i t i on
c la s s Time {

publ i c :
Time (int = 0 , int = 0 ,
void setTime (int , int ,
void printUniversal () ;
void printStandard () ;

private :
int hour ; / I 0 - 2 3
int minut e ; I I 0 - 5 9
int second ; I I 0 - 5 9

} ; I I end c l a s s T ime

#endi f

int = 0) ; I I def au l t con s t ructor
int) ; I I set hour , minute , second

I I print universal - t ime format
I I print st andard- t ime format

(2 4 -hour c lock format)

Fig. 6. 1 2 Time c lass contain ing a constructor with defau lt arguments .

1 I I F i g . 6 . 1 3 : t ime2 . cpp
2 I I Member- funct ion de f in i t i ons for c l a s s T ime .
3 # inc lude < iostream>
4

5 us ing s td : : cout ;

Fig. 6. 1 3 Time c lass member-function defin it ions inc luding a constructor that takes
arguments . (Part 1 of 2 .)

432

6
7

8

9

1 0
1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20

2 1

22

23

24

25

26

27

28

29

30

3 1

32

33

34

35

36

37

38

39

40

4 1

42

43

44

45

46
47
48

49

50

Classes and Data Abstraction

inc lude < i omanip>

u s ing s td : : set f i l l ;
us ing s td : : setw;

I I i nc lude de finit ion of class Time f rom t ime2 . h
inc lude " t ime 2 . h "

Chapter 6

I I T ime construct or ini t ial i zes each data member to zero ;
I I ensures a l l T ime obj ect s start i n a cons i st ent state
Time : : Time (int hr , int min , int sec

{
setTime (hr , min , sec) ; I I val idate and set t ime

} I I end T ime const ructor

I I set new T ime value us ing universal t ime , perform val idity
I I checks on the data values and set inva l i d values to zero
void Time : : setTime (int h, int m, int s)
{

hour =
minute
second

h > = 0 && h < 2 4)
(m > = 0 && m < 6 0
(s > = 0 & & s < 6 0

) I I end funct ion setTime

?

I I print Time in universal format
void Time : : printUniversal ()

{

h 0 ;
? m 0 ;
? s : 0 ;

cout « set f i l l (' 0 ') « setw (2) « hour « " : "
« setw (2) « minute « " : "
« setw (2) « second ;

} I I end func t i on printUniversal

I I print T ime in s tandard format
void T ime : : print Standard ()

{
cout « ((hour - - 0 I I hour - - 1 2) ? 1 2 : hour %

« It : II « set f i l l (' 0 ') « setw (2) « minute
« .. : n « setw (2) « second
« (hour < 1 2 ? " AM " " PM") ;

} I I end funct ion printStandard

1 2

Fig. 6. 1 3 Time c lass member-function defin itions inc luding a constructor that takes
arguments. (Part 2 of 2 .)

Note that the Time constructor could be wri tten to inc lude the same statements as

member funct ion setTime . Thi s may be sl ightly more effic ient because the extra ca l l to

setTime would be e l iminated . However, coding the Time constructor and member func

t ion setTime identical l y would make maintenance of th is program more d ifficu l t . If the

implementation of member function setTime were to change, the i mplementation of the

Chapter 6 Classes and Data Abstraction 433

Time constructor would have to change according ly . Hav ing the T ime constructor cal l

setTime d i rect ly requ i res any changes to the i mplementation of s e t T ime to be made

on ly once. This reduces the l i ke l ihood of errors when altering the i mp lementat ion . A l so,

the performance of the T ime constructor can be enhanced by expl ic i t ly declaring the con

structor inl ine or by defi n i ng the constructor i n the c l ass defi n i t ion (which i mpl ic i t ly

i n l i nes the funct ion defi n i t ion) .

Software Engineering Observation 6. 1 9
If a member jimction of a class already provides all or part of the functionality required by

a constructor (or other rnember function) of the class, call that member function from the

construcLOr (or other memberjill1ction). This simplifies the maintenance o.l the code and re

duces the likelihood of an error if the implementation o.l the code is modified. As a general

rule: A void repeating code.

Software Eng ineering Observation 6 20

Declare delault jimction argument values only in the jill1ction prototype within the class del

inition in the headerjile.

Software Engineering Observation 6.2 1
Any change to the default argument values ol a function requires the client code to be recom

pileel. Ifit is likely that the default argument values will change, use overloadedjimctions in

stead. Thus, if the implementation ofa member /itnction changes, the client code need not be

recompiled.

Function main in Fig . 6 . 1 4 i n i t ia l izes five Time objects-one w i th a l l three argu

ments defau l ted in the constructor cal l (l i ne 1 3) , one with one argument spec ified (l i ne 1 4) ,

one w i th two arguments spec ified (l i ne 1 5) , one wi th three arguments spec i fied (l i ne 1 6)

and one with three i nval id arguments spec ified (l i ne 1 7) . Then the program d isplays each

object i n u n iversal - t ime and standard-t ime formats .

1 I I F i g . 6 . 14 : f i g 0 6_14 . cpp
2 I I Demonstrat ing a de fault const ructor for c l a s s Time .
3 # inc lude < iostream>
4
5 u s ing s td : : cout ;
6 us ing std : : endl ;
7

8 I I inc lude de finit ion of c l a s s Time from t ime2 . h
9 # inc lude " t ime2 . h "

1 0

1 1

1 2

1 3
1 4
1 5
1 6
1 7
1 8

int main ()
{

Time t 1 ;
Time t 2 (
Time t 3 (
Time t 4 (
Time t 5 (

2) ;
2 1 ,
1 2 ,
2 7 ,

I I a l l argument s de f au l t ed
1 / minute and s econd de fau l t ed

3 4) ; I I second de fau l t ed
2 5 , 4 2) ; 1 / a l l values spec i f ied
7 4 , 9 9) ; / 1 a l l bad values spec i f i ed

Fig. 6. 1 4 Constructor with defau lt arguments. (Part 1 o f 2.)

434 Classes and Data Abstraction Chapter 6

cout « " Const ructed with : \n \ n "
« " a1 1 de fault argument s : \n

t 1 . printUniversa1 () ; I I 0 0 : 0 0 : 0 0
cout « " \n " ;

II .
,

t 1 . printStandard () ; I I 1 2 : 0 0 : 0 0 AM

1 9

20

2 1

22

23

24

25

26

27

28

29

30

3 1

32

33

34

35

36

37

38

39

40

4 1

42

43

44

45

46

47

48

cout « " \n\nhour spec i f ied ; defau l t minute and second : \ n
t 2 . printUniversa1 () ; I I 0 2 : 0 0 : 0 0
cout « " \n " ;
t 2 . printStandard () ; I I 2 : 0 0 : 0 0 AM

cout « " \ n\nhour and minute speci f ied; de fau l t second : \ n
t 3 . printUniversa1 () ; I I 2 1 : 3 4 : 0 0
cout « " \n " ;
t 3 . printStandard () ; I I 9 : 3 4 : 0 0 PM

cout « " \ n\nhou r , minute , and second spec i f i ed : \ n
t 4 . printUniversa1 () ; I I 1 2 : 2 5 : 4 2
cout « " \n " ;
t 4 . print Standard () ; I I 1 2 : 2 5 : 4 2 PM

cout « " \n\na 1 1 invalid values spec i f ied : \ n
t 5 . printUniversa1 () ; I I 0 0 : 0'0 : 0 0
cout « " \n " ;
t 5 . printStandard () ;
cout « end1 ;

return 0 ;

} I I end main

Constructed with :

a l l default argument s :
0 0 : 0 0 : 0 0
1 2 : 0 0 : 0 0 AM

I I 1 2 : 0 0 : 0 0 AM

hour spec i f ied; default minute and second :
0 2 : 0 0 : 0 0
2 : 0 0 : 0 0 AM

hour and minute spec i f ied; de fault second :
2 1 : 3 4 : 0 0
9 : 3 4 : 0 0 PM

hour , minute , and second spec i f i ed :
1 2 : 2 5 : 4 2
1 2 : 2 5 : 4 2 PM

a l l inva l i d values spec i f i ed :
0 0 : 0 0 : 0 0
1 2 : 0 0 : 0 0 AM

Fig. 6. 1 4 Constructor with default arguments . (Part 2 of 2 .)

II .
,

II .
,

II .
,

II .
,

Chapter 6 Classes and Data Abstraction 435

If the programmer does not expl ic i t ly defi ne at least one constructor for a c lass , the

compi ler i mp l ic i t ly creates a defaul t constructor. Such a constructor does not perform any

i n i t ia l ization of fundamental-type variables (e .g . , int s, doubles, poi n ters, etc .) , so when

the object is created, i t is not guaranteed to be in a cons i stent state . '

Software Engineering Observation 6 22

It is possible for a class not 10 have a default constructor-this occurs if the programmer de

fines at least one constructor that receives arguments and the programmer does not explicitly

define a default constructor.

6. 1 2 Destructors

A destructor i s another type of spec ial member function of a c lass . The name of the destruc

tor for a class is the tiLde (-) character fol l owed by the c lass name. Thi s naming convent ion

has intui t ive appeal , because as we w i l l see i n a later chapter, the t i lde operator i s the b i twise

complement operator, and, i n a sense, the destructor i s the complement of the constructor.

A class ' s destructor is cal led when an object is destroyed. Thi s occurs, for example, as

an automatic obj ect is destroyed when program execut ion l eaves the scope in which that

object was i n stant iated. The destructor itself does not actual l y destroy the obj ect-it per

forms termination housekeeping before the system rec la i m s the object ' s memory so that

memory may be reused to hold new objects .

A destructor receives no parameters and returns no value. A c lass may have only one

destructor-destructor overloading i s not a l lowed. � Common Programming Error 6.7

I t is a syntax error to attempt to pass arguments to a destructor, to specify a return type for

a destructor (even voi d cannot be specified), to return values from a destructor or to over

load a destructor.

Even though destructors have not been provided for the c lasses presented so far, every

c l ass has a destructor. If the programmer does not expl ic i t ly prov ide a destructor, the com

pi ler creates an "empty" destructor. 2 I n Chapter 8 , we w i l l bui ld destructors appropriate for

c lasses whose objects contain dynamical l y a l located memory (e .g . , for arrays and strings)

or use other system resources (e .g . , fi les on d i sk) . [We d i scuss how to dynamical l y a l l ocate

and deal l ocate memory in Chapter 7 .]

Software Enginee ring Observation 6 23

As we will see throughout the remainder of the book, constructors and destructors have much

greater prominence in C+ + and object-oriented programming than is possible to convey af

ter only our brief introduction here.

6. 1 3 When Constructors and Destructors Are Called

Constructors and destructors are cal led impl ic i t ly by the compi ler . The order i n which these

function cal l s occur depends on the order i n which execut ion enters and l eaves the scopes

where the objects are i nstant iated. General ly , destructor cal l s are made in the reverse order

I. We wil l see that such a constructor can, in fact, initialize portions of objects created through com
position (Chapter 7) and inheritance (Chapter 9).

2 . We will see that such an implicitly created destructor does, in fact, perform important operations
on objects that are created through composition (Chapter 7) and inheritance (Chapter 9).

436 Classes and Data Abstraction Chapter 6

of the corresponding constructor cal l s . However, as we w i l l see i n Fig . 6 . 1 7 , the storage
c l asses of obj ects can alter the order in which destructors are ca l led .

Constructors are cal led for objects defined in global scope before any other funct ion
(i nc lud ing main) i n that fi le begins execution (a l though the order of execution of g lobal
object constructors between fi les i s not guaranteed) . The corresponding destructors are
cal led when ma in terminates or function exi t is cal led. Destructors are not cal led for

g lobal obj ects if the program terminates wi th a ca l l to function abort . (See Chapter 20 for

more information on funct ions exi t and abort .)

The constructor for a n automatic local object i s cal led when execution reaches the

point where that object i s defi ned-the corresponding destructor i s cal led when execution

leaves the object ' s scope (i . e . , the block in which that object i s defi ned i s ex i ted) . Construc

tors and destructors for automatic objects are cal led each time the obj ects enter and leave

scope . Destructors are not cal l ed for automatic objects i f the program termi nates wi th a ca l l

to function exi t or funct ion abort .

The constructor for a stat i c local object is cal led on ly once when execution fi rst

reaches the poi nt where the object i s defined-the corresponding destructor i s cal led when

ma in terminates or the program cal ls function exi t . Global and stat i c objects are

destroyed in the reverse order of their creat ion. Destructors are not cal l ed for stat i c

obj ects i f the program terminates wi th a cal l t o function abort .

The program of Fig. 6. I S-Fig . 6 . 1 7 demonstrates the order i n which constructors and

destructors are cal l ed for obj ects of c lass Creat eAndDe s t roy (F ig . 6 . 1 5 and Fig. 6 . 1 6)

of various storage c lasses i n several scopes . Each object of c lass Creat eAndDe s t roy

contai ns an in teger (data) and a stri ng (me s sage) that are used in the program ' s output

to ident ify the object . Thi s mechanical example i s pure ly for pedagogic purposes . For th is

reason, l i ne 27 of the destructor in F ig . 6 . 1 6 determi nes whether the obj ect be ing destroyed

has a data value l or 6 and, if so, outputs a new l i ne character. Th i s l i ne helps make the

program ' s output easier to fol low.

1

2

3

4

5

6

7

8
9

1 0
1 1

1 2

1 3

1 4

1 5

1 6
1 7

1 8

1 9

I I F i g . 6 . 1 5 : creat e . h
I I De f init ion o f c l a s s CreateAndDe stroy .
I I Member func t i ons de f ined in create . cpp .
i fndef CREATE_H
#def ine CREATE_H

c la s s CreateAndDe st roy

pub l i c :
CreateAndDe stroy (int , char *) ;

-CreateAndDes troy () ;

private :

int obj ectID ;

char *mes sage ;

} ; I I end c l a s s CreateAndDe stroy

#end i f

I I constructor
I I des t ructor

Fig. 6. 1 5 CreateAndDestroy class defin ition .

Chapter 6 Classes and Data Abstraction

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20
2 1

22

23

24

25

26

27

28

29

30

3 1

32

I I Fig . 6 . 1 6 : c reat e . cpp
I I Member - funct i on de f in i t i ons for c l a s s CreateAndDe s t roy
#inc lude < iostream>

u s ing s td : : c out ;
us ing std : : endl ;

I I inc lude CreateAndDes t roy c lass de f ini t i on from c reat e . h
inc lude " create . h "

I I c onstructor
CreateAndDe s t roy : : CreateAndDe stroy (

int obj ectNumbe r , char *me s sagePtr

obj ectID = obj ectNumbe r ;
me s sage = me s s agept r ;

cout « " Obj ect " « obj ectID « "
« mes s age « endl ;

} I I end CreateAndDe s troy constructor

I I des t ructor
CreateAndDe s t roy : : -CreateAndDe st roy ()

{

const ructor runs

I I the f o l l owing l ine i s for pedagogi c purposes only
cout « (obj ectID = = 1 I I obj ectID 6 ? " \n " : .1 1.) ;

cout « " Obj ect " « obj ectID « "
« me ssage « endl ;

} I I end -CreateAndDes troy des t ructor

destructor runs

Fig. 6. 1 6 CreateAndDes t roy class member-function defin it ions .

437

"

The program of Fig. 6 . 1 7 defi nes object f i rst (l ine 1 5) i n g lobal scope. Its con

structor i s actual ly cal led before any statements i n main execut,e and i ts destructor is

cal led at program termi nation after the destructors for al l other objects have run .

Function mai n (l i nes 1 7-36) declares three objects . Objects second (l i ne 2 1) and

fourth (l ine 30) are local automatic objects, and object third (l ines 23-24) i s a

stat i c local object . The constructor for each of these obj ects i s cal led when execution

reaches the point where that object is dec lared. The destructors for objects fourth then

second are called (i . e . , the reverse of the order in which thei r constructors were cal led)

when execut ion reaches the end of main. Because obj ect third i s s t at i c , i t ex ists un t i l

program terminat ion . The destructor for object third i s cal l ed before the destructor for

g lobal object f i r s t , but after a l l other objects are destroyed.

Function c reate (l i nes 39-5 3) declares three objects- f i fth (l ine 43) and sev

enth (l ines 48-49) are local automatic objects, and s ixth (l ines 45-46) i s a stat i c

local object . The destructors for objects s eventh then f i fth are cal led (i . e . , the reverse

of the order in which thei r constructors were cal led) when create termi nates . B ecause

s ixth i s stat i c , i t ex ists unti l program termi nation . The destructor for s ixth i s cal led

before the destructors for thi rd and f i r s t , but after a l l other objects are destroyed.

438

1

2

3

4

5

6

7

8
9

1 0
1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

20
2 1

22

23

24

25

26

27

28

29

30

3 1

32

33

34

35

36

37

38

39

40

4 1
42
43
44

45

46

47

48

49

50
5 1

52

53

Classes and Data Abstraction

I I F i g . 6 . 17 : f i g 0 6_1 7 . cpp
I I Demonst rat ing the order in which constructors and
I I de s t ructors are cal led .
inc lude < iostream>

us ing std : : cout ;
us ing s td : : endl ;

Chapter 6

I I inc lude CreateAndDe stroy c l a s s de f ini t i on from c reate . h
inc lude " create . h "

void create (void) ; I I prototype

I I global obj ect
CreateAndDes troy f i r s t (1 , " (global before mai n) ") ;

int main ()

{
cout « " \ nMAIN FUNCTION : EXECUTION BEGINS " « endl ;

CreateAndDest roy second (2 , " (local automa t i c in main) ") ;

static CreateAndDe st roy third (
3 , " (local stat ic in main) ") ;

create () ; I I cal l funct ion to create obj ects

cout « " \ nMAIN FUNCTION : EXECUTION RESUME S " « endl ;

CreateAndDe s troy fourth (4 , " (local aut oma t i c in ma in) ") ;

cout « " \ nMAIN FUNCTION : EXECUTION ENDS " « endl ;

return 0 ;

I I end main

I I func t i on to create obj ects
void create (void)

{
cout « " \ nCREATE FUNCTION : EXECUTION BEGINS " « endl ;

CreateAndDe s troy f i fth (5 , " (local automa t i c in c reate) ") ;

static CreateAndDe stroy s ixth (
6 , " (local stat ic in create) ") ;

CreateAndDe s troy seventh (
7 , " (local automat ic in c reate) ") ;

cout « " \nCREATE FUNCTION : EXECUTION ENDS \ " « endl ;

I I end funct ion create

Fig. 6. 1 7 Order in which constructors and destructors a re cal led . (Part 1 of 2 .)

Chapter 6 Classes and Data Abstraction

Object 1 constructor runs (global before main)

MAIN FUNCTION : EXECUTION BEGINS
Object 2 constructor runs (local automatic in main)
Object 3 constructor runs (local static in main)

CREATE FUNCTION : EXECUTION BEGINS
Object 5 constructor runs (local automatic in create)
Object 6 constructor runs (local static in create)
Object 7 constructor runs (local automatic in create)

CREATE FUNCTION : EXECUTION ENDS
Object 7 destructor runs (local automatic in create)
Object 5 destructor runs (local automatic in create)

MAIN FUNCTION : EXECUTION RESUMES
Object 4 constructor runs (local automatic in main)

MAIN FUNCTION : EXECUTION ENDS
Object 4 destructor runs (local automatic in main)
Object 2 destructor runs (local automatic in main)
Object 6 destructor runs (local static in create)
Object 3 destructor runs (local static in main)

Object 1 destructor runs (global before main)

Fig. 6. 1 7 Order in which constructors and destructors are called . (Part 2 of 2 .)

6. 14 Using Set and Get Functions

439

A class's pri vat e data members can be accessed only by member funct ions (and friends)

of the c lass . A typical manipulat ion might be the adjustment of a customer' s bank balance

(e .g . , a private data member of a c lass BankAc c ount) by a member function

c omput e lnt e re s t .

Classes often provide pub l i c member functions to al low c l ients of the class to set

(i . e . , write) or get (i . e . , read) the values of private data members. These functions need

not be cal l ed set and get spec ifica l ly , but they often are . More specifical ly , a member func

tion that sets data member intere s t Rate might be named s e t lnt e re s t Rate, and

a member function that gets the intere s t Rate might be named get lnt e re s t Rat e .

Get functions are a l so commonly cal led "query" functions .

I t may seem that providing both set and get capabi l i ties i s essent ia l ly the same as

making the data members pub l i c . This i s yet another subtlety of C++ that makes the lan

guage so desirable for software engi neeri ng . If a data member i s publi c , then the data

member can be read or written at wi l l by any function in the program. If a data member is

private, a publi c get funct ion would certa in ly seem to al low other functions to read

the data at w i l l . However, the get function could control the format in which the data i s

returned t o the c l ient . A pub l i c set function could-and most l ikel y would--careful ly

scrut in ize any attempt to modify the value of the data member. Thi s would ensure that the

new value is appropriate for that data i tem, i .e . , the data item remains i n a cons i stent state.

For example, an attempt to set the day of the month to 37 could be rejected, an attempt to

set a person ' s weight to zero or a negative value could be rejected, an attempt to set a

440 Classes and Data Abstraction Chapter 6

numeric quant i ty to an alphabet ic value could be rejected, an attempt to set a grade on an

exam to 185 (when the proper range i s zero to 1 00) could be rejected, etc.

Software Engineering Observation 6.24

Making data members pri vate and controiling access, especially write access, /0 those

data members through public mem.ber functions helps ensure data integrity.

Testing and De uggmg ip 6 5

The bene filS of data integrity are not automatic simply because data rnembers are made pri

vate---the programmer must provide appropriate validity checking. C++ does, however, pro

vide aframework in which programmers can design beller programs in a convenient manner.

Software Engineering Observation 6.25

Memberfunclions that set the values of privale data should verify thaI the intended new val

ues are proper; if they are not, the set functions should place the private data rnernbers

into an appropriate stale.

The cl ient of a class should be notified when an attempt is made to ass ign an inva l id

va lue to a data member. A class ' s set functions are often written to return va lues ind icat i ng

that an attempt was made to assign inval id data to an object of the class . Thi s enables cl ients

of the class to test the return val ues of set functions to determine whether the object they

are manipu lat ing i s a val id object and to take appropriate act ion if the object i s not va l id .

The program of Fig. 6. 1 8-Fig. 6 .20 enhances class Time (F ig . 6 . 1 8 and Fig . 6 . 1 9) to

i nclude set and get funct ions for the private data members hour, minute and

second. The new member-function defi n it ions appear i n F ig . 6 . 1 9 . The set funct ions

(defi ned at l i nes 34-38, 4 1 -45 and 48-52) strict ly control the sett ing of the data members.

Attempts to set any data member to an incorrect value cause the data member to be set to

zero (thus leav ing the data member in a cons istent state) . Each get function (defi ned at l i nes

55-59, 62-66 and 69-7 3) s imply returns the appropriate data member's value.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9

I I Fig . 6 . 1 8 : t ime3 . h
I I Dec l arat ion o f c l ass Time .
I I Member functions de f ined in t ime3 . cpp

I I prevent mult iple inc lusions of header f i le
i fndef TIME3_H
#de f ine T IME3_H

c l a s s Time {

public :
Time (int = 0 , int 0 , int 0) ; I I default constructor

I I set funct ions
void setTime (int , int , int) ; 1/ set hou r , minute , second
void setHour (int) ; 1/ set hour
void setMinute (int) ; 1/ set minute
voi d set Second (int) ; 1/ set second

Fig. 6. 1 8 T ime class defin ition with set and get functions. (Part 1 of 2.)

Chapter 6 Classes and Data Abstraction

II get funct ions
int getHour () ; II return hour
int getMinute () ; II return minute
int get Second () ; II return second

20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35

void printUniversal () ; II output universal - t ime format
void print Standard () ; II output standard- t ime format

privat e :
int hour ;
int minute ;
int second ;

} ; II end c l a s Time

#endi f

II 0 - 2 3 (2 4 - hour c lock format)

II 0 - 5 9

II 0 - 5 9

Fig. 6. 1 8 T ime c lass definit ion with set and get functions. (Part 2 of 2.)

1 II Fig . 6 . 1 9 : t ime3 . cpp
2 II Member-function de f init ions for Time c l as s .
3 # inc lude < iostream>
4
5 u s ing std : : cout ;
6
7 # inc lude < i omanip >
8
9 us ing s td : : set f i l l ;

1 0 us ing s td : : setw;
1 1
1 2 II inc lude de finit ion of class Time from t ime3 . h
1 3 # inc lude "t ime3 . h"
1 4
1 5 II const ructor funct i on to ini t i a l i z e private dat a ;
1 6 II cal l s member function setTime to set vari ables ;
1 7 II de f ault value s are 0 (see c l a s s de finition)
1 8 Time : : Time (int hr , int min , int sec)
1 9 {
20 setTime (hr , min , sec) ;
2 1
22 II end T ime const ructor
23
24 II set hou r , minute and second values
25 void T ime : : setTime (int h , int m, int s)
26 {
27 setHour (h) ;
28 setMinute (m) ;
29 setSecond (s) ;
30
3 1 II end funct ion setTime
32

441

Fig. 6. 1 9 Time c lass member-function defin it ions, inc lud ing set and get functions.
(Part 1 of 3.)

442

33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1
82
83

Classes and Data Abstraction

I I set hour value
void Time : : setHour (int h

{
hour = (h >= 0 && h < 2 4) ? h 0 ;

} I I end function setHour

II set minute value
void Time : : setMinute (int m

{
minute = (m >= 0 && m < 60) ? m

} I I end function setMinute

I I set second value
void Time : : setSecond (int s

{
second = (s >= 0 && s < 60) ? s

} II end function set Second

I I return hour value
int Time : : getHour ()

{
return hour ;

} I I end function getHour

I I return minute value
int Time : : getMinute ()

{
return minute ;

} I I end function getMinute

I I return second value
int Time : : getSecond ()

{
return second ;

// end function getSecond

/1 print Time in universal format
void Time : : printUniversal ()

{
cout « set f i l l (' 0 ') « setw (2)

« setw (2) « minute « ":"
« setw (2) « second ;

} /1 end funct ion printUniversal

0;

0;

« hour «

Chapter 6

If: II

Fig. 6. 1 9 T ime c lass member-function defin itions, inc lud ing set and get functions .
(Part 2 of 3 .)

Chapter 6

84 II print T ime in standard format
85 void Time : : print Standard ()
86 {
87 cout « ((hour -- 0 II hour

88 « " : n « set f i l l (' 0')

Classes and Data Abstraction

-- 1 2) ? 1 2 : hour % 1 2
« setw (2) « minute

89 « n : " « setw (2) « second

90 « (hour < 1 2 ? " AM "
9 1
92 } II end funct ion print Standard

" PM") ;

443

Fig. 6. 1 9 T ime class member-function defin itions, including set and get functions .
(Part 3 of 3.)

I n Fig . 6 .20, function main (l i nes 1 3-45) fi rst uses the set funct ions to set the data

members of Time object t to val id values (l ines 1 8-20) , then uses the get funct ions to

retrieve the values for output (l i nes 24-26) . Next the set funct ions attempt to set the hour

and second members to i nval id values (l i nes 29 and 3 1) and the minut e member to a

val id value (l ine 30) . Then the program uses the get functions to retrieve the values for output

(l i nes 36-38) . The output confi rms that inval id val ues cause the data members to be set to

zero. Final l y , the program sets the t ime to 11: 58: 00 (l i ne 40) and i ncrements the minute

va lue by 3 wi th a cal l to function increment Minutes (l i ne 4 1) . Function increment

Minutes (l i nes 48-67) is a nonmember function that uses the get and set member functions

to i ncrement the minute member of a Time object . A l though th i s works , i t i ncurs the per

formance burden of i ssu ing mult ip le function cal l s . In the next chapter, we d i scuss the notion

of friend funct ions as a means of e l iminat ing this performance burden .

Software Engineering Observa Ion 6 26

Because C++ is a hybrid language, it is possible 10 have a m.ix ofnvo 'Ypes ofjimclion calls

in one program and open back 10 back-C-like ceills Ihal pass primilive dalO or objects 10

functions and C++ calls thaI pass jimclions (or messages) to objects. [lJ Common Programming Error 6.8

A construclOr can call other memberfunctions of the class such as set or get functions, but

because the construclOr is in itializing the object, Ihe dolO members may 1101 yet be in a con

sistent state. Using data members before they have been properly initialized can cause logic

errors.

1 II Fig . 6 . 2 0 : f i g 0 6_2 0 . cpp
2 I I Demonstrat ing the Time c la s s set and get funct ions
3 #include <ios tream>
4
5 u s i ng std : : cout ;
6 u s ing std : : endl ;
7
8 I I inc lude de finit i on of c l a s s Time from t ime 3 . h
9 #inc lude " t ime 3 . h "

10
1 1 void incrementMinutes (Time &, const int) ; I I prototype
12

Fig. 6.20 Set and get functions manipulating an object's private data. (Part 1 of 3.)

444

1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65

Classes and Data Abstraction Chapter 6

int main ()
{

Time t ; I I create Time object

individual set func t i ons I I set t ime using
t . setHour (17) ;
t . setMinute (3 4) ;
t . setSecond (2 5) ;

I I set hour to val id value
I I set minute to val id value
I I set second to val id value

I I use get func t i ons to obtain hour , minute and second
cout « "Result of sett ing a l l val id value s : \ n"

< < " Hour : " < < t . getHour ()
« " Minute : " « t . getMinute ()
« " Second : " « t . get Second () ;

I I set t ime u s ing individual set funct ions
t . setHour (2 34) ; I I invalid hour set to 0
t . setMinute (4 3) ; I I set minute to val i d value
t . setSecond (63 7 3) ; I I invalid second set to 0

I I di splay hour , minute and second after sett ing
I I inva l i d hour and second values
cout « " \n\nResult of attempt ing to set i nvalid hour and"

« " second : \ n Hour : " « t . getHour ()
« " Minut e : n « t . getMinute ()
« " Second : " « t . getSecond () « "\n\n" ;

t . setTime (1 1 , 5 8 , 0) ;
incrementMinutes (t , 3) ;

return 0 ;

I I set t ime
I I increment t ' s minute by 3

} I I end main

I I add spec i f ied number of minutes to a Time object
void incrementMinutes (Time &t t , const int count)

{
cout « "Increment ing minute " « count

« " t imes : \nStart t ime : " ;
tt . printStandard () ;

for (int i = 0 ; i < count ; i + +) {
tt . setMinute (tt . getMinute () + 1) % 60) ;

i f (tt . getMinute () = = 0)
tt . setHour ((tt . getHour () + 1) % 2 4) ;

cout « "\ nminute + 1 : " ;
tt . printStandard () ;

I I end for

c out « endl ;

Fig. 6.20 Set and get functions manipulating on object's pri vate data . (Port 2 of 3.)

Chapter 6 Classes and Data Abstraction 445

66
67 } II end funct ion incrementMinutes

Result of set t ing all val i d values :
Hour : 17 Minut e : 3 4 Second : 2 5

Result o f attempt ing t o set invalid hour and second :
Hour : 0 Minut e : 4 3 Second : 0

Increment ing minute 3 t ime s :
Start t ime : 1 1 : 5 8 : 0 0 AM
minute + 1 : 1 1 : 5 9 : 0 0 AM
minute + 1 : 1 2 : 0 0 : 0 0 PM
minute + 1 : 1 2 : 0 1 : 0 0 PM

Fig. 6.20 Set and get functions manipu lating an object's privat e data . (Part 3 of 3 .)

Using set functions i s certa in ly important from a software engi neering standpoin t

because they can perform val idity checking . Both set and get functions have another i mpor

tant software engineering advantage.

Soft are En inee ing Ob e ion 6 7

Accessing private data through set and get member functions not only protects the data

members from receiving invalid values, but it also insulates clients of the class from the repre

sentation of the data members. Thus, if the representation of the data changes for some reason

(typically to reduce the amount of storage required or to improve peiformance), only the mem

ber functions need to change-the clients need not change as long as the inteiface provided by

the memberfunctions remains the same. The clients will, however, need to be re-linked.

The presence of get methods in a class sometimes suggests that the client code using a class

is implementing services (i.e. , functions) that the class should provide. If a class's client pro

vides a service that could be used by other clients, that service should be a member of the

class, not part of the client. For example, if function incrementMinutes in Fig. 6.18
might be used by other clients, it should be defined as a member of class Time. Exercise 6.8
asks you to implement as a member of class Time a tickfunction that can be used by any

client of class Time to add one second to the time.

6. 15 Subtle Trap: Returning a Reference to a private Data
Member

A reference to an object i s an a l ias for the name of the object and, hence, may be used on

the left s ide of an ass ignment statement. In th is context , the reference makes a perfect ly ac

ceptable lvalue that can receive a value . One way to use th is capab i l i ty (unfortunate ly!) is

to have a pub l i c member function of a c lass return a non-const reference to a pri

vat e data member of that c l ass .

The program of Fig . 6 .2 1 -Fig . 6 .23 uses a s impl i fied Time c l ass (F ig . 6 .21 and

Fig. 6 .22) to demonstrate return ing a reference to a private data member with member

function badSe tHour (declared in Fig. 6 .2 1 at l i ne 1 6 and defi ned in Fig. 6 .22 at l i nes

34-40) . Such a return actual l y makes a cal l to member function badS e tHour an a l i as for

446 Classes and Data Abstraction Chapter 6

p r i vat e data member hour! The function cal l can be used i n any way that the private

data member can be used, i ncl uding as an lvalue i n an ass ignment statement, thus enab l i ng

cl ients of the class to clobber the c lass's private data a t w i l l !

1 I I Fig . 6 . 2 1 : t ime4 . h
2 I I Dec larat ion of c l a s s Time .
3 I I Member funct ions def ined in t ime4 . cpp
4
5 I I prevent mUl t iple inc lus ions of header f i l e
6 # i fndef TlME4_H
7 #de f ine TlME4_H
8
9 c l a s s Time

1 0
11 pub l i c :
1 2 Time (int = 0 , int = 0 , int = 0) ;
13 void setTime (int , int , int) ;
1 4 int getHour () ;
15
1 6 int &badSetHour (int) ; I I DANGEROUS reference return
1 7
18 private :
19 int hour;

20 int minute ;
2 1 int s econd ;
2 2
23 } ; II end class Time
24
25 #endi f

Fig. 6.2 1 Return ing a reference to a privat e data member .

1 I I Fig . 6 . 2 2 : t ime4 . cpp
2 I I Member- funct ion de f initions for Time c l as s .
3
4 I I inc lude definit ion of class Time from t ime4 . h
5 # inc lude "time4 . h"
6
7 I I constructor funct ion to init ialize private data;
8 I I cal l s member funct i on setTime to set variables ;
9 I I de fault value s are 0 (see class de f inition)

1 0 Time : : Time (int hr , int min , int sec)
1 1 {
1 2 setTime (hr , min , sec) ;
1 3
1 4 } I I end Time constructor
1 5
1 6 I I set values of hour , minute and second
1 7 void Time : : setTime (int h, int m, int s
1 8 {
1 9 hour = (h >= 0 && h < 2 4) ? h : 0 ;

Fig. 6.22 Return ing a reference to a private data member. (Part 1 of 2 .)

Chapter 6 Classes and Data Abstraction

20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40

minute
second

m > = 0 && m < 60
s >= 0 && s < 60

II end funct ion setTime

I I return hour value
int Time : : getHour ()

(
return hour;

II end funct ion getHour

I I POOR PROGRAMMING PRACTICE :

? m
? s

0 ;
0 ;

II Returning a re ference to a private dat a member .
int &Time : : badSetHour (int hh)

{
hour = (hh > = 0 && hh < 2 4) ? hh : 0 ;

return hour ; I I DANGEROUS reference return

} I I end funct ion badSetHour

Fig. 6.22 Return ing a reference to a private data member. (Part 2 of 2 .)

447

Figure 6 .23 declares Time object t (l ine 1 4) and reference hourRe f (l ine 1 7), which

i s assigned the reference returned by the cal l t . badS etHour (20) . Li ne 1 9 di splays the

va lue of the alias hourRef. Next, l i ne 22 uses the a l ias to set the val ue of hour to 30 (an

inval id value) and l i ne 24 di splays the val ue returned by function ge t Hour to show that

ass igning a value to hourRef actual ly modifies the pri vat e data i n the Time object t .

Final ly, l i ne 28 uses the badSet Hour function cal l itself as an {value and assigns 74

(another i nval id value) to the reference returned by the function . L ine 33 again di splays the

value returned by function ge tHour to show that assigning a value to the resul t of the

function cal l i n l i ne 28 modifies the pri vat e data in the Time object t .

1 I I Fig . 6 . 2 3 : f i g 0 6_2 3 . cpp
2 II Demons t rat ing a public member funct ion that
3 I I returns a re ference to a private data member .
4 # inc lude < iostream>
5
6 us ing std : : cout ;
7 us ing std : : endl ;
8
9 I I inc lude de fini t i on of c l a s s Time from t ime4 . h

1 0 # inc lude " t ime4 . h "
1 1
1 2 int main ()
1 3 (
1 4 Time t ;
1 5
1 6 I I store i n hourRe f the reference returned by badSetHour
1 7 int &hourRe f = t . badSetHour (2 0) ;

Fig. 6.23 Returning a reference to a pr ivate data member. (Part 1 of 2 .)

448 Classes and Data Abstraction

18
19 cout « "Hour before modi f i cat ion : n « hourRe f ;
20
21 I I use hourRe f to set invalid value in Time obj ect t
22 hourRef = 3 0;
23
24 cout « "\nHour after modi ficat ion : II « t . getHour () ;
25
26 I I Dangerous : Funct ion call that returns
27 I I a reference can be used as an lvalue!
28 t . badSetHour (1 2) = 7 4 ;
29
30 cout « "\n\n*********************************\n"
31 < < "POOR PROGRAMMING PRACTICE!!!!!!!! \n"
32 « "badSetHour as an lvalue, Hour : "
33 « t . getHour ()

Chapter 6

34 « "\n********************************* " « endl ;
35
36 return 0 ;
37
38 I I end main

Hour be fore modi fication : 2 0
Hour after modi f icat ion : 3 0

* * * * * * * * * * ***
POOR PROGRAMMING PRACTICE!III!III
badSetHour as an lvalue , Hour : 7 4
* * ***

Fig. 6.23 Returning a reference to a p;ri vat e data member . (Part 2 of 2 .)

'n9 dO

Never have a public member function return a non-const reference (or a pointer) to a

pri va te data member. Returning such a reference violates the encapsulation of the class.

Infact, returning any reference or pointer to pri va te data makes the client code dependent

on the representation of the class '05 data. So, returning pointers or references to pri va te

data is a dangerous practice that should be avoided.

6. 1 6 Default Memberwise Assignment

The assignment operator (=) can be used to assign an object to another object of the same

type . By defaul t , such assignment is performed by memberwise assignment-each member

of the object on the right of the assignment operator i s assigned ind i v idual ly to the same

member in the object on the left of the assignment operator. Line 49 of Fig. 6.24 uses de

fau l t memberwi se assignment to assign the values of Dat e object dat e l to Dat e object

dat e2. I n th i s case, the month member of dat e1 i s assigned to the month member of

dat e2, the day member of dat el i s assigned to the day member of dat e 2 and the

year member of datel i s assigned to the year member of date2. [Note: Memberw i se

ass ignment can cause serious problems when used with a c lass whose data members con-

Chapter 6 Classes and Data Abstraction 449

tai n poi nters to dynamically a l located storage; i n Chapter 8, we will discuss these problems

and show how to deal with them.]

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

/ / Fig . 6 . 2 4 : fig0 6_2 4 . cpp
/ / Demonst rat ing that class objects can be a s s i gned
/ / to each other u s ing default memberwise a s s i gnment .
inc lude < iostream>

u s ing std : : cout ;
us ing std : : endl ;

/ / c l a s s Date de f init ion
c l a s s Date {

pub l i c :
Dat e (int = 1 , int
void print () ;

private :
int month ;
int day ;
int year ;

} ; / 1 end c l a s s Date

1, int 1990) ; /1 defau l t constructor

/1 Date c onstructor with no range checking
Date : : Date (int m, int d , int y)

{
month = m;
day = d;
year = y ;

/ / end Date const ructor

/ / print Date in the format mm-dd-yyyy
void Date : : print ()

{
cout « month « '-' « day « '-' « year ;

} 1/ end funct ion print

int main ()
{

Dat e date1 (7 , 4 , 2 0 0 2) ;
Date date2 ; / / dat e 2 def au l t s to 1 / 1 / 1 9 9 0

cout « "date 1 = " ;
date1 . print () ;
cout « "\ndate 2
date 2 . print () ;

II .
,

date2 = date1 ; 1 / de fault memberwi s e a s s i gnment

Fig. 6.24 Default memberwise assignment. (Part 1 of 2.)

450 Classes and Data Abstraction Chapter 6

5 1 cout « " \n\nAfter default memberwi se a s s i gnment , date 2 " ;
52 date2 . print () ;
53 cout « endl ;
54
55 return 0 ;
56
57 } I I end main

date l z 7 - 4 - 2 0 0 2
date2 = 1 - 1 - 1 9 9 0

After de fau l t rnemberwise assignment , date2 = 7 - 4 - 2 0 02

Fig. 6.24 Default memberwise assignment. (Part 2 of 2 .)

Objects may be passed as function arguments and may be returned from functions . Such

passing and return ing is performed using pass-by-vaJue by default-a copy of the object i s

passed or returned. I n such cases, C++ creates a new object and uses a copy constructor to

copy the original object's values into the new object. For each class, the compiler provides a

default copy constructor that copies each member of the original object into the corre

sponding member of the new object. Like memberwise assignment, copy constructors can

cause serious problems when used with a class whose data members contain pointers to

dynamical ly al located storage . Chapter 8 di scusses how programmers can define a custom

ized copy constructor that properly copies objects containing pointers to dynamic memory .

Performance Tip 6.4

Passing an object by value is goodfrom a security standpoint because the calledfunction has

no access to the original object in the caller, but pass-by- value can degrade performance

when making a copy of a large object. An object can be passed by reference by passing either

a pointer or a reference to the object. Pass-by-reference offers good performance. but is

weaker from a security standpoint because the cal/edfunction is given access to the original

object. Pass-by-const-reference is a safe. good-performing alternative.

6. 17 Software Reusability

People who write object-oriented programs concentrate on implementi ng useful c lasses .

There i s a tremendous motivation to capture and catalog c lasses so that they can be access

ed by large segments of the programming community. Many substantial class libraries ex

ist and others are being developed worldwide. Software is increas ingly being constructed

from exist ing, wel l -defined, careful ly tested, wel l -documented, portable, h igh-perfor

mance, widely avai lable components. This kind of software reusabi l i ty speeds the develop

ment of powerful , h igh-qual ity software . Rapid applications development (RAD) through

the mechan isms of reusable componentry has become an important fie ld .

S ignificant problems must be sol ved, however, before the ful l potential of software

reusabi l i ty can be real ized. We need cataloging schemes, l icensing schemes, protection

mechanisms to ensure that master copies of classes are not corrupted, descri ption schemes

so that designers of new systems can determine whether ex ist ing objects meet their needs,

browsing mechanisms to determine what c lasses are avai lable and how c losely they meet

software developer requ irements and the l ike . Many interest ing research and development

Chapter 6 Classes and Data Abstraction 45 1

problems need to be solved. There i s great mot i vation to solve these prob lems because the

potential value of the i r solutions is enormous.

I n this chapter, we began our presentat ion of object-based programming . We showed

how to extend C++ by creat ing user-defi ned types cal led classes, then expla ined how to

create and use objects of those classes in programs. We presented many common class fea

tures, includ ing pub l i c and pr ivate class members, constructors , destructors , and set

and get funct ions . I n Chapter 7, we present addit ional object-based programming features ,

i ncluding const class members, const objects , composi t ion , friendsh ip , dynamic

memory a l locat ion and s t a t i c class members .

6. 18 (Optional Case Study) Thinking About Objects: Starting to
Program the Classes for the Elevator Simulator

In the "Thi nk i ng About Objects" sections in Chapter I-Chapter 5 , we i ntroduced the fun

damental s of object orientat ion and developed an object-oriented des ign for an e levator

s imu lator. In the body of Chapter 6, we i ntroduced the detai l s of programming w i th C++

classes. We now beg in implementing our object-oriented design in C++. In th i s sect ion , we

use our U ML class d iagram to out l i ne the C++ header fi les that defi ne our classes.

Implementation: Visibility

I n the body of Chapter 6, we i ntroduced the access specifiers pub l i c and pr ivat e . Be

fore we create the class header fi les , we fi rst must consider which e lements from our class

d iagram should be pub l i c and which e lements should be priva t e .

I n Chapter 6 , we d i scussed how data members genera l ly shou ld be privat e . We al so

must cons ider what v i s ib i l i ty member funct ions should have. The operat ions of a class are

its member funct ions . These operat ions must be invoked by cl ients of that class; therefore,

the member funct ions that correspond to operat ions should be pub l i c . In the U M L,

pub l i c v i s ib i l i ty i s i ndicated by p laci ng a p lus s ign (+) before a part icu lar e lement (i .e . ,

a member function or a data member); a m inus s ign (-) ind icates p r i vat e v i s ib i l i ty .

Member funct ions that correspond to an act ion that an object i n i t iates i tse lf should be

priva t e . Figure 6 .25 shows our updated class d iagram with v i s ib i l i ty notat ions i ncluded.

(Note that we have added the personArri ve s operat ion to class Fl oor from our

sequence d iagram i n Fig . 4.27, as well as several other members that we d i scuss throughout

th i s section .) As we write the C++ header fi les for the classes i n our system, we p lace the

i tems designated with "+" i nto the publ i c sections and items des ignated w ith "-" i nto the

pri vat e sect ions of the class declarat ions .

Implementation: Handles

For an object of class A to communicate with an object of class B, the class A object must
have a handle to the class B object . Th is means that e i ther the class A object must know the
name of the class B object, or the class A object must hold a reference (Section 3 . 1 7) or a
pointer (Chapter 5) to the class B object .3 Figure 5.34 contained a l i st of i n teract ions among
objects i n our system. Objects of the classes i n the left column of the table need handles to
objects of the classes i n the right column, to send messages to those objects . Figure 6 .26 l i sts
the handles for each class based on the information displayed i n the table from Fig . 5 . 34.

3. In s i tuat ions where the name of the c lass B object i s not avai lable to the c lass A object , we prefer
references over pointers (where appropriate), because references are i n herent l y safer than point
ers .

452 Classes and Data Abstraction

Elevator Clock

-moving: Boolean = false

-direction: Integer

-currentFloor : Integer = 1
- arrivalTime : Integer

-time: Integer = 0

+ tick()

+ getTime() : Integer

- capacity: Integer = 1
Floor

+ summonElevator()

+ prepareToLeave() - capacity: Integer = 1

+ processTime(time: Integer) - floorNumber : Integer

+ personEnters() - occupied: Boolean = false

+ personExits()
+ isOccupied() : Boolean

Scheduler
+ getNumber() : Integer

+ personArrives()

- floorl ArrivalTime : Integer

-floor2ArrivaiTime : Integer

+ elevatorArrived()

+ elevatorLeaving()

+ processTime(time: Integer) FloorButton
- scheduleTime(floor: Floor)
-delayTime(floor: Floor)

- pressed: Boolean = false

- floorNumber : Integer

Person
+ pressButton()

+ resetButton()

-ID: Integer
ElevatorButton

+ getlD() : Integer - pressed: Boolean = false
+ stepOntoFloor()

+ enterElevator() + pressButton()

+ exitElevator() + resetButton()

Chapter 6

Door

- open : Boolean = false

+ openDoor()

+ closeDoor()

Bell

<none yet>

+ ringBell()

Light

- on : Boolean = false

- floorNumber : Integer

+ turnOn()

+ turnOff()

Building

<none yet>

+ runSimulation()

Fig. 6.25 Class diagram that includes attributes and operations .

In the body of Chapter 6, we d iscussed how to implement handles i n C++ as references

and pointers to objects. These references then become attributes (data) of the class . U nt i l

we d iscuss composit ion i n Chapter 7, we cannot represent every item from Fig. 6 .26 i n our

class header fi les . We d iscuss these special cases short ly .

Class

E l evator

Clock

Handles

ElevatorButton , Be l l , Floor , Door

Scheduler Person , Floor

Person FloorButton , ElevatorButton , Elevator , Floor

Floor F loorButton , Light

FloorButton Elevator

ElevatorButton Elevator

Fig. 6.26 List of hand les for each class. (Part 1 of 2 .)

Chapter 6

Class

Door

Be l l

Light

Bui lding

Classes and Data Abstraction

Handles

Person

Clock , Scheduler , Elevator

Fig. 6.26 List of handles for each class. (Part 2 of 2 .)

Implementation: Class Header Files

453

Now that we have discussed programming C++ c lasses, we are ready to beg i n writing the

code for our elevator s imulator. In this section, we examine the header fi les for each c lass

i n our system . In the "Thinking About Objects" section at the end of Chapter 7 , we present

the complete, working C++ code for the s imulator. In Chapter 9, we modify that code to

i ncorporate inheritance.

To demonstrate the order in which constructors and destructors run , we inc lude a con

structor and destructor for each of our c lasses that displays messages indicating that these

functions are runn ing . We include the constructor and destructor prototypes in our header

fi les; we inc lude their implementations in the. cpp fi les presented in Chapter 7 .

Figure 6.27 l i sts the header file for c lass Be l l . Working from o u r c lass diagram

(Fig. 6 .25) , we declare a constructor (l ine 9), a destructor (l i ne 1 0) and the member function

ringBe l l (Line 1 1) ; each of these member functions has pub l i c vis ib i l i ty. We have iden

tified no other pub l i c or pri vat e elements for this c lass, so our header fi l e i s complete.

Figure 6 .28 l i sts the header fi le for c lass C l ock. We inc lude a constructor and

destructor (l i nes 9- 1 0) and the publ i c member functions t i c k () and get Time ()

(l i nes 1 1 - 1 2) from Fig . 6 .25 . We implement the t ime attribute by declaring a p rivat e

data member t ime of type int (l i ne 1 5) . An object of class Bu i l ding i nvokes the

C l ock's get Time member function to obtain the current value of t ime and i nvokes the

t i c k member function to i ncrement t ime .

1 II Fig . 6 . 2 7 : be l l . h
2 II Be l l c l a s s def init ion .
3 # i fndef BELL_H
4 #de f ine BELL_H
5
6 c l a s s Be l l {
7
8 public :
9 Be l l () ;

1 0 -Be l l () ;
1 1 void ringBe l l {) ;
1 2
1 3 } ; II end c l a s s Be l l
1 4
1 5 #endi f II BELL_H

Fig. 6.27 Be l l c lass header fi le .

II const ructor

II de structor
II ring the bel l

454

1
2
3
4
5
6
7
8
9

Classes and Data Abstraction

I I Fig . 6 . 2 8 : c lock.h
I I C l ock c lass de f inition .
i fnde f CLOCK_H
#def ine CLOCK_H

c l a s s C l ock

public :
I I constructor
I I de structor

Chapter 6

'0
11
12
13
14
15
16
17
18
19

C lock () ;
-Clock () ;
void t i ck () ;
int getTime () ;

I I increment c lock by one second
I I returns c lock's current t ime

private :
int t ime ; I I clock ' s t ime

} ; I I end c lass C lock

#endi f I I CLOCK_H

Fig. 6.28 Clock c lass header f i le .

The header fi le for c lass Person (Fig . 6 .29) contai ns a constructor declaration (l i ne

9) w i th one i n t parameter, which identifies the person ' s arrival floor number. A Per s on

object uses this value for output purposes . Line 1 8 declares attribute ID, and l i nes 1 3-\5

declare operations s t epOnt oFl oor, ent erE l evator and exi t E l evator from

our class diagram (Fig . 6 .25) . Line 1 1 dec lares member function get ID that returns the

person's ID number. We use this operation to keep track of the people i n our s imulat ion .

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

I I Fig . 6 . 2 9 : person . h
I I Person c lass de f ini t ion .
i fnde f PERSON_H
#de f ine PERSON_H

class Person {

pub l ic :
Person (int) ;
-Person () ;
int getID () ;

I I constructor
I I de structor
I I returns person's ID

void stepOntoFloor () ;
void enterElevator () ;
void exitElevator () ;

private :
int ID ;

} ; I I end c lass Person

#endi f I I PERSON_H

I I person's unique ID #

Fig. 6.29 Person class header f i le.

Chapter 6 Classes and Data Abstraction 455

Objects of class Pe r s on are not created at the beginn ing of the s imu lat ion-the

scheduler creates them dynamical ly and randomly as the s imu lat ion runs . For this reason,

we must i mplement c lass Pe rson differently from the implementat ion of other c lasses in

our system. After we discuss how to create objects dynamical ly i n Chapter 7 , we add s ig

n ificant e lements to the header fi le for class Person.

Figure 6 .30 l i sts the header fi le for class Door . Lines 1 1 - 1 2 dec lare a constructor and

a destructor, and l i nes 1 4- 1 5 dec lare the pub l i c member functions openDoor and

c l o s eDoor. Line 1 8 declares the privat e class data member open. The tab le in

Fig. 6 .26 states that c lass Door needs a handle to class Pe r s on. However, because objects

of class Per s on are created dynamical ly i n our system, we are unsure at this poin t how to

implement handles to objects of c lass Person. We discuss this in Chapter 7 .

W e li st the header fi le for c lass Light i n Fig. 6 .3 1 . The information from the c lass

diagram i n Fig . 6 .25 leads us to dec lare pub l i c member funct ions t urnOn and

t urnO f f (l ines 1 1 - 1 2) and private data member o n of type boo l (l ine 1 5) . [n th is

header fi le , we also inc lude the abi l ity to dis t inguish between different obj ects of the same

class . For example , we know that the s imulation contai ns two objects of c lass Li ght: One

object belongs to the fi rst floor, and the other object belongs to the second floor. We want

to dist inguish between these objects for output purposes, so we must ass ign a name to each .

Therefore , we declare i n t attribute f l oorNwnber in the private section of the c lass

declaration (l ine 1 6) . We also add an int parameter to the constructor (l i ne 9) , for in i t ia l

iz ing each Light object's floor number.

Figure 6 .32 l i sts the header fi le for class Bui lding. The publ i c section of the c lass

declaration inc ludes a constructor (l ine 9), a destructor (l ine 1 0) and member function run

S i mulat i on (l ine 1 1) from Fig. 6 .25 . When we first identified operation runS imula

t i on i n Chapter 4, we did not know what object would invoke the function to begin the

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
19
20
2 1
22

I I Fig . 6 . 3 0 : door . h
I I Door c l a s s de f init ion .
i fnde f DOOR_H
#de f ine DOOR_H

c l a s s Elevator ; I I forward dec larat ion

c la s s Door

publ i c :
Door () ;
-Door () ;

I I constructor
I I de structor

void openDoor () ;
void c lo seDoor () ;

private :
bool open; II open or c losed

} ;

#endi f I I DOOR_H

Fig. 6.30 Door class header file.

456

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20

Classes and Data Abstraction

I I Fig . 6 . 3 1 : l i ght . h
I I Light c la s s de f init ion .
#i fnde f LIGHT_H
#de f ine LIGHT_H

c l a s s Light

pub l i c :
Light (int) ;
-Light () ;
void turnOn () ;
void turnOf f () ;

private :

I I constructor
I I destructor
I I turns l i ght on
I I turns light o f f

bool on ; I I true i f on ; fal se i f o f f
i n t f l oorNumbe r ; I I floor number that contains l i ght

}; I I end c l a s s Light

#end i f I I LIGHT_H

Fig. 6.3 1 Li ght class header fi le ,

Chapter 6

s imulation. Now that we have di scussed classes in C++, we know that a Bui lding object

needs to be declared in main, which invokes member function runS imulat i on.

We also choose to inc lude a parameter of type int i n the runS imu l a t i on declara

t ion . The Bui lding object runs the elevator s imulation for the number of seconds speci

fied by this parameter. The table i n Fig . 6 .26 indicates that c lass Bu i l ding needs handles

to its composi te objects. We cannot implement these handles at th is point , because we have

not discussed composit ion . Therefore, we delay the implementation of the component

objects of class Bu i l ding until Chapter 7 (see the comments i n l i nes 1 4- 1 8 in Fig. 6 . 32) .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8

I I Fig . 6 . 3 2 : bui lding . h
I I Bui lding c l a s s de f inition .
#i fnde f BUILDING_H
#de f ine BUILDING_H

c l a s s Bui lding

pub l i c :
Bui lding () ;
- Bu i l ding () ;
void runS imulat ion (int) ;

private :

I I constructor
I I de structor
I I contro l s s imulat ion

I I In
/ I

Chapter 7 , we show how to inc lude :
one obj ect of class Clock

I I
I I
I I

one obj ect of class Scheduler
one obj ect of class Elevator
two obj ects of class Floor

Fig. 6.32 Bu i lding class header file , (Part 1 of 2 ,)

Chapter 6

1 9
20 } ; I I end c l a s s Bui l ding
2 1
22 #endi f I I BUILDING_H

Classes and Data Abstraction

Fig. 6.32 Bu i ld i ng class header fi le . (Part 2 of 2.)

457

Figure 6 .33 l i sts the header fi le for c lass E l evatorBu t t on. We declare the

pre s s ed attribute (l i ne 1 8) , the pre s s But ton (l ine 1 4) and r e s e t Bu t t on (l i ne 1 5)

member functions (from the class diagram i n Fig. 6 .25) and the constructor and destructor

(l i nes 1 1 - 1 2) . Figure 6.26 states that class E l evatorBut t on needs a handle to the ele

vator. In l i ne 2 1 , we include th is handle (notice that we use a reference to implement the

handle) . In Chapter 7 , we d i scuss how to send messages to the e levator using this reference.

A reference must be i n i t ial ized when it i s declared, but we are not al lowed to assign a

value to c lass data member in the header fi le . Therefore, a reference must be in i tia l ized i n the

constructor; we inc lude an E l evator reference as a parameter to the constructor in l ine 1 1 .

Line 6 i s a fo rward declaration of class E l evator. The forward declarat ion a l lows

us to declare a reference to an object of c lass E l evat or without needing to inc lude the

header fi le for c lass E l evator in the header fi le for c lass E l evatorBu t t on.
4

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25

I I Fig . 6 . 3 3 : elevatorButton . h
I I ElevatorButton c l a s s de f init ion .
i fndef ELEVATORBUTTON_H
#de f ine ELEVATORBUTTON_H

c l a s s E l evator ; I I forward dec larat i on

c l a s s E levatorButton {

pub l i c :
ElevatorButton (Elevator &) ;
-ElevatorButton () ;

void pre s s Button () ;
void resetButton () ;

privat e :
bool pre s sed;

I I const ructor
I I de structor

I I pres s the but t on
I I reset the but ton

I I state of but ton

I I re ference to elevator containing thi s button
Elevator &elevatorRe f ;

} ; I I end c l a s s E levatorButton

#endi f I I ELEVATORBUTTON_H

Fig. 6.33 E l evatorButton class header file .

4. U s i ng the forward dec larat ion (w here poss ib le) ins tead of i n c l uding the f u l l header fi l e he lps avoid
a preprocessor problem ca l led a circular include. We discuss the c i rc u lar i n c l ude problem i n more
deta i l i n Chapter 7 .

458 Classes and Data Abstraction Chapter 6

Figure 6 .34 l i sts the header fi le for c lass Fl oorButton. Thi s header fi l e i s ident ical

to the header fi le for c lass E l evatorButton, except that l i ne 1 8 declares a private

data member f l oorNumber of type int o Objects of c lass Fl oorBu t t on need to know

to which floor they belong for s imulator-output purposes. The floor number i s declared as

a constructor parameter for i n i t ia l ization purposes (l ine 1 1) .

Figure 6 .35 l i sts the header fi le for c lass Schedu l e r . Lines 25-26 declare c lass

S chedu l e r ' s private data members, which correspond to the attributes we identified

(F ig . 6 .25) . I n l i ne 1 3 , we dec lare the pub l i c member function proc e s sTirne, which

corresponds to the operation we identified i n Section 4. 1 0 .

I I Fig . 6 . 3 4 : f loorButton . h
I I FloorButton c l a s s de finition .
i fnde f FLOORBUTTON_H
#de f ine FLOORBUTTON_H

1
2
3
4
5
6
7
8
9

c l a s s Elevator ; I I forward dec larat ion

c l a s s F loorButton

public :
FloorButton (int , Elevator &) ;

-FloorButton () ;

void pres sButton () ; / I pre s s the
void resetButton () ; / I reset the

private :
int f l oorNUJnbe r ; / I button ' s

I I constructor
I I des t ructor

button
button

f l oor number

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27

bool pre s sed ; / I button state

I I re ference to elevator used to not i fy summon
I I e l evator to f loor
E levator &elevatorRe f ;

} ; I I end c la s s FloorButton

#endi f I I FLOORBUTTON_H

Fig. 6.34 F l oorButton class header f i le .

1 I I Fig . 6 . 3 5 : scheduler . h
2 I I Scheduler c l a s s de f init ion .
3 # i fnde f SCHEDULER_H
4 #de f ine SCHEDULER_H
5
6 c la s s Floor ;
7
8 c l a s s Scheduler
9

I I forward dec larat ion

Fig. 6.35 Schedu l er class header f i le. (Part 1 of 2 .)

Chapter 6

1 0 publ i c :
1 1 Scheduler (Floor & , Floor &) ;
1 2 -Scheduler () ;
1 3 void proce s sTime (int) ;

1 4
1 5 private :
1 6 I I s chedu l e arrival to a f l oor
1 7 void scheduleTime (Floor &) ;

1 8
1 9 I I delay arrival to a floor
20 void delayTime (Floor &) ;
2 1
22 Floor & f loorlRe f ;
23 Floor & f loor2Re f ;

24
25 int f loorlArrivalTime ;
26 int f l oor2ArrivalTime ;

27
28 } ; I I end c l a s s Scheduler
29
30 #endi f I I SCHEDULER_H

Classes and Data Abstraction

I I const ructor
I I des t ructor
I I set scheduler ' s t ime

Fig. 6.35 Schedu l er c lass header f i le . (Part 2 of 2 .)

459

Lines 1 7 and 20 declare the functions we identified in the sequence diagram of

Fig . 4.27 . Each of these functions takes as a parameter a reference to an object of class

Fl oor. Note that we did not l i st these functions as operat ions (i . e . , pub l i c member func

tions) , because cl ient objects do not i nvoke these methods. Instead, only c lass S chedu l e r

uses these methods to perform i t s own internal act ions . Therefore, we p lace these methods

in the private section of the class declarat ion.

Lines 22-23 declare the handles identified i n Fig . 6 .26 . Again , we i mplement each

handle as a reference to an object of c lass Fl oor. Class Schedu l e r needs these handles

for sending the i sOccup i ed message to the two floors in the s imulation (see d iagram in

Fig . 4. 27) . L ine 6 makes a forward declaration of c lass F l oor so that we may dec lare the

references.

Figure 6.36 contains the header fi le for c lass F l oor. We declare the pub l i c member

function e l evatorArr ived (line 2 1) , function i sOccup i e d (l i ne 1 4) and function

pers onArrive s (l ine 1 8) from Fig. 6.25. We also declare the pub l i c member func

tion e l evatorLeaving in l i ne 24. We incl ude th i s member function so that the e levator

can notify the floor when the elevator prepares to leave. The elevator i nvokes the e l eva

torLeaving operation, and the floor responds by turn ing off i ts l ight .

1 I I Fig . 7 . 3 0 : f loor . h
2 I I Floor c l a s s de f init ion .
3 # i fnde f FLOOR_H
4 #de f ine FLOOR_H
5
6 class E l evator ; I I forward dec l arat ion
7 class Person ; I I forward dec larat ion

Fig. 6.36 Floor class header f i le . (Part 1 of 2 .)

460

8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37

Classes and Data Abstraction

c l a s s Floor {

publ i c :
Floor (int , E levator &) ; I I

- Floor () ; I I
const ructor
destructor

Chapter 6

bool i sOccupied () ;
int getNumber () ;

1 /

I I

return t rue i f f loor occupied
return f l oor ' s number

I I pass a handle to new person coming on f loor
void personArrives () ;

I I not i fy f loor that elevator has arrived
void e levatorArrived () ;

I I not i fy f l oor that elevator i s leaving
void e levatorLeaving () ;

I I dec larat ion of FloorButton component (see Chapter 7)

private :
int f l oorNumber ;
E l evator &elevatorRe f ;
bool occupied;

II the floor ' s number
I I reference to elevator
I I true if person is on f l oor

I I dec l arat ion o f Light component (see Chapter 7)

} ; I I end c la s s Floor

#endi f I I FLOOR_H

Fig. 6.36 Floor class header fi le . (Part 2 of 2 .)

I n l i ne 29, we i nc lude a private f l oorNumber data member i n the class-we

inc lude this value for output purposes, j ust as we did with the f l oorNumber data member

of c lass FloorButton. We i nc lude a parameter of type int i n the constructor declara

t ion (l ine 1 2) , so the constructor can in i t ial i ze that data member. We do not need to declare

the capac i t y attribute; i nstead, we wri te our code to ensure that only one person may be

on a floor at a t ime. We also declare the handle to class E l evator (l ine 30) identified i n

F ig . 6 .26. We defer declarat ion of the component members of c lass Floor (see l i nes 26

and 33) unt i l Chapter 7 .

W e l i st the header fi le for c lass Elevator in Fig. 6 .37 . I n the pub l i c section o f the

header fi le , we declare the swmnonE levator (l ine 1 3) , prepareToLeave (l ine 1 4)

and proc e s sTime (l i ne 1 5) operations l i sted in Fig . 6 .25 . To different iate between

people who wai t on the floor and people who ride in the elevator, we rename the l ast two

operations l i sted under class E l evator. We cal l these operations pa s s engerEnt e r s

(l i ne 1 6) and pa s s engerExi t s (l ine 1 7) , and we declare them i n the pub l i c section

of the header fi l e . We also declare a reference to each of the two floors (l ines 27-28) ; the

constructor (l ine I I) i n i tia l izes these references.

I n the private section of the header fi le, we declare the movi ng, direc t i on,

current Fl oor and arriva l Time attributes (l ines 22-25) from Fig. 6 .25 . We do not

Chapter 6

I I Fig . 7 . 2 8 : elevator . h
I I Elevator c l a s s de f init ion .
i fnde f ELEVATOR_H
#de f ine ELEVATOR_H

Classes and Data Abstraction

1
2
3
4
5
6
7
8
9

c la s s F loor ; I I forward dec larat ion

c l a s s El evator

pub l i c :
Elevator (Floor & , Floor &) ;
-Elevator () ;

I I constructor
II destructor

46 1

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35

void summonEl evator (int) ;
void prepareToLeave (bool) ;
void proce s sTime (int) ;
void pas sengerEnters () ;
void pas sengerExit s () ;

I I reque st to servic e f loor
I I prepare to l e ave
I I give t ime to e l evator
I I board a pas senger
I I exit a passenger

I I dec l arat ion of E levatorButton component (see Chapter 7)

private :
bool moving ;
int direct ion ;
int currentFloor ;
int arrival Time ;

Floor & f loorlRe f ;
Floor & f loor2Re f ;

I I
I I
I I
I I

I I
I I

e l evator state
current direct ion
current locat ion
t ime to arr ive at a

re f erence to f l oorl
re ference to f l oor2

I I dec l arat ion o f Door component (see Chapter 7)
I I dec larat ion of Bel l component (see Chapter 7)

} ; I I end c l a s s E l evator

#endi f I I ELEVATOR_H

Fig. 6.37 E l evator class header f i le .

f l oor

need to declare the c apac ity attribute; i nstead, we write our code to ensure that only one

person may be ins ide the elevator at a t ime.

Conclusion

In the next "Think ing About Objects" section (Section 7 . 1 1) , we present the ful l C++ code

for our e levator s imu lation . We use the concepts presented in the next chapter to i mplement

composite rel ationships , dynamic creation of objects of class Per son and s t a t i c and

const data members and functions . In Section 9 . 1 0, we use inheritance to further improve

our object-oriented elevator s imulator design and implementat ion .

SUMMARY

• Structures are aggregate data types b u i l t u s i n g data o f other types.

• Keyword struct i ntroduces a structure defin i t ion . The body of a structure i s d e l i neated by brac

es ({ and }) . Every structure defi n i t ion must end with a semicolon .

462 Classes and Data Abstraction Chapter 6

• A structure tag name can be u sed to dec lare variables of a structure type.

• Structure defi n i t ions do not reserve space in memory ; they create new data types that are used to

dec lare vari ables .

• Members of a structure or a c l ass are accessed us ing the member access operators-the dot oper

ator (.) and the arrow operator (- » . The dot operator accesses a structure member via the object ' s

variable name o r a reference t o the object. The arrow operator accesses a structure member v i a a

poi nter to the object .

• Drawbacks to creati ng new data types with C - l i ke structs are the poss i b i l i ty of having u n i n i

t ia l ized data; improper i n i t ia l izat ion; a l l programs u s i n g a s t ruct m u s t be changed if t h e

struct i mplementat ion changes and no protection i s prov ided to ensure that data are kept i n a

consi stent state with proper data values .

• C l asses enable the programmer to model objects with attributes and behav iors. C l ass types can be

defi ned i n C++ u s i ng the keywords class and struct, but keyword c l a s s i s preferred.

• The class name can be u sed as a type name to decl are objects of that c lass .

• C l ass defi n i t ions begin with the keyword clas s . The body of the c l ass defi n i t ion is de l i neated

with braces ({ and }) . C l ass defi n i t ions term inate with a semicolon.

• Any data me mber or member function declared after public i n a c l ass i s access ible to any fu nc

t ion with access to an object of the class.

• Any data member or member function declared after pri vate i s access ib le only to friends and

other members of the same c l ass .

• Member access spec ifiers a lways end with a colon (:) and can appear mult ip le l i mes and i n any

order i n a c l ass defi n i t ion .

• The i mplementation of a c l ass should be h idden from its c l ients .

• A constructor i s a specia l member function with the same name as the c l ass and no return data type;

i t i s used to i n i t ia l i ze the members of objects of that c l ass . The constructor i s cal led i mp l i c i t l y when

an object of that c lass i s i n stanti ated.

• The function with the same name as the c lass , but preceded wi th a t i lde character (-) i s cal led a

destructor.

• The set of public member functions of a c lass is cal led the class ' s interface or public i nterface .

• W h e n a member function i s defi ned outside t h e c lass defi n i t ion , t h e funct ion n a m e must be pre

ceded by the c lass name and the binary scope resol ution operator (: :) .

• Member fu nctions defi ned u s i ng the scope-resolut ion operator outs ide a c l ass defi n i tion are w i t h i n

that c las s ' s scope.

• Me mber fu nctions defi ned in a c l ass defin i t ion are i mpl ic i t ly decl ared inl ine. The compi ler re

serves the r ight not to inline any function.

• Cal l i n g member functions i s more conc ise than cal l i ng fu nctions i n procedural programming be

cause most data u sed by the member function i s d irectly access ib le i n the object .

• Within a c l ass ' s scope, c lass members may be referenced s i mply by their names. Outs ide a class ' s

scope, c lass members are referenced through either a n object name, a reference t o a n object o r a

pointer to an object .

• Member select ion operators . and - > are used to access class members .

• Class defi n i t ions are normal ly placed in header fi les and member-funct ion defi n i t ions are norm a l l y

p laced i n source-code fi les o f t h e same base name.

• The defaul t access mode for c lasses i s private so that a l l members after the class header and

before the first member access specifier are pri vat e.

Chapter 6 Classes and Data Abstraction 463

• A class ' s pub l i c members present a view of the services the c l ass provides to the c lass ' s c l ients .

• Access to a c l ass ' s pri vate data can be carefu l l y control led v i a member funct ions cal led access

funct ions. I f a c l ass wants to al low c l ients to read pri vate data, the c lass can provide a get func

t ion. To enable c l ients to modify private data, the class can provide a set funct ion .

• Data members of a c lass are normal ly made pri vat e and member funct ions of a c lass are nor

mal ly made pub l i c . Some member functions may be pri vat e and serve as u t i l i ty functions to

the other funct ions of the c lass .

• Data members cannot be in i t ia l ized i n a class defi n i t ion. They must be i n i t i a l i zed i n a constructor,

or their values may be set after their object i s created.

• Constructors can be overloaded.

• Once a c lass object is properly i n it ia l ized, all member functions that m an i p u l ate the object should

ensure that the object re mains in a consi stent state .

• When an object of a c lass is declared, i n i t i a l i zers can be provided. These i n i t ia l i zers are passed to

the class ' s constructor.

• Constructors can spec ify default arguments .

• If no constructor i s defi ned for a c lass, the compiler creates a default constructor. A default construc

tor supplied by the compi ler does not perform any in i tial ization of fundamental-type variables ; so

when an object of the class i s created, the object i s not guaranteed to be in a consistent state.

• The destructor of an automatic object i s called when the obj ect goes out of scope (i . e . , execution

leaves the block i n which the object was defined) . The destructor itself does not actual ly destroy the

object, but i t does perform termi nation housekeeping before the system recla ims the obj ect ' s storage .

• Destructors do not recei ve parameters and do not return values . A c l ass may have only one destruc

tor. (Destructors cannot be overloaded.)

• The assignment operator (=) i s used t o assign a n object t o another object o f the same type. Such

assignment i s normal l y performed by default memberw i se ass ignment . Memberw ise ass ignment

i s not ideal for a l l c l asses.

• For each c l ass that does not defi ne i ts own copy constructor, the compi ler provides a defaul t copy

constructor that copies each member of the origi nal object i nto the corresponding member of the

new object .

TERMINOLOG Y

abstract data type (A DT)

access function

arrow member-select ion operator (- »
attribute

behav ior

binary scope reso l u t i on operator (: :)

c l a s s

class defi ni t ion

class member-select ion operator (.)

c lass scope

cI ient of a class

consistent state for a data member

constructor

copy constructor

data member

data type

defaul t constructor

destructor

dot member-selection operator (.)

encapsu lat ion

extensibi l i ty

fi le scope

get function

global obj ect

header fi l e

helper fu nction

implementation of a c lass

i nformation h id ing

i n i t ia l ize a class object

inl ine a member funct ion

instance of a class

i nstantiate an obj ect of a c l ass

464 Classes and Data Abstraction

i nterface to a c lass

member access control

member access specifiers

member function

proxy c lass

public

public i nterface of a class

query function

Chapter 6

member-selection operators (. and - »
memberwise assignment

rapid appl ications development (RAD)

reusable code

message scope resolut ion operator (: :)

self-referential structure

services of a class

nonmember function

non-stat ic local obj ect

obj ect set function

obj ect-oriented design (OOD)

obj ect-oriented programming (OOP)

predicate function

software reusab i l i ty

source-code fi l e

s t a t i c local object

principle of least priv i lege

private

structure

t i lde (-) in destructor name

procedural programming

programmer-defined type

protected

u nary scope resol ut ion operator (: :)

user-defined type

ut i l i ty function

Terminology for Optional "Thinking About Objects " Section
"+" symbol for public v i s i b i l i ty public v i s i b i l ity

"-" symbol for private v i s i b i l ity private v i s i b i l ity

c i rcu l ar i n c lude problem references vs . poi nters

forward declaration v is ib i l ity

handle

SELF-REVIEW EXERCISES

6. 1 Fi l l in the b lanks in each of the fol lowing :

a) Keyword i ntroduces a structure defin i t ion .

b) Class members are accessed v ia the operator i n conj unction with the name

of an obj ect (or reference to an object) of the c lass or via the operator in con-

j unction with a pointer to an object of the class .

c) C l ass members spec ified as are accessible on ly to member functions of the

class and friends of the c l ass .

d) A is a special member function used to in i t ia l ize the data members of a c lass .

e) The defaul t access for members of a c l ass i s ____ _

f) A function is used to assign values to pri vate data members of a c lass .

g) can be used to assign an object of a c l ass to another object of the same c lass .

h) Member fu nctions of a c lass are normal ly made and data members of a c lass

are normal ly made ____ _

i) A fu nction i s used to retrieve values of pri vate data of a c l ass .

j) The set of publ ic member fu nctions of a c l ass i s referred to as the c lass ' s ____ _

k) A class implementation is said to be hidden from its c l ients or ____ _

I) The keywords and can be used to i ntroduce a c lass defi n i t ion .

Ill) Class members spec ified as are accessible anywhere an object of the c lass i s

i n scope.

6.2 Find the error(s) i n each of the fol lowing and explain how to correct i t :

a) A s s u m e t h e fol lowing prototype i s declared in c l ass Time :

void -Time { int) ;

Chapter 6 Classes and Data Abstraction

b) The fol lowing is a part ia l defin i t ion of class Time :

c l a s s Time {

pub l i c :
I I func t i on prototypes

private :
int hour 0 ;
int minute 0 ;
int second 0 ;

} ; I I end c l a s s Time

c) Assume the fol lowing prototype is declared in c lass Employee :

i n t Employee (const char * , const char *) ;

ANS WERS TO SELF-REVIEW EXERCISES

465

6. 1 a) struct. b) dot (.) , arrow (- » . c) private. d) constructor. e) private. f) sel.

g) Defaul t memberwise assignment (performed by the assignment operator) . h) pub l i c , pri

vat e . i) get. j) interface. k) encapsulated. I) class , struct . m) pub l i c .

6.2 a) Error: Destructors are not a l lowed t o return values or take arguments .

Correct ion : Remove the return type void and the parameter int from the declarat ion .

b) Error: Members cannot be expl ic i t ly i n i t ia l ized i n the class defi n i t i o n .

Correct ion : Remove t h e e x p l i c i t i n i t ia l izat ion from t h e c l a s s defin i t ion a n d i n i t i a l i ze the

data members i n a constructor.

c) Error: Constructors are not al lowed to return val ues .

Correct i o n : Remove the return type int from the declarat ion .

EXERCISES

6.3 What i s the purpose of the scope resolut ion operator?

6.4 Compare and con trast the not ions of struct and c l a s s i n C++.

6.5 Provide a constructor that i s capable of us ing the current t ime from the t ime () function-

decl ared i n the C++ Standard Library header < c t ime >-to i n i t ia l ize an object of the Time c l ass .

6.6 Create a c lass cal led Complex for performing ari thmetic wi th complex n u mbers. Write a

program to test your c lass .

Complex numbers have the form

real Part + irnaginaryPart * i

where i i s

U s e double vari ables t o represent t h e private data of t h e c l a s s . Prov ide a constructor that

enables an object of this c lass to be in i t ial ized when i t i s declared. The constructor should contain

default values i n case no i n i t i a l i zers are provided. Provide pub l i c membe r funct ions for each of

the fol lowi n g :

a) Adding two Complex nu mbers : T h e real parts are added together a n d the imaginary

parts are added together.

466 Classes and Data Abstraction Chapter 6

b) S ubtract ing two Complex numbers : The real part of the right operand i s subtracted from

the real part of the left operand, and the imaginary part of the right operand is subtracted

from the i maginary part of the left operand.

c) Print ing Complex nu mbers i n the form (a , b) , where a i s the real part and b i s the

i maginary part .

6.7 Create a c l ass cal led Rat ional for performing ari thmetic w i t h fract ions . Write a program

to test your c lass .

Use i n teger vari ables to represent the private data of the c lass-the numerator and the

denominator. Provide a constructor that enables an object of th i s c lass to be i n i t i a l i zed when i t i s

dec lared. The constructor should contai n default values in case no i n i t ia l izers are provi ded and

should store the fract ion i n reduced form. For example, the fract ion

2

4

would be stored in the object as I in the numerator and 2 in the denominator. Prov ide pub

l i c member funct ions that perform each of the fol l owing tasks :

a) Adding two Rat ional numbers . The resu l t should be stored i n reduced form.

b) S ubtract ing two Rat ional nu mbers. The resu l t should be stored i n reduced form.

c) M Ul t ip ly ing two Rat ional numbers. The resu l t should be stored in reduced form.

d) D i v i d i ng two Rat ional nu mbers. The result should be stored in reduced form.

e) Pri nt ing Rat ional numbers i n the form alb, where a i s the numerator and b i s the de

nominator.

f) Pri nt ing Rat ional numbers in float ing-point format.

6.8 Modify the Time c lass of Fig. 6. 1 8 to incl ude a tick member function that i ncrements the

t i me stored i n a Time object by one second. The Time object should always remain i n a consi stent

state . Write a program that tests the t ick member function i n a loop that pri nts the t ime in standard

format during each i terat ion of the loop to i l l ustrate that the t ick member function works correct l y .

Be sure to t e s t t h e fol lowing cases :

a) I ncrementing i nto the next minute .

b) I ncrementing i nto the next hour.

c) I ncrement ing into the next day (i .e . , I I : 59 : 59 PM to 1 2 :00:00 A M) .

6.9 Modify the Date class of Fig. 6 .24 to perform error checking on the in i t ia l izer values for

data members month, day and year. Also, provide a member fu nction next Day to i ncrement the

day by one. The Date object should always remain i n a consistent state . Write a program that tests

function next Day i n a loop that prints the date during each iteration to i l l ustrate that next Day

works correct ly . Be sure to test the fol lowing cases :

a) I ncrementing i nto the next month .

b) I ncrementing i nto the next year.

6. 1 0 Combine the modified Time c lass of Exerc ise 6 . 8 and the modified Date c l ass of

Exerc i se 6.9 i nto one c lass called DateAndTime. (I n Chapter 9, we w i l l discuss i nheritance, which

w i l l enable u s to accompl ish th is task qu ick ly without modifying the ex is t ing c l ass defi n i t ions .) Mod

ify the t ick function to cal l the next Day fu nction if the t ime i ncrements i nto the next day . Modify

function print Standard and printUniversal to output the date and t ime . Write a program

to test the new c l ass DateAndTime. Spec ifical ly , test incrementing the time in to the next day.

6. 1 1 Modify the set fu nctions i n the program of Fig. 6 . 1 8 to return appropriate error values if an

attempt i s made to set a data member of an object of class Time to an inval id value. Write a program

that tests your new version of class Time. Di splay error messages when set methods return error va l

ues .

Chapter 6 Classes and Data Abstraction 467

6. 1 2 Create a c lass Rec tangle with attributes length and width, each of w h i c h defaults to

1 . Provide member functions that calculate the perimeter and the area of the rectangle . A l so,

provide set and get functions for the length and width attributes . The set funct ions should verify

that length and width are each float i ng-point numbers l arger than 0 .0 and less than 20.0.

6. 1 3 Create a more sophi st icated Rectangle c l ass than the one you created in Exercise 6 . 1 2 .

Thi s c lass stores on ly the Cartes ian coordi nates of the four corners of the rectangle . The constructor

cal l s a set function that accepts four sets of coordinates and verifies that each of these is in the first

q uadrant with no s i ng le x or y coordi nate larger than 20.0. The set function also verifies that the sup

pl ied coordinates do, i n fact , specify a rectangle . Provide member functions that ca lcu late the

length, width, perimeter and area. The length i s the l arger of the two d imens ions . Inc l ude

a predicate function square that determines whether the rectangle i s a square.

6. 1 4 Modify c l ass Rectangle from Exerc i se 6 . 1 3 to i n c lude a draw function that d i splays the

rectangle i n s ide a 25-by-25 box enclosing the portion of the first quadrant i n which the rectangle re

sides. Incl ude a set F i l lCharacter fu nction to specify the character out of which the body of the

rectangle w i l l be drawn . Inc l ude a setPerimeterCharacter function to speci fy the character

that w i l l be u sed to draw the border of the rectangle . If you fee l ambit ious, you might i n c l ude func

t ions to scale the s i ze of the rectangle, rotate i t , and move i t around w i t h i n the des ignated port ion of

the first quadrant.

6. 1 5 Create a c lass Huge lnteger that uses a 40-element array of digits to store i n tegers as l arge

as 40 digits eac h . Provide member functions input, output, add and substrac t . For compar

ing Huge lnteger objects, provide functions i sEqualTo, i sNotEqualTo, i sGreater

Than, i sLe s s Than, isGreaterThanOrEqualTo and i sLe ssThanOrEqualTo--each of

these i s a "predicate" function that s i mply returns true if the re lationship holds between the two

huge i n tegers and returns false if the re l at ionship does not hold . Also, provide a predicate function

i s zero. If you fee l ambit ious, provide member fu nctions mult iply, divide and modulus.

6. 1 6 Create a c lass TicTacToe that wi l l enable you to wri te a complete program to p l ay the

game of t ic-tac-toe . The c l ass contai ns as privat e data a 3-by-3 double-subscripted array of i nte

gers . The constructor should i n it ia l ize the empty board to a l l zeros. A l l ow two h u man p l ayers. Wher

ever the first p layer moves, p lace a I in the spec ified square. P l ace a 2 wherever the second p l ayer

moves. Each move must be to an e mpty square . After each move, determine whether the game has

been won or i s a draw . If you fee l ambitious, modify your program so that the computer makes the

moves for one of the p l ayers. A l so, a l low the p layer to specify whether he or she wants to go first or

second. If you fee l exceptional l y ambit ious, develop a program that w i l l p lay three-di mensional t ic

tac-toe on a 4-by-4-by-4 board. (Caution : This i s an extremely chal lenging project that coul d take

many weeks of effort !)

7
Classes : Part II

Objectives
• To be able to specify const (constant) objects and

c on s t member functions .
• To understand the purpose of fri end functions and

fri end classes .
• To understand the use of the thi s pointer.
• To be able to create and destroy objects dynamically.
• To understand how to use stat i c data members and

member functions.
• To understand the concept of a container class .
• To understand the notion of iterator classes that walk

through the elements of container classes.
But what, to serve our private ends,

Forbids the cheating of our friends ?

Charles Churchi l l

Instead of this absurd division into sexes they ought to class

people as static and dynamic.

Evelyn Waugh

This above all: to thine own self be true.

Wil l iam Shakespeare

Have no friends not equal to yourself.

Confucius

Chapter 7

Outline

7 . 1 Introduction

Classes: Part I I

7 . 2 const (Constant) Objects and cons t Member Functions

7.3 Composition: Objects as Members of Classes

7.4 friend Functions and fri end Classes

7.5 Using the thi s Pointer

469

7.6 Dynamic Memory Management with Operators new and de lete

7 .7 s t at ic Class Members

7.8 Data Abstraction and Information Hiding

7.8. 1 Example: Array Abstract Data Type

7.8.2 Example: String Abstract Data Type

7.8.3 Example: Queue Abstract Data Type

7.9 Container Classes and Iterators

7 . 1 0 Proxy Classes

7. 1 1 (Optional Case Study) Thinking About Objects: Programming the

Classes for the Elevator Simulator

Sum11Ulry · Terminology · Self-Review Exercises · Answers to Self-Review Exercises · Exercises

7 . 1 Introduction

I n this chapter, we continue our study of classes and data abstraction . We discuss many more

advanced topics and l ay the groundwork for the discussion of c lasses and operator overload

ing in Chapter 8. The discussion in Chapter 6-Chapter 8 encourages programmers to use ob

jects, what we call object-based programming (OBP) . Then, Chapter 9-Chapter 1 0 introduce

inheritance and polymorphism-the techniques of truly object-oriented programming

(OOP) . I n this chapter, we use the pointer-based strings we introduced in Chapter 5 to help

the reader master pointers and prepare for the professional world in which the reader wil l see

a great deal of C legacy code implemented over the last two decades . In Chapter 8 , we i ntro

duce strings as ful l -fledged class objects. Chapter 1 5 explains strings as ful l -fledged class ob

jects in detai l . Thus, the reader wi l l become fami l iar with the two most prevalent methods of

creating and manipUlating strings in C++.

7.2 c onst (Constant) Objects and c onst Member Functions

We have emphasized the principle of least privilege as one of the most fundamental prin

ciples of good software engineeri ng. Let LI S see how this pri nciple appl ies to objects .

Some objects need to be modifiable and some do not. The programmer may use key

word con s t to specify that an object i s not modifiable and that any attempt to modify the

object should resul t in a compiler error. The statement

const Time noon (1 2 , 0 , 0) i

declares a const object noon of c lass Time and in i t ia l izes i t to 1 2 noon.

470 Classes: Part I I Chapter 7

�software Engineering Observation 7 . 1

Declaring a n object a s const helps enforce the principle of least privilege. A ttempts to

modify the object are caught at compile time rather than causing execution-time errors.

rlrl Software Engineering Observation 7.2

t:::t:!l Using const is crucial to proper class design. program design and coding.

Performance Tip 7 . 1

Declaring variables and objects const is not only a n effective software engineering prac

tice. it can improve performance as well. Today 's sophisticated optimizing compilers can

perform certain optimizations on constants that cannot be performed on variables.

c++ compilers disallow member function cal l s for const objects unless the member

functions themselves are also declared cons t . This i s true even for get member functions

that do not modify the object . In addition, the compiler does not allow member functions

declared const to modify the object.

A function i s specified as const both i n i ts prototype and in i ts defin i tion by i nserting

the keyword const after the function ' s parameter l i s t and, in the case of the function def

i n i tion , before the left brace that begins the function body .

Com mon Programming Error 7 . 1

Defining as const a member function that modifies a data member of a n object is a com

piler error.

Com mon Programming Error 7 . 2

Defining a s const a member function that calls a non-const member function of the class

on the same instance of the class is a compiler error.

Com mon Programming Error 7 . 3

Invoking a non-const member function o n a const object i s a compiler error.

Software Engineering Observation 7.3

A const member function can b e overloaded with a non-const version. The choice of

which overloaded member function to use is made by the compiler based on whether the ob

ject is const.

An i nteresting problem arises for constructors and destructors, each of which typical ly

modifies objects . The c o n s t declaration i s not al lowed for constructors and destructors.

A constructor must be allowed to modify an object so that the object can be ini t ia l ized prop

erly . A destructor must be able to perform its termination housekeeping chores before an

object ' s memory is reclaimed by the system.

Com mon Programming Error 7 .4

Attempting to declare a constructor or destructor const is a syntax error.

Defining and Using const Member Functions

The program of Fig . 7 . 1 -Fig . 7 . 3 modifies class Time of Fig. 6 . 1 8-Fig. 6 . 1 9 by making i ts

get functions and printUniversal function cons t . I n the header file t ime S . h

Chapter 7 Classes: Part I I 47 1

(Fig . 7 . 1) , l i nes 1 9-2 1 and 24 now i nclude keyword con s t after each function ' s parameter

l i st . The corresponding defi nit ion of each function in Fig . 7 . 2 (l ines 5 5 , 62, 69 and 76, re

spectively) also specifies keyword const after each function ' s parameter l ist .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34

/ / Fig . 7 . 1 : t ime 5 . h
/ / De f ini t i on o f c l a s s Time .
/ / Member funct ions def ined in t ime 5 . cpp .
i fnde f T IME 5_H
#def ine T IME 5_H

c l a s s Time

publ i c :
T ime (int = 0 , int 0 , int

/ I set funct ions
void setTime (int , int , int

void setHour (int) ;
void setMinute (int) ;
void set Second (int) ;

/ / get functions (norma l ly
int getHour () const ;
int getMinute () const ;
int get Second () const ;

0) ; / / de f ault const ructor

) ; / I set t ime
/ I set hour
/ I set minute
/ I set second

dec lared cons t)
/ 1 return hour
/ / return minute
/ 1 return second

/ / print funct ions (norma l ly dec l ared cons t)
void printUniversal () const ; / / print universal t ime
void print Standard () ; / / print standard t ime

private :
int hou r ; / I 0 - 2 3 (2 4 -hour c lock format)
int minut e ; / I 0 - 5 9
int second ; / I 0 - 5 9

} ; / / end c l a s s Time

#endi f

Fig. 7 . 1 T ime c lass definit ion with const member functions .

I I / Fig . 7 . 2 : t ime 5 . cpp
2 / / Member- funct ion de f init ions for class Time .
3 # inc lude < iostrearn>
4
5 us ing std : : cout ;
6
7 # inc lude < iornanip >
8

Fig. 7.2 T ime c lass member-function definit ions, including con s t member
functions . (Part 1 of 3 .)

472

9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60

Classes: Part I I

us ing std : : setf i l l ;
u s ing std : : setw;

I I inc lude def init ion of class Time from t imeS . h
inc lude " t ime S . h"

I I constructor funct ion to ini t i a l i z e private dat a ;
I I cal l s member func t ion setTime t o set vari able s ;
I I def ault values are 0 (see class def inition)
Time : : Time (int hour , int minute , int second }
{

setTime (hour , minute , second } ;

I I end Time constructor

I I set hour , minute and second values
void Time : : setTime (int hour, int minute , int second }

{
setHour (hour } ;
setMinute (minute } ;
setSecond (second } ;

I I end function setTime

I I set hour value
void Time : : setHour (int h

{
hour = (h >= 0 && h < 2 4

I I end funct i on setHour

I I set minute value
void Time : : setMinut e (int m

{
minute = (m >= 0 && m < 60

II end funct i on setMinute

I I set second value
void Time : : setSecond (int s

{
second = (s >= 0 && s < 60

} I I end func t ion setSecond

I I return hour value
int Time : : getHour (} const

{
return hour;

I I end funct ion getHour

? h 0 ;

? m 0 ;

? s 0 ;

Chapter 7

Fig. 7 . 2 T ime class member-function defin itions, including con s t member
functions. (Part 2 of 3 .)

Chapter 7 Classes: Part I I

6 1 I I return minute value
62 int Time : : getMinute () const
63 {
64 return minute ;
65
66 I I end func t ion getMinute
67
68 I I return second value
69 int Time : : getSecond () const
70 {
7 1 return second ;
7 2
73 } I I end funct ion getSecond
74
75 I I print Time in universal format
76 void Time : : printUniversal () const
77 {
78 cout « set f i l l (' 0 ') « setw (2) « hour « " : "
79 « setw (2) « minute « " : "
80 « setw (2) « second ;
8 1
82 } I I end funct ion printUniversal
83
84 I I print Time in standard format
85 void Time : : print Standard () I I note lack of const dec l arat ion
86 {
87 cout « ((hour - - ° II hour - - 1 2)
88 « .. : It « setf i 1 l (' 0 '

89 « II : II « setw (2) «
90 « (hour < 1 2 ? " AM"
9 1
92 I I end funct ion printStandard

) « setw (
second

" PM") ;

? 1 2 : hour % 1 2
2) « minute

Fig. 7.2 T ime class member-function defin it ions, inc lud ing const member
functions, (Part 3 of 3,)

473

Figure 7.3 i nstantiates two Time objects-non-const object wakeUp (l i ne 1 0) and

canst object noon (l i ne 1 1) . The program attempts to invoke non-canst member func

tions setHour (l i ne 1 6) and printStandard (l ine 23) on the canst object noon. I n

each case, the compiler generates a n error message . The program also i l l ustrates the three

other member-function-cal l combinations on objects-a non-canst member function on a

non-canst object (l i ne 1 4) , a canst member function on a non-canst object (l i ne 1 8) and

a canst member function on a canst object (l i nes 20-2 1) . The error messages generated

for non-canst member functions cal led on a canst object are shown in the output window.

1 II Fig . 7 . 3 : f ig 0 7_0 3 . cpp
2 I I Att empt ing to acc e s s a const obj ect with
3 I I non - const member funct ions .
4
5 I I inc lude Time c l a s s de f init ion from t ime S . h
6 # inc lude " t ime S . h "

Fig. 7.3 const objects and const member functions , (Part 1 of 2 ,)

474 Classes: Part I I

7
8 int main ()
9 {

1 0 Time wakeUp (6 , 4 5 , °) ;
1 1 const Time noon (1 2 , 0 , 0) ;
1 2

I I non- constant obj ec t
I I constant obj ect

Chapter 7

1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27

/ I OBJECT MEMBER FUNCTION
wakeUp . setHour (1 8) ; / I non- const non- const

noon . setHour (1 2) ; / I const non- const

wakeUp . getHour () ; / I non- const const

noon . getMinute () ; / I const const
noon . printuniversa1 () ; / I const const

noon . printStandard () ; / I const non - const

return 0 ;

/ I end main

d : \ cpphtp4_examples \ ch0 7 \ f ig0 7_0 1 \ f ig 0 7_0 1 . cpp (1 6) : error C2 662 :
' setBour ' : cannot convert ' thi s ' pointer f rom ' const c l a s s Time '
to ' c l a s s Time & '

Conversion loses qual i f iers
d : \ cpphtp4_example s \ ch0 7 \ f ig07_0 1 \ f ig07_0 1 . cpp (2 3) : error C 2 662 :

' printStandard ' : cannot convert ' this ' pointer f rom ' const c l a s s
Time ' to ' c l a s s Time & '

Conversion loses qual i f iers

Fig. 7 .3 con s t objects and const member functions . (Part 2 of 2 .)

Notice that even though a constructor must be a non-const member function

(Fig. 7 .2, l i nes 1 8-22) , i t can sti l l be used to in i t ia l ize a const object (Fig. 7 . 3 , l i ne 1 1) .

The defi ni t ion of the Time constructor (Fig . 7 .2 , l ines 1 8-22) shows that the Time con

structor cal l s another non-canst member function-setTime (l i nes 25-3 1)-to per

form the in i t ia l ization of a Time object. Invoking a non-cons t member function from the

constructor cal l as part of the i n i t ial i zation of a const object i s al lowed. The "canst ness"

of a c o n s t object i s enforced from the t ime the constructor completes in i t ia l ization of the

object until that object' s destructor is called.

Software Engineering Observation 7.4

A const object cannot be modified by assignment so it must be initialized. When a data

member of a class is declared const, a member i n i t i a l i zer must be used to provide the con

structor with the initial value of the data member for an object of the class.

Also notice that l ine 23 in Fig. 7 . 3 generates a compiler error even though member

function print S t andard of class Time does not modify the object on which i t i s

i nvoked. The fact that a function does not modify a n object i s not sufficient t o indicate a

const member function-the function must expl icit ly be declared cons t .

Chapter 7 Classes: Part I I 475

Initializing a const Data Member with a Member Initializer

Figure 7 .4 in troduces us ing member initializer syntax. Al l data members can be i ni t ia l ized

using member in i t ia l izer syntax, but const data members and data members that are ref

erences must be in i t ial ized us ing member in it ial izers. Later in th i s chapter, we wi l l see that

member objects must be i ni t ial i zed th i s way as wel l . In Chapter 9 when we study i nherit

ance, we wi l l see that base-c lass portions of derived classes also must be in i t ia l ized this way.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44

I I Fig . 7 . 4 : fig0 7_04 . cpp
I I Using a member ini t i a l i zer to init i a l i z e a
I I constant of a bui lt - in data type .
inc lude < iostream>

u s ing std : : cout ;
u s ing std : : endl ;

c l a s s Increment

publ ic :
Increment (int c = 0 , int i

void addIncrement ()

{
count + = increment ;

I I end func t i on addIncrement

1) ; I I de fault constructor

void print () const ; I I print s count and increment

private :
int count ;
const int increment ; I I const dat a member

}; I I end c l a s s Increment

I I const ructor
Increment : : Increment (int c, int i)

count (c) , I I init i a l i zer for non- const member
increment (i I I required ini t i a l i zer for const member

I I empty body

I I end Increment constructor

I I print count and increment value s
void Increment : : print () const
{

cout « " count = " « count

« " , increment = " « increment « endl ;

} I I end funct i on print

Fig. 7.4 Member in it ia l izer used to in itia l ize a constant of a bu i lt- in data type . (Part 1
of 2 .)

476 Classes: Part I I

45 int main ()
46 {
47 Increment value (1 0 , 5) ;
48
49 cout « " Be fore increment ing : " ;
50 value . print () ;
5 1
52 for (int j = 0 ; j < 3 ; j + +
53 value . addIncrement () ;
54 cout « "After increment " « j + 1 « " : " ;
55 value . print () ;
56
57
58 return 0 ;
59
60 I I end main

Before increment ing : count
After increment 1 : count
After increment 2 : count =

After increment 3 : count

= 1 0 , increment = 5
1 5 , increment 5
2 0 , increment = 5
2 5 , increment = 5

Chapter 7

Fig. 7.4 Member in it ia l izer used to in it ial ize a constant of a bui l t-i n data type. (Part 2
of 2 .)

The constructor defin i t ion (l ines 29-35) uses a member initializer list to i n i t ia l ize c lass

Increment ' s data members-non-const integer count and const in teger incre

ment . Member in i tial izers appear between a constructor' s parameter l i st and the left brace

that begins the constructor' s body . The member i n it ial i zer l i st is separated from the param

eter l i st wi th a colon (:) . Lines 30-3 1 show the member i n i t ia l i zer l i st . Each member in i

t ia l izer consi sts of the data member name fol lowed by parentheses contai n ing the

member' s i n i tial value. In this example, count i s in i t ial ized with the value of constructor

parameter c and increment i s i n it ial ized with the value of constructor parameter i. Note

that mult ip le member i n it ial i zers are separated by commas. A l so, note that the member in i

t ia l i zer l i st executes before the body of the constructor executes.

Figure 7.5 i l l ustrates the compiler errors for a program that attempts to in i t ia l ize

const data member increment with an ass ignment statement (l ine 32) in the Incre

ment constructor' s body rather than with a member in i t ia l izer. Note that l i ne 3 1 does not

generate an error message, because count i s not declared const-only const data

members must be ini t ia l i zed us ing member in i t ia l izers .

1 I I Fig . 7 . 5 : f ig07_0 5 . cpp
2 I I At tempt i ng to ini t i a l i z e a constant of
3 I I a bui l t - in data type with an ass ignment .
4 # inc lude < iostream>
5
6 u s ing std : : cout ;
7 us ing std : : endl ;

Fig. 7 .5 Erroneous attempt to in it ial ize a constant of a bu i lt-in data type by
assignment. (Part 1 of 3 .)

Chapter 7 Classes: Part I I 477

8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59

class Increment {

publ i c :
Increment (int c = 0 , int i

void addIncrement ()

{
count + = increment ;

} 1 / end funct i on addIncrement

1) ; I I de f ault const ructor

void print () const ; I I print s count and increment

private :
int count ;
const int increment ; I I const data member

} ; I I end c l a s s Increment

1 / const ructor
Increment : : Increment (int c, int i)

{ I I Constant member ' increment ' i s not init i a l i z ed
count = c ; I I a l lowed because count i s not constant
increment = i ; I I ERROR : Cannot modi fy a const obj ect

I I end Increment constructor

I I print count and increment values
void Increment : : print () const
{

cout « " count = " « count
« " , increment = " « increment « endl ;

} I I end funct i on print

int main ()

{
Increment value (1 0 , 5) ;

cout « " Before increment ing : " ;
value . print () ;

for (int j = 0 ; j < 3 ; j + + {
value . addIncrement () ;

}

cout « "After increment " « j + 1 « " : " ;
value . print () ;

return 0 ;

I I end main

Fig. 7.5 Erroneous attempt to in itia l ize a constant of a bu i lt- i n data type by
assignment. (Part 2 of 3 .)

478 Classes: Part I I Chapter 7

D : \ cpphtp4_examp le s \ ch0 7 \ Fig07_0 3 \ Fig07_0 3 . cpp (3 0) : error C2 7 5 8 :
' increment ' : must be init iali zed in constructor base /member
i ni t i a l i zer l i s t

D : \ cpphtp4_example s \ ch0 7 \ Fig07_0 3 \Fig07_0 3 . cpp (2 4)
see dec l arat ion of ' increment '

D : \ cpphtp4_example s \ ch0 7 \ Fig07_0 3 \ Fig07_0 3 . cpp (32) : error C2 1 66 :
l -value spec i f ie s const obj ect

Fig. 7.5 Erroneous attempt to in it ia l ize a constant of a bu i lt- i n data type by
assignment. (Part 3 of 3 .)

� Common Programming Error 7 .5

l£l Not providing a member initializer for a const data member is a syntax error.

Software Engineering Observation 7.5

Constant data members (const objects and const " variables ") a n d data members de

clared as references must be initialized with member initializer syntax; assignments in the

constructor body are not allowed.

Note that function print (l i nes 37-42) is declared cons t . It i s reasonable , yet

strange, to label this function const because a program probably wi l l never have a const

Inc rement object. However, i t i s possible that a program wi l l have a const reference

to an Inc rement object or a pointer to const that points to an Increment object. Typ

ical ly, thi s occurs when objects of class Increment are passed to functions or returned

from functions. In these cases, only the const member functions of class Inc rement

can be called through the reference or pointer.

Software Engineering Observation 7 .6

Declare as const all of a class 's member functions that do not modify the object in which

they operate. Occasionally, this will be an anomaly because you will have no intention of cre

ating const objects of that class or accessing objects of that class through const refer

ences or pointers to const. Declaring such member functions const does offer a benefit

though. If the member function inadvertently modifies the object, the compiler will issue an

error message.

Testing and Debugging Tip

Languages like C+ + are "moving targets " as they evolve. More keywords are likely to be

added to the language. A void using " loaded " words like "object " as identifiers. Even though

"object " is not currently a keyword in C+ +, it could become one; therefore,fulure compiling

with new compilers could break existing code.

7 . 3 Composition: Objects as Members of Classes

An AlarmC l ock object needs to know when it is supposed to sound i ts alarm, so why not

i nclude a Time object as a member of the AlarmC l ock class? Such a capabi l i ty i s cal led

composition. A class can have objects of other classes as members.

Software Engineering Observation 7 . 7
The most common form of software reusability is composit ion, i n which a class has objects

of other classes as members.

Chapter 7 Classes: Part I I 479

When an object is created, i ts constructor i s cal led automatical l y . Previous ly , we saw

how to pass arguments to the constructor of an object we created in ma in. Thi s section

shows how an object ' s constructor can pass arguments to member-object constructors,

which i s accompli shed via member in i t ia l izers . Member objects are constructed in the order

in which they are dec lared in a class defin it ion (not in the order they are l i sted in the con

structor' s member in i tial i zer l i st) and before their enclosing c lass objects (sometimes called

host objects) are constructed.

The program of Fig . 7 .6-Fig . 7 . 1 0 uses class Dat e (Fig. 7 .6-Fig . 7 . 7) and c lass

Emp l oye e (F ig . 7 . 8-Fig . 7 .9) to demonstrate objects as members of other objects . The

defin it ion of c lass Emp l oyee (Fig . 7 . 8) contains private data members f i r s t Name ,

l a s t Name , birthDat e and hi reDa t e . Members bi rthDate and hi reDate are

const objects of c lass Dat e, which contains privat e data members month, day and

year. The Emp l oyee constructor' s header (Fig . 7 .9, l i nes 1 7-20) spec ifies that the con

structor receives four parameters (fname , lname , dat eOfBi rth and dat eO f H i re) .

The first two parameters are used in the constructor' s body t o in i tia l ize the character arrays

f i r s t Name and l a s t Name . The last two parameters are passed v ia member i n i tia l izers

to the constructor for c lass Dat e . The colon (:) in the header separates the member i ni t ia l

izers from the parameter l i st . The member in i t ia l izers specify the Emp l oyee constructor

parameters being passed to the constructors of the member Dat e objects . Parameter

dat eOfBirth is passed to object bi rthDat e ' s constructor (Fig . 7 . 9 , l i ne 1 9) , and

parameter dat eOfHire is passed to object hi reDat e ' s constructor (F ig . 7 . 9 , l i ne 20) .

Again , member i nit ia l izers are separated b y commas. As you study class Dat e (Fig . 7 .6) ,
notice that the c lass does not provide a constructor that receives a parameter of type Dat e .

S o , how i s the member in it ial izer l i st in c lass Emp l oyee ' s constructor abl e t o i ni t ia l ize the

bi rthDate and hi reDate objects by pass ing Dat e object ' s to their Dat e construc

tors? As we mentioned i n Chapter 6, the compiler provides each class with a defaul t copy
constructor that copies each member of the constructor' s argument obj ect i nto the corre
sponding member of the object being in i t ia l ized. Chapter 8 di scusses how programmers

can define customized copy constructors .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7

I I Fig . 7 . 6 : date 1 . h
I I Date c l a s s de f init ion .
I I Member func t i ons de fined in dat e 1 . cpp
i fnde f DATE1_H
#de f ine DATE1_H

c l a s s Date

public :

Dat e (int = 1 , int = 1 , int = 1 9 0 0) ; I I de f au l t c on s t ructor
void print () const ; I I print date in month l daylyear format
-Date () ; I I provided to conf i rm de s t ruct ion order

private :
int month ;
int day ;
int year ;

I I 1 - 12 (January-December)
I I 1 - 3 1 based on month
I I any year

Fig. 7.6 Dat e class defin it ion . (Part 1 of 2 ,)

480 Classes: Part I I Chapter 7

1 8
1 9 I I ut i l ity funct ion to test proper day for month and year
20 int checkDay { int) const ;
2 1
22 } ; I I end c la s s Date
23
24 #endi f

Fig. 7 .6 Dat e class defin ition . (Part 2 of 2 .)

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39

I I F ig . 7 . 7 : dat e 1 . cpp
I I Member- funct ion def init ions for c l a s s Date .
inc lude < iostream>

us ing std : : cout ;
u s ing std : : endl ;

I I inc lude Date c l a s s def inition from date 1 . h
inc lude " date1 . h "

I I const ructor conf i rms proper value for month ; cal l s
I I ut i l ity func t i on checkDay t o conf irm proper value for day
Date : : Date { int mn, int dy , int yr)

{
i f (mn > 0 && mn < = 12) I I val idate the month

month = mn ;

e l s e { I I inval id month set to 1
month 1 ;
cout « " Month " « mn « " inval id . Set to month 1 . \ n " ;

}

year = yr ;
day = checkDay { dy) ;

I I should val idate yr
I I val idate the day

/ / output Date obj ect to show when it s constructor i s cal led
cout « " Date obj ect constructor for date " ;
print {) ;
cout « endl ;

I I end Date constructor

/ / print Date obj ect in form month/day/year
void Date : : print {) const

{
cout « month « ' / ' « day « ' / ' « year ;

/ / end funct ion print

Fig. 7 .7 Dat e c lass member-function definit ions. (Part 1 of 2 .)

Chapter 7 Classes: Part I I

40 I I output Date obj ect to show when it s des t ructor i s cal led

4 1 Date : : -Date ()
42 {
43 cout « " Date obj ect destructor for dat e " ;

44 print () ;
45 cout « endl ;
46
47 } I I end de structor -Date
48
49 I I uti l ity funct ion to conf i rm proper day value based on
50 I I month and year ; handles leap years , too
51 int Date : : checkDay (int testDay) const
52 {
53 stat ic const int daysPerMonth [1 3]
54 { 0 , 3 1 , 2 8 , 3 1 , 3 0 , 3 1 , 3 0 , 3 1 , 3 1 , 3 0 , 3 1 , 3 0 , 3 1 } ;
55
56 I I determine whether testDay i s val id for spec i f ied month
57 i f (testDay > 0 && testDay <= daysPerMonth [month])

58 return testDay ;
59
60 I I February 2 9 check for leap year
6 1 i f (month = = 2 & & t e stDay = = 2 9 &&
62 (year % 4 0 0 == 0 I I
63 (year % 4 == 0 && year % 1 0 0 ! = 0)))
64 return t e stDay ;
65
66 cout « " Day " « testDay « " inval id . Set to day 1 . \ n " ;
67

48 1

68 return 1 ; I I leave obj ect in cons i s t ent state i f bad value
69
70 } I I end funct ion checkDay

Fig. 7 . 7 Dat e class member-function definit ions. (Part 2 of 2 .)

1 I I Fig . 7 . 8 : employe e l . h
2 I I Employee c l a s s de f init ion .
3 I I Member funct ions de fined in employe e l . cpp .
4 # i fnde f EMPLOYEE 1_H
5 #de f ine EMPLOYEE1_H
6
7 I I inc lude Date c l a s s def ini t ion from date l . h
8 # inc lude " datel . h "
9

1 0 c l a s s Employee
1 1
1 2 publ ic :
1 3 Employee (
1 4 const char * , const char * , const Date & , const Dat e &) ;
1 5
1 6 void print () const ;
1 7 -Employee () ; I I provided to conf irm des t ruct i on order
1 8

Fig. 7.8 Emp l oyee class defin it ion showing composition . (Part 1 of 2 .)

482 Classes: Part I I

1 9 private :
20 char f i rstName [25] ;
2 1 char lastName [2 5] ;
22 const Date bi rthDate ;
23 const Dat e hi reDate ;
24
25 } ; I I end c l a s s Employee
26
27 #endi f

I I composition : member obj ect
I I composition : member obj ect

Fig. 7.8 Emp loyee class defin ition showing composition . (Part 2 of 2 .)

1 I I Fig . 7 . 9 : employeel . cpp
2 I I Member - funct ion de f init ions for c l a s s Employee .

3 # inc lude < iostream>
4
5 u s ing std : : cout ;
6 u s ing std : : endl ;
7
8 # inc lude < c s t ring> I I st rcpy and strlen prototype s
9

1 0 # inc lude " employee 1 . h " I I Employee c l a s s de f init ion
1 1 # inc lude " date l . h " I I Date c l a s s de f init ion
1 2

Chapter 7

1 3 I I const ructor uses member init ial i zer l i s t to pass ini t i a l i zer
1 4 I I value s to const ructors of member obj e c t s bi rthDate and
1 5 I I hireDate [Not e : Thi s invoke s the so-cal led " de faul t copy
1 6 I I const ructor " which the c + + compi ler provides impl i c i t ly .]
1 7 Employee : : Employee (const char * f irst , const char * la s t ,
1 8 const Date &dateOfBi rth , const Date &dateOfHi re)
1 9 bi rthDate (dateOfBirth) , I I init i a l i z e bi rthDate
20 hi reDate (dateOfHire) I I init i a l i z e hi reDate
21 {
22 I I copy f i rs t into f irstName and be sure that it f i t s
23 int l ength = strlen (first) ;
24 length = (length < 2 5 ? length : 24) ;
25 strncpy (f irstName , f irst , length) ;
26 f i rstName [l ength] = ' \ 0 ' ;
27
28 I I copy last into lastName and be sure that i t f i t s
29 l ength = strlen (last) ;
30 l ength = (length < 25 ? length 2 4) ;
3 1 strncpy (lastName , last , length) ;
32 lastName [length] = ' \ 0 ' ;
33
34 I I output Employee obj ect to show when constructor i s cal l ed
35 cout « " Employee obj ect const ructor : "
36 « f i rstName « ' , « lastName « endl ;
37
38 } I I end Employee constructor
39

Fig. 7.9 Emp loyee class member-function definit ions, inc lud ing constructor with a
member- in itia l izer l ist . (Part 1 of 2 .)

Chapter 7

40 I I print Empl oyee obj ect
41 void Employee : : print () const
42 {

Classes: Part I I

43 cout « lastName « " " « f i rstName « " \ nH i red : " ;
44 hi reDat e . print () ;
45 cout « " B i rth date : " ;
46 birthDate . print () ;
47 cout « endl ;
48
49 I I end funct ion print
50

483

5 1 I I output Employee obj ect t o show when i t s de s t ructor i s c a l l ed
52 Employee : : -Employee ()
53 {
54 cout « " Empl oyee obj ect des t ructor : "
55 « lastName « " , " « f irstName « endl ;
56
57 } I I end de s t ructor -Employee

Fig. 7.9 Emp loye e class member-function definit ions, inc lud ing constructor with a
member-in it ial izer l ist . (Part 2 of 2 .)

F igure 7 . 1 0 creates two Dat e objects (l i nes 1 2- 1 3) and passes them as arguments to

the constructor of the Emp l oyee object created on l i ne 1 4. L ine 1 7 outputs the

Emp l oyee object ' s data. When each Dat e object i s created in l i nes 1 2- 1 3 , the Date con

structor defi ned at l ines 1 3-3 1 of Fig . 7 .7 displays a l i ne of output to show that the con

structor was cal led (see the first two l i nes of the sample output) . [Note: Line 1 4 causes two

addit ional Date constructor cal l s that do not appear i n the program' s output. When each

of the Emp l oyee ' s Dat e member object ' s i s i n i tia l ized in the Emp l oyee constructor' s

member i ni t ia l izer l i st , the default copy constructor for class Date i s cal led. Thi s con

structor i s defined i mpl ic i t ly by the compiler and does not contain any output statements to

demonstrate when i t i s cal led. We discuss copy constructors and default copy constructors

in deta i l in Chapter 8 .]

1 1/ Fig . 7 . 1 0 : f i g 0 7_1 0 . cpp
2 I I Demonstrat ing compos it ion- - an obj ect with member obj ect s .
3 #inc lude < iostream>
4
5 u s ing std : : cout ;
6 us ing std : : endl ;
7
8 # inc lude " employee 1 . h " I I Employee c la s s de f init ion
9

1 0 int main ()
1 1 (
1 2 Dat e b i rth (7 , 2 4 , 1 9 4 9) ;
1 3 Date hire (3 , 1 2 , 1 9 8 8) ;
1 4 Employee manager (" Bob " , " Jone s " , birth, hire) ;
1 5
1 6 cout « ' \ n ' ;

Fig. 7. 1 0 Member-object in it ia l izers . (Part 1 of 2 .)

484 Classes: Part I I

1 7 manager . print () ;
1 8

Chapter 7

1 9 cout « " \ nTest Date constructor with invalid values : \n " ;
20 Date lastDayO f f (1 4 , 3 5 , 1 9 9 4) ; / / inva l id month and day
2 1 cout « endl ;
22
23 return 0 ;
24
25 / / end main

Date obj ect constructor for date 7 / 2 4 / 1 9 4 9
Date obj ect constructor for date 3 / 12 / 1 9 8 8
Employee obj ect constructor : Bob Jones

Jone s , Bob
H ired : 3 / 12 / 1 9 8 8 B i rth date : 7 / 2 4 / 1 9 4 9

Te st Dat e constructor with invalid value s :
Month 14 invalid . Set to month 1 .
Day 3 5 inva l i d . Set to day 1 .
Date obj ect constructor for date 1 / 1 / 1 9 9 4

Date obj ect destructor for date 1 / 1 / 1 9 9 4
Employee obj ect des t ructor : Jones , Bob
Date obj ect de structor for date 3 / 12 / 1 9 8 8
Dat e obj ect destructor for date 7 / 2 4 / 1 9 4 9
Dat e obj ect destructor for date 3 / 12 / 1 9 8 8
Date obj ect destructor for date 7 / 2 4 / 1 9 4 9

Fig. 7 . 1 0 Member-object in it ia l izers . (Part 2 of 2 .)

Class Dat e and c lass Emp l oyee each inc lude a destructor (l i nes 4 1 -47 of Fig . 7 .7

and l i nes 52-57 of Fig . 7 .9 , respect ively) that pri nts a message when an obj ect of i ts c lass

i s destroyed. This enables us to confirm in the program output that objects are constructed

from the i ns ide out and destructed in the reverse order from the outside in (i . e . , the Dat e

member objects are destroyed after the Employee object that contai n s them) . Notice the

l ast four l i nes in the output of Fig . 7 . 1 0 . The last two l i nes are the outputs of the Dat e

destructor runn ing on Dat e objects hire (l i ne 1 3) and b i rth (l i ne 1 2) , respecti ve ly .

These outputs confi rm that the three objects created i n ma in are destructed i n the reverse

of the order in which they were constructed . (The Emp l oyee destructor output is fi ve l i nes

from the bottom .) The fourth and third l i nes from the bottom of the output w indow show

the destructors runn ing for the Employee ' s member objects hi reDate (F ig . 7 . 8 , l i ne

23) and b i rthDate (F ig . 7 . 8 , l i ne 22) . These outputs confi rm that the Emp l oyee obj ect

i s destructed from the outside i n-i .e . , the Employee destructor runs first (output shown

five l ines from the bottom of the output window) , then the member objects are destructed

in the reverse order from which they were constructed. Again , the outputs in Fig. 7 . 1 0 did

not show the constructors runn ing for these objects because these were the defau l t copy

constructors provided by the C++ compi ler.

A member object does not need to be in i t ial i zed expl ic i t ly through a member i n i t ia l

i zer. If a member i n i t ia l i zer i s not provided, the member object ' s default constructor w i l l

b e cal led i mpl ic i t ly . Values, if any, estab l i shed b y the default constructor can b e overridden

Chapter 7 Classes: Part I I 485

by set funct ions . However, for complex in i t ia l izat ion, this approach may requ ire s ign ificant

additional work and t ime . � Common Programming Error 7 .6

A compiler error occurs if a member object is not initialized with a member initializer and

the member object 's class does not provide a default constructor (i . e . , the member object 's

class defines one or more constructors, but none is a default constructor).

Performance Tip 7 . 2

Initialize member objects explicitly through member in itializers. This eliminates the o ver

head of "doubly initializing " member objects-once when the member object 's default con

structor is caLLed and again when set functions are caLLed in the constructor body (or later)

to initialize the member object.

Software Engineering Observation 7 8

If a class member is an object of another class, making that member object public does not

violate the encapsulation and hiding of that member object 's private members.

In l i ne 28 of Fig . 7 .7 , notice the call to Dat e member function print . Many member

functions of c lasses i n C++ require no arguments . Th is i s because each member function

contain s an i mpl ic i t handle (i n the form of a pointer) to the object on which i t operates . We

discuss the i mpl ic i t pointer, which i s represented by keyword thi s, i n Section 7 . 5 .

C lass Emp l oyee uses two 25-character arrays (Fig . 7 . 8 , l i nes 20-2 1) t o represent the

first and last name of the Emp l oyee . These arrays may waste space for names shorter than

24 characters. (Remember, one character in each array i s for the termi nating nu l l character,

' \ 0 I , of the stri ng .)\ Also, names longer than 24 characters must be truncated to fi t in these

fixed-s ize arrays . Section 7 . 7 presents another vers ion of c lass Emp l oyee that dynami

cal ly creates the exact amount of space required to hold the fi rst and the l ast name. The s im

p les t way to do this would be to use two s t r ing objects to represent the names . Standard

l ibrary c lass s t r i ng i s i ndroduced in Chapter 8 and discussed in detai l in Chapter 1 5 .

7.4 friend Functions and friend Classes

A fri endjitnction of a c lass is defi ned outs ide that c lass ' s scope, yet has the right to ac

cess the non-public members of the class . Standalone functions or ent ire c lasses may be

declared to be friends of another class .

Using f r i end functions can enhance performance. This sect ion presents a mechan

ical example of how a f r i end function works . Later i n the book, f r i end functions are

used to overload operators for use with class objects and to create iterator c lasses . Obj ects

of an i terator class can success ively select items or perform an operation on i tems in a con

tainer c lass (see Section 7 .9) object . Objects of contai ner c lasses can store i tems. Us ing

friends i s often appropriate when a member function cannot be used for certa in operat ions

as we wi l l see i n Chapter 8 .

To declare a function as a friend of a c lass , precede the function prototype in the c lass

defi n it ion with keyword f r i end. To declare al l member functions of c lass C l a s s Two as

friends of c lass C l a s sOne , place a declaration of the form

fri end c l a s s C l a s sTwo ;

i n the defin it ion of c lass C l a s sOne .

486 Classes: Part I I Chapter 7

�software Engineering Observation 7 .9

Even though the prototypes for friendfunctions appear in the class definition, friends are not

member functions. �software Engineering Observation 7 . 1 0

Member access notions ofpriva te, protected and public are not relevant to friend

declarations, so friend declarations can be placed anywhere in a class definition. � Good Programming Practice 7 . 1

Place all fnendshlp declaratIOns first inside the class definition 's body and do not precede

them with any member-access specifier.

Friendship is granted, not taken-i .e . , for class B to be a friend of c lass A, c lass A must

explicit ly declare that class B i s i ts friend. Al so, friendship i s neither symmetric nor trans i

t ive , i . e . , i f c lass A i s a friend of class B , and c lass B i s a friend of c lass C , you cannot i nfer

that class B i s a friend of c lass A (again , friendship is not symmetric) , that c lass C i s a friend

of c lass B, or that class A i s a friend of c lass C (again , friendship i s not trans i t ive) . �software Engineering Observation 7 . 1 1

Some people in the OOP community feel that "friendship " corrupts information hiding and

weakens the value of the object-oriented design approach. In this text, we show several ex

amples of the responsible use of friendship.

Figure 7 . 1 1 defi nes friend function setX to set the pri vat e data member x of c lass

Count . Note that the f r i end declarat ion (l i ne 1 0) appears first (by convention) i n the

class defin i tion , even before pub l i c member functions are dec lared. Again , thi s friend

declaration can appear anywhere i n the class .

1 I I Fig . 7 . 1 1 : f i g 0 7_l l . cpp
2 I I Friends can acce s s private members of a c l as s .
3 # inc lude < iostream>
4
5 using std : : cout ;
6 us ing s td : : endl ;
7
8 I I Count c l a s s de f init ion
9 c l a s s Count {

1 0 friend void setX (Count & , int) ; I I friend dec larat i on
1 1
1 2 public :
1 3
1 4 I I const ructor
1 5 Count ()
1 6 : x (0) I I ini t i a l i z e x to 0
1 7
1 8 I I empty body
1 9
20 I I end Count constructor
2 1

Fig. 7 . 1 1 Fr iends can access pri vate members of a c lass . (part 1 of 2 .)

Chapter 7 Classes: Part I I

22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56

I I output x
void print {) const

{
cout « x « endl ;

I I end funct ion print

private :
int x ; I I data member

} ; I I end class Count

I I funct ion setX can modi fy private data of Count
I I because setX i s dec lared as a friend of Count
void setX { Count &c , int val)

{
c . x = val ; I I legal : setX i s a friend of Count

} I I end funct ion setX

int main {)

(
Count counter ; I I create Count obj ect

cout « " counter . x after instant iat ion : " ;
counter . print {) ;

setX { counter, 8) ; I I set x with a friend

cout « " counter . x after call to setX friend func t i on : " ;
counter . print {) ;

return 0 ;

} I I end main

counter . x after instant iat ion : 0
counter . x after c a l l to setX friend funct ion : 8

Fig. 7 . 1 1 Fr iends can access pri vat e members of a c lass . (Part 2 of 2 .)

487

Function setX (l i nes 36-40) is a C-style, standalone function-it is not a member

function of class Count . For this reason, when setX i s i nvoked for obj ect c ount er, l i ne

49 passes c ounter as an argument to s e t X rather than us ing a handle (such as the name

of the object) to call the function, as in

counter . setX { 8) ;

As we mentioned, Fig . 7 . 1 1 i s a mechanical example of us ing the f r i end construct . I t

would normal ly b e appropriate t o define function setX a s a member function o f class

Count .

488 Classes: Part I I Chapter 7

The program of Fig. 7 . 1 2 demonstrates the error messages produced by the compi ler

when nonfriend function cannotSetX (l i nes 37-4 1) i s cal led to modify privat e data

member x.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47

I I Fig . 7 . 1 2 : f ig0 7_12 . cpp
I I Non- f riend/non-member funct ions cannot acc e s s
II private data of a class .
inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

I I count c l a s s de f init ion
I I (note that there i s no friendship dec l arat ion)
c la s s Count {

public :

I I const ructor
Count ()

: x (0) I I init ial i z e x to 0

{
I I empty body

} I I end Count constructor

I I output x
void print () const

{
cout « x « endl ;

I I end funct ion print

private :
int x ; I I data member

} ; I I end c la s s Count

I I funct ion tries to modi fy private dat a of Count ,
I I but cannot because funct ion i s not a friend of Count
void cannot SetX (Count &c , int val)

{
c . x = val ; I I ERROR : cannot acce s s private member in Count

I I end function cannotSetX

int main ()
{

Count counter ; I I create Count obj ect

cannot SetX (counter, 3) ; II cannot SetX i s not a friend

Fig. 7 . 1 2 Nonfriend/nonmember functions cannot access priva t e members.
(Part 1 of 2.)

Chapter 7

48
49 return 0 ;

50
51 II end main

Classes: Part II 489

D : \cpphtp4_example s \c h0 7 \Fig0 7 _12 \Fi g0 7 _12 . cpp(3 9) : error C2 2 48 :

'x' : cannot acc e s s pri vate member dec l ared i n c l a s s 'Count '

D : \cpphtp4_exampl e s \ch0 7 \Fig0 7 _12 \Fi g 0 7 _12 . cpp(3 1)

see dec l arat i on of ' x '

Fig. 7.12 Nonfriend/nonmember functions cannot access private members .
(Part 2 of 2 .)

It is possible to specify overloaded functions as friends of a class. Each overloaded

function intended to be a friend must be explicitly declared in the class definition as a friend

of the class.

7.5 Using the this Pointer

We have seen that an object 's member functions can manipulate the object 's data. How do

member functions know which object 's data members to manipulate? Every object has ac

cess to its own address through a pointer called this (a C++ keyword). An obj ect' s thi s

pointer is not part of the object itself-i.e. , the size of the memory occupied by the thi s

pointer is not reflected in the result of a s izeof operation on the object. Rather, the thi s

pointer is passed into the object (by the compiler) as an implicit argument to each of the

object' s non-static member function calls (stat i c members are discussed in

Section 7.7) .

Objects use the thi s pointer implicitly (as we have done to this point) or explicitly to

reference their data members and member functions. The type of the thi s pointer depends

on the type of the object and whether the member function in which thi s is used is

declared cans t . For example, in a nonconstant member function of class Emp l oyee , the

thi s pointer has type Emp l oyee * const (a constant pointer to a non-constant

Emp l oyee object). In a constant member function of the class Emp l oyee , the thi s

pointer has the data type can s t Emp l oyee * const (a constant pointer to a constant

Emp l oyee object).

Our first example in this section shows implicit and explicit use of the thi s pointer;

later in this chapter and in Chapter 8, we show some substantial and subtle examples of
using thi s . Every non-static member function has access to the thi s pointer that
points to the object for which the member function is being invoked.

Performance Tip 7.3

For economy of slOrage, only one copy of each member function exists per class, and this

member jimction is invoked by eVeI), object of that class. Each object, on the other hand, has

its own copy of the class's data m.embers.

Implicitly and Explicitly Using the this Pointer to Access an Object's Data Members

Figure 7. 1 3 demonstrates the implicit and explicit use of the thi s pointer to enable a
member function of class Te s t to print the pri vate data x of a Te s t object.

490

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Classes: Part II

II F i g. 7.13 : fig 0 7_13 .cpp

II Us ing the thi s po inter to refer to object members .

inc lude < io s t ream>

u s i ng std: : cout;

u s i ng std: : endl;

c l a s s Te s t

pub l i c :

Te s t (int = 0) ; II default const ructor

void print () const ;

pri vate:

int x;

} ; II end c l a s s Te s t

II cons t ructor

Tes t : : Te s t (int value)

{
: x (value) II ini t ial i z e x to value

I I empty body

} II end Te s t constructor

II pr i nt x us ing impl i c i t and expl i c i t thi s pointers;

II parenthe s e s around *th i s requ i red

voi d Te s t : : print () const

{
II impl i c i t ly use thi s pointer to acc e s s member x

cout « " x = II « Xi

II expl i c i t ly use thi s pointer to acc e s s member x

cout « " \n thi s -> x = " « thi s - > x;

II e xpl i c i t ly use dereferenced thi s po inter and

II the dot operator to acce s s member x

cout « " \n (*this) . x = " « (*thi s) . x « end l ;

} II end funct i on print

int main ()

(
Te st t e s t Object (12) ;

t e s t Object . pr int () ;

return 0 ;

} II end main

Chapter 7

Fig. 7.13 thi s painter implicitly and explicitly used to access an object's members .
(Part 1 of 2.)

Chapter 7

x 12

t hi s ->x 12

(*t hi s) . x = 12

Classes: Part II 491

Fig. 7.13 thi s pointer implicitly and explicitly used to access an object's members.
(Part 2 of 2.)

For illustration purposes, member function print (lines 29-4 1) first prints x by using

the thi s pointer implicitly (line 32)-only the name of the data member is specified. Then

print uses two different notations to access x through the thi s pointer-the arrow oper

ator (- » off the thi s pointer (line 35) and the dot operator (.) off the dereferenced thi s

pointer (line 39).

Note the parentheses around * thi s (line 39) when used with the dot member selec

tion operator (.). The parentheses are required because the dot operator has higher prece

dence than the * operator. Without the parentheses, the expression * thi s . x would be

evaluated as if it were parenthesized as * (thi s . x) , which is a syntax error because the

dot operator cannot be used with a pointer.

Common Programming Error 7.7

Attempting to use the member-selection operator (.) with a pointer to an object is a syntax

error-the dot member-selection operator may be used only with an object's name or with a

reference to an object.

One interesting use of the thi s pointer is to prevent an object from being assigned to

itself. As we will see in Chapter 8, self-assignment can cause serious errors when the object

contains pointers to dynamically allocated storage.

Using the this Pointer to Enable Cascaded Function Calls

Another use of the thi s pointer is to enable cascaded member-function calls in which

multiple functions are invoked in the same statement. The program of Fig. 7 .I4-Fig. 7 . 1 6

modifies class Time's set functions setTime , s e tHeur, s e tM i nu t e and setSe c

end such that each returns a reference to a Time object to enable cascaded member-func

tion calls. Notice in Fig. 7 .15 that the last statement in the body of each of these member

functions returns * thi s (lines 30, 39, 48 and 57).

1 1/ Fig. 7.14: t ime6 .h

2 II Cas c ading membe r func t ion cal l s .

3
4 II Time c l a s s defini t i on .

S II Membe r func t i ons defined in t ime6.cpp .

6 # i fnde f TI ME6_H

7 #define TIME6_H

8
9 c la s s Time

10
11 pub l i c :

12 Time (int = 0 , int = 0 , int = 0) ; II de faul t c on s t ructor

Fig. 7.14 Time class definition modified to enable cascaded member-function
calis . (Part 1 of 2.)

492 Classes: Part II Chapter 7

13
14
15
16
17
18
19

1/ set funct i ons

Time &setTime (int , int ,

Time &setHour (int) ;

Time &set Minut e (int) ;

Time &se t Second (int) ;

int) ; // set hour,

/I set hour

/1 set minute

// set second

20 // get func t i ons (norma l ly dec l ared cons t)

21 int getHour () const ; // return hour

22 int getMinut e () const ; / 1 return minute

23 int getSecond () const ; / 1 return second

24
25 // print funct ions (norma l ly dec lared cons t)

minute,

26 voi d printUniversal () const ; // print uni versal t ime

27 voi d print Standard () const ; 1/ pr int s t andard t ime

28
29
30
31
32
33

private:

int hour;

int minute;

int second;

/ I 0

1/ 0

/ / 0

34 } ; 1/ end c l a s s Time

35
36 #end i f

- 2 3 (2 4-hour c lock format)
- 59

- 59

second

Fig. 7.14 Time class definition modified to enable cascaded member-function
calls. (Port 2 of 2.)

1 I I F i g . 7 . 15 : t ime6.cpp

2 / 1 Membe r - funct i on definitions for Time c l a s s .

3 # inc lude < io s t ream>

4
5 us ing std: : cout;

6
7 # inc lude < iomanip>

8
9 u s ing std: : setfi l l ;

10 u s ing std: : s etw;

11
12 # inc lude " t ime6.h " // Time c l a s s definit ion

13
14 // const ructor funct i on to init i a l i z e pri vate data;

15 // c a l l s member funct ion setTime to set var i ab l e s ;

16 // defaul t value s are 0 (see c l a s s definit ion)

17 Time: : Time (int hr, int min, int sec)

18 {
19 setTime (hr, min, sec) ;

20
21 / 1 end Time const ructor

22

Fig. 7.15 Time closs member-function definitions modified to enable cascaded
member-function calls . (Port 1 of 3.)

Chapter 7

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

II set va lue s of hour, minute, and second

Time &Time : : setTime (int h, int m, int s)
{

setHour (h);

set Minute (m);

setSecond (s);

return *t hi s; I I enab l e s cascading

} II end funct i on setTime

II set hour value

Time &Time : : setHour (int h)
{

hour = (h >= 0 && h < 2 4) ? h : 0 ;

return *this; II enables cas c ading

II end func t i on setHour

II set minute value

Time &Time: : setMinute (i nt m)
{

minute = (m >= 0 && m < 60) ? m : 0 ;

return *t hi s; I I enab l e s cas cading

II end funct i on setMinute

I I set second value

Time &Time: : setSecond (int s)

{
second = (s >= 0 && s < 60) ? s : 0 ;

return *t h i s; II enab l e s cascading

II end funct i on setSecond

I I get hour value

int Time: : getHour () const

{
return hour;

} II end func t i on getHour

II get minute value

int Time: : getMinut e () const

{
return minut e;

II end func t i on getMinute

Classes: Part II 493

Fig. 7 .15 Time class member-function definitions modified to enable cascaded
member-function calis. (Part 2 of 3.)

494 Classes: Part II

75 II get second va lue

76 int Time: : get Second () const

77 {
78 return second;

79
80 } II end funct i on getSecond
81

82 II print Time in uni versal format

83 vo id Time: : printUniversal () const

84 {
85 cout « setfi l l ('0 ') « setw (2) « hour « " : "

86 « setw (2) « minute « " : "

87 « setw (2) « second;

88
89 } II end func t i on pr intUniversal

90
91 II print Time in s tandard format

92 void Time: : pr intSt andard () const

93 {
94 cout « ((hour == 0 II hour -- 12) ? 12 : hour %
95 « II : " « setfi l l (' 0 ') « setw (2) « minute

96 « II : " « setw (2) «

97 « (hour < 12 ? " AM"
98
99 } II end funct i on pr int Standard

second

" PM") ;

Chapter 7

12

Fig. 7.15 Time class member-function definitions modified to enable cascaded
member-function calls. (Part 3 of 3.)

The program of Fig. 7 . 1 6 creates T ime object t (line 1 2), then uses it in cascaded

member-function calls (lines IS and 27). Why does the technique of returning * thi s as a

reference work? The dot operator (.) associates from left to right, so line I S first evaluates

t • s e tHour (18) then returns a reference to object t as the value of this function call.

The remaining expression is then interpreted as

t . set Minute (3 0) . setSecond (22) ;

The t . setMinute (30) call executes and returns a reference to the object t. The re

maining expression is interpreted as

t . setSecond(2 2) ;

1 II F ig . 7 .16: fig0 7_16. cpp

2 II Cascading member func t ion cal l s wi th the this point er .

3 # inc lude < iostream>

4
5 us ing std: : cout ;

6 u s ing std: : endl;

7
8 # inc lude " t ime6 . h " II Time c l a s s definit ion

9

Fig. 7.16 Cascading member-function calls. (Part 1 of 2.)

Chapter 7

10 int ma in ()

11 {
12 Time t ;

13
14 II cascaded func t i on cal l s

Classes: Part II

15 t . s e t Hour (18) . setMinut e (3 0) . setSecond (2 2) ;

16
17 II output t ime in uni versal and st andard format s

18 cout « " Uni versal t ime: " ;

19 t .printUn i versal () ;

20
21 cout « " \nStandard t ime: " ;

22 t .printSt andard () ;

23
24 cout « " \n\nNew st andard t ime: " ;

25
26 II cascaded func t i on cal l s

27 t . setTime (2 0 , 2 0 , 2 0) . printStandard () ;

28
29 cout « end l ;

30
31 return 0 ;

32
33 II end main

Uni versal t i me : 18 : 30 : 2 2

Standard t i me : 6 : 3 0 : 2 2 PM

New s tandard t i me : 8 : 2 0 : 2 0 PM

Fig. 7.16 Cascading member-function calis. (Part 2 of 2.)

495

Line 27 also uses cascading. The calls must appear in the order shown in line 27,

because print St andard as defined in the class does not return a reference to t. Placing

the call to printSt andard before the call to s e tT ime in line 27 results in a syntax

error. Chapter 8 presents several practical examples of using cascaded function calls. One

such example is using « with c out to output multiple values in a single statement.

7.6 Dynamic Memory Management with Operators new and
delete

C++ enables programmers to control the allocation and deallocation of memory in a pro

gram for any built-in or user-defined type. This is known as dynamic memory management

and is performed with operators new and delete. In standard C++, a program that uses

dynamic memory management should include standard header <new>, which provides ac

cess to the standard version of operator new.

Consider the following declaration and statement:

Time *t imept r;

t imept r = new Time;

496 Classes: Part " Chapter 7

Operator new creates an object of the proper size for type T ime , calls the default construc

tor for the object and returns a pointer of the type specified to the right of operator new (i.e . ,

a T ime *) . Note that new can be used to dynamically allocate any primitive type (such as

int or doub l e) or class type. If new is unable to find space in memory for the object, it

indicates that an error occurred by "throwing" an "exception." I Chapter 1 3, Exception Han

dling, discusses how to deal with new failures in the context of the ANSI/ISO C++ stan

dard. In particular, we will show how to "catch" the exception thrown by new and deal with

it. When a program does not "catch" an exception, the program terminates immediately.

To destroy a dynamically allocated object and free the space for the object, use the

de l e t e operator as follows:

delete t imePt ri

The preceding statement first calls the destructor for the object to which t imept r points,

then deallocates the memory associated with the object. After the preceding statement, the

memory can be reused by the system to allocate other objects.

C++ allows you to provide an initializer for a newly created object, as in

double ·pt r = new double(3 .14159)i

which initializes a newly created doub le object to 3.14159 and assigns the resulting

pointer to p t r . The same syntax can be used to specify a comma-separated list of argu

ments to the constructor of an object. For example,

Time *t imePt r = new Time(12 , 0 , 0) i

initializes a newly created T ime object to 1 2 PM and assigns the resulting pointer to

t imept r.

Operator new can be used to allocate arrays dynamically. For example, a lO-element

integer array can be allocated and assigned to grade sArray as follows:

int *grade sArray = new int[10]i

which declares pointer grade sArray and assigns it a pointer to the first element of a dy

namically allocated lO-element array of integers. To delete this dynamically allocated ar

ray, use the statement

dele t e [] grade sArraYi

The preceding statement deallocates the array to which grade sArray points. If the

pointer in the preceding statement points to an array of objects, the statement first calls the

destructor for every object in the array, then deallocates the memory. If the preceding state

ment did not include the square brackets ([]) and grade sArray pointed to an array of

objects, only the first object in the array would receive a destructor call. [Note: We use dy

namic memory in the example of Section 7 .7 .]

I . Operator new returns a 0 pointer i n versions of C++ prior t o the ANSI/ISO standard. This version
of operator new is the default version in most C++ compilers to maintain backwards compatibility
with older C++ programs. We use the standard version of operator new in header < new> through
out this book.

Chapter 7 Classes: Part II 497

Common Programming Error 7.8

Using delete instead of delete [J for arrays of objects can lead to runtime logic errors.

To ensure that every object in the array receives a destructor call, always delete memory al

located as an array with operator delete [J. Similarly, always delete memory allocated

as an in.dividual element with operator delete.

7.7 s tatic Class Members

Each object of a class has its own copy of all the data members of the class. In certain cases,

only one copy of a variable should be shared by all objects of a class. A s tatic class vari

able is used for these and other reasons. A s t at i c class variable represents "class-wide"

information (i .e . , a property of the class, not a property of a specific object of the class).

The declaration of a s t a t i c member begins with keyword s t at i c .

Let us motivate the need for s t at i c class-wide data with a video game example. Sup

pose that we have a video game with Mart ians and other space creatures. Each Mart ian

tends to be brave and willing to attack other space creatures when the Mart i an is aware that

there are at least five Mart ians present. If fewer than five are present, each Mart i an

becomes cowardly. So each Mart ian needs to know the mart i ancount . We could

endow each instance of class Martian with mart i anCount as a data member. If we do,

every Mart i an will have a separate copy of the data member. Every time we create a new

Mart ian, we will have to update the data member mart i anCount in all Mart i an

objects. Doing this would require every Mart ian object to have, or have access to, handles

to all other Mart i an objects in memory. This wastes space with the redundant copies and

wastes time in updating the separate copies. Instead, we declare mart i ancount to be

s t at i c . This makes mart i anCount class-wide data. Every Mart i an can see mar

t i anCount as if it were a data member of the Martian, but only one copy of the stat i c

variable mart i anCount is maintained by C++. This saves space. We save time by having

the Martian constructor increment stat ic variable mart i anCount and having the

Mart ian destructor decrement mart i anCount . Because there is only one copy, we do

not have to increment separate copies of mart ian Count for each Mart i an object.

Performance Tip 7.4

Use static data members to save storage when a single copy of the data will suffice.

Although s t a t i c data members may seem like global variables, s t at i c data mem

bers have class scope. Also, s t at i c members can be declared pub l i c , priva t e or

prot e c t ed. Each s t a t i c data member must be initialized once (and only once) at file

scope (i.e . , not in the body of the class definition). A class' s priva t e and prot e c t ed

s t a t i c members must be accessed through pub l i c member functions of the class or

through f r i ends of the class. A class' s stat i c members exist even when no objects of

that class exist. To access a pub l i c s t at i c class member when no objects of the class

exist, simply prefix the class name and the binary scope resolution operator (: :) to the

name of the data member (such notation also works where there are objects of the class).

For example, if our preceding variable mar t i anCount is pub l i c , it can be accessed

with the expression Mart i an: :mart i anCount when there are no Mart i an objects.

A class' s pub l i c stat i c class members can be accessed through any object of that

class. To access a pri vat e or prot ected stat ic class member when no objects of the

498 Classes: Part II Chapter 7

class exist, a publi c s t a t i c member function must be provided and the function must

be called by prefixing its name with the class name and binary scope resolution operator.

The program of Fig. 7. 1 7-Fig. 7. 1 9 demonstrates a private s t a t i c data member

called c ount (Fig. 7. 1 7, line 22) and a pub l i c stat i c member function called get

Count (Fig. 7. 1 7, line 1 5). In Fig. 7. 1 8, line 1 4 defines and initializes the data member

c ount to zero at file scope and lines 1 8-22 define s t at i c function getCount . Data

member c ount maintains a count of the number of objects of class Employee that have

been instantiated. When objects of class Employee exist, member c ount can be refer

enced through any member function of an Employee object-in Fig. 7. 1 8, c ount is ref

erenced by both line 35 in the constructor and line 5 1 in the destructor.

Common Programming Error 7.9

It is a syntax error to include keyword static in the definition of a static class variable

at file scope.

In Fig. 7. 1 8, note the use of operator new (lines 29 and 3 2) in the Employee con

structor to dynamically allocate the correct amount of memory for members f i r s tName

and lastName. If operator new is unable to fulfill the request for memory for one or both

of these character arrays, the program will terminate immediately. In Chapter 1 3, we will

provide a better mechanism for dealing with cases in which new is unable to allocate

memory.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

II Fig. 7.17 : emp l oyee 2 .h

II Emp l oyee c la s s de f in i t i on.

#i fnde f EMPLOYEE2 _H

#de f ine EMPLOYEE2 _H

c l a s s Employee

pub l i c :

Employee (const char *, const char

-Employee() ;

cons t char *get F i r s t Name() const ;

const char *get Last Name() const ;

II stat i c member func t ion

*) ; II con s t ruc tor

II de s t ructor

II return f i rst name

II return l a s t name

stat i c int getCount () ; II return # obje c t s instant i a t ed

private :

char *f i r s t Name ;

char *lastName ;

II s t at i c dat a member

stat i c int count ; II number of object s instant iated

} ; II end c l a s s Employee

#end i f

Fig. 7.17 Employee class definition with a static data member to track the
number of Employee objects in memory,

Chapter 7 Classes: Part \I

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

// F i g. 7.18: emp l oyee 2 . cpp

// Member-funct ion de f in i t i ons for c l a s s Emp l oyee .

#inc lude < io s t ream>

us ing s td : : cout ;

u s ing s td : : endl ;

#inc lude < new>

#inc lude < c s t ring>

// c++ s t andard new operator

// strcpy and s t r l en prot otype s

#inc lude " e mp l oye e 2 .h " // Employee c l a s s de f in i t ion

/1 de f ine and init i a l i ze stat i c data member

int Employee : : c ount = 0 ;

// de f ine stat i c member func t i on that returns number o f

// Emp l oyee obje c t s instant iated

int Employee : : getCount ()

{
return c ount ;

} 1/ end s t a t i c func t i on get Count

// c on s t ructor dynami c a l ly al locates space for

// f i r s t and last name and uses s t rcpy t o c opy

1/ f i r s t and last name s into the object

Empl oyee : : Employee(const char *f i r s t , const char *last)
{

f i r s t Name = new char[s t r l en(f i rst) + 1] ;

s t rcpy(f i rs t Name, f i rst) ;

l a s t Name = new char[strlen(l a s t) + 1] ;

strcpy(l a s t Name, last) ;

++count ; 1/ increment stat i c count of emp l oye e s

cout « " Empl oyee const ructor f o r " « f i r s t Name

« • • « l a s t Name « .. c a l l ed . " « endl ;

} /1 end Emp loyee const ructor

// de s t ructor deal locates dynami c a l ly a l located memory

Employee : : - Emp loyee ()

{
c out « " - Emp l oyee () cal led for " « f i r s t Name

« • • « l a s t Name « endl ;

de l e t e [] f i r s t Name ;

de l e t e [] l a s t Name ;

// recapture memory

// recapture memory

- -count ; // decrement stat i c count of emp l oyee s

1/ end de s t ructor - Employee

Fig. 7.18 Employee closs member-function definitions. (Port 1 of 2,)

499

500 Classes: Part II

54
55 II return f i rst name of emp loyee

56 c onst c har *Emp loyee : : getFirstName () const

57

Chapter 7

58 II const before return t ype prevent s c l i ent f rom modi f ying
59 II private dat a ; c l i ent shou ld copy returned s t ring before
60 II de s t ructor de l e t e s storage to prevent unde f ined pointer
61 return f i rs t Name ;

62
63 II end func t i on getF i r s t Name

64
65 II return last name o f emp loyee

66 const c har *Emp l oyee : : ge t LastName () con s t

67
68 II const before return t ype prevent s c l i ent from modi fying

69 II privat e dat a ; c l ient s hould copy returned s t r ing before

70 II de s t ructor de l e t e s st orage to prevent unde f ined pointer

71 return l a s t Name ;

72
73 II end func t ion getLastName

Fig. 7.18 Employee class member-function definitions. (Part 2 of 2.)

Also note in Fig. 7 . 1 8 that the implementations of functions getFi r s tName (Jines

56-63) and getLa s tName (Jines 66-73) return constant character pointers to the cal ler.

In this implementation, if the client wishes to retain a copy of the first name or last name,

the client is responsible for copying the dynamical ly allocated memory in the Emp l oyee

object after obtaining the constant character pointer from the object. It is also possible to

implement getF i r s tName and getLa stName so the client is required to pass a char

acter array and the size of the array to each function. Then the functions could copy the first

or last name into the character array provided by the client. Once again, class s t r i ng

could be used here to return a copy of a s t ring object to the cal ler.

Figure 7 . 1 9 uses function getCount to determine the number of Emp l oyee objects

currently instantiated. Note that when there are no objects instantiated in the program, the

Emp l oyee: : getCount () function call is issued (lines 1 5 and 36). However, when

there are objects instantiated, function getCount can be cal led through either of the

objects as shown in the statement at lines 20-2 1 , which uses pointer elP t r to invoke func

tion getCount . Note that using e2Pt r->getCount () or Emp l oyee: :ge t

Count () in line 2 1 would produce the same result, because getCount always accesses

the same s t a t i c member c ount.

iol" 7 1

Some organizations specify in their software engineering standards that all calls to static
member functions be made using the class name and not the object handle.

A member function may be declared s t at i c if it does not access non- s t a t i c class

data members and member functions of the class. Unlike non- s t at i c member functions,

a s t at i c member function does not have a thi s pointer, because s t a t i c data mem

bers and s t a t i c member functions exist independent of any objects of a class.

Chapter 7 Classes: Part II

1
2
3
4
5
6
7
8
9

II F i g. 7.19 : f i g 0 7_19 .cpp

II Dr iver to t e s t c l a s s Employee.

#inc lude < io s t ream>

u s i ng s td : : c out ;

u s ing s t d : : endl ;

#inc lude < new> II c++ st andard new operator

#inc lude " employee 2 .h " II Empl oyee c l a s s de f i nit i on

int ma in ()
{

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

cout « " Number of employees be f ore instant i a t i on i s "

« Employee : : get Count () « endl ; II use c l a s s name

Employee *e1pt r =

Employee *e2 Pt r

new Employee (

new Employee (

" Susan", " Baker ") ;

" Robert " , " Jone s ") ;

cout « " Number o f employee s after instant iat ion i s "

« e 1Pt r - > getCount () ;

c out « " \n\nEmpl oyee 1 : "

« e1Pt r - >getF i r s t Name()

« " " « e1Pt r - >get LastName()

« " \nErnployee 2 : "

« e 2 Pt r - > get F i r s t Name()

« n " « e 2 Pt r - > ge t La s t Name() « " \n\n " ;

del e t e e1Pt r ; /I recapture memory

e 1Pt r = 0 ; /I d i s c onnect pointer from f ree-store

delete e 2 Pt r ; /I recapture memory

e 2 Pt r = 0 ; /I d i sconnec t pointer f rom f ree - s tore

cout « " Number of employee s after de l e t ion i s n

« Employee : : get Count () « endl ;

return 0 ;

} II end main

NUmber o f employee s before instant iat ion is 0

Employee c onst ructor for Susan Baker c a l l ed.

Employee c on s t ructor for Robert Jones c a l l ed.

NUmber of employe e s a f t e r instant iation is 2

Employee 1 : Sus an Baker

Employee 2 : Robert Jone s

-Emp1oyee () cal led for Susan Baker

-Emp1oyee () c a l l ed for Robert Jones

NUmber o f employees after de let ion is 0

s pace

s pace

Fig. 7.19 static data member tracking the number of objects of a class.

501

502 Classes: Part II Chapter 7

Common Programming Error 7.10

Using the this pointer in a static member function is a syntax error.

Common Programming Error 7.11

Declaring a static member function const is a syntax error.

Software Engineering Observation 7.13

A class's static data members and static member functions exist and can be used even

if no objects of that class have been instantiated.

Lines 1 7- 1 8 of Fig. 7 . 1 9 use operator new to dynamical ly allocate two Emp l oyee

objects. Remember that the program wil l terminate immediately if it is unable to al locate

one or both of these objects. When each Employee object is al located, its constructor is

cal led. When de l e t e is used at lines 30 and 32 to deallocate the two Emp l oyee objects,

each object' s destructor is cal led.

� Good Programming Practice 7.2

After deleting dynamically allocated memory, set the pointer that referred to that memory to

O. This disconnects the pointer from the previously allocated space on the free store.

7.8 Data Abstraction and Information Hiding

Classes normally hide their implementation details from the clients of the classes. This is

cal led information hiding. As an example of information hiding, let us consider a data struc

ture cal led a stack.

Think of a stack in terms of a pile of dishes. When a dish is placed on the pile, it is

always placed at the top (referred to as pushing onto the stack); when a dish is removed

from the pile, it is always removed from the top (referred to as popping off the stack) . Stacks

are known as last-in, first-out (LIFO) data structures-the last item pushed (inserted) on

the stack is the first item popped (removed) from the stack.

The programmer may create a stack class and hide from its clients the implementation

of the stack. Stacks can easily be implemented with arrays (or linked lists; see Chapter 1 7,

Data Structures) . A client of a stack class need not know how the stack is implemented. The

client simply requires that when data items are placed in the stack, the data items wil l be

recalled in last-in, first-out order. Describing the functionality of a class independent of its

implementation is cal led data abstraction, and C++ classes define so-called abstract data

types (ADTs). Although users may happen to know the details of how a class is imple

mented, users should not write code that depends on these details. This means that the

implementation of a particular class (such as one that implements a stack and its operations

of push and pop) can be altered or replaced without affecting the rest of the system, as long

as the interface to that class does not change.

The job of a high-level language is to create a view convenient for programmers to use.

There is no single accepted standard view-that is one reason why there are so many pro

gramming languages. Object-oriented programming in C++ presents yet another view.

Most programming languages emphasize actions. In these languages, data exists in

support of the actions programs need to take. Data is viewed as being "less interesting" than

Chapter 7 Classes: Part II 503

actions, anyway. Data is "crude." There are only a few built-in data types, and it is difficult

for programmers to create their own new data types.

This view changes with C++ and the object-oriented style of programming. C++ ele

vates the importance of data and its behavior. The primary activity in C++ is creating new

types (i .e. , classes) and expressing the interactions among objects of those types.

To move in this direction, the programming-languages community needed to formalize

some notions about data. The formalization we consider is the notion of abstract data types

(ADTs) . ADTs receive as much attention today as structured programming did over the last

two decades. ADTs do not replace structured programming. Rather, they provide an addi

tional formalization that can further improve the program-development process.

What is an abstract data type? Consider the built-in type into What comes to mind is

the notion of an integer in mathematics, but int on a computer is not precisely what an

integer is in mathematics. In particular, computer ints are normally quite limited in size.

For example, int on a 32-bit machine may be limited approximately to the range -2 bil l ion

to +2 billion. If the result of a calculation falls outside this range, an "overflow" error occurs

and the machine responds in some machine-dependent manner, including the possibility of

"quietly" producing an incorrect result. Mathematical integers do not have this problem. So

the notion of a computer int is really only an approximation to the notion of a real-world

integer. The same is true with doub l e .

Even c har is an approximation; char values are normally eight-bit patterns of ones

and zeros; these patterns look nothing like the characters they represent such as a capital

z, a lowercase z, a dollar sign ($), a digit (5), and so on. Values of type char on most

computers are quite limited compared with the range of real-world characters. The seven

bit ASCII character set (Appendix B) provides for 128 different character values. This is

inadequate for representing languages such as Japanese and Chinese that require thou

sands of characters. As Internet and World Wide Web usage becomes pervasive, the newer

Unicode character set is growing rapidly in popularity due to its ability to represent most

languages.2

The point is that even the built-in data types provided with programming languages

like C++ are really only approximations or models of real-world concepts and behaviors.

We have taken int for granted until this point, but now you have a new perspective to con

sider. Types like int , doub l e , char and others are all examples of abstract data types.

They are essentially ways of representing real-world notions to some satisfactory level of

precision within a computer system.

An abstract data type actually captures two notions, namely, a data representation and

the operations that are allowed on those data. For example, the notion of int defines addi

tion, subtraction, multip lication, division and modulus operations (among others) in C++,

but division by zero is undefined; and these allowed operations perform in a manner sensi

tive to machine parameters such as the fixed word size of the underlying computer system.

Another example is the notion of negative integers, whose operations and data representa

tion are clear, but the operation of taking the square root of a negative integer is undefined.

In C++, the programmer uses classes to implement abstract data types and their services.

We create our own stack class in Chapter 1 1, Templates, and we study the standard library

s t ack class in Chapter 21, Standard Template Library (STL) .

2. For more information on Unicode, visit www . unicode . org.

504 Classes: Part II Chapter 7

7.8.1 Example: Array Abstract Data Type

We discussed arrays in Chapter 4. An array is not much more than a pointer and some space
in memory. This primitive capability is acceptable for performing array operations if the
programmer is cautious and undemanding. There are many operations that would be nice
to perform with arrays, but that are not built into C++. With C++ classes, the programmer
can develop an array ADT that is preferable to "raw" arrays. The array class can provide
many helpful new capabilities such as

subscript range checking

an arbitrary range of subscripts instead of having to start with 0

array assignment

array comparison

array input/output

arrays that know their sizes

arrays that expand dynamically to accommodate more elements.

We create our own array class with many of these capabilities in Chapter 8, and we

introduce the standard library class vec t or with many of these capabilities in Chapter 8

as well. Chapter 2 1 explains class vector in detail.

C++ has a small set of built-in types. Classes extend the base programming language.

Software Engineering Observation 7 14

The program.mer is able to create new types through the class mechanism. These new types

can be designed to be used as conveniently as the built-in types. Thus, C++ is an extensible

language. Although the language is easy to extend with these new types, the base language

itself is not changeable.

New classes created in C++ environments can be proprietary to an individual, to small

groups or to companies. Classes can also be placed in standard class libraries intended for

wide distribution. ANSI (the American National Standards Institute) and ISO (the Interna

tional Organization for Standardization) have developed a standard version of C++ that

includes a standard class library. The reader who learns C++ and object-oriented program

ming will be ready to take advantage of the new kinds of rapid, component-oriented soft

ware development made possible with increasingly abundant and rich libraries.

7.8.2 Example: String Abstract Data Type

C++ is an intentionally sparse language that provides programmers with only the raw ca

pabilities needed to build a broad range of systems (consider it a tool for making tools). The

language is designed to minimize performance burdens. C++ is appropriate for both ap

plications programming and systems programming-the latter places extraordinary per

formance demands on programs. Certainly, it would have been possible to include a string

data type among C++'s built-in data types. Instead, the language was designed to include

mechanisms for creating and implementing string abstract data types through classes. In

Chapter 8, we will develop our own Str ing ADT and introduce the standard library class

s t r ing as well. We discuss in detail in Chapter 15.

Chapter 7 Classes: Part II 505

7.8.3 Example: Queue Abstract Data Type

Each of us stands in line from time to time. A waiting line is also called a queue. We wait

in line at the supermarket checkout counter, we wait in line to get gasoline, we wait in line

to board a bus, we wait in line to pay a highway toll and students know all too well about

waiting in line during registration to get the courses they want. Computer systems use many

waiting lines internal ly, so we need to write programs that simulate what queues are and do.

A queue is a good example of an abstract data type. A queue offers well-understood

behavior to its clients. Clients put things in a queue one at a time-using an enqueue oper

ation-and the clients get those things back one at a time on demand-using a dequeue

operation. Conceptually, a queue can become infinitely long. A real queue, of course, is

finite. Items are returned from a queue in first-in, first-out (FIFO) order-the first item

inserted in the queue is the first item removed from the queue.

The queue hides an internal data representation that somehow keeps track of the items

currently waiting in line, and it offers a set of operations to its clients, namely, enqueue and

dequeue. The clients are not concerned about the implementation of the queue. Clients

merely want the queue to operate "as advertised." When a client enqueues a new item, the

queue should accept that item and place it internally in some kind of first-in, first-out data

structure. When the client wants the next item from the front of the queue, the queue should

remove the item from its internal representation and should deliver the item to the outside

world (i.e., to the client of the queue) in FIFO order (i.e. , the item that has been in the queue

the longest should be the next one returned by the next dequeue operation).

The queue ADT guarantees the integrity of its internal data structure. Clients may not

manipulate this data structure directly. Only the queue member functions have access to its

internal data. Clients may cause only allowable operations to be performed on the data rep

resentation; operations not provided in the ADT's public interface are rejected in some

appropriate manner. This could mean issuing an error message, terminating execution or

simply ignoring the operation request.

We create our own queue class in Chapter 17, Data Structures, and we study the stan

dard library queue class in Chapter 21, Standard Template Library (STL).

7.9 Container Classes and Iterators

Among the most popular types of classes are container classes (also called collection class

es), i.e., classes designed to hold collections of objects. Container classes commonly pro

vide services such as insertion, deletion, searching, sorting, testing an item to determine

whether it is a member of the collection. Arrays, stacks, queues, trees and linked lists are

examples of container classes; we studied arrays in Chapter 4 and we will study each of

these other data structures in Chapter 17 and Chapter 21.

It is common to associate iterator objects-or more simply iterators-with container

classes. An iterator is an object that returns the next item of a collection (or performs some

action on the next item of a collection). Once an iterator for a class has been written,

obtaining the next element from the class can be expressed simply. Just as a book being

shared by several people could have several bookmarks in it at once, a container class can

have several iterators operating on it at once. Each iterator maintains its own "position"

information. We will discuss containers and iterators in detail in Chapter 21.

506 Classes: Part I I Chapter 7

7. 1 0 Proxy Classes

S ometimes, it is desirable to hide the implementation details of a class to prevent access to

proprietary information (including private data) and proprietary program logic in a class.

Providing clients of your class with a proxy class that knows only the public interface to

your class enables the clients to use your class' s services without giving the client access

to your class' s implementation details.

Implementing a proxy class requires several steps, which we demonstrate in Fig. 7 . 20-

Fig. 7 . 23 . First, we create the class definition for the class that contains the proprietary

implementation we would like to hide. Our example class, which we call Imp l emen t a

t i on, is shown in Fig. 7 . 20. The proxy class Interface is shown in Fig. 7 . 2 1 -Fig. 7 .22 .

The test program and sample output are shown in Fig. 7 . 2 3 .

Class Imp l ement a t i on (Fig. 7 .20) provides a single private data member

called va lue (the data we would like to hide from the client), a constructor to initialize

value and functions s e tVa lue and getValue .

1 II F i g . 7 . 2 0 : i mplementat ion . h

2 II Header f i l e for c l a s s Implementat ion

3
4 c l a s s I mplementat ion

5
6 pub l i c :

7
8 II cons t ruc tor

9 I mpl ement at i on (int v)

10 : value (v) II ini t i a l i z e va lue with v

11
12 II empty body

13
14 } II end I mpl ementat ion const ructor

15
16 II set value t o v

17 voi d setVa lue (int v)

18 {
19 va lue = v ; II should val idate v

20
21 } II end func t ion setVa lue

22
23 II return va lue

24 int getValue () const

25 {
26 return value ;

27
28 } II end func t i on getValue

29
30 private :

31 int value ;

32
33 } ; II end c l a s s I mplement ation

Fig. 7.20 Implementation class definition.

Chapter 7 Classes: Part I I 507

We create a proxy class definition called Interface (Fig. 7 .2 1) with an identical

public interface (except for the names of the constructor and destructor) to that of class

Imp l ement at i on. The only private member of the proxy class is a pointer to an object

of class Imp l ement at i on. Using a pointer in this manner allows us to hide the imple

mentation details of class Impl ement a t i on from the client. Notice that the only men

tion in class Interface of the proprietary Imp l ement a t i on class is in the pointer

declaration (line 1 7) . When a class definition (such as class I n t e r f ac e) uses only a

pointer or reference to an object of another class (such as to an object of class Imp l emen

tat i on), the class header file for that other class (which would ordinarily reveal the pri

vat e data of that class) is not required to be included with # i nc lude . You can simply

declare that other class as a data type with a forward class declaration (line 4) before the

type is used in the file.

The member function implementation file for proxy class Int e r f a c e (Fig. 7 . 2 2) is

the only file that includes the header file impl ementat ion . h (line 4) containing class

Imp l ement at i on. The file interfac e . cpp (Fig. 7 . 22) is provided to the client as a

precompiled object code file along with the header file interface . h that includes the

function prototypes of the services provided by the proxy class. Because file int e r

face . cpp is made available to the client only as object code, the client is not able to see

the interactions between the proxy class and the proprietary class (lines 8, 1 7 , 24 and 3 1) .

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

I I F i g . 7 . 2 1 : int erface . h

II Header f i l e for interface.cpp

c l a s s Imp l ementat ion ;

c l a s s Int erface {

pub l i c :

I nterface (int) ;

void s etVa lue (int) ;

int getVa lue () const ;

- Interface () ;

private :

I I forward c l a s s dec lara t i on

I I same pub l i c int e rface a s

I I c l a s s Imp l ement at ion

I I requires previous forward dec laration (l ine 4)

Imp l ement ation *pt r ;

} ; I I end c l a s s I nterface

Fig. 7.21 Interface class definition .

1 I I F ig. 7 .2 2 : interf ace . cpp

2 II De f init ion of c l a s s Interf ace

3 #inc lude " interface.h " I I Interf ace c l a s s de f in i t i on

4 #inc lude " impl ementat ion . h " I I I mplement at i on c l a s s de f init i on

5

Fig. 7.22 Interface class member-function definitions . (Part 1 of 2 .)

508 Classes: Part I I

6 I I const ructor

7 Interface: : Int erface (int v)

8 : ptr (new Imp l ementat ion (v » II ini t i a l i z e p t r

9
1 0 II empty body

1 1
1 2 } II end Inter face constructor

1 3
1 4 II ca l l Imp l ementat i on ' s setValue func t i on

1 5 voi d Interface: : setValue (int v)

1 6 {

1 7 ptr- > setValue (v) ;

1 8
1 9 II end func t i on setValue

20
2 1 I I cal l Impl ement at i on ' s getValue func t i on

22 int Interface: : getVa lue () const

23 {

24 return ptr- > getValue () ;

25
26 } II end funct ion getValue

27
28 II de s tructor

29 Interface: : - Interface ()

30 {

3 1 delete ptr ;

32
33 II end de s t ructor - Interface

Fig. 7 .22 Interface class member-function definitions. (Part 2 of 2.)

Chapter 7

Figure 7 . 23 tests class Interface. Notice that only the header file for Interface

is included in ma in (line 8)-there is no mention of the existence of a separate class called

Imp l ement at ion. Thus, the client never sees the pri vat e data of class Imp l emen

t a t i on, nor can the client code become dependent on the Imp l ementat i on code.

1 II Fig . 7 . 2 3 : f ig 0 7_2 3 . cpp

2 II Hiding a c la s s ' s private data with a proxy c l a s s .

3 # i nc lude < io st ream>

4
5 using std: : cout ;

6 us ing std: : endl ;

7
8 # i nc lude " interface . h " II Interface c l a s s de f in i t ion

9
1 0 i nt main ()

1 1 {

1 2 Interface i (5) ;

1 3
1 4 cout « " Interface contains : " « · i . getValue ()

1 5 « n before s etValue " « endl ;

Fig. 7.23 Implementing a proxy class. (Part 1 of 2 .)

Chapter 7

1 6
1 7 i . setValue{ 1 0) ;
1 8

Classes: Part II

1 9 cout « "Interface contains : " « i . getValue{)
20 « " after setValue" « endl;
2 1
22 return '0 ;
23
24 II end main

Interface contains : 5 be fore setValue
Interface contains : 10 after setValue

Fig. 7.23 Implementing a proxy class. (Part 2 of 2 .)

7.11 (Optional Case Study) Thinking About Objects:
Programming the Classes for the Elevator Simulator

509

I n the "Thinking About Objects" sections at the ends of Chapter 2 through Chapter 5, we

designed our e levator s imulator. In Chapter 6, we began programming the s imulator in

C++. I n the body of Chapter 7 , we discussed the remai n ing C++ capabi l i t ies that we need

to i mplement a complete, working elevator s imulator. We discussed dynamic object man

agement, us ing new and de l e t e to create and destroy objects, respective ly . We also d is

cussed composi t ion, a capabi l ity that a l lows us to create c lasses that conta in obj ects of other

classes as data members . Composition enables us to create a Bu i l ding c lass that contain s

a Schedu l e r obj ect, a C l ock object, an Elevator object and two F l oor objects; an

El evator c lass that contains one object each of c lasses ElevatorBu t t on, Door and

Be l l; and a Fl oor class that contains FloorButton and Light objects . We also dis

cussed how to use s t a t i c class members, const class members and member- in itial i za

t ion syntax in constructors . In this sect ion, we continue i mplementing our e levator system

in C++ using these techniques . At the end of th i s section, we present a complete elevator

s imulator in C++ (al most 1 300 l i nes of code) and a detai led code walkthrough. I n

Section 9 . 1 0, we complete o u r elevator-s imulator case study b y i ncorporat ing i nheritance

i nto the elevator s i mulator; at that point, we present only the addit ional C++ code that we

use to i mplement the i nheritance .

Overview of the Elevator Simulation Implementation
Our elevator s imu lation is control led by an object of c lass Bu i lding, which contains two

objects of class Fl oor and one object each of c lasses El evator, C l ock and Sched

uler. Thi s composite relat ionship was shown i n the UML c lass d iagram of Fig . 2.43 . The

clock keeps track of the current s imulation time in seconds, and the bui ld ing i ncrements the

c lock once every second. The scheduler is responsible for schedul ing the arrival of people

on each floor.

The sequence d iagram we presented in Fig . 4 .27 mode ls the scheduler 's behavior.

After each c lock t ick , the bui ld ing updates the scheduler wi th the current t ime (v ia member

function proce s sTirne of class Scheduler) . The scheduler checks th is t ime against

the next scheduled arrival t imes for people on each floor. I f a person i s scheduled to arrive

on a floor, the scheduler determines whether the floor is unoccupied by cal l i ng member

510 Classes: Part II Chapter 7

function i sOc cupied of c lass Floor. If thi s cal l returns t rue, then a person currently

i s waiting on the floor. I n th i s case, the scheduler invokes its del ayTime function to delay

for one second the next t ime a person may arrive on that floor.

If the floor is unoccupied (i .e . , the cal l returns fal se), the scheduler creates an object

of c l ass Person, and that person steps onto the appropriate floor. The person then invokes

member function pres sBu t t on of class FloorButton. The floor button , in turn ,

i nvokes member function sununonElevator of class Elevator.

The building also updates the elevator with the current t ime in seconds after each c lock

t ick . The activity diagram we presented in Fig. 3 . 32 mode ls some of the elevator' s behavior.

Upon receiv ing the updated ti me, the elevator first checks its current state (either "mov ing"

or "not movi ng") . If the elevator i s moving between floors , but i s not scheduled to arrive at

a floor at that t ime, the elevator outputs its direction of motion to the screen . If the elevator

i s mov ing, and the current time matches the next scheduled arrival time, the e levator stops,

resets its elevator button, rings its bell and notifies the floor that the elevator has arrived (via

member function elevatorArrived of c lass Floor) . I n response, the floor resets i ts

floor button and turns on its l ight. The elevator opens its door, which causes the floor' s door

to open, a l lowing the elevator passenger to exit and al lowing the person on the floor to enter.

The e levator then c loses its door, which causes the floor's door to c lose, and determines

whether the other floor needs serv ice. If the other floor needs serv ice, the elevator begins

moving to that floor.

If the e levator is not moving when it receives the updated t ime from the bui ld ing, the

elevator determines which floors need its serv ice. If the current floor needs service (i.e., a

person has pressed a button on the elevator's current floor) , the e levator rings its bel l , noti

fies the floor that the elevator has arrived and opens the elevator door. The person on the

floor enters the elevator and presses the elevator button to start the e levator moving to the

other floor. If the other floor needs service (i . e . , a person has pressed a button on the other

floor), the elevator begins moving to that floor.

Elevator Simulation Implementation
I n the preceding "Thinking About Objects" sections, we gathered information about our sys

tem . We used th is information to create an object-oriented design of our elevator s imulation,

and we used the UML to represent thi s design. We now have d i scussed al l the C++ object

oriented programming technology required to implement a working s imulation . The remain

der of thi s section contains our C++ implementation and a detai led code walkthrough.

Our main program (Fig. 7 .24) first prompts the user to enter the length of ti me for

which the s imulation should run and i nputs that value (l ines 15- 1 6) . The cal l to

c i n. ignore (l ine 17) i nstructs the c in stream to ignore the return character the user

types after the i nteger at run time. Thi s removes the return character from the i nput stream .

We do thi s to help the program user view the output. I n part icular, c lass Bui lding ' s run

Simulat i on function (F ig . 7 .26, l i nes 30-50) contains a loop that waits for the user to

press the Enter key (Fig . 7 .26, l i ne 46) to execute the next i teration of the loop. Thi s enables

the user to study the output, then tel l the program when to continue executing . When the

user in itial ly enters the duration of the s imulation, the user types an i nteger representing the

s imulation length and presses the Enter key to submit the value to the program. B oth the

i nteger value and the return character that represents the Enter key are sent i nto the pro

gram. However, only the i nteger value the user typed is actual ly read by l i ne 1 6-the return

character remains in the i nput waiting to be read. Without the cal l to c in. i gnore at l i ne

Chapter 7 Classes: Part \I 5 1 1

1 7, the statement at l ine 46 of Fig . 7 .26 would read that return character, thus preventing

the user from study ing the first part of the program ' s output and preventing the user from

te l l i ng the program when to execute the next i teration of the loop.

Next, the main program creates the bui l ding object (l ine 1 9) and i nvokes its run

Simulat ion member function (l i ne 24), passing as an argument the duration spec ified

by the user. The driver also pri nts out messages to the user when the s imu lat ion begins

(l i nes 2 1 -22) and ends (l i ne 26).

According to our c lass diagram (Fig . 2.43), c lass Bu i lding is composed of objects

from several other c lasses . The Bu i lding header fi le (Fig . 7 .25) reflects this composition

in l i nes 1 9-23 . C lass Bu i l ding i s composed of two Floor objects (f loorl and

f l oor2), an E l evator object (e l evator), a C l ock object (c l ock) and a Sched

uler object (s cheduler) .

1 II Fig . 7.2 4 : el evatorSimulat ion . cpp
2 II Driver for the s imulation .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : c i n ;
7 us ing std : : endl ;
8
9 # inc lude " bui lding . h " II Bui lding c l a s s de f i n i t i on

1 0
1 1 int main ()
1 2 {
1 3 int durat ion ; II length of s imulat ion in seconds
1 4
1 5 cout « " Enter run t ime : " ;
1 6 c i n » durat ion ;
1 7 c i n . ignore () ; II ignore return char
1 8
1 9 Bui lding bui lding ; II create the bui lding
20
2 1 cout « endl « "*** ELEVATOR S IMULATION BEGINS ***"

22 « endl « endl ;
23
24 bui lding . runS imulat ion (durat ion) ; II start s imulat i on
25
26 cout « ,,*** ELEVATOR S IMULATION ENDS ***" « endl ;
27
28 return 0 ;
29
30 II end main

Fig. 7.24 Elevator simulation.

1 II Fig . 7 . 2 5 : bui l ding . h
2 II Bui lding c la s s de f ini t ion .
3 #i fnde f BUI LDING_H
4 #def ine BUI LDING_H

Fig. 7.25 Building class header file. (Part 1 of 2.)

5 1 2 Classes: Part II

5
6
7
8
9

1 0

inc lude " e levator . h "
i nc lude " f loor . h "
inc lude " c lock.hn
inc lude " schedul er . h "

1 1 c l a s s Building {
1 2
1 3 pub l i c :
14 Bui lding () ;
1 5 - Bui lding () ;

II
//
II
II

Elevator c l a s s de f init ion
Floor class de f init ion
Clock class de f init ion
Scheduler c l a s s de f init ion

1/ constructor
II destructor

16 void runS imulat ion (int) ; /1 contro l s s imulation
17
1 8 private :
1 9 Floor f l oorl ;
20 Floor f l oor2 ;
2 1 El evator elevator ;
22 Clock c lock ;
23 Scheduler scheduler;
24
25 } ; II end c l a s s Bui lding
26
27 #end i f 1/ BUILDING_H

II floorl obj ect
II f loor2 obj ect
II elevator obj ect
// c lock obj ect
II scheduler obj ect

Fig. 7.25 Building class header fi le. (Part 2 of 2.)

Chapter 7

Figure 7 .26 shows the i mplementation fi le for c lass Bu i lding. Lines 1 2-20 define

the c lass ' s constructor. Its member- i nitial i zation l i st (l i nes 1 3- 1 6) cal l s the constructors for

several of the objects that compose class Bu i lding. Arguments Fl oor: : FLOORl and

Fl oor: : FLOOR2 (in l ines 1 3- 1 4) are constants defined in class Floor.

1 /1 Fig. 7.2 6 : bui lding.cpp
2 II Member- func t i on de f init ions for class Bui lding .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : cin;
7 us ing std : : endl ;
8
9 # inc lude " bui lding . h " // Bui lding class def inition

1 0
1 1 /1 const ructor
1 2 Bui lding : : Bui lding ()
1 3 f l oorl (Floor : : FLOOR1 , elevator) ,
1 4 f loor2 (Floor : : FLOOR2 , elevator) ,
1 5 e levator (f loorl , floor2) ,
1 6 scheduler (f loorl , floor2)
1 7
1 8 cout « " bui lding constructed" « endl ;
1 9
20 /1 end Bui lding constructor

Fig. 7.26 Building class implementation file. (Part 1 of 2.)

Chapter 7

21
22 // destructor
23 Bui lding : : - Bui lding (}
2 4 {
25 cout « " bu i l ding destructed" « endl ;
26
27 1/ end de s t ructor -Bui lding
28
29 /1 funct ion to control s imulat ion
30 void Bui lding : : runS imulat ion (int totalTime }
31 {
32 int current Time = 0 ;
33
34 whi l e (currentTime < total Time) {

Classes: Part II

35 c l ock.t ick (} ; 1/ increment t ime
36 currentTime = c lock . getTime (} ; // get new t ime
37 cout « " TIME : " « currentTime « endl ;
38
39 // proc e s s person arriva l s for currentTime
40 scheduler.proces sTime (currentTime } ;
41
42 II proc e s s elevator events for current Time
43 elevator.proces sTime (currentTime } ;
44
45 II wai t for Enter key pre s s , so user can view output
46 c i n.get (} ;
47
48 /1 end whi l e
49
50 // end funct ion runSimulat ion

Fig. 7.26 Building class implementation file. (Part 2 of 2.)

5 1 3

The primary functional i ty of c lass Bu i l ding i s i n its runSimu l a t i on member

function (l i nes 30-50), which loops until the spec ified amount of time has passed. On each

i teration, the Bu i lding i nstructs the c l ock to increment its time by one second by

sending c l ock the t i ck message (l ine 35) . Then the Bu i lding retrieves the t ime from

the c l ock by call ing member function get Time (l i ne 36) . The currentTime is then

sent via the proc e s sTime messages to the scheduler and the e l evator (l i nes 40

and 43, respectively). Finally, we add a call to c i n . g et (line 46) to allow the user to view
the simulation output, before pressing the Enter key to view the s imulation resul ts for the

next tick of the c lock. Note that
'
wi thout the c i n. i gnore statement at l i ne 1 7 in Fig. 7 .24,

the fi rst t ime the c i n. get statement executes, it would read the return character the user

typed to submit the s imulation length 10 the program and the loop would continue i mmedi

ately with i ts next iteration.

C lass C l ock (Fig . 7 .27-Fig . 7 .28) is not composed of any other objects . An object of

class C l ock can receive messages to increment t ime through member function t i ck.

The current t ime is made avai lable to other objects through member function getTime .

Notice that function getTime is const, because it does not modify an object of c lass

C l ock.

5 1 4

1
2
3
4
5
6
7
8
9

Classes: Part "

I I Fig. 7.2 7 : c lock . h
I I C lock class de f inition.
i fnde f CLOCK_H
#def ine CLOCK_H

c l a s s Clock {

public :
I I constructor
I I de structor

Chapter 7

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9

C lock () ;
-Clock () ;
void tick () ;
int getTime () const ;

I I increment c lock by one second
I I returns c l ock's current t ime

private :
int t ime ;

} ; I I end c l a s s C lock

#endi f I I CLOCK_H

F ig. 7.27 Clock class header file.

1 I I Fig . 7.2 8 : c lock.cpp

I I c lock's t ime

2 I I Member - func t i on de f init ions for class C l ock.
3 #inc lude < iostream>
4
5 using std : : cout ;
6 us ing std : : endl ;
7
8 # inc lude " c lock.h " I I Clock c l a s s de f init ion
9

1 0 I I constructor
1 1 C lock : : C lock ()
1 2 : t ime (0) I I ini t i a l i z e t ime to 0
13
1 4 cout « " c lock constructed" « endl ;
1 5
1 6 } I I end Clock const ructor
1 7
18 // de s tructor
19 C lock : : -C lock ()
20 {
2 1 cout « " c lock destructed" « endl ;
22
23 I I end destructor -Clock
24
25 1/ increment t ime by 1
26 void Clock : : t ick ()
27 {
28 t ime + + ;
29
30 // end function t ick

F ig. 7.28 Clock class implementation file. (Part 1 of 2.)

Chapter 7

3 1
3 2 I I return current t ime
33 int C l ock : : getTime() const
34 {
35 return t ime ;
36
37 II end funct ion getTime

Fig. 7.28 Clock closs implementation file. (Port 2 of 2.)

Classes: Part II 5 1 5

Class Schedu l e r (F ig . 7 .29) creates objects o f class Person at randomly generated

times and places these objects on the appropriate floors . The publ i c interface l i sts member

function proce s sTirne (l i ne 1 3) , which takes as its argument the current time. The

header fi le also l i sts several private uti l ity functions (which we discuss momentari ly) that

perform the tasks required by member function proc e s sTirne . These functions do not

appear in the UML diagram of Fig. 6 .25 ; rather, we create these functions as we i mplement

the class , to help d iv ide the scheduler' s tasks i nto more manageable pieces .

1
2
3
4
5
6
7
8
9

10
1 1
1 2
1 3
14
1 5
1 6
17
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32

II Fig . 7 . 29 : scheduler.h
I I Scheduler c lass de f init ion .
i fndef SCHEDULER_H
#de f ine SCHEDULER_H

c l a s s F loor ;

c l a s s Scheduler

pub l i c :
Scheduler (Floor & , Floor &) ;
- Scheduler () ;
void proc e s sTime{ int) ;

private :

II forward dec l arat ion

II const ructor
I I de s t ructor
I I set s cheduler ' s t ime

II schedule arrival to a f loor
void scheduleTime (const Floor &) ;

I I de lay arrival to a floor
void de l ayTime (const Floor &) ;

II create new person ; place on f loor
void createNewPerson{ Floor &) ;

I I handle person arrival on a f l oor
void handleArriva l s (Floor & , int) ;

int currentC lockTime ;

Floor & f l oorlRe f ;
Floor & f loor2Re f ;

Fig. 7.29 Scheduler closs header file . (Port 1 of 2.)

5 1 6 Classes: Part II

33 int f loorlArrivalTimei
34 int f l oor2ArrivalTimei
35
36 } i I I end c l a s s Scheduler
37
38 #endi f I I SCHEDULER_H

F ig. 7.29 Scheduler class header file. (Part 2 of 2.)

Chapter 7

Figure 7 . 30 shows the implementation fi le for c lass Scheduler. Member function

proce s sTime (l i nes 69-79) delegates most of its respons ib i l i t ies to smaller ut i l ity func

t ions with in the c lass . C lass Scheduler' s constructor (l i nes 1 7-29) first seeds the

pseudo-random-number generator (l ine 22) with a number based on the computer ' s current

system time. This causes the random-number generator to produce a different series of

numbers each time the program executes . The constructor then cal l s uti l i ty function

schedu l eTime (defined at l i nes 39-52) for each of the two floors (l i nes 26-27) . Thi s

member function calcu lates a pseudo-random arrival t ime (i n thi s case, a random number

i n the range 5 to 20, i nclusive) for the first Person object that the Schedu l e r creates on

each floor.

1 II Fig . 7 . 3 0 : scheduler . cpp
2 II Member-funct ion de f init ions for c l a s s Scheduler .
3 # inc lude < iostream>
4
5 using std : : couti
6 using std : : endli
7
8 # inc lude <new>
9 # inc lude < c stdlib>

1 0 # inc lude < c t ime >
1 1
1 2 # inc lude " scheduler . h " // Scheduler c l a s s de f in i t i on
1 3 # inc lude " f loor . h " // Floor c lass de f in i t i on
1 4 # inc lude " person . h " // Person c l a s s de f inition
1 5
1 6 /1 const ructor
1 7 Scheduler : : Scheduler (Floor & f i rstFloor , Floor & secondFloor)
1 8 currentClockTime (0) ,
1 9 f l oorlRef (f i r s tFloor) ,
20 f l oor2Ref (secondFloor)
2 1
22 s rand (t ime (0)) i // seed random number generator
23 cout « " scheduler constructed" « endli
24
25 // schedule f i rs t arriva l s for f l oor 1 and f l oor 2
26 scheduleTime (f l oorlRef) i
27 scheduleTime (f l oor2Ref) i
28
29 1/ end Scheduler constructor
30

Fig. 7 .30 Scheduler class implementation file. (Part 1 of 3.)

Chapter 7 Classes: Part II

I I de s t ructor
Scheduler : : - Scheduler ()
{

cout « " scheduler destructed" « endl ;

I I end Scheduler de structor

I I schedu l e arrival on a floor
void Scheduler : : scheduleTime (const Floor & f loor)
{

floor . getNumber () ; int f loorNumber
int arrival Time currentClockTime + (5 + rand () % 1 6) ;

f loorNumber == Floor : : FLOOR1 ?
f loor1ArrivalTime arrivalTime
f loor2ArrivalTime = arrivalTime ;

cout « " (scheduler schedules next person for f l oor "
« f loorNumber « " at t ime " « arrivalTime « .).
« endl ;

} II end funct ion scheduleTime

I I reschedule arrival on a f loor
void Scheduler : : de layTime (const Floor & f l oor
{

int f loorNumber f loor . getNumber () ;

int arrival Time (f loorNumber == Floor : : FLOOR1
+ + f l oor1ArrivalTime : + + f l oor2ArrivalTime ;

cout « " (scheduler delays next person for f l oor "

?

5 1 7

3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1
82
83

« f loorNumber « " unt i l t ime " « arrivalTime « .) .
« endl ;

} II end funct ion delayTime

II give t ime to scheduler
void Schedu l er : : processTime (int t ime)
{

currentC lockTime = t ime ; I I record t ime

I I handle arriva l s on floor 1
handl eArriva l s (f loor1Re f , currentClockTime) ;

I I handle arriva l s on floor 2
handleArriva l s (f loor2Ref , currentClockTime) ;

I I end funct ion proc e s sTime

I I create new person and place it on spec i f ied f l oor
void Scheduler : : createNewPerson (Floor & f loor)
{

Fig. 7.30 Scheduler class implementation file, (Part 2 of 3,)

5 1 8

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
1 06
107
108
109
110
111
112
113
114
115
116
117
1 1 8
119

Classes: Part II

int de stinationFloor =

f loor . getNumber () = = Floor : : FLOORl ?
Floor : : FLOOR2 : Floor : : FLOOR1 ;

II create new person

Chapter 7

Person *newPersonptr = new Person (de st inat ionFloor) ;

cout « " scheduler creates person "
« newPersonPt r - >get ID () « endl ;

II place person on proper floor
newPersonPtr - > stepOntoFloor (floor) ;

scheduleTime (f loor) ; // schedule next arrival

/1 end funct i on createNewPerson

I I handl e arriva l s for a speci f ied f loor
void Scheduler : : handleArrivals (Floor & f loor , int t ime)
{

int f loorNumber floor . getNumber () ;

int arrival Time (floorNumber == Floor : : FLOORl ?
f l oor lArrivalTime : floor2ArrivalTime ;

i f (arrivalTime == time)

i f (f loor . i sOccupied ()
de layTime (floor) ;

e l s e
creat eNewPerson (floor) ;

I I end outer i f

} II end funct ion handleArrivals

I I i f f l oor occupi ed ,
II de l ay arrival

II otherwi se ,
II create new person

Fig. 7.30 Scheduler class implementation file. (Part 3 of 3.)

I n our s imulation, the building updates the scheduler every second with the cur
rent time v ia the scheduler's proc essTime member function (l ines 69-79) . The
sequence diagram in Fig. 4.27 modeled the sequence of activit ies that occur in response to

the proce s sTime message, and our implementation reflects thi s mode l . When member

function proc e s sTime i s invoked, l i nes 74 and 77 cal l uti l ity function handle

Arrivals (l ines 1 02- 1 1 9) for each floor. This uti l ity function compares the current

t ime (as provided by bui l ding) to the next scheduled arrival t ime for the given floor

(l ine 1 09) . If the current time matches the arrival time for thi s floor, and if a person cur

rently occupies a floor (l ine I l l) , l i ne 1 1 2 cal l s uti l ity function delayTime to de lay the

next scheduled arrival by one second. If a person does not occupy the floor, the sched

uler invokes uti l i ty function c reateNewPerson (l i ne liS), which creates an obj ect of

c lass Per son by using the new operator (line 89) . The scheduler then sends thi s obj ect

of c lass Per son the s t epOntoFloor message (l ine 95) . Once the person has stepped

Chapter 7 Classes: Part II 5 1 9

onto the floor, the scheduler cal l s ut i l i ty function schedu l eTime (l ine 97) to deter

mine the next t ime the scheduler should create a person.

We have examined the i mplementation for a l l the c lasses that compose the control ler

port ion of the s imu lation; we now examine the c lasses that compose the model portion of

the s imulat ion . Class Bel l (Fig . 7 . 3 1) , l i ke c lass C l ock, i s not composed of other objects .

C lass Be l l ' s publ ic interface consists of a constructor, a destructor and member function

ringBel1. The implementations of these functions (Fig . 7 . 32) output messages to the

screen .

1 / / Fig . 7 . 3 1 : be l l.h
2 // Be l l c l a s s de f inition .
3 # i fnde f BELL_H
4 #de f ine BELL_H
5
6 c l a s s Be l l
7
8 publ i c :
9 Be11 () ;

1 0 -Be11 () ;
1 1 void ringBe l l () const ;
1 2
1 3 } ; // end c l a s s Bel l
1 4
1 5 #endi f /1 BELL_H

Fig. 7.3 1 Bell class header file.

1 I I Fig . 7 . 3 2 : be l l . cpp

II constructor
/1 de structor
/1 ring the be l l

2 I I Member-funct i on def initions for cla s s Bel l .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 #inc lude " be l l.h " // Bell c l a s s de finit ion
9

1 0 /1 constructor
1 1 Be11 : : Be l l ()
1 2 {
1 3 cout « " be l l const ructed " « endl ;
1 4
1 5 } I I end Bel l constructor
1 6
1 7 // de s t ructor
1 8 Be l l : : -Be l l ()
1 9 {
20 cout « " be l l des t ructed" « endl;
2 1
22 } II end des t ructor -Be l l
23

Fig. 7.32 Bell class implementation file . (Part 1 of 2.)

520 Classes: Part II

24 I I ring bel l
2 5 void Be l l : : ringBe l l () const
26 {
27 cout « " e levator rings its bel l " « endl ;
28
29 } II end funct ion ringBel1

Fig. 7 .32 Bell class i mplementation file. (Part 2 of 2.)

Chapter 7

Class Light (Fig . 7 . 3 3-Fig . 7 . 34) exposes two member functions, a constructor and

a destructor i n its publ ic interface. Member function turnOn turns on the l ight by sett ing

data member on to t rue (F ig . 7 . 34, l i nes 29-38) . Member function turnO f f (Fig . 7 . 34,

l i nes 4 1 -50) turns off the l ight off by sett ing data member on to f al s e .

II Fig. 7 . 3 3 : l ight.h
II Light c las s def i nition.
i fndef LIGHT_H
#def ine LIGHT_H

c lass Light {

pub l i c :

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1

Light (int) ;
-Light () ;

II constructor
II destructor

void turnOn () ;
void turnOff () ;

II turns light on
II turns light o f f

private :
bool on ;
const int floorNumber;

} ; II end c l a s s Light

#endif II LIGHT_H

Fig. 7 .33 Light class header f i le.

1 II Fig. 7 . 3 4 : l i ght.cpp

II t rue if on; f a l se i f o f f
II f l oor number that contains light

2 II Member- funct ion def init ions for c l a s s Light .
3 # inc lude < iostream>
4
5 using std : : cout ;
6 using std : : endl ;
7
8 # inc lude " l ight.h " II Light class de finition
9

1 0 II constructor
1 1 Light : : Light (int number
1 2 one false) ,
1 3 f l oorNumber (number

Fig. 7 .34 Light class implementation file. (Part 1 of 2.)

Chapter 7 Classes: Part II

1 4
1 5 cout « " f loor " « f loorNumber « " l i ght constructed "
1 6 « endl ;
1 7
1 8 } II end Light constructor
1 9
20 I I destuctor
21 Light : : -Light ()
22 {
23 cout « " f loor " « f loorNumber
24 « " l i ght destructed" « endl ;
25
26 } II end de s t ructor -Light
27
28 I I turn l i ght on
29 void Light : : turnOn ()
30 {
3 1 if (Ion) { I I i f light not on , turn i t on
32 on = t rue ;
33 cout « " f loor " « floorNumber
34 « " l i ght turns on " « endl ;
35
36 } II end i f
37
38 } II end funct ion turnOn
39
40 II turn l i ght o f f
4 1 void Light : : turnOf f ()
42 {
43 i f (on) { II i f l i ght i s on, turn it o f f
44 on = false ;
45 cout « " f loor " « f loorNwnber
46 « " l i ght turns of f " « endl ;
47
48 II end i f
49
50 } I I end funct ion turnOff

Fig. 7.34 Light class i mplementation f i le . (Part 2 of 2.)

52 1

C lass Door (Fig . 7 .35-Fig. 7 .36) plays an i mportant role i n our e levator s imulation .

The door object signal s the e levator passenger to leave and s ignals the person who waits

on the floor to enter the e l evator. Class Door member function openDoor (Fig. 7 . 36,

l i nes 29-54) enables these events to occur. Member function openDoor takes four argu

ments . The first i s a pointer to the object of c lass Person that occupies the e l evator.

The second i s a pointer to the object of c lass Person that waits on the floor. The remain ing

arguments are references to objects of c lass Fl oor and class El evator, respective ly .

An El evat o r i s composed of several objects, one of which i s a Door; to i mplement

this composit ion, the header f i le for c lass E l evator must contai n the l i ne

#inc lude " door.h "

Class Door uses a reference to an object of class Elevator (F ig . 7 . 3 5 , l i ne 17) . To use

this reference, class Door could inc lude the header fi le for class E l evator with the l i ne

522

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25

Classes: Part II

II F ig. 7 . 3 5 : door . h
II Door c l a s s de f inition.
i fnde f DOOR_H
#def ine DOOR_H

c l a s s Person ;
c l a s s Floor ;
c l a s s Elevator ;

c la s s Door {

publ i c :
Door () ;
-Door () ;

1/ forward dec laration
II forward dec laration
// forward dec laration

// constructor
// de structor

void openDoor (Person * const ,
Person * const , Floor & , El evator &) ;

void c loseDoor (const Floor &) ;

private :
bool open ; // open or c losed

} ;

#endi f II DOOR H

Fig. 7.35 Door class header file .

inc lude " e levator.h "

Chapter 7

/1 opens door

1/ c loses door

Thus, the header fi le for class Elevat or would include the header fi le for c lass Door and

vice versa. Some preprocessors would not be able to resolve such #include directives

and would produce a fatal error because of this circular include problem.

Rather than inc luding the entire El evator header fi le , we place only a forward dec

laration of c lass Elevat or i n the header fi le for class Door (Fig . 7 . 3 5 , l ine 8) . The for

ward declaration sign ifies that the header fi le contai ns pointers or references to objects of

c lass El evat or, but that the defin ition of c lass Elevator l ies outside the header fi le .

Notice that we a l so make forward declarations to c lasses Person and Floor (l i nes 6-7) ,

so we may use these c lasses in the prototype for member function openDoor.

Figure 7 .36 lists the implementation file for class Door. In lines 9-11, we include the

header files for c lasses Person, Floor and Elevator. These #include directives

correspond to our forward declarations in the Door header file . The included header files

contain the function prototypes needed to invoke the member functions of these c lasses .

1 /1 Fig . 7 . 3 6 : door . cpp
2 /1 Member-function def initions for cla s s Door .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;

Fig. 7.36 Door class implementation file. (Part 1 of 3.)

Chapter 7 Classes: Part II

7
8
9

inc lude "door . h"
inc lude "pe rson . h"
#inc lude "fl oor . h"
inc lude "elevator.h"

I I constructor
Door : : Door ()

1/ Door c l a s s de f inition
I I Person c lass de f init ion
1/ Floor c l a s s de f init ion
1/ Elevator c l a s s de f init ion

: open (false II initiali z e open to f a l s e
{

cout « "door constructed" « endl ;

} I I end Door constructor

I I des t ructor
Door : : -Door ()
{

cout « "door destructed" « endl ;

} I I end des t ructor -Door

I I open the door
void Door : : openDoor (Person * const pas sengerPtr,

Person * const nextPas sengerPtr, Floor ¤tF loor,
Elevator &elevator)

i f (!open) { I I i f door i s not open, open door
open = true ;

cout « "elevator opens i t s door on f loor "
« currentFloor.getNumber () « endl ;

I I i f passenger i s in elevator, te l l per son t o leave
i f (passengerPtr != 0) {

523

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59

passengerPtr - > exitElevator (currentF loor, e l evator) ;
delete pas s engerPtr ; I I passenger leaves s imulat ion

} I I end i f

I I i f passenger wait ing to enter e levator,
I I t e l l passenger to enter
if (nextPassengerPtr != 0

next Pas sengerPtr - >enterElevator (
e levator, current Floor) ;

I I end outer i f

I I end funct ion openDoor

I I close the door
void Door : : c loseDoor (const Floor ¤tFloor)
{

i f (open) { I I i f door i s open, c lose door

Fig. 7.36 Door closs implementation f i le. (Port 2 of 3 .)

524 Classes: Part II

60 open = false ;
6 1 cout « " el evator closes i t s door on f l oor "
62 « currentFloor . getNumber () « endl ;
63
64 } I I end i f
65
66 } I I end function c loseDoor

Fig. 7 .36 Door class i mplementation file. (Part 3 of 3.)

Chapter 7

When member function openDoor (l i nes 29-54) i s cal led, i t fi rst determines whether

the door already i s open . If i t is not open, the door determines whether the pointer to the

person on the e l evator (pa s s engerPtr) i s zero (l ine 40) . If thi s pointer is nonzero,

then a passenger is i n the e l evator and needs to exit. The exi tEl evator message

(l i ne 4 1) notifies the person to exit the e l evat or. The door deletes (v ia the de l e t e

operator) the Person object that was riding the e l evator (l ine 42) . Thi s removes the

person from the s imulat ion .

Once the passenger has exi ted the e l evat or, the door determines whether the

pointer to the Person object wait ing on the floor (next Pa s s engerpt r) i s not equal to

zero (l i ne 48) . If so, a person is waiting to enter the e l evat or. The person enters the

e l evator by cal l i ng member function ent erElevator of c lass Person (l i nes 49-

50). Door member function c l o s eDoor (l ines 57-66) c loses the Door if it i s open .

Person objects use an object of c lass El evat orBu t t on (F ig . 7 . 37-Fig . 7 . 3 8) to

start the e l evator moving to the other floor. Member function pres sBu t t on

(F ig . 7.38 , l i nes 28-35) first sets the elevator button ' s pre s sed attribute to t rue, then

sends the prepareToLeave message to the e l evat or. Member function re s e t

But t on (l i nes 38-42) sets the pre s s ed attribute to f a l s e.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9

I I Fig. 7 . 3 7 : e l evatorButton.h
I I ElevatorButton c l a s s def init ion .
i fnde f ELEVATORBUTTON_H
#de f ine ELEVATORBUTTON_H

c l a s s Elevator ; I I forward dec larat ion

c l a s s E levatorButton

public :
ElevatorBut ton (Elevator &) ;
-ElevatorBut ton () ;

void pres sButton () ;
void resetButton () ;

private :
bool pres sed ;

I I constructor
I I de s t ructor

I I pres s the button
I I reset the button

I I state of button

Fig. 7 .37 ElevatorButton class header file. (Part 1 of 2.)

Chapter 7 Classes: Part II

20 II reference to elevator containing thi s but ton
2 1 Elevator &elevatorRe f ;
22
23 } ; II end c l a s s El evatorButton
24
25 #endi f II ELEVATORBUTTON_H

Fig. 7 .37 ElevatorButton class header file. (Part 2 of 2.)

1 II Fig . 7 . 3 8 : e levatorButton.cpp :
2 II Member-funct ion def init ions for c l a s s ElevatorButton .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7

525

8 #inc lude " e levatorButton.h " II ElevatorButton c l a s s def in i t i on
9 #inc lude " el evator.h " /1 Elevator c l a s s de f init ion

1 0
1 1 II constructor
1 2 ElevatorButton : : ElevatorBut ton (Elevator &el evatorHandle)
1 3 pre s sed (false) ,
1 4 e levatorRef (elevatorHandle)
1 5 {
1 6 cout « " e levator button constructed" « endl ;
1 7
1 8 } /1 end ElevatorButton constructor
1 9
20 II de s t ructor
21 ElevatorButton : : -ElevatorButton ()
22 {
23 cout « " elevator button destructed " « endl ;
24
25 } II end des tructor -ElevatorButton
26
27 II pre s s but ton and s i gnal elevator to prepare to leave f loor
28 void ElevatorButton : : pre ssButton ()
29 {
30 pre s sed = true ;
3 1 cout « " elevator button tel l s elevator t o prepare t o leave "
32 « endl ;
33 e l evatorRe f . prepareToLeave (t rue) ;
34
35 II end funct i on pre s s Button
36
37 II reset button
38 void ElevatorButton : : resetButton ()
39 {
40 pre s sed = false ;
4 1
42 } 1/ end funct ion resetButton

Fig. 7 .38 ElevatorButton class implementation file .

526 Classes: Part II Chapter 7

Class Fl oorButton (Fig . 7 . 39-Fig . 7 .40) exposes the same member functions as

class El evat orButton through its publ ic i nterface. Member function pre s sBu t t on

summons the e l evator via the swmnonElevator message. Member function

r e s e tBut t on resets a floor button.

I I F i g. 7.3 9 : f l oorButton . h
I I F loorButton c l ass de f inition.
i fndef FLOORBUTTON_H
#de f ine FLOORBUTTON_H

1
2
3
4
5
6
7
8
9

c l ass Elevator ; I I forward dec larat ion

c l a s s FloorButton {

public :
FloorButton (int , Elevator &) ;

-FloorButton () ;
I I constructor
I I destructor

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27

void pressButton () ;
void resetButton () ;

I I press the button
I I reset the but ton

private :
const int floorNumber;
bool pressed ;

I I button's f loor number
II button state

I I reference to elevator used to summon
I I e levator to f l oor
Elevator &elevatorRe f ;

} ; I I end c l ass F loorButton

#end i f I I FLOORBUTTON_H

Fig. 7 .39 FloorButton class header f i le.

1 I I Fig . 7.4 0 : f l oorButton . cpp
2 I I Member-funct ion def init ions for class FloorButton.
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 using std : : endl ;
7
8 # inc lude " f loorButton.h "
9 # inc lude " el evator.h "

1 0
1 1 I I constructor
1 2 FloorButton : : FloorButton (int floor , Elevator &elevatorHandle)
1 3 f l oorNumber (f loor) ,
1 4 pressed (false) ,
1 5 e levatorRe f (elevatorHandle
1 6 {

Fig. 7 .40 FloorButton class implementation fi le. (Part 1 of 2.)

Chapter 7 Classes: Part II

1 7 cout « " f loor " « floorNumber « n button constructed"
1 8 « endl ;
1 9
20 } II end FloorButton constructor
2 1
2 2 II destruc tor
23 FloorButton : : -FloorButton ()
24 {
25 cout « "floor " « floorNumber « " button de structed"
26 « endl ;
27
28 } II end des t ructor -FloorButton
29
30 II pre s s the button
3 1 void FloorButton : : pre s s Button ()
32 {
33 pre s sed = true ;
34 cout « "f loor " « floorNumber
35 « " button swmnons e levator" « endl ;
36
37 II c a l l e levator to thi s f loor
38 e l evatorRe f . swmnonE levator (f loorNumber) ;
39
40 } II end funct i on pre s s Button
4 1
4 2 II reset button
43 void FloorButton : : resetButton ()
44 {
45 pre s sed = f a l s e ;
46
47 II end funct ion resetButton

Fig. 7 .40 FloorButton class implementation file. (Part 2 of 2.)

527

The header fi le for c lass Elevator (Fig . 7 AI) i s the most complex in our s i mu lat ion .

C lass Elevator exposes five member functions, a constructor and a destructor i n i ts

publ ic interface . Member function processTime (l ine 2 1) al lows the bu i ld ing to send the

updated clock t ime to the elevator. Member function swnmonElevat o r (l ine 1 9)

al lows a P e r s on object to send a message to the elevator to request i ts serv ice .

Member functions passengerEnters (l i ne 22) and pa s sengerExi t s (l i ne 23)

enable passengers to enter and exit the elevator. Member function prepareToLeave

(l i ne 20) enables the elevator to perform any necessary tasks (e . g . , c los ing the door,

turning off the l ight) before the elevator begins moving to another floor. We declare

object el evat orButton (l i ne 27) as public, so that an obj ect of c lass Person can

access the elevat orBu t t on directly. A person does not in teract with the bell or the

door. Therefore, we declare the door (l i ne 56) and bell (l i ne 5 7) obj ects i n the pri vate

section of the c lass defin i t ion .

Lines 32-35 declare ut i l ity functions. Class Elevator also dec lares three private

s t a t i c con s t constants (l i nes 39-41) . We declare these constants as s t a t i c, because

they contain information that al l objects of c lass Elevator share . Note that these con

stants are in i t ia l ized at fi le scope in l i nes 1 4- 1 6 of Fig. 7A2.

528

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53

Classes: Part II Chapter 7

II F i g . 7 . 4 1 : e l evator . h
I I E levator c l a s s def init ion .
i fnde f ELEVATOR_H
#de f ine ELEVATOR_H

#inc lude "elevatorButton . h"
inc lude "door . h"
inc lude "be l l . h"

class Floor ; I I forward dec larat ion
c l ass Person ; I I forward dec larat ion

c l ass Elevator {

pub l i c :
Elevator (Floor & , Floor &) ;
-Elevator () ;

II const ructor
II des t ructor

void swmnonElevator (int) ; II reques t to
void prepareToLeave (bool) ; II prepare to

service floor
leave

void processTime (int) ; II give current t ime to elevator
void pas sengerEnters (Person * const) ; I I board a passenger
void pas sengerExit s () ; II exit a pas senger

II public obj ect acces s ible to c l i ent code with
II access to Elevator obj ect
E levatorButton elevatorButton ;

private :

I I ut i l ity funct ions
void processPo s s ibleArrival () ;
void processPo s s ibleDeparture () ;
void arriveAtFloor (Floor &) ;
void move () ;

I I static constants that represent t ime required to t rave l
I I between f l oors and directions of the e l evator
stat i c const int ELEVATOR_TRAVEL_TIME ;
stat i c const int UP ;
stat ic const int DOWN ;

I I dat a members
int currentBu i ldingC lockTime ; II current t ime
bool moving ; I I elevator state
int di rect ion ; II current direct ion
int currentFloor ; II current locat ion
int arrival Time ; II t ime to arrive at a floor
bool floor1NeedsService ; II f loor1 service flag
boo 1 floor2NeedsService ; I I floor2 service f l ag

Floor &floor1Ref ; II reference to f loor1
Floor & f loor2Re f ; I I reference to floor2

Fig. 7 . 4 1 Elevator class header f i le. (Part 1 of 2.)

Chapter 7

54 Person *pas s engerPtr;
55
56 Door door;
57 Be l l be l l;
58
59 } ; II end c l a s s Elevator
60
61 #endi f II ELEVATOR_H

Classes: Part II

II pointer to pas s enger

II door obj ect
I I bel l obj ect

Fig. 7.4 1 Elevator class header fi le. (Part 2 of 2.)

529

Lines 44-50 of the El evator header fi le contain addit ional private data members.

Note that l ines 52-53 declare reference handles to the objects of class Fl oor, whereas l i ne

54 declares a pointer for the passenger object. We use a poi nter for the passenger object,

because this handle changes every time an object of class Person enters or leaves the e l e

vator. We prefer reference handles for the objects of class Floor, because each handle

always refers to the same floor.

Throughout this des ign process, we used the UML to model many of the acti vi t ies and

col laborat ions assoc iated with c lass El evator (see Fig. 3 . 3 1 , Fig. 3 . 32 and Fig. 5 . 3 5) .

Figure 7 .42 provides class El evat or's implementation o f these models. The E l evator

constructor has an extens ive member i n it ial izer l i st (l ines 20-30) . Recal l from Fig. 7 . 3 7

that a n object o f c lass El evat orButton requ i res a handle t o a n object o f c lass E l e

vator as an argument to its constructor. We provide thi s handle i n our member in i t ia l iza

t ion l i st by dereferencing the e l evator's thi s pointer (l ine 20) . 3

The El evator destructor (l ines 37-42) uses the de l e t e operator to rec lai m

memory from the pas s engerPtr data member. We inc lude thi s l i ne so our program can

release memory if the elevator has a passenger at the t ime the s imu lat ion terminates.

Al though i t i s not necessary to release the memory in thi s way when the program ends, it

is a good practice to explicit ly delete any memory that the program creates wi th operator

new. If the elevator has a passenger, data member pa s s engerPtr points to an object of

c lass Person. Tn thi s case, the memory for that object is recla imed. I f the elevator does

not have a passenger, then pa s s engerPt r has the value O. When a program uses the

de l e t e operator on a 0 (nu l l) poi nter, the program does not perform any action for that

i n struction and i nstead moves on to the next instruct ion ; this is often referred to as a "no

op" (no operat ion) .

The bu i lding i nvokes member function proc e s sTime (l i nes 45-59) o f c lass

El evator, pass ing as a parameter the current s imulat ion t ime . Thi s member function

updates the currentBu i l dingC lockTime data member with the current s imulat ion

t ime (l ine 47) , then checks the value of the moving data member (l i ne 49) . I f the e l e

vator is movi ng, l i ne 50 invokes its proc e s sPos s ib l eArriva l uti l i ty function . If

the e l evator i s not moving, l i ne 53 invokes ut i l i ty function proc e s s P o s s i bl e

Departure . I f the e l evator determines that i t does not need t o move, l i nes 55-57

3 . Some compi lers generate a warn ing on th is l i ne , because the e l evator obj ect has no t ye t been
in i t ial i zed. However, the address of the object has been determ ined by the compi ler at th is poi nt ,
which i s the only information that the El evatorButton constructor requ i res for i n i t ia l ization .

530 Classes: Part II Chapter 7

output a message to the screen indicating that the elevator is at rest on the current

F l oor.

Function proc e s s P o s s ibl eArri va l (l ines 62-89) determines whether the

e l evator should stop moving by comparing the currentBu i ldingC lockTime to

the calculated arrival Time (l ine 65) . If it i s t ime for the e l evator to arrive at a par

t icu lar floor, the e l evator updates currentFloor (l ines 67-69) and d i rec t i on

(l i nes 7 1-72) . Then l i nes 78-79 cal l uti l ity function arri veAt Fl oor to perform the nec

essary tasks upon arrival (e .g . , r ing be l l , open door) .

Uti l i ty function proc e s sPoss ibl eDeparture (l i nes 92- 1 16) determines

whether the e l evator should move to another floor. Lines 95- 102 decide which floor

needs the e l evator's service. If the current floor needs serv ice, the e l evator calls i ts

arri veAt Floor uti l ity function for the current floor (l i nes 106- 107) . I f the other floor

needs service, the e l evator cal l s its prepareToLeave uti l ity function (l ine 1 14) and

moves to the other floor.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34

I I Fig . 7 . 4 2 : e l evator . cpp
I I Member- func t i on def init ions for class Elevator .
inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

inc lude "el evator . h"
inc lude "person . h"
inc lude "floor . h"

I I Elevator class de f init ion
I I Person class de finit ion
I I Floor class de f init ion

I I constant s that repre sent t ime required to t rave l
I I between f loors and direct ions of the e l evator
const int Elevator : : ELEVATOR_TRAVEL_TIME = 5 ;
const int Elevator : : UP = 0 ;
const int Elevator : : DOWN = 1 ;

I I const ructor
Elevator : : Elevator (Floor &fi rstFloor , Floor & secondFloor)

elevatorButton (* thi s) ,

{

currentBuildingC lockTime (0) ,
moving (false) ,
direct ion (UP) ,
currentFloor (Floor : : FLOORl) ,
arrivalTime (0) ,
floor lNeedsService (false) ,
floor2NeedsService (fal se) ,
floorlRef (firstFloor) ,
floor2Ref (secondFloor) ,
pas sengerPt r (0)

cout « "elevator constructed" « endl ;

I I end Elevator constructor

Fig. 7 .42 Elevator class implementation file . (Part 1 of 5.)

Chapter 7 Classes: Part I I

35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
7 7
78
79
80
8 1
82
83
84
85
86
87

II de s t ructor
Elevator : : -Elevator ()
{

delete pas sengerPt r ;
cout « "el evator destructed" « endl ;

} I I end destructor -Elevator

II give t ime to e l evator
void Elevator : : proc e s sTime (int t ime
{

currentBui ldingC lockTime t ime ;

i f (moving) II e levator i s moving
proc e s sPo s s ibleArrival () ;

e l s e II elevator i s not moving
proce s sPos s ibleDeparture () ;

i f (! moving)
cout « "elevator at rest on f loor "

« current Floor « endl ;

} II end funct ion processTime

II when e l evator i s moving , determine i f it should stop
void Elevator : : proces sPoss ibleArrival ()
{

II i f e l evator arrives at dest inat ion f loor
if (currentBui ldingC lockTime = = arrival Time) {

currentFloor = II update current f loor
currentFloor = = Floor : : FLOORl ?
Floor : : FLOOR2 : Floor : : FLOORl) ;

direct ion = II update direc t i on
current Floor = = Floor : : FLOORl ? UP

cout « "el evator arrive s on f l oor "
« current Floor « endl ;

DOWN) ;

II proc e s s arrival at current Floor
arriveAt Floor (current Floor = = Floor : : FLOORl ?

floor lRef : floor2Ref) ;

return ;

II end i f

II e l evator s t i l l moving
cout « "elevator moving "

« (direction = = UP ? "up" : "down") « endl ;

Fig. 7 .42 Elevator class implementation file. (Part 2 of 5.)

53 1

532

88
89
90
9 1
92
93
94
95
96
97
98
99
1 00
1 0 1
1 02
1 03
1 04
1 05
1 06
1 07
1 08
1 09
1 1 0
I I I
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7
1 1 8
1 1 9
1 20
1 2 1
1 22
1 23
1 24
1 25
1 26
1 27
1 28
1 29
1 30
1 3 1
1 32
1 33
1 34
1 35
1 36
1 37
1 38

Classes: Part I I

} I I end funct ion proces sPossibleArrival

I I determine whether elevator should move
void E levator : : proces sPo s s ibl eDeparture ()
{

I I thi s f loor needs service?
bool currentFloorNeedsService

current Floor = = Floor : : FLOORl ?
f loorlNeedsService : floor2Needs Service ;

I I other f loor needs servic e ?
bool otherFloorNeedsService =

currentFloor = = Floor : : FLOORl ?
f loor2NeedsService : floorlNeeds Servi c e ;

I I service thi s f loor (i f needed)
i f (currentFloorNeedsService) {

arriveAtFloor (currentFloor
f loorlRe f : f l oor2Ref) ;

return ;

I I service other f l oor (i f needed)
i f (otherFloorNeedsService)

prepareToLeave (true) ;

Floor : : FLOORl ?

} I I end func ti on proce s sPo s s ibleDeparture

I I arrive at a part icular f loor
void E l evator : : arriveAtFloor (Floor& arrivalFloor)
{

moving = false ; I I reset state

cout « " el evator resets its button " « endl ;
e l evatorButton . re setButton () ;

be l l . ringBe l l () ;

II not i fy floor that e l evator has arrived

Chapter 7

Person * f loorPersonPtr = arrivalFloor . e levatorArrived () ;

door . openDoor (
pas sengerPtr , floorPersonPt r , arrivalFloor , *thi s) ;

I I thi s f loor needs service?
bool currentFloorNeedsService

current Floor = = Floor : : FLOORl ?
f l oorlNeedsService : f loor2NeedsServic e ;

Fig. 7 .42 Elevator class implementation file . (Part 3 of 5.)

Chapter 7 Classes: Part I I

/ / other f loor needs servic e ?
bool otherFloorNeedsService =

currentFloor = = Floor : : FLOORl ?
f loor2NeedsService : f l oorlNeedsService ;

/ / i f thi s f l oor doe s not need service
1/ prepare to leave for the other f l oor
if (! currentFloorNeedsService)

prepareToLeave (otherFloorNeeds Servi ce) ;

e l s e / / otherwi s e , reset service f l ag

533

1 39
1 40
1 4 1
1 42
1 43
1 44
1 45
1 46
1 47
1 48
1 49
1 50
1 5 1
1 52
1 53
1 54
1 55
1 56
1 57
1 58
1 59
1 60
1 6 1
1 62
1 63
1 64
1 65
1 66
1 67
1 68
1 69
1 70
1 7 1
1 72
1 73
1 74
1 75
1 76
1 77
1 78
1 79
1 80
1 8 1
1 82
1 83
1 84
1 85
1 86
1 87
1 88
1 89
1 90
1 9 1

current Floor == Floor : : FLOORl ?
f l oorlNeedsService = false : f l oor2Needs Service f a l s e ;

} / / end funct i on arriveAtFloor

/ 1 reques t service from elevator
void E l evator : : summonElevator (int f loor
{

/ / set appropriate servic ing f l ag
f loor = = F loor : : FLOORl ?

f loorlNeedsService = true f l oor2NeedsService t rue ;

} / / end funct ion summonElevator

/ / accept a pas s enger
void E l evator : : pas sengerEnters (Person * const personPtr)
{

1 / board pas senger
pas sengerPtr = personPt r ;

cout « " person " « pas s engerPtr- >get ID ()
« .. enters e levator from f l oor ..
« currentFloor « endl ;

} / / end funct ion pas sengerEnters

II not i fy e l evator that pas senger i s exit ing
void E l evator : : pas sengerExit s ()
{

passengerPtr = 0 ;

/ 1 end funct i on pas s engerExits

// prepare to leave a f l oor
void E l evator : : prepareToLeave (bool leaving
{

/ / get reference to current f loor
Floor &thi sFloor =

currentFloor = = Floor : : FLOORl ? f loorlRe f

II not i fy f loor that elevator may be leaving
thi sFloor . el evatorLeaving () ;

Fig. 7 .42 Elevator class implementation fi le. (Part 4 of 5 .)

f loor 2 Re f ;

534

1 92
1 93
1 94
1 95
1 96
1 97
1 98
1 99
200
20 1
202
203
204
205
206
207
208
209
2 1 0
2 1 1
2 1 2
2 1 3
2 1 4
2 1 5
2 1 6

Classes: Part II

door . closeDoor (thi sFloor) ;

i f (l eaving
move () ;

II leave , i f neces sary

} II end funct ion prepareToLeave

II go to other f l oor
void E levator : : move ()
{

moving = true ; II change state

II schedule arrival t ime
arrivalTime = currentBui ldingC lockTime +

ELEVATOR_TRAVEL_TIME ;

cout « " el evator begins moving "
« (direct ion DOWN ? " down " :
« " to f l oor "
« (direct i on DOWN ? ' 1 ' : ' 2 '

" up

« " (arrive s a t t ime " « arrivalTime
« endl ;

} II end funct ion move

Fig. 7 .42 Elevator class i mplementation f i le. (Part 5 of 5.)

Chapter 7

")

« ') ,

Uti l i ty function arriveAt Floor (l ines 1 1 9- 1 5 3) performs a l l tasks for the e l e

vator upon arrival a t a part icular floor. This ut i l ity function first stops the e l evator by

sett ing the moving member variable to f a l s e (l i ne 1 2 1) , then resets the e l evator

But t on (l i ne 1 24) and ri ngs the be l l (l i ne 1 26) . Line 1 29 declares a temporary pointer

to an object of c lass Person, which stores a handle to a Per son object that might be

wait ing on the floor. Thi s poi nter receives the return value of the cal l to the floor's e l e

vatorArrived member function.

The e l evator opens i ts door by cal l ing member function openDoor of c lass Door

passing as parameters handles to the current passenger, to the person wait ing on the floor, to

the floor on which the e l evator has arrived and to the e l evator itself (l i nes j 3 1 - 1 32) .

The e l evator again determines whether either floor needs service (l ines 1 35- 1 42). If the

current floor does not need service, the elevator prepares to leave for the other floor (l ine

1 47) . The e l evator leaves if the other floor needs service; otherwise, the e l evat or

resets the service flag for the current floor (l ines 1 50-- 1 5 1) .

Member function swmnonEl evator (l ines 1 56- 1 62) al lows other objects (i .e . , the

Fl oorBu t t on objects) to request serv ice from the e l evator. When i nvoked, sum

monEl evator takes a floor number as an argument and sets the appropriate service flag

to t rue (l i nes 1 59- 1 60) .

Member function pas s engerEnt ers (l ines 1 65- 1 74) takes a s a n argument a

pointer to an object of class Person and updates the e l evator's pas s enge r P t r

handle to po int to the new passenger (l ine 1 68) . Member function pa s s engerExi t s

Chapter 7 Classes: Part I I 535

(l i nes 1 77- 1 8 1) sets the pas s engerPtr handle to zero, thus i ndicating that the passenger

has left the e l evat or.

Member function prepareToLeave (1 84- 1 98) takes an argument of type bool

that i ndicates whether the e l evator should leave the current floor. The e l evator noti

fies the current floor of the e l evator ' s departure by sending the floor an e l evat or

Leaving message (l ine 1 9 1) . The e l evator closes i ts door (l ine 1 93) , then determines

whether i t should leave the floor (l i ne 1 95) . I f the e l evator should move, i t calls ut i l ity

function move (l i ne 1 96) . Ut i l ity function move (l ines 20 1 -2 1 6) sets the moving data

member to t rue (l ine 203) , then calculates the arrival t ime for the e l evator at i ts des

tination by adding the s t a t i c const val ue ELEVATOR_TRAVEL_TlME to the current

t ime (l i nes 206-207) . Final ly , the e l evator outputs the direction of trave l , the destina

t ion floor and the scheduled arrival Time (l i nes 209-2 1 4) .

Class Floor (Fig . 7 .43) contains a mixture o f ways t o associate other obj ects w i th

Floor objects . F i rst, we use a reference as a handle to the e l evat o r (l i ne 42)-thi s i s

appropriate, because th i s handle always refers t o the same e l evator. W e also have a

pointer as a handle to a Person object (l i ne 43)-thi s handle changes every t ime a person

walks onto the floor or leaves the floor to enter the e l evator. Class Floor defines com

posite obj ects, inc luding a pub l i c f l oorButton object (l ine 38) and a priva t e

l i ght object (l i ne 44) . We dec lare the f l oorButton as pub l i c so objects of c lass

Person can access the floorButton object d i rect ly . A person general ly does not have

permiss ion to interact with the l ight on a floor. Therefore, we declare the l i ght object as

privat e. Class Fl oor also defines the stat i c const data mem bers FLOOR! and

FLOOR2 (l i nes 3 3-34) . We use these constants in place of actual floor numbers ; we i n i

t ial i ze these s t at i c const data members a t fi le scope i n the implementation fi le

(Fig . 7 .44, l i nes 1 4- 1 5) .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 J
22

I I Fig . 7 . 4 3 : f l oor . h
I I F l oor c l a s s de f init ion .
i fndef FLOOR_H
#de f i ne FLOOR_H

#inc lude " f loorButton . h "
inc lude " l ight . h "

c l a s s Elevator ; I I forward dec larat ion
c l a s s Person ; I I forward dec l arat ion

c lass Floor

pub l i c :
Floor (int , El evator &) ; I I
-Floor () ; I I
bool i sOccupied () const ;
int getNumber () const ;

I I
I I

constructor
destructor
return true i f f l oor occupied
return f loor ' s number

I I pas s a handle to new person corning on f l oor
void personArrive s (Person * const) ;

Fig. 7 .43 Floor class header file. (Part 1 of 2 .)

536 Classes: Part II

II not i fy f l oor that elevator has arrived
Person * elevatorArrived () ;

II not i fy f loor that elevator i s leaving
void el evatorLeaving () ;

II not i fy f l oor that person i s leaving f l oor
void personBoardingEl evator () ;

II static constant s represent ing f l oor numbers
stat i c const int FLOOR1 ;
stat ic const int FLOOR2 ;

II pub l i c FloorButton obj ect acc e s s ible to
II any c l i ent code with access to a Floor
FloorButton f l oorButton ;

private :
II the floor ' s number
II reference to e l evator

Chapter 7

23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48

const int floorNumber ;
Elevator &elevatorRe f ;
Person * occupant ptr;
Light l i ght ;

II pointer to person on f l oor
I I l i ght obj ect

} ; II end c l a s s Floor

#end i f II FLOOR_H

Fig. 7 .43 Floor class header fi le. (Part 2 of 2.)

Figure 7 .44 contai ns the implementation for class Floor. The destructor (l i nes 30-

3 5) rec laims memory of a Person object waiting on a floor at the t ime of s imulation ter

minat ion. Member function isOccupied (l ines 38-42) returns a bool value that i ndi

cates whether a person i s wait ing on the floor. To determine whether a person i s wait ing,

l i ne 40 tests whether occupant Ptr i s zero . I f occupantPtr i s zero , then no person i s

wait ing on the floor. Member function getNwnber (l ines 45-49) returns the value of the

f loorNwnber member variable . Member function personArr ives (l i nes 52-56)

receives a pointer to the Person object walking onto the floor and assigns it to pri vate

data member occupant P t r .

1
2
3
4
5
6
7
8
9

1 0
1 1

II Fig . 7 . 4 4 : f loor . cpp
II Member - funct ion def init ions for class Floor .
inc lude < iostream>

us ing std : : cout ;
using std : : endl ;

inc lude " f loor . h "
inc lude " person . h "
inc lude " el evator . h "
inc lude " door . h "

II Floor class de f init ion
II Person class de f init ion
II Elevator c l a s s de f init ion
II Door class def init ion

Fig. 7 .44 Floor class i mplementation f i le. (Part 1 of 3 .)

Chapter 7 Classes: Part I I

1 2
1 3 I I stat i c constant s that represent the f loor number s
1 4 const i n t F loor : : FLOOR1 1 ;
1 5 const int Floor : : FLOOR2 = 2 ;
1 6
1 7 I I constructor
1 8 Floor : : Floor (int numbe r , Elevator &elevatorHandle
1 9 f l oorButton (number , e levatorHandle) ,
20 f loorNumber (number) ,
2 1 e levatorRe f (e l evatorHandle) ,
22 occupantPtr (0) ,
23 l ight (f loorNumber)
24 {
25 cout « " f loor " « f loorNumber « " constructed" « endl ;
26
27 I I end Floor constructor
28
29 I I des t ructor
30 Floor : : - Floor ()
3 1 {
32 de lete occupantPtr ;
33 cout « " floor " « f loorNumber « " des t ructed" « endl ;
34
35 } I I end destructor - Floor
36
37 I I det e rmine whether f loor is occupied
38 boo 1 F loor : : i sOccupied () const
39 {
40 return (occupantPtr ! = 0) ;
4 1
42 } I I end funct ion i sOccupied
43
44 I I return this f l oor ' s number
45 int F l oor : : getNumber () const
46 {
47 return f loorNumber ;
48
49 } I I end funct ion getNumber
50
5 1 I I person arrive s o n f l oor
52 void Floor : : personArrive s (Person * const personPt r)
53 {
54 occupantPtr = personPtr ;
55
56 } I I end funct ion personArrives
57
58 I I not i fy f loor that e levator has arrived
59 Person * F l oor : : e l evatorArrived ()
60 {
61 cout « " f loor " « f loorNumber
62 « " resets i t s button" « endl ;
63
64 f l oorButton . re setButton () ;

Fig. 7 .44 Floor class implementation f i le . (Part 2 of 3.)

537

538 Classes: Part II

65 l ight . turnOn () ;
66
67 return occupantPt r ;
68
69 I I end funct ion e levatorArrived
70
7 1 I I t e l l f loor that e l evator i s leaving
72 void Floor : : elevatorLeaving ()
73 {
74 l i ght . turnOf f () ;
7 5
76 } II end funct ion e levatorLeaving
7 7
78 II not i f ie s f loor that person i s leaving
79 void Floor : : personBoardingElevator ()
80 {
8 1 occupantPtr = 0 ; I I person no longer on f l oor
82
83 II end funct ion perSOnBoardingElevator

F ig. 7 .44 Floor class i mplementation f i le. (Part 3 of 3.)

Chapter 7

Member function e l evatorArrived (l ines 59-69) resets the f loorBu t t on

object of the f l oor (l ine 64) , turns on the l ight (l i ne 65) and returns the oc cu

pant P t r handle (l i ne 67) . Member function e l evatorLeaving (l ines 72-76) turns

off the l ight . Member function pers onBoardingEl evator (l ines 79-8 3) sets the

occupant P t r to zero to indicate that the person left the floor and entered the elevator.

The elements of class Person's header fi le (Fig. 7 .45) should appear fam i l iar at th is

point . Member function ge t I D (l ine 1 4) returns the Per s on object ' s unique ID. The

s t epOntoFloor, ent erEl evator and exi tElevator member functions (l ines

1 6- 1 8) form the remainder of the Person's public i nterface . We use a private

s t a t i c c lass variable personCount (l i ne 2 1) to store the number of objects of c lass

Person that the s chedu l e r has created. We a lso declare the I D and de s t inat i on

Fl oor attributes (l i nes 22-23) as private const data members.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5

1 / Fig . 7 . 4 5 : person . h
I I Person c l a s s def init ion .
i fndef PERSON_H
#de f ine PERSON_H

c la s s Floor ; I I forward dec larat ion
c l a s s Elevator ; II forward dec larat ion

c lass Person

pub l i c :
Person (int) ;
-Person () ;
int get I D () const ;

I I constructor
/1 destructor
II returns person ' s ID

F ig. 7 .45 Person class header fi le . (Part 1 of 2.)

Chapter 7 Classes: Part I I

1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27

void stepOntoFloor (Floor &) ;
void enterEl evator (El evator & , Floor &) ;
void exitElevator (const Floor & , Elevator &) const ;

private :
stat i c int personCount ;
const int I D ;
const i nt de st inat ionFloor ;

} ; II end c l a s s Person

#endi f II PERSON_H

I I total number of peop l e
I I person ' s unique I D #
II de s t i nat ion f loor #

Fig. 7 . 45 Person class header file. (Part 2 of 2 .)

539

The i mplementation of c lass Person (Fig . 7 .46) fi rst in i t ial izes s t a t i c member

pers onCount to 0 (l i ne 1 3) . A Person object uses this member to generate an I D

number. The constructor (l ines 1 6-22) takes a n int that represents the dest inat ion floor

for the Person object and di splays a message i ndicating that the person is being con

structed. We use this value i n our s imulation outputs . The destructor (l ines 25-29) displays

a message to indicate that a Person object i s being destroyed.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29

II Fig . 7 . 4 6 : person . cpp
II Member- function def init ions for c l a s s Person .
#include < iostream>

us ing s td : : cout ;
us ing std : : endl ;

inc lude "person . h "
#inc lude " f loor . h "
inc lude " el evator . h "

I I Person c l a s s def in i t i on
II Floor c l a s s de f inition
I I E levator c l a s s de f i n i t i on

II init i a l i z e static member personCount
int Person : : personCount = 0 ;

II constructor
Person : : Person (int de stFloor)

ID (+ +personCount) ,
de st inat ionFloor (de stFloor

cout « " person " « ID « " constructed " « endl ;

I I end Person constructor

I I des t ructor
Person : : - Person ()
{

cout « " (person " « ID « " destructor invoked) " « endl ;

II end de s t ructor -Person

Fig. 7 .46 Person class implementation file. (Part 1 of 2.)

540

30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76

Classes: Part II

II return person ' s ID number
int Person : : ge t ID () const
{

return ID;

II end funct ion get ID

II person walks onto a f loor
void Person : : stepOntoFloor (Floor& f loor
{

II not i fy f l oor person i s coming
cout « " person " « ID « " steps onto f l oor "

« f loor . getNumber () « endl ;
floor . personArrives (thi s) ;

II pre s s button on f loor
cout « " person " « ID

« " pre s s e s f l oor button on f loor "
« floor . getNumber () « endl ;

f loor . f loorButton . pres sButton () ;

II end funct ion stepOntoFloor

II person enters e l evator

Chapter 7

void Person : : enterEl evator (Elevator &elevato r , Floor & f loor
{

f l oor . personBoardingElevator () ; II person l eaves f loor

e levator . passengerEnt ers (thi s) ; II person enters e l evator

II pre s s but ton on elevator
cout « " person " « ID

« " pre s s e s elevator button" « endl ;
e l evator . e levatorButton . pre ssButton () ;

} II end funct ion enterElevator

II person exi t s e l evator
void Person : : exitElevator (

const Floor & f loor , Elevator &elevator) const

cout « " person " « ID « " exit s e l evator on f l oor "
« floor . getNumber () « endl ;

e l evator . passengerExit s () ;

II end function exitElevator

F ig. 7 .46 Person class implementation file , (Part 2 of 2 ,)

Member function s t epOnt oFloor (l i nes 39-52) first notifies the floor that the

person has arrived, via a personArrive s message (l i ne 44) . The person then cal l s

f l oorBu t t on's pre ssButton method (l ine 50), which summons the e l evat o r .

Chapter 7 Classes: Part \ I 54 1

Member function ent erElevator (l i ne 55-66) first notifies the floor that the

person i s boarding the elevat or, via the personBoardingElevat or message (l i ne

57) . The person sends the pa s s engerEnters message to notify the elevator that the

person i s entering (l ine 59). The person then sends the pre s sBut t on message to the

elevatorBu t t on object (l i ne 64) . Thi s message notifies the elevat or to move to the

other floor. Member function exi tElevat or (l ines 69-76) outputs a message, indi

cat ing that the person i s exi t ing the elevat or, then sends the pa s s engerEx i t s mes

sage to the elevat or (l ine 74) .

We have completed a workjng i mplementation of the elevator simu lation from the

design we created throughout the previous chapters . Chapter 8 does not contain a

"Think.ing About Objects" sect ion. In Chapter 9, we discuss i nheritance i n C++, then show

how our s imulation can benefit from using this capabi l i ty .

SUMMARY

• Keyword const prevents an identifier from being used to modify an object .

• The C++ compi ler disal lows non-const member function cal l s on const objects .

• A n attempt by a const member function to modify an obj ect of i ts c l ass i s a compi ler error.

• A const member function is spec i fied as const in both its declarat ion and its defi n it ion .

• A const member function may be overloaded with a non-const vers ion . The compi ler chooses

which overloaded member function to use based on whether the object, reference or pointer used

to i nvoke the function has been declared const.

• A const object must be i n it ia l ized.

• Member i n i t ia l i zers must be provided in the constructor of a c lass when that c lass contain s const
data members.

• Member objects are constructed in the order i n which they are l i sted in the class defi n i tion and be

fore the i r enclos ing class objects are constructed.

• If a member in i t ia l i zer i s not provided for a member object, the member obj ect ' s default construc

tor i s cal led .

• A friend funct ion of a c lass i s a function defined outs ide that c lass and that has the right to ac

cess a l l members of the c lass .

• Friendship declarat ions can be p laced anywhere i n the c lass defi n i t ion .

• The thi s pointer i s used impl ic i t ly to reference both the non-static member funct ions and

non- stat ic data members of an object.

• Each non-stat ic member function has access to its object ' s address via the thi s keyword.

• The thi s poi nter can be used expl ic i t ly .

• Operator new a l locates space for an object, runs the object ' s constructor and returns a pointer of

the correct type . The program terminates immediately if i t i s unable to a l locate the requested mem

ory . To free the space for th is object, use operator de lete.

• An array of objects can be a l located dynamical ly with new as in

int *ptr = new int [100] ;

which a l locates an array of L Oa i n tegers and ass igns the start ing location of the array to ptr. The

preceding array of i ntegers i s deleted with the statement

de lete [] pt r ;

542 Classes: Part II Chapter 7

• A stat ic data member represents "c lass-wide" information (i . e . , a property of the c lass , not an

object) . The declarat ion of a stat ic member begins with keyword stat i c .

• stat ic data members have c lass scope.

• stat i c members of a c lass can be accessed through an object of that c lass or through the c lass

name using the scope reso lut ion operator (if the member i s pUbl i c) .

• A member function may b e declared s t a t i c i f i t does n o t access non-stat i c c lass members.

Un l ike non-stat ic member functions, a stat ic member function has no thi s pointer, be

cause static data members and stat ic member functions exist independent of any objects of

a c lass .

• Classes normal ly hide thei r implementation detai l s from the c l ients of the classes . Th is i s cal led

information h id ing .

• Stacks are known as last- in , first-out (L IFO) data structures-the last i tem pushed (i n serted) on a

stack is the fi rst i tem popped (removed) from that stack .

• Describ ing the functional i ty of a c lass independent of its implementation i s cal led data abstract ion

and C++ c lasses define so-cal led abstract data types (ADTs) .

• C++ e levates the importance of data. The primary activ i ty i n C++ i s creat ing new data types (i .e . ,

c l asses) and expressing the in teractions among objects of those data types.

• Abstract data types are ways of representing real-world not ions to some satisfactory level of pre

c is ion wi th in a computer system.

• An abstract data type actual l y captures two notions-a data representation and the operat ions that

are a l lowed on that data.

• C++ i s an extens ib le language. A l though the language i s easy to extend with new types, the base

language itself i s not changeable .

• C++ i s an i ntent ional ly sparse language that provides programmers w i th only the raw capab i l i ties

needed to bu i ld a broad range of systems. C++ i s designed to min i mize performance burdens .

• I t ems are returned from a queue i n first- in , first-out (F IFO) order-the first i t em i nserted i n the

queue i s the fi rst i tem removed from the queue.

• Container c lasses (a lso called col lection c lasses) are designed to hold col lect ions of objects . Con

tai ner c lasses commonly provide serv ices such as i nsert ion, deletion, searching, sort ing, test ing an

item for membership i n the col lection and the l ike .

• I t i s common to assoc iate iterators with container c lasses. An i terator i s an object that returns the

next item of a col lection (or performs some action on the next i tem of a col lection) .

• Provid ing c l ients of your c lass with a proxy c lass that knows only the publ ic i nterface to your class

enables the c l ients to use your c lass ' s services without giving the c l ient access to your class ' s im

plementation detai l s .

• The only private member of the proxy c lass is a poi nter to an object of the c l a s s whose private data

we would l i ke to hide.

• When a c lass defi n it ion uses only a poi nter or reference to another c lass, the c lass header fi le for

that other c lass (which would ordinari ly reveal the private data of that c lass) is not requ i red to be

inc luded with # inc lude. You can s imply dec lare that other c lass as a data type wi th a forward

c lass dec larat ion before the type is used in the fi le .

• The i mplementation fi le contai n ing the member functions for a proxy c lass i s the on ly fi le that in

c ludes the header fi le for the c lass whose private data we would l ike to h ide .

• The implementation fi le contain i ng the member functions for the proxy c lass i s prov ided to the

c l ient as a precompi led object code fi le a long with the header fi le that inc ludes the funct ion proto

types of the services provided by the proxy c lass .

Chapter 7

TERMINOLOGY

abstract data type (ADT)

b inary scope resolut ion operator (: :)

cascading member-function ca l l s

c lass scope

composit ion

const member funct ion

const object

constructor

container

copy constructor

data representation

defau I t constructor

defaul t copy constructor

defaul t destructor

de lete operator

de lete [] operator

dequeue (queue operat ion)

destructor

dynamic objects

enqueue (queue operat ion)

extens ible language

first- i n , first-out (FIFO)

Classes: Part \ I

forward class declaration

friend c lass

fri end function

host object

i terator

last- i n , first-out (UFO)

member-access speci fiers

member i n i t ia l izer

member object

member object constructor

new operator

new [] operator

object-based programming

operations i n an ADT

pop (stack operation)

proxy c lass

push (stack operation)

queue abstract data type

stack abstract data type

stat ic data member

stat ic member function

thi s pointer

Terminology for Optional "Thinking About Objects" Section
c i rcu lar inc lude problem forward reference

SELF-REVIEW EXERCISES

7 . 1 Fi l l i n the blanks in each of the fol lowing:

a) must be used to in i t ia l ize constant members of a class .

543

b) A nonmember function must be declared as a of a c lass to have access to that

c lass ' s private data members.

c) The operator dynamical ly a l locates memory for an object of a spec ified type

and returns a to that type.

d) A constant object must be ; i t cannot be modified after i t is created .

e) A data member represents c lass-wide information.

f) An object ' s non-stat ic member functions have access to a "self pointer" to the object

cal led the pointer.

g) The keyword _____ spec ifies that an object or variable i s not modifiable after it i s

i n i t ia l ized.

h) If a member in i t ia l izer i s not provided for a member object of a c lass , the object 's

____ is ca l led .

i) A member function can be declared stat ic i f i t does not access _____ c lass

members.

j) Member objects are constructed the ir enclos ing c lass object .

k) The operator rec la ims memory previously a l located by new.

7.2 Find the errors i n the fol lowing c lass and explain how to correct them:

c l a s s Example
pub l i c :

544 Classes: Part II

Example (int y 1 0)
: data (y)

{
I I empty body

}

int get lncrementedData () const
{

return + +dat a ;

static int getCount ()
{

cout « " Data i s " « data « endl ;
return count ;

private :
int data ;
stat i c int count ;

} ; I I end c l a s s Example

ANSWERS TO SELF-REVIEW EXERCISES

Chapter 7

7 . 1 a) member in i t ia l izer. b) friend. c) new, pointer. d) i n it ia l ized. e) stat i c . f) thi s .
g) const. h) defaul t constructor. i) non-stat ic . j) before . k) de lete.

7 .2 Error: The class defi n i tion for Example has two errors. The first occurs i n function get
IncrementedData. The function i s declared const, but it modifies the object .

Correct ion: To correct the first error, remove the const keyword from the defi ni t ion of

get lncrementedData.
Error: The second error occurs i n function getCount . Thi s function is declared stat ic,
so i t i s no t allowed to access any non-stat ic member of the class .

Correction: To correct the second error, remove the output l ine from the get Count definit ion.

EXERCISES

7 .3 Compare and contrast dynamic memory allocation and deal location operators new, new [] ,
de lete and de lete [] .

7 .4 Explain the notion of friendship in C++. Explain the negat ive aspects of friendship as de-

scri bed in the tex t .

7 .5 C a n a correct Time class defi nit ion include both o f the fol lowing constructors? I f not, ex-

plain why not .

Time (int h = 0 , int m = 0 , int s = 0) ;
Time () ;

7 .6 What happens when a return type, even void, i s spec ified for a constructor or destructor?

7 . 7 Modify c lass Date i n Fig. 7 .6 t o have the fol lowing capabi l i t ies :

a) Output the date i n mul tiple formats such as

DDD YYYY
MM/DD / YY
June 14 , 1 9 9 2

b) Use overloaded constructors to create Date objects i n it ia l ized w i th dates o f the formats

in part (a) .

Chapter 7 Classes: Part I I 545

c) Create a Date constructor that reads the system date us ing the standard l ibrary funct ions

of the < c t ime > header and sets the Date members. (See your compi ler' s reference

documentation or www . cplusplus . com / ref / ct ime / index . html for i nforma

t ion on the functions in header < c t ime » .

I n Chapter 8, we w i l l be able to create operators for test ing the equal i ty of two dates and for compar

ing dates to determi ne whether one date is prior to, or after, another.

7.8 Create a SavingsAccount class . Use a stat ic data member to contain the

annual Intere stRate for each of the savers. Each member of the c lass contain s a private
data member savingsBalance ind icating the amount the saver current ly has on deposi t . Provide

a calculateMonthlyInterest member function that ca lculates the monthly i n terest by mu l

t ip ly ing the balance by annual Intere stRate div ided by 1 2 ; th i s i nterest shou ld be added to

savingsBalance . Provide a stat ic member function modi fyIntere stRate tha t se t s the

stat ic annual Intere stRate to a new va lue . Write a driver program to tes t c l ass

SavingsAccount . I n stant iate two different savingsAccount obj ects, saverl and saver2 ,
with balances of $2000.00 and $3000.00, respective ly . Se t annual Intere stRate to 3 % . Then

calcu late the month ly in terest, and pri nt the new balances for each of the savers. Then set the

annual Intere stRate to 4%, and calcu late the next month ' s i n terest and pri n t the new balances

for each of the savers.

7.9 Create c lass IntegerSet for which each object can hold i n tegers i n the range 0 through

1 00. A set i s represented i nterna l ly as an array of ones and zeros . Array element a [i 1 i s I if i n teger

i i s i n the set . Array element a [j 1 i s 0 if in teger j i s not in the set . The defau l t constructor in i t i a l i zes

a set to the so-cal led "empty set ," i .e . , a set whose array representation contai ns a l l zeros .

Provide member functions for the common set operat ions . For example , prov ide a unionO f
Sets member function that creates a th ird set that i s the set-theoret ic u n i o n o f t w o ex is t ing sets (i . e . ,

an e lement of the th ird set 's array i s se t to I if that element i s I i n e i ther or both of the exis t ing sets,

and an element of the third set ' s array i s set to 0 if that element i s 0 i n each of the ex is t ing sets) .

Provide an intersect i onOfSets member function which creates a th i rd s e t which i s the

set-theoretic i ntersect ion of two exist ing sets (i . e . , an element of the th ird set ' s array i s set to 0 if that

element i s 0 i n ei ther or both of the exist ing sets, and an element of the th ird set's array i s set to I if

that e lement i s I i n each of the exist ing sets) .

Prov ide a n insertElement member function that i n serts a new in teger k i nto a set (b y set

ting a [k 1 to I) . Provide a de leteElement member function that deletes i n teger In (by sett ing

a [m 1 to 0) .

Prov ide a print Set member function that prints a set as a l i st of numbers separated by

spaces. Pri nt only those elements that are present i n the set (i . e . , their pos i t ion in the array has a

value of I) . Pri nt - - - for an empty set.

Provide an i sEqual To member function that determ ines whether two sets are equal .

Prov ide an addit ional constructor that receives an array of in tegers and the s ize of that array and

uses the array to in i t ia l ize a set object .

Now write a driver program to test your IntegerSet class . I n stant iate several IntegerSet
objects . Test that a l l your member functions work properly.

7 . 1 0 I t would be perfectly reasonable for the Time c lass of Fig. 7 . 1 4-Fig . 7 . 1 5 to represent the

t ime i nternal ly as the n umber of seconds si nce midnight rather than the three i nteger values hour,
minute and second. Clients could use the same publ ic methods and get the same resu l ts . Modify

the Time class of Fig . 7 . 1 4 to i mplement the Time as the nu mber of seconds s ince midnight and

show that there i s no v i s ible change i n funct ional i ty to the c l ients of the c lass .

Operator Overloading ;
String and Array Obj ects

Objectives

• To understand how to redefine (overload) operators to

work with new abstract data types (ADTs) .

• To understand how t o convert objects from one class

to another class .

• To learn when to , and when not to , overload operators .

• To create Array, String and Date classes that

demonstrate operator overloading.

The whole difference between construction and creation is

exactly this: that a thing constructed can only be loved after

it is constructed; but a thing created is loved before it exists.

Gilbert Keith Chesterton

The die is cast.

Julius Caesar

Our doctor would never really operate unless it was

necessary. He was just that way. Ifhe didn 't need the money,

he wouldn 't lay a hand on you.

Herb S hriner

Chapter 8

Outline

8. 1 I ntroduction

Operator Overloadi n g : Strin g and Array Objects

8.2 Fundamentals of Operator Overloading

8.3 Restrictions on Operator Overloading

8.4 Operator Functions as Class Members vs. as f r i end Functions

8.5 Overloading Stream - Insertion and Stream-Extraction Operators

8.6 Overloading Unary Operators

8.7 Overloading Binary Operators

8.8 Case Study: Array Class

8.9 Converting between Types

8. 1 0 Case Study: String Class

8. 1 1 Overloading + + and - -

8. 1 2 Case Study: A Date Class

8. 1 3 Standard Libra ry Classes st ring and vec tor

547

Summary · Terminology · Self-Review Exercises · Answers to Self-Review Exercises · Exercises

8.1 Introduction

I n Chapter 6 and Chapter 7, we introduced the basics of C++ classes and the notion of ab

stract data types (ADTs) . Manipulations on objects were accompl i shed by sending messag

es (in the form of member-function cal ls) to the objects . Thi s function-cal l notat ion is

cumbersome for certain kinds of c lasses (such as mathematical c lasses) . A l so , many com

mon manipu lat ions are performed with operators (e .g . , input and output) . We can use

C++' s r ich set of bu i l t - in operators to specify object common manipu lat ions . Thi s chapter

shows how to enable C++' s operators to work with objects-a process cal led operator

overloading . I t i s straightforward and natural to extend C++ with these new capabi l i t ies ,

but i t does also require great care .

One example of an overloaded operator bu i l t into C++ i s operator « , which i s used

both as the stream- insertion operator and as the bitwise left-shift operator. S i m i l arly, » i s

also overloaded ; i t i s used both a s the stream-extraction operator and a s the b i twise right

shift operator. [Note: The bitwise left-shift and bitwise right-shift operators are discussed

i n detai l in Chapter 18.] Both of these operators are overloaded i n the C++ class l ibrary .

The C++ l anguage itself overloads + and - . These operators perform different ly , depending

on their context i n in teger arithmetic, floating-point arithmetic and pointer arithmetic .

C++ enables the programmer to overload most operators to be sens i t ive to the context

in which they are used-the compiler generates the appropriate code based on the context.

Some operators are overloaded frequently, especia l ly the assignment operator and various

arithmetic operators such as + and - . The jobs performed by overloaded operators can also

be performed by expl ic i t function call s , but operator notat ion i s often c learer and more

fami l iar to programmers.

548 Operator Overloadi n g ; Strin g and Array Objects Chapter 8

We discuss when to, and when not to, use operator overloading. We show how to over

load operators, and we present several complete programs us ing overloaded operators . This

chapter ends wi th examples of C++ ' s standard l ibrary c lasses s t ring and vec tor, each

of which provides many overloaded operators .

8.2 Fundamentals of Operator Overloading

c++ programming i s a type-sensit ive and type-focused process . Programmers can use

bui l t - in types and can define new types. The bu i l t - in types can be used wi th C++ ' s r ich col

lection of operators. Operators provide programmers with a concise notat ion for express ing

manipulat ions of objects of bui l t - in types .

Programmers can use operators with user-defined types as wel l . A lthough C++ does

not allow new operators to be created, i t does al low most ex ist ing operators to be over

loaded so that, when these operators are used wi th objects, the operators have mean ing

appropriate to those objects . Thi s i s one of C++ ' s most powerful features .

Software Engineering Observation 8. 1

Operator overloading contributes to C+ + 's extensibility, one of the language 's most appeal

ing attributes.

� Good Programming Practice 8 . 1

Use operator overloading when it makes a program clearer than accomplishing the same op

erations with explicit function calls.

� Good Programming Practice 8.2

Overloaded operators should mimic the functionality of their built- in counterparts-for ex

ample, the + operator should be overloaded to perform addition, not subtraction. A void ex

cessive or inconsistent use of operator overloading, as this can make a program cryptic and

difficult to read.

Although operator overloading sounds l i ke an exotic capab i l ity, most programmers

impl ic i t ly use overloaded operators regularly. For example, the addit ion operator (+) oper

ates qui te d ifferent ly on i ntegers, floats and doubles. But addit ion nevertheless works fine

wi th variables of type int , f l oa t , doubl e and a number of other bui l t - in types, because

the addit ion operator (+) has been overloaded i n the C++ language i tself.

Operators are overloaded by writ ing a function defi ni t ion (w i th a header and body) as

you normal ly would, except that the function name now becomes the keyword operator

fol lowed by the symbol for the operator being overloaded. For example, the function name

operat or+ would be used to overload the addit ion operator (+) .

To use a n operator o n c lass objects, that operator must b e overloaded-with two

exceptions . The assignment operator (=) may be used w ith every c lass w i thout expl ic i t

overloading. The defaul t behavior of the assignment operator i s a memberwise assignment

of the data members of the c lass . We will soon see that such defaul t memberwise ass ign

ment i s dangerous for c lasses w ith pointer members ; we wi l l expl ic i t ly overload the assign

ment operator for such c lasses. The address operator (&) may also be used with objects of

any c lass w ithout overloading; i t simply returns the address of the obj ect in memory . The

address operator can also be overloaded.

Overloading i s espec ia l ly appropriate for mathematical c lasses. These often require

that a substantial set of operators be overloaded to ensure consistency with the way these

Chapter 8 Operator Overloadi n g ; Strin g and Array Objects 549

mathematical c lasses are handled in the real world . For example, it would be unusual to

overload only addit ion for a complex number class , because other arithmetic operators are

also commonly used with complex numbers.

The point of operator overloading i s to provide the same conci se and fam i l i ar expres

sions for user-defi ned types that C++ provides with its rich col lection of operators for bu i l t

i n types . Operator overloading i s not automatic , however; the program mer must write

operator-overloading functions to perform the desired operat ions . Somet imes these func

t ions are best made member functions; sometimes they are best as f r i end funct ions;

occasional l y they can be made non-member, non-friend functions . We d i scuss these

i ssues throughout the chapter.

8.3 Restrictions on Operator Overloading

Most of C++ ' s operators can be overloaded . These are shown i n Fig . 8 . 1 . Figure 8 .2 shows

the operators that cannot be overloaded .

Common Programming Error 8. 1

A ttempting to overload a non-overloadable operator is a syntax error.

The precedence of an operator cannot be changed by overloading . Thi s can lead to

awkward s i tuat ions i n which an operator is overloaded in a manner for which i ts fixed pre

cedence is inappropriate . However, parentheses can be used to force the order of evaluation

of overloaded operators i n an expression .

The assoc iat iv i ty of an operator (i . e . , whether the operator i s appl ied right-to-Ieft or

left-to-right) cannot be changed by overloading .

I t i s not poss ib le to change the "ari ty" of an operator (i . e . , the number of operands an

operator takes) : Overloaded unary operators remain unary operators ; overloaded b inary

Operators that can be overloaded

+ * / % " &
< > + = * =

/ = %= " = &= 1 = « » » =
« = ! = < = > = && I I + +

- > * - > [] () new de lete
new e l de lete [)

Fig. 8 . 1 Operators that can be overloaded.

Operators that cannot be overloaded

* ? :

Fig. 8.2 Operators that cannot be overloaded.

550 Operator Overload i n g ; Stri ng and Array Objects Chapter 8

operators remain b inary operators . C++ ' s only ternary operator (? :) cannot be overloaded.

Operators &: , *, + and - all have both unary and binary vers ions ; these unary and b inary

versions can each be overloaded.

Common Programming Error 8 .2

A ttempting t o change the "arity " of a n operator via operator overloading i s a syntax error.

It is not possible to create new operators ; only ex ist ing operators can be overloaded.

Unfortunate ly , thi s prevents the programmer from using popular notat ions l i ke the * * oper

ator used in some other programming languages for exponentiat ion.

Common Programming Error 8.3

A ttempting to create new operators via operator overloading is a syntax error.

The meaning of how an operator works on objects of bui l t - in types cannot be changed

by operator overloading. The programmer cannot, for example, change the meaning of how

+ adds two in tegers. Operator overloading works only with objects of user-defined types or

with a m ixture of an object of a user-defi ned type and an obj ect of a bui l t - in type.

Common Programming Error 8.4

A ttempting to modify how an operator works with objects of built-in types is a syntax error.

At least one argument of an operator function must be an object or reference of a user-de

fined type. This prevents programmers from changing how operators work on built-in types.

Overloading an assignment operator and an addition operator to a l low statements l i ke

obj ect2 = obj ect2 + obj ect l ;

does not i mply that the + = operator i s also overloaded to al low statements such as

obj ect2 += obj ect l ;

S uch behavior can b e achieved only b y expl ic i t ly overloading operator + = for that class .

Common Programming Error 8.5

Assuming that overloading an operator such as + overloads related operators such as + = or

that overloading = = overloads a related operator like ! = can lead to errors. Operators can

be overloaded only explicitly; there is no implicit overloading.

8.4 Operator Functions as Class Members vs. as f r i end
Functions

Operator functions can be member functions or non-member functions ; non-member func

t ions are often made friends for performance reasons. Member functions use the thi s

pointer impl ic i t ly to obtain one of the ir c lass object arguments (the left operand for b inary

operators) . Parameters for both operands of a binary operator must be expl ic i t ly l i sted in a

non-member function cal l .

Chapter 8 Operator Overloadi n g ; Stri n g and Array O bjects 55 1

When overloading () , [] , - > or any of the assignment operators, the operator over

loading function must be declared as a c lass member. For the other operators, the operator

overloading functions can be non-member functions .

Whether an operator function i s i mplemented as a member funct ion or as a non

member function, the operator i s sti l l used the same way in express ions . So which

i mplementation i s best?

When an operator function i s implemented as a member function , the l eftmost (or

only) operand must be an object (or a reference to an object) of the operator' s c lass . If the

left operand must be an object of a different c lass or a bui l t - in type, this operator function

must be i mplemented as a non-member function (as we wil l do i n Section 8.5 when over

loading « and » as the stream- insertion and stream-extraction operators, respective ly) .

A non-member operator function needs to be a f r i end if that function must access pri

vat e or prot e c t ed members of that class direct ly .

The overloaded < < operator must have a left operand of type o s t ream & (such as the

object cout in the expression cout « c l a s sObj ec t) , so i t must be a non-member

function. S i m i larly, the overloaded » operator must have a left operand of type i s t ream

& (such as the object cin i n the expression c in > > c l a s sObj e c t) , so i t , too, must be a

non-member funct ion. Also, each of these overloaded operator funct ions may requ i re

access to the private data members of the class object being output or i nput, so these

overloaded operator functions can be made fri end functions of the class for performance

reasons .

Performance Tip 8 .1

I t i s possible to overload a n operator a s a non-member, non-friend function, b u t such a func

lion requiring access to a class 's pri va t e or protected data would need to use set or

get functions provided in that class 's publ i c intelface. The overhead of calling these func

lions could cause poor performance, so these functions can be inlined to improve perfor

mance.

Operator member functions of a spec ific c lass are called only when the l eft operand of

a bi nary operator i s specifical ly an object of that class, or when the s ing le operand of a

unary operator i s an object of that c lass .

Another reason why one might choose a non-member function to overload an operator
is to enable the operator to be commutat ive . For example, suppose we have an object,
number, of type l ong int, and an object biglntege r l , of class Huge lnteger (a
c lass in which i ntegers may be arbitrari ly large rather than being l i m i ted by the machine
word s ize of the underly ing hardware ; c lass Huge lnteger i s developed i n the chapter
exerc i ses) . The addit ion operator (+) produces a temporary Huge lnteger object as the
sum of a Huge lnt eger and a long int (as in the expression b i glntegerl +

number), or as the sum of a l ong int and a Huge lnteger (as i n the expression
number + b i glntege r l) . Thus, we require the addit ion operator to be commutat ive
(exactly as i t i s normal ly) . The problem i s that the class object must appear on the left of
the addit ion operator if that operator i s to be overloaded as a member function . So, we over
load the operator as a non-member f r i end function to al low the Huge lnt eger to
appear on the right of the addit ion . Function operator+, which deal s w i th the Huge l n

t eger on the left, can sti l l be a member function . Remember that a non-member function
need not necessari ly be a f r i end if appropriate set and get functions ex i st in the c lass ' s
pub l i c i nterface .

552 Operator Overloadi n g ; Strin g and Array Objects Chapter 8

8.5 Overloading Stream- Insertion and Stream- Extraction
Operators

c++ i s able to i nput and output the bui l t - in data types using the stream-extraction operator

» and the stream-insert ion operator « . These operators are overloaded (i n the c lass l i

braries provided wi th C++ compi lers) to process each bui l t - in data type, inc luding pointers

and C- l ike char * strings . The stream-insertion and stream-extraction operators also can

be overloaded to perform input and output for user-defined types . Figure 8.3 demonstrates

overloading the stream-extraction and stream- insertion operators to handle data of a user

defi ned telephone number c lass cal led PhoneNumber. Thi s program assumes telephone

numbers are input correct ly .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39

I I Fig . 8 . 3 : fig0 8_0 3 . cpp
II Overloading the stream- insert ion and
II s tream- extract ion operators .
#inc lude < iostream>

us ing std : : cout ;
us ing std : : cin;
us ing std : : endl ;
us ing s td : : ostream;
using std : : i stream;

inc lude < iomanip>

us ing std : : setw;

I I PhoneNUmber c l a s s def init ion
c l a s s PhoneNumber {

friend ostream &operator« (ostream& , const PhoneNumber &) ;
friend i stream &operator» (i stream& , PhoneNumber &) ;

private :
char areaCode [4] ; II 3 -digit area code and nul l
char exchange [4] ; I I 3 -digit exchange and nul l
char l ine [5] ; II 4 -digit l ine and nul l

} ; I I end c l a s s PhoneNUmber

II overloaded stream- insert ion operator ; cannot be
II a member funct ion i f we would l ike to invoke it with
II cout « somePhoneNumber ;
ostream &operator« (ostream &output , const PhoneNumber &num)
{

output « " (" « num . areaCode « ") n

« num . exchange « " _ " « num . l ine ;

return output ; II enables cout « a « b « c ;

} II end funct ion operator«

Fig. 8 .3 Overloaded stream-insertion and stream-extraction operators. (Part 1 of 2.)

Chapter 8 Operator Overload i n g ; Stri n g and Array Objects

I I overloaded stream- extrac t i on operator ; c annot be
I I a member funct ion if we would l ike to invoke it with
I I c i n » somePhoneNUmber ;
i stream &operator> > (i s t ream &input , PhoneNUmber &num)
{

input . ignore () ;
input » s etw (4 » num . areaCode ;
input . ignore (2) ;
input » s etw (4) » num . exchange ;
input . ignore () ;
input » setw (5 » num . l ine ;

return input ; I I enables c in »

I I end funct ion operator»

int main ()
{

I I skip (
I I input area code
I I skip) and space
I I input exchange
I I skip dash (-)
I I input l ine

a » b » c ;

PhoneNUmber phone ; I I create obj ect phone

553

40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74

cout « " Enter phone number in the form (12 3) 4 5 6 - 7 8 9 0 : \ n " ;

/ 1 c in » phone invokes operator» by imp l i c i t ly i s suing
I I the non-member function call operator» (c i n , phone)
c in » phone ;

cout « " The phone number entered was : " . ,

I I cout « phone invokes operator« by impl i c i t ly i s suing
II the non-member funct ion call operator« (cout , phone)
cout « phone « endl ;

return 0 ;

} I I end main

Enter phone number in the form (12 3) 4 5 6 - 7 8 9 0 :
(8 0 0) 5 5 5 - 12 12
The phone numbe r entered was : (8 0 0) 5 5 5 - 12 12

Fig. 8.3 Overloaded stream-insert ion and stream-extraction operators . (Part 2 of 2.)

The stream-extraction operator function operator» (l i nes 43-54) takes i s t ream

reference i nput and PhoneNwnber reference nwn as arguments and returns an

i s t ream reference. Operator function operator> > i nputs phone numbers of the form

(8 0 0) 5 5 5 - 1 2 1 2

i nto objects of c lass PhoneNwnber. When the compiler sees the expression

c i n » phone

in l ine 64, the compiler generates the non-member function cal l

operator » (cin, phone) ;

554 Operator Overload i n g ; Stri ng and Array Objects Chapter 8

When this ca l l executes, reference parameter input becomes an al ias for c i n and refer

ence parameter num becomes an al ias for phone (l ine 43) . The operator function reads as

strings the three parts of the telephone number into the areaCode (l ine 46) , exchange

(l ine 48) and l ine (l ine 50) members of the referenced PhoneNwnber obj ect (parameter

num in the operator function and object phone in ma in) . Stream manipulator setw l imi ts

the number of characters read into each character array . Remember that, when used with

c in, setw restricts the number of characters read to one less than its argument (i .e . ,

s e tw (4) al lows three characters t o b e read and saves o n e position for a terminating n u l l

character) . The parentheses, space and dash characters are skipped b y cal l ing i s t ream

member function ignore (l i nes 45, 47 and 49) , which discards the specified number of

characters i n the input stream (one character by defaul t) . Funct ion operator» returns

i s t ream reference input (i . e . , c i n) . This enables i nput operations on PhoneNwnber

objects to be cascaded with input operations on other PhoneNwnber objects or on objects

of other data types . For example, a program can i nput two PhoneNwnber objects in one

statement as fol lows:

c i n » phone l » phone2 ;

First, the expression c in » phone l executes by making the non-member function cal l

operator» (c i n , phone l) ;

This cal l would then return a reference to c in as the value of c i n » phone l , so the re

maining portion of the expression would be i nterpreted simply as c i n » phone2 . This

woul d execute by making the non-member function cal l

operator» (c i n , phone2) ;

The stream-in sert ion operator function (l i nes 3 1 -3 8) takes an o s t ream reference

(output) and a const PhoneNwnber reference (num) as arguments and returns an

o s t ream reference. Function operator« di splays objects of type PhoneNwnber.

When the compiler sees the expression

cout « phone

in l i ne 70, the compiler generates the non-member function cal l

operator« (cout , phone) ;

Function ope rator« displays the parts of the telephone number as strings, because they

are stored in string format.

Note that the functions operator» and operat o r « are declared in c l a s s

PhoneNwnber a s non-member, fri end functions (l i nes 1 8- 1 9) . These operators must

be non-members because the object of class PhoneNwnber appears in each case as the

right operand of the operator; the class operand must appear on the left of the operator to

enables us to overload that operator as a member function of that c lass . Overloaded input

and output operators are declared as friends if they need to access non-publ i c c lass mem

bers d irectly for performance reasons. Also note that the PhoneNwnber reference in func

tion operat o r « ' s parameter l i st (l ine 3 1) is const (because the PhoneNwnber wi l l

s imp ly be output) and the PhoneNwnber reference in function operator» ' s param

eter list (l i ne 43) is non-const (because the PhoneNwnber object must be modified to

store the input telephone number in the object) .

Chapter 8 Operator Overloadi n g ; Stri n g and Array Objects 555

Software Engineer"ng Observation 8

New input/output capabilities for user-defined types can be added to C+ + without modifying

C+ + 's standard input/output library classes. This is another example 0.1" the extensibility of

the C+ + programming language.

8.6 Overloading Unary Operators

A unary operator for a c lass can be overloaded as a non- stat i c member function with no

arguments or as a non-member function with one argument; that argument must be e ither

an object of the c lass or a reference to an object of the c lass . Member functions that i mple

ment overloaded operators must be non-static so that they can access the non- stat i c

data i n each object o f the c lass . Remember that s t a t i c member funct ions o n l y can access

stat ic data members of the c lass .

Later in th is chapter, we wi l l overload unary operator ! to test whether an object of the

String c lass we create (Section 8 . 1 0) i s empty and return a b o o l resul t . When over

loading a unary operator such as ! as a non-stat ic member function w i th no arguments,

i f s i s a String class object or a reference to a String c lass object, when the compiler

sees the expression ! s , the compiler generates the call s . operator ! () . The operand s

i s the class object for which the String c lass member function operator ! is being

i nvoked. The function i s dec lared i n the c lass defi nit ion as fol lows :

c l a s s String {
pub l i c :

bool operator ! () const ;

} ;

A unary operator such as ! may be overloaded as a non-member function with one

argument in two different ways--either with an argument that i s an obj ect (this requ ires a

copy of the object, so the s ide effects of the function are not app l i ed to the orig inal object) ,

or with an argument that i s a reference to an object (no copy of the orig inal object i s made,

so all s ide effects of this function are appl ied to the original object) . If s is a S t ring class

object (or a reference to a String class object) , then ! s i s treated as if the cal l

operat or ! (s) had been written , invoking the non-member friend function of c lass

String declared as fol lows :

class String {
friend bool operator ! (const String &) ;

} ;

8.7 Overloading Binary Operators

A binary operator can be overloaded as a non-stat ic member function with one argu

ment or as a non-member function with two arguments (one of those arguments must be

ei ther a c lass object or a reference to a c lass object) .

Later i n th i s chapter, we wi l l overload + = to indicate concatenation of two string

objects. When overloading b inary operator + = as a non- stat i c member function of a

String c lass with one argument, if y and z are String-class objects , then y + = z i s

556 Operator Overload i n g ; Stri ng and Array Objects Chapter 8

treated as if y . operator+ = (z) had been written, invoking the operator+= member

function dec lared below

c l a s s String
pub l i c :

const String &operator+ = (const String &) ;

} ;

If b inary operator + = is to be overloaded as a non-member function, i t must take two

arguments-one of which must be a c lass object or a reference to a c lass object . I f y and z

are String-class objects or references to String-class objects, then y + = Z i s treated as

if the cal l operator+ = (y, z) had been written in the program, i nvoking non-member

friend function operat or+ = declared as fol lows:

class String (

} ;

friend const String &operator+ = (
String & , const String &) ;

8.8 Case Study: Array Class

Array notation i n C++ i s j ust an alternative to pointers, so arrays have great potential for

errors. For example, a program can eas i ly "walk off' either end of an array , because C++

does not check whether subscripts fal l outside the range of an array . Arrays of s ize n must

number their e lements 0, . . . , n - I ; alternate subscript ranges are not al lowed. An entire

non-char array cannot be input or output at once; each array e lement must be read or writ

ten i ndiv idual ly . Two arrays cannot be meani ngfu l ly compared with equal ity operators or

relational operators (because the array names are s imply pointers to where the arrays begin

i n memory and, of course, two arrays w i l l always be at different memory locations) . When

an array i s passed to a general -purpose function designed to handle arrays of any s ize, the

size of the array must be passed as an addit ional argument. One array cannot be assigned

to another with the assignment operator(s) (because array names are const pointers and a

constant pointer cannot be used on the left side of an assignment operator) . These and other

capabi l i ties certain ly seem l i ke "natural s" for deal i ng with arrays , but C++ does not provide

such capab i l i t ies . However, C++ does provide the means to i mplement such array capab i l

ities through the mechan isms of c lass development and operator overloading .

I n thi s example, we create an array class that performs range check ing to ensure that

subscripts remain within the bounds of the array . The class al lows one array object to be

assigned to another with the assignment operator. Objects of thi s array c lass know their

s ize, so the s ize does not need to be passed separate ly as an argument when passing an array

to a function. Entire arrays can be input or output with the stream-extraction and stream

i nsert ion operators, respectively . Array compari sons can be made with the equal i ty opera

tors == and ! = .

Thi s example wi l l sharpen your apprec iation of data abstract ion. You w i l l probably

want to suggest many enhancements to th i s array c lass . Class development i s an i nterest ing,

creative and i ntel lectual ly chal lenging act iv i ty-always with the goal of "craft ing valuable

c lasses ."

Chapter 8 Operator Overload i n g ; Strin g and Array Objects 557

The program of Fig. 8 .4-Fig . 8 .6 demonstrates class Array and its overloaded oper

ators . First we walk through the driver program i n ma i n (F ig . 8 . 6) . Then we cons ider the

c lass defin i t ion (Fig . 8.4) and each of the class ' s member-function and friend-function

defin it ions (Fig. 8 . 5) .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46

II Fig . 8 . 4 : array1 . h
II Array c l a s s for storing arrays o f integers .
i fnde f ARRAY1_H
#de f i ne ARRAY1_H

inc lude < iostrearn>

us ing std : : ostrearn;
us ing std : : i strearn;

c l a s s Array {
fri end ostrearn &operator« (ostrearn & , const Array &) ;
friend i st rearn &operator» (i strearn & , Array &) ;

publ ic :
Array (int = 1 0) ;
Array (const Array &) ;
-Array () ;
int get S i z e () const ;

II a s s i gnment operator

II default constructor
II copy const ructor
II destructor
II return s i z e

const Array &operator= (const Array &) ;

II equa l i ty operator
bool operator= = (const Array &) const ;

II inequal i ty operator ; returns oppo s i t e o f - - operator
bool operator ! = (const Array &right) const
{

return ! (* thi s = = right) ; II invokes Array : : operator==

II end func t ion operator ! =

II subscript operator for non-const obj e c t s returns lvalue
int &operator [] (int) ;

II subscript operator for const obj ects returns rvalue
const int &operator [] (int) const ;

private :
int s i z e ; II array s i z e
int *pt r ; I I pointer to f irst el ement of array

} ; II end c l a s s Array

#endif

Fig. 8.4 Array class defin it ion with overloaded operators .

558

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53

Operator Overloadi n g ; Stri ng and Array Objects

I I Fig 8 . 5 : array1 . cpp
I I Member funct ion def init ions for c las s Array
#inc lude < iostream>

u s ing std : : cout ;
us ing std : : c in ;
us ing std : : endl ;

inc lude < iomanip>

us ing std : : setw;

inc lude <new> I I c+ + st andard " new" operator

inc lude < c stdlib> II exi t funct ion prototype

inc lude " arrayl . h " I I Array c lass de fini t i on

I I de fault constructor for c lass Array (de fault s i ze 1 0)
Array : : Array (int arrayS ize)
{

I I val idate arrayS i ze
size = (arrayS i z e > 0 ? arrayS ize : 1 0) ;

ptr new int [size] ; I I create space for array

for int i
ptr [i

0 ; i < s i z e ; i + +)
0 ; I I ini t ial i ze array

} I I end Array de f ault constructor

I I copy const ructor for c las s Array ;

Chapter 8

I I must rece ive a reference to prevent inf ini t e recur s ion
Array : : Array (const Array &arrayToCopy)

: s i z e (arrayToCopy . s ize)

ptr new int [s i z e] ; I I create space for array

for int i
ptr [i

0 ; i < s i z e ; i + +
arrayToCopy . ptr [i] ; I I copy into obj ect

} // end Array copy constructor

/ / dest ructor for c la s s Array
Array : : -Array ()
{

de lete [] ptr ; I I rec laim array space

} / 1 end destructor

1/ return s i ze of array
int Array : : getSize () const
{

Fig. 8.5 Array class member- and friend-function definit ions. (Part 1 of 4.)

Chapter 8 Operator Overloading; Str ing a n d Array Objects 559

54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1
82
83
84
85
86
87
88
89
90
9 1
92
93
94
95
96
97
98
99
1 00
1 0 1
1 02
1 03
1 04
1 05
1 06

return s i z e ;

I I end funct ion getS i z e

I I overl oaded ass ignment operator ;

I I cons t return avoids : (al = a2) = a3

const Array &Array : : operator=(const Array &right)

{
i f (&right ! = thi s) { 1 / check for s el f - as s ignment

I I for arrays of di f ferent s iz e s , deal locate ori ginal

I I l e ft-s ide array, then al locate new left - s ide array

i f (s i ze ! = right . s i z e) {
de lete [] pt r ; I I rec laim space

s i z e = right . s i z e ; I I res i ze this obj ec t

ptr = new int [s i z e] ; 1/ create space for array copy

/1 end inner i f

f o r (int i

ptr [i

} I I end outer i f

0; i < s i z e ; i + +

right . ptr [i] ;

return * this ; I I enable s x y

)
/1 copy array into obj ec t

z , f o r exampl e

} I I end funct ion operator=

I I determine if two arrays are equal and

I I return t rue , otherwi se return fal se

boo 1 Array : : operator==(const Array &right) const

{
i f (s i ze ! = right . s i z e)

return false ; I I arrays of di f f erent s i zes

for (int i = 0; i < s i z e ; i + +

i f (ptr [i] ! = right . ptr [i])

return false ; I I arrays are not equal

return t rue ; 1/ arrays are equal

/1 end funct ion operator==

II overloaded subscript operator for non-const Arrays

1/ re ference return creates an lvalue

int &Array : : operator [] (int subscript)

{
/ 1 check for subscript out of range error

i f (subscript < 0 I I subscript > = s i z e) {
cout « " \nError : Subscript 11 « subscript

« " out o f range " « endl ;

Fig. 8.5 Array class member- and fri end-function definit ions. (Part 2 of 4.)

560

1 07
1 08
1 09
1 1 0
1 1 1
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7
1 1 8
1 1 9
1 20
1 2 1
1 22
1 23
1 24
1 25
1 26
1 27
1 28
1 29
1 30
1 3 1
1 32
1 33
1 34
1 35
1 36
1 37
1 38
1 39
1 40
1 4 1
1 42
1 43
1 44
1 45
1 46
1 47
1 48
1 49
1 50
1 5 1
1 52
1 53
1 54
1 55
1 56
1 57
1 58
1 59

Operator Overloa d i n g ; String and Array Objects Chapter 8

exit (1) ; I I terminate program; subscript out o f range

} I I end i f

return ptr [subscript] ; I I reference return

I I end funct ion operator []

I I over loaded subscript operator for const Arrays

I I const ref erence return create s an rvalue

const int &Array : : operator [] (int subscript) const

{
I I check for subscript out of range error

if (subscript < 0 I I subscript > = s i z e)

cout « " \ nError : Subscript " « subscript
« " out of range " « endl ;

exit (1) ; I I terminate program; subscript out of range

I I end i f

return ptr [subscript] ; I I const reference return

} I I end funct i on operator []

I I overloaded input operator for class Array ;

I I inputs values for ent ire array

istream &operator» (i stream &input , Array &a

{
for (int i = 0; i < a . s i z e ; i + +)

input » a . pt r [i] ;

return input ; I I enables c in » x » y ;

} I I end funct i on

I I overloaded output operator for class Array

ostream &operator« (ostream &output , const Array &a)

{
int i ;

I I output private ptr-based array
for (i = 0; i < a . s i z e ; i + +) {

output « setw (12) « a . ptr [i] ;

i f ((i + 1) % 4 = = 0) I I 4 numbers per row o f output

output « endl ;

} I I end for

if i % 4 ! = 0) I I end last l ine of output
output « endl ;

Fig. 8 .5 Array class member- and friend-function definit ions. (Part 3 of 4 .)

Chapter 8 Operator Overloadi ng; Strin g a n d Array Objects

return output ; // enables cout « x « y ; 1 60
1 6 1
1 62 // end func t ion operator«

Fig. 8.5 Array c lass member- and fri end-function defin itions. (Part 4 of 4 .)

1 / / Fig . 8 . 6: f ig0 8_0 6 . cpp

2 // Array c l a s s test program .
3 # inc lude < iostream>

4
5 us ing std::cout ;

6 us ing std::c in;

7 us ing std::endl ;

8
9 # inc lude larray1 . h "

1 0
1 1 int main ()
1 2 {
1 3 Array integers 1 (7) ; / / seven-element Array

1 4 Array integers2 ; // 1 0 - e l ement Array by de f au l t

1 5
1 6 / / print int eger s 1 s i ze and content s

1 7 cout « " S i z e o f array integers1 i s II

1 8 « integers 1 . getSize ()

1 9 « " \nArray after ini t i a l i zation: \ n " « integer s 1 ;

20
2 1 / 1 print integers2 s i ze and content s

22 cout « " \nSi z e of array integers2 i s "

23 « integers2 . ge t S i z e ()

24 « " \nArray after ini t i a l i zation: \ n " « integers2 ;
25
26 / / input and print integers 1 and integers2

27 cout « " \nInput 1 7 integers:\ n " ;

28 c in » integers 1 » integers2 ;

29
30 cout « " \ nAfter input , the arrays contain: \ n "
3 1 « " integers1: \ n " « integers 1
32 « " integers2:\n" « integers2 ;
33
34 // use overloaded inequal ity (1 =) operator

35 cout « " \nEvaluat ing: integers 1 ! = integers2 \n " ;
36
37 i f integers 1 ! = integers2)

38 cout « " integers 1 and integers2 are not equal \ n " ;
39
40 // create array int egers3 us ing integers 1 as an
4 1 / / init ial i z e r ; print s i ze and content s
42 Array integers 3 (integers 1) ; // cal l s c opy c onstructor
43
44 cout « " \nSi z e of array integers3 i s "

45 « integers 3 . ge t S i z e ()

46 « " \ nArray after ini t i a l i z at ion: \ n " « integers3 ;

Fig. 8.6 Array class test program . (Part 1 of 3.)

56 1

562

47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75

Operator Overloa d i n g ; Stri ng and Array Objects

I I use overloaded ass ignment (=) operator

cout « " \ nAs s i gning integers 2 to integers l : \ n " ;

integersl = integers2 ; I I note target i s smal l er

cout « " integers l : \ n " « integersl

« " integers 2 : \ n " « integers2 ;

I I use overloaded equal ity (= =) operator

cout « " \nEvaluat ing : integersl = = integers2 \ n " ;

i f integers l = = integers2)

Chapter 8

cout « " integers l and integers2 are equal \ n " ;

I I use overloaded subscript operator to create rvalue

cout « " \ nintegers l [5] is " « integer s l [5] ;

I I use overloaded subscript operator to create lvalue

cout « " \n\nAss igning 1 0 0 0 to integers l [5] \ n " ;

integers l [5] = 1 0 0 0 ;

cout « " integers l : \ n " « integers l ;

I I attempt t o use out-of - range subscript

cout « " \nAttempt to ass ign 1 0 0 0 to integers l [1 5] " « endl ;

integers l [1 5] = 1 0 0 0 ; I I ERROR : out of range

return 0 ;

I I end main

Size of array integers l i s 7

Array after ini t i a l i zat ion :

o 0

o o

S i z e of array integers 2 i s 1 0

Array after ini t i a l i zation :

o 0

o 0

o o

Input 17 integers :

o
o

o
o

1 2 3 4 5 6 7 8 9 1 0 1 1 12 13 14 1 5 16 17

After input , the arrays contain :

integers l :
1 2 3

5 6 7

integers2 :
8 9 1 0

1 2 1 3 14

16 17

Fig. 8.6 Array class test program. (Part 2 of 3.)

o

o
o

4

1 1

1 5

(continued next page)

Chapter 8 Operator Overloa d i n g ; Str ing a n d Array Objects

Evaluating : integers l ! = integers2

integers 1 and integers 2 are not equal

S i z e of array integers 3 is 7

Array a fter initial i zation :

1 2

5 6

Ass igning integers2 to integers 1 :

integers 1 :

8 9

1 2 1 3

1 6 1 7

integers2 :

8 9

1 2 1 3

1 6 1 7

Evaluating : integer s 1 = = integers2

integer s 1 and integers 2 are equal

integers 1 [5] is 13

Assigning 1 0 0 0 to integers 1 [5]

integers 1 :

8

1 2

1 6

9

1 0 0 0

17

3

7

1 0

14

1 0

14

1 0

14

Attempt to a s s ign 1 0 0 0 to integers 1 [1 5]

Error : Subscript 1 5 out o f range

Fig. 8.6 Array class test program. (Part 3 of 3 .)

4

1 1

1 5

1 1

1 5

1 1

1 5

563

The program begins by instantiati ng two objects of class Array-i nteger s l (l i ne

1 3) wi th seven elements, and integers2 (l i ne 1 4) with the default Array s ize- l 0 e le

ments (spec ified by the Array default constructor' s prototype in Fig. 8 .4, l i ne 1 6) . Lines

1 7- 1 9 use member function getS ize to determine the size of integers l and output

integers l, us ing the Array overloaded stream- insert ion operator. The sample output

confirms that the array e lements were in it ia l ized correctly to zeros by the constructor. Next,

l i nes 22-24 output the s ize of array integers2 and output integer s 2 , using the

Array overloaded stream- insert ion operator.

Line 27 prompts the user to input 1 7 i ntegers. Line 28 uses the Array overloaded

stream-extraction operator to read these values into both arrays . The fi rst seven values are

stored in integers l and the remai ning 1 0 values are stored in integers 2 . Lines 30-

32 output the two arrays wi th the Array stream-insertion operator to confirm that the input

was performed correctly .

Line 37 tests the overloaded inequal i ty operator b y eval uat ing the condit ion

intege r s l != int egers2

The program output shows that the arrays i ndeed are not equal .

564 Operator Overloa d i n g ; Str ing and Array Objects Chapter 8

Line 42 i nstantiates a third Array cal led integers3 and i ni t ial izes it w i th a copy

of Array int egers 1 . Thi s i nvokes the Array copy constructor to copy the e lements

of intege r s 1 i nto integers3. We discuss the detai l s of the copy constructor short ly .

L ines 44-46 output the s ize of integers3 and output integers3, us ing the
Array overloaded stream- insert ion operator to confirm that the array elements were i n i

t ial i zed correctly by the copy constructor.

Next, l ine 50 tests the overloaded assignment operator (=) by ass igning intege r s 2

to integers 1 . Lines 52-53 print both Array objects to confi rm that the assignment was

successfu l . Note that integers 1 origi nal ly held 7 integers and was resized to hold a copy

of the 1 0 e lements i n integers 2 . As we wi l l see, the overloaded assignment operator

performs thi s res iz ing operat ion in a manner that is transparent to the c l ient code .

Next, l ine 58 uses the overloaded equal i ty operator (==) to confi rm that obj ects

integers 1 and integers2 are indeed identical after the assignment .

Line 62 uses the overloaded subscript operator to refer to intege r s 1 [5] -an i n

range element of integers 1 . This subscripted name is used a s an rvalue to pri nt the

value stored in intege r s 1 [5] . Line 66 uses integers 1 [5] as an lvalue on the left

s ide of an assignment statement to assign a new value, 1000, to e lement 5 of integers l .

We wi l l see that operator [] returns a reference t o u s e as t h e lvalue after t h e operator

confirms that 5 is a val id subscript for integers l .

Line 7 1 attempts t o assign the val ue 1000 t o int egers 1 [15]-an out-of-range

element . In th is example, operator [] determines that the subscript is out of range, prints

a message and terminates the program.

Interest ingly, the anay subscript operator [] is not restricted for use only wi th arrays;

i t can be used to select e lements from other kinds of container c lasses, such as l inked l i sts ,

strings and dict ionaries . Also, when defin ing operator [] functions, subscripts no

longer have to be i ntegers-characters, stri ngs, floats or even obj ects of user-defi ned

c lasses also could be used.

Now that we have seen how this program operates , let u s walk through the c lass header

(F ig . 8 .4) . As we refer to each member function in the header, we discuss that function's

i mplementation in Fig . 8 . 5 . Lines 4 1 -42 represent the private data members of c lass

Array. Each Array obj ect consists of a s ize member i ndicating the number of e lements

in the array and an int pointer-ptr-that points to the dynamical l y a l located array of

i ntegers managed by Array obj ect .

Lines 1 2- 1 3 of the header fi le declare the overloaded stream-insert ion operator and the

overloaded stream-extraction operator to be friends of class Array. When the compi ler

sees an expression l ike cout < < arrayObj ect, i t invokes non-member function oper

ator« with the cal l

operator« (cout , arrayObject)

When the compiler sees an expression l ike c in » arrayObjec t , it i nvokes non-mem

ber function operator» with the cal l

operator» (cin , arrayObject

We note again that these stream-insertion and stream-extraction operator funct ions cannot

be members of c lass Array, because the Array object i s always mentioned on the right

s ide of a stream-insert ion operator and a stream-extraction operator. I f these operator func-

Chapter 8 Operator Overloading; Str ing a n d Array Objects 565

t ions were to be members of class Array, the fol lowing awkward statements would be

used to output and i nput an Array:

arrayObj ect « cout ;

arrayObj ect » cin ;

Such statements would be confus ing to most C++ programmers, who are fami l i ar with

cout and cin appearing as the left operands of« and » , respect ive ly .

Function operator« (defi ned i n F i g . 8 . 5 , l i nes 1 44- 1 62) prints t h e n umber o f ele

ments indicated by s ize from the integer array to which ptr points . Funct ion oper

ator» (defi ned i n Fig . 8 . 5 , l i nes 1 34- 1 4 1) i nputs d irectly i nto the array to which ptr

points . Each of these operator functions returns an appropriate reference to enable cascaded

output or i nput statements, respect ively . Note that each of these funct ions has access to an

Array's private data because these functions are declared as friends of c lass Array.

Also, note that c lass Array's getS ize and operator [] functions could be u sed by

operator« and operator» , i n which case these operator functions would not need

to be friends of c lass Array. However, the addit ional function cal l s might i ncrease execu

tion-time overhead .

L ine 1 6 of the header fi le declares the default constructor for the c l ass and speci fies a

default s ize of 1 0 elements . When the compiler sees a declaration l i ke l i ne 1 3 i n F ig . 8 .6 , i t

i nvokes c lass Array's defaul t constructor (remember that the defau l t constructor i n th i s

example actual l y recei ves a s ingle int argument that has a defaul t value o f 1 0) . The

default constructor (defined in Fig. 8 . 5 , l i nes 20-30) val idates and ass igns the argument to

data member s ize, uses new to obtai n the memory for the i nternal representation of th is

array and assigns the pointer returned by new to data member ptr. Then the constructor

uses a for loop to i n it ial ize al l the elements of the array to zero . It is possible to have an

Array c lass that does not i n i t ial ize its members i f, for example, these members are to be

read at some later t ime; but this is considered to be a poor programming pract ice . Arrays,

and objects i n general , shou ld be maintained at al l t imes i n a properly i n i t ia l ized and con

s i stent state .

Line 1 7 of the header fi le declares a copy constructor (defined in Fig . 8 . 5 , l ines 34-42)

that i n it ial izes an Array by making a copy of an exist ing Array object . S uch copying must

be done carefu l ly to avoid the pitfal l of leaving both Array obj ects point ing to the same

dynamical ly al located memory . Thi s i s exactly the problem that would occur wi th default

memberwise assignment, if the compiler i s al lowed to define a default copy constructor for

this c lass . Copy constructors are i nvoked whenever a copy of an object is needed, such as i n

pass ing a n object b y value t o a function, return ing a n obj ect b y value from a function o r i n i

tializ ing an object with a copy of another object of the same c lass . The copy constructor i s

cal led in a dec larat ion when an object of c lass Array i s i nstantiated and i n i t ial ized with

another obj ect of class Array, as in the declaration on l i ne 42 of Fig. 8 .6 .

rI1 Common Programming Error 8.6
Note that the copy constructor must receive its argument pass-by-reference, not pass-by-val

ue. Otherwise, the copy constructor caLL results in infinite recursion (a fatal logic error) be

cause, for pass-by-value, a copy of the object passed to the copy constructor must be made.

Remember that any time a copy of an object is required, the class's copy constructor is

caLLed. If the copy constructor receives its argument by value, the copy constructor would

caLL itself recursively to make a copy of its argument!

566 Operator Overloading; Str ing and Array Objects Chapter 8

The copy constructor for Array (Fig . 8 . 5 , l i ne 35) uses a member in i t ia l izer to copy
the s ize of the in i t ial izer array into data member s ize, uses new (l i ne 37) to obta in the
memory for the internal representation of this alTay and ass igns the pointer returned by new

to data member ptr. ' Then the copy constructor uses a for loop to copy al l the elements
of the i ni t ia l izer array i nto the new array object.

Common Programming Error 8.7
If the copy constructor simply copied the pointer in the source object to the target object 's

pointer, then both objects would point to the same dynamically allocated memory. The first

destructor to execute would then delete the dynamically allocated memory, and the other ob

ject 's ptr would then be undefined, a situation called a dangling pointer-this would likely

result in a serious run- time error (such as early program termination) when the pointer is

used.

Line 1 8 of the header fi le dec lares the destructor for the c lass (defi ned i n F ig . 8.5 , l i nes

45-49) . The destructor i s i nvoked when an object of c lass Array goes out of scope . The

destructor uses del ete [] to reclaim the memory al located dynamical ly by new i n the

constructor. Line 1 9 declares function getSize (defi ned in Fig. 8 . 5 , l i nes 52-56) that

returns the size of the array .

Line 22 of the header fi le declares the overloaded assignment operator function for the

c lass . When the compiler sees the expression integers l = integer s 2 in l i ne 50 of

Fig . 8 .6, the compiler invokes member function operator= with the cal l

integer s l . operator= (integers2)

The implementation of member function operator= (Fig . 8 . 5 , l i nes 60-80) tests for self

assignment (l i ne 62) in which an object of c lass Array is being assigned to itself. When

thi s i s equal to the address of the right operand, a self-assignment i s being attempted,

so the assignment i s skipped (i . e . , the object already is itself; in a moment we w i l l see why

self-assignment i s dangerous) . I f i t i s not a self-assignment, then the member function deter

mines whether the sizes of the two arrays are identical (l i ne 66); in that case, the original ar

ray of integers in the left-side Array object i s not real located. Otherwise, operator=

uses del ete (l ine 67) to recla im the memory original ly al located to the target array, copies

the s ize of the source array to the s ize of the target array (l ine 68) , uses new to al locate

memory for the target array and places the pointer returned by new i nto the array's ptr

member.2 Then the for loop at l i nes 73-74 copies the array elements from the source array

to the target array . Regardless of whether this is a self-assignment, the member function re

turns the current object (i . e . , *thi s at l i ne 78) as a constant reference; this enables cascaded

Array assignments such as x = y = z. If self-assignment occurs, and function opera

tor= did not test for this case, operator= would delete the dynamic memory associated

with the Array object before the assignment is complete. Thi s would leave ptr point ing

to memory that has been deal located, which can lead to fatal runtime errors.

Softwar 0 8
A constructor, a destructor, an overloaded assignment operator and a copy constructor a re

. usually provided as a group for any class that uses dynamically allocated memory.

j. Note that new could fai l to obtain the needed memory. We deal w i th new fai l ures i n Chapter 13,
Except ion Handl i ng.

2 . Once aga in , new could fai l. We d i scuss new fai l ures in Chapter 13.

Chapter 8 Operator Overload i n g ; Stri ng a n d Array Objects 567

Common Programming Error 8.8
Not providing an overloaded assignment operator and a copy constructor for a class when

objects of that class contain pointers to dynamically allocated memory is a logic error.

It is possible to prevent one objecr of a class from being assigned to another. This is done by

declaring the assignment operator as a private member of the class.

e �
It is possible to prevent class objects from being copied; to do this, simply make both the

. overloaded assignment operator and the copy constructor of that class pri vate.

Line 25 of the header fi le dec lares the overloaded equality operator (= =) for the c lass .

When the compiler sees the expression integers! = = intege r s 2 i n l ine 5 8 of

Fig . 8 .6, the compi ler i nvokes member function operator= = with the cal l

integer s l . operator== (integers2)

Member function operator= = (defi ned in Fig . 8.5 , l i nes 84-96) i mmediately returns

f a l s e i f the s ize members of the arrays are not equal . Otherwise, operat or= = com

pares each pair of e lements . If they are al l equal , the function returns t rue. The first pair

of e lements to d iffer causes the function to return fal s e immediate ly .

L ines 28-32 of the header fi le define the overloaded i nequal i ty operator (! =) for the

c lass . Member function operator ! = uses the overloaded operator= = function to

determine whether one Array i s equal to another, then returns the opposite of that resul t .

Wri t ing operator ! = i n this manner enables the programmer to reuse operator= = ,

which reduces the amount o f code that must b e written in the c lass . A l so, note that the fu l l

function defi nit ion for operator ! = i s i n the Array header fi le . Thi s a l lows the compiler

to i n l i ne the defi nit ion of operator ! = to e l imjnate the overhead of the extra function cal l .

Lines 35 and 3 8 o f the header fi le declare two overloaded subscript operators (defi ned

in F ig . 8 . 5 at l i nes LOO- 1 1 3 and 1 1 7- 1 30, respect ive ly) . When the compi ler sees the

expression integers! [5] (Fig . 8 .6, l i ne 62) , the compiler invokes the appropriate

overloaded operator [] member function by generat ing the cal l

integers l . operator [] (5)

The compiler creates a cal l to the const vers ion of operator [] (Fig . 8 . 5 , l i nes 1 1 7-

1 30) when the subscript operator i s used on a const Array object . For example, i f

cons t object z i s i n stantiated with the statement

const Array z (5) ;

then the const version of operator [] i s required to execute a statement such as

cout « z [3] « endl ;

Remember, a program can invoke only the cons t member functions of a const object .

Each defi n i t ion of operator [] determines whether the subscript i t recei ves as an

argument is in range. If i t is not, each function prints an error message and terminates the

program with a call to function exit (header < c s tdlib >).3 If the subscript is i n range,

568 Operator Overloa d i n g ; Str ing and Array Objects Cha pter 8

the appropriate e lement of the array is returned as a reference so that it may be u sed as an
lvalue (for example, on the left s ide of an assignment statement) for the non-const vers ion
of c , or an rvalue for the const version of operator [] .

8.9 Converting between Types

Most programs process information of a variety of types . Sometimes a l l the operat ions

"stay with in a type ." For example , adding an i nteger to an i nteger produces an i nteger (as

long as the resu l t i s not too l arge to be represented as an i nteger) . I t i s often necessary , how

ever , to convert data of one type to data of another type . Thi s can happen i n assignments ,

i n calculat ions, i n pass ing values to functions and in return ing values from functions . The

compiler knows how to perform certain conversions among bui l t- in types . Programmers

can use cast operators to force conversions among bui l t - in types .

B ut what about user-defi ned types? The compiler cannot know in advance how to con

vert among user-defi ned types, and between user-defined types and bui lt- in types, so the

programmer must spec ify this. Such conversions can be performed with conversion con

structors-single-argument constructors that turn objects of other types (i nc luding bu i l t-i n

types) into objects of a part icu lar class . I n Section 8 .10, we use a conversion constructor to

convert ord inary char * stri ngs i nto String c lass objects .

A conversion operator (also cal led a cast operator) can be used to convert an object of

one c lass i nto an obj ect of another c lass or i nto an object of a bui l t- in type . Such a conver

s ion operator must be a non-static member function; th is k ind of conversion operator

cannot be a f r i end function . The function prototype

A : : operator char * () const ;

dec lares an overloaded cast operator function for convert ing an object of user-defined type

A i nto a temporary char * object . An overloaded cast operator function does not spec ify

a return type-the return type is the type to which the object i s being converted . If s is a

c lass object, when the compiler sees the expression (char *) s , the compiler generates

the cal l s. operator char * () . The operand s is the c lass obj ect s for which the mem

ber function operator char * i s be ing invoked .

Overloaded cast-operator functions can be defined for convert ing obj ects of user

defi ned types i nto bui l t - in types or into objects of other user-defi ned types. The prototypes

A : : operator int () const ;

A : : operator OtherC las s () const ;

declare overloaded cast operator functions that can convert an obj ect of user-defined type

A i nto an in teger or i nto an object of user-defined type OtherCl a s s , respective ly .

One of the nice features of cast operators and conversion constructors i s that, when

necessary , the compi ler can cal l these functions impl ic i t ly to create temporary objects . For

example, if an object s of a user-defined String class appears in a program at a location

where an ord inary char * i s expected, such as

cout « s ;

3. Note that i t i s more appropri ate when a subscript i s out of range to "throw a n except ion" ind icat ing
the out-of-range subscri pt . Then the program can "catch" that except ion, process i t and poss ib ly
cont inue execut ion . See Chapter 13 for more information on exceptions.

Chapter 8 Operator Overloading; Stri ng and Array Objects 569

the compiler can cal l the overloaded cast-operator function operator char * to convert

the object i nto a char * and use the resul t ing char * in the express ion . With th is cast op

erator provided for our String c lass, the stream-insert ion operator does not have to be

overloaded to output a String using couto

Common Programming Error 8.9
Unfortunately, the compiler might use implicit conversions in cases that you do not expect,

resulting in ambiguous expressions that generate compilation errors or resulting in execu

tion-time logic errors.

8.10 Case Study: String Class

As a capstone exerc i se to our study of overloading, we w i l l bu i ld our own String class

to handle the creat ion and manipulation of strings (Fig . 8 .7-Fig . 8 .9) . The C++ standard l i

brary provides a s imjlar, more robust c lass st ring as wel l . We present an example of the

standard class string i n Sect ion 8 . l 3 and study class s t ring i n detai l i n Chapter IS.

For now, we w i l l make extensive use of operator overloading to craft our own class

String.

First, we present the header fi le for class St ring. We discuss the private data used to

represent String objects . Then we walk through the c lass's publ ic i nterface, d iscuss ing

each of the services the c lass provides. We discuss the member-funct ion defi n it ions for the

c lass String. For each of the overloaded operator functions, we show the code i n the

driver program that i nvokes the overloaded operator function, and we provide an explana

tion of how the overloaded operator function works .

Now let us walk through the String class header fi le i n F ig . 8 .7 . We beg in with the

i nternal representat ion of a String. Lines 63-64 declare the pri vat e data members of

the class. Our String class has a length field, which represents the n umber of charac

ters in the string, not inc luding the nu l l character at the end of the character string, and has

a pointer sPtr that points to the dynamical ly al located memory representing the character

string .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7

I I Fig . 8 . 7 : stringl . h

I I String c la s s def init ion .

i fndef STRING1_H

#def ine STRING1_H

#inc lude < iostream>

using s td : : os tream;

us ing s td : : i stream;

class String {
friend ostream &operator« (ostream & , const String &) ;
friend i s tream &operator» (i stream & , String &) ;

publ ic :

String (const char *
String (const String &) ;

) ; I I convers ion/ de f au l t ctor
I I copy constructor

Fig. 8 .7 St ring c lass defin it ion with operator overload ing . (Part 1 of 2 .)

570

1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70

Operator Overloa d i n g ; Str ing and Array Objects Chapter 8

-String () ; I I destructor

const String &operator= (const String &) ; II a s s i gnment
const String &operator+ = (const String &) ; II concatenat i on

bool operator ! () const ; I I is String empty?
bool operator= = (const String &) const ; I I test s1 == s2

bool operator« const String &) const ; I I test s 1 < s 2

I I test s 1 != s2

bool operator ! = (const String & right) const

{
return ! (* this == right) ;

I I end funct i on operator ! =

I I t e s t s 1 > s2

bool operator > (const String &right) const

{
return right < * thi s ;

I I end funct ion operator>

I I test s1 <- s2

bool operator< = (const String &right) const

{
return ! (right < * this) ;

} I I end funct i on operator <=

I I test s1 >= s2
bool operator > = (const String &right) const

{
return ! (* thi s < right) ;

I I end funct ion operator>=

char &operator [] (int) ; II subscript operator

const char &operator [] (int) const ; II subscript operator

String operator () (int , int) ; II return a substring

int getLength () const ; II return string length

private :

II string length int length;

char * sptr; I I pointer to start of string

void set String (const char *) ; I I util i ty func t ion

} ; I I end class String

#endi f

Fig. 8 . 7 String c lass defin ition with operator overloading . (Part 2 of 2.)

Chapter 8 Operator Overloading; Str ing and Array Objects 57 1

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52

I I Fig. 8.8: stringl.cpp

I I Member funct ion de f ini t ions for c lass String.

inc lude < iostream>

us ing s td : : cout ;

us ing std : : endl ;

inc lude < i omanip>

us ing s td : : setw;

inc lude < new> I I c++ standard " new" operat or

inc lude < c s tring>

inc lude < c stdlib>

II strcpy and strcat prototype s

I I exi t prot otype

inc lude " stringl.h " I I String c las s de finition

I I conversion const ruct or convert s char * to String

String : : String (const char *s)
: l ength (strlen (s))

cout « " Convers ion constructor : " « s « ' \n ' ;

setString (s) ; I I cal l utility function

I I end String conversion constructor

II copy constructor

String : : String (const String ©)

: l ength (copy . length)

{
cout « " Copy constructor : " « copy . sPtr « ' \n ' ;

set String (copy.sPtr) ; I I cal l ut i l ity funct i on

} I I end String copy constructor

I I destruct or

String : : -String ()

{
cout « " De structor :

de lete [] sPtr ;

" « sPtr « ' \n ' ;

I I rec la1m string

II end -String destructor

I I overloaded = operator ; avoids se l f a s s ignment

const String &String : : operator= (const String &right

{
cout « " operator= called\n " ;

i f &right ! = thi s) {
de lete [] sPtr ;

length = right . length;

II avoid self a s s i gnment

I I prevents memory l eak

I I new S tring length

Fig. 8.8 String class member-function and f ri end-function defin it ions. (Part 1
of 4 .)

572

53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1
82
83
84
85
86
87
88
89
90
9 1
92
93
94
95
96
97
98
99
1 00
1 0 1
1 02
1 03
1 04

Operator Overloa d i n g ; String and Array Objects Chapter 8

setString (right . sPtr) ; I I c a l l ut i l ity funct ion
}

e l s e

cout « " At t empt ed assigrunent of a String to i t s e l f \n " ;

return * thi s ; II enables cascaded a s s i grunent s

} I I end funct ion operator=

I I concatenate right operand to thi s obj ect and

II store in thi s obj ect .

const String &String : : operator+ = (const String

{
s i z e_t newLength = length + right . length ;

char * t empPtr = new char [newLength + 1] ;

&right

I I new l ength

I I create memory

strcpy (tempPtr , sPtr) ; I I copy sPtr
strcpy (tempPtr + length, right . sPtr) ; I I copy right . sPtr

I I rec laim old space delete [] sptr;

sPtr = tempPtr ;

length = newLength ;

I I ass ign new array to sPtr

I I ass ign new l ength to l ength

return * thi s ; II enables cascaded cal l s

II end funct i on operator+=

I I i s thi s String empty?

bool String : : operator ! () const

{
return length = = 0 ;

} II end funct ion operator !

I I i s thi s String equal to right String?

bool String : : operator= = (const String &right) const

{
return strcmp (sPtr, right . sptr) = = 0 ;

I I end function operator==

II i s this String l e s s than right String?

bool String : : operator« const String &right) const

{
return strcmp (sPtr, right . sPtr < 0 ;

I I end funct i on operator<

I I return re ference to character in String as Ivalue

char &String : : operator [] (int subscript)

{

F ig. 8.8 St ring class member-function and friend-function defin it ions. (Part 2
of 4 .)

Chapter 8 Operator Overloading; Str ing and Array Objects 573

1 05
1 06
1 07
1 08
1 09
1 1 0
1 1 1
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7
1 1 8
1 1 9
1 20
1 2 1
1 22
1 23
1 24
1 25
1 26
1 27
1 28
1 29
1 30
1 3 1
1 32
1 33
1 34
1 35
1 36
1 37
1 38
1 39
1 40
1 4 1
1 42
1 43
1 44
1 45
1 46
1 47
1 48
1 49
1 50
1 5 1
1 52
1 53
1 54
1 55
1 56

I I t e s t for subscript out of range

if (subscript < 0 I I subscript >= l ength)
cout « " Error : Subscript .. « subscript

« .. out of range " « endl ;

}

exit (1) ; I I terminate program

return sPtr [subscript] ; I I create s lvalue

} I I end funct i on operator []

I I return reference to character in String as rvalue

const char &String : : operator [] (int subscript) const

I I t e s t for subscript out of range

i f (subscript < 0 I I subscript >= length)

cout « " Error : Subscript .. « subscript

« . . out of range " « endl ;

}
exit (1) ; I I terminate program

return sPtr [subscript] ; I I creates rvalue

} I I end func t ion operator []

I I return a substring beginning at index and

I I of l ength subLength

String String : : operator () (int index , int subLength

{
I I i f index i s out of range or substring l ength < 0 ,

I I return an empty String obj ect

if (index < 0 I I index >= length I I subLength < 0)
return " " ; I I converted to a String obj ect automa t i c a l ly

I I determine l ength of substring

int l en ;

i f ((subLength = = 0) I I (index + subLength > l ength))

len l ength - index ;

e l s e

l en subLength ;

I I al locate temporary array for substring and

I I terminat ing nul l character

char * tempPtr = new char [len + 1] ;

I I copy substring into char array and t e rminate string

strncpy (t empPtr , & s Ptr [index] , len) ;

tempPtr [len] = ' \ 0 ' ;

Fig. 8.8 String class member-function and fri end-function defin it ions . (Part 3
of 4.)

574

1 57
1 58
1 59
1 60
1 6 1
1 62
1 63
1 64
1 65
1 66
1 67
1 68
1 69
1 70
1 7 1
1 72
1 73
1 74
1 75
1 76
1 77
1 78
1 79
1 80
1 81
1 82
1 83
1 84
1 85
1 86
1 87
1 88
1 89
1 90
1 9 1
1 92
1 93
1 94
1 95
1 96
1 97
1 98
1 99

Operator Overloa d i n g ; Stri ng and Array Objects Chapter 8

I I create temporary String object containing the substring

String tempString (tempPtr) ;

de lete [] tempPtr ; // delete temporary array

return tempString ; 1/ return copy of the temporary String

} / 1 end function operator()

// return string length

int String : : getLength () const

{
return length;

} // end function getLenth

// utility function called by constructors and operator=

void String : : setString (const char * string2)

{
sPtr = new char [length + 1] ; // allocate memory

strcpy (sPtr , string2); // copy literal to object

1/ end function setString

// overloaded output operator

ostream &operator« (ostream &output , const String & s)

{
output « s . sPtr ;

return output ; /1 enables cascading

I I end function operator«

// overloaded input operator

i stream &operator» (i stream &input , String & s)

char temp [100] ; 1/ buffer to store input

input » setw (100) » temp ;

s = t emp ; // use String class assignment operator

return input ; 1/ enables cascading

} /1 end function operator»

Fig. 8.8 St ring c lass member-function and fri end-function defin it ions. (Part 4
of 4 .)

1 / / Fig. 8.9: fig08_09.cpp

2 /1 String class test program.

3 # inc lude < iostream>

4

Fig. 8 .9 St ring c lass test program. (Part 1 of 4 .)

Chapter 8 Operator Overloading; Stri ng a n d Array Objects 575

5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56

us ing std : : cout ;

us ing std : : endl ;

inc lude " string1 . h "

int main ()
{

String s l (" happy") ;

String s 2 (" birthday ") ;

String s 3 ;

1/ t e st overl oaded equality and rel at ional operators

cout « " s l i s \ 11 " « s l « " \ " ; s 2 i s " . .. «

« 11 \ " ; s 3 i s \11 11 « s 3 « • \ .. I

« " \n\nThe results of comparing s 2 and
« " \ns2 -- s l yields "
« (s2 == sl ? " true" : " false "
« " \ns2 1= sl yields "
« (s 2 ! = s l ? .. true " : " fal s e "
« " \ns2 > s l yields "
« (s2 > s l ? " true " " fa l s e "
« " \ns2 < s l yields "
« (s2 < s l ? " true " " false "
« " \ns2 > = s l yields "
« (s2 > = s l ? " true " : " fa l s e "
« " \ns2 < = s l yields "
« (s 2 < = s l ? " true " : " false ") ;

I I t est overloaded String empty (!) operator

cout « " \n \ nTest ing ! s 3 : \n " ;

i f ! s 3) (

s 2

s l : "

cout « " s 3 i s empty; as s i gning s l to s 3 ; \ n " ;
s 3 = s l ; I I t e s t overloaded a s s ignment

cout « " s 3 i s \ " " « s3 « " \" " ;

I I test overloaded String concatenation operator

cout « " \n\ns 1 + = s 2 yields s l = " ;

s l + = s 2 ; I I test overloaded concatenation
cout « s l ;

I I test convers i on constructor

cout « " \n\ns 1 += \ " to you \ " yields \ n " ;

s l + = " t o you " ; I I test convers ion constructor

cout « " s l = " « sl « " \n \ n " ;

I I t e s t overloaded funct ion call operat or () for substring
cout « " The substring of s l start ing at \ n "

« " locat i on 0 for 14 characters , s l (O , 1 4) , i s : \ n "
« s l (0, 1 4) « " \ n\n" ;

Fig. 8.9 String c lass test program. (Part 2 of 4 .)

576 Operator Overloa d i n g ; Stri ng and Array Objects

I I test substring " to-end-of -String " opt ion

cout « " The substring of sl start ing at \ n "

« " locat ion 1 5 , s l{1 5 , 0) , i s : "

Chapter 8

57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1
82
83
84
85
86

« s l{ 1 5 , 0) « " \n \ n " ; I I 0 is " to end of s tring "

I I test copy const ructor

String * s4 Pt r = new String { sl) ;

cout « " \n* s4Ptr = " « * s 4Ptr « " \n \ n " ;

I I test assignment (=) operator with sel f -a s s i gnment

cout « " as s i gning * s4ptr to * s4Ptr \ n " ;

* s4 P t r = * s4Ptr ; I I test overloaded a s s i gnment

cout « " * s4 Pt r = " « * s4Ptr « ' \ n ' ;

I I test destructor

delete s4Ptr;

I I test us ing subscript operator to create lvalue

sl [0] = ' H ' ;

s l [6] = ' B ' ;

cout « " \ns 1 after s l[O]

« s l « " \n \ n " ;

' H ' and s l[6]

I I test subscript out of range

' B ' i s : It

cout « " Attempt to assign ' d ' to s l[30] yields : " « endl ;

s l [30] = ' d ' ; I I ERROR : subscript out of range

return 0 ;

} I I end main

Conversion const ructor : happy
Convers ion const ructor : birthday
Conversion constructor :
s l i s n happy n ; s2 i s n birthday n ; s 3 i s n n

The resu l t s o f comparing s 2 and s l :
s 2 = = s l yie lds false
s 2 1= s l yields t rue
s 2 > sl yields false
s 2 < sl yields t rue
s 2 >= sl yields false
s 2 < = s 1 yields true

Test ing 1s3 :
s 3 i s empty; a s s igning s l to s 3 ;
operator= called
s 3 i s " happy n

s l + = s2 yields s l = happy birthday

s l + = " to you n yie lds
Convers ion constructor : to you
Des t ructor : to you
s l = happy birthday to you

Fig. 8 .9 St ring class test program. (Part 3 of 4.)

(continued next page)

Chapter 8 Operator Overloading; Stri ng a n d Array Objects

Conversion const ructor : happy birthday
Copy constructor : happy birthday
Destructor : happy birthday
The substring of sl start ing at
locat ion 0 for 14 characters , s l (O , 14) , i s :
happy birthday

De structor : happy birthday
Conversion constructor : to you
Copy const ructor : to you
Des t ructor : to you
The substring of sl start ing at
locat ion 1 5 , s l (1 5 , 0) , i s : to you

Destructor : to you
Copy const ructor : happy bi rthday to you

* s4 P t r = happy birthday to you

a s s i gning * s4Ptr to * s4ptr
operator= called
Att empted a s s i gnment of a String to itsel f
* s4Ptr = happy birthday to you
De s t ructor : happy birthday to you

s l after s l [O] = ' H ' and s l [6] = ' B ' i s : Happy Birthday to you

Att empt to a s s ign ' d ' to s l [3 0] yields :
Error : Subscript 3 0 out of range

Fig. 8.9 String c lass test program. (Part 4 of 4 .)

577

Lines 1 2- 1 3 declare the overloaded stream-insertion operator function operator«

(defi ned i n Fig . 8 .8 , l i nes 1 8 1 - 1 87) and the overloaded stream-extraction operator function

operator» (defined i n Fig . 8 . 8 , l i nes 1 90- 1 99) as friends of the class. The i mplemen

tat ion of operator« i s straightforward . Note that operator» restricts the total

number of characters that can be read into array temp to 99 wi th s etw (l i ne 1 94); the

1 00th posit ion is saved for the stri ng's terminati ng nu l l character. [Note: We did not have

this restrict ion for operator» in c lass Array (F ig . 8 A-Fig . 8 . 5) , because that c lass's

operator» read one array element at a time and stopped reading values when the end

of the array was reached. Object c in does not know how to do th is by default for input of

character arrays .] A l so, note the use of operat or= (l ine 1 95) to ass ign the C-sty le string

t emp to the S t ring obj ect to which s refers. Th is statement invokes the conversion con

structor to create a temporary S t ring object contain ing the C-sty le stri ng; the temporary

String is then assigned to s .

Line 1 6 declares a conversion constructor. Thi s constructor (defined i n F ig . 8 . 8 , l i nes

20-26) takes a const char * argument (that defaults to the empty string; F ig . 8 . 7 , l i ne

1 6) and i ni t ia l izes a S t ring object contai n ing that same character string . Any single

argument constructor can be thought of as a conversion constructor. As we w i l l see, such

constructors are helpfu l when we are doing any St ring operat ion using char * argu

ments . The convers ion constructor can convert a char * string into a S t ring obj ect,

which can then be assigned to the target String object . The avai labi l ity of th is conversion

constructor means that i t i s not necessary to supply an overloaded ass ignment operator for

578 Operator Overloa d i n g ; Stri ng and Array Objects Chapter 8

specifical ly assigning character stri ngs to String objects . The compiler i nvokes the con

version constructor to create a temporary St ring obj ect contain ing the character string ;

then the overloaded assignment operator i s invoked to assign the temporary S t ring object

to another S t ring object .

Software Engineering Observation 8 7
When a conversion constructor is used to perform an implicit conversion, C+ + can apply

only one implicit constructor call (i. e. , a single user-defined conversion) to try to match the

needs of another overloaded operator. The compiler will not match an overloaded operator 's

needs by performing a series of implicit, user-defined conversions.

The S t ring conversion constructor could be i nvoked in such a declarat ion as

St ring sl (" happy ") . The conversion constructor calcu lates the length of i ts char

acter-string argument and assigns i t to data-member length in the member-ini t ia l izer l i st .

Then , l ine 24 of the conversion constructor cal l s ut i l ity function s e t S t ri ng (defi ned i n

Fig. 8 . 8 , l i nes 1 73- 1 78) , which uses new t o al locate a sufficient amoun t o f memory to

private data member sPtr and uses st rcpy to copy the character string i nto the

memory to which sPtr points .4

Line 1 7 i n the header fil e declares a copy constructor (defi ned i n Fig . 8 . 8 , l ines 29-35)

that i nit ial izes a S t r ing obj ect b y making a copy of a n exist ing S t r ing object . As with

our c lass Array (Fig. 8 A-Fig. 8 .5) , such copying must be done carefu l ly to avoid the pit

fal l i n which both String obj ects point to the same dynamically a l located memory . The

copy constructor operates s imi larly to the conversion constructor, except that i t s imply

copies the l ength member from the source String object to the target S t ring obj ect .

Note that the copy constructor cal l s set String to create new space for the target obj ect ' s

in ternal character string . I f i t s imply copied the sPtr i n the source obj ect t o the target

obj ect ' s s P t r, then both objects would point to the same dynamical ly al located memory .

The first destructor t o execute would then delete the dynamical ly al located memory a n d the

other obj ect ' s sPtr would then be undefi ned (i . e . , sPtr would be a dangl ing pointer) , a

s i tuation l i kely to cause a serious run-t ime elTor.

Line 1 8 of Fig . 8 .7 declares the String destructor (defi ned in Fig . 8 . 8 , l i nes 38-43) .

The destructor uses de lete [] t o rec laim the dynamic memory t o which s P t r points .

Line 20 declares the overloaded assignment operator function operator= (defi ned

i n Fig. 8 . 8 , l i nes 46-6 1) . When the compiler sees an expression l ike s t r ing1 =

s t ring2 , the compiler generates the function cal l

stringl . operator= (st ring2) ;

The overloaded assignment operator function operator= tests for self-assignment . If

th is is a self-ass ignment, the function does not need to change the object . If th is test were

omjtted , the function would immediately delete the space in the target obj ect and thus lose

4. There is a subt le issue in the implementation of this conversion constructor. As implemented, if a
n u l l pointer (i.e. , 0) is passed to the constructor, the program wil l fail. The proper way to imple
ment this constructor would be to detect whether the constructor argument is a nul l pointer, then
"throw an exception." Chapter 1 3 discusses how we can m ake c lasses more robust in th is manner.
A l so, note that a n u l l pointer (0) is not the same as the empty string (n n) . A n u ll pointer is a pointer
that does not point to anything. An empty string is an actual string that contains only a nul l char
acter (I \ 0 ').

Chapter 8 Operator Overloading; Strin g a n d Array Objects 579

the character string, such that the pointer would no longer be point ing to valid data-a clas

sic example of a dangling pointer. If there i s no self-ass ignment, the function deletes the

memory and copies the l ength field of the source object to the target obj ect . Then op

erator= calls s e t S t ring to create new space for the target object and copy the char

acter string from the source object to the target object . Whether or not th is is a self

assignment, operator= returns * th i s to enable cascaded assignments .

Line 21 of F ig . 8 . 7 declares the overloaded stri ng-concatenation operator += (defi ned

in Fig . 8 . 8 , lines 65-79) . When the compiler sees the express ion s l + = s2 (line 44 of

Fig . 8 .9) , the compiler generates the member-function call s l. operator + = (s2) .

Function operator+ = calculates the combined length of the concatenated string and

stores i t in local variable newLength, then creates a temporary pointer (t empptr) and

allocates a new character array i n which the concatenated string w i l l be stored. Next,

operato r + = uses s t rcpy to copy the origi nal character stri ngs from s P t r and

right . s P t r into the memory to which tempPtr points. Note that the location i nto

which s t rcpy w ill copy the first character of right . sPtr is determi ned by the pointer

arithmetic calcu lat ion tempPtr + length. Thi s calcu lat ion ind icates that the first char

acter of r i ght. sPtr should be placed at location l ength in the array to which

t empPtr points . Next , operat or+= uses de lete [] to recla im the space occupied by

this object's orig inal character string, assigns tempPtr to s P t r so that this S t r i ng

object points to the new character stri ng, assigns newLength to l ength so that th is

S t r i ng object contains the new string length and returns * th i s as a const S t r ing &

to enable cascading of + = operators .

Do we need a second overloaded concatenation operator to al low concatenation of a
St ring and a char * ? No. The const char * conversion constructor converts a C
style string i nto a temporary String object, which then matches the ex i s t ing overloaded
concatenation operator. Thi s is exactly what the compiler does when i t encounters l i ne 49
in F ig . 8 .9 . Agai n , C++ can perform such conversions only one level deep to fac i l i tate a
match . C++ can also perform an impl ic i t compi ler-defi ned conversion between bui l t-i n
types before it performs the conversion between a built-i n type and a class . Note that, when
a temporary S t ring object i s created in this case, the conversion constructor and the
destructor are called (see the output result ing from line 49, sl += " to you " , in Fig. 8 . 9) .
Thi s i s an example of function-call overhead that i s hidden from the client of the c lass when
temporary class objects are created and destroyed during i mplic i t convers ions . S im i l ar
overhead i s generated by copy constructors in cal l-by-value parameter pass ing and i n
return ing class obj ects b y value .

Performance Tip 8.2
Overloading the + = concatenation opera/or with an additional version that takes a single ar

gument of type const char * executes more efficiently than having only a version that

takes a String argument. Without the const char * version of the += operator, a

const char * argument would first be con verted to a String object with class

String's conversion constructor, then the += opera/or that receives a String argument

would be called /0 peiform the concatenation .

Using implicit conversions with overloaded operators, rather than overloading operators for

many different operand types, often requires less code, which makes a class easier to modify,

maintain and debug.

580 Operator Overloa d i n g ; String and Array Objects Chapter 8

Line 23 of F ig . 8 .7 declares the overloaded negation operator (defi ned i n F ig . 8 . 8 , l i nes
82-86) . This operator determines whether an object of our S t ring c lass is empty . For
example, when the compiler sees the expression ! string! , i t generates the function ca l l

stringl . operator ! ()

Thi s function s imply returns the result of testing whether l ength i s equal to zero.

Lines 24-25 of Fig. 8 . 7 declare the overloaded equal i ty operator (defi ned in Fig. 8 . 8 ,
l i nes 89-93) a n d the overloaded less-than operator (defined i n F i g . 8 . 8 , l i nes 96- 1 00) for
c lass String. These al l are s imi lar, so let us discuss only one example, namely, over
loading the == operator. When the compiler sees the expression s t ring! == s t ring2 ,

the compiler generates the member-function cal l

stringl . operator= = (string2)

which returns t rue if s t ring! is equal to s t ring2 . Each of these operators uses func

t ion strcmp (from < c s t ring » to compare the character strings i n the S t ring objects .

Many C++ programmers advocate using some of the overloaded operator functions to i m

plement others. So, the ! = , > , < = and > = operators are implemented (Fig . 8 . 7 , l i nes 28-53)

i n terms o f operator= = and operator< . For example, overloaded function opera

t or > = (i mplemented a t l i nes 49-53 in the header fi le) uses the overloaded < operator to

determine whether one S t ring object i s greater than or equal to another. Note that the op

erator functions for ! =, >, <= and >= are defined in the header fi le . The compi ler i n l ines

these defi n it ions to e l im inate the overhead of the extra function cal l s .

Software Engineering Observation 8.9
By implementing member jilllctions using previously defined member functions, the pro

grammer reuses code to reduce the amount of code that must be written and maintained.

Lines 55-56 in the header fi le declare two overloaded subscript operators (defined i n

Fig. 8 . 8 , l i nes 1 03- 1 1 5 and 1 1 8- 1 30, respectively)-one for non-const S t rings and one

for const Strings . When the compiler sees an expression l i ke string! [0] , the com

p i ler generates the member-function call string! . operator [] (0) (us ing the appro

priate version of operator [] based on whether the String is const) . Each

implementation of operator [] first val idates the subscript to ensure that it is in range. If

the subscript is out of range, each function prints an error message and terminates the program

with a cal l to exi t .5 If the subscript is in range, the non-const version of operator []

returns a char & to the appropriate character of the String object; this char & may be

used as an lvalue to modify the designated character of the String object. The const ver

sion of operator [] returns const char & to the appropriate character of the String

object; this char & can be used only as an rvalue to read the value of the character.

Testing a d Deb gging Tip 8.
Returning a non-const char reference from an overloaded subscript operator in a

String class is dangerous. For example, the client could use th is reference to insert a null

(, \ 0 ') anywhere in the string.

5. Note that it is more appropri ate when a subscript is out of range to "throw an exception" ind icat ing
the out-of-range subscri pt . Then the program can "catch" that except ion, process i t and poss ib ly
cont i nue execut ion (thus , making the program more robu st) . Th i s i s normal ly acco m p l i shed w i t h
except ion hand l i ng, which we d iscuss i n Chapter 1 3 .

Chapter 8 Operator Overloa d i n g ; Stri ng a n d Array Objects 5S T

Line 5 8 of Fig . 8 . 7 declares the overloaded function -call operator (defi ned i n Fig. 8 . 8 ,

l i nes 1 34- 1 63) . We overload t h i s operator t o select a substring from a S t ring. The two

in teger parameters spec ify the start location and the length of the substring being selected

from the S t ring. I f the start location is out of range or the substri ng length is negative ,

the operator s imply returns an empty String. I f the substring l ength i s 0, then the sub

stri ng i s selected to the end of the Str ing object . For example, suppose s t r ing l i s a

String obj ect contain i ng the string " AE IOU " . For the expression s t ringl (2 , 2) ,

the compi ler generates the member-function cal l s t ringl . operator () (2 , 2) .

When this ca l l executes, it produces a S t r ing object contain ing the string " IO " and

returns a copy of that obj ect .

Overloading the function-cal l operator () i s powerfu l because funct ions can take arb i

trari ly long and complex parameter l i sts . So we can use th is capab i l i ty for many i nterest ing

purposes. One such use of the function-call operator i s an alternate array-subscripting nota

t ion : I n stead of us ing C ' s awkward double-square-bracket notat ion for double arrays , such

as i n a [b] [c] , some programmers prefer to overload the funct ion-cal l operator to

enable the notat ion a (b , c) . The overloaded function-cal l operator must be on ly a non

static member function . Th i s operator i s used only when the "funct ion n ame" i s an

object of c lass S t ring.

Line 60 i n F ig . 8 .7 dec lares function get Length (defi ned i n Fig . 8 .8 , l i nes 1 66- 1 70) ,

which returns the length of a String.

At th i s point , the reader should now step through the code in main, examine the output

w indow and check each use of an overloaded operator. As you study the output, pay spec ia l

attent ion to the impl ic i t constructor cal l s that are generated to create temporary S t r i ng

objects throughout the program . Many of these cal l s introduce addi tional overhead i nto the

program that can be avoided if the c lass provides overloaded operators that take char *

arguments . However, addit ional operator functions can make the c lass harder to maintain ,

modify and debug .

8.11 Overloading + + and

The i ncrement and decrement operators-preincrement, post increment, predecrement and

postdecrement-can al l be overloaded . We w i l l see how the compi ler d is t ingui shes be

tween the prefi x version and the postfi x version of an i ncrement or decrement operator.

To overload the increment operator to al low both pre increment and postincrement

usage, each overloaded operator function must have a di st inct s ignature, so that the com

pi ler w i l l be able to determjne which version of + + i s i ntended. The prefix vers ions are

overloaded exactly as any other prefix unary operator would be .

Suppose, for example, that we want to add I to the day i n Dat e object dl. When the

compi ler sees the pre increment ing expression + +d l , the compi ler generates the member

function cal l

dl . operator+ + ()

The prototype for this operator function would be

Date &operator+ + () ;

If the preincrement ing operator i s implemented as a non-member funct ion, then, when

the compiler sees the express ion + +d l , the compiler generates the function ca l l

582 Operator Overloading; Str ing and Array Objects Chapter 8

operator+ + (dl)

The prototype for thi s operator function would be declared i n the Dat e c lass as

f r iend Date &operator++ (Date &) ;

Overloading the postincrementing operator presents a chal lenge, because the compi l er

must be able to dist inguish between the s ignatures of the overloaded pre increment and

postincrement operator funct ions . The convention that has been adopted i n C++ i s that,

when the compiler sees the postincrementing expression d l + + , i t generates the member

function cal l

dl . operator+ + (0)

The prototype for this function i s

Date operator+ + (int

The argument 0 is strict ly a "dummy value" that enables the compiler to dist inguish be

tween the pre increment and postincrement operator functions .

If the posti ncrementing i s implemented as a non-member function, then , when the

compiler sees the express ion d l + + , the compiler generates the function caJ i

operator+ + (dl , 0)

The prototype for this function would be

friend Date operator+ + (Date & , int) ;

Once again , the 0 argument i s used by the compi ler to di sti ngu ish between the pre incre

ment and postincrement operators implemented as non-member functions . Note that the

postincrement operator returns Date objects by value, whereas the pre increment operator

returns Dat e objects by reference, because the postincrement operator typical l y return s a

temporary object that contains the original value of the object before the i ncrement oc

curred. C++ treats such obj ects as rvalues, which cannot be used on the left side of an as

s ignment . The preincrement operator returns the actual i ncremented obj ect with its new

value. Such an object can be used as an lvalue i n a cont inu ing expression .

Everything stated i n th is section for overloading prei ncrement and post increment oper

ators appl ies to overloading predecrement and postdecrement operators . Next , we examine

a Dat e c lass with overloaded pre increment and postincrement operators.

8. 1 2 Case Study: A Date Class

The program of Fig . 8 . 1 O-Fig . 8 . 1 2 demonstrates a Date c lass . The c lass uses overloaded

pre increment and postincrement operators to add 1 to the day in a Dat e obj ect, wh i le caus

ing appropriate i ncrements to the month and year if necessary .

1 I I Fig . 8 . 1 0 : date l . h
2 I I Date c las s de f ini t ion .
3 # i fndef DATE 1_H

4 #de f ine DATE 1_H

5 # inc lude < iostream>

Fig. 8. 1 0 Dat e class defin it ion with overloaded increment operators . (Part 1 o f 2 .)

Chapter 8 Operator Overloading ; Str ing a n d Array Objects

6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34

us ing std : : ostream;

c l a s s Date {
friend ostream &operator« (ost ream & , const Date &) ;

public :

Date (int m = 1 , int d = 1 , int y = 1 9 0 0) ; I I constructor

void setDate (int , int , int) ; I I set the date

Dat e &operator+ + () ;

Date operator+ + (int) ;

const Date &operator+ = (int) ;

bool leapYear (int) const ;

bool endOfMonth (int) const ;

private :

int month ;

int day ;

int year ;

stat ic const int days [] ;

void he lpIncrement () ;

} ; I I end c lass Date

#endi f

I I pre increment operator

I I post increment operator

I I add days , modi fy obj ect

I I i s thi s a l eap year?

I I i s thi s end o f month?

I I array o f days per month

I I ut i l i ty func t i on

583

Fig. 8 . 1 0 Dat e c lass definit ion with overloaded increment operators . (Part 2 of 2 .)

1 I I Fig . 8 . 1 1 : date l . cpp

2 I I Date c l a s s member function de f initions .

3 # inc lude < iostream>

4 # inc lude " datel . h tl

5
6 I I ini t ia l i z e stat ic member at f i l e scope ;

7 I I one c l a s s -wide copy

8 const int Date : : days [] =

9 { 0 , 3 1 , 2 8 , 3 1 , 3 0 , 3 1 , 3 0 , 3 1 , 3 1 , 3 0 , 3 1 , 3 0 , 3 1 } ;
1 0
1 1 I I Date constructor

1 2 Date : : Date (int m, int d , int y)
1 3 {
1 4 setDat e (m , d , y) ;

1 5
1 6 I I end Date constructor

1 7
1 8 I I set month , day and year

1 9 void Date : : setDate (int mm , int dd , int yy)
20 {

Fig. 8. 1 1 Dat e c lass member- and fri end-function defin it ions . (Part 1 of 3 .)

584

2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73

operator Overloa d i n g ; Str ing and Array Objects

month = (mm > = 1 && mm < = 12) ? mm : 1 ;

year = (yy > = 1 9 0 0 && yy < = 2 1 0 0) ? yy : 1 9 0 0 ;

I I test for a l eap year

if (month 2 && leapYear (year))

day (dd > = 1 && dd < = 2 9) ? dd 1 ;

e l s e

day dd > = 1 && dd < = days [month]) ? dd

} I I end function setDate

I I over loaded pre increment operator

Date &Date : : operator+ + ()

{
helplncrement () ;

Chapter 8

1 ;

return * thi s ; I I reference return to create an lvalue

I I end funct i on operator+ +

I I overloaded post increment operator ; note that the dummy

I I integer parameter does not have a parameter name
Date Date : : operator + + (int)

{
Date t emp = * this ; I I hold current state of obj ect

helplncrement () ;

I I return unincremented, saved , temporary obj ect

return temp ; 1/ value return ; not a reference return

I I end funct ion operator+ +

I I add spec i f ied number of days to date

const Date &Date : : operator+ = (int additionalDays

{
for (int i = 0 ; i < additionalDays ; i + +)

helplncrement () ;

return * thi s ; I I enables cascading

} I I end function operator+=

II i f the year i s a l eap year , return true ;

I I otherwi se , return false

bool Date : : leapYear (int testYear) const

{
i f (t e stYear % 4 0 0 - - 0 I I

(testYear % 1 0 0 ! = 0 && testYear % 4

return true ; I I a leap year

e l s e
return false ; I I not a leap year

I I end funct ion leapYear

0))

Fig. 8. 1 1 Date class member- and fri end-function defin it ions. (Part 2 of 3 .)

Chapter 8 Operator Overloa d i n g ; Stri ng a n d Array Objects

74
75
76
7 7
78
79
80
8 1
82
83
84
85
86
87
88
89
90
9 1
92
93
94
95
96
97
98
99
1 00
1 0 1
1 02
1 03
1 04
1 05
1 06
1 07
1 08
1 09
1 1 0
1 1 1
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7
1 1 8
1 1 9
1 20
1 2 1
1 22

I I determine whether the day is the last day of the month

bool Date : : endOfMonth (int testDay) canst

{
i f (month = = 2 && leapYear (year))

return testDay 2 9 ; I I last day of Feb . in leap year

e l s e

return testDay days [month 1 ;

} I I end funct i on endOfMonth

I I funct ion to help increment the date

void Date : : he lpIncrement ()

{
I I day i s not end of month

i f (! endOfMonth (day))

+ +day ;

e l s e

II day i s end of month and month < 1 2

i f (month < 1 2) {
+ +month ;

day = 1 ;

}

I I last day of year

e l s e {

}

+ +year ;

month 1 ;

day = 1 ;

} I I end funct ion he lpIncrement

I I overloaded output operator

ostream &operator « (ostream &output , const Date &d

{
stat i c char *monthName [1 3 1 = { n n , " January " ,

" February " , " March" , "Apri l " , " May " , " June " ,

" July" , " August " , " September " , " Octobe r " ,

" November " , " December " } ;

output « monthName [d . month 1 « ' ,

« d . day « " , " « d . year ;

return output ; I I enables cascading

I I end func t ion operator«

Fig. 8 . 1 1 Dat e c lass member- and fri end-function defin it ions . (Part 3 of 3 .)

585

The Dat e header fi l e (F ig . 8 . l 0) spec ifies that Dat e ' s publ ic i nterface inc ludes an

overloaded stream- insert ion operator (l i ne 1 0) , a defaul t constructor (l ine 1 3) , a setDate

586 Operator Overload i n g ; String and Array Objects Chapter 8

function (l ine 1 4) , an overloaded preincrement operator (l ine 1 6) , an overloaded post i ncre
ment operator (l i ne 1 7) , an overloaded += addition assignment operator (l i ne 1 9) , a func
t ion to test for leap years (l i ne 2 1) and a function to determine whether a day i s the l ast day
of the month (l ine 22) .

The driver program i n main (Fig . 8 . 1 2) creates three Dat e objects-dl i s in i t ial i zed
by defaul t to January I , 1 900; d2 i s init ial ized to December 27 , 1 992 ; and d3 i s i ni t ial i zed
to an inval id date . The Date constructor (defined i n Fig . 8 . 1 I , l i nes 1 2- 1 6) cal l s setDate

to val idate the month, day and year spec ified. An inval id month i s set to I , an i nval id year

is set to 1 900 and an inval id day is set to I .
Lines 1 6- 1 7 of the driver program output each of the constructed Dat e obj ects, us ing

the overloaded stream-insert ion operator (defi ned in Fig . 8 . 1 1 , l ines 1 1 0- 1 22) . Line 1 9 of

the driver program uses overloaded operator + = to add seven days to d2 . L ine 2 1 uses func

tion setDate to set d3 to February 28, 1 992. Next, l ine 25 creates a Dat e obj ect, d4 ,

which is in i t ial i zed with the date July 1 3 , 2002. Then l i ne 29 i ncrements d4 by 1 wi th the

overloaded pre increment operator. Lines 27-30 output d4 before and after the pre incre

ment operation to confi rm that i t worked correctly . Final ly , l i ne 34 i ncrements d4 with the

overloaded postincrement operator. Lines 32-35 output d4 before and after the post incre

ment operation to confirm that i t worked correctly.

1 I I Fig . 8 . 1 2 : f ig0 8_1 2 . cpp

2 I I Dat e c l a s s t e s t program .

3 # inc lude < iostream>

4
5 us ing s td : : cout ;

6 us ing std : : endl ;

7
8 # inc lude " date 1 . h " I I Date c l a s s def init ion

9
int main ()

{
Date d1 ; / I de fau l t s t o January 1 ,

Date d2 (1 2 , 2 7 , 1 9 9 2) ;

Date d3 (0 , 9 9 , 8 0 4 5) ; I I invalid

cout « " d1 i s " « d1 « " \nd2 is "

« " \ nd3 i s " « d3 ;

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20

cout « " \n\nd2 + = 7 i s " « (d2 + =

2 1 d3 . setDate (2 , 2 8 , 1 9 9 2) ;

22 cout « " \ n\n d3 is " « d3 ;

23 cout « " \ n++d3 i s " « + +d3 ;

24
25 Date d4 (7 , 1 3 , 2 0 0 2) ;

26

1 9 0 0

date

« d2

7) ;

27
28
29
30

cout « " \n\nTest ing the pre increment operator : \n "

« " d4 i s " « d4 « ' \n ' ;

cout « " + +d4 i s " « + +d4 « . \n ' ;
cout « " d4 i s " « d4 ;

Fig. 8 . 1 2 Dat e class test program. (Part 1 of 2 .)

Chapter 8 Operator Overloading; Stri ng a n d Array Objects

3 1
32
33
34
35
36

cout « n \ n \ nTest ing the post increment

« n d4 i s n « d4 « ' \n ' ;

cout « n d4 + + i s n « d4 + + « ' \n ' ;

cout « n d4 i s n « d4 « endl ;

37 return 0 ;

38
39 I I end main

d1 is January 1 , 1 9 0 0

d2 i s December 2 7 , 1 9 9 2

d3 i s January 1 , 1 9 0 0

d2 + = 7 i s January 3 , 1 9 9 3

d3 is February 2 8 , 1 9 9 2

+ +d3 i s February 2 9 , 1 9 9 2

Te st ing the pre increment operator :

d4 i s July 1 3 , 2 0 0 2

+ +d4 i s July 1 4 , 2 0 0 2

d 4 i s July 1 4 , 2 0 0 2

Testing the post increment operator :

d4 i s July 1 4 , 2 0 0 2

d4 + + i s July 1 4 , 2 0 0 2

d 4 i s July 1 5 , 2 0 0 2

Fig. 8 . 1 2 Dat e c lass test program . (Part 2 of 2 .)

ope rator : \ nn

587

Overloading the preincrementing operator i s straightforward. The pre incrementing oper

ator (defi ned in Fig . 8 . 1 1 , l i nes 33-39) cal l s uti l i ty function he lplnc rement (defi ned i n

Fig. 8 . 1 1 , l i nes 86- 1 07) to increment the date . Thi s function deals wi th "wraparounds" or

"carries" that occur when we i ncrement the last day of the month . These carries require incre

menting the month . If the month is already 1 2, then the year must also be incremented. Func

tion helplncrement uses function endOfMonth to i ncrement the day correct ly .

The overloaded pre increment operator returns a reference to the c urrent Dat e object

(i . e . , the one that was just i ncremented) . Thi s occurs because the current obj ect , * thi s , is

returned as a Dat e & . Thi s enables a preincremented Date obj ect to be used as an Ivalue,

which i s how the bui l t - in pre i ncrement operator works for primi tive types .

Overloading the post increment operator (defi ned in Fig . 8 . 1 1 , l i nes 43-5 I) i s trick ier .
To emulate the effect of the post i ncrement, we must return an un incremented copy of the
Dat e obj ect . On entry to operator + + , we save the current object (* thi s) i n t emp

(l i ne 45) . Next, we cal l he lplncrement to i ncrement the current Dat e obj ect . Then,
l ine 49 returns the un incremented copy of the object previous ly stored in t emp. Note that
thi s function cannot return a reference to the local Dat e obj ect t emp, because a local vari
able is destroyed when the function i n which it i s dec lared exi ts . Thus, declari ng the return
type to this function as Dat e & would return a reference to an obj ect that no longer ex i sts .
Returning a reference (or a pointer) to a local variable i s a common error for which most
compi lers wi l l i ssue a warn ing .

588 Operator Overloa d i n g ; String and Array Objects Chapter 8

8 . 1 3 Standard Library Classes s t ring and vector

I n Chapter 6 and Chapter 7 , we introduced the features of object-based programming i n

C++ . A key observat ion from these chapters i s that we can bu i ld a software entity cal led a

c l ass , from which we can create objects in programs . In th is chapter, we learned that we can

bu i ld a String c lass (Fig. 8 . 7-Fig . 8.9) that i s better than the C-sty le , char * strings that

C++ absorbed from C. We also learned that we can bu i ld an Array c lass (F ig . 8 .4-

Fig . 8 .6) that is better than the C-style, pointer-based arrays that C++ absorbed from C .

Bu i ld ing good, useful and reusable c lasses such a s String and Array takes work.

However, once such c lasses are tested and debugged, they can be reused by you, your col

leagues, your company, many companies , an entire industry or even many i ndustries (i f

they are p laced i n publ ic o r for-sale l i braries) . The designers o f C++ did exactly that,

bu i ld ing c lasses s t ring and vector (which represents a dynamical ly-resizable array)

i nto standard C++. These c lasses are avai lable to anyone bu i ld ing appl ications wi th C++.

To c lose th is chapter, we redo our String (Fig . 8 . 7-Fig . 8 .9) and Array (Fig. 8 .4-

Fig . 8 .6) examples, us ing the standard C++ string and vector c lasses . We rework our

String example to demonstrate s imi lar functional i ty provided by standard class

s t ring. S i m i l arly , we rework our Array example to demonstrate s im i lar functional i ty

provided by standard c lass vector. The notations that the vec tor example uses might

be unfami l i ar to you, because vect ors use template notat ion . Recall that Section 3 . 2 1 dis

cussed function templates . Tn Chapter 1 1 , we d iscuss c lass templates. For now, you should

fee l comfortable us ing c lass vec tor by mi micking the syntax in the example we show in

thi s sect ion . You wil l deepen your understanding as we study class templates i n Chapter] 1 .

Chapter I S presents class s t ring in detai l , and Chapter 2 1 presents c lass vec tor (and

several other standard C++ container c lasses) in detai l .

Standard Library Class s t ring

The program of Fig. 8 . 1 3 rei mplements the program of Fig. 8 .9 , us ing standard c lass

s t r ing. As you wi l l see i n th is example, standard c lass s t ring provides a l l the func

t ional i ty of our c lass String presented in Fig. 8 .7-Fig . 8 . 8 . Standard c lass s t r ing i s de

fi ned in header < s t ring> (l i ne 8) and belongs to namespace std (l ine 1 0) . Chapter I S
d i scusses the fu l l functional ity of standard c lass st ring.

1 I I Fig . 8 . 1 3 : fig0 8_13 . cpp

2 I I S tandard l ibrary string class test program .

3 # inc 1ude < iostream>

4
5 us ing s td : : cout ;

6 us ing std : : endl ;

7
8 # inc lude < st ring>

9
1 0 us ing std : : string ;

1 1
1 2 int main ()

1 3 {
1 4 st ring s l (" happy ") ;

1 5 string s 2 (" birthday ") ;

Fig. 8. 1 3 Standard l ibrary class s t ring. (Part 1 of 4 .)

Chapter 8 Operator Overloading; Str ing a n d Array Objects

1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68

Fig. 8. 1 3

string s 3 ;

I I test over loaded equa l i ty and re lational operators

cout « " s l i s \ n ll « s l « " ' " i s 2 i s ' " .. « s 2

« " \ " ; s 3 i s \ " It « s3 « • \ II I

« " \n\nThe resu l t s of comparing s 2 and s l : "

« " \ns2 - - s l yields "

« (s2 - - s l ? " true " : " false "

« " \ns2 ! = s l yields . .
« (s2 ! = s l ? " t rue " : " false "

« " \ns2 > s l yields "

« (s2 > s l ? .. true " " false "

« " \ns2 < s l yields ..

« (s2 < s l ? " t rue " " false "

« " \ns2 > = s l yields ..

« (s2 > = s l ? .. t rue " : " false "

« " \ns2 < = s l yields "

« (s2 < = s l ? " t rue " : " false "

I I test s tring member funct ion empty

cout « .. \n\nTes t ing s 3 • empty () : \ n " ;

i f s 3 • empty ()) {

) ;

cout « " s 3 i s empty; a s s i gning s l to s 3 ; \ n " ;

s 3 = s l ; I I a s s ign s l t o s 3

cout « " s3 i s \ « s 3 « " \ '' '' ;

}

I I test overloaded string concatenation operator

cout « " \n\ns 1 + = s 2 yields s l = " ;

s l + = s 2 ; I I test overloaded concatenat ion

cout « s l ;

I I test over loaded string concatenat ion operator

I I with C - style string

cout « " \n\ns1 + = \ .. to you \ " yields \ n " ;

s l + = .. to you R ;

cout « " s l = " « sl « " \n\n" ;

I I test string member funct i on substr

cout « " The substring of s l start ing at locat i on 0 for \ n "

« " 14 characters , s l . subst r (O , 1 4) , i s : \ n "

« s l . substr (0 , 1 4) « " \n\n" ;

I I test substr .. to- end- o f - string " opt ion

cout « " The substring of s l s tart ing at \ n "

« " locat ion 1 5 , s l . substr (1 5) , i s : \ n "

« s l . subst r (1 5) « ' \n ' ;

I I test copy constructor

string * s4Ptr = new string (sl) ;

cout « " \ n* s4Ptr = " « * s 4Ptr « " \n \ n " ;

Standard l ibrary closs s t r ing. (Port 2 of 4.)

589

590 Operator Overloa d i n g ; Str ing and Array Objects

I I test assignment (=) operator with s e l f - a s s ignment

cout « " as s i gning * s4Ptr to * s4 Ptr \ n " ;

* s4Ptr = * s4Ptr ;

cout « " * s 4Ptr = " « * s4 ptr « ' \n ' ;

I I test de structor

de lete s 4 P t r ;

I I test us ing subscript operator to create lvalue

s l [0] = ' H ' ;

s l [6] = ' B ' ;

cout « " \ns1 after s l [O]

« s l « " \n \ n " ;

' H ' and s l [6] ' B I i s : II

Chapter 8

69
70
7 1
72
7 3
7 4
75
76
7 7
7 8
7 9
80
8 1
82
83
84
85
86
87
88
89

I I test subscript out of range with string member func t i on " at "

cout « "Attempt to ass ign ' d ' to s l . at (3 0) yields : " « endl ;

s l . at (3 0) = ' d ' ; I I ERROR : subscript out of range

return 0 ;

I I end main

sl is " happy " ; s 2 is " birthday " ; s 3 is

The resu l t s of comparing s2 and s l :

s 2 - - s l yields false

s2 1 = s l yields true

s2 > s l yie lds false

s2 < s l yields t rue

s2 > = s l yie lds false

s 2 < = s l yields true

Te st ing s 3 . empty () :

s 3 i s empty ; ass igning s l to s 3 ;

s 3 i s " happy "

s l + = s2 yields s l = happy birthday

s l + = " to you " yie lds

sl = happy birthday to you

The substring of s l start ing at locat ion 0 for

1 4 characters , s l . substr (O , 14) , i s :

happy birthday

The substring of s l start ing at

locat ion 1 5 , s l . substr (1 5) , i s :

to you

* s4Ptr = happy birthday to you

assigning * s4ptr to * s4Ptr

* s4Ptr = happy birthday to you

s l after s l [O] = ' H ' and s l [6] = ' B ' i s : Happy Birthday to you
(continued next page)

Fig. 8 . 1 3 Standard l ibrary c lass s t ring. (Part 3 of 4 .)

Chapter 8 Operator Overloading ; Str ing a n d Array Objects

Attempt to a s s i gn ' d ' to s l . at (3 0) yields :

abnormal program te�inat ion

Fig. 8 . 1 3 Standard l ibrary class s t ring. (Part 4 of 4 .)

59 1

Lines 1 4- 1 6 create three s t ring objects-s 1 is in i t ia l ized wi th the l i teral

" happy " , s2 i s i n i tia l ized with the l i teral " bi rthday " and s3 uses the defaul t string

constructor to create an empty s t ring. Lines 1 9-20 output these three obj ects, using

cout and operator « , which the string c lass designers overloaded to handle s t ring

objects . Then l i nes 2 1 -33 show the results of comparing s2 to sl by using c lass s t ring' s

overloaded equal i ty and relational operators .

Our c lass S t r i ng (Fig . 8 .7-Fig . 8 . 8) provided an overloaded operator ! that

tested a S t ring to determine whether it was empty . Standard c l ass s t ring does not pro

v ide this functional i ty as an overloaded operator; i nstead, i t provides member function

empty, which we demonstrate on l ine 38. Member function empty returns t rue if the

s t ring i s empty ; otherwise, it returns f a l s e .

Line 40 demonstrates c lass str ing ' s overloaded assignment operator by assign ing

s l to s 3 . Line 4 1 outputs s 3 to demonstrate that the assignment worked correct ly .

Line 46 demonstrates c lass string ' s overloaded += operator for string concatena

tion. In this case, the contents of s2 are appended to s l . Then l i ne 47 outputs the resul t ing

string that i s stored i n s1. Line 52 demonstrates that a C-sty le string l i teral can be appended

to a s t ring obj ect by using operator + = . Line 53 displays the resul t .

Our c lass S t ring (Fig . 8 .7-Fig. 8 .8) provided overloaded operator () to obtain

substrings . Standard c lass s t ring does not provide this funct ional i ty as an overloaded

operator; i n stead, i t provides member function subs tr (l i nes 58 and 63) . The ca l l to

substr in l i ne 58 obtains a l 4-character substri ng (spec ified by the second argument) of

sl start ing at posit ion 0 (spec ified by the fi rst argument) .The call to sub s t r i n l ine 63

obtai ns a substri ng start ing from position 1 5 of s l . When the second argument i s not spec

i fied, sub s t r returns the remainder of the string on which i t i s ca l led .

Line 66 dynamical l y a l locates a string object and in i t ia l izes i t wi th a copy of s 1 .

This results i n a ca l l to c lass s t ring' s copy constructor. Line 7 1 uses c lass s t r i ng' s

overloaded = operator to demonstrate that it handles self-ass ignment properly .

Lines 7 8-79 used c lass s t ring' s overloaded [] operator t o create lvalues that enable

new characters to replace ex ist ing characters i n sl. Line 8 1 outputs the new value of s l .

I n our c lass S t ring (F ig . 8 .7-Fig. 8 . 8) , the overloaded [] operator performed bounds

checking to determine whether the subscript i t received as an argument was a val id sub

script i n the string . I f the subscript was inval id , the operator printed an error message and

terminated the program. Standard c lass string' s overloaded [] operator does not per

form any bounds checking . Therefore, the programmer must ensure that operat ions us ing

standard c lass s t ring' s overloaded [] operator do not accidental ly manipulate elements

outside the bounds of the s t ring. Standard c lass s t ring does provide bounds checking

i n its member function at, which "throws an exception" if i ts argument i s an inval id sub

script. By default , th is causes a C++ program to terminate.6 I f the subscript i s val id , func-

6. Chapter 1 3 , Exception Handling, demonstrates how to build more robust program s that "catch"
such exceptions when they occur and enable the program to continue executing.

592 Operator Overload i ng ; Stri ng and Array Objects Chapter 8

t ion at returns the character at the specified location as an lvalue or an rvalue, depending
on the context i n which the cal l appears . Line 85 demonstrates a cal l to function at with
an i nval id subscript.

Standard Library Class vec t or

The program of Fig . 8 . 1 4 reimplements the program of Fig . 8 .6 , us ing standard c lass vec

tor. A s the next example demonstrates, standard c lass vector provides many of the

same features as our c lass Array presented in Fig. 8 .4-Fig . 8 .6 . Standard c lass vector

i s defined in header <vector> (l i ne 1 3) and belongs to namespace std (l i ne 1 5) . Two

features that c lass vector does not provide are overloaded operators > > and < < for i nput

and output, respect ively . So, Fig . 8 . 1 4 defines functions outputVector (l i nes 98- 1 1 1)

and inputvector (l i nes 1 1 4- 1 1 9) , which mimic the overloaded operator« and

operator> > functions provided in Fig. 8 .4-Fig. 8 .5 for our Array class. Chapter 2 1

d iscusses the fu l l functional i ty of standard c lass vector.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30

I I Fig . S . 14 : f i g O S_14 . cpp

I I Demonstrat ing s tandard l ibrary class vector .

#inc lude < iostream>

us ing std : : cout ;

us ing std : : c in;

us ing std : : endl ;

inc lude < iomanip>

us ing std : : setw;

inc lude <vector>

us ing std : : vector ;

void outputVector { const vector< int > &) ;

void inputVector { vector< int > &) ;

int main {)

{
vector< int > integers l { 7) ;

vector< int > integers2 { 1 0) ;

I I 7 - e l ement vector< int >

I I 1 0 - e l ement vector< int >

/ 1 print intege r s l s i z e and content s

cout « " S i z e of vector integersl i s "

« integers l . s i ze {)

« " \nvector after ini t i a l i zation : \ n " ;

outputVector { integersl) ;

F ig. 8 . 1 4 Standard l ibrary c lass vector. (Part 1 of 4 .)

Chapter 8 Operator Overloading; Stri ng a n d Array Objects

3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
81
82
83

Fig. 8 . 1 4

I I print integers2 s i ze and content s

cout « " \ nS i z e of vector integers2 i s "

« integers2 . s i ze ()

« " \nvector after ini t i a l i zation : \ n " i

outputVector (integers2) i

I I input and print integers1 and integers2

cout « " \nInput 1 7 integers : \n " i

inputVector (integers1) i

inputVector (integers2) i

cout « " \nAfter input , the vectors contain : \n "

« " integers 1 : \ n " i

outputVector (integers1) i

cout « " integers 2 : \ n " i

outputVector (integers2) i

I I use overloaded inequal ity (! =) operator

cout « " \nEvaluat ing : integers 1 ! = integers 2 \ n " i

i f integers1 ! = integers2)

cout « " integers 1 and integers2 are not equa l \ n " i

I I create vector integers3 us ing integers l as an

I I ini t i a l i z e r i print s i ze and content s

vector< int > integers3 (integers1) i I I copy c onstructor

cout « " \nSi z e of vector integers3 is "

« integers3 . s i ze ()

« " \nvector after ini t i a l i zation : \ n " i

outputVector (integers3) i

I I use overloaded assignment (=) operator

cout « " \nAs s igning integers2 to integers 1 : \ n " i

intege r s 1 = integers2 i

cout « " integers l : \ n " i

outputVector (integers 1) i

cout « " integers 2 : \ n " i

outputVector (integers1) i

I I use overloaded equal ity (= =) operator
cout « " \ nEvaluat ing : integers l == integers2 \ n " i

i f integers 1 = = integers2)

cout « " integers 1 and integers2 are equal \ n " i

I I use overloaded subscript operator to create rvalue

cout « " \nintegers 1 [5] i s " « integers 1 [5] i

I I use overloaded subscript operator to create lvalue
cout « " \n \ nAs s i gning 1 000 to integers 1 [5] \ n " i

Standard l ibrary c lass vector . (Part 2 of 4 ,)

593

594 Operator Overloa d i n g ; Stri ng and Array Objects

84 integers 1 [5] = 1 0 0 0 ;

85 cout < < " integers 1 : \ n " ;

86 outputVector (integers1) ;

8 7
88 I I attempt to use out of range subscript

Chapter 8

89 cout « " \nAt tempt to ass ign 1 0 0 0 to integers 1 . at (15) "
90 « endl ;

9 1 integers 1 . at (1 5) = 1 0 0 0 ; I I ERROR : out o f range
92
93 return 0 ;

94
95 I I end main

96
97 I I output vector content s

98 void outputVector (const vector< int > &array

99 {
1 00 for (int i = 0 ; i < array . s i ze () ; i + +) (

1 0 1 cout « setw (1 2) « array [i] ;

1 02
1 03 0) I I 4 numbers per row of output i f (i + 1) % 4

1 04
1 05
1 06
1 07
1 08
1 09
1 1 0

}

i f

cout « endl ;

I I end for

i % 4 ! = 0)

cout « endl ;

1 1 1 } I I end funct i on outputVector
1 1 2
1 1 3 I I input vector content s

1 1 4 void inputVector (vector< int > &array)
1 1 5 {
1 1 6 for (int i = 0 ; i < array . s i ze () ; i + +

1 1 7 cin » array [i] ;

1 1 8
1 1 9 } I I end funct i on inputVector

S i z e of vector integers 1 i s 7

vector after initial i zation :

o 0
o o

S i z e of vector integers2 i s 1 0

vector a f t e r ini t i a l i zation :

o 0

o 0

o 0

Input 17 integers :

o
o

o
o

1 2 3 4 5 6 7 8 9 1 0 1 1 12 13 14 1 5 1 6 17

F ig. 8 . 1 4 Standard l ibrary c lass vector . (Part 3 of 4 .)

o

o
o

(continued next page)

Chapter 8 operator Overloading ; Stri n g a n d Array Objects

After input , the vectors contain :

integers 1 :

1 2 3

5 6 7

integers2 :

8 9 1 0

1 2 1 3 14

16 17

Evaluating : integers1 1 = integers2

integers 1 and integers2 are not equal

S i z e of vector integers3 i s 7

vector after ini t i a l i zation :

1 2

5 6

As s i gning integers2 to integers 1 :

integer s 1 :

8 9

1 2 1 3

1 6 17

integers2 :

8 9

1 2 1 3

1 6 1 7

Evaluat ing : integers 1 integers2

integers 1 and integers2 are equal

integers 1 [5] is 1 3

As signing 1 0 0 0 to integers 1 [5]

integers 1 :

8

1 2

1 6

9

1 0 0 0

1 7

3

7

1 0

1 4

1 0

1 4

1 0

1 4

Att empt t o a s s ign 1 0 0 0 to integers 1 . at (1 5)

abnormal program terminat ion

F ig. 8 . 1 4 Standard l ibrary class vector . (Part 4 of 4.)

4

1 1

1 5

4

1 1

1 5

1 1

1 5

1 1

1 5

595

Lines 22-23 create two vector objects that store values of type int-integers l

contains seven e lements, and integers2 contains 1 0 e lements . B y default , a l l the ele

ments of each vec tor object are set to O. Note that vec tors can be defi ned to store any

data type, by replacing int in vector< int > w ith the appropriate data type. This nota

t ion, which specifies the type stored i n the vec t or, is s im i lar to the template notat ion that

Section 3 . 2 1 in troduced with function templates . Again , Chapter I I d i scusses this syntax

i n deta i l .

L ine 27 uses vector member function s i ze to obtain the s ize of integer s l . Line

29 passes integers l to function outputVector (l i nes 98- 1 L 1) , which uses

vector' s overloaded [] operator to obtain the value i n each element of the vec tor as an

Ivalue that can be used for output. Lines 33 and 35 perform the same tasks for integers 2 .

596 Operator Overloa d i n g ; String and Array Objects Chapter 8

Li nes 39-40 pass integers l and integers2 to function inputVector (l i nes

1 1 4- 1 1 9) to read values for each vector' s e lements from the user . Function

inputVector uses vector ' s overloaded [] operator to obtain lvalues that can be used

to store the i nput values i n each element of the vector.

Line 5 1 demonstrates c lass vector ' s overloaded ! = operator, which determ ines

whether the contents of two vectors are not equal and returns t rue if they are not ; oth

erwise , the operator returns false .

L ine 56 creates a vector object (integers 3) and i n i t ia l izes i t w i th a copy of

integer s l . Thi s i nvokes c lass vector ' s copy constructor to perform the copy opera

t ion . Lines 59 and 6 1 output the s ize and contents of integers 3 to demonstrate that it

was in i t ia l ized correctly .

Line 66 uses vector' s overloaded = operator to ass ign integers 2 to

integers l . Lines 69 and 7 1 output the contents of both objects to show that they now

contain identical values . Line 76 then compares integers l to integers 2 with

vector' s overloaded = = operator to determine whether the contents of the two objects are

equal after the assignment on l i ne 66 (which they are) .

L ines 80 and 84 use vector' s overloaded [] operator to obtai n a vector element

as an rvalue and as an lvalue, respect ively . As i s the case wi th standard c lass string ' s

overloaded [] operator, c lass vector' s overl oaded [] does not perform any bounds

checking . Therefore, the programmer must ensure that operat ions using vector ' s over

loaded [] operator do not acc idental ly man ipulate e lements outside the bounds of the

vec tor. Standard c lass vector also provides bounds checking i n i ts member function

at, which "throws an exception" if its argument i s an inval id subscript . B y defaul t , this

causes a C++ program to terminate. If the subscript i s val id , function at returns the element

at the spec ified locat ion as an lvalue or an rvalue, depending on the context i n which the

ca l l appears. Line 9 1 demonstrates a cal l to function at with an inval id subscript .

I n th is chapter, we demonstrated how to make our c lasses more robust by defin ing

overloaded operators that enable programmers to treat objects of our c lasses a s i f they are

bu i l t - in C++ data types . In addit ion, we demonstrate two standard C++ c lasses-string

and vector-that make extens ive use of overloaded operators to create robust, reusable

c l asses that can replace C-sty le , poi nter-based stri ngs and arrays . I n the next chapter, we

continue our d i scuss ion of c lasses by in troduc ing a form of software reuse cal led i nherit

ance. We w i l l see that c lasses often share common attri butes and behaviors. I n such cases,

i t i s poss ib le to define those attributes and behaviors i n a common "base" c lass and

" inherit" those capab i l i t ies i nto new c lass defi n it ions .

SUMMARY
• Operator « i s used for mu l t ip le purposes i n C++-as the stream- i n sert ion operator and as the left

sh ift operator. This is an example of operator overloading. S i m i l ar ly , » is a lso overloaded; it i s

used both as t h e stream-extract ion operator and a s t h e right-shift operator.

• C++ enables the programmer to overload most operators to be sens i t ive to the context i n which

they are used . The compi ler generates the appropriate code based on the operator' s use .

• Operator overloading contri butes to C++ ' s extens i b i l i ty .

• To overload an operator, write a fu nction defi n i t ion ; the fu nction name must be the keyword op

erator fol lowed by the symbol for the operator be ing overloaded.

Chapter 8 Operator Overloading; Str ing a n d Array Objects 597

• To use an operator on c l ass objects, that operator must be overl oaded-w i t h two except ions . The

assignment operator (=) may be used with two objects of the same c l ass to perform a defau l t mem

berw i se ass ignment without overloading . The address operator (&) also can be used wi th objects

of any c lass w i thout overload ing ; i t returns the address of the object i n memory .

• Operator overloading provides the same conc ise expressive power for u ser-defi ned types that C++

provides wi th its r ich col lect ion of operators that work on bu i l t - in types.

• The precedence and associat iv i ty of an operator cannot be changed by overload ing .

• I t i s not poss ib le to c hange the n u mber of operands an operator takes : Overloaded u nary operators

remain unary operators ; overloaded b inary operators remain b inary operators. C++ ' s on ly ternary

operator, ? : , cannot be overloaded.

• I t i s not poss ib le to create symbols for new operators ; on ly ex i st ing operators may be overloaded.

• The mean i n g of how an operator works on bu i l t - in types cannot be changed by overloadi ng .

• The C++ standard speci fies that overloaded operators () , [] , - > and any ass ignment operator

must be members of the c l ass for which they are overloaded.

• For operators other than () , [] , - > and the assignment operators , overloaded operator fu nct ions

can be member funct ions or non- member fu nct ions.

• When an operator function i s i mplemented as a member fu nct ion, the leftmost operand must be a

c l ass object (or a reference to a c lass object) of the operator ' s c l ass .

• I f the left operand must be an object of a d ifferent c lass, th i s operator fu nct ion must be i mplement

ed as a non-member funct ion .

• Operator member fu nct ions are cal led on ly when the left operand of a bi nary operator i s an object

of that class, or when the single operand of a unary operator i s an object of that c lass .

• One might choose a non-member fu nction to overload an operator to enable the operator to be

commutat ive .

• A u nary operator can be overloaded as a non-stat ic member funct ion wi th no arguments or as

a non-member funct ion wi th one argument; that argument must be e i ther an object of a u ser-de

fined type or a reference to an object of a user-defi ned type.

• A bi nary operator can be overloaded as a non-stat ic member fu nct ion w i th one argument or as

a non-me mber fu nction with two arguments (one of those arguments must be e i ther a c lass object

or a reference to a c lass object) .

• Array-subscript operator [] i s not restricted for use only with arrays ; i t can be used to se lect e lements

from other kinds of container c lasses, such as l inked l i sts, str ings and dict ionaries. A l so, with over

loading, subscripts no longer have to be integers ; characters or strings could be used, for example .

• A copy constructor i s u sed to i n i t ia l ize an object with another object of the same c l ass . Copy con

structors are a lso i n voked whenever a copy of an obj ect i s needed, such as i n pass ing an object by

val ue to a funct ion and return ing an object by value from a fu nct ion . I n a copy constructor, the

parameter type must be a reference.

• The compi ler does not know how to convert between user-defi ned types and b u i l t - i n types-the

programmer must exp l ic i t ly spec i fy how such conversions are to occ u r. Such conversions can be

performed wi th convers ion constructors (i .e . , s ing le-argument constructors) that s i m p l y turn ob

jects of other types i nto objects of a part icu lar c lass .

• A conversion operator (or cast operator) can be used to convert an object of one c l ass in to an object

of another c lass or i nto an object of a bu i l t - in type. Such a conversion operator must be a non

stat ic member fu nctio n ; th is k ind of conversion operator cannot be a f r i end funct ion .

• A convers ion constructor i s a s ing le-argument constructor used to convert the argument i nto an

object of the constructor ' s c l ass . The compi ler can ca l l such a constructor i m p l i c i t l y .

598 Operator Overloading; Str ing and Array Objects Chapter 8

• The ass ignment operator i s the operator most frequently overloaded. It is normal ly used to ass ign

an object to another obj ect of the same c lass, but, through the use of convers ion constructors, i t

can a l s o be u s e d t o assign between d ifferent c lasses.

• If an overloaded assignment operator is not defined, assignment i s sti l l al lowed, but i t defau lts to a

memberwise assignment of each data member. I n some cases th is is acceptable . For objects that con

tai n poi nters to dynam i cal l y a l located memory, memberwise assignment results i n two d ifferent ob

jects point ing to the same memory. When the destructor for e i ther of these objects i s cal led, the

dynamic memory is released. I f the other object then refers to that memory, the resu l t is undefined.

• To overload the i ncrement operator to a l low both pre i ncrement and post i ncrement usage, each

overloaded operator function must have a d is t inct s ignature , so that the compiler w i l l be able to

determ ine which vers ion of ++ is i ntended. The prefix vers ions are overloaded exactly as is any

other prefi x u n ary operator. Prov id ing a un ique s ignature to the post increment operator funct ion

i s achieved by prov id ing a second argument-which must be of type int o Actual l y , the user does

not supply a value for this spec ia l i nteger argument . I t i s there s imply to help the compi ler d i s t in

g u i sh between prefix and postfi x versions of i ncrement and decrement operators .

• Standard c l ass s t ring is defi ned in header < string> and belongs to namespace std.

• C lass string provides many overloaded operators , inc lud ing equal i ty , re lat ional , assignment ,

addi t ion ass ignment (for concatenat ion) and subscript operators .

• C l ass s t ring provides member function empty, which returns t rue if the s t r ing is empty ;

otherw i se , it returns f a l s e .

• Standard c l ass s t r ing member function substr obtains a substri ng o f a length speci fied by the

second arg u ment, start ing at the pos i t ion 0 specified by the first argument . When the second argu

ment i s not specified, substr returns the re mai nder of the st ring on which i t i s cal led.

• C l ass s t r ing' s overloaded [] operator does not perform any bounds checki ng . Therefore, the

programmer must ensure that operations us ing standard c l ass string ' s overloaded [] operator

do not acc idental ly man i p u l ate e lements outside the bounds of the s t ring.

• Standard c l ass s t r ing provides bounds checking with member funct ion at, which "throws an

exception" i f i ts argument i s an inva l id subscript . By defaul t , this causes a C++ program to term i

nate. If t h e subscript i s va l id , function a t returns t h e character at t h e specified location as a n Ivalue

or an rvalue, depending on the context in which the call appears .

• A vector can be defi ned to store any data type.

• C lass vector ' s member function s i z e returns the number of elements in the vec tor.

• C lass vector defi nes overloaded equality and i nequal i ty operators to determine whether the con

tents of two vector are equal .

• C l ass vector ' s overloaded [] operator returns a vector element as an rvalue or an lvalue, de

pending on the context. As i s the case with standard c l ass str ing' s overloaded [] operator, c l ass

vector' s overloaded [] does not perform any bounds check ing . Therefore, the programmer

must ensure that operations u s i ng vector ' s overloaded [] operator do not acc identa l ly manip

u l ate e lements outs ide the bounds of the vector.

• Standard c l ass vector also provides bounds check ing i n i ts member function at, which "throws

an exception" if i t s argument i s an inva l id subscri pt. B y default , this causes a C++ program to ter

m i n ate. If the subscript is va l id , function at returns the element at the specified l ocat ion as an Ival

ue or an rvalue, depending on the context i n which the call appears .

TERMINOLOGY
at member function of s t r ing

at member fu nct ion of vector

cascaded overloaded operators

cast-operator function

Chapter 8 Operator Overloading ; Str ing a n d Array Objects

c l ass Array

c l ass Date

c l ass PhoneNumber

c l ass String

convers ion constructor

convers ion funct ion

conversion operator

convers ions between bu i l t - in types and c lasses

conversions between c l ass types

copy constructor

dangl i ng pointer

defau l t memberw i se ass ignment

defaul t memberw i se copy

empty member funct ion of string

expl ic i t type convers ions (w i th casts)

friend overloaded operator function

function-ca l l operator

i m p l i c i t type conversions

memory leak

non-overloadable operators

operator char *

operator int

operator keyword

operator overload ing

operator !

operator ! =

operator ()

operator+

operator + +

operator + + (i n t)

operator+=

operator<

operator«

operator< =

operator=

operator= =

operator>

SELF-REVIEW EXERCISES

operator > =

operator»

operator []

operators implemented as funct ions

overloadable operators

overloaded ! operator

overloaded ! = operator

overloaded () operator

overloaded + operator

overloaded ++ operator

overloaded ++ (int) operator

overloaded += operator

overloaded < operator

overloaded « operator

overloaded <= operator

overloaded == operator

overloaded > operator

overloaded >= operator

overloaded > > operator

overloaded ass ignment (=) operator

overloaded [] operator

overloading

overloading a b i n ary operator

overloading a unary operator

postfi x unary-operator overloading

prefix unary-operator overload i n g

self-ass ignment

s ingle-argument constructor

s i z e member funct ion of vec t or

substr member function of s t ring

string (standard C++ c lass)

string concatenat ion

substring

user-defined convers ion

user-defi ned type

vector (standard C++ c l as s)

8. 1 F i l l i n the b lanks i n each of the fol lowing :

599

a) S uppose a and b are i nteger variables and we form the s u m a + b. Now suppose c and

d are float i ng-point variab les and we form the sum c + d. The two + operators here are

c learly being used for d ifferent purposes . Thi s is an example of ____ _

b) Keyword in troduces an overloaded-operator funct ion defi n i t i o n .

c) To use operators on c lass objects, they m u s t b e overloaded, w i th t h e exception of opera-

tors and ____ _

d) The and of an operator cannot be c hanged by over-
load ing the operator.

8.2 Expla in the
"
m u l t ip le meanings of the operators < < and » i n C++.

600 Operator Overloa d i n g ; Str ing and Array Objects

8 . 3 I n what context might the name operator / b e used i n C++?

8.4 (True/False) I n C++, on ly ex ist ing operators c a n b e overloaded.

Chapter 8

8.5 H o w does t h e precedence o f an overloaded operator i n C + + compare wi th t h e precedence of

the orig ina l operator?

ANSWERS TO SELF-REVIEW EXERCISES

8. 1 a) operator overload ing . b) operator. c) assignment (=) , address(&) . d) precedence, as-

soc i at iv i ty , "ari ty ."

8.2 Operator » i s both the right-shift operator and the stream-extraction operator, depending on

i ts context. Operator « i s both the left-shift operator and the stream- i n sert ion operator, depending

on i ts context.

8.3 For operator overload ing : I t would be the name of a fu nction that would prov ide an overload-

ed version of the / operator for a spec ific c lass .

8.4 True.

8.5 The precedence i s ident ical .

EXERCISES

8.6 G i ve as many examples as you can of operator overload ing i m p l i c i t i n C++. G i ve a reason-

able example of a s ituation i n which you might want to overload an operator exp l ic i t ly i n C++.

8.7 T h e C + + operators that cannot b e overl oaded are _____ _____ _____ and

8.8 String concatenat ion req u i res two operands-the two stri ngs that are to be concatenated. I n

the text, w e showed how t o i mplement a n overloaded concatenation operator that concatenates the

second String object to the right of the fi rst String object, thus modify ing the fi rst String ob

ject . I n some appl icat ions , i t i s desirable to produce a concatenated String obj ect w i thout modify

i n g the String arguments . I mplement operator+ to al low operat ions such as

st ringl = string2 + string3 ;

8.9 (Ultimate operalor overloading exercise) To appreciate the care that shou l d go i nto select ing

operators for overload i ng , l i st each of C++ ' s overloadable operators, and for each , l i st a poss ib le

mean ing (or severa l , i f appropriate) for each of several c lasses you have studied i n th i s text . We sug

ges t you try :

a) Array

b) Stack

c) Str ing

After doi ng th is , comment on which operators seem to have mean ing for a w i de variety of c lasses .

Which operators seem to be of l i t t le value for overloading? Which operators seem ambiguous?

8. 1 0 Now work the process described i n Exerc i se 8 .9 in reverse. List each of C++' s overloadabl e

operators . For each, l i st w h a t y o u fee l i s perhaps t h e "u l t i mate operat ion" t h e operator s h o u l d be used

to represent . I f there are several exce l lent operat ions, l i st them a l l .

8. 1 1 (Project) C + + i s an e v o l v i n g language, a n d n e w languages are al ways b e i n g developed. What

addi t ional operators would you recommend add ing to C++ or to a future language l i ke C++ that

would support both procedural programming and object-oriented program ming? Write a carefu l j us

t ificat ion. You m i ght cons ider sending your suggestions to the newsgroup comp . std . c + + .

Cha pter 8 Operator Overloading; Str ing a n d Array Objects 60 1

8. 1 2 One n ice example of overload ing the fu nction-cal l operator () is to a l l ow another form of

double-array subscript ing popular in some program ming languages . I nstead of say i ng

che s s Board [row] [column]

for an array of obj ects , overload the fu nction-ca l l operator to a l low the al ternate form

che s s Board (row, column)

8. 1 3 Create a c l ass DoubleSubscript edArray that has s i m i l ar features to c l as s Array i n

F ig . 8 .4-Fig . 8 . 5 . At construction t i me, the c l ass should b e able t o create a n array o f a n y n u mber of

rows and any n u mber of co lumns . The c lass shou l d supply operator () to perform double-sub

scri pt ing operat ions . For example, i n a 3-by-S DoubleSubscriptedArray cal led a, the user

could write a (1, 3) to access the element at row 1 and col umn 3. Remember that operator ()

can receive any n umber of arguments (see c l ass String in F ig . 8 . 7-Fig . 8 . 8 for an example of op

erator (») . The underly ing representation of the double-su bscri pted array should be a s i ngle-sub

scr ipted array of i n tegers wi th rows * columns number of e lements . Function operator () shou l d

perform t h e proper poi n ter ari thmetic t o access each element of t h e array . There shou l d be two ver

sions of operator () -one that returns int & (so that an element of a DoubleSubs cript e

dAr ray c a n b e used a s an lvalue) and one that returns const int & (s o that a n e lement o f a const

DoubleSubsc riptedArray can be used only as an rvalue) . The c l ass should a lso prov ide the

fol lowing operators : = = , ! = , = , « (for outputt ing the array i n row and column format) and » (for

i nputt ing the ent i re array contents) .

8. 1 4 Overl oad t h e subscript operator t o return the l argest e lement o f a col lect ion, t h e second larg-

est , the th i rd l argest , and so on .

8 . 1 5 Cons ider c l ass Complex shown in Fig . 8. I S-Fig. 8 . 1 7 . The c lass enables operat ions on so

cal led complex numbers. These are numbers of the form real Part + imaginaryPart * i , where

i has the value

a) Modify the c l ass to enable i nput and output of complex n u m bers through the overloaded

» and « operators, respect ively (you should remove the print fu nct ion from the

c lass) .

b) Overl oad the mul t ip l icat ion operator to enable mul t ip l icat ion of two complex n u m bers as

i n a lgebra.

c) Overl oad the = = and ! = operators to al low comparisons of complex n Lllnbers.

1 I I Fig . 8 . 1 5 : complex1 . h

2 I I Comp l ex c lass de f init ion .

3 # i fnde f COMPLEX1_H
4 #def ine COMPLEX1_H

5
6 c l a s s Complex

7
8 public :

9 Complex (doubl e = 0 . 0 , doubl e = 0 . 0) ;

1 0 Complex operator+ (const Complex &) const ;

1 1 Complex operator- (const Complex &) const ;
1 2 void print () const ;

Fig. 8. 1 5 Comp l ex class defin it ion . (Part 1 of 2 .)

I I con s t ructor

I I add i t i on
I I subt rac t i on

I I output

602

1 3
1 4
1 5
1 6
1 7
1 8
1 9
20

Operator Overloading ; Str ing and Array Objects

private :

doubl e real ;

doubl e imaginary ;

I I real part

I I imaginary part

} ; I I end c l a s s Complex

#endi f

Fig. 8. 1 5 Comp l ex class defin it ion . (Part 2 of 2 .)

1 I I Fig . 8 . 1 6 : complex1 . cpp

2 I I Complex c l a s s member function de finitions .

3 #inc lude < iostream>

4
5 using std : : cout ;

6
7 # inc lude " compl ex1 . h " I I Complex class de f inition

8
9 I I const ructor

Chapter 8

1 0 Comp l ex : : Complex (double realPart , doubl e imaginaryPart)

1 1 real (real Part) ,

1 2 imaginary (imaginaryPart

1 3
1 4 I I empty body

1 5
1 6 } I I end Complex constructor

1 7
1 8 I I addit ion operator

1 9 Complex Complex : : operator+ (const Complex &operand2) const

20 {
2 1 return Complex (real + operand2 . real ,

22 imaginary + operand2 . imaginary) ;

23
24 } I I end funct ion operator+

25
26 I I subt rac t i on operator
27 Complex Complex : : operator- (const Complex &operand2) const

28 {
29 return Complex (real - operand2 . real ,

30 imaginary - operand2 . imaginary) ;

3 1
32 } I I end funct ion operator -

33
34 I I display a Complex obj ect in the form : (a , b)
35 void Complex : : print () const

36 {
37 cout « ' (' « real « " , " « imaginary « ') ' ;

38
39 I I end funct ion print

Fig. 8 . 1 6 Comp l ex class member-function defin it ions.

Chapter 8 Operator Overloading; Stri ng a n d Array Objects

1
2
3
4
5
6
7
8
9

I I Fig . S . 1 7 : f igO S_17 . cpp

I I Comp l ex c lass test program .

#include < io s tream>

us ing std : : cout ;

us ing std : : endl ;

inc lude " compl ex1 . h "

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42

int main ()

{
Comp l ex x ;

Comp l ex y (4 . 3 ,
Complex z (3 . 3 ,

cout « " x : 'I ;
x . print () ;

cout « " \ny : " ;

y . print () ;

cout « " \nz : " ;
z . print () ;

x = y + z ;

cout « " \n\nx

x . print () ;

cout « I. = " i
y . print () ;

cout « " + " ;

z . print () ;

x = y - z ;

cout « " \n \ nx

x . print () ;

cout « II = II i
y . print () ;

cout « " - " ;

z . print () ;

cout « endl ;

return 0 ;

I I end main

x : (0 , 0)

y : (4 . 3 , 8 . 2)

z : (3 . 3 , 1 . 1)

8 . 2) ;

1 . 1) ;

y + z : \n " ;

y - z : \n " ;

x = y + z :

(7 . 6 , 9 . 3) (4 . 3 , 8 . 2) + (3 . 3 , 1 . 1)

x = y - z :

(1 , 7 . 1) = (4 . 3 , 8 . 2) - (3 . 3 , 1 . 1)

Fig. 8. 1 7 Complex numbers,

603

604 Operator Overloa d i n g ; String and Array Objects Chapter 8

8. 1 6 A m ac h i ne wi th 32-bi t i n tegers can represent integers in the range of approx i mate l y -2 b i l l ion
to +2 b i l l ion . Thi s fixed-s ize restr ict ion i s rare l y troublesome, but there are app l icat ions in which we
wou ld l i ke to be able to use a much wider range of in tegers. This i s what C++ was bui I t to do, namely ,
create powerfu l new data types . Consider c lass HugeInt of Fig . S . I S-Fig. S . 20 . Study the c l ass

c arefu l ly , then answer the fol lowing :

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32

a) Describe prec ise ly how i t operates .

b) What restrict ions does the c lass have?

c) Overload the * mul t ip l i cation operator.

d) Overload the I d i v i sion operator.

e) Overload all the re lat ional and equali ty operators.

I I Fig . 8 . 1 8 : huge int 1 . h

I I Huge Int c l a s s de f init ion .

i fnde f HUGEINT1_H

#de f ine HUGEINT1_H

inc lude < iostream>

us ing std : : ostream;

class Huge Int {
friend ostream &operator« (ostream & , const Huge Int & } ;

pub l i c :

Huge Int (long = 0 } ;

HugeInt (const char * } ;

I I conversion/defau l t const ructor

I I conversion const ructor

I I addition operator ; HugeInt + HugeInt

Huge Int operator+ (const Huge Int & } ;

I I addit ion operator ; HugeInt + int

HugeInt operator+ (int } ;

I I addit ion operator ;

I I HugeInt + string that represent s large integer value

Huge Int operator+ (const char * } ;

private :

short integer [30] ;

} ; I I end c la s s HugeInt

#end i f

F ig . 8 . 1 8 Huge Int class definition .

1
2
3
4

I I Fig . 8 . 1 9 : hugeint l . cpp

I I Huge Int member- funct ion and friend- func t i on def init ions .

include <cctype > I I i sdigit funct ion prototype

Fig. 8 . 1 9 Huge Int class member-function and friend-function definitions. (Part
1 of 3 .)

Chapter 8 Operator Overloading; Stri ng a n d Array Objects

5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56

inc lude < c string> I I st rlen func t i on prototype

#inc lude " hugeint l . h " I I Huge lnt c lass de f init ion

I I def ault const ructor ; conversion constructor that converts

I I a l ong integer into a Hugelnt obj ect

Hugelnt : : Huge lnt (long value)

{
I I ini t i a l i z e array to zero

for (int i

integer [i

0 ; i < = 2 9 ; i + +

= 0 ;

I I p lace digi t s of argument into array

for (int j = 2 9 ; value ! = 0 && j >= 0 ; j - -) {
integer [j 1 = value % 1 0 ;

value 1 = 1 0 ;

I I end for

I I end Huge lnt default / conversion constructor

II convers ion const ructor that convert s a charact e r s t ring

I I repre sent ing a large integer into a Huge lnt obj ect

Huge lnt : : Huge lnt (const char * string

{
I I init i a l i z e array to zero

for (int i 0 ; i < = 2 9 ; i + +

integer [i 1 = 0 ;

I I place digi t s of argument into array

int length = strlen (string) ;

for int j = 30 - length, k

i f (i sdigit (string [k 1)

integer [j 1 = string [k

0 ; j < = 2 9 ; j + + , k + +)

- • 0 I ;

} I I end Hugelnt convers ion constructor

I I addit ion operator ; Hugelnt + Hugelnt

Hugelnt Huge lnt : : operator+ (const Huge lnt &op2)
{

Hugelnt t emp ; I I temporary result
int carry 0 ;

for (int i = 2 9 ; i > = 0 ; i - -) {
t emp . integer [i 1

integer [i 1 + op2 . integer [i 1 + carry ;

II determine whether to carry a 1

i f (t emp . integer [i 1 > 9) {
temp . integer [i 1 %= 1 0 ; I I reduce to 0 - 9

605

Fig. 8. 1 9 Huge Int class member-function and fri end-function defin it ions , (Part
2 of 3 ,)

606

57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1
82
83
84
85
86
87
88
89
90
9 1
92
93
94
95
96
97
98
99
1 00
1 0 1
1 02
1 03
1 04
1 05
1 06

Operator Over loa d i n g ; Str ing and Array Objects Chapter 8

carry = 1 ;

/ / end i f

I I no carry

e l s e

carry = 0 ;

return temp ; / / return copy of temporary obj ect

I I end funct ion operator+

/ / addit ion operator ; Huge lnt + int

Hugelnt Huge lnt : : operator+ (int op2

{
I I convert op2 to a Huge lnt , then invoke

/ / operator+ for two Hugelnt obj ects

return * thi s + Huge lnt (op2) ;

} / / end funct ion operator+

/ / addit ion operator ;

I I Huge lnt + string that repre sent s large integer value

Huge lnt Huge lnt : : operator+ (const char * op2

{
1 / convert op2 to a Hugelnt , then invoke

I I operator+ for two Huge lnt obj ect s

return * thi s + Hugelnt (op2) ;

} / / end operator+

/ / overloaded output operator

ost ream& operator« (ostream &output , const Huge lnt &num)

{
int i ;

for (i = 0 ; (num . integer [i

I I skip leading zeros

if i = = 3 0

output « 0 ;

e l s e

f o r (; i < = 2 9 ; i + +)

output « num . integer [i] ;

return output ;

/ / end func t i on operator«

o) && (i <= 29) ; i + +

Fig. 8 . 1 9 Huge Int c lass member-function and fri end-function defin it ions. (Part
3 of 3 .)

Chapter 8 Operator Overloading; Str ing a n d Array Objects

1
2
3
4
5
6
7
8
9

I I Fig . 8 . 2 0 : f i g 0 8_2 0 . cpp

1 / Huge Int test program .

#inc lude < iostream>

us ing std : : cout ;

us ing std : : endl ;

inc lude " huge int 1 . h "

int main ()

{
HugeInt n1 (

Huge Int n2 (

Huge Int n3 (

Huge Int n4 (

HugeInt n5 ;

7 6 5 4 3 2 1) ;

7 8 9 12 3 4) ;

" 9 ") ;

" 1 ") i

cout « " n 1 is " « n1 « " \ nn2 is " « n2

n5 =

« " \ nn3 i s " « n3 « " \ nn4 i s " « n4

« " \ nn5 i s " « n5 « " \n \ n " ;

n1 + n2 ;

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36

cout « n1 « " + " « n2 « " = " « n5 « " \n \ n " ;

cout « n3 « " + " « n4 « " \ n= "

« " \ n \ n " ;

n5 = n1 + 9 ;

cout « n1 « " + " « 9 « " " «

n5 = n2 + " 1 0 0 0 0 " ;

cout « n2 « " + " « " 1 0 0 0 0 " « "

return 0 ;

I I end main

n1 is 7 6 5 4 3 2 1

n2 i s 7 8 9 12 3 4

n3 i s 9

n4 i s 1

n5 is 0

7 6 5 4 3 2 1 + 7 8 9 12 3 4 = 1 5 5 4 5 5 5 5

9 + 1
= 1 0

7 6 5 4 3 2 1 + 9 = 7 6 5 4 3 3 0

7 8 9 1 2 3 4 + 1 0 0 0 0 = 7 9 0 1 2 3 4

Fig. 8.20 Huge integers .

« (n3 + n4)

n5 « " \n \ n " ;

" « n5 « endl ;

8. 1 7 Create a c l ass Rat iona1Number (fract ions) wi th the fol lowing capab i l i t i es :

607

608 Operator Overloading; String and Array Objects Chapter 8

a) Create a constructor that prevents a 0 denom inator in a fract ion, reduces or s i m p l ifies

fract ions that are not i n reduced form and avoids negative denomi nators.

b) Overload the addi t ion , subtract ion, mul t ip l ication and d i v i s ion operators for t h i s c l ass .

c) Overload the re lat ional and equal i ty operators for th is c l ass .

8. 1 8 Study the C string-handl i ng l ibrary fu nctions and i mplement each of the funct ions as part of

c lass String (Fig . 8 . 7-Fig. 8 . 8) . Then, use these functions to perform text manipu lat ions .

8. 1 9 Develop c l ass Polynomia l . The i nternal representation of a Polynomial i s an array of

terms . Each term conta ins a coeffic ient and an exponent. The term

has the coeffic ient 2 and the exponent 4 . Develop a complete c l ass conta in ing proper constructor and

destructor funct ions as we l l as set and get fu nctions. The c l ass should also provide the fol lowi n g

overloaded operator capab i l i t ies :

a) Overload the addi t ion operator (+) to add two Polynomia l s .

b) Overload t h e subtract ion operator (-) t o subtract t w o Polynomia l s .

c) Overload the ass ign ment operator t o assign o n e Polynomial to another.

d) Overload the m u l t i p l i cation operator (*) to mul t ip ly two Polynomia l s .

e) Overload the addit ion assignment operator (+ =) , the subtraction assignment operator (- =) ,

a n d the mul t ip l ication assignment operator (* =) .

8.20 The program of F ig . 8 . 3 contai ns the comment

I I overloaded stream- insert ion operator ; cannot be

II a member funct ion i f we would l ike to invoke i t with

I I cout « somePhoneNumber ;

Actual ly, i t can be a member function of c lass PhoneNumber if we were w i l l i ng to i nvoke it i n

e i ther o f t h e fol lowing way s :

somePhoneNumber . operator « (cout) ;

or

somePhoneNumber « cout ;

Rewrite the program of Fig . 8 . 3 with the overloaded stream- i n sert ion operator< < as a member

funct ion and try the two preceding statements i n the program to demonstrate that they work.

9
Object-Oriented
Programming:

Inheritance

Objectives
• To be able to create classes by inheriting from existing

classes.

• To understand how inheritance promotes software

reusability.

• To understand the notions of base classes and derived

classes.

• To understand the protected member-access

modifier.

• To understand the use of constructors and destructors

in inheritance hierarchies.

Say not you know another entirely, till you have divided an

inheritance with him.

Johann Kasper Lavater

This method is to define as the number of a class the class of

all classes similar to the given class.

Bertrand Russe l l

A deck of cards was built like the purest of hierarchies, with

every card a master to those below it, a lackey to those above

it.

Ely Culbertson

Good as it is to inherit a library, it is better to collect one.

Augustine B i rrel l

Save base authority from others' books.

Wi l l iam Shakespeare

610 Object-Oriented Programming: Inheritance

Outline

9.1 Introduction

9.2 Base Classes and Derived Classes

9.3 protected Members

9.4 Relationship between Base Classes and Derived Classes

9.5 case Study: Three-Level Inheritance Hierarchy

9.6 Constructors and Destructors In Derived Classes

9.7 "Uses A" and "Knows A" Relationships

9.8 public, protected and private Inheritance

9.9 Software Engineering with Inheritance

Chapter 9

9.10 (Optional case Study) thinking About Objects: Incorporating

Inheritance into the Elevator Simulation

Summary • Terminology • Self-Review Exercises· Answers to Self-Review Exercises • Exercises

9.1 I ntroduction

In thi s chapter, we begin our di scussion of object-oriented programming (OOP) by intro

ducing one of its main features-inheritance. I nheritance i s a form of software reusabi l i ty

i n which programmers create c lasses that absorb an exist ing c lass ' s data and behaviors and

enhance them with new capabi l i t ies . Software reusabi l i ty saves time during program devel

opment. It also encourages the reuse of proven and debugged high-qual i ty software , which

i ncreases the l ikel ihood that a system wil l be implemented effect ively.

When creat ing a class , instead of writ ing complete ly new data members and member

functions , the programmer can designate that the new class should inherit the members of

an ex ist ing class . This ex ist ing c lass i s cal led the base class, and the new c lass i s referred

to as the derived class. (Other programming languages, such as Java™, refer to the base

c lass as the superclass and the deri ved class as the subclass.) A deri ved class represents a

more specia l ized group of objects. Typical ly , a derived c lass contains behaviors inherited

from its base c lass plus additional behaviors. As we wi l l see, a derived class can also cus

tomi ze behaviors inheri ted from the base class . A direct base class i s the base c lass from

which a derived c lass expl ic i t ly i nherits. An indirect base class is i nherited from two or

more level s up the class hierarchy. In the case of single inheritance, a c lass is derived from

one base c lass . C++ also supports multiple inheritance, in which a derived c lass inherits

from multiple (possibly unrelated) base c lasses. S ingle inheritance i s straightforward-we

show several examples that should enable the reader to become proficient quickly . Mul t ip le

i nheritance can be complex and error prone. We cover mUlt ip le i nheritance in Chapter 22.
C++ offers three kinds of inheritance-publ ic, protected and pri vate. I n thi s

chapter, we concentrate on publ ic inheritance and briefly explain the other two kinds . I n

Chapter 1 7, w e show how private i nheritance can b e used a s a n alternat ive t o composi

tion . The third form, protected inheritance, i s rarely used. With publ i c i nheri tance,

every object of a derived class is also an object of that derived class ' s base class. However,

base-class objects are not objects of their derived classes. For example, al l cars are vehic les ,

Chapter 9 Object-Oriented Programming: Inheritance 611

but not all vehicles are cars . As we continue our study of object-oriented programming i n

Chapter 9 and Chapter 1 0, we take advantage o f this relat ionship t o perform some i nter

est ing manipulations.

Experience i n building software systems indicates that s ign ificant port ions of code

deal wi th closely re lated spec ial cases. When programmers are preoccupied wi th speci al

cases, the details can obscure the "big picture ." With object-oriented programm ing, pro

grammers focus on the commonal it ies among objects in the system, rather than on the spe

cial cases. Thi s process i s called abstraction.

We di sti nguish between the" is-a" relationship and the "has-a" relationship. The " is

a" relationsh ip represents inheritance. In an "i s-a" relat ionship, an object of a derived class

also can be treated as an object of its base class-for example , a car is a vehicle, so any

propert ies and behaviors of a vechicle are also properties of a car. By contrast, the "has-a"

relat ionsh ip stands for composit ion . (Composit ion was di scussed in Chapter 7 .) In a "has

a" relat ionship, an object contai ns one or more objects of other c lasses as members-for

example, a car has a steeri ng whee l .

Deri ved-class member functions might requi re access to base-class data members and

member funct ions . A derived c lass can access the non-private members of i ts base class.

Base-class members that shou ld not be accessible to the member funct ions of derived

classes should be declared private in the base class . A derived class can effect state

changes in private base-class members, but only through non-private member func

tions provided i n the base class and inherited i nto the derived class .

Software Engineering Observation 9.1

Member jitnctions of a derived class cannot directly access pri vate members of their

class's base class.

Software Engineering Observation 9.2

ff a derived class could access its base class's pri vate members, classes that inheritfrom

that derived class could access that data as well. This would propagate access to what should

be pri vate data, and the benefits of information hiding would be lost.

One problem wi th inheritance is that a derived c lass can i nherit data members and

member funct ions i t does not need or should not have. It is the class des igner 's responsi

b i l ity to ensure that the capabilit ies provided by a class are appropriate for future derived

classes. Even when a base-class member function i s appropriate for a derived class , the

derived class often requi res that member function to behave in a manner speci fic to the

derived class . In such cases, the base-class member function can be redefi ned in the derived

c lass with an appropriate i mplementation .

9.2 Base Classes and Derived Classes

Often, an object of one class "is an" object of another c lass, as well . For example, in geom

etry , a rectangle is a quadrilateral (as are squares, parallelograms and trapezoids) . Thus , in

C++, class Rectangle can be said to inherit from c lass Quadrilateral. In thi s con

text, class Quadrilateral i s a base class, and class Rectangle is a derived class . A

rectangle is a specific type of quadri lateral, but it i s incorrect to c l ai m that a quadri l ateral

is a rectangle-the quadri l ateral could be a parallelogram or some other shape . Figure 9 . 1

lists several s imple examples of base classes and derived classes .

612 Object-Oriented Programming: Inheritance

Base class

Student

Shape

Loan

Derived classes

GraduateStudent
UndergraduateStudent

Circle
Triangle
Rectangle

CarLoan

HomelmprovementLoan
MortgageLoan

Employee Faculty
Staff

Account

Fig. 9. 1

CheckingAccount

SavingsAccount

Inheritance examples.

Chapter 9

Because every derived-class object "is an" object of i ts base c lass , and one base class

can have many derived classes, the set of objects represented by a base class typically i s

larger than the set o f objects represented b y any o f i t s derived classes . For example, t h e base

class Vehicle represents all vehicles, including cars , trucks , boats, bicycles and so on. B y

contrast, derived class Car represents a smaller, more-specifi c subset o f all vehicles .

Inheritance relat ionships form tree-like hierarchical structures. A base c lass exi sts i n a

h ierarchical relat ionship with its derived c lasses. Although classes can ex ist i ndependently ,

once they are employed i n i nheri tance relationships, they become affili ated with other

classes. A class becomes e ither a base class, supplying data and behaviors to other classes,

or a deri ved class, i nheri t ing its data and behaviors from other classes.

Let us develop a s i mple i nheritance hierarchy. A uni versity community has thousands

of members . These members consist of employees, students and alum n i . Employees are

e ither faculty members or staff members . Faculty members are e ither admin i strators (such

as deans and department chai rpersons) or teachers . This organizat ional structure yields the

i nheritance hierarchy depicted i n Fig. 9.2. Note that this inheritance hierarchy could con

tain many other classes . For example, students can be graduate or undergraduate students .

Undergraduate students can be freshmen, sophomores, juniors and seniors . Each arrow in

the h ierarchy represents an "i s-a" relat ionship. For example, as we follow the arrows in this

class hierarchy, we can state "an Employee is a Communi tyMember" and "a Teacher

is a Faculty member." CommunityMember is the direct base class of Employee,

Student and Alumnus. In addit ion, CommunityMember i s an indirect base class of

all the other classes in the d iagram. Start ing from the bottom of the d iagram, the reader can

follow the arrows and apply the is-a relationship to the topmost base c lass . For example , an

Administrator is a Faculty member, is an Employee and is a Community

Member. Note that some admin istrators also teach c lasses, so we have used multiple i nher

i tance to form class AdministratorTeacher.

Chapter 9 Object-Oriented Programming: Inheritance 613

Fig. 9.2 Inheritance hierarchy for university Communi tyMembers.

Another i nheritance h ierarchy is the Shape hierarchy of Fig. 9 . 3 . To specify that class

TwoDimensionalShape i s derived from (or i nherits from) class Shape, class

TwoDimensionalShape could be defi ned in C++ as follows :

c l a s s TwoDimens ionalShape : public Shape

This is an example of public inheritance and is the most commonly used type of inher

itance. We also will d iscuss private inheritance and protected inheritance

(Section 9 . 8) . With public i nheritance, private members of a base class are not acces

sible directly from that class ' s derived classes, but these pri vate base-class members are

still i nherited . All other base-class members retain their orig inal member access when they

become members of the derived class (e .g . , public members of the base class become

public members of the derived class, and, as we will soon see, protected members

of the base class become protected members of the derived class) . Through these in

herited base-class members, the derived class can manipulate private members of the

base c lass (if these inherited members provide such functionality in the base class) . Note

that friend functions are not i nherited.

Inheritance i s not appropriate for every class relat ionship . In Chapter 7, we discussed

the has-a relat ionship, in which c lasses have members that are objects of other classes.

Such relat ionships create classes by composition of ex ist ing classes . For example, given the

classes Employee, BirthDate and TelephoneNumber, i t i s improper to say that an

Employee is a BirthDate or that an Employee is a TelephoneNumber. However,

it is appropriate to say that an Employee has a BirthDate and that an Employee has

a TelephoneNumber.

It is possible to treat base-class objects and derived-class obj ects s i milarly; their com

monalities are expressed i n the members of the base class . Objects of all classes derived

from a common base class can be treated as objects of that base class (i .e . , such obj ects have

614 Object-Oriented Programming: Inheritance Chapter 9

Shape

Fig. 9.3 Inheritance hierarchy for Shapes.

an "i s-a" relat ionship w i th the base class) . In Chapter 1 0, Object-Oriented Programming :

Polymorphism, we cons ider many examples that take advantage of th is relat ionship .

9.3 protected Members

Chapter 7 di scussed public and private member-access spec ifiers. A base class ' s

public members are accessible anywhere that the program has a handle (i .e . , a name, ref

erence or pointer) to an object of that base class or one of i ts deri ved classes . A base class ' s

private members are accessible only with in the body of that base class and the

friends of that base class . I n this section, we introduce an addit ional member-access

specifier: protected.
Using protected access offers an intermediate level of protect ion between

public and private access . A base class' s protected members can be accessed by

members and friends of that base class and by members and friends of any classes

derived from that base class .

Derived-class member functions can refer to public and protected members of

the base class s imply by us ing the member names. When a derived-class member function

redefi nes a base-class member function, the base-class member can be accessed from the

derived class by preceding the base-class member name with the base-class name and the

b inary scope resolution operator (: :) . We discuss access ing redefi ned members of the base

class in Section 9.4.

9.4 Relationship between Base Classes and Derived Classes

In thi s section, we use a point/ci rcle i nheritance h ierarchy I to discuss the relat ionship be

tween a base class and a derived class. We di v ide our discussion of the poin t/c i rcle relation

ship i nto several parts . First, we create class Point, which contains as private data an

x-y coordinate pair. Then, we create class Circle, which contains as private data an

x-y coord inate pair (representing the location of the center of the c ircle) and a rad ius . We

I . The point/circle relationship may seem unnatural when w e say that a circle "is a " point. This ex
ample teaches what is sometimes called structural inheritance and focuses on the "mechanics" of
inheritance and how a base class and a derived class relate to one another. In the exercises and in
Chapter 10, we present more natural inheritance examples.

Chapter 9 Object-Oriented Programming: Inheritance 615

do not use i nheritance to create class Circle; rather, we construct the class by writing ev

ery l i ne of code the c l ass requires . Next, we create a separate Circle2 c lass , which inher

its d irectly from c l ass Point (i .e . , c lass Circle2 "is a" Point but also contains a

rad ius) and attempts to access c lass Point's private members-thi s res ults in compi

l ation errors, because the derived c lass does not have access to the base class ' s private

data. We then show that if Point's data is dec lared as protected, a Circle3 class

that i nherits from c lass Point2 can access that data. For thi s purpose, we define c lass

Point2 w ith protected data. Both the i nherited and noninherited Circle c lasses

contain identical functionality, but we show how the inherited Circle3 c lass i s easier to

create and manage . After discuss ing the convenience of us ing protected data, we set the

Point data back to private i n c lass Point3 (to enforce good software engineering) ,

then show how a separate Circle4 c lass (which i nherits from class Point3) can use

Point3 member functions to manipulate Point3's private data.

Creating a Point Class
Let us first examine Point's class defi n ition (Fig. 9.4-Fig. 9.5). The Point header fi le

(Fig. 9 .4) specifies c lass Point's public services, which inc lude a constructor (l i ne 9)

and member functions setX and getX (l i nes 1 1 - 1 2), sety and gety (l ines 1 4- 1 5) and

print (l ine 1 7) . The Point header fi le specifies data members x and y as private

(l i nes 20-2 1), so objects of other c lasses cannot access x and y directly . Technical ly , even

if Point's data members x and y were made public, Point could never maintain an

inval i d state-a Point object's x and y data members could never contain inval id values,

because the x-y coordinate plane i s i nfin ite in both directions . In general , however, declar-

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25

I I Fig . 9.4: point . h
I I Point c l a s s de f init ion represent s an x-y coordinate pair .
i fndef POINT_H
#def ine POINT_H

c l a s s Point {

publ ic :
Point (int = 0 , int

void setX (int) ;
int getX () const ;

void sety (int) ;
int gety () const ;

0) ; I I

I I
I I

I I
II

default const ructor

set x in coordinate pair
return x from coordinate

set y in coordinate pair
return y from coordinate

void print () const ; // output Point obj ect

private :
int x;
int y;

// x part of coordinate pair
/1 y part of coordinate pair

} ; / / end c l a s s Point

#endi f

pair

pair

Fig. 9.4 Point class header file.

616 Object-Oriented Programming: Inheritance Chapter 9

i ng data members as pri vate and provid ing non-private member functions to manip

u l ate and val idate the data members enforces good software engi neeri ng. [Note: The

Point constructor defi n it ion purposely does not use member- in itial i zer syntax in the fi rst

several examples of th i s section, so that we can demonstrate how private and pro

tected speci fiers affect member access in derived classes. As shown i n Fig. 9 .5 , l i nes 1 2-

1 3, we assign values to the data members in the constructor body . Later i n thi s section , we

w i l l return to us ing member- in itial i zer l i sts i n the constructors .]

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44

I I Fig . 9.5: point . cpp
I I Point class member- funct ion def init ions .
inc lude < iostream>

us ing std : : cout ;

inc lude " point .h " I I Point class def init ion

I I default constructor
Point : : Point { int xValue , int yValue)
{

x xValue ;
y yValue ;

I I end Point const ructor

I I set x in coordinate pair
void Point : : setX{ int xValue
{

x = xValue ; I I no need for val idat ion

} 1/ end funct ion setX

I I return x from coordinate pair
int Point : : getX{) const
{

return x ;

} I I end function getX

/1 set y in coordinate pair
void Point : : setY{ int yValue

y = yValue ; I I no need f or val idation

} I I end function sety

I I return y from coordinate pair
int Point : : getY{) const
{

return y ;

I I end function getY

Fig. 9.5 Point closs represents an x-v coordinate pair. (Port 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance

45 I I output Point obj ect
46 void Point : : print () const
47 {
48 cout « ' [' « x « " , " « y « '] ';
49
50 } II end funct ion print

Fig. 9.5 Point class represents an x-y coordinate pair. (Part 2 of 2.)

617

Figure 9 .6 tests class Point. Line 1 2 instantiates object point of c lass Point and

passes 72 as the x-coordi nate val ue and 115 as the y-coordi nate value to the constructor.

L ines 1 5- 1 6 use point's getX and gety member functions to retrieve these values, then

output the values. Li nes 1 8- 1 9 i nvoke point's member functions setX and sety to

change the values for point's x and y data members. Line 23 then cal l s point's print

member function to d i splay the new x- and y-coordinate values .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28

II Fig . 9.6: pointtest . cpp
I I Tes t ing c l a s s Point .
#inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

inc lude " point . h " I I Point class de f init ion

int main ()
{

Point point e 72, 115);

II d i splay point coordinates

I I instant iate Point obj ect

cout « " X coordinate i s " « point . getX ()
« " \nY coordinate i s " « point . getY () ;

point . setX (10) ; I I set x-coordinate
point . setY (10) ; II set y- coordinate

II display new point value
cout « " \ n\nThe new locat ion of point is " ;
point . print () ;
cout « endl ;

return 0; I I indicates succe s s ful termination

} II end main

X coordinate is 7 2
Y coordinate i s 115

The new locat ion of point i s [10, 10]

Fig. 9.6 Point class test program,

618 Object-Oriented Programming: Inheritance Chapter 9

Creating a Circle Class Without Using Inheritance
We now discuss the second part of our in troduction to inheritance by creat ing and test ing

(a completely new) c lass Circle (Fig . 9 .7-Fig . 9 . 8), which conta ins an x-y coord inate

pair (i nd icating the center of the c i rcle) and a radius . The Circle header fi l e (F ig . 9 . 7)

specifies c lass Circle's public serv ices, which inc lude t h e Circle constructor (l i ne

1 1) , member functions setX and getX (l i nes 1 3- 1 4), sety and gety (l i nes 1 6- 1 7),

setRadius and get Radius (l i nes 1 9-20), getDiameter (l i ne 22), getCircum

ference (l i ne 23), getArea (l i ne 24) and print (l ine 26) . L ines 29-3 1 declare mem

bers x, y and radius as private data. These data members and member functions

encapsulate al l necessary features of a c i rc le . In Section 9 .5 , we show how this encapsu la

t ion enables us to reuse and extend this class .

Figure 9 .9 tests class Circle. Line 17 i nstantiates object circle of class Circle,

passing 3 7 as the x-coordinate value, 43 as the y-coordinate value and 2.5 as the radius

value to the constructor. L ines 20-22 use member functions getX, gety and getRadius

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35

I I Fig . 9.7: circ l e .h
I I Circle c la s s c ontains x-y c oordinate pair and radius .
i fndef CIRCLE_H
#def ine CIRCLE_H

class Circ l e

publ ic :

I I de fault constructor
Circle (int = 0, int 0, double = 0.0);

void setX (int) ; I I s e t x i n c oordinate pair
int getX () const ; I I return x from c oordinate

void sety (int) ; I I set y in c oordinate pair
int gety () const ; II return y from c oordinate

void setRadius (double) ; I I set radius
doubl e getRadius () c onst ; II return radius

I I return diameter

pair

pair

doubl e getDiameter () const ;
doubl e getCircumference () const ;
doubl e getArea () c onst ;

I I return c ircumference
II return area

void print () const ; II output Circle obj ect

private :
int x ;
int y ;
doubl e radius ;

II x-coordinate of Circle ' s center
I I y- coordinate of Circ l e ' s center
II Circle ' s radius

} ; II end c l a s s Circle

#endif

F i g . 9.7 C i rc l e class header file.

Chapter 9 Object-Oriented Programming: Inheritance

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52

/ / Fig . 9.8: circle . c pp
/ / Circle c l a s s member- function de f init ions .
#inc lude < iostream>

us ing std : : cout ;

inc lude " c irc le . h " / / Circle c l a s s de f init i on

/ / de fault constructor
Circle : : Circle (int xValue , int yValue , doubl e radiusValue)
{

x = xValue ;
y = yValue ;
setRadius (radiusValue) ;

/ / end C irc le constructor

I I set x in coordinate pair
void Circle : : setX (int xValue
{

x = xValue ; I I no need for val idat ion

} 1/ end funct ion setX

/ / return x f rom coordinate pair
int Circle : : getX () const
{

return x ;

/ / end funct ion getX

/ / set y in coordinate pair
void C i rc l e : : sety (int yValue
{

y = yValue ; / / no need for val idat ion

} 1/ end funct ion sety

/ / return y f rom coordinate pair
int Circle : : gety () const
{

return y ;

} / / end func t ion gety

/ / set radius
void Circle : : setRadius (double radiusValue)
{

radius = (radiusValue < 0.0 ? 0.0 : radiusValue) ;

/ / end funct ion setRadius

Fig. 9.8 Circle class contains an x-y coordinate and a radius. (Part 1 of 2.)

619

620 Object-Oriented Programming: Inheritance

53 I I return radius
54 doubl e Circ l e : : getRadius () const
55 {
56 return radius ;
57
58 I I end funct ion getRadius
59
60 I I calculate and return diameter
61 doubl e Circ le : : getDiameter () const
62 {
63 return 2 * radius ;
64
65 I I end funct ion getDiameter
66
67 I I calculate and return c ircumference
68 double Circ l e : : getCi rcumference () const
69 {
70 return 3 . 1 41 5 9 * getDiameter () ;
7 1
72 } I I end funct ion getCircumference
73
74 I I calculate and return area
75 double Circ l e : : getArea () const
76 {
77 return 3 . 1 41 5 9 * radius * radius ;
78
79 I I end function getArea
80
8 1 I I output Circle obj ect
82 void Circle : : print () const
83 {
84 cout « " Center = [" « x « " , " « y « ' J '

85 « " ; Radius = " « radius ;
86
87 I I end funct ion print

Chapter 9

Fig. 9.8 C i rc l e class contains an x-y coordinate and a radius, (Part 2 of 2.)

to retrieve circle's values, then di splay. Lines 24-26 invoke circle's setX, sety

and setRadius member functions to change the x-y coordinates and the rad ius, respec

t ive ly . Member function setRadius (Fig. 9 . 8, l i nes 47-5\) ensures that data member

radius cannot be ass igned a negative value (i .e . , a c i rc le cannot have a negat ive rad ius) .

Line 30 of Fig . 9 .9 cal l s circle's print member function to display i ts x-coordinate, y

coordinate and radius . Lines 36-42 call circle's getDiameter, getCircumfer

ence and getArea member functions to display circle's diameter, c i rcumference and

area, respect ively .

For c lass Circle (F ig . 9 .7-Fig. 9 . 8), note that much of the code i s s im i lar, i f not i den

tical, to the code i n c lass Point (Fig . 9,4-Fig. 9,5) . For example, the declaration in c lass

Circle of pri vate data members x and y and member functions setX, getX, sety

and gety are identical to those of class Point. In addit ion, the Circle constructor and

member function print are al most identical to those of c lass Point, except that they also

Chapter 9 Object-Oriented Programming: Inheritance 621

manipulate the radius. The other addit ions to c lass Circle are pri vate data member

radius and member functions setRadius, getRadius, getDiameter, get

Circumference and getArea.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48

I I Fig . 9 .9 : c ircletest . cpp
I I Tes t ing c l as s Circle .
inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;
us ing std : : f ixed ;

inc lude < iomanip>

us ing std : : setprec i s ion ;

#inc lude n c ircle . h n I I Circle c la s s de f init ion

int main ()
{

Circle c irc l e (37 , 43, 2 . 5) ; I I ins t ant i ate C i rc l e obj ect

II di spl ay point coordinates
cout « n x coordinate i s n « c i rc l e . getX ()

« n \nY coordinate i s n « circle . getY ()
« n \nRadius i s n « c irc l e . getRadius () ;

circle . setX (2) ;
circle . setY (2) ;
c i rc l e . setRadius (4 . 2 5) ;

I I d i splay new point value

I I set new x- coordinate
I I set new y- coordinate
I I set new radius

cout « n \n\nThe new locat ion and radius o f circle are \ n " ;
c i rc l e . print () ;

I I display float ing-point values with 2 digits o f prec i s ion
cout « f ixed « setprec i s ion (2) ;

II display Circ le's diameter
cout « n \nDiameter i s n « c i rc le . getDiameter () ;

I I d i sp l ay Circle ' s c ircumference
cout « n \nCi rcumference is n « circle . getCirc umference () ;

II d i spl ay Circle's area
cout « n \nArea is n « c i rc l e . getArea () ;

cout « endl ;

return 0; II indicates suc ce s s ful terminat ion

II end main

Fig. 9.9 C irc l e class test program. (Part 1 of 2.)

622 Object-Oriented Programming: Inheritance

X coordinat e i s 3 7
y coordinat e i s 4 3
Radius i s 2 . 5

The new locat ion and radius of circle are
Center = [2 , 2] ; Radius = 4 . 2 5
Diameter i s 8 . 5 0
Circumference i s 2 6 . 7 0
Are a i s 5 6 . 7 4

Fig. 9.9 C i rc l e class test program. (Part 2 of 2.)

Chapter 9

I t appears that we l i teral ly copied code from class Point, pasted this code i nto c lass

Circle, then modified c lass Circle to incl ude a rad ius and member funct ions that

manipulate the rad ius . This "copy-and-paste" approach i s often error prone and t ime con

suming . Worse yet, i t can resu l t i n many physical copies of the code exist ing throughout a

system, creat ing a code-maintenance n ightmare . I s there a way to "absorb" the attributes

and behaviors of one class in a way that makes them part of other c lasses w i thout dupl i

cat ing code? I n the next several examples, we answer that question us ing a more elegant

class construction approach emphasizing the benefits of inheritance.

Point/Circle Hierarchy Using Inheritance
Now we create and test class Circle2 (Fig . 9 . 1 0-Fig . 9 . 1 1) , which i nherits data members

x and y and member functions setX, getX, setY and getY from c lass Point

(F ig . 9.4-Fig . 9 . 5) . An object of c lass Circle2 "is a" Point (because i nheritance ab

sorbs the capab i l i t ies of class Point), but, as evidenced by the c lass Circle2 header fi le ,

a l so contains data member radius (F ig . 9 . 1 0, l i ne 25) . The co lon (:) i n l i ne 8 of the c lass

defi n it ion i ndicates inheritance . Keyword public i ndicates the type of i nheritance. As a

derived class (formed wi th public inheritance) , Circle2 i nherits al l the members of

c lass Point, except for the constructor. Thus, the publ ic services of Circle2 i nclude the

Circle2 constructor (l i ne l 3)-each class provides i ts own constructors that are specific

to the class-the public member functions inherited from c lass Point; member func

t ions setRadius and getRadius (l ines 1 5- 1 6) ; and member funct ions getDiame

ter, getCircumference, getArea and print (l i nes 1 8-22) .

1 I I Fig . 9 . 1 0 : c ircle2 . h
2 I I Circle2 c lass cont ains x-y coordinate pair and radiu s .
3 # i fnde f CIRCLE2_H
4 #de f ine CIRCLE2_H
5
6 # inc lude " point . h " I I Point class de finition
7
8 c l as s Circle2 : public Point
9

1 0 publ ic :
1 1
1 2 I I de fault const ructor
1 3 Circle2 (int = 0 , int = 0, double = 0 . 0) ;

Fig. 9. 1 0 C i rc l e2 class header file. (Part 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance

1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29

void setRadius (double) ;
double getRadius () const ;

I I set radius
I I return radius

doubl e getDiameter () const ;
doubl e getCi rcumference () const ;
doubl e getArea () const ;

I I return diameter
I I return c i rcumference
I I return area

void print () const ; I I output Circle2 obj ect

private :
double radius ; I I Circ l e 2 's radius

} ; I I end c l a s s Circle2

#end i f

Fig. 9.1 0 C i rc l e2 class header file. (Part 2 of 2.)

623

Figure 9 . l l shows the member-function implementations for c lass Circle2. The

constructor (lines 1 0- 1 6) should set the x-y coordinate to a specific value, so lines 1 2- 1 3

attempt to assign parameter values to x and y directly. The compiler generates syntax errors

for lines 1 2 and 1 3 (and line 56, where circle2's print member function attempts to

u se the values of x and y directly), because the derived class Circle2 is not a l lowed to

access base c lass Point 's private data members x and y. As you can see, C++ r igid ly

enforces restrictions on accessing private data members, so that even a derived c lass

(which is c lose ly re lated to i ts base c lass) cannot access the base c lass ' s private data.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
14
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23

I I Fig . 9 . 11 : c i rcle2 . cpp
I I Circle2 c l a s s member- funct ion de finitions .
inc lude < iostream>

us ing std : : cout ;

inc lude " c ircle2 . h " I I Circle2 c l a s s de f init ion

I I de fault constructor
Circ l e 2 : : C ircle2 (int xValue , int yValue , double radiusValue)
{

x = xVa lue ;
y = yValue ;
setRadius (radiusValue) ;

} I I end Circle2 const ructor

I I set radius
void Circle2 : : setRadius (double radiusValue)
{

radius = (radiusValue < 0 . 0 ? 0 . 0 : radiusValue) ;

} I I end function setRadius

Fig. 9. 1 1 Private base-class data cannot be accessed from derived class. (Part 1 of 3.)

624 Object-Oriented Programming: Inheritance

24
25 II return radius
26 double Circ 1e2 : : getRadius () const
27 {
28 return radius ;
29
30 II end funct ion getRadius
3 1
32 /1 calculate and return diameter
33 doubl e C i rc1e2 : : getDiameter () const
34 {
35 return 2 * radius ;
36
37 II end funct ion getDiameter
38
39 II calculate and return c ircumference
40 double Circ1e2 : : getCi rcumference () const
4 1 {
42 return 3 . 1 4 1 5 9 * getDiameter () ;
43
44 II end funct ion getCircumference
45
46 II calculate and return area
47 double C i rc 1e2 : : getArea () const
48 {
49 return 3 . 14 1 5 9 * radius * radius ;
50
5 1 } / 1 end funct ion getArea
52
53 /1 out put Circ 1e2 obj ect
54 void Circ1e2 : : print () const
55 {
56 cout « " Center = [" « x « ", " « y « '] '
57 « " ; Radius = " « radius ;
58
59 } /1 end funct i on print

Chapter 9

C : \ c ppht p4 \ examp1es \ ch0 9 \ Circ1eTest \circ 1e2 . c pp (12) : error C 2 2 4 8 :
' x ' : cannot access private member dec lared in c la s s ' Point '

C : \ c ppht p4 \ examp1e s \ ch0 9 \ c irc 1etest \ point . h (2 0)
see dec l arat ion of ' x '

C : \ c ppht p4 \ examp1es \ ch0 9 \ Circ1eTest \ c irc 1e2 . c pp (1 3) : error C 2 2 4 8 :
' y ' : cannot access private member dec lared in c lass ' Point '

C : \ c ppht p4 \ examp1es \ch0 9 \ c irc 1etest \ point . h (2 1)
see dec laration o f ' y'

C : \ c ppht p4 \ examp1es \ ch0 9 \ Circ1eTest \ c i rc 1e2 . c pp (5 6) : error C 2 2 4 8 :
' x ' : cannot access private member declared in class ' Point '

C : \ c ppht p4 \ examp1es \ch0 9 \ c irc1etest \ point . h (2 0) :
see dec larat ion of ' x '

(continued next page)

Fig. 9.1 1 Private base-class data cannot be accessed from derived class. (Part 2 of 3.)

Chapter 9 Object-Oriented Programming: Inheritance 625

C : \ cpphtp4 \ examples \ ch0 9 \CircleTest \ c ircle2 . cpp (5 6) : error C 2 2 4 8 :
' y ' : cannot acc e s s private member dec lared in c l a s s ' Point '

C : \ cpphtp4 \ example s \ ch0 9 \c i rc letest\point . h (2 1)
see dec l arat ion o f 'y'

Fig.9. 1 1 Private base-class data cannot be accessed from derived class. (Part 3 of 3.)

Point/Circle Hierarchy Using protected Data
To enable c lass Circle2 to access Point data members x and y directly, we can declare

those members as protected in the base class. As we discussed i n Section 9 . 3, a base

c lass ' s protected members can be accessed by members and friends of the base c lass

and by members and friends of any c lasses derived from that base c lass . C lass Point2

(F ig . 9 . 1 2-Fig . 9 . 1 3) is a modification of c lass Point (F ig . 9 .4-Fig . 9 . 5) that declares data

members x and y as protected (Fig . 9 . 1 2, l i nes 1 9-2 1) rather than private. Other

than the class name change (and, hence, the constructor name change) to Point2, the

member-function i mplementat ions i n Fig. 9 . 1 3 are identical to those i n F ig. 9.5.

I I Fig . 9 . 1 2 : point 2 . h 1
2
3
4
5
6
7
8
9

I I Point 2 c l a s s de f init ion represent s an x-y c oordinate pai r .
i fndef POINT2_H
#de f ine POINT2_H

c lass Point2

publ i c :
Point 2 (int = 0 , int = 0) ; I I default constructor

void setX (int) ; I I set x in coordinate pair
int getX () const ; I I return x from coordinate

void sety (int) ; I I set y in coordinate pai r
int gety () const ; I I return y from coordinate

voi d print () const ; I I output Point 2 obj ect

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25

protected :
int x ;
int y ;

I I x part o f coordinate pair
I I y part o f coordinate pair

} ; I I end class Point2

#endi f

Fig. 9.1 2 Point2 class header file.

1 I I Fig. 9 . 1 3 : point 2 . cpp
2 I I Point 2 c l a s s member- funct ion de fini t i ons .
3 # inc lude < iostream>

pair

pai r

Fig. 9. 1 3 Point2 class represents an x-y coordinate pair as prot e c t e d data.
(Part 1 of 2.)

626

4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50

Object-Oriented Programming: Inheritance

us ing s td : : cout ;

inc lude " point 2 . h " II Point2 class de f inition

I I de fault constructor
Point 2 : : Point2 (int xValue , int yValue)
{

x = xValue ;
y yValue ;

II end Point 2 constructor

I I set x in coordinate pair
void Point 2 : : setX (int xValue
{

x = xValue ; I I no need for validat ion

} I I end function setX

II return x from coordinate pair
int Point2 : : getX () const
{

return x;

} II end funct ion get X

I I set y in coordinate pair
void Point 2 : : setY (int yValue
{

y = yValue ; II no need for val idat ion

} II end function sety

I I return y from coordinate pair
int Point 2 : : getY () const
{

return y ;

} I I end funct ion gety

II output Point 2 obj ect
void Point 2 : : print () const
{

cout « ' [' « x « " , " « y « '] ';

II end funct ion print

Chapter 9

Fig. 9 . 1 3 Point2 class represents an x-V coordinate pair as prot e c t ed data.
(Part 2 of 2.)

Class Circle3 (Fig . 9. 1 4-Fig . 9 . 1 5) i s a modificat ion of class Circle2 (Fig . 9 . 1 0-

Fig . 9 . 1 1) that i nherits from c lass Point2 rather than from class Point. B ecause c lass

Circle3 i n herits from c lass Point2, objects of c lass Circle3 can access i nherited

Chapter 9 Object-Oriented Programming: Inheritance 627

data members that were declared protected i n c lass Point2 (i .e . , data members x and

y) . As a resul t, the compi ler does not generate errors when compi l i n g the Circle3 con

structor and print member function defi ni t ions i n F ig . 9 . 1 5 (l i nes 1 0- 1 6 and 54-59,

respective ly) . Thi s shows the special priv i l eges that a derived c lass is granted to access

protected base-c lass data members. Objects of a derived c lass also can access pro

tected members i n any of that derived class ' s i ndirect base c lasses.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29

I I Fig . 9 .14 : c irc le3 . h
I I C irc le 3 c l a s s contains x-y coordinate pair and radius .
i fnde f CIRCLE3_H
#define CIRCLE3_H

inc lude " point 2 . h " I I Point2 class de f inition

c l as s C i rc l e 3 : publ ic Point 2 (

publ i c :

I I de fault const ructor
Circle3 (int = 0 , int = 0 , double = 0 . 0) ;

void setRadius (double) ;
double getRadius () const ;

I I set radius
II return radius

double getDiameter () const ;
double getCircumference () const ;
double getArea () const ;

I I return diameter
II return c i rcumference
II return area

void print () const ; I I output Ci rc le 3 ob j ect

private :
double radius ; I I Circ l e 3 ' s radius

} ; I I end c las s C i rc l e 3

#endif

Fig. 9. 1 4 C i rc l e3 class header file.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2

I I Fig. 9 .15 : c irc l e 3 . cpp
I I Circ l e 3 c las s member - funct ion de f init ions .
include < iost ream>

us ing std : : cout ;

inc lude " c i rc l e 3 . h " I I Circ l e 3 c lass de f ini t i on

II de faul t const ructor
Circ le3 : : C irc l e 3 (int xValue , int yValue , double radiusValue)
{

x = xValue ;

Fig. 9. 1 5 C i rc l e3 class that inherits from class Point2. (Part 1 of 2.)

628 Object-Oriented Programming: Inheritance

1 3 y = yValue ;
1 4 setRadius (radiusValue) ;
1 5
1 6 } I I end C i rc l e 3 constructor
1 7
1 8 II set radius
1 9 void Circle3 : : setRadius (double radiusValue)
20 {
2 1 radius = (radiusValue < 0.0 ? 0.0 : radiusValue) ;
22
23 } II end funct ion setRadius
24
25 II return radius
26 doubl e Circle3 : : getRadius () const
27 {
28 return radius ;
29
30 } II end function getRadius
31
32 II calculate and return diameter
33 doubl e Circle3 : : getDiameter () const
34 {
35 return 2 * radius ;
36
37 } I I end funct ion getDiameter
38
39 II calculate and return circumference
40 doubl e Circle3 : : getCircumference () const
4 1 (
42 return 3 . 14 1 5 9 * getDiameter () ;
43
44 } II end funct ion getCircumference
45
46 II calculate and return area
47 doubl e Circle3 : : getArea () const
48 (
49 return 3 . 1 4 1 5 9 * radius * radius ;
50
5 1 I I end funct ion getArea
52
53 II output C i rcle3 obj ect
54 void Circ l e 3 : : print () const
55 {
56 cout « " Center = [II « x « " , " « y « .] .
57 « " ; Radius = " « radius ;
58
59 } I I end funct ion print

Fig. 9 . 1 5 C i rc l e3 class that inherits from class Point2. (Part 2 of 2.)

Chapter 9

Class C i rc l e 3 does not inherit class Point 2 ' s constructor. However, c lass

Circle3 ' s constructor (l i nes 1 0- 1 6) cal l s c lass Point 2 ' s constructor i mpl ic i t ly . In fact,

the first task of any derived-class constructor i s to cal l i ts d irect base class ' s constructor,

e ither i mpl ic i t ly or expl ic i t ly . (The syntax for cal l i ng a base-class constructor is d i scussed

Chapter 9 Object-Oriented Programming: Inheritance 629

l ater i n th is section .) If the code does not inc lude an expl ic i t cal l to the base-class con

structor, an i mpl ic i t cal l i s made to the base c lass ' s default constructor. Even though l i nes

1 2- 1 3 set x and y values expl ic i t ly , the constructor fi rst cal l s the Point2 default con

structor, which i n i t ia l izes these data members to their defaul t 0 values . Thus, x and y each

are in i tial ized twice . We w i l l fi x this pelformance problem in the next examples .

Figure 9 . j 6 performs identical tests on c lass Circle3 as those that F ig . 9 .9 performed

on c lass Circle (F ig . 9 .7-Fig. 9 .8) . Note that the outputs of the two programs are identical .

We created c lass Circle without us ing i nheritance and created c lass Circle3 using

inheritance; however, both c lasses provide the same functional i ty . Note that the code l i st ing

for c lass Circle3 (i .e . , the header and i mplementation fi les) , which i s 88 l i nes , i s cons id

erably shorter than the code l i st ing for c lass Circle, which i s 1 22 l i nes, because c lass

Circle3 absorbs part of its functional ity from Point2, whereas class Circle does not

absorb any functional i ty . Al so, there i s now only one copy of the point functionality men

t ioned in c lass Point2. Thi s makes the code easier to debug, maintain and modify , because

the point-rel ated code exists only in the fi les of Fig. 9 . 1 2-Fig . 9 . 1 3 .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34

I I Fig . 9 . 1 6 : c i rc letest 3 . cpp
I I Te s t ing c l a s s Circ l e 3 .
inc lude < iostream>

us ing std : : cout ;
us ing std : : end1 ;
using s td : : f ixed ;

inc lude < iomanip>

us ing std : : setprec i s ion ;

inc lude " c i rc l e 3 . h " I I Circle3 c la s s de f init ion

int main ()
{

Circ l e 3 c irc l e (3 7 , 4 3 , 2 . 5) ; I I instant iate Circ l e 3 obj ect

I I di sp lay point coordinates
cout « "X coordinate i s " « c i rc le . getX ()

« " \ nY coordinate i s " « circle . gety ()
« " \ nRadius i s " « circle . getRadius () ;

c ircle . setX (2) ;
c i rc l e . sety (2) ;
c irc l e . setRadius (4 . 2 5) ;

I I display new point value

I I set new x-coordinate
II set new y-coordinate
I I set new radius

cout « " \ n\nThe new location and radius o f c irc l e are \ n " ;
c i rc l e . print () ;

I I display f l oat ing -point value s with 2 digi t s of pre c i s ion
cout « f ixed « setprec i s ion (2) ;

Fig. 9. 1 6 Protected base-class data can be accessed from derived class. (Part 1 of 2.)

630 Object-Oriented Programming: Inheritance

35 I I di splay Circ le 3 ' s diameter
36 cout « n \ nDiameter i s n « c i rc le . getDiameter () ;
37
38 I I di splay C irc l e3 ' s c ircumference

Chapter 9

39 cout « n \ nC i rcumference i s n « c i rc l e . getCircwnference () ;
40
4 1 I I di splay C i rc l e3 ' s area
42 cout « n \ nArea is n « c i rc le . getArea () ;
43
44 cout « endl ;
45
46 return 0 ; I I indicates succe s s ful termination
47
48 I I end main

x coordinate is 3 7
Y coordinate i s 4 3
Radius i s 2 . 5

The new locat ion and radius of c i rc le are
Center = [2 , 2] ; Radius = 4 . 2 5
Diameter i s 8 . 5 0
C ircumference i s 2 6 . 7 0
Area i s 5 6 . 7 4

Fig. 9. 1 6 Protected base-class data can be accessed from derived class, (Port 2 of 2,)

I n this example, we declared base-class data members as protected, so that derived

c lasses could modify thei r values directly . The use of protected data members allows for

a s l ight i ncrease in performance, because we avoid incurring the overhead of a call to a set or

get member function. However, such performance i ncreases are often negl ig ible compared to

the optimizations compilers can perform. It is better to use private data to encourage

proper software engineeri ng . Your code wi l l be easier to maintain, modify and debug.

Using protected data members creates two major problems. First, the deri ved-c lass

object does not have to use a member function to set the value of the base-class ' s pro

tected data member. Therefore, a derived-class object eas i ly can assign an i l legal value

to the protected data member, thus leaving the object in an i nval id state . For example,

i f we were to declare Circle3's data member radius as protected, a derived-cl ass

object (e .g . , Cylinder) could then assign a negative value to radius. The second

problem wi th us ing protected data members i s that derived-c lass member functions are

more l i ke ly to be written to depend on the base-class i mplementat ion . I n pract ice, derived

c lasses should depend only on the base-class serv ices (i .e . , non-private member func

t ions) and not on the base-class i mplementation . With protected data members i n the

base c lass, i f the base-class i mplementation changes, we may need to modify a l l derived

c lasses of that base class . For example, if for some reason we were to change the names of

data members x and y to xCoordinate and yCoordinate, then we would have to do

so for al l occurrences in which a derived class references these base-class data members

d irectly. I n such a case, the software i s said to be fragile or brittle, because a smal l change

in the base c lass can "break" derived-c lass i mplementat ion . The programmer should be

able to change the base-class i mplementation freely, whi le sti l l provid ing the same services

Chapter 9 Object-Oriented Programming: Inheritance 631

to derived c lasses . (Of course, i f the base-class serv ices change, we must rei mplement our

derived c lasses, but good object-oriented design attempts to prevent thi s .)

Software Eng neerUlg Observation 9.3

It is appropriate to use the protected access specifier when a base class should provide

a service (i. e. , a member function) only to its derived classes and should not provide the ser

vice to other clients.

Software Engineering Observation 9 4

Declaring base-class data members private (as opposed to declaring them protected)
enables programmers to change the base-class implementation without having to change de

ri ved-class implementations.

T st.n a n n T " 9 1

When possible, avoid including protected data members in a base class. Rather, include

non -pri vate member functions that access pri vate data members, ensuring that the ob

ject maintains a consistent state.

Point/Circle Hierarchy Using pri vate Data
We now reexamine our poi n t/ci rc le hierarchy example once more ; th is t ime, attempt ing to

use the best software-engineeri ng practices. Class Point3 (F ig . 9. I 7-Fig . 9 . 1 8) declares

data members x and y as private (F ig . 9 . 1 7, l i nes 1 9-2 1) and exposes member funct ions

setX, getX, setY, getY and print for manipulat ing these values . I n the constructor

i mplementation (Fig . 9 . 1 8, l i nes 1 0- 1 5), note that member i ni t ia l izers are used (l i ne I I) to

specify the values of members x and y. We show how derived-class Circle4 (Fig . 9 . 1 9-

Fig . 9 .20) can i nvoke non-private base-class member funct ions (setx, getX, setY

and getY) to manipulate these data members .

Software Eng neering Observation 9 5

When possible, use member functions to alter and obtain the values of data members, even if

those values can be modified directly. A set member function can prevent attempts to assign

inappropriate values to the data member, and a get member function can help control the

presentation of the data to clients.

Performance Tip 9. 1

Using a member function to access a data member's value can be slightly slower than ac

cessing the data directly. However, attempting to optimize programs by referencing data di

rectly often is unnecessary, because the compiler optimizes the programs implicitly. Today 's

so-called "optimizing compilers " are carefully designed to perform many optimizations im

plicitly, even if the programmer does not write what appears to be the most optimal code. A

good rule is, "Do not second-guess the compiler. "

1 I I Fig . 9 . 1 7 : point 3 . h
2 I I Point 3 c l a s s def inition represent s an x-y c oordinate pair .
3 # i fndef POINT3_H
4 #def ine POINT3_H
5
6 class Point 3 {
7

Fig. 9. 1 7 Point3 class header file. (Part 1 of 2.)

632 Object-Oriented Programming: Inheritance Chapter 9

8 publ i c :
9 Point 3 (int = 0 , int = 0) ; I I de fault constructor

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24

voi d setX (int) ;
int getX () const ;

void sety (int) ;
int gety () const ;

void print () const ;

private :
int x ; / I x part of
int y ; I I y part of

} ; / I end c l a s s Point 3

/ I set x in coordinate pai r
I I return x from coordinate

/ I set y in coordinate pair
/ I return y from coordinate

I I output Point 3 obj ect

coordinate pair
coordinate pair

25 #endif

F i g . 9. 1 7 Point3 class header file. (Part 2 of 2.)

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30

I I Fig . 9.18: point 3 . cpp
I I Point 3 c l a s s member- function def init ions .
inc lude < iostream>

us ing std : : cout ;

inc lude " point 3 . h " I I Point 3 class de f init ion

I I default const ructor
Point 3 : : Point 3 (int xValue , int yValue)

: x (xValue) , y (yValue

I I empty body

I I end Point 3 const ructor

I I set x in coordinate pair
void Point 3 : : setX (int xValue
{

x = xVa lue ; I I no need for validat ion

I I end function setX

II return x from coordinate pair
int Point 3 : : getX () const
{

return x ;

} I I end function getX

pai r

pair

Fig. 9 . 1 8 Point3 class uses member functions to manipulate its priva t e data.
(Part 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance

3 1 I I set y i n coordinate pair
32 void Point 3 : : setY (int yValue
33
34 y = yValue ; I I no need for validat ion
35
36 } I I end funct ion sety
37
38 I I return y f rom coordinate pair
39 int Point 3 : : getY () const
40 {
4 1 return y ;
42
43 } I I end funct ion gety
44
45 I I output Point 3 obj ect
46 void Point 3 : : print () const
47 {
48 cout « ' [' « getX () « " , n « gety () « I J I ;
49
50 } I I end funct ion print

633

Fig. 9. 1 8 Point3 class uses member functions to manipulate its p r i vat e data.
(Part 2 of 2.)

C lass Circle4 (F ig . 9 . 1 9-Fig . 9 .20) has several changes to i ts member function

i mplementations (Fig. 9 .20) that dist inguish i t from c lass Circle3 (Fig. 9 . L 4-Fig . 9 . 1 5) .

Class Circle4's constructor (l i nes 1 0- 1 5) i ntroduces base-class initializer syntax (l i ne

1 1), which uses a member i ni t ia l izer to pass arguments to the base-c lass (Point3) con

structor. C++ actual ly requires a derived-c lass constructor to cal l i ts base-class constructor

to i n it ia l ize the base-class data members that are i nherited i nto the deri ved c lass . Line I I
accompl ishes th is task by i n voking the Point 3 constructor by name. Values xValue and

yValue are passed from the Circle4 constructor to the Point3 constructor to i n i tia l ize

base-class members x and y. I f the Circle constructor did not i nvoke the Point con

structor expli c i t ly, the defaul t Point constructor would be i nvoked i mpl ic i t ly wi th the

defaul t values for x and y (i .e . , 0 and 0) . I f c lass Point3 did not prov ide a default con

structor, the compi ler would i ssue a syntax error.

Common Programming Error 9. 1

It is a syntax error if a derived-class constructor calls one of its base-class constructors with

arguments that do not match exactly the number and types of parameters specified in one of

the base-class constructor definitions.

I n F ig . 9 . 1 5, c lass Circle3' s constructor actual l y i n i tia l ized base-class members x

and y twice. F irst, c lass Point 2 ' s constructor was cal led i mpl ic i t ly with the default values

x and y, then c lass Circle3's constructor assigned values to x and y in i ts body .

1 I I Fig . 9 . 19 : c i rc le4 . h
2 I I Circ le4 c lass contains x-y coordinate pai r and radiu s .
3 #i fnde f CIRCLE4_H
4 #def ine CIRCLE4_H

Fig. 9. 1 9 C i rc l e 4 class header file, (Part 1 of 2.)

634

5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29

Object-Oriented Programming: Inheritance

inc lude " point 3 . h " I I Point 3 class de f init ion

c l a s s Circle4 : public Point 3 {

publ i c :

I I de fault const ructor
Circ l e 4 (int = 0 , int = 0 , double = 0 . 0) ;

void setRadius (double) ;
double getRadius () const ;

I I set radius
// return radius

I I return diameter

Chapter 9

double getDiameter () const ;
doubl e getCi rcumference () const ;
double getArea () const ;

I I return c ircumf erence
1/ return area

void print () const ; I I output Circle4 obj ect

private :
doubl e radius ; 1/ Circle4 ' s radius

} ; 1/ end class Circ le4

#endif

F ig. 9. 1 9 C i r c l e 4 class header file. (Part 2 of 2.)

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23

I I Fig . 9 . 2 0 : c i rc l e 4 . cpp
I I Circle4 class member - funct ion de finit ions .
inc lude < iostream>

us ing std : : cout ;

inc lude " c ircle4 . h " I I Circle4 class de f init ion

1/ de fault constructor
Circle4 : : C ircle4 (int xValue , int yValue , double radiusValue)

: Point 3 (xValue , yValue) // call base - c lass constructor
{

setRadius (radiusValue) ;

/ 1 end Circle4 constructor

1/ set radius
void Circle4 : : setRadius (double radiusValue)
{

radius = (radiusValue < 0 . 0 ? 0 . 0 : radiusValue) ;

I I end funct ion setRadius

Fig. 9.20 C i rc l e 4 class that inherits from class Point 3 , which does not provide
prot ected data. (Part 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance 635

24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59

I I return radius
double Circle4 : : getRadius () const
{

return radius ;

I I end funct ion getRadius

I I calculate and return diameter
doubl e Circle4 : : getDiameter () const
{

return 2 * getRadius () ;

I I end funct ion getDiameter

I I calculate and return c ircumference
doubl e Circle4 : : getC ircumference () const
{

return 3 . 1 4 1 5 9 * getDiameter () ;

} I I end funct ion getCircumference

I I calculate and return area
double Circle4 : : getArea () const
{

return 3 . 14 1 5 9 * getRadius () * getRadius () ;

} I I end funct ion getArea

I I output Circle4 obj ect
void Circle4 : : print () const
{

cout « " Center = " ;
Point 3 : : print () ;
cout « " ; Radius = "

} I I end funct i on print

I I invoke Point 3 ' s print funct i on
« getRadius () ;

Fig. 9.20 C i rc l e 4 class that inherits from class Point 3 , which does not provide
prot e c t ed data. (Part 2 of 2.)

Performance Tip 9.2

In a derived-class constructor, initializing member objects and invoking base-class construc

tors explicitly in the member initializer list can prevent duplicate initialization in which a de

fault constructor is called, then data members are modified again in the body of the derived

class constructor.

I n addit ion to the changes d i scusses so far, member functions getDiameter

(F ig . 9 .20, l i nes 3 2-36) , getArea (l i nes 46-50) and print (l i nes 5 3-59) each i nvoke

member function getRadius to obtai n the radius value, rather than access ing the

radius directly . I f we dec ide to rename data member radius, only the bodies of func

tions setRadius and getRadius wil l need to change.

Class Circle4 ' s print function (Fig. 9 .20, l i nes 53-59) redefi nes c lass Point3 ' s

print member function (Fig . 9 . 1 8 , l i nes 46-50) . Class circle4's version d i splays the

636 Object-Oriented Programming: Inheritance Chapter 9

pri vat e data members x and y of class Point 3 by cal l i ng base-class Point 3 ' s print

function w i th the expression Point 3: :print () (line 56) . Note the syntax used to i nvoke

a redefined base-cl ass member function from a derived c lass-place the base-cl ass name

and the b inary scope-resolution operator (: :) before the base-c lass member-function name.

Thi s member-function i nvocation i s a good software engi neering practice: Recal l that Soft

ware Engineering Observation 6. 1 9 stated that, if an object ' s member function peliorms the

act ions needed by another object, cal l that member function rather than dupl icating i ts code

body. By having Circle4 ' s print function invoke Point 3 ' s print function to per

form part of the task of pri nt ing a Circle4 object (i .e . , to di splay the x- and y-coordinate

values), we avoid dupl icat ing code and reduce code-maintenance problems.

Common Programming Error 9.2
� When a base-class member function is redefined in a derived class, the derived-class version

� often calls the base-class version to do additional work. Failure to use the : : reference (pre

fixed with the name of the base class) when referencing the base class 's member funclion

causes infinite recursion, because the derived-class member function would then call itself:

Common Programming Error 9.3
� Including a base-class memberfunclion with a different signature in the derived class hides

� the base-class version of the function. A ttempts to call the base-class version through the

publ ic interface of a derived-class object result in compilation errors.

Figure 9 .2 1 performs identical manipulations on a Circ le4 object as did Fig. 9 .9 and

Fig. 9 . 1 6 on objects of c lasses Circle and Circle3, respectively. Although each "circle"

c lass behaves identically, c lass Circle4 is the best engineered. Using inheritance, we have

efficiently and effectively constructed a wel l-engineered c lass .

1 / / Fig . 9 . 2 1 : c irc letest4 . cpp
2 / 1 Test ing c la s s Circle4 .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7 us ing std : : f ixed ;
8
9 #inc lude < iomanip>

1 0
1 1 us ing std : : setprec i s ion ;
1 2
1 3 #inc lude " c ircle4 . h " I I Circle4 class de f init ion
1 4
1 5 int main ()
1 6 {
1 7 C i rc l e4 c irc l e (3 7 , 43 , 2 . 5) ; / / instantiate Circle4 obj ect
1 8
1 9 I I display point coordinates
20 cout « " X coordinate i s " « circle . getX ()
2 1 « " \nY coordinate i s " « c irc le . getY ()
22 « " \nRadius is n « c ircle . getRadius () ;

Fig. 9 .2 1 Bose-closs pri vat e data is accessible to a derived closs via pub l i c or
prot ected member function inherited by the derived closs. (Port 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance

circle . setX (2) ;
circle . setY (2) ;
c i rc l e . setRadius (4 . 2 5) ;

I I display new c i rc l e value

I I set new x-coordinate
I I set new y-coordinate
I I set new radius

cout « " \n\nThe new locat ion and radius of c i rcle are \ n " ;
c i rc l e . print () ;

637

23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48

I I di spl ay f loat ing-point values with 2 digit s o f prec i s i on
cout « f ixed « setprec i s ion (2) ;

I I display Circle4 ' s diameter
cout « " \ nDiameter is " « c i rc le . getDiameter () ;

I I display Circle4 ' s c ircumference
cout « " \nC ircumference is " « circle . getCi rcumference () ;

I I d i splay Circle4 ' s area
cout « " \nArea is " « circle . getArea () ;

cout « endl ;

return 0 ; I I indicates successful terminat ion

I I end main

x coordinate is 37
Y coordinate is 43
Radius is 2 . 5

The new locat ion and radius of circle are
Center = [2 , 2] ; Radius = 4 . 2 5
Diameter i s 8 . 5 0
Ci rcumference i s 2 6 . 7 0
Area i s 5 6 . 7 4

Fig. 9.2 1 Base-class private data is accessible to a derived class via pub l i c or
prot e c t ed member function inherited by the derived class. (Part 2 of 2.)

9.5 Case Study: Three- Level Inheritance Hiera rchy

Let us consider a more substant ia l inheritance example invo lv ing a three- level point/c i rc le

cyl inder h ierarchy . I n Section 9 .4 , we developed c lasses Point3 (F ig . 9 . 1 7-Fig . 9 . 1 8) and

Circle4 (F ig . 9 . 1 9-Fig . 9 . 20) . Now, we present an example in which we derive c l ass

Cylinder from c lass Circle4.

The first c lass that we use i n our case study i s c lass Point 3 (F ig . 9 . 1 7-Fig . 9 . 1 8) . We

decl ared Point3's data members as private. Class Point3 also contains member

functions setX, getX, sety and gety for access ing x and y, and member function

print for d i sp lay ing the x-y coordinate pair on the standard output .

We also use c lass Circle4 (Fig . 9 . 1 9-Fig. 9 .20), which inherits from c lass Point3.

Class Circle4 contains functional i ty from c lass Point3 and provides member function

setRadius, which ensures that the radius data member cannot hold a negative value,

638 Object-Oriented Programming: Inheritance Chapter 9

and member functions getRadius, getDiameter, getCircwnference, getArea

and print. Derived c lasses of c lass Circle4 (such as c lass Cylinder, which we in tro

duce momentari ly) should redefine these member functions as necessary to provide i mple

mentations specific to the derived c lass. For example, a c irc le has an area that i s calcu lated

by the formula, 1t/2 , in which r represents the c irc le ' s radius . However, a cy l inder has a sur

face area that is calculated by the formula, (21t/2) + (21trh) , in which r represents the cyl

i nder' s radius and h represents the cyl inder' s height. Therefore, c lass Cylinder should

redefi ne member function getArea to include this calcu lat ion .

Figure 9 .22-Fig . 9 .23 present c lass Cylinder, which i nherits from c lass Circle4 .

The Cylinder header fi le (Fig. 9 .22) specifies that a Cylinder has a height (l ine 23)

and specifies c lass Cylinder' s public serv ices, wh ich inc lude i nherited Circle4

member functions (l i ne 8) setRadius, getRadius, getDiameter, getCircwn

ference, getArea and print; i ndirectly i nheri ted Point3 member functions setX,

getX, sety and gety; the Cylinder constructor (l ine 1 3) ; and Cylinder member

functions setHeight, getHeight, getArea, getVolwne and print (l i nes 1 5-20) .

Member functions getArea and print redefine the member functions with the same

names that are i nherited from c lass Circle4 .

Figure 9 .23 shows c lass Cylinder's member-function i mplementat ions . Member

function getArea (l ines 33-38) redefines member function getArea of c lass Circle4

to calculate surface area. Member function print (l ines 48-5 3) redefines member function

print of c lass Circle4 to display the text representation of the cy l inder to the standard

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27

I I Fig . 9 . 2 2 : cyl inder . h
I I Cyl inder c l a s s inherit s from c lass Circle4 .
#i fnde f CYLINDER_H
#de f ine CYLINDER_H

#inc lude " c ircle4 . h " I I Circle4 class de finit ion

c lass Cyl inder : public Circle4 {

publ ic :

I I de fault constructor
Cyl inder (int = 0 , int = 0 , double = 0 . 0 , doubl e = 0 . 0) ;

void setHeight (double) ;
doubl e getHe ight () const ;

doubl e getArea () const ;
double getVolume () const ;
void print () const ;

privat e :

I I set Cyl inder ' s height
I I return Cyl inder ' s height

I I return Cyl inder ' s area
I I return Cyl inder ' s volume
I I output Cyl inder

doubl e he ight ; I I Cyl inder ' s height

} ; I I end c lass Cyl inder

#endif

F ig . 9.22 Cyl i nder class header file.

Chapter 9 Object-Oriented Programming: Inheritance 639

output. Class Cylinder also inc ludes member function getVolume (l i nes 4 1 -45) to cal

cu late the cyl inder' s volume.

Figure 9 .24 i s a CylinderTest appl ication that tests c lass Cylinder. Line 1 8

i nstantiates a Cylinder object called cylinder. Lines 2 1 -24 use cylinder' s

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46

I I Fig . 9 . 2 3 : cyl inder . cpp
I I Cyl inder c lass inherits f rom class Circle4 .
#inc lude < iostream>

us ing std : : cout ;

#inc lude " cylinder . h " / / Cyl inder c l a s s de f inition

/ 1 def ault constructor
Cyl inder : : Cyl inder (int xValue , int yValue , doubl e radiusValue ,

doubl e he ightValue)
: Circle4 (xValue , yValue , radiusValue)

setHeight (he ightValue) ;

} I I end Cyl inder constructor

1 / set Cyl inder ' s height
void Cyl inder : : setHeight (double he ightValue)
{

he ight = (he ightValue < 0 . 0 ? 0 . 0 : he ightValue) ;

/ 1 end funct ion setHeight

1 / get Cyl inder ' s height
doubl e Cyl inder : : getHeight () const
{

return he ight ;

} / / end function getHe ight

/ 1 rede f ine Circle4 funct ion getArea to calculate Cyl inder area
doubl e Cyl inder : : getArea () const
{

return 2 * Circle4 : : getArea () +
getC ircumference () * getHeight () ;

} / / end funct ion getArea

I I calculate Cyl inder volume
double Cyl inder : : getVolume () const
{

return Circle4 : : getArea () * getHe ight () ;

/ / end funct ion getVolume

Fig. 9.23 Cyl i nder class inherits from class C i rc l e4 and redefines m em ber
function getArea . (Part 1 of 2 .)

640 Object-Oriented Programming: Inheritance

47 I I output Cylinder obj ect
48 void Cyl inder : : print () const
49 {
50 Circle4 : : print () ;
5 1 cout « " ; Height = " « getHe ight () ;
52
53 } 1/ end funct ion print

Chapter 9

F ig. 9 .23 Cyl i nder class inherits from class C i rc l e 4 and redefines member
function getArea . (Part 2 of 2.)

member functions getX, getY, getRadius and getHeight to obtain information

about cylinder, because CylinderTest cannot reference the private data mem

bers of c lass Cylinder directly . Lines 26-29 use member functions setX, setY, set

Radius and setHeight to reset cylinder' s x-y coord inates (we assume the

cyl i nder' s x-y coordinates specify the posit ion of the center of its bottom on the x-y plane) ,

radius and height . Class Cylinder can u s e c lass Point3 ' s setX, getX, setY and

getY member functions, because class Cylinder inherits them indirectly from c lass

Point3. (Class Cylinder i nherits member functions setX, getX, setY and getY

directly from c lass circle4, which inherited them directly from c lass Point3.) Line 33

invokes cylinder's print member function to display the text representation of object

cylinder. L ines 39 and 43 i nvoke member functions getDiameter and getCir

cumference of the cylinder object-because c lass Cylinder i n herits these func

t ions from c lass Circle4, these member functions, exact ly as defined in Circle4, are

invoked. Lines 46 and 49 i nvoke member functions getArea and getVolume to deter

mine the surface area and volume of cylinder.

1 I I Fig . 9 . 2 4 : cyl indertest . cpp
2 I I Te st ing c l a s s Cyl inder .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7 us ing std : : f ixed ;
8
9 # inc lude < iomanip>

1 0
1 1 us ing s td : : setprec i s ion ;
1 2
1 3 # inc lude " cyl inder . h " 1/ Cyl inder class def init ion
1 4
1 5 int main ()
1 6 {
1 7 I I instant iate Cyl inder obj ect
1 8 Cyl inder cyl inder (12 , 2 3 , 2 . 5 , 5 . 7) ;
1 9
20 I I d i splay point coordinate s
2 1 cout « " X coordinate i s " « cyl inder . getX ()
22 « " \nY coordinate is " « cyl inder . getY ()

Fig. 9 .24 Point /C i r c l e/Cyl inder hierarchy test program. (Part 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance

23 < < " \ nRadi us i s " < < cyl inder • getRadi u s ()
24 « " \nHe ight i s " « cyl inder . getHe ight () ;
25
26 cyl inder . setX (2) ; I I
27 cyl inder . sety (2) ; I I
28 cyl inder . setRadius (4 . 2 5) ; I I
29 cyl inder . setHeight (1 0) ; I I
30
3 1 I I di spl ay new cyl inder value

set
set
set
set

new x-coordinate
new y-coordinate
new radius
new he i ght

32 cout « " \n \ nThe new locat ion and radius of c i r c l e are \n" ;
33 cyl inder . print () ;
34

641

35 I I display f l oat ing-point values with 2 digits of prec i s ion
36 cout « f ixed « setprec i s ion (2) ;
37
38 I I display cyl inder ' s diameter
39 cout « " \n \ nDiameter is " « cyl inder . getDiameter () ;
40
4 1 I I di splay cyl inder ' s c ircumference
42 cout « " \nC ircumference is "
43 « cyl inder . getCircumference () ;
44
45 I I di splay cyl inder ' s area
46 cout « " \nArea is " « cyl inder . getArea () ;
47
48 I I display cyl inder ' s volume
49 cout « " \nVolume is " « cyl inder . getVolume () ;
50
5 1 cout « endl ;
52
53 return 0 ; I I indicates succes s ful terminat ion
54
55 I I end main

x coordinate i s 12
y coordinate i s 2 3
Radius i s 2 . 5
Height i s 5 . 7

The new locat i on and radius of c ircle are
Center = [2 , 2] ; Radius = 4 . 2 5 ; Height = 1 0

Diameter i s 8 . 5 0
C ircumference i s 2 6 . 7 0
Area i s 3 8 0 . 5 3
Volume i s 5 6 7 . 4 5

Fig. 9 .24 Point /C i rc l e/Cy l i nder hierarchy test program . (Part 2 of 2.)

Using the poi nt/ci rc le/cy l inder example, we have shown the use and benefits of i nher

i tance. We were able to develop c lasses Circle4 and Cylinder much more quickly by

using inheritance than if we had developed these c lasses "from scratch ." Inheritance avoids

dupl icating code and the associ ated code-maintenance problems.

642 Object-Oriented Programming: Inheritance Chapter 9

9.6 Constructors and Destructors in Derived Classes

As we explained in the previous section, instantiating a derived-class object begins a chain
of constructor cal l s in which the derived-c lass constructor, before performing its own tasks,
i nvokes its direct base c lass ' s constructor either explicit ly or impl icitl y . S i mi larly, if the base
class were derived from another c lass, the base-class constructor would be required to in
voke the constructor of the next c lass up in the hierarchy, and so on. The last constructor
cal led in the chain is defined in the class at the base of the inheritance hierarchy (for example,
c lass Point3, i n the Point3/Circle4/Cylinder hierarchy) , whose body actual ly fin
ishes executing first. The original derived-class constructor' s body finishes executing last .
Each base-class constructor initial izes the base-class data members that the derived-class ob
ject i nherits . For example, again consider the Point3/Circle4/Cylinder hierarchy
from Fig. 9 . 1 8 , Fig. 9 .20 and Fig. 9.23. When a program creates a Cylinder object, the
Cylinder constructor i s called. That constructor cal l s circle4 ' s constructor, which in
turn cal l s Point3 ' s constructor. The Point3 constructor in i tializes the x-y coordinates of

the Cylinder object. When Point3 ' s constructor completes execution, it returns control

to Circle4 ' s constructor, which in i tial izes the Cylinder object' s radius. When

circle4 ' s constructor completes execution, it returns control to Cylinder' s construc

tor, which initializes the Cylinder object ' s height.

Softwa re Engineering Observation 9 6

When a program creates a derived-class object, the derived-class constructor immediately

cal/s the base-class constructor, the base-class constructor 's body executes, then the de

rived-class constructor 's body executes.

When a derived-class object is destroyed, the program then cal l s that object ' s

destructor. This begins a chain o f destructor cal l s in which the deri ved-class destructor and

the destructors of the direct and indirect base c lasses execute in reverse of the order i n

which the constructors executed. When a derived-class object ' s destructor is cal led, the

destructor performs its task, then invokes the destructor of the next base class i n the hier

archy. This process repeats unti l the destructor of the final base c lass at the top of the hier

archy is called. Then the object i s removed from memory .

Software Engineering Observation 9.7

Suppose that we create an object of a derived class where both the base class and the derived

class contain objects of other classes. When an object of that derived class is created, first

the constructors for the base class 's member objects execute, then the base-class constructor

executes, then the constructors for the derived class 's member objects execute, then the de

rived class 's constructor executes. Destructors are called in the reverse of the order in which

their corresponding constructors are cal/ed.

B ase-class constructors, destructors and assignment operators are not inherited by

derived classes. Derived-class constructors and assignment operators, however, can call base

c lass constructors and assignment operators .

Our next example revisits the point/circle hierarchy by defin ing c lass Point4

(F ig . 9 .2S-Fig . 9 .26) and c lass CircleS (Fig . 9 .27-Fig . 9 .28) that contain constructors

and destructors , each of which prints a message when it i s i nvoked.

Class Point4 (Fig. 9 .2S-Fig. 9 .26) contains the features from class Point

(Fig . 9 .4-Fig . 9 . 5) . We modified the constructor (l ines 1 1 - 1 8 of Fig. 9 . 26) and included a

destructor (l i nes 2 1 -27) , each of which outputs a l ine of text upon its i nvocation .

Chapter 9 Object-Oriented Programming: Inheritance

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26

I I Fig . 9 . 2 5 : point 4 . h
I I Point 4 c la s s de f init ion represent s an x-y coordinate pair .
#i fnde f POINT4_H
#def ine POINT4_H

class Point 4

pUbl ic :
Point 4 (int
-Point4 () ;

0 , int = 0) ; I I default constructor
I I destructor

void setX (int) ; I I set x in coordinate pai r
int getX () const ; I I return x from coordinate

void setY (int) ; I I set y in coordinate pair
int getY () const ; I I return y from coordinate

void print () const ; I I output point 3 obj ect

private :
int x ;
int y ;

I I x part of coordinate pair
I I y part of coordinate pair

} ; I I end c l ass Point 4

#endi f

pair

pai r

F i g . 9 .25 Point 4 class header file.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23

I I Fig . 9 . 2 6 : point 4 . cpp
I I Point4 c l a s s member- funct ion de f init ions .
inc lude < iostream>

us ing std : : cout ;
using std : : endl ;

inc lude " point 4 . h "

I I de fault constructor

I I Point4 c lass de f ini t ion

Point4 : : Po int 4 (int xValue , int yValue)
: x (xValue) , y (yValue)

{
cout « " Point4 constructor : " ;
print () ;
cout « endl ;

} I I end Point4 const ructor

I I de structor
Point4 : : - Po int4 ()
{

cout « " Point 4 destructor : " ;

643

Fig. 9.26 Point 4 base class contains a constructor and a destructor. (Part 1 of 2.)

644 Object-Oriented Programming: Inheritance

24 print () ;
25 cout « endl ;
26
27 } I I end Point 4 de structor
28
29 I I set x in coordinate pair
30 void Point4 : : setX (int xValue
31 {
32 x = xValue ; I I no need for val idat ion
33
34 I I end funct ion setX
35
36 I I return x from coordinate pair
37 int Point4 : : getX () const
38 {
39 return x ;
40
4 1 I I end function getX
42
43 I I set y in coordinate pair
44 void Point4 : : sety (int YValue
45
46 y = yValue ; I I no need for val idat ion
47
48 I I end funct ion sety
49
50 I I return y from coordinate pair
51 int Point4 : : gety () const
52 {
53 return y ;
54
55 I I end function gety
56
57 I I output Point4 obj ect
58 void Point4 : : print () const
59 {
60 cout « ' [' « getX () « " " « gety () « ' l ' ;
6 1
6 2 } I I end function print

Chapter 9

Fig. 9.26 Point 4 base c lass contains a constructor and a destructor. (Part 2 of 2.)

Class CircleS (Fig. 9 .27-Fig. 9.28) contains features from c lass Circle4

(Fig. 9 . 1 9-Fig . 9 . 20) . We modified the constructor (l i nes 1 1 -20 of F ig . 9 .28) and inc luded

a destructor (l i nes 23-29) , each of which outputs a l ine of text upon i ts invocat ion .

1 I I Fig . 9 . 2 7 : circleS . h
2 I I C i rc l e S c lass contains x-y coordinate pair and radius .
3 # i fnde f CIRCLES_H
4 #de f ine CIRCLES_H

Fig. 9.27 C i rc l e 5 class header file. (Part 1 of 2.)

Chapter 9 Object-Oriented Programming: Inheritance

5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30

#include " point 4 . h " I I Point4 c l a s s de f init ion

class Circ l e S : public Point4 {

publ i c :

I I de fault const ructor
Circ l e S (int = 0 , int = 0 , double = 0 . 0) ;

-Circ l e S () ;
void setRadius (double) ;
double getRadius () const ;

I I destructor
I I set radius
I I return radius

double getDiameter () const ;
double getCircumference () const ;
double getArea () const ;

I I return diameter
II return c i rcumference
I I return area

void print () const ; I I output Circ l e S obj ect

private :
doubl e radius ; I I CircleS ' s radius

} ; I I end c l a s s CircleS

#endi f

Fig. 9.27 C i rc l e S closs header file. (Port 2 of 2.)

1
2
3
4
5
6
7
8
9

I I Fig . 9 . 2 8 : c i rc leS . cpp
I I Circ l e S c l a s s member- funct ion de f initions .
inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

inc lude " c ircleS . h "

I I de fault constructor

I I CircleS c l a s s de f init ion

645

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20

CircleS : : CircleS (int xValue , int yValue , double radiusValue)
: Point 4 (xValue , yValue) I I call base - c lass c onstructor

setRadiu s (radiusValue) ;

cout « " Circ l e S construc tor : " ;
print () ;
cout « endl ;

} I I end CircleS constructor

Fig. 9.28 C i rc l e S closs inherits from closs Point 4 . (Port 1 of 2.)

646

2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73

Object-Oriented Programming: Inheritance

I I de structor
Circ l e 5 : : -Circle5 ()
{

cout « " Ci rc l e S de structor : " ;
print () ;
cout « endl ;

} I I end Circ l e S de structor

I I set radius
void CircleS : : setRadius (double radiusValue)
{

radius = (radiusValue < 0 . 0 ? 0 . 0 : radiusValue) ;

} I I end funct ion setRadius

I I return radius
double CircleS : : getRadius () const
{

return radius ;

} I I end funct ion getRadius

I I calculate and return diameter
double CircleS : : getDiameter () const
{

return 2 * getRadius () ;

} I I end func t ion getDiameter

I I calculate and return ci rcumference
double CircleS : : getCi rcumference () const
{

return 3 . 14 1 S 9 * getDiameter () ;

} I I end funct ion getCi rcumf erence

I I calculate and return area
double Circ leS : : getArea () const
{

return 3 . 14 1 S 9 * getRadius () * getRadius () ;

} / / end funct ion getArea

I I output Circ l e S obj ect
void Circle5 : : print () const
{

Chapter 9

cout « " Center = " ;
Point4 : : print () ;
cout « " ; Radius = "

/ / invoke Point 4 ' s print func t i on
« getRadius () ;

/ 1 end funct ion print

Fig . 9.28 C i rc l e S class inherits from class Point 4 . (Part 2 of 2 .)

Chapter 9 Object-Oriented Programming: Inheritance 647

Figure 9 .29 demonstrates the order in which constructors and destructors are cal led for

objects of c lasses that are pm1 of an inheri tance hierarchy. Function main (l i nes 1 1 -29)

begins by i nstant iat ing a Point4 object (l i ne I S) i n a separate block ins ide main (l i nes 1 3-

1 7) . The object goes i n and out of scope immediately (the end of the b lock i s reached as soon

1 I I Fig . 9 . 2 9 : f i g 0 9_2 9 . cpp
2 I I Display order in which ba se - c lass and derived- c l a s s
3 I I constructors are cal led .
4 # inc lude < iostream>
5
6 us ing std : : cout ;
7 us ing std : : endl ;
8
9 #inc lude " c ircle5 . h " I I CircleS c lass de f init ion

1 0
1 1 int main ()
1 2 {
1 3 I I begin new scope
1 4
1 5 Point 4 point (1 1 , 2 2) ;
1 6
1 7 I I end scope
1 8
1 9 cout « endl ;
20 Circ l e S c ircl e l (7 2 , 2 9 , 4 . 5) ;
2 1
22 cout « endl ;
23 Circ l e S c i rcle2 (5 , 5 , 1 0) ;
24
25 cout « endl ;
26
27 return 0 ; I I indi cates suc c e s s ful terminat ion
28
29 I I end ma in

Point 4 const ructor : [1 1 , 2 2]
Point 4 destructor : [1 1 , 2 2]

Point4 constructor : [7 2 , 2 9]
Circ l e S constructor : Center [7 2 , 2 9] ; Radius = 4 . 5

Point 4 constructor : [5 , 5]
CircleS const ructor : Center = [5 , 5] ; Radius = 1 0

C ircleS destructor : Center [5 , 5] ; Radius = 1 0
Point ' destructor : [5 , 5]
CircleS destructor : Center = [7 2 , 2 9] ; Radius = 4 . 5
Point' destructor : [7 2 , 2 9]

Fig. 9.29 Constructor and destructor call order ,

648 Object-Oriented Programming: Inheritance Chapter 9

as the object is created) , so both the Point4 constructor and destructor are cal led . Next,

l i ne 20 i nstantiates CircleS object circlel . This invokes the Point4 constructor to

perform output with values passed from the CircleS constructor, then performs the output

speci fied in the CircleS constructor. Line 23 then i nstant iates CircleS object

circle2. Again , the Point4 and CircleS constructors are both cal led. Note that, i n

each case, the body o f the Point4 constructor i s executed before the body o f the

CircleS constructor executes. When the end of main i s reached, the destructors are

cal led for objects circlel and circle2. B ut, because destructors are cal led i n the

reverse order of their corresponding constructors , the CircleS destructor and Point4

destructor are cal l ed (i n that order) for object circle2, then the CircleS and Point4

destructors are cal led (i n that order) for object circlel .

9. 7 "Uses A" and " Knows A " Relationships

I nheritance and composit ion encourage software reuse by creat ing c lasses that take advan

tage of functional i ty and data defi ned in exist ing c lasses. There are other ways to use the

serv ices of c lasses . Although a person object i s not a car and a person obj ect does not con

tai n a car, a person object certain ly uses a car. A function uses an object s i mply by cal l i ng

a non-private member function of that object us ing a pointer, reference or the object

name itself.

An object can be aware of another object. Knowledge networks frequently have such

re lat ionships . One object can contain a pointer handle or a reference handle to another

object to be aware of that object . In th i s case, one object i s said to have a knows a relat ion

sh ip with the other object ; th is i s someti mes cal led an association .

9.8 publ ic, protected and private I nheritance

When deriv ing a c lass from a base class, the base c lass may be i nherited through public,

protected or private i nheritance. Use of protected and private i nheritance i s

rare and each should be used on ly with great care ; we normal ly use public i nheritance i n

th is book. (Chapter 1 7 demonstrates private i nheritance a s a n alternat ive t o composi

t ion .) Figure 9 .30 summarizes for each type of i nheritance the accessib i l i ty of base-class

members i n a derived c lass . The first column contains the base-c lass member-access

specifiers .

When deri v i ng a c lass from a public base c lass, public members of the base c lass

become public members of the derived class and protected members of the base

c lass become protected members of the derived class . A base class ' s private mem

bers are never accessible d irectly from a deri ved class, but can be accessed through cal l s to

the public and protected members of the base class .

When deri v ing from a protected base c lass, public and protected members

of the base c lass become protected members of the derived c lass . When deriv ing from

a private base c lass, public and protected members of the base class become

private members (e .g . , the functions become uti l ity functions) of the deri ved c l ass .

Private and protected i nheritance are not is-a re lat ionships .

Chapter 9 Object-Oriented Programming : Inheritance 649

Base-class Type of inheritance
member-
access public protected private
specifier inheritance inheritance inheritance

public in derived class. prot ected in derived private in derived class.

u class .
• .-1 Can be accessed directly by Can be accessed directly by �
.Q non- static member func- Can be accessed directly by non- static member func-::I � tions, friend functions and non-stat ic member func- tions and friend

nonmember functions. tions and fri end functions.

functions.

protected in derived class. protected in derived class. private in derived class.
'tj Q) �

Can be accessed directly Can be accessed directly Can be accessed directly u Q)
by non- static member by non- static member by non-stat i c member �

0
functions and friend functions and friend functions and friend \.I

�
functions. functions' . functions.

Hidden in derived class. Hidden in derived class. Hidden in derived class.

Q) Can be accessed by non- Can be accessed by non- Can be accessed by non-
�

static member functions static member functions stat i c member functions 1\1
>

and friend functions and friend functions and friend functions • .-1
\.I

through public or through public or through public or �
protected member protected member func- protected member

functions of the base class . tions of the base class. functions of the base class.

Fig. 9.30 Summary of base-class member accessibility in a derived class.

9.9 Software Engineering with Inheritance

I n th is section, we d iscuss the use of inheritance to customize exist ing software . When we use

inheritance to create a new class from an exist ing one, the new class i nherits the data members

and member functions of the exist ing c lass. We can customize the new c lass to meet our needs

by including additional members and by redefin ing base-c lass members . Thi s i s done in C++

without the derived-class programmer accessing the base c lass ' s source code. The deri ved

c lass must be able to l i nk to the base c lass ' s object code. This powerful capab i l i ty is attractive

to independent software vendors (ISVs) . ISVs can develop proprietary c lasses for sale or l i

cense and make these c lasses avai lable to users in object-code format. Users then can derive

new c lasses from these l ibrary c lasses rapidly and without accessing the ISVs ' proprietary

source code . Al l the ISVs need to supply with the object code are the header fi les .

Sometimes, i t i s d ifficu l t for students to appreciate the scope of problems faced by

designers who work on l arge-scale software projects i n industry . People experienced with

such projects say that effective software reuse improves the software-development process .

Object-oriented programming fac i l itates software reuse, thus shortening development t imes .

The ava i labi l i ty of substantial and usefu l c lass l ibraries del i vers the max i m u m benefits

of software reuse through i nheritance. In terest in c lass l ibraries i s growing exponential ly .

Just as shrink-wrapped software produced by independent software vendors became an

650 Object-Oriented Programming: Inheritance Chapter 9

explos ive-growth i ndustry w i t h the arri val of the personal com puter, so, too, i s the c reat i o n
and s a l e of c l ass l i brar ies . A p p l i cat i o n des igners b u i l d the i r app l i cat i o n s w i t h these
l i braries , and l i brary des i gners are be i n g rewarded by hav i ng t he i r l i brar ies i n c l uded w i t h
the app l i cat i o n s . T h e standard C + + l i braries that are sh i pped w i t h C + + compi lers tend to be
rather general purpose and l i m i ted i n scope . However, there is mass ive worl d w i d e com m i t
m e n t to the development of c l ass l i braries for a h uge variety of appl i c at i o n s arenas .

Softwa re Engineering Observation 9.8

At the design stage in an object-oriented system, the designer ofien determines that certail l

classes are closely related. The designer should "factor out " common attributes and beha v

iors and place these in a base class. Then use inheritance to form derived classes, endowing

them with capabilities beyond those inherited from. the base class.

Softwa re Engineering Observation 9.9

The creation of a derived class does not affect its base class 's source code. Inheritance pre

serves the integrity of a base class.

Software Engineering Observation 9 1 0

lust as designers of non -object-oriented systerns should a void proli/eration offitnctions, de

signers of object-oriented systems should a void proliferation of classes. Proli/eration 0/

classes creates managernent problems and can hinder software reusability, because it be

com.es difficult for a client to locate the most appropriate class of a huge class library. The

alternative is to create fewer classes that provide 1 I 10re substantial functionality, but such

classes m.ight provide too rnuch functionality.

Performance Tip 9.3

(l classes produced through inheritance are larger than they need 10 be (i .e . , contain 100

much jimctionality), memory and processing resources might be wasted. Inherit from the

class whose functionality is "closest " 10 what is needed.

Read i n g derived-c l ass defi n i t ions can be confu s i n g , because i n her i ted m e m bers are not

shown phys ica l l y in the deri ved c l ass, but nevertheless are presen t i n the deri ved c lasses . A

s i m i lar probl e m e x i sts when doc u m e n t i n g derived-class members.

In this chapter, we i n t roduced i n heri tance-the abi l i ty to create c l asses by absorb i n g

an e x i s t i n g c l ass ' s data members a n d member fu nct i o n s , a n d e m bel l i sh i n g these w i t h n e w

capab i l i t i e s . I n Chapter 1 0 , we b u i l d upon o u r d i scuss ion of i nher i tance by i ntrod u c i n g

polymorphism-an obj ect-orie n ted techn ique that enables u s to wr i te progra m s that hand le ,

in a more general man ner, a w i de variety of c l asses re l ated by i n her i tance . A fter study i n g

Chapter 1 0 , you w i l l b e fam i l iar w i t h c l asses, encaps u l at i o n , i n her i tance and po ly mor

p h i s m-the most cruc i a l aspects of object-oriented progra m m i n g .

9. 1 0 (Optional Case Study) Thin king About Objects:
Incorporating Inheritance into the Elevator Simulation

We now exam i n e o u r s i m u l at i o n des ign to dec i de whether i t m i ght benefit fro m i n her i tance .

In the pre v i o u s "Th i n k i n g About Objects" sect ions , we have been t reat i n g E levator

Button and FloorButton as separate c l asses . [n fact , these c l asses have m u c h i n co m

m o n ; each i s a kind ol a button . To apply i n heri tance, we fi rst l ook for commonal i t y

between these c l asses . We then extract t h i s commonal i t y , p l ace i t i n to b a s e c l ass Button

and deri ve c l asses E levatorButton and FloorButton from Button.

Chapter 9 Object-Oriented Programming: Inheritance 65 1

Let us now e x am i ne the s i m i lari t i e s between c l asses ElevatorButton and

FloorButton. Figur e 9 . 3 1 shows the attri butes and operat i o n s of both c l asses, as

decl ared in t he i r header fi l e s fro m Chapter 7 (F i g . 7 . 3 7 and F i g . 7 . 3 9 , respec t i v e l y) . The

c l asses have in common one attribute (pressed) and two operat i o n s (pressButton

and resetButton) . We p l ace these t h ree e lements i n base-class Button, t h e n Eleva

torButton and FloorButton i nheri t the att r ibutes and operat i o n s of Button. In our

pre v ious i mp l e m e n t a t i o n , ElevatorBut ton and FloorBut ton each dec l ared a refer

ence to an object of c l ass Elevator-class Button a l so s h o u l d conta i n t h i s reference .

F i g u re 9 .32 shows our mod i fied e levator s i m u l ator d e s i g n , w h i c h i ncorporates i n he r

i tance . C l ass Floor is composed of one object of c l ass FloorButton and one obj e c t of

c l ass Light. In add i t i o n , c l ass Elevator i s composed of one obj ect of c l ass Eleva

torButton, one object of c l ass Door and one object of c l ass Bell. A sol i d l i n e w i t h a

h o l l o w arro w head extends from each of the deri ved c l asses to the base c l ass-t h i s l i ne i nd i

cates t h a t c l asses FloorButton and ElevatorButton i nh e r i t fro m c l ass Button.

One quest ion remai n s : S h o u l d the derived c l asses redefi ne any of t h e base-c l a s s

m e m b e r fu n c t i o n s ? I f we compare the p u b l i c member fu nct ions of e a c h c l ass (F i g . 7 .38 a n d

F i g . 7 .40) , we not ice that the resetButton m e m b e r fun c t i o n i s i d e n t i c a l for both

c l asses . Th i s fu nct ion does not need to be redefi ned . H owever, the i m pl ementat i o n of

member fu nct ion pressButton d i ffers for each class . C l ass ElevatorButton con

tains the pressButton code

pre s sed = true ;
cout « " e levator button tel l s elevator to prepare to leave "

« endl ;
el evatorRe f . prepareToLeave (t rue) ;

whereas c l ass FloorButton conta ins t h i s d i ffere nt pressButton code

pre s sed = t rue ;
cout « " f loor " « f loorNumber

« " button summons elevator " « endl ;

elevatorRef . summonE levator (f l oorNumber) ;

The fi rst l i ne o f each b l oc k of code i s i de n t i c a l , but the rem a i n i n g sec t i on s are d i ffere n t .

Therefore, e a c h deri ved c l ass m u s t redefine the base-c l ass Button m e m be r fu nct ion

pressButton.

E levatorButton

- pressed : Boolean = false

+ pressButton()

+ resetButton()

F loorButton

- pressed : Boolean = false

- floorN u m ber : I nteger

+ pressButton()

+ resetButton()

Fig. 9.3 1 Attributes and operations of classes E l evat orBut t on and
F loorButton.

652 Object-Oriented Programming: Inheritance

2

Light

Clock

Scheduler

<J)

2.>
o
Q)
o
"

0 . . 1 ,------'----'------, 0 . . 1
Person

occu pant

- - - - - . (xor) · - . - - -

Floor
2 ... Services

Button

Chapter 9

passenger

Door

Fig. 9.32 Class diagram incorporating inheritance into the elevator-simulator.

Figure 9 .33 l i sts the header fi le for the base c l ass Button. 2 We decl are public

member funct io ns pressButton and resetButton (l i nes 1 3- 1 4) and private data

member pressed of type bool (l i n e 22). Notice the declarat i o n of the reference to an

Elevator object in l i ne 1 9 and the corresponding parameter to the con structor i n l ine I I .
We show how to i n i t ia l i ze the reference when we discuss the code for the derived c l asses .

The derived c l asses perform two d i fferen t act ions . C l ass E levatorButton i n vokes

the prepareToLeave member funct ion of c l ass Elevator; c l ass FloorButton

i n vokes the swmnonElevator member funct ion . Thus, both c l asses need access to the

2 . The ben e fi t of encapsulat ion i s t h a t no other fi les i n oll r e l evator s i m u l at i o n n e e d to be changed.
We s i mp l y subst i tute the new elevatorButton and floorButton header and i mplementa
t ion fi les for the o l d ones and add the fi les for c l ass But ton.

Chapter 9 Object-Oriented Prog ram ming: In heritance 653

e l evatorRe f data member of the base c lass; however, t h i s data member shou ld not be
avai l ab le to non-Button objects . Therefore, we p lace the e l evatorRe f data member
in the prote c t ed sect ion of But ton. Only base-class member func tions d irectly manip
u late data member pre s s ed, so we declare th i s data member as p rivat e . Derived
c lasses do not need to access pre s s ed directl y .

F igure 9 .34 l i s ts t h e i mplementat ion fi l e for c lass But t on. Line 1 2 i n the constructor
i n i t i a l izes the reference to the e levator. The constructor and destructor disp lay messages
i nd icat i ng that they are runn i ng , and the pre s s Button and re s e t Bu t t on member
funct ions man ipu late private data member pre s s ed.

1
2
3
4
5
6
7
8
9

I I Fig . 9.33: but t on . h
I I De f in i t ion for c l a s s But ton .
i fnde f BUTTON_H
#de f ine BUTTON_H

c l a s s Elevator ;

c l a s s But t on

pub l i c :
Button (Elevator &) ;
-Button () ;
void pre s s Button () ;
void resetButton () ;

protected :

I I forward dec l arat i on

I I const ructor
I I de structor
I I set s button on
I I resets but ton o f f

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

I I re ference to but ton's elevator
Elevator & e l evatorRe f ;

private :
bool pre s sed ;

} ; I I end c la s s Button

#endi f I I BUTTON_H

Fig. 9.33 But t on c lass header fi le .

1 II Fig. 9.34: button . cpp

I I state of button

2 I I Member func t i on de f initions for c l a s s But t on .
3 # inc lude < iostream>
4
5 us ing s td : : cout ;
6 using s td : : endl ;
7
8 # inc lude " button . h " I I Button c l a s s de f in i t i on
9

Fig. 9.34 But t on class implementation f i le-base c lass for E l evat o rBu t t on
and Fl oorBu t t on. (Part 1 of 2.)

654 Object-Oriented Programming: Inheritance

1 0 I I const ructor
1 1 Button : : Button (E l evator &elevatorHandle)
1 2 : e l evatorRe f (e l evatorHandle) , pre s sed (f a l s e)
1 3
1 4 cout « " button constructed" « endl ;
1 5
1 6 I I end Button constructor
1 7
1 8 I I de structor
1 9 Button : : -Button ()
20 {
21 cout « " button des t ructed " « endl ;
22
23 I I end Button de structor
24
25 I I pre s s button
26 void Button : : pre s s Button ()
2 7 {
28 pre s sed = true ;
29
30 } I I end funct i on pre s s Button
31
32 I I reset button
33 void But ton : : re s e t Button ()
34 {
35 pre s sed = false ;
36
37 I I end funct i on reset Button

Chapter 9

Fig. 9.34 But t on class implementation f i le-base c lass for E l evat orBu t t on
and FloorBu t t on. (Part 2 of 2.)

Figure 9 . 35 contai ns the header fi le for c lass E l evat orButton. Line 8 ind icates
that the c lass i nheri ts from c lass Button. This i nheritance means that c lass E l evat o r

But t on contai ns the protected e l evatorRe f data member and the pub l ic pre s s

But t on and resetButton member funct ions o f the base c l ass . I n l i ne 1 3 , w e prov ide
a funct ion prototype for pre s s But ton to s ignal our i n tent to redefi ne that member func
t ion in the . cpp fi le . We d i scuss the pre s s Button i mp lementat ion momentari l y .

The constructor takes a s a parameter a reference to c lass E l evat or (l i ne II). We d i s
cuss the necessi ty for th i s parameter when we d iscuss the class's implementat ion . Not ice ,
however , that we do not need to i nc l ude a forward declarat ion of c lass E l evator i n the
derived c lass , because the base-c lass header fi le conta ins the forward reference.

1 I I Fig. 9.35: e l evatorButton . h
2 I I E levatorButton class de f init ion .
3 # i fndef ELEVATORBUTTON_H
4 #de f i ne E LEVATORBUTTON_H
5
6 # include " button. h " I I Button c l a s s def init i on

Fig. 9.35 E l evatorBu t t on class header fi le. (Part 1 of 2.)

Cha pter 9 Object-Oriented Prog ra m ming: Inherita nce

7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7

c la s s E levatorButton public Button {

publ i c :
E l evatorBut ton (E levator &) ;
-E levatorButton () ;
void pre s s Button () ;

} ; I I end c l a s s E l evatorButton

#endi f II ELEVATORBUTTON_H

II construc tor
II de structor
II pre s s the but t on

Fig. 9.35 E l evat orButton class header f i le . (Part 2 of 2 .)

655

Figure 9.36 l i sts the i mplementat ion file of class E l evat orBut t on. The c l ass con
structors and destructors d i splay messages to ind icate that these funct ions are execut i ng .
L i ne 1 3 passes t he E l evator reference to t he base-class constructor.

1 I I Fig . 9 . 3 6: elevatorButton . cpp :
2 I I Member - func t ion de f init ions for c lass E levatorBut t on.
3 # inc lude < io st ream>
4
5 using std : : cout ;
6 using std : : endl ;
7
8 #inc lude " e levatorBut ton . h " II ElevatorButton c l a s s de f init ion
9 # inc lude " e l evator . h " II Elevator c l a s s de f init ion

1 0
1 1 I I constructor
1 2 ElevatorButton : : ElevatorBut ton (Elevator &el evatorHandle)
1 3 : But t on (elevatorHandle)
1 4
1 5 cout « " elevator button constructed" « endl ;
1 6
1 7 II end E levatorButton constructor
1 8
1 9 II de s t ructor
20 E levatorButton : : -ElevatorBut ton ()
2 1 {
22 cout « " e levator button destructed " « endl ;
23
24 } II end -E l evatorBut ton de structor
25
26 II pre s s but t on and s i gnal e l evator to prepare to leave f loor
27 void ElevatorButton : : pressButton ()
28 {
29 But ton : : pre s s Button () ;
30 cout « " e levator button t e l l s elevator to prepare to leave "
3 1 « endl ;
32 e l evatorRe f . prepareToLeave (t rue) ;
33
34 II end funct ion pre s s Button

Fig 936 ElevatorButton c lass member-function definitions

656 Object-O riented Program ming: Inherita nce Chapter 9

Member funct ion pres sBut ton fi rst cal l s the pre s s Button member funct ion
(l i ne 29) in base c lass But t on; th i s cal l se ts to true the pre s s ed attribute of c lass
But t on. Line 32 not ifies the e levator to move to the other floor by pass i ng t rue to
member funct ion prepareToLeave .

Figure 9 . 37 l i st s the header fi le for c lass FloorButton. The on ly d ifference between
t h i s fi l e and the header fi le for c l ass El evat orButton i s the add i t ion in l i ne 1 6 of the
f l oorNwnber data member. We use this data member to d i st i ngu ish the floors in the
s imu l at ion output messages . The constructor declarat ion i nc l udes a parameter of type int

(l i ne II), so the Fl oorButton object can i n i t ia l ize attribu te f l oorNwnber.

Figure 9.38 shows the imp lementat ion of c lass FloorBu t t on. Li nes 1 3- 1 4 pass the
El evator reference to the base-c l ass constructor and i n i t i a l ize the f l oorNwnber data
member. The constructor (l i nes J 2-19) and destructor (l i nes 22-27) output appropriate
messages , u s i ng data member f l oorNwnber. The redefi ned pre s s Button member
funct ion (l i nes 30-39) fi rst cal l s member funct ion pre s s Bu t t on (l i ne 32) i n the base
c lass , then i n vokes the e levator' s swnmonE l evat or member funct ion (l i ne 37) , passi ng
f loorNwnber to i ndicate the floor that summoned the e levator.

II Fig . 9 . 3 7 : f loorButton . h
// F loorButton c l a s s de f init ion .
i fnde f FLOORBUTTON_H
#de f ine FLOORBUTTON_H

1
2
3
4
5
6
7
8
9

inc lude " button . h " // Button c l a s s def init i on

c l a s s FloorButton public Button {

pub l i c :
FloorButton (int , Elevator &) ;

-FloorButton () ;
void pre s sButton () ;

private :

// const ructor
// de s t ructor
// pre s s the button

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20

const int f l oorNUmber ; // but ton ' s f loor number

} ; 1/ end c l a s s FloorButton

#endi f /1 FLOORBUTTON_H

Fig. 9.37 FloorBut t on class header file.

1 // Fig . 9 . 3 8 : f loorButton . cpp
2 1/ Member- funct ion def init ions for class F loorBut ton .
3 #inc lude < iostream>
4
5 using std : : cout ;
6 using std : : endl ;
7
8 # inc lude " f loorButton . h "
9 # inc lude " e levator . h "

Fig. 9. 38 FloorBut ton class member-function definitions . (Part 1 of 2.)

Chapter 9

1 0
1 1 II constructor

Object-Oriented Prog ra m m i ng: In heritance 657

1 2 FloorButton : : FloorBut ton (int f l oor , E l evator &elevatorHandle)
13 But ton (e levatorHandle) ,
14 f l oorNumber (f l oor)
15
1 6 c out « " f loor n « f loorNumber « " button const ruct e d "
1 7 « endl ;
1 8
1 9 } II end F loorButton constructor
20
21 II de s t ructor
22 FloorButton : : -F loorButton ()
23 {
24 cout « " f loor n « f loorNumber « " but t on de s t ruc t e d "
2 5 « endl ;
26
27 } II end -FloorBut t on des t ructor
28
29 II pre s s the but t on
30 void F loorButton : : pre s sButton ()
3 1 {
32 But ton : : pre s s Button () ;
33 cout « " f loor " « f loorNumber
34 « " button s wmnons e l evator " « endl ;
35
36 II c a l l e l evator to thi s f loor
37 e l evatorRe f . s ummonElevator (f loorNumber) ;
38
39 II end funct i on pre s sButton

Fig. 9 .38 FloorBut t on class member-function defin it ions. (Part 2 of 2 .)

We now have completed t he implementat ion for t he e levator- s imu lator case study that
we have been develop ing s i nce Chapter 2. One s ign i ficant arch i tectural opportun i ty
remains. You migh t have noticed that c lasses But ton, Door and L i ght have much in
common. Each of these c lasses contai ns a "state" attr ibute and corresponding "set on" and
"set off" operat ions. Class Be l l also bears some s im i l ar i ty to these other c lasses . Object
orien ted t h i nk i ng te l l s us that we should p lace commonal i t ies i n one or more base c l asses,
from which we shou ld then use i nheritance to form appropriate deri ved c lasses. We leave
this i mplementat ion to the reader as an exerc i se . We suggest that you beg i n by mod ify i ng
t he c lass d iagram i n F i g . 9 . 32 . [Hint : But ton, Door and L i ght are essent ia l l y "togg le"
c lasses-they each have "state," "set on" and "set off' capab i l i t ies; Be l l i s a "th i n ner"
class , w i th on ly a s ing le operat ion and no state .]

We s incere ly hope tha t t h i s e levator s imu lat ion case s tudy was a chal leng ing and
meani ngfu l experience for you . We employed a carefu l l y developed, i ncremental object
oriented process to produce a UML-based des ign for our e levator s imu l ator . From th i s
des ign , we produced a substant i al work ing C++ i mplementat ion us i ng key programming
not ions. i nclud ing classes. objects. encapsu lat ion. visi b i l i ty. composi t ion and i nheri tance .

658 Object-Oriented Program ming: Inheritance Chapter 9

I n the remaining chapters of the book, we present many additional key C++ techno logies .
We would be gratefu l if you would take a moment to send your comments, criticism s and
suggestions for improving this case study to us at de i te l@de i t e l . com.

SUMMARY
• Software reuse reduces program-development time.

• The direct base class of a derived class is the base class from which the derived class inherits (spec

ified by the class name to the right of the: in the first line of a class definition). An indirect base

class of a derived class is two or more levels up the class hierarchy from that derived class.

• With single inheritance. a class is derived from one base class. With multiple inheritance, a class

is derived from more than one direct base class.

• A derived class can include its own data members and member functions, so a derived class is of

ten larger than its base class.

• A derived class is more specific than its base class and represents a smaller group of objects.

• Every object of a derived class is also an object of that class's base class. However, a base-class

object is not an object of that class's derived classes.

• Derived-class member functions can access protected base-class members directly.

• An "is-a" relationship represents inheritance. In an "is-a" relationship, an object of a derived class

also can be treated as an object of its base class.

• A "has-a" relationship represents composition. In a "has-a" relationship, a class object contains

one or more objects of other classes as members.

• A derived class cannot access the private members of its base class directly; allowing this would

violate the encapsulation of the base class. A derived class can, however, access the public and

protected members of its base class directly.

• When a base-class member function is inappropriate for a derived class, that member function can

be redefined in the derived class with an appropriate implementation.

• Single-inheritance relationships form tree-like hierarchical structures-a base class exists in a hi

erarchical relationship with its derived classes.

• It is possible to treat base-class objects and derived-class objects similarly; the commonality

shared between the object types is expressed in the data members and member functions of the

base class.

• A base class's public members are accessible anywhere that the program has a handle to an object

of that base class or to an object of one of that base class's derived classes.

• A base class's private members are accessible only within the definition of that base class or from

friends of that class.

• A base class's protected members have an intermediate level of protection between public and pri

vate access. A base class's protected members can be accessed by members and friends of that

base class and by members and friends of any classes derived from that base class.

• Unfortunately, protected data members often yield two major problems. First, the derived-class

object does not have to use a set function to change the value of the base-class's protected data.

Second, derived-class member functions are more likely to depend on base-class implementation

details.

• When a derived-class member function redefines a base-class member function, the base-class

member function can be accessed from the derived class by preceding the base-class member func

tion name with the base-class name and the scope resolution operator (: :).

Cha pter 9 Object-Oriented Program ming: In herita nce 659

• When an object of a derived class is instantiated, the base class's constructor is called immediately

(either explicitly or implicitly) to initialize the base-class data members in the derived-class object

(before the derived-class data members are initialized).

• Declaring data members private, while providing non-private member functions to manipulate

and perform validation checking on this data, enforces good software engineering.

• When a derived-class object is destroyed, the destructors are called in the reverse order of the con

structors-first the derived-class destructor is called, then the base-class destructor is called.

• When deriving a class from a base class, the base class may be declared as either pub l i c , pro
tected or private.

• When deriving a class from a public base class, pub l i c members of the base class become

publ i c members of the derived class, and prot ected members of the base class become

protected members of the derived class.

• When deriving a class from a protected base class, pub l i c and prote c t ed members of the

base class become protected members of the derived class.

• When deriving a class from a private base class, publ i c and prote c t ed members of the

base class become pri vat e members of the derived class.

• "Knows a" relationships are examples of objects containing pointers or references to other objects

so they can be aware of those objects.

TERMINOLOGY
abstraction

association

base class

base-class constructor

base-class default constructor

base-class destructor

base-class initializer

class hierarchy

composition

customize software

derived class

derived-class constructor

derived-class destructor

direct base class

friend of a base class

friend of a derived class

has-a relationship

hierarchical relationship

indirect base class

infinite recursion error

SELF-REVIEW EXERCISES

in heri tance

is-a relationship

knows-a relationship

member access control

member class

member object

multiple inheritance

object-oriented programming (OOP)

private base class

private inheritance

protected base class

protected inheritance

protected keyword

protected member of a class

public base class

public inheritance

redefine a base-class member function

single inheritance

software reusability

uses-a relationship

9. 1 Fill in the blanks in each of the following statements:

a) is a form of software reusability in which new classes absorb the data and
behaviors of existing classes and embellish these classes with new capabilities.

b) A base class's members can be accessed only in the base-class definition or
in derived-class definitions.

660 Object-Oriented Programmi ng: Inheritance Chapter 9

c) In a(n) relationship, an object of a derived class also can be treated as an ob-

ject of its base class.

d) In a(n) relationship, a class object has one or more objects of other classes

as members.

e) In single inheritance, a class exists in a(n) _____ relationship with its derived class-

es.

f) A base class's members are accessible anywhere that the program has a han-

dle to an object of that base class or to an object of one of its derived classes.

g) A base class's protected access members have a level of protection between those of

pub l i c and access.

h) C++ provides for , which allows a derived class to inherit from many base

classes, even if these base classes are unrelated.

i) When an object of a derived class is instantiated, the base class's is called

implicitly or explicitly to do any necessary initialization of the base-class data members

in the derived-class object.

j) When deriving a class from a base class with public inheritance, pub l i c members of

the base class become members of the derived class, and protected
members of the base class become members of the derived class.

k) When deriving a class from a base class with protected inheritance, pub l i c mem-

bers of the base class become members of the derived class, and pro-
tected members of the base class become _____ members of the derived class.

9.2 State whether each of the following is true or false. I f false, explain why.

a) It is possible to treat base-class objects and derived-class objects similarly.

b) Base-class constructors are not inherited by derived classes.

c) A "has-a" relationship is implemented via inheritance.

d) A Car class has an "is a" relationship with its SteeringWheel and Brake s .
e) Inheritance encourages the reuse of proven high-quality software.

ANSWERS TO SELF-REVIEW EXERCISES
9. 1 a) Inheritance. b) protected. c) "is-a" or inheritance. d) "has-a" or composition or ag

gregation. e) hierarchical. f) publ i c . g) private. h) multiple inheritance. i) constructor.

j) pub l i c , protected. k) protected, protected.

9.2 a) True. b) True. c) False. A "has-a" relationship is implemented via composition. An "is

a" relationship is implemented via inheritance. d) False. This is an example of a "has-a" relationship.

Class Car has an "is-a" relationship with class Vehic l e . e) True.

EXERCISES
9.3 Many programs written with inheritance could be written with composition instead, and vice

versa. Rewrite classes Point 3 , C i rcle4 and Cyl inder to use composition, rather than inherit

ance. After you do this, assess the relative merits of the two approaches for the point 3 , C i rc l e 4 ,
Cyl inder problem, as well as for object-oriented programs in general. Which approach i s more nat

ural, why?

9.4 Some programmers prefer not to use protected access because it breaks the encapsulation

of the base class. Discuss the relative merits of using protected access vs. using pri vate access

in base classes.

9.5 Rewrite the case study in Section 9.5 as a Point , Square, Cube program. Do this two

ways-once via inheritance and once via composition.

Cha pter 9 Object-Oriented Progra m m i ng: In herita nce 661

9.6 Write an inheritance hierarchy for class Quadri l atera l , Trape zoid, Para l l e l o
gram, Rectangl e and S quare. Use Quadri lateral as the base class of the hierarchy. Make

the hierarchy as deep (i.e., as many levels) as possible. The private data of Quadri lateral

should be the x-y coordinate pairs for the four endpoints of the Quadri latera l .

9.7 Modify classes Point 3 , C i rcle4 and Cyl inder t o contain destructors. Then modify the

program of Fig. 9.29 to demonstrate the order in which constructors and destructors are invoked in

this hierarchy.

9.8 Write down all the shapes you can think of-both two dimensional and three dimensional

and form those shapes into a shape hierarchy. Your hierarchy should have base class Shape from

which class TwoDimens ional Shape and class ThreeDimens i onal Shape are derived. Once

you have developed the hierarchy, define each of the classes in the hierarchy. We will use this hier

archy in the exercises of Chapter 10 to process all shapes as objects of base-class Shape. (This tech

nique, called polymorphism, is the subject of Chapter 10.)

If)
Object-Oriented
Programming:
Polymorphism

Objectives
• To understand the concept of polymorphism.

• To understand how to declare and use virtual

functions to effect polymorphism.

• To distinguish between abstract and concrete classes.

• To learn how to declare pure vi rtual functions to

create abstract classes.

• To appreciate how polymorphism makes systems

extensible and maintainable.

• To understand how C++ implements virtual

functions and dynamic binding "under the hood."

• To understand how to use run-time type information

(RTTI) and operators typeid and dynami c_cast.

One Ring to rule them all, One Ring to find them,

One Ring to bring them all and in the darkness bind them.

John Ronald Reuel Tolk i en
The silence often o f pure innocence

Persuades when speaking fails.

Wil l iam Shakespeare
General propositions do not decide concrete cases.

Ol i ver Wende l l Holmes
A philosopher of imposing stature doesn't think in a vacuum.

Even his most abstract ideas are, to some extent, conditioned

by what is or is not known in the time when he lives.

Alfred North Whitehead

Chapter 10 Object-Oriented Program ming: Polymorphism

Outline

10.1 Introduction

10.2 Relationships Among Objects In an Inheritance Hierarchy

663

10.2.1 Invoking Base-Class Functions from Derived-Class Objects

10.2.2 Aiming Derived-Class Pointers at Base-Class Objects

10.2.3 Derived-Class Member-Function Calls via Base-Class

Pointers

10.2.4 Virtual Functions

10.3 Polymorphism Examples

10.4 Type Fields and 8wi tch Structures

10.5 Abstract Classes

10.6 case Study: Inheriting Interface and Implementation

10.7 Polymorphism. Virtual Functions and Dynamic Binding "Under the

Hood"

10.8 Virtual Destructors

10.9 case Study: Payroll System Using Polymorphism and Run-nme Type

Information with dynamic_cast and typeid

Summary • Terminology· Self-Review Exercises • Answers to Self-Review Exercises • Exercises

10.1 Introduction

I n Chapter 6 and Chapter 7, we d i scussed object-based programm i ng and i t s componen t
technologi es-c lasses, objects, encapsu lation and data abstrac t ion . Chapter 9 focused on a
key object-oriented programming (OOP) technology-inheri tance. I n Chapter 10, we con
t i nue our study of OOP by exp lai n i ng and demonstrat i ng polymorphism with i n heri tance
h ierarchies . Polymorph i sm enables us to "program i n the general" rather than "program in
the spec i fi c . " In part i cu lar, polymorph i sm enables u s to wri te programs that process objects
of c l asses that are part of the same c lass h ierarchy as if they are al l objects of the h ierarchy ' s
base c lass . As we wi l l soon see , polymorph i sm works off base-c l ass pointer handles and
base-c lass reference handles , but not off name handles .

Th is chapter has several key parts . We begi n with a sequence of smal l , focu sed exam
ples that lead up to an understand ing of virtual functions and dynamic binding-pol ymor
phi sm's two underl y i ng technologies . We then present a case study that rev i s i t s Chapter 9 ' s
Point-C i r c l e-Cy l i nder h ierarchy . I n the case s tudy, we defi ne a cornman " i nter
face" (i .e . , set of funct iona l i t y) for a l l the c lasses i n the h ierarchy . Thi s cornman funct ion
a l i ty among shapes i s defi ned i n a so-cal led abstract base class, Shape, from wh ich c l ass
Po int i n heri t s d i rect ly and c lasses C i rc l e and Cyl inder i nheri t i nd i rect l y .

A key featu re of th i s chapter i s i t s detai led d i scuss ion of polymorphi sm, v i rtua l func
t ions and dynam ic b ind ing "under the hood," i n wh ich we use an e l egant d i agram to exp la in
how polymorph i sm works i n C++.

We then present a more "natural" Emp l oyee c lass h ierarchy . We develop a s imple
payro l l sys tem for th i s h ierarchy in which every employee has a cornman earn i ngs funct ion

664 Object-Oriented Program ming: Polymorphism Chapter 10

to calcu late t he employee ' s week ly pay . These earn i ngs funct ions vary by employee type
S a l ari edEmp l oyees are paid a fi xed weekly salary regardless of the number of hours
worked, HourlyEmployees are paid by the hour and rece ive overt ime pay, C ommi s

s ionEmp l oyees rece ive a percentage of the i r sales and BasePlusCommi s s i on

Emp l oyee s rece ive a base salary p l u s a percentage of the ir sales . We show how to process
each employee "in the general" by i nvoking i ts earnings funct ion off a base-c l ass poin ter.

Occasional ly , when performing polymorphic process ing, i t i s necessary to program " in
the spec i fic . " Our Employee case study demonstrates the powerfu l capabi l i t ies of run-lime

type information (R7T1) and dynamic casting, which enable a program to determine the type
of an object at execution time and act on that object accord ing ly . In the case study, we use
these capab i l i t ies to determi ne whether a part icu lar employee object i s a Ba seP lus

Commi s s ionEmpl oyee, then g ive that employee a 10% bonus on h i s or her base salary .
With polymorph ism, i t i s poss ib le t o design and implement systems that are eas i l y

extens ib le . New c lasses can be added w i t h l i t t le o r no mod ificat ion to t he generic port ions
of the program, as long as those c lasses are part of the i nheritance h ierarchy that the pro
gram processes generical l y . The on ly parts of a program that must be al tered to accommo
date new c lasses are those program components that requ i re d i rect knowledge of the new
c lasses that the programmer adds to the h ierarchy .

10.2 Relationships Among Objects in an Inheritance Hierarchy

Sect ion 9 .4 created a poi nt-c i rc le c l ass h ierarchy, i n wh ich c lass C i rc l e i nheri ted from
c l ass Point . The Chapter 9 examples manipu lated Point and C i r c l e objects by us ing
the names of those objects to i n voke the i r member funct ions . We now examine the re lat ion
sh ips among c l asses i n a h ierarchy . The next several sect ions present a seri es of examples
that demonstrate how base-class and deri ved-class poi nters can be ai med at base-class and
deri ved-c l ass objects , and how those poin ters can be used to i nvoke member funct ions that
man ipu late those objects . Later i n the chapter, we demonstrate that we can get polymorph ic
behavior off base-c lass references as wel l .

I n Sect ion 10. 2 . 1 , w e ass ign the address o f a deri ved-c l ass object t o a base-c lass
poin ter, then show how i nvok ing a function v ia the base-class poi nter w i l l i nvoke the base
c l ass funct ional i ty-i .e . , the type of the handle determi nes wh ich funct ion is cal led . I n
Sect ion 10.2 . 2 , w e ass ign the address of a base-class object t o a deri ved-c lass poi n ter,
wh ich resu l t s in a compi lat ion error. We di scuss the error message and i nvest igate why the
compi ler does not al low such an ass ignment . I n Section 10. 2 . 3 , we ass ign the address of a
a deri ved-c lass object to the base-c lass poi nter, then exam ine how a base-c lass poi nter can
be used to i n voke on ly the base-c lass funct ional i ty-when we attempt to i n voke derived
c lass funct ions through the base-class poi nter, compi lat ion errors occur. Fi nal ly , i n
Sect ion 10 .2 .4, w e i ntroduce v i rtual funct ions and polymorph i sm b y dec l ari ng a base�c 1 ass
funct ion as virtual-we then ass ign a deri ved-c lass object to the base-class pointer and
use that poi n ter to i n voke deri ved-c lass funct ional i ty .

A key concept i n these examples i s to demonstrate that an object of a deri ved c lass can
be treated as an object of i ts base c lass . Th is enables various in terest ing manipu lations . For
example, a program can create an array of base-c lass pointers that poin t to objects of many
derived-class types . Thi s i s al lowed despi te the fact that the derived-class objects are of d if
ferent data types, because each deri ved-c lass object is an object of i ts base c lass . However, a
base-class object is not an object of any of i ts deri ved classes . For example, a Point is not a

Chapter 10 Object-Oriented Prog ra m m i ng: Polymorphism 665

C i rc l e in the h ierarchy defi ned in Chapter 9-a Point does not have a radius data
member and does not have member funct ions setRadiu s , get Radius and area. The
is-a relat ionsh ip appl ies only from a derived-class to i ts d i rect and i nd irect base classes.

10.2.1 Invoking Base-Class Functions from Derived- Class Objects

The example i n F ig . 10. l-Fig . 10.5 demonstrates three ways to aim base-class poi n ters and
derived-class poi n ters at base-class objects and deri ved-class objects . The fi rst two are
stra ightforward-we ai m a base-class pointer at base-class object, and we aim a deri ved
class poi n ter at a deri ved-class object. Then, we demonstrate the re l at ionsh ip between de
rived classes and base classes (i . e . , the is-a re lat ionsh i p) by a im ing a base-class poi n ter at
a derived-class object .

Class Point (Fig . 10 .I-Fig . 10.2), wh ich we discussed i n Chapter 9, represents an
x-y coord inate pair . C lass C i rc l e (Fig . 10.3-Fig. 10.4), wh ich we also d iscussed in
Chapter 9, represents a circle and i nheri ts from class Point . Each C i r c l e object " i s a"
Point that also has a rad ius . C lass C i rc l e ' s print member function (l i nes 53-59 of
Fig. 10.4) redefi nes class Point's print member funct ion (l i nes 46-50 of Fig . 10.2) to
di splay the center coordinate of the ci rcle and the rad ius value.

II Fig . 1 0 .1 : point . h 1
2
3
4
5
6
7
8
9

II Point c l a s s de f init ion represents an x-y c oordinate pair.
i fnde f POINT_H
#de f ine POINT_H

c l a s s Po int {

publ i c :
Po int (int = 0 , int = 0) ; II de fault c onstructor

voi d setX (int) ; II set x in coordinate pair
int getX () const ; II return x f rom coordinate

voi d sety (int) ; II set y in coordinate pair
int gety () const ; II return y f rom coordinate

void print () const ; II output P oint obj ect

1 0
11
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25

privat e :
int x;
int y;

II x part of coordinate pair
II y part o f coordinate pai r

} ; I I end c l a s s Point

#endi f

Fig. 10.1 Point class header fi le.

1 II Fig . 1 0 . 2 : point . cpp
2 II Point c l a s s member- funct ion de f ini t i ons .
3 # inc lude < i os t ream>

pair

pair

Fig. 10.2 Point c lass represents an x-y coord inate pai r . (Part 1 of 2.)

666

4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50

Object-Oriented Prog ra mming: Polymorphism

u s ing std: : cout ;

inc lude "point .h " II Point class de f init ion

I I defau l t constructor
Point : : Point (int xValue , int yValue)

: x (xValue) , y (YValue)

II e mpty body

/1 end Point const ructor

1/ set x in coordinate pair
void Point : : setX (int xValue
{

x = xValue ; II no need for val idat ion

1/ end funct ion setX

1/ return x from coordinate pa ir
int Point : : getX () c onst
{

return x ;

II end func t i on getX

II set y in coordinate pair
void Point: : setY (int YValue

y = YValue ; II no need for val idat ion

} /1 end funct ion setY

// return y from coordinate pair
int Point : : getY () const
{

return y ;

II end func t i on getY

/1 output Point obj ect
void Point : : print () const
{

cout « '[' « getX () « ", II « getY () « '] ';

/1 end funct i on print

Fig. 10.2 Point class represents an x-y coordinate pair, (Part 2 of 2,)

1 // Fig. 1 0 . 3 : c irc le .h

Cha pter 10

2 // Circle c l a s s contains x-y coordinate pai r and radius.

Fig. 10.3 Circle class header file (Part 1 of 2)

Cha pter 10 Object-Oriented Progra m ming: Polymorphism

3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29

i fnde f C I RCLE_H
#de f ine CIRCLE_H

inc lude "point .h " II Point c l a s s de f init i on

c la s s C i r c l e : pub l i c Point {

publ i c :

II de fau l t cons t ructor
Circle (int = 0 , int = 0 , double = 0 . 0) ;

voi d setRadiu s (double) ;
doubl e getRadius () const ;

II set radius
II return radius

double getDiameter () const ;
doubl e getC ircumference () const ;
double getArea () const ;

II return diameter
II return c i rcumference
II return area

voi d print () const ; II output Circle obj ect

private:
double radius ; II C i rcle ' s radius

} ; II end c l a s s C i rc l e

#endi f

Fig. 10.3 C i rcle class header fi le . (Part 2 of 2 .)

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22

II Fig . 10.4: c i r c l e . cpp
II C i r c l e c l a s s member - funct ion de f ini t ions .
inc lude < iostream>

us ing std: : cout ;

inc lude " c ircle . h " II Circle c l a s s de f init i on

II de f au l t cons tructor
Circle: : C i rc l e (int xValue , int yValue , doubl e radiusValue)

: Point (xValue , yValue) II call base - c l as s const ructor

setRadi u s (radiusValue) ;

II end C i r c l e const ructor

II set radius
void C i r c l e : : setRadius (double radiusValue)
{

radius = (radiusValue < 0 .0 ? 0 . 0 : radiusVa lue) ;

II end func t i on setRadius

Fig.10.4 C i rcle class that inherits from class Point . (Part 1 of 2.)

667

668 Object-Oriented Prog ram ming: Polymorphism

23
24 // return radius
25 doubl e Circle: : getRadius () const
26 (
27 return radius ;
28
29 // end funct i on getRadius
30
3 1 / / calculate and return diameter
32 double Circle: : getDiameter () const
33 (
34 return 2 * getRadius () ;
35
36 I I end funct ion getDiameter
37
38 // calculate and return c ircumference
39 doubl e C i rc le: : getCi rcumference () const
40 (
4 1 return 3 . 14 1 5 9 * getDiameter () ;
42
43 } I I end funct ion getCircumference
44
45 /1 calculate and return area
46 doubl e Circle: : getArea () const
47 (
48 return 3 . 14 1 5 9 * getRadius () * getRadius () ;
49
50 I I end funct i on getArea
5 1
52 I I output Circle obj ect
53 void Circle: : print () const
54 (
55 cout « " center = " ;
56 Point : : print () ; 1/ invoke Point ' s print func t i on
57 cout « " ; radius = " « getRadius () ;
58
59 I I end funct ion print

Fig.10.4 C i rcle class that inherits from c lass Point . (Part 2 of 2.)

Chapter 10

[n F ig . 10.5, l i nes 1 9-20 create a Point object and a poi n ter to a Point object; l i nes
22-23 create a C i r c l e object and a poin ter to a C i r c l e object . Li nes 3 1 and 33 use each
object ' s name (point and c i rc l e, respect ive ly) to i nvoke each object ' s print member
funct ion . Line 36 assigns the address of base-class object po int to base-c lass pointer
point Ptr, which l i ne 40 uses to invoke member funct ion print on that Point object .
This i nvokes the version of print defi ned i n base c lass Point . S im i l arly, l i ne 44 assigns
the address of deri ved-c l ass object c i rc l e to deri ved-c lass poi n ter c i rc l eptr, which
l i ne 48 uses to i nvoke member function print on that C i rc l e object . This i nvokes the
version of print defi ned i n deri ved c l ass C i rc l e . Line 5 1 then assigns the address of
derived-c l ass object c i r c l e to base-class poi nter point Ptr, which l i ne 55 uses to
i n voke member funct ion print . The C++ compi ler a l lows th is "crossover" because an
object of a deri ved c lass " is an" object of i ts base c lass. However, desp i te the fact that the

Chapter 10 Object-Oriented Prog ramming: Polymorphism 669

base c lass Point pointer points to a deri ved-class C i rc l e object , the base c l ass Point ' s

print member funct ion i s i nvoked (rather than C i rc l e ' s pr int funct ion). A s ev i
denced by the output of each print member-funct ion i nvocat ion i n t h i s program, the
i nvoked funct iona l i ty depends on the type of the handle (i . e . , the pointer or reference type)
used to i nvoke the funct ion , not the type of the object to wh ich the hand le poin ts . (I n
Sect ion 10 .2 .4 , when w e i n troduce vi rtual funct ions , w e demonstrate that i t i s poss ib le
to i nvoke the object type ' s funct ional i ty , rather than i nvoke the handle type ' s funct ional i ty .
We wi l l see that t h i s i s crucial to i mplement ing polymorphi c behav ior-the key topic of
th i s chapter.)

1 II Fig. 1 0 . 5 : f i g 1 0_0 5 . cpp
2 II Aiming base - c l a s s and derived - c la s s pointers at base - c la s s
3 II and derived- c l a s s obj ect s , respectively .
4 # i nc lude < io s t ream>
5
6 us ing std : : cout ;
7 using std : : endl ;
8 us ing std : : f ixed ;
9

1 0 #inc lude < iomanip>
1 1
1 2 using std : : setprec i s ion ;
1 3
1 4 # i nc lude " point . h " II Point c l a s s de finit ion
1 5 # inc lude " c irc l e . h " II Circle c la s s def init i on
1 6
1 7 int main ()
1 8 {
1 9 Point point (3 0 , 5 0) ;
20 Point *pointPtr = 0 ; II base - c la s s pointer
2 1
22 Circle c irc le (1 2 0 , 8 9 , 2 . 7) ;
23 Circle * c ircleptr = 0 ; II derived - c l a s s point e r
24
25 II set f l oat ing-point numeric formatt ing
26 cout « f ixed « setprec i s i on (2) ;
27
28 II output obj e c t s point and circle
29 cout « " Print point and circle obj ects : "
30 « " \nPoint : " ;
3 1 point .print () ; II invoke s Point ' s print
32 cout « " \ nCi rc l e : " ;
33 c i r c l e . print () ; II invokes Circle ' s print
34
35 II a im base - c la s s pointer at base - c l a s s obj ect and print
36 pointPtr = &point ;
37 cout « " \n \ nCa l l ing print with bas e - c l a s s pointer to "
38 « " \ nbas e - c la s s obj ect invokes bas e - c la s s print "
39 « " func t i on : \ n " ;
40 pointPtr- >print () ; II invokes Point ' s print

Fig. 10.5 Assign ing addresses of base-c lass and derived-c lass objects to base-c lass
and derived-c lass pointers . (Part 1 of 2 .)

670 Object-Oriented Progra mming: Polymorphism

4 1
42 II a im derived- c l a s s pointer at derived- c l a s s obj ect
43 II and print
44 c irc leptr = & c i rc l e ;

Chapter 1 0

45 cout « " \n \ nCal l ing print with derived - c l a s s pointer to "
46 « " \ nderived-class obj ect invokes derived - c l a s s "
47 « " print funct ion : \ n " ;
48 c i rc l ePtr- >print () ; II invoke s Circle ' s print
49
50 II a im base - c l a s s pointer at derived- c l a s s obj ect and print
5 1 pointPtr = &circ l e ;
52 cout « " \ n\nCal l ing print with bas e - c l a s s pointer to "
53 « " derived- c l a s s obj ect \ ninvoke s base - c l a s s print "
54 « " funct ion on that derived- c l a s s obj ect : \ n " ;
55 pointPtr- >print () ; II invoke s Point ' s print
56 cout « endl ;
57
58 return 0 ;
59
60 II end main

Print point and circle obj ect s :
Point : [3 0 , 5 0]
Circle : center = [1 2 0 , 8 9] ; radius = 2 . 7 0

Call ing print with base - c lass pointer to
base - c l a s s obj ect invoke s base - c lass print func t i on :
[3 0 , 5 0]

Cal l ing print with derived-class pointer to
derived - c l a s s obj ect invoke s derived-class print func t i on :
center = [1 2 0 , 8 9] ; radius = 2 . 7 0

Cal l ing print with base - c lass pointer to derived - c l a s s obj ec t
invokes base - c lass print function o n that derived - c l a s s obj ect :
[1 2 0 , 8 9]

Fig. 10.5 Assign ing addresses of base-class and derived-c lass objects to base-c lass
and derived-class pointers . (Part 2 of 2 .)

1 0.2.2 Aiming Derived- Class Pointers at Base-Class Objects

I n Sect ion 1 0 . 2 . 1 , we assigned the address of a deri ved-c lass object to a base-c l ass pointer
and explai ned that the C++ compi ler al lows th i s ass ignment , because a derived-c l ass object
is a base-c lass object . Now, we take the opposi te approach in F ig . 10.6 , as we a im a derived
c lass poin ter at a base-c lass object . [Note : Thi s program uses c lasses Point and C i rc l e

o f Fig . 10. I-Fig . 1 0 .4 .] L ine 8 creates a Point object, and l i ne 9 creates a C i r c l e point
er. Line 1 2 attempts to ass ign the address of base-c lass object point to c i rc l eptr, but
the C++ compi ler generates an error. The compi ler prevents th is ass ignment , because a
Point i s not a C i rc l e . Cons ider the consequences if the compi ler were to a l low th i s as
s ignment . Through a C i r c l e poin ter, we can invoke a C i rc l e member funct ion, such as

Cha pter 10 Object-Oriented Progra m m i n g: Polymorphism 67 1

setRadiu s , for the object to which the pointer poi n ts (i . e . , the base-c l ass object point) .

However, t he P o i n t object does not prov ide a setRadius member funct ion , nor does i t
provide a radius data member to se t . Th i s cou ld lead to problems, because member func
t ion setRadius would assume that there i s a radius data member to set at i t s "usual
locat ion" i n a C i r c l e object . Because th i s memory does not be long to the Point object ,
member funct ion setRadius might overwrite other important data in memory that be
longs to a d i fferent object .

I t turns out that the C++ compi ler does al low th i s ass ign ment i f we exp l i c i t l y cast the
address of the base-class object to the deri ved-c lass po in ter type, wh ich we d i scuss i n
greater deta i l i n Sect ion 1 0 .9 . After hav ing contemplated i t s potential consequences, you
may wonder why you ever would want to perform this ass ignment . In programs that pro
cess base-c lass and deri ved-c lass objects us i ng base-class poi nters, on l y funct ions defi ned
in the base c lass can be i n voked via the base-c lass poi n ters. Cast i ng base-c lass pointers to
deri ved-c lass poi n ters (a lso known as downcasting) enables a program to i n voke deri ved
c lass funct iona l i ty to perform derived-cl ass-spec i fic operat ions on deri ved-c lass objects . [aJ Common Programming Error 1 0. 1

A ssigning Ihe address of a base-class objeci 10 a derived-class poinler (Wilhoul a n explicil

casl) is a syn/ax error.

Software Engineering Observation 1 0 1
{{ Ihe address of a derived-class objeci has been assiglled 10 a poimer of one of ils direci or

indireci base classes, il is accep/able 10 cas I Ihal base-class poimer back 10 a poimer of Ihe

derived-class type. In facl, Ihis I I 1USI be done 10 send Ihal derived-class objeci m.essages Ihal

do nOI appear in Ihe base class. {Nole: We somelirnes use (he lerm "message " synonymously

wilh 'jill1C1ion call. " 1

1 II Fig . 1 0 . 6 : f i g 1 0_0 6 . cpp
2 II Aiming a derived- c l a s s pointer at a base - c l a s s obj ect .
3 # inc lude " point . h " II Point c l a s s de f inition
4 # inc lude " c ircle . h " II C ircle c l a s s de f init ion
5
6 int main ()
7 {
8 Point point (3 0 , 5 0) ;
9 Circle * c i rc l eptr = 0 ;

1 0
1 1 II a im derived - c l a s s pointer at base - c l a s s obj e c t
1 2 c i rcleptr = &point ; II Error : a Point i s not a C i r c l e
1 3
1 4 return 0 ;
1 5
1 6 I I end main

C : \ cpphtp4 \ exampl e s \ ch1 0 \ f i g 1 0_0 6 \ F i g 1 0_0 6 . cpp (1 2) : error C 2 4 4 0 :
' = ' cannot c onvert from ' c lass Point * , to ' c l a s s C i r c l e * '

Types pointed to are unre lated ; conversion requires
reinterpret_cast , C - sty1e cast or func t i on - style cast

Fig. 10.6 Aiming a derived-class pointer at a base-class object,

672 Object-Oriented Programming: Polymorphism Chapter 10

1 0.2.3 Derived-Class Member- Function Calls via Base- Class Pointers

Off a derived-c l ass poi nter, the compi ler a l lows us to i n voke all deri ved-c l ass member
funct ions . Thus, i f a derived-class pointer i s ai med at a base-c lass object , and an attempt i s
made t o access a derived-c l ass-on ly member funct ion, errors w i l l almost certai n l y occur.
So we saw in Sect ion 10 .2 .2 that a iming a deri ved-c lass pointer at a base-c lass object is a
compi ler e rror.

Figure 10 .7 d i scusses the consequences of i nvoking a derived-class member funct ion
off a base-class poi n ter. [Note : We are once aga in us ing c lasses Point and C i rc l e of
Fig . 10. I -Fig . L OA .] L ine 9 creates point Ptr-a pointer to a Point object-and l i ne
10 creates a C i r c l e object . L ine 1 3 a ims pointPtr at derived-c lass object c i r c l e .

Recal l from Sect ion 10 .2 . 1 that t he C++ compi ler a l lows t h i s , because a C i r c l e " i s a"
Point (i n the sense that C i r c l e objects contai n a l l the funct ional i ty of Point object s) .
L i ne s 1 7-2 1 i n voke base-c lass member funct ions getX, getY, setX, s e t Y and print

off the base-c lass poin ter. We know that point Ptr i s ai med at a C i r c l e object , so i n

1 I I Fig . 1 0 . 7 : f ig 1 0_0 7 . cpp
2 I I At tempt ing to invoke derived - c l as s - only member funct i ons
3 I I through a base - c la s s pointer .
4 # inc lude " point . h " I I Point c l a s s de f in i t i on
5 #inc lude " c i rc l e . h " I I Circle c l a s s def init i on
6
7 int main ()
8 (
9 Point *pointPtr = 0 ;

1 0 C i rc l e c i rc l e (1 2 0 , 8 9 , 2 . 7) ;
1 1
1 2 I I a im base - c la s s pointer at derived- c l a s s obj ect
1 3 pointPtr = & c i rc l e ;
1 4
1 5 I I invoke base - c la s s member func t i ons on derived- c l a s s
1 6 I I obj ec t through base - c l a s s pointer
1 7 int x = pointPtr- >getX () ;
1 8 int y = point Pt r - > gety () ;
1 9 pointPtr- > setX (1 0) ;
20 pointPtr- > sety (10) ;
2 1 pointPtr- >print () ;
22
23 I I attempt to invoke derived - c l as s - only member funct i ons
24 l I on derived- c la s s obj ect through base - c la s s pointer
25 double radius = pointPt r - > getRadius () ;
26 pointPt r - > setRadius (3 3 . 3 3) ;
27 double diameter = pointPtr- >getDiameter () ;
28 double c i rcumference = pointPtr- >getCircumference () ;
29 doubl e area = pointPtr- >getArea () ;
30
3 1 return 0 ;
32
33 } I I end main

Fig. 10. 7 Attempting to i nvoke derived-c lass-only functions v ia a base-c lass pointer .
(Part 1 of 2 .)

Chapter 10 Object-Oriented Program ming: Polymorphism 673

C : \ cpphtp4 \ examp l e s \ chl O \ f ig l O_0 7 \ f i g l O_0 7 . cpp (2 5) : error C 2 0 3 9 :
' getRadiu s ' : i s not a member of ' Point '

C : \ cpphtp4 \ exampl e s \ chl O \ f ig l O_0 7 \point . h (6)
see dec larat ion of ' Point '

C : \ cpphtp4 \ examples \ chl O \ f ig l O_0 7 \ f ig l O_0 7 . cpp (2 6) error C 2 0 3 9 :
' setRadiu s ' : i s not a member of ' Point '

C : \ cpphtp4 \ exampl e s \ chl O \ f ig l O_07 \point . h (6)
see dec larat ion o f ' Point '

C : \ cpphtp4 \ exampl e s \ chl O \ f ig l O_0 7 \ f ig l O_0 7 . cpp (2 7) error C 2 0 3 9 :
' getDiameter ' : i s not a member of ' Point '

C : \ cpphtp4 \ example s \ chl O \ f i g l O_0 7 \point . h (6)
see dec larat ion of ' Point '

C : \ cpphtp4 \ examples \ chl O \ f iglO_0 7 \ f ig l O_0 7 . cpp (2 8) error C 2 0 3 9 :
' getCircumferenc e ' : i s not a member of ' Point '

C : \ cpphtp4 \ examples \ chl O \ f i g l O_0 7 \point . h (6)
see dec l arat ion of ' Point '

C : \ cpphtp4 \ example s \ ch l O \ f ig l O_0 7 \ f i g l O_0 7 . cpp (2 9) error C 2 0 3 9 :
' getArea ' : i s not a member of ' Point '

C : \ cpphtp4 \ examples \ chl O \ f ig l O_0 7 \point . h (6)
see dec larat ion of ' Point '

Fig.10.7 Attempting to i nvoke der ived-c lass-only functions v ia a base-c lass pointer .
(Part 2 of 2 ,)

l i nes 25-29, we attempt to i nvoke C i r c l e member funct ions getRad i u s , s e t Ra

diu s , getDiameter, getCi rcumf erenc e and getArea. The C++ compi ler gen
erates errors on each of these l i nes , because these are not member funct ions of base-c lass
Point . The handle can i nvoke only those funct ions that are members of that handl e ' s asso
c iated c lass type. (I n th i s case, off a Point *, we can i n voke on ly Point member func
t ions getX, getY, setX, setY and print .)

10.2.4 Virtual Functions

[n Sect ion 10 .2 . 1 , we aimed a base-c lass Point poi nter at a deri ved-c lass C i rc l e object ,
then i nvoked member funct ion print through that poin ter . Reca l l that the data type of the
handle determi ned wh ich c lass ' s funct ional i ty to i n voke. In that case , the Point pointer
i n voked Point member funct ion print on the C i rc l e , despi te the fact that the poi n ter
was a imed at a Circle that has i t s own proper print funct ion . Now, w i th virtual

funct ions , the type of the object being poin ted to, not the type of the handle , determi nes
which vers ion of a vi rtual funct ion to i nvoke.

Fi rst, we consider why vi rtual funct ions are usefu l . Suppose that a set of shape
c lasses such as C i rc le , Triang l e , Rectangle, Square, etc . , are all deri ved from
base c lass Shap e . I n object-oriented programming, each of these c l asses m ight be
endowed wi th the abi l i ty to draw i tse lf v i a a funct ion draw. A l though each c l ass has i t s
own draw funct ion , the funct ion for each shape i s qu i te d i fferen t . When drawi ng a shape,
whatever that shape may be, i t would be n ice to be able to treat al l these shapes generical l y

674 Object-Oriented Prog ra mming: Polymorphism Chapter 10

as objects of the base c l ass Shape. Then to draw any shape, we cou ld use a base-c l ass
Shape pointer to i n voke funct ion draw and let the program determ ine dynamically (i . e . ,
at r un t ime) wh i ch deri ved-c l ass draw funct ion to use, based on t he type of the object t o
wh i ch t he base-c lass Shape pointer poi nts a t any g i ven t i me .

To enable th i s k ind of behavior, we declare draw i n the base c l ass as a vi rtual
junction , and we override draw i n each of the derived c lasses to draw the appropriate
shape . From an implementat ion perspect ive , overrid ing a funct ion i s no d i fferent than rede
fi n i ng one (wh ich is the approach we have been using un t i l now) . An overr idden funct ion
i n a deri ved c l ass has the same s ignature as the funct ion i t overrides i n i t s base c l ass . I f we
do not declare the base-class funct ion as virtua l , we can redefi ne that func t ion . By con
trast , i f we dec l are the base-c l ass funct ion as vi rtua l , we can override that funct i on . We
dec l are a vi rtual funct ion by preceding the funct ion ' s prototype wi th the keyword
vi rtual i n the base c l ass . For example,

virtual void draw l) const i

would appear i n base c lass Shape. The preceding prototype dec lares that funct ion draw

is a constant vi rtual funct ion that takes no arguments and returns noth i ng .

Software Engineering Observation 1 0.2
Once a junction i s declared virtual, i t rernains vi rtual all the way down the inherit

ance h ierarchy FOIn that point, even if that junction is not explicitly declared vi rtual

when a class overrides it.

Good Programming Practice 1 0. 1
� Even though certainjunctions are ilnplicitly vi rtual because ofa declaration rnade h igher

� in the class hierarchy, explicitly declare these/ill1ctions vi rtual at every level oj the h ier

archy 10 promote prograrn clarity.

estmg and Debuggmg TIp 1 0 1
When a programm.er browses a class h ierarchy 10 locate a class to reuse, it is possible that

a /ill1ction in that class will exhibit vi rtual /i ll1ction beha viur even thuugh it is not explic-

itly declared vi rtual . This happens when the class il lherits a vi rtual /ilnction /i'om its

base class, and it can lead /() subtle logic errors. Such errors can be avoided by explicitly

declaring all vi rtual functions vi rtual.

Softwa re Engineering Observation 1 0.3
When a derived class chooses not 10 override a virtual jimetion from its base class, the

derived class simply inherits its base class ' vi rtual function implementation.

If the program i nvokes a vi rtual funct ion th rough a base-c lass poi nter to a der ived
c l ass object (e . g . , shapeP t r - > draw (») , the program w i l l choose the correct der ived
c l ass draw funct ion dynamical ly based on the object type-not the poi nter type. Choos ing
the appropriate funct ion to cal l a t execut ion t ime i s known as dynamic binding.

When a vi rtual funct ion i s cal l ed by referenc ing a spec i fic object by name and
us ing the dot member-se lect ion operator (e .g . , squareObj ect . draw (») , the funct ion
i nvocat ion i s resol ved at compi le t ime (th i s i s cal l ed static binding) and the vi rtual func
t ion that i s ca l l ed i s the one defi ned for (or i nherited by) the c l ass of that part i cu l ar object .
Thus , dynamic b ind ing w i th v i rtual funct ions occurs on ly off poi n ter (and , as we w i l l soon
see, reference) hand les .

Chapter 10 Object-Oriented Progra m ming: Polymorphism 675

Now that we have d i scussed the mot ivat ion for v i rtua l funct ions , we modify the pro
gram of Fig . 1 0 . I -Fig . 1 0 . S to incorporate v i rtual funct ions . F igure 1 0 . 8 and F ig . 1 0 .9 are
the header fi les for c l asses Point and Circ le, respect ive ly . Note that the on ly d i fference
between these fi l e s and those of Fig. 1 0 . 1 and Fig . 1 0 . 3 is that we spec i fy each c lass ' s
print member funct ion a s virtual (l i ne 1 7 o f F ig . 1 0 . 8 and l i ne 22 o f F ig . 1 0 . 9) .
Because funct ion print i s virtual i n c lass Point , c lass Circ l e ' s print funct ion
overrides c l ass Point ' s . Now, i f we a im a base-c lass Point pointer at a deri ved-c lass
Circle object , and the program uses that pointer to cal l funct ion print , the Circle
object ' s print funct ion w i l l b e i n voked. There were no changes t o t h e member-funct ion
i mp lementat ions of c l asses Point and Circle, so we reuse the vers ions of F ig . 1 0 . 2 and
F ig . 1 0 .4 .

// Fig . 1 0 . 8 : point . h 1
2
3
4
5
6
7
8
9

// Point c l a s s de f init ion repre sent s an x -y coordinate pair .
i fndef POINT_H
#de f ine POINT_H

c l a s s Point {

publ i c :
Point e int = 0 , int = 0) ; I I de fault const ructor

voi d setX (int) ; / I set x in coordinate pair
int getX () const ; /I return x f rom coordinate pair

void setY (int) ; / I s e t y in coordinate pair
int getY () const ; / I return y from c oordinate p a i r

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25

virtual voi d print () const ; I I output Point obj ect

privat e :
int x ;
int y ;

I I x part of coordinate pair
I I y part o f coordinate pa i r

} ; 1/ end c l a s s Point

#endi f

Fig. 10.8 Point class header f i le declares print function as virtua 1 .

, I I Fi g . 1 0 . 9 : c ircle . h
2 I I Circle c l a s s contains x-y coordinate pai r and radius .
3 # i fnde f C I RCLE_H
4 #de f ine C I RCLE_H
5
6 # i nc lude " po int . h " /1 Point c l a s s de f init ion
7
8 c l a s s C i r c l e : pub l i c Point {
9

Fig . 10.9 Circle c lass header f i le declares print function as vi rtua 1 . (Part 1
of 2 .)

676

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2.0
2 1
22
23
24
25
26
27
28
29

Object-Oriented Prog ramming: Polymorphism

publ i c :

I I de f ault const ructor
C i r c l e (int = 0 , int = 0 , double = 0 . 0) ;

voi d setRadius (double) ;
double getRadius () const ;

I I set radius
I I return radius

doubl e getDiameter () const ;
doubl e getC ircumference () const ;
doubl e getArea () const ;

virtual void print () const ;

private :
doubl e radiu s ; I I Circle ' s radius

} ; I I end c l a s s Circle

#endi f

I I return
/ I return
/ I return

I I output

Chapter 10

diameter
c i rcumference
area

C i r c l e obj ect

Fig. 10.9 C i rcle class header f i le declares print function as virtual. (Part 2
of 2 .)

We modified Fig . 10 .5 to create the program of F ig . 10 . 10 . Lines 4 1-53 demonstrate
again that a Point pointer a imed at a Point object can be used to i nvoke Point func
t ional i ty , and a Circle pointer aimed at a Circle object can be used to i nvoke Circle
funct ional i ty . L i ne 56 a ims base-class pointer pointPtr a t derived-class obj ect c i rcle .
Note that when l i n e 60 i nvokes member function print off t h e base-class pointer, the
derived-class Circle ' s print member funct ion i s i nvoked, so l i ne 60 outputs d ifferent
text than l i ne 55 does i n Fig. 10.5 (when member function print was not declared vir
tual) . We see tha t declaring a member funct ion virtual enables the program to deter
mine wh ich function to i n voke based on the type of object to wh ich the handle points , rather
than on the type of the handle . The dec i s ion abou t which funct ion to cal l i s an example of
polymorphism . Note that i f pointPtr pointed to a Point object rather than pointed to a
Circle obj ect, class Point ' s print function would have been i nvoked . Thus , the same
message, i n th is case, print , sent to a variety of objects (off a base-class pointer) takes on
"many forms"-hence, the term polymorphi sm .

1 I I Fig . 1 0 . 1 0 : f i g 1 0_1 0 . cpp
2 I I Introducing polymorphi sm, vi rtual funct i ons and dynamic
3 I I binding .
4 # inc lude < iostream>
5
6 using std : : cout ;
7 using std : : endl ;
8 using std : : f ixed ;
9

Fig. 10.10 Demonstrating polymorphism by invoking a derived-c lass v i rtual funct ion
via a base-c lass pointer to a derived-class object. (Part 1 of 3 .)

Chapter 1 0

1 0 #include < iomanip>
1 1

Object-Oriented Progra m ming: Polymorphism

1 2 us ing std : : setprec i s ion ;
1 3
1 4 # inc lude " po int . h " / I Point c la s s de f ini t ion
1 5 # inc lude " c ircle . h " I I Circ l e c la s s de f ini t i on
1 6
1 7 int main ()
1 8 {
1 9 Point point (3 0 , 5 0) ;
20 Point *pointPtr = 0 ;
2 1
22 Circle c ircle (1 2 0 , 8 9 , 2 . 7) ;
23 Circle * c i rc leptr = 0 ;
24
25 I I set f loat ing-point numeric formatt ing
26 cout « f ixed « setprec i s ion (2) ;
27
28 l/ output obj e c t s point and c i rc le u s ing stat i c binding
29 cout « " Invoking print funct ion on point and c i rc l e "
30 « " \ nobj ects with static binding "
3 1 « " \n\nPoint : " ;
32 point . pr int () ; I I s tat ic binding
33 cout < < " \ nCi rc l e : " ;
34 c i r c l e . print () ; I I stat ic binding
35
36 I I output obj ect s point and c irc le using dynamic binding
37 cout « " \n\ nInvoking print funct ion on point and c i rc l e "
38 « " \nobj ects with dynamic binding " ;
39
40 I I aim ba se - c l a s s pointer at bas e - c la s s obj ect and print
4 1 pointPtr = &point ;

677

42 cout « " \n\nCal l ing vi rtual func t ion print with base - c las s "
43 « " \npointer to base - c lass obj ect "
44 « " \ ninvokes bas e - c l a s s print func t i on : \ n " ;
45 pointPtr- >print () ;
46
47 I I a im derived - c l a s s pointer at derived - c l a s s
48 I I obj ect and print
49 c i rc l eptr = & c i rc l e ;
50 cout « " \n\nCa l l ing virtual funct ion print with "
5 1 « " \ nderived - c l a s s pointer t o derived - c l a s s obj ect "
52 « " \ninvokes derived- c l a s s print func t i on : \ n " ;
53 c i rc lePtr- >print () ;
54
55 I I a im base - c l a s s pointer at derived - c l a s s obj ect and print
56 pointPtr = & c i rc l e ;
57 cout « " \n\nCa l l ing virtual func t i on print with bas e - c l as s "
58 « " \npointer to derived - c l a s s obj ect "
59 « " \ ninvoke s derived- c l a s s print func t i on : \ n " ;
60 pointPtr- >print () ; I I polymorph i sm : invoke s c i r c l e ' s print
6 1 cout « endl ;

Fig. 10.10 Demonstrating polymorphism by invoking a derived-class v i rtua l function
via a base-c lass painter to a derived-class object . (Part 2 of 3 .)

678 Object-Oriented Programming: Polymorphism

62
63 return 0 ;
64
65 I I end main

Invoking print funct i on on point and circle
obj ects with stat i c binding

Point : [3 0 , 5 0]
Circle : Center . [12 0 , 8 9] ; Radius . 2 . 7 0

Invoking print funct ion on point and circle
obj ect s with dynamic binding

Cal l ing virtual funct ion print with base - c l a s s
pointer to base - c la s s obj ect
invokes base - c lass print function :
[3 0 , 5 0]

Cal l ing virtual func t i on print with
derived - c l a s s pointer to derived-class obj ect
invokes derived - c l a s s print function :
Center = [12 0 , 8 9] ; Radius . 2 . 7 0

Cal l ing virtual funct i on print with base - c l a s s
pointer to derived- c l a s s obj ect
invokes derived - c l a s s print funct ion :
Center = [1 2 0 , 8 9] ; Radius = 2 . 7 0

Chapter 1 0

Fig. 10.10 Demonstrating polymorph ism by invoking a derived-c lass v i rtual function
via a base-c lass pointer to a derived-class object . (Part 3 of 3 .)

Despi te the fact that a deri ved-c lass object also " i s a" base-class obj ect , the deri ved
c l ass and base-c lass objects are indeed d ifferent . As we have d i scussed prev ious ly , derived
c l ass objects can be treated as if they were base-c l ass objects . Th i s i s a logical re lat ionsh ip ,
because the deri ved c lass contai ns a l l the members of the base c lass , but the derived c lass
can have add i t ional deri ved-class-only members. For th i s reason , aim i ng a derived-class
poi n ter at a base-c lass object i s not a l lowed wi thout a n exp l i c i t cast-such an ass ignment
wou ld l eave the deri ved-c lass-only members undefi ned on the base-c lass object .

We have d i scussed four ways to ai m base-class poi nters and deri ved-class poi nters at
base-c lass objects and derived-class objects :

1 . A im ing a base-c lass poi nter at a base-c lass object i s stra ightforward .

2 . A i m ing a deri ved-class pointer at a derived-class object i s straightforward .

3 . A im i ng a base-c lass pointer at a deri ved-cl ass object i s safe , because the deri ved
c l ass object is an object of i ts base c lass . However, th i s poi nter can be used to i n
voke on ly base-class member funct ions . I f th i s code refers to deri ved-c lass-on ly
members through the base-c lass poi nter, the compi ler reports e rrors .

4. A im i ng a deri ved-c lass poi nter at a base-c lass object generates a compi ler e rror.
To avoid th i s error, the deri ved-c lass poi nter fi rst must be cast to a base-c lass

Chapter 10 Object-Oriented Progra m m i ng: Polymorphism 679

poi nter exp l i c i t l y . If the object to which the poi n ter po in t s is not a deri ved-c l ass
object , t h i s can be a dangerous operat ion . Sect ion 10.9 demonstrates how to en
sure that such a cast i s performed on ly i f the object i s a der ived-c l ass object . fI Common Programming Error 1 0. 2

After aiming a base-class poimer 0 1 a derived-class objecl, allempling 10 reference derived

class-only mem.bers wilh the base-class poinTer is a compilation error.

Common Programming Error 1 0.3
Trealing a base-class objecl a s a derived-class objecl can cause errors.

10.3 Polymorphism Examples

[n t h i s sec t ion , we d i scuss several examples of polymorph i sm . I f c l ass Rec t ang l e i s de
ri ved from c l ass Quadr i l atera l , then a Rec t angle object is a more spec i fic vers ion
of a Quadr i l at e ral object . Any operat ion (such as cal cu lat i ng the peri meter or the ar
ea) that can be performed on an object of class Quadr i lateral a lso can be performed
on an object of c l ass Rec t ang l e . Such operat ions a l so can be performed on other k i nds
of Quadr i l aterals, such as Squares, Para l l e l ograms and Trap e z o i ds . When
a program i nvokes a vi rtual funct ion through a base-c l ass (i .e . , Quadr i l ateral)

pointer or reference, C++ polymorph ical l y chooses the correct funct ion for the c l ass from
which the object was i nstan t iated . We i nvest igate this behavior in l ater examples .

Suppose tha t we des ign a v ideo game that man ipu lates objects of many d i fferent types,
inc lud ing objects of c l asses Mart ian, venut ian, Plutonian, Space Ship and La

serBeam. A l so, imagine that each of these c l asses i nheri ts from the common base c l ass
cal led Spac eObj ect, which contai ns member funct ion draw. Each deri ved c l ass imple
ments this funct ion . A screen-manager program wou ld main tai n a container (such as a
vec t or of Spac eObj e c t s) of poi nters to objects of the various c l asses . To refresh the
screen, the screen manager wou ld period ica J ly send each object the same message-namely ,
draw. However, each object responds in a un ique way . For example , a Mar t i an object
might draw i t se l f i n red with the appropriate number of antennae. A SpaceShip object
m ight draw i t se l f as a bright , s i l ver fly ing saucer. A Las erBeam object mjght draw i tse l f
a s a bright red beam across t he screen . Agai n , t he same message (i n th i s case, draw) sen t to
a variety of objects wou ld have "many forms" of resu l ts-hence , t he term polymorphism.

A pol y morph ic screen manager fac i l i tates adding new c l asses to a system w i th m i n
i mal mod ificat ions to t h e system ' s code. Suppose that we want to add objects o f c l ass Mer

curian to o u r v ideo game . To d o so, w e m u s t b u i l d a c l ass Mercur i an that i n heri ts from
Spac eObj e c t , but prov ides i t s own defi n i t ion of member funct ion draw. Then, when
objects of c l ass Mercurian appear i n the contai ner, the programmer does not need to
mod ify the code for the screen manager. The screen manager i n vokes member funct ion
draw on every object in the contai ner, regard less of the object ' s type , so the new Mercu

rian objects s imp ly "pl ug r ight i n . " Thus . wi thout mod i fy i ng the system (other than to
bu i l d and i nc l ude the c lasses themse lves) , program mers can u se polymorph i sm to i nc l ude
add i t ional c l asses that were not env i s ioned when the system was created .

W i th po lymorph ism, one funct ion can cause d i fferen t act ions to occur, depend ing on
the type of the object on wh ich the funct ion i s i nvoked . Th i s g i ves the programmer t remen
dous express ive capab i l i ty .

680 O bject-O riented Programming : Polymorphism Chapter 10

Software Engineering Observation 1 0.4
With vi rtual functions and polymorphism, the programmer can deal in generalities and

let the execution - time en vironment concern itself with the specifics. The programmer can

command a wide varie(y of objects to behave in manners appropriate /0 those objects without

even knowing the types of those objects (as long as those objects belong to the same inherit

ance hierarchy and are being accessed off a common base-class pointer).

Software Engineering Observation 1 0.5
Polymorphism promotes extensibility: Software written to in voke polymorphic behavior is

written independently of the types of the objects to which messages are sent. Thus. new types

of objects that can respond to existing messages can be incorporated i l 1 lo such a system with

out modifying the base system. Only client code that instantiates new objects must be modi

.fied to accommodate new types.

10.4 Type Fields and swi tch Structures

One way to determine the type of an object that i s incorporated i n a l arger program i s to use
a swi tch structure . Thi s al lows us to d i st ingu ish among object types, then i n voke an ap
propriate act ion for a part i cu lar object . For example , i n a h ierarchy of shapes i n which each
shape object has a shapeType attri bute, a swi tch structure cou ld check the object ' s
shapeType t o determine which print function t o cal l .

However, us ing swi tch logic exposes programs t o a variety o f poten t ial problems .
For example , t he programmer m igh t forget to inc lude a type test when one i s warranted, o r
might forget to test a l l poss ib le cases i n a swi tch structure . When modify i ng a swi tch

based system by adding new types, the programmer might forget to i n sert the new cases i n
al l re levant swi tch structures . Every addi t ion o r delet ion o f a c lass requ i res the mod ifi
cat ion of every swi tch structure in the system ; track ing these statements down can be
t i me consuming and error prone .

Software Engineering Observation 1 0.6
Polymorphic programming can eliminate the needfor unnecessary swi t ch logic. By 1.lsing

the C+ + polymorphism mechanism /O petform the equivalent logic. programmers can {/ I 'oid

the kinds of errors typical/v associated with swi t ch logic.

Testing and Debugging Tip 1 0.2
An il1 leresting consequence of using polymorphism i s that programs take o n a simplified ap

pearance. They contain less branching logic and more simple, sequential code. This simpli

fication facilitates testing, debugging and program maintenance.

10.5 Abstract Classes

When we th in k of a c lass as a type, we assume that programs w i l l create objects of that type.
However, there are cases in which it i s usefu l to defi ne c lasses for which the programmer
never i ntends to i nstantiate any objects. Such c lasses are cal led abstract classes. Because
such c lasses normal ly are used as base c lasses i n inheritance h ierarch ies , we refer to such
c lasses as abstract base classes. These c lasses cannot be used to i nstanti ate objects , because,
as we wi l l soon see, abstract c lasses are i ncomplete. Deri ved c lasses must defi ne the "mi ss
ing p ieces ." We bui ld programs wi th abstract c lasses i n Section 1 0 .6 and Sect ion 1 0 .9 .

Chapter 10 Object-Oriented Progra m ming: Polymorphism 68 1

The purpose of an abstract c l ass is to prov ide an appropriate base c l ass from which

other c l asses can i n heri t . C l asses that can be used to i n stan t iate objects are ca l l ed concrete

classes. Such c l asses prov ide i m plementat ions of every fu nct ion they defi n e . We cou l d

have a n abstract base c l ass TwoDimens iona l Shape a n d deri ve such concrete c l asses

as Square, C i rc l e and Triang l e . We cou l d a lso have an abstract base c l ass

ThreeDimens i onal Shape and deri ve such concrete c l asses as Cube, Sphere and

Cyl inder . Abstract base c lasses are too generic to defi ne real objects ; we need to be more

spec i fi c before we can th ink of i n stant iat i n g objects . For example , i f someone te l l s you to

"draw the shape," what shape wou l d you draw? Concrete c lasses prov ide the spec i fics that

make i t reasonab le to i n stan t iate objects .

A n i nheritance h ierarchy does not need to contain any abstract c l asses , but , as we w i l l

see, many good object-oriented systems have c lass h ierarch ies headed b y abstract base

c l asses . In some cases, abstract c l asses const i t u te the top few leve l s of the h ierarchy . A

good example of t h i s is the shape h ierarchy i n F ig . 9.3, which beg i n s w i t h abstract base

c lass Shap e . On the next leve l of the h ierarchy, we have two more abstract base c lasses,

namely, TwoDimens i onal Shape and ThreeDimens i ona l Shap e . The next l eve l

of the h ierarchy defi nes concrete c l asses for two-di mens iona l shapes (name ly , C i rc l e ,

Square and Triang l e) and for three-d i mens ional shapes (namely , Sphere, Cube and

Tet rahedron) .

A c lass i s made abstract b y dec lar ing one o r more o f i t s virtual funct ions to be

"pure . " A pure vi rtual function i s one with an in itializer of = 0 in its declarat ion , as i n

virtual void draw l) const = 0 ; I I pure virtual func t ion

Pure virtual funct ions norma l ly do not provide i m plementat ions . Every concrete

deri ved class m u st override al l base-c lass pure vi rtual funct ions and prov ide concrete

i m p lementat ions of those fu nct ions . The d ifference between a virtual funct ion and a

pure vi rtua l funct ion i s that a vi rtual funct ion has an i m p lementat ion and g i ves the

derived c l ass the opt ion of overrid ing the funct ion ; by contrast , a pure vi rtual funct ion

does not prov ide an i m p lementat ion and requ i res the deri ved c l ass to override the funct ion

(for that derived c l ass to be concrete) .

Software Engineering Observation 1 0.7
An abstract class defines a common public interface for the various classes i n a class h ier

archy. An abstract class typically contains one or more pure virtual functions that de

rived classes must override.

Common Programming Error 1 0.4
A tternpting to instantiate an object of a l l abstract class causes a compilation error.

Common Programming Error 1 0.5
Failure to override a pure vi rtual function i n a derived class then a ttempting t o instanti

are objects of that derived class is a compilation error.

Software Engineering Observation 1 0.8
An abstract class must have at least one pure virtu alfunction. A n abstract class also can have

data members and concrete functions (including constructors and destructors), which are

subject to the normal rules of inheritance by derived classes.

682 Object-Oriented Progra mming: Polymorphism Cha pter 10

A l though we cannot i n stan t i ate objects of abstract base c l asses, we can use abstract
base c l asses to dec l are poin ters and references that can refer to objects of any concrete
c l asses deri ved from these abstract c l asses . Programs typica l l y use such poi n ters and refer
ences to man ipu late such deri ved-class objects polymorph ica l l y .

Let us cons ider another appl icat ion of po lymorph i s m . A screen manager needs to d i s

p l ay a v ariety of objects , i n c l ud ing new types of objects that the programmer w i l l add to

the system after wri t i n g the screen manager. The system m ight need to d i sp l ay v ariou s

shapes, such as C i rc l e , Triangl e or Rec tang l e , which are deri ved from abstract

base c l ass Shape . The screen m anager uses Shape * poi n ters to manage the objects that

are d i sp layed. To draw any object (regard less of the leve l at wh ich that object ' s c l ass

appears i n the i nheri tance h ierarchy) , the screen manager uses a base-c l ass pointer to the

object to i n voke the objec t ' s draw fu nct ion, wh ich i s a pure virtual fu nct ion i n base

c l ass Shape; therefore , each derived c l ass must i mplement fu nct ion draw. Each Shape

object in the i nheri tance h ierarchy knows how to draw i t se l f. The screen manager does not

have to worry about the type of each object or whether the screen manager has ever encou n

tered objects of tha t type .

Po lymorph i sm i s part i c u l ar l y effect i ve for i mplement ing l ayered software system s . I n

operat i n g systems , for example , each type o f physical device cou l d operate q u i te d i fferen t ly

from the others. Even so , com mands to read or write data from and to dev ices may have a

certa in u n i form i ty . The wri te message sent to a device-dri ver object needs to be i n terpreted

spec i fica l l y in the context of that device dri ver and how that device dri ver man i pu l ates

dev ices of a spec i fic type. However, the write c a l l i t se l f rea l l y is no d i fferent from the wri te

to any other dev ice in the system-place some number of bytes from memory onto that

device. A n object-oriented operat i ng system m i ght use an abstract base c lass to prov ide an

i n terface appropriate for a l l dev ice dri vers. Then , through i n heri tance from that abstract

base c l ass , deri ved c lasses are formed that a l l operate s i m i larl y . The capabi l i t i e s (i . e . , the

pub l i c fu nct ions) offered by the device dri vers are prov ided as pure virtual fu nct ions

i n the abstract base c l ass . The i mplementat ions of these pure vi rtual funct ions are pro

v i ded i n the deri ved c l asses that correspond to the spec i fic types of dev ice dr i vers .

I t i s com mon i n object-ori en ted progra m m i ng to defi ne an ileralor class that can

t raverse a l l the objects i n a conta i ner (such as an array) . For example, a program can pri n t

a l i st of objects i n a vector by creat i ng an i terator object , then us ing the i terator to obta in

the next e lement of the l i st each t i me the i terator i s ca l led . T terators often are used i n po ly

morph ic programming to traverse an array or a l i nked l i st of poi n ters to objects from var
ious leve l s of a h ierarchy . The poin ters in such a l i st are a l l base-c lass po i n ters. (Chapter 2 1 ,
Standard Template Li brary , presents a thorough treatment of i terators .) A l i st of po i n ters to

objects of base c l ass TwoDimens ional Shape cou l d conta i n po in ters to objects from

c l asses Square , C i r c l e , Triangle and so on . U s i ng poly morph i sm to send a draw

message, off a TwoDimens ional Shape * poi nter, to each object i n the l i st wou ld draw
each object correct l y on the screen .

1 0 .6 Case Study: Inheriting Interface and Implementation

Th i s sect ion reexam i nes the Point, C i rc l e , Cyl inder h ierarchy that we exp lored i n

Chapter 9 . I n t h i s example , t h e h ierarchy begi ns w i th abstract base c l ass Shape, w h i c h de

fi nes the " i nterface" to the hi erarchy-i .e . , the set of fu nct ions that a program can i n v oke

on al l Shape objects . C l ass Shape prov ides four fu nct ions-getArea , getVo l ume ,

Cha pter 10 Object-Oriented Progra m ming : Polymorphism 683

getName and print . The d iagram of F ig . 1 0 . 1 1 shows each of the fou r c l asses in the h i

erarchy and each of t h e fou r funct ions defi ned i n c l ass Shape. For each c l ass , t h e d iagram

shows the des i red resu l t s of each fu nct ion . Note that c l ass Shape spec i fies " = 0 " for fu nc

t ions getName and print . We do this to ind icate that getName and print are pure

vi rtual fu nct ions . A defau l t i mplementat ion does not make sense for each of these fu nc

t ions, because there i s not enough i n format ion to determ i ne what stri ng getName shou ld

return or what print shou l d output . Each subc lass overrides these fu nct ions to prov ide

appropriate imp lementat ions . Funct ions getArea and getVolume each have defa u l t

i mplementat ions that return o . O . C l ass Point inheri t s these i mplementat ions-Points

i ndeed have an area of 0 . 0 and a vo lume of o . O . C lass C i r c l e i nher i t s the defau l t i m

p lementat ion of getVolume-C i rc l e s i ndeed have a vol u me of 0 . O-and overrides

funct ion getArea to cal c u l ate the true area of a c i rc le . Fi n a l l y , c l ass Cyl inder over

rides both getArea and getVolume to perform calcu lat ions appropri ate for a c y l i nder.

Software Engineering Observation 1 0 9
A derived class can il lherit intefjace or ill 1plell1elllatioll .from a base class. Hierarchies de

signedjor implementation inheritance tend 10 have their fi ll 1ctiollality high in the h ierarchy

each new derived class inherits olle or more lI1ember fllnctions thaI were defined in a base

class, and the new derived class uses the base-class defin itions. Hierarchies designed jor in

terface inheritance tel 1d to have theirjunctionality lower ill the hierarchy-a base class spec

ifies one or more jul1ctions that should be de.filled .for each class in the hierarchy (i. e . . they

have the same sigllall lre) , but the illdividl lal deri l 'ed classes provide their 01-1'11 implementa

tions (if the junctioll (s) .

The h ierarchy i n this example mechan ical ly demonstrates the power of pol y morph i s m .

I n t h e exerc i ses , we exp lore a more substant ia l shape h ierarchy . The Shape header fi l e

(Fig . 10. 1 2) defi nes virtual funct ions getArea and getVolume (l i nes 1 5 and 1 8)
and pure vi rtual funct ions getName and print (l i nes 2 1 -22) . A l l shapes have an area

and a vo lu me, so vi rtua l funct ions getArea and getVolume retu rn the shape ' s area

and vol ume, respect i v e l y . The vol u me of two-d i mens ional shapes i s a l ways zero , whereas

getArea get Volume get Name print

Shape 0 . 0 0 . 0 = 0 = 0

Point 0 . 0 0 . 0 " Point " [x , y]

TCl2 0 . 0 " C i rc l e "
cent e r = [x , y] ;

radi u a = r
C i r c l e

cent e r = [x , y] ;

Cyl inder 21[f2 + 21[1"11 TCl211 " Cyl inde r " radiu a = r ;

he i ght =h

Fig. 1 0. 1 1 Defin ing the polymorphic i nterface for the Shape h ierarchy c lasses .

684 Object-Oriented Programming: Polymorphism Chapter 10

three-d i mens ional shapes have a posi t i ve, nonzero vo lume . I n the c lass Shape i mp lemen
tat ion (Fig . 1 0 . 1 3) , v i rtua l funct ions getArea (l i nes 1 0- 1 4) and getVolume (l i ne s 1 7-
20) return zero, by defau l t . Programmers override these funct ions i n the derived concrete
c l asses w i th appropriate i mplementat ions (see Fig. 1 0 . 1 I) . We dec l are funct ions getName

and print (l i nes 2 1 -22 of Fig . 1 0. 1 2) as pure v i rtual funct ions , so deri ved c l asses that

i nherit d i rect ly from Shape m u st i mplement these funct ions to become concrete c lasses .

1 1 / Fig . 1 0 . 12 : shape . h
2 I I Shape abstract -base - class de finition .
3 # i fnde f SHAPE_H
4 #de f ine SHAPE_H
5
6 # inc lude < string> / 1 c + + standard string c l a s s
7
8 using std : : string ;
9

1 0 c l a s s Shape
1 1
1 2 publ i c :
1 3
1 4 I I vi rtual funct ion that returns shape area
1 5 vi rtual double getArea () const ;
1 6
1 7 I I vi rtual funct i on that returns shape volume
1 8 virtual doubl e getVolume () const ;
1 9
20 1 / pure virtual func t ions ; overridden in derived c la s s e s
2 1 vi rtual string getName () const = 0 ; I I return shape name
22 virtual void print () const = 0 ; I I output shape
23
24 } ; I I end c l a s s Shape
25
26 #endi f

Fig. 10.12 Abstract base c lass Shape header f i le .

1 1 / Fig . 1 0 . 1 3 : shape . cpp
2 I I Shape c lass member - funct ion de f init ions .
3 #inc lude < iostream>
4
5 using std : : cout ;
6
7 #inc lude " shape . h " 1 / Shape c l a s s def init i on
8
9 I I return area of shape ; 0 . 0 by de fault

1 0 double getArea () const
1 1 {
1 2 return 0 . 0 ;
1 3
1 4 / 1 end funct i on getArea

Fig. 10. 1 3 Abstract base class Shape . (Part 1 of 2 .)

Chapter 10 Object-Oriented Progra m ming : Polymorphism

1 5
1 6 I I return volume of shape i 0 . 0 by de fault
1 7 double getVolume () const
1 8 {
1 9 return O . O i
20
2 1 I I end funct ion getVolume

Fig. 10.13 Abstract base c lass Shape . (Part 2 of 2 .)

685

C l ass Point (Fig . 1 0 . 1 4-Fig . 1 0 . 1 5) i n heri ts from abstract base c l ass Shape and

overrides pure v i rtua l funct ions getName and print , which makes Point a concrete

class . A poi n t ' s area and vo l u me are zero , so c l ass Point does not override v i rtua l base

c l ass funct ions getArea and getVolume, thus i nheri t i ng Shape ' s i mp lementat ions of

these funct ions . Note that in c l ass Point ' s header fi l e (Fi g . 1 0 . 1 4) , we dec l ared member

funct ions getName and print as vi rtual (l i nes 20 and 2 2)-actual l y , p l ac i n g the

vi rtual keyword before these member funct ions i s redundant . We defi ned them as

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
2 7
28
29
30

I I Fig . 1 0 . 1 4 : point . h
I I Point c l a s s def init ion repre sent s an x-y c oordinate pair .
i fndef POINT_H
#de f ine POINT_H

#inc lude " shape . h " I I Shape c l a s s de f init ion

c l a s s Point : pub l i c Shape {

publ i c :
Point (int = 0 , int = 0) i I I default const ructor

void setX (int) i / I set x in c oordinat e pair
int getX () const i / I return x f rom coordinate pair

voi d sety (int) i / I s e t y in c oordinate pair
int gety () const i / I return y f rom coordinate pair

/I return name o f shape (i . e . , " Point "
virtual string getName () const i

virtual void print () const i I I output Point obj ect

privat e :
int X i
int Y i

I I x part of coordinate pair
I I Y part o f coordinate pair

} i I I end c l a s s Point

#endi f

Fig. 10.14 Point c lass header fi le .

686 Object-Oriented Progra mming: Polymorphism Cha pter 10

vi rtual i n base c l ass Shape, so they remain virtual fu nct ions throughout the c l ass

h ierarchy .

F igure 1 0 . 1 5 conta ins the member-funct ion i mp lementat ions for c l ass Point . Li nes

46-50 i m p lement funct ion getName to return the st ring " Point " . In add i t ion , l i nes

5 3-5 7 i m p lement funct ion print to output the Point ' s data . I f we did not provide one

or both of these i mplementat ions , c l ass Point wou l d have been an abstract c l ass .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44

I I Fig . 1 0 . 1 5 : point . cpp
I I Point c l a s s member - funct ion def init ions .
#inc lude < iostream>

using s td : : cout ;

inc lude " point . h " I I Point c l a s s de f in i t i on

I I default const ructor
Point : : Point C int xValue , int yValue)

: x C xValue) , y C yVa lue)

I I empty body

1 / end Point constructor

/ / set x in coordinate pair
void Point : : setX C int xValue

x = xValue ; / / no need for val idation

/ / end funct i on setX

/ / return x from coordinate pair
int Point : : getX C) const
{

return x ;

/ / end funct ion get X

/ / set y in coordinate pair
void Point : : sety C int YValue

y = yValue ; / / no need for val idat ion

} / / end func t i on sety

/ / return y from coordinate pair
int Point : : getY C) const
{

return y ;

} / / end func t i on gety

Fig. 10. 1 5 Point c lass implementation fi le . (Part 1 of 2 .)

Cha pter 10 Object-Oriented Progra m ming: Polymorphism 687

45 I I override pure virtual funct ion getName : return name of Point
46 string Point : : getName () const
47 {
48 return " Point " ;
49
50 I I end func t i on getName
5 1
52 I I override pure virtual funct ion print : output Point obj ect
53 void Point : : print () const
54 {
55 cout « ' [' « getX () « " " « gety () « ' 1 ' ;
56
57 } I I end funct ion print

Fig. 10.15 Point c lass implementation fi le , (Part 2 of 2 ,)

C l ass C i r c l e (Fig . 1 O . 1 6-Fig . 1 0 . 1 7) i nheri t s from c l ass Point . The C i r c l e c l ass

header fi le (Fig . 1 0 . 1 6) dec l ares add i t ional member fu nct ions setRadius and getRa

dius (l i nes 1 5- 1 6) for access ing the c i rc l e ' s rad ius . C l ass C i r c l e a l so adds member

fu nct ions getDiameter and getCi rcumf erenc e (l i nes 1 8- 1 9) for obtai n i ng the

c i rc le ' s d iameter and c i rc u m ference, respec t ive ly . We do not dec l are any of these funct ions

vi rtua l , so c lasses derived from c l ass C i rc l e can not override them (a l though deri ved

c l asses certa i n l y can redefi ne the m) . We do dec l are member fu nct ions getArea, get

Name and print vi rtual as a matter of good pract ice-remember, these funct ions are

a l l i mp l i c i t l y v i rt u a l , because they are v i rtua l in base c l ass Point .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24

I I Fig . 1 0 . 1 6 : c irc le . h
I I Circle c las s contains x - y coordinate pair and radiu s .
i fnde f C I RCLE_H
#de f ine C I RCLE_H

i nc lude " point . h " I I Point c l a s s de f init ion

c l a s s C i rc l e : publ i c Point {

publ i c :

I I de f au l t const ructor
C i r c l e (int = 0 , int = 0 , double = 0 . 0) ;

void setRadius (double) ;
doubl e getRadius () const ;

I I set radius
I I return radius

double getDiameter () const ;
doubl e getCi rcumference () const ;
virtual doubl e getArea () const ;

I I return diameter
I I return c i rcumference
I I return area

I I return name o f shape (i . e . , " C i rc l e ")
virtual s t ring getName () const ;

Fig. 10.16 Ci rcle class header f i le . (Part 1 of 2 .)

688 Object-Oriented Prog ram ming: Polymorphism

25 vi rtual void print {) const ; I I output Circle obj ect
26
2 7 privat e :
28 double radius ; I I Circle ' s radius
29
30 } ; I I end c l a s s C i r c l e
3 1
3 2 #end i f

Fig. 10.16 C i rc l e class header f i le . (Part 2 of 2 .)

Chapter 1 0

Figure / 0 . 1 7 conta in s the member-funct ion i mplementat ions for c l ass C i r c l e . Note

that, because a c i rc le has a vo l u me of zero, c l ass C i rc l e does not overr ide base-c l ass

member funct ion getVolume . Rather, C i rc l e i nheri ts th is funct ion ' s i mplementat ion

from c l ass Point , which was, i n turn, i nherited from Shape . However , a c i rc l e does

requ i re an area ca lcu lat ion other than zero (i .e . , 1tr2), so C i r c l e overrides Point member

funct ion getArea (l i nes 46-50) . Member funct ion getName (l i nes 5 3-5 7) of c l ass

Circle overrides Point member funct ion getName . I f c l ass C i rc l e d i d not override

funct ion getName, C i rc l e would have inherited the Point vers ion of getName . I n

that case, C i rc l e ' s getName funct ion wou ld have erroneous ly returned " Point " . For

the same reason , C i rc l e member funct ion print (l i nes 60-66) overrides Point

member funct ion print to output informat ion spec i fic to a c i rc l e . Note that l i ne 63 of

funct ion print i n vokes Point ' s print funct ion to perform part of the work of

C i rc l e ' s print funct ion ; t h i s is a n ice example of code reuse .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23

I I Fig . 1 0 . 1 7 : c i rc le . cpp
I I Circle c la s s member - funct ion def initions .
inc lude < iostream>

using std : : cout ;

inc lude " c i rc l e . h " 1/ Circle c l a s s de f ini t ion

I I def ault construc tor
C i rc l e : : C ircle { int xValue , int yValue , double radiusValue)

: Point { xValue , yValue) I I call base - c l a s s con s t ructor

setRadius (radiusValue) ;

I I end Circle constructor

/1 set radius
void Circle : : setRadius (double radiusValue)
{

radius = (radiusValue < 0 . 0 ? 0 . 0 : radiusValue) ;

} I I end funct i on setRadius

Fig. 10.17 C i rc l e class that inherits from class Point . (Part 1 of 2 .)

Chapter 10 Object-Oriented Progra m m i n g : Polymorphism

24 II return radius
25 double C i r c l e : : getRadius () const
26 {
27 return radius ;
28
29 I I end funct i on getRadius
30
3 1 I I cal cu lat e and return diameter
32 double C i r c l e : : getDiameter () const
33 {
34 return 2 * getRadius () ;
35
36 } I I end funct ion getDiameter
37
38 I I calculate and return c i rcumference
39 doubl e C i r c l e : : getC i rcumference () const
40 {
4 1 return 3 . 1 4 1 5 9 * getDiameter () ;
42
43 I I end func t ion getC i rcumferenc e
44
45 I I override virtual func t ion getArea : return area of C i rc le
46 doub l e C i rc l e : : getArea () const
47 {
48 return 3 . 14 1 5 9 * getRadius () * getRadius () ;
49
50 I I end func t ion getArea
5 1
52 I I override virutual funct ion getName : return name o f C irc le
53 string C irc l e : : getName () const
54 {
55 return " Circ l e " ;
56
57 } I I end funct i on getName
58
59 I I override virtual funct i on print : output C ircle obj ec t
60 void C i r c l e : : print () const
6 1 {
62 cout « " center i s " ;
63 Point : : print () ; I I invoke Point ' s print funct ion
64 cout « " ; radius is " « getRadius () ;
65
66 I I end funct ion print

Fig. 10.17 C i rc l e c lass that inherits from c lass Point . (Part 2 of 2 .)

689

C l ass Cyl inder (Fig . 1 0 . I S-Fig . 1 0 . 1 9) i nheri ts from C i r c l e . The Cyl inder

c l ass header fi l e (Fig . I O . I S) dec l ares al l four vi rtual funct ions ori g i na l l y defi ned i n

c lass Shape (l i nes I S , L 9 , 22 and 24) . C l ass Cyl inder must override each o f these func

t ions to provide Cyl inder-spec i fic funct iona l i ty .

F igure 1 0 . 1 9 conta i ns the me mber-funct ion i m p l e mentat ions for c l ass Cyl inder.
A cy l i nder has d i fferent area and v o l u me cal c u l at ions from those of a c i rc l e , so c l ass Cyl

inder overrides member funct ion getArea (l i nes 33-3 S) to cal c u l ate the c y l i nder ' s

690

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1

Object-Oriented Prog ramming : Polymorphism

I I Fig . 1 0 . 1 8 : cyl inder . h
I I Cyl inder c l a s s inheri ts from class Circle .
i fnde f CYLINDER_H
#de f ine CYLINDER_H

inc lude " c ircle . h " I I C i rc l e c l a s s de f i ni t i on

c l a s s Cyl inder : pub l i c Circle

publ i c :

I I de fault constructor

Chapter 10

Cyl inder (int = 0 , int = 0 , double = 0 . 0 , doubl e = 0 . 0) ;

void setHeight (double) ;
double getHe ight () const ;

I I set Cyl inder ' s he ight
1 / return Cyl inder ' S he ight

virtual double getArea () const ; I I return Cyl inder ' s area
virtual doubl e getVolume () const ; / 1 return Cyl inder ' s vo lume

/ / return name of shape (i . e . , " Cyl inde r "
virtual string getName () const ;

virtual void print () const ; / 1 output Cyl inder

private :
doubl e he ight ; / / Cyl inder ' s he ight

} ; / 1 end class Cyl i nder

#end i f

Fig. 10.18 Cyl inder c lass header fi le .

surface area (i . e . , 21t? + 21trh) and overrides member funct ion getVo lume (l i nes 4 1 -45)
to cal c u l ate the c y l i nder' s vo lume (1t/.2h) . N ote that Cyl inder funct ion getArea

i n vokes C i rc l e ' s getArea (l i ne 35) to perform part of the area ca lcu la t ion ; t h i s i s a n i ce

example of code reuse . Member funct ion getName (l i nes 48-5 2) overrides C i rc l e fu nc

t ion getName . If c lass Cyl inder did not override this funct ion , the c l ass would have
i nheri ted C i rc l e member funct ion getName, which would have erroneous ly returned
" C i rc l e " . S i m i l arly , Cyl inder member funct ion print (l i nes 55-60) overrides

C i rc l e funct ion print to output i n format ion spec i fic to a cy l i nder. Once aga i n , note

that Cyl inder' s print fu nct ion i n vokes C i rc l e ' s print (l i ne 57) to output the

C i r c l e part of the Cyl i nder; th i s is another n ice example of code reuse .

The program of F ig . 1 0 . 20 creates an object of each of the three concrete c l asses

(Point, C i rc l e and Cyl inde r) and manipu l ates those objects , fi rst wi th stat i c b i n d i n g
(l i nes 34-44) , then polymorphica l l y u s i n g a vec tor o f Shape poi n ters . L i n e s 30-32
i n stant iate Point obj ect point , C i rc l e object c i r c l e and Cyl i nder object cyl

inder, respect ive ly . L i nes 34-44 then i nvoke member funct ions getName and p r i n t

for objects point , c i rc l e and cyl inder to output each object ' s c l ass name and data
(i .e . , x-y coord i nate pai r, rad ius and height , depending on each object ' s type) . Each

Chapter 10 Object-Oriented Progra m m i n g : Polymorphism 69 1

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53

I I Fig . 1 0 . 1 9 : cyl inder . cpp
I I Cyl inder c la s s inherits from class Circle .
inc lude < iostream>

using std : : cout ;

inc lude " cyl inder . h " I I Cyl inder c l a s s def init i on

I I de faul t cons tructor
Cyl inder : : Cylinder { int xValue , int yVa lue , doubl e radiusValue ,

doubl e heightValue)
: C i r c l e { xValue , yValue , radiusValue

{
setHei ght { he ightValue) ;

I I end Cyl inder const ructor

I I set Cyl inder ' s he ight
void Cyl inder : : setHeight { double he ightValue)
{

he ight = (he ightValue < 0 . 0 ? 0 . 0 : he ightValue) ;

} I I end funct i on setHe ight

I I get Cyl i nder ' s he ight
doubl e Cyl i nder : : getHe ight {) const
{

return he ight ;

I I end funct ion getHe ight

I I override virtual funct ion getArea : return Cyl inder area
double Cyl i nder : : getArea () const
{

return 2 * Circle : : getArea {) +
getCi rcumference {) * getHe ight {) ;

I I c ode reus e

} I I end funct ion getArea

I I override vi rtual funct ion getVolume : return Cyl inder volume
double Cyl inder : : getVo lume {) const
{

return Circle : : getArea {) * getHe ight {) ; I I code reus e

} I I end func t ion getVolume

I I override virtual funct ion getName : return name o f Cyl i nder
st ring Cyl inder : : getName {) const
{

return " Cylinder " ;

I I end funct ion getName

Fig. 10.19 Cyl inder class implementation fi le . (Part 1 of 2 .)

692 Object-Oriented Programming: Polymorphism

54 I I output Cyl inder obj ec t
55 void Cyl inder : : print () const
56 {
57 C i r c l e : : print () ; I I code reuse
58 cout « " ; height is n « getHe ight () ;
59
60 I I end funct ion print

Fig. 10.19 Cyl inder class implementation f i le . (Part 2 of 2 .)

Chapter 10

member-funct ion i nvocation i n l i nes 34--44 i s an example of static b ind i ng-at compi l e
t i me , because we are u s i ng name handles (not pointers o r references that coul d be set a t exe
cut ion t ime) , the comp i l er can ident ify each object ' s type to determ ine which getName

and print funct ions are cal led .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36

I I Fig . 1 0 . 2 0 : f i g l 0_2 0 . cpp
I I Driver for shape , point , c i rc le , cyl inder hierarchy .
inc lude < iostream>

u s ing std : : cout ;
using std : : endl ;
u s ing std : : f ixed ;

i nc lude < i omanip>

u s ing std : : setprec i s ion ;

inc lude <vector>

us ing std : : vector ;

i nc lude " shape . h "
inc lude " point . h "
inc lude " c irc l e . h "
inc lude " cyl inder . h "

I I Shape c lass de f ini t ion
I I Point c las s de f ini t ion
I I Circle c lass de f ini t ion
I I Cyl inder clas s de f ini t ion

void vi rtualViaPointer (const Shape *) ;
void virtualViaRe ference (const Shape &) ;

int main ()
{

I I set f loat ing-point number format
cout « f ixed « setprec i s ion (2) ;

Point point e 7 , 1 1) ;
Circle c i rc l e t 2 2 , S , 3 . 5) ;
Cyl inder cyl inder (1 0 , 1 0 , 3 . 3 , 1 0) ;

I I create a point
I I c reate a Circle
I I creat e a Cyl inder

cout « point . getName () « " : " ;
point . print () ;

I I stat ic binding
I I stat ic binding

cout « ' \ n ' ;

Fig. 10.20 Demonstrat ing polymorphism via a h ierarchy headed by an abstract base
class . (Part 1 of 3 .)

Chapter 10 Object-Oriented Progra m m i n g : Polymorphism

37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
7 2
73
74
75
76
77
78
79
80
8 1
82
83
84
85
86
87
88

cout « c i rc l e . getName {) « " : " ;
c i r c l e . print () ;
cout « 0 \ n O ;

I I stat ic binding
I I stat ic binding

cout « cyl inder . getName ()
cyl i nder . print () ;

« " : " ; I I stat ic binding

cout « " \ n \ n " ;
I I stat ic binding

I I create vector of three base - c l a s s pointers
vector< Shape * > shapeVector (3) ;

I I aim shapeVector [O] at derived- c la s s Point obj ect
shapeVector [0] = &point ;

I I aim shapeVector [l] at der ived- c l a s s Circle obj ect
shapeVector [1] = & c i rc l e ;

/ / aim shapeVector [2] a t derived-c l a s s Cyl inder obj ect
shapeVector [2] = &cyl inde r ;

I I loop through shapeVector and cal l vi rtualViaPointer
/ 1 t o pr int the shape name , at tribute s , area and vo lume
/ / of each obj ec t using dynamic binding
cout « " \nVi rtual funct ion cal l s made o f f "

« " base - c l a s s pointers ! \n \ n " ;

for (int i = 0 ; i < shapeVector . s i ze () ; i + +
virtualViaPointer (shapeVector [i]) ;

I I loop through shapeVector and cal l virtualViaRe ferenc e
I I to print the shape name , attributes , area and volume
I I of each obj ec t us ing dynamic binding
c out « " \nVi rtual funct ion cal l s made o f f "

« " base - c l a s s reference s : \ n \ n " ;

for (int j = 0 ; j < shapeVector . s i ze () ; j + +
virtualViaRe ference (* shapeVector [j]) ;

return 0 ;

1 / end mai n

1 / make virtual funct i on c a l l s o f f a base - c l a s s pointer
I I u s i ng dynamic binding
void virtualViaPointer (const Shape *baseC l a s sptr
{

cout « baseC l a s s Pt r - > getName () « " : " ;

baseClassPtr- >print () ;

cout « " \ narea i s II « baseClas sPtr- > getArea ()

693

Fig. 10.20 Demonstrating polymorphism via a h ierorchy headed by an a bstract base
class. (Part 2 of 3 .)

694 Object-Oriented Programming: Polymorphism

89 « " \ nvolume is " « baseClassPt r - > getVolume ()
90 « " \ n \ n " ;
9 1
92 } I I end funct ion virtualViaPointer
93

Chapter 10

94 I I make virtual funct ion cal l s o f f a bas e - c l a s s reference
95 I I us ing dynamic binding
96 void virtualViaRe ference (const Shape &baseClas sRe f
97 {
98 c out < < baseC lassRe f . getName () < < " : " ;
99
1 00 baseClassRe f . print () ;
1 0 1
1 02 cout < < " \narea i s " < < baseC lassRe f . getArea ()
1 03 « " \ nvolume i s " « baseC lassRe f . getVolume () « " \n \ n " ;
1 04
1 05 } I I end funct i on virtualViaRe ference

Point : [7 , 1 1]
Circle : c enter i s [2 2 , 8] ; radius i s 3 . 5 0
Cyl inder : center i s [1 0 , 1 0] ; radius i s 3 . 3 0 ; hei ght i s 1 0 . 0 0

Virtual funct ion cal l s made o f f base - c la s s pointers :

Point : [7 , 1 1]
area i s 0 . 0 0
volume i s 0 . 0 0

Circle : c enter i s [2 2 , 8] ; radius i s 3 . 5 0
area i s 3 8 . 4 8
volume i s 0 . 0 0

Cyl inder : center i s [1 0 , 1 0] ; radius i s 3 . 3 0 ; height i s 1 0 . 0 0
area i s 2 7 5 . 7 7
volume i s 3 4 2 . 12

Virtual func t i on cal l s made o f f base - c lass referenc e s :

Point : [7 , 1 1]
area i s 0 . 0 0
volume i s 0 . 0 0

Circle : center i s [2 2 , 8] ; radius i s 3 . 5 0
area i s 3 8 . 4 8
volume i s 0 . 0 0

Cyl inder : center i s [1 0 , 1 0] ; radius i s 3 . 3 0 ; he ight i s 1 0 . 0 0
area i s 2 7 5 . 7 7
volume i s 3 4 2 . 12

Fig. 10.20 Demonstrating polymorphism via a h ierarchy headed by an a bstract base
c lass . (Part 3 of 3 .)

Chapter 10 Object-Oriented Progra m m i n g : Polymorphism 695

Line 47 then a l locates shapeVector, which contai ns three Shape poin ters. Li ne 50

a ims shapeVector [0] at object point , l i ne 53 a ims shapeVector [1] at object

c i rc l e and l i ne 56 aims shapeVector [2] at object cyl inder . The C++ compi ler

a l lows these assignments, because a Point i s a Shape, a C i r c l e i s a Shape and a Cyl

inder i s a Shape. Therefore, we can assign the addresses of Point , C i r c l e and Cyl

inder obj ects to base c lass Shape poin ters, even though Shape i s an abstract c lass .

Next, a for structure (l i nes 64-65) traverses shapeVec t o r and i nvokes fu nct ion

virtual vi aPointer (l i nes 82-92) for each shapeVector e lement . Funct ion vi r

tualvi aPoint er rece ives i n parameter ba s eC l a s s p t r (of type const Shape *)
the address stored i n a shapeVector e lement . Each cal l to virtual viaPointer

uses bas eC l a s s p t r to i nvoke virtual funct ions getName (l i ne 84) , print (l i ne

86) , getArea (l i ne 8 8) and getVolwne (l i ne 89) . Note that fu nct ion vi rtual V i a

Pointer does no t contai n any Point , C i rc l e or Cyl inder type i n format ion . The

funct ion knows o n l y about type Shape. Therefore , at compi l e t i me, the compi ler can not

know which concrete c l ass ' (i . e . , Point , C i r c l e or Cyl i nder) fu nct ions to ca l l

through baseC l a s s p t r . Yet at execut ion t i me, each v i rtua l -fu nct ion i n v ocat ion cal l s the

funct ion on the object to which bas eC l a s s p t r poin ts at that t i me . The output i l l u strates

that the appropriate funct ions for each c l ass are i ndeed i n voked. F irst , the s tr ing " Point "

and the coord i nates of the object point are output ; the area and vo l u me are both output as

0 . 0 0 . Next , the stri ng " C i rc l e " , the coord i nates of the center of object c i rc l e and

the rad i u s of object c i rc l e are output ; the area of c i rc l e i s ca lcu lated and the v o l u me

i s returned as 0 • 0 0 . Fina l l y , the str i ng " Cyl inder " , the coord i nates of the center of the

base of object cyl i nder, the rad i u s of object cyl inder and the he ight of object cyl

i nder are output ; the area and vo lume of cyl inder are ca lcu lated. A l l vi rtual func

t ion ca l l s to getName , print, getArea and getVo l wne are reso l ved at run t i me w i t h

dynCllnic binding (a l so ca l l ed late binding) .

Fina l l y , another f o r struct ure (l i nes 73-74) traverses shapeVe c t or a n d i nvokes

funct ion vi rtual Vi aRe f e rence (l i nes 96- 1 05) for each shapeVec t o r e lement .

Func t ion vi rtual ViaRe f erence rece i ves i n i t s parameter baseC l a s s Re f (of type

const Shape &), a reference formed by dereferenc ing the pointer stored in each shape

Vec tor e lement (l i ne 74) . Each cal l to vi rtualVi aRe f erence i n vokes virtual

funct ions getName (l i ne 98) , print (l ine 1 00) , getArea (l i n e 1 02) and getVolwne

(l i ne 103) v ia reference ba s eC l a s sRe f to demonstrate that poly morphic process ing can

occur w i th base-c l ass references as wel l . Each v i rtua l -fu nct ion i n v ocat ion ca l l s the funct ion

on the object to which bas e C l a s sRe f refers at ru n t i me . Th is i s another example of
dynamic b ind ing . The output produced u s i ng base-c lass references i s i den t ica l to the output

produced us ing base-c lass pointers .

1 0. 7 Polymorphism, Virtual Functions and Dynamic Binding
" Under the Hood"

C++ makes polymorph ism easy to program. I t i s certai n l y poss ib l e to program for poly mor

phism i n non-object-orien ted languages such as C, but doing so requ i res complex and po

ten t ia l ly dangerous poi n ter man i p u l at ions . This sect ion d i scusses how C++ can i mplement
po lymorph ism, v i rt ua l fu nct ions and dynamic b i nd i ng i nternal l y . Th is w i l l g i ve you a sol id

understand ing of how these capab i l i t ies rea l l y work . M ore i m portant l y , i t w i l l he lp you ap-

696 Object-Oriented Programming: Polymorphism Chapter 10

prec iate the overhead of po l ymorphism-i n terms of addi t ional memory consumpt ion and

processor t ime . This w i l l help you determ ine when to use pol y morph i s m and when to avoid

it . A s you w i l l see in Chapter 2 1 , Standard Template Library (STL) , the STL components

were imp leme nted wi thout polymorph ism and v i rtual funct ions-thi s was done to avoid

execut ion-t ime overhead and ach ieve opt imal performance to meet the u n ique requ i re

ments of the STL.

Fi rst, we w i l l expla in the data structures the C++ compi ler bui lds at compi le t ime to

support polymorphi sm at execut ion t i me . Then we w i l l show how an execut ing program

uses these data structures to execute v i rtual funct ions and ach ieve the dynamic b ind ing

assoc iated w i th polymorphi s m . Note that our d i scuss ion exp la ins one poss ib le i mplemen

tat ion ; th i s i s not a language requ i rement .

When C++ compi les a c lass that has one or more v i rtua l funct ions , i t bu i lds a virtual

function table (vtable) for that c lass . An execut ing program uses the vtable to select the

proper funct ion i mplementat ion each t i me a v i rtual funct ion of that c l ass is cal led .

Figure 1 0 . 2 1 i l l ustrates the v i rtual funct ion tables for c l asses Shape, Point , C i rc l e

and Cyl i nder.

In the vtable for c lass Shape, the fi rst funct ion pointer points to the i m p lementat ion

of funct ion getArea for tha t c lass , namely , a funct ion tha t returns an area of o . O . The

second funct ion poi nter po i nts to function getVolwne, which also returns o . O. Func

t ions getName and pr int are each pure virtual-they l ack i mp lementat ions , so the ir

funct ion poi n ters are each set to 0 (i . e . , nu l l pointer) . Any c l ass that has one or more 0
poi n ters i n i t s vtable i s an abstract c lass . C lasses wi thout any 0 vtable poi n ters (such as

Point , C i rc l e and Cyl inder) are concrete c l asses .

C lass Point i n herits i mplementat ions of funct ions getArea and getVolwne from

c lass Shape, so the compi ler s i mply sets these two funct ion poi nters i n the Point vtable

to be copies of the getArea and getVolwne poi nters i n c l ass Shape. C l ass Point

overrides funct ion getName to ret urn the stri ng " Point " , so the funct ion poin ter points

to the getName funct ion of c l ass Point . Point a l so overrides print, so the corre

sponding funct ion pointer points to the Point c lass funct ion that pri nts the x and y coor

d inate va lues .

The getArea funct ion poin ter i n the vtable for c lass C i r c l e points to C i rc l e ' s

getArea funct ion that returns rcr2-thi s vers ion overrides funct ion getArea that was

i nherited i nd i rect ly from c l ass Shape . The getVolwne funct ion poi nter is s i mp ly copied

from c lass Point-that poi n ter was prev ious ly copied i nto Point from Shape . The
getName funct ion poi nter poi n ts to the C i r c l e vers ion of the funct ion that returns the
stri ng " C i rc l e " . The print funct ion poin ter points to C i rc l e ' s print funct ion that

pri nts the x and y coord inate va l ues of the center of the c i rc l e and pri nts the rad ius .

The getArea funct ion pointer i n the vtable for c lass Cyl inder po in t s to Cyl

inder' s getArea funct ion that ca lcu lates the surface area of the Cyl i nder, namel y ,

2 rcr2 + 2 rcrh-th i s vers ion overrides getArea i n c l ass C i rc l e . T h e getVolwne

funct ion poi nter poi nts to Cyl inder' s getVolwne funct ion that returns rcr2h-th i s ver

s ion overr ides funct ion getVolwne that was i nherited i nd i rect ly from c l ass Shape . The

getName funct ion poi n ter points to Cyl inder' s getName funct ion that returns the

stri ng " Cyl inder " . The print funct ion poin ter poin t s to Cyl i nde r ' s print func

t ion that pri nts the x and y coord inate val ues of the center of the base of the cy l i nder and

pr ints the rad i u s and the height .

Chapter 10 Object-Oriented Progra m m i n g : Polymorphism 697

Shape vtable

gA .--0 . 0
gV

0 . 0 -
gN

0
pr

0

Point vtable

gA .--
gV .--

nt " I gN .-
��

-
]

pr ... -.J -
" Po i

[x , y

Circle vtable

I gA .-
I

-
gV ...

" C i r c l e "
gN

®
] r

pr .--[x , y

Cyl inder vtable

+ 2 nrh
gA ... -
gV -

inde r "
gN .--" Cyl

] r h
pr .--[x , y

Key
gA = getArea function

gV = getVo1ume function

gN = getName function

pr = print function

o entry means pure virtual function

r = radius; h = he ight

Point point

I _ I I -
x = 7

Y = 1 1

®
C i rc l e c i rc l e

I - I shapeVector

x = 2 2
�

!'e &:point

'J
I'e &: c i rc l e ••• y = 8 [1]

radius [2] JI &:cyl inder = 3 . 5 0

offset 8 bytes

Cyl inder cyl inder

I - r CD l
x = 1 0 0 l

•

l·
1 0 y =

�., radius = 3 . 3 0

he ight = 1 0 . 0 0
baseC l a s sptr

T h e flow o f t h e virtual function c a l l

baseC l a s s Pt r - > getName ()

is i l lustrated by the bold arrows above .

CD pass & c i r c l e to baseC l a s sptr

o get to C i r c l e object

® get to C i r c l e vta ble

o get to getName poi nter in vtable

® execute getName for C i r c l e

Fig. 1 0.2 1 Flow of control of a vi rtual function cal l .

698 Object-Oriented Programming: Polymorphism Chapter 1 0

Poly morph ism i s accompl i shed through an e legant data structure i n v o l v i ng three leve l s
of po i n ters . We have d iscussed one level-the funct ion poi nters i n the vIable. These po in t
to the actua l funct ions that execute when a v i rtua l funct ion i s i nvoked.

Now we cons ider the second level of pointers . Whenever an object of a class w i th
vi rtual funct ions i s i nstan t iated, the compi le r attaches to the object a poi nter to the
VIable for that c l ass . This pointer i s norma l ly a t the front of the object , but i t i s no t requ i red
to be i m p lemented that way .

The t h i rd leve l of po in ter i s s i mply the handle to the object that i s rece i v i n g the v i rtua l

funct ion cal l . Th i s hand le may a l so be a reference.

Now let us see how a typical virtual funct ion cal l executes . Consider the cal l

baseC l a s sPtr - > getName ()

i n funct ion vi rtua l ViaPointer (Fig . 1 0 . 20, l i nes 82-9 2) . Assume for the fol lowing

d i scuss ion tha t ba s eC l a s s p t r contai ns shapeVector [1] (i . e . , the address of ob

ject c i r c l e i n shapeVec t or). When the compi ler compi les th i s statement , it deter

m i nes that the cal l i s i ndeed being made v ia a base-c lass poi n ter and that getName i s a

v i rtua l funct ion .

Next , the compi ler determi nes tha t getName i s the th i rd en try i n each of the Vlables .

To locate t h i s entry , the compi ler notes that it w i l l need to sk ip the fi rst two en tr ies . Thus ,

the compi ler compi les an o.ffset or displacement of e ight bytes (four bytes for each poi n ter

on today ' s popu lar 32-bit mac h i nes) in to the mach i ne- language object code that w i l l exe

cu te the virtual funct ion cal l .

Then the compi ler generates code that performs the fo l lowing operat ions , [Nole: The

n u mbers in the l i st correspond to the c i rc led nu mbers in Fig. 1 0 . 2 1] :

I . Se lect the ith entry of shapeVector (i n this case, the address of object c i r

c l e) , a n d pass i t a s a n argument t o fu nct ion virtual Vi aPo int e r . Thi s sets

parameter ba s eC l a s sptr to poin t to c i rc l e .

2 . Dereference that poi nter t o get to t h e c i rc l e object-which a s y o u reca l l , beg i n s

wi th a poi nter to t h e C i rc le VIable.

3. Dereference c i rc l e ' s VIable pointer to get to the C i r c l e vtable.

4. Skip the offset of eight bytes to select the getName funct ion poi nter.

5 . Dereference the getName funct ion pointer to form the name of the actual fu nc

t ion to execute, and use the function cal l operator () to execute the appropriate

getName funct ion , which prints the character string " C i rc l e " .

The data structures of F ig . J 0.2 L may appear to be complex , b u t t h i s complex i ty i s

managed b y t h e compi ler a n d h idden from t h e program mer, mak i n g poly morph ic program

ming straightforward i n C++.
The pointer dereferenc ing operat ions and memory accesses that occur on every v i rtua l

funct ion cal l do requ i re some add i t ional execut ion t i me . The vtables and the vtable poi n te rs

added to the objects requ i re some addi t ional memory .

Hopefu l l y , you now have enough i n format ion about how v irtua l funct ions operate to

determ i ne whether us ing them i s appropriate for each app l icat ion you are cons ideri ng .

Performance Tip 1 0. 1
PolyrnOlphism., as rypically implemented with virtual/unctions and dynam.ic bindillg in C+ + ,
i s efficient. Programm.ers may use these capabilities with nom.illal impact o n performance.

Chapter 10 Object-Oriented Progra m m i n g : Polymorphism 699

Performance Tip 1 0. 2
Virtual functions and dynamic binding enable polymorphic programm.ing a s opposed to

swi t ch logic prograrnming. C+ + optimizing compilers normally generate code that runs

at least as efficiently as hand-coded swi t ch-based logic. One way or the other, the over

head of polymorphism is acceptable for 1I10st applications. BUI in some situations-real- time

applications with stringel1l pellorll/ance requirements, for example-the overhead of poly

nwrphism m.ay be too h igh.

Softwa re Engineering Observation 1 0. 1 0
Dynamic binding enables independent software vendors (IS Vs) 10 distribute sofiware without

revealing proprietary secrets. Software distributions can consist of only headerfiles and ob

jectfiles. No source code needs to be revealed. Sr4TlVare developers can then use inheritance

to derive new classes from those provided by the IS Vs. SofTware that works with the classes

the ISVs provide will continue to work with the derived classes and will use (via dynamic

binding) the overridden virtualfullctiollS provided in these classes.

1 0.8 Virtual Destructors

A prob lem can occur when u s i ng polymorph i sm to process dynamical l y a l l ocated objects

of a c l ass h ie rarchy . I f an object with a nonv i rtual destructor is destroyed e x p l i c i t l y by ap

p l y i ng the de l e t e operator to a base-c lass pointer to the object , the C++ standard spec i

fies that t h e behav ior i s u ndefi ned.

There is a s imp le sol u t ion to th is problem-declare the base-c lass destructor vi r

tua l . T h i s makes al l deri ved-c l ass destructors v i rtual e v e n though t h e y do n o t h a v e the

same name as the base-c l ass destructor. Now, i f an object in the h ierarchy i s destroyed

exp l i c i t l y by app l y i n g the de l e t e operator to a base-c lass poi n ter, the destructor for the

appropriate c l ass is called based on the object to wh ich the base-c l ass poi n ter poi n t s .

Remember, when a deri ved-class object i s destroyed, the base-c lass part of the deri ved

c lass object is a l so destroyed-the base-c lass destructor automat ica l l y executes after the

deri ved-c lass destructor.

Good Programming Practice 1 0.2
� If a class has virtualfunctions, provide a virtual destructor, even if one is not requiredfor the

� class. Classes derived /i'olll this class may contain destruclOrs that must be called properly.

Common Programming Error 1 0.6 !l1 Con structors cannot be virtual. Declaring a constructor vi rtual is a syntax error.

1 0.9 Case Study: Payroll System Using Polymorphism and Run
Time Type Information with dynamic_cast and type id
N o w w e u s e v i rtua l funct ions and polymorph ism t o perform payro l l cal c u l at ions based on

the type of an emp loyee. Consider the fol lowing problem statement :

A company pays its employees on a weekly basis. The cOll1pany has /our types of employees:

salaried employees who are paid a fixed weekly salary regardless of the num.ber of hours

worked, hourly employees who are paid by the hour and receive overtime pay, commission

employees who are paid a percel1 lage (!f their sales alld salaried-com.mission employees

who receive a base salary plus a percell tage of their sales. For this pay period, the company

has decided to reward salaried-col1l 1 l l ission employees by adding 10% 10 their salaries. The

700 Object-Oriented Programming : Polymorphism Chapter 10

company wants to implement a C+ + application that performs its payroll calculations

polymorphically.

We use a base c lass Emp l oyee to represent a "generic" employee . The c l asses that

der ive d i rect ly from Emp l oyee are Salari edEmp l oyee, COllUlli s s i onEmp l oyee

and HourlyEmp l oyee . C l ass BasePlusCollUlli s s i onEmp l oyee-derived from
COllUlli s s i onEmployee-represents the l ast employee type . F igure 1 0 . 2 2 d iagrams the

i nheri tance h ierarchy for our employee-payro l l app l icat ion . Note that abstract c l ass

Empl oyee i s i ta l ic ized as per the convent ion of the U M L.

An earnings funct ion cal l certai n l y appl ies generical l y to al l emp loyees . B u t each

employee ' s earn ings cal c u l at ion depends on the employee ' s c l ass . So each c l ass deri ves

from base c l ass Emp l oye e . We dec lare earnings as a pure v i rtua l funct ion i n base c l ass

Employee (because i n th i s c l ass no spec i fic i mplementat ion i s appropriate) , and each

deri ved c l ass overrides earnings with an appropriate i mp l e mentat ion . To cal c u l ate an

emp loyee ' s earn i ngs, the program aims a base-c l ass poi nter at that emp loyee ' s object , then

i nvokes i t s earnings funct ion . We mai ntai n a vector of base c l ass Emp l oyee

poi n ters to each Emp l oyee object . The program i terates through the vec t o r and uses a

base-c lass Emp l oyee poi nter to i n voke the earnings funct ion for each employee object

no matter what that employee ' s type is .

Let us consider the header fi le for c lass Emp l oyee (Fig . 1 0 . 2 3) . The publ i c

member funct ions i n c lude a constructor that takes t h e fi rst name, l ast n a m e a n d soc ia l secu

r i ty n umber as arguments (l i ne 1 3) ; get funct ions that return the fi rst name, l ast name and

soc ia l secur i ty n u mber (l i nes 1 6, 1 9 and 22) ; set funct ions that set the fi rst name, l as t name

and soc ial securi ty n umber (l i nes 1 5 , 1 8 and 2 1) ; pure v i rtua l funct ion earnings (l i ne 2 5)

and v i rtua l funct ion print (l i ne 2 6) . W h y d i d w e dec ide to dec lare funct ion earnings

as a pure v i rtua l funct ion ? The answer i s that i t does not make sense to pro v ide an i mp le

mentat ion of th i s funct ion i n the Employee c lass . We cannot ca lc u l ate the earn ings for a
generic employee-we fi rst mus t know the spec ific Emp l oyee type before calcu l at i ng the

earn i ngs . B y dec lar ing th is funct ion pure v i rtua l , we i nd icate that each der ived concrete

c l ass wi l l prov ide an appropriate i mplementat ion of this funct ion and that the program w i l l

b e able t o use base c lass Emp l oyee poi n ters t o i nvoke earnings for any type of

employee. F igure 1 0 . 24 contai ns the member-funct ion i mp lemen tations for c l ass

ED\Ployee

SalariedEmployee commi s s i onEmployee HourlyEmployee

BasePlusCommi s s i onEmployee

Fig. 1 0.22 Class h iera rchy for the polymorphic employee-payrol l appl icat ion .

Chapter 1 0 Object-Oriented Progra m m i n g : Polymorphism 70 1

Emp l oyee . Note that the Employee constructor does not val idate the soc ia l secur i ty

n u m ber. An exerc i se i n Chapter 1 5 asks you to va l idate a soc ia l securi ty n u mber to ensure

that it i s i n the form # # # - # # - # # # # , where each # represents a d ig i t .

1 I I Fig . 1 0 . 2 3 : ernployee . h
2 I I Empl oyee abst ract base c l a s s .
3 # i fnde f EMPLOYEE_H
4 #de f ine EMPLOYEE_H
5
6 # inc lude < st ring> I I c++ standard string c l a s s
7
8 using std : : string ;
9

1 0 c la s s Employee
1 1
1 2 publ i c :
1 3 Employee (const string & , const string & , const s t ring &) ;
1 4
1 5 voi d setFirstName (const string &) ;
1 6 string getFirstName () const ;
1 7
1 8 void setLastName (const string &) ;
1 9 string getLastName () const ;
20
2 1 voi d setSocial Securi tyNumber (const string &) ;
22 st ring get Soc ial Securi tyNumber () const ;
23
24 I I pure virtual func t i on make s Employee abs t ract base c l a s s
2 5 vi rtual double earnings () const = 0 ; I I pure virtual
26 vi rtual void print () const ; I I vi rtual
27
28 private :
29 st ring f i rstName ;
30 string lastName ;
3 1 string soc ial Securi tyNumber ;
32
33 } ; /1 end c l a s s Employee
34
35 #endi f /1 EMPLOYEE_H

Fig. 1 0.23 Emp l oyee class header fi le .

1 I I Fig . 1 0 . 2 4 : employee . cpp
2 /1 Abstract -base - c lass Employee member- funct i on de f init ions .
3 I I Not e : No de f init ions are given for pure virtual funct ions .
4 # inc lude < iostream>
5
6 us ing std : : cout ;
7 using std : : endl ;
8
9 # inc lude " ernployee . h " I I Employee c l a s s de f init ion

Fig. 1 0.24 Employee class i mplementation f i le . (Part 1 of 3 .)

702 Object-Oriented Programming: Polymorphism Chapter 1 0

1 0
1 1 I I const ructor
1 2 Employee : : Employee (const string & f irst , const s t ring & l a s t ,
1 3 const string & S SN)
1 4 f i rstName (f i rst) ,
1 5 l a stName (last) ,
1 6 soc i a l Securi tyNumber (S SN)
1 7
1 8 I I empty body
1 9
20 I I end Employee constructor
2 1
2 2 I I return f i rst name
23 str ing Employee : : getFirstName () const
24 {
25 return f i rstName ;
26
27 } II end funct ion getFirstName
28
29 I I return last name
30 string Employee : : getLas tName () const
31 {
32 return las tName ;
33
34 I I end func t ion getLastName
35
36 I I return social security number
37 s t ring Employee : : getSoc ial Securi tyNumber () const
38 {
39 return soc i a l Securi tyNumber ;
40
4 1 I I end funct i on getSoc ialSecuri tyNumber
42
43 I I set f irst name
44 void Employee : : setFirs tName (const st ring & f irst)
45 {
46 f i rs tName = f i rs t ;
47
48 I I end func t ion setFirstName
49
50 I I set last name
5 1 void Employee : : setLastName (const string & l a s t)
52 {
53 lastName = last ;
54
55 I I end funct ion setLastName
56
57 I I set soc i a l securi ty number
58 void Employee : : setSoc ial Securi tyNumber (const s t ring &number
59 {
60 soc i a l Securi tyNumber = number; I I should val idate
6 1
62 I I end funct ion setSocialSecurityNumber

Fig. 1 0. 24 Employee c lass implementation f i le . (Part 2 of 3 .)

Chapter 10 Object-Oriented Progra m ming: Polymorphism

63
64 // print Employee's information

65 void Employee::print() const

66 {
67 cout « getFirstName() « ' , « getLastName()

68 « "\nsocial security nwnber: "

69 « getSocialSecurityNwnber() « endl;

70
7 1 } // end function print

Fig. 1 0.24 Employee class implementation file. (Part 3 of 3.)

703

Class SalariedEmployee (Fig. 10.2 S-Fig. 10.2 6) derives from c lass Employee.

The publ ic member funct ions (Fig . 10.25) inc lude a constructor that takes a fi rst name, a l ast
name, a soc ia l securi ty number and a week ly sal ary as arguments; a set funct ion to ass ign a

new value to data member weeklySalary; a gel funct ion to return weeklySalary's

value; a virtual function earnings that calcu lates a SalariedEmployee's earnings
and a virtual function print that outputs the employee ' s type, namely , "salaried

employee: " . Note that in the implementation fi l e (Fig . 10. 2 6), the SalariedEm

ployee constructor cannot override the Employee constructor-the deri ved-c l ass con

structor st i l l passes the fi rst name, l ast name and soc ia l security number to the Employee

constructor to i n i t i a l i ze the base-c l ass members (l ine 1 3) . A l so, note that v i rtual funct ion
print cal l s the base-c lass Employee: :print funct ion (l ine 44) to output the base c lass
Employee-spec i fic information (i . e . , fi rst name, last name and soc ial securi ty n umber).

1 /1 Fig. 1 0 . 2 5 : salaried.h

2 // SalariedEmployee class derived from Employee.

3 #ifndef SALARIED_H

4 #define SALARIED_H

5
6 #include "employee.h" // Employee class definition

7
8 class SalariedEmployee : public Employee

9
1 0 public:

1 1 SalariedEmployee(const string & , const string & ,
1 2 const string & , double = 0 . 0) ;

1 3
1 4 void setWeeklySalary(double);

1 5 double getWeeklySalary() const;

1 6
1 7 virtual double earnings() const;

1 8 virtual void print() const; 1/ "salaried employee: "

1 9
20 private:

2 1 double weeklySalary;

22
23 }; // end class SalariedEmployee

24
25 #endif 1/ SALARIED H

Fig. 1 0.25 Sa lar i edEmployee class header file.

704 Object-Oriented Progra mming: Polymorphism

1 I I Fig . 1 0 . 26 : salaried . cpp
2 I I SalariedEmployee class member - funct ion de f init ions .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6

Chapter 10

7 # inc lude " salaried . h " /1 SalariedEmployee c l a s s de f i n i t i on
8
9 I I Salari edEmpl oyee constructor

1 0 SalariedEmployee : : SalariedEmployee (const string & f irst ,
11 const string &last , const string &social SecurityNumber ,
1 2 doubl e salary)
13 : Employee (first , last , soc ial Securi tyNumber
14 {
15 setWeeklySalary (salary) ;
1 6
1 7 1/ end SalariedEmployee constructor
1 8
1 9 I I set salaried employee's sal ary
20 void SalariedEmployee : : setWeeklySalary (doubl e salary)
21 {
22 weeklySalary = salary < 0 . 0 ? 0 . 0 : salary ;
23
24 I I end func t i on setWeeklySalary
25
26 /1 calculate salaried employee ' s pay
27 double SalariedEmployee : : earnings () const
28 {
29 return getWeeklySalary () ;
30
31 I I end funct i on earnings
32
33 I I return salaried employee ' s salary
34 doubl e SalariedEmployee : : getWeeklySalary () const
35 {
36 return weeklySalary ;
37
38 1/ end funct i on getWeeklySalary
39
40 I I print salaried employee ' s name
41 void SalariedEmployee : : print () const
42 {
43 cout < < " \ nsalaried employee : " ;
44 Employee : : print () ; I I code reuse
45
46 // end funct ion print

Fig. 10.26 Salar i edEmployee class implementation file.

Class HourlyEmployee (F ig. 1 0.27-Fig. 1 0.28) al so derives from c l ass
Employee. The pub l i c member funct ions (F ig. 1 0.27) i nc lude a constructor that takes a
fi rst name, a l ast name, a social security number, an hourly wage and the number of hours
worked as arguments; set funct ions to ass ign new values to data members wage and

Chapter 10 Object-Oriented Programming: Polymorphism 705

hours ; gel funct ions to return the values of wage and hours ; a v i rtual funct ion earn

ings that calcu lates an HourlyEmployee's earn ings and a v i rtual funct ion print that

outputs the employee ' s type, namely , "hourly employee: ". Note i n the i m p lementa

t ion fi le (Fig . 1 0 . 28) that , l ike the Salari edEmployee constructor, the HourlyEm

ployee constructor a lso passes the fi rst name, last name and socia l secur i ty n umber to the

Employee constructor to i n i t ial i ze the base-class members (l i ne 1 3) . I n add i t ion, v i rtual

funct ion print calls the base c lass Employee: :print funct ion (l i ne 6 3) to output the

Employee-spec i fic i n formation (i .e . , fi rst name, l ast name and socia l secur i ty n umber).

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27
28
29

I I Fig. 1 0 . 2 7 : hourly . h
I I HourlyEmployee c l a s s de finition.
i fnde f HOURLY_H
#def ine HOURLY_H

inc lude " employee . h " I I Employee c l a s s de f inition

c l a s s HourlyEmployee pub l i c Employee {

pub l i c :
HourlyEmployee (const string & , const s t ring & ,

const string & , double = 0 . 0 , doubl e = 0 . 0) ;

void s etWage (doubl e) ;
doubl e getWage () const ;

void setHours (doubl e) ;
doubl e getHours () const ;

virtual doubl e earnings () const ;
virtual void print () const ;

private :
doub l e wage ;
doubl e hours ;

I I wage per hour
I I hours worked for week

} ; I I end c l a s s HourlyEmployee

#endi f I I HOURLY_H

Fig. 1 0.27 Hourl yEmployee class header f i le.

1 I I Fig . 1 0 . 2 8 : hourly . cpp
2 I I Hour lyEmp l oyee c la s s member - func t ion de f init ions .
3 #inc lude < iostream>
4
5 us ing std : : cout ;
6
7 #inc1ude " hourly . h "
8

Fig. 1 0.28 Hour lyEmployee class implementation f i le. (Part 1 of 3 .)

706

9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61

Object-Oriented Programming: Polymorphism Chapter 10

I I constructor for c l ass HourlyEmployee
HourlyEmployee : : HourlyEmployee (const string & f irst ,

{

const string & l a s t , const string &soc i a l Securi tyNumber ,
doubl e hourlyWage , double hoursWorked)
: Empl oyee (first , last , soc ial Securi tyNumber)

setWage (hourlyWage) ;
setHours (hoursworked) ;

I I end HourlyEmployee cons tructor

I I set hourly employee ' s wage
void HourlyEmp loyee : : setWage (double wageAmount
{

wage = wageAmount < 0 . 0 ? 0 . 0 : wageAmount ;

} I I end funct ion setWage

I I set hourly employee ' s hours worked
void HourlyEmployee : : setHours (double hoursWorked
{

hours = (hoursWorked > = 0 . 0 && hoursWorked < = 16 8 . 0) ?
hoursWorked : 0 . 0 ;

} 1/ end funct ion setHours

// return hours worked
doubl e HourlyEmployee : : getHours () const
{

return hours ;

} // end funct ion getHours

// return wage
doubl e HourlyEmployee : : getWage () const
{

return wage ;

// end func t i on getWage

// get hourly employee ' s pay
doubl e Hour1yEmployee : : earnings () const
{

i f (hours < = 4 0 // no overt ime
return wage * hours ;

e l s e / / overt ime i s paid a t wage * 1 . 5

return 4 0 * wage + (hours - 4 0) * wage * 1 . 5 ;

} // end func t i on earnings

// print hourly employee's informat ion
void HourlyEmployee : : print () const
{

Fig. 1 0.28 Hour lyEmployee class implementation fi le . (Port 2 of 3.)

Chapter 10 Object-Oriented Progra mming: Polymorphism

62 cout < < " \nhourly employee : " ;
63 Employee : : print () ; I I code reuse
64
65 } I I end funct i on print

Fig. 1 0.28 Hour lyEmp loyee class implementation fi le. (Part 3 of 3.)

707

Class Commi s s ionEmployee (Fig . 10.29-Fig . 10.30) deri ves from c lass

Employee. The publ ic member funct ions (Fig . 10.29) inc l ude a constructor that takes a

fi rst name, a last name, a soc ial security number, a sales amount and a commiss ion rate ; set
functions to ass ign new values to data members gro s s Sa l e s and commi s s i onRate;

get functions that retrieve the values of these data members ; v i rtual funct ion earnings

that calculates a Commi s s ionEmployee's earn i ngs and v i rtual funct ion print that

outputs the employee's type, namely, "commi s s ion employee: " . The Commi s

s ionEmployee's constructor also passes the fi rst name, l ast name and soc ia l securi ty

nu mber to the Employee constructor to i n i t ia l ize the base-c lass members (l i ne 13) . Vir

tual funct ion print also cal l s the base-c lass Employee: :print funct ion (l ine 59) to

output the Emp l oyee - spec i fic i nformation (i .e . , fi rst name, last name and soc ia l secur i ty

number).

1
2
3
4
5
6

7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24

25
26
27
28
29

I I Fig . 1 0 . 2 9 : comm i s s ion . h
I I Comm i s s ionEmployee c lass derived from Employee.
i fnde f COMMISSION_H
#de f ine COMMISSION_H

inc lude " employee . h " I I Employee c lass de f i n i t i on

c l a s s Comm i s s ionEmployee : public Employee {

pub l i c :
Comm i s s i onEmployee (const string & , const string & ,

const string & , double = 0 . 0 , doubl e 0 . 0) ;

void setComm i s s i onRat e (double) ;
doubl e getComm i s s ionRate () const ;

void setGro s s Sal e s (double) ;
doubl e getGro s s Sal e s () const ;

virtual double earnings () const ;
virtual void print () const ;

private :
doubl e gro s s Sa l e s ;
doubl e comm i s s ionRate ;

I I gross weekly sales
I I commiss ion percentage

} ; I I end c l a s s Comm i s s ionEmployee

#endif I I COMMIS SION H

Fig. 1 0.29 Comm iss ionEmployee class header fi le .

708 Object-Oriented Programming: Polymorphism Chapter 10

1 I I F i g . 1 0 . 3 0: conun i s s ion . cpp
2 I I Conuni s s ionEmployee c lass member - funct ion de f ini t i ons.
3 # inc lude < iostream >
4
5 us ing std : : cout ;
6
7 # inc lude " conuni s s ion . h " I I conun i s s ion c la s s
8
9 1/ Conun i s s ionEmployee construc tor

1 0 Conun i s s i onEmployee : : Conuni s s ionEmployee{ const string & f i r s t ,
1 1 const string &last , const string &soc i a l SecurityNumber ,
1 2 doubl e gros sWeeklySales , doubl e percent)
13 : Employee { f i r s t , last , soc ial SecurityNumber
1 4 {
1 5 setGro s s Sales{ gros sWeeklySales) ;
1 6 setConun i s s ionRat e (percent) ;
1 7
1 8 } 1/ end Conuni s s ionEmpl oyee constructor
1 9
20 // return conun i s s ion employee's rate
21 doubl e Conun i s s i onEmployee : : getConun i s s i onRat e () const
22 {
23 return conun i s s ionRate ;
24
25 } // end funct ion getConun i s s ionRate
26
27 /1 return conun i s s ion employee's gross sales amount
28 doubl e Conun i s s i onEmployee : : getGrossSal e s () const
29 {
30 return gros sSal e s ;
31
32 } I I end func t i on getGrossSale s
33
34 // set conun i s s ion employee's weekly base salary
35 void Conun i s s i onEmployee : : setGros sSales (doubl e s a l e s
36 {
37 grossSales = sales < 0.0 ? 0 . 0 : sale s ;
38
39 } 1/ end funct i on setGros sSales
40
41 I I set conun i s s ion employee ' s conun i s s ion
42 void Conun i s s ionEmployee : : setConun i s s ionRate (doubl e rate)
43 {
44 conun i s s ionRate = (rate > 0 . 0 && rate < 1 . 0) ? rate : 0.0 ;
45
46 } /1 end funct ion setConuni ssionRate
47
48 1/ calcu late conun i s s ion employee's earnings
49 doubl e Conun i s s i onEmployee : : earnings () const
50 {
51 return getConun i s s i onRate () * getGrossSales () ;
52
53 } I I end funct ion earnings

Fig. 1 0.30 Comm iss ionEmployee class implementation f i le. (Part 1 of 2.)

Chapter 10 Object-Oriented Progra mming: Polymorphism

54
55 I I print c omm i s s ion employee ' s name
56 void Comm i s s i onEmployee : : print () const
57 {
58 cout « OI\ncomm i s s ion employee : 01;
59 Employee : : print () ; I I code reuse
60
61 } I I end funct ion print

Fig. 1 0.30 Comm issionEmployee class implementation f i le. (Part 2 of 2 .)

709

Class BasePlusCommi s s i onEmployee (F ig . 1 O. 3 1 -Fig . 1 0 . 32) i n her i ts from

c lass Commi s s ionEmployee and therefore .al so is an i nd i rect derived c l ass of c lass
Employee. Class BasePlusCommi s s i onEmployee's pub l ic member funct ions
(F ig . 1 0 . 3 1) i nc lude a constructor that takes as arguments a fi rst n ame, a l as t name, a soc ia l
security n umber, a base salary, a sales amount and a commiss ion rate ; a set funct ion to

assign a new value to data member baseSalary; a get funct ion to return bas e

Salary's va lue ; v i rtual funct ion earnings that ca lcu lates a BaseP lusCommi s

s ionEmp l oyee's earnings and v i rtual funct ion print that outputs the employee ' s type,

namely, "base-salaried commi s s ion employee: ". BasePlusCommi s

s ionEmp l oyee's constructor passes the first name, l ast name, soc i al security number,
sales amount and commiss ion rate to the Commi s s i onEmp l oyee constructor to i n i
t i a l i ze the Commi s s i onEmployee and Employee base-c lass members (l i ne 1 5) .
Notice that funct ion earnings (Fig . 1 0 .32 , l i nes 37-4 1) cal l s member funct ion earn

ings of the Commi s s i onEmployee base c lass to cal cu l ate the comm i ss ion-based por
t ion of the earni ngs . This is a n ice example of code reuse .

1
2
3
4
5
6
7
8

9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8

19
20
21
22

I I Fig . 1 0 . 3 1 : baseplus . h
I I BasePlusComm i s s ionEmployee c lass derived from Empl oyee .
i fnde f BASEPLUS_H
#def ine BASEPLUS_H

#inc lude " comm i s s ion . hOl I I Employee c l a s s de finit ion

c lass BasePlusComm i s s ionEmployee : pub l i c Comm i s s i onEmp l oyee

publ ic :
BasePlusComm i s s ionEmployee (const st ring & , const s t ring & ,

const string & , double = 0 . 0 , doubl e = 0 . 0 , doubl e = 0 . 0) ;

void setBaseSalary (double) ;
doubl e getBaseSalary () const ;

virtual double earnings () const ;
virtual void print () const ;

private :
double baseSalary ; I I base salary per week

Fig. 1 0.31 BasePlusComm issionEmployee class header file . (Part 1 of 2.)

7 10 Object-Oriented Programming: Polymorphism

23 }; II end class BaseP lusComm i s s ionEmployee
24
25 #endi f I I BASEPLUS H

Chapter 10

Fig. 1 0.31 BaseP lusConunissionEmployee class header f i le. (Part 2 of 2.)

1 II F i g . 1 0 . 3 2: baseplus . cpp
2 I I BasePlusComm i s s i onEmployee member- function de f initions.
3 #inc lude < iostream >
4
5 us ing std: : cout ;
6
7 # inc lude " baseplus . h "
8
9 II constructor for c l a s s BasePlusCommi s s ionEmployee

1 0 BasePlusComm i s s ionEmployee: : BaseP lusComm i s s i onEmployee (
1 1 const string & f i rst , const string &last ,
1 2 const string &social SecurityNumber ,
1 3 double grossSale sAmount , double rate ,
1 4 doubl e baseSalaryAmount)
1 5 Comm i s s ionEmployee (first , last , soc i a l SecurityNumber ,
1 6 gro s sSalesAmount , rate)
1 7 (
1 8 setBaseSalary (baseSalaryAmount) ;
1 9
20 } I I end BasePlusComm i s s ionEmployee constructor
21
22 I I set base-salaried comm i s s ion employee ' s wage
23 void BaseP lusComm i s s ionEmployee: : setBa seSal ary (doubl e salary)
24 (
25 baseSalary = salary < 0 . 0 ? 0 . 0 : salary ;
26
27 II end function s etBaseSalary
28
29 I I return base-salaried comm i s s ion employee ' s base salary
30 doubl e BasePlusComm i s s ionEmployee: : getBaseSal ary () const
31 (
32 return baseSalary ;
33
34 1/ end function getBaseSalary
35
36 I I return bas e - salaried comm i s s ion employee ' s earnings
37 doubl e BasePlusComm i s s ionEmpl oyee::earnings() const
38 (
39 return getBaseSal ary () + CommissionEmp loyee: : earnings () ;
40

41 /1 end function earnings
42
43 II print base-salaried comm i s s ion employee ' s name
44 void BasePlusComm i s s ionEmployee: : print () const
45 {

Fig. 1 0.32 BasePlusConun iss ionEmp loyee class implementation f i le. (Part 1
of 2 .)

Cha pter 10 Object-Oriented Progra mming: Polymorphism

46 cout « " \nbase - salaried comm i s s ion employee : " ;
47 Employee : : print () ; I I code reuse
48

49 } // end func t i on print

7 1 1

Fig. 1 0.32 BaseP lusComm issionEmp loyee class imp lementation f i le. (Port 2
of 2.)

The program of Fig. 1 0. 33 tests our Employee h ierarchy and increases by 1 0% the
base salary of each BasePlusConuni s s i onEmployee. L ine 3 1 declares four-e lement

vector employee s that stores poi n ters to Employee objects . L i nes 34--4 1 popul ate the
vector wi th the addresses of dynamical ly a l located objects of c l asses Salari edEm

p l oyee, Conuni s s ionEmployee, BasePlusConuni s s i onEmp loyeeandHour

lyEmployee .

The f o r loop (l i nes 44-68) i terates through the employee s vector and d i sp lays each

employee's name, soc ia l securi ty number and earni ngs. Line 47 i nvokes member funct ion

print of the object to which e lement i of the vector poi nts . Because print i s dec lared

1
2
3

4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27
28
29
30
3 1
32

/ I Fig . 1 0 . 3 3 : f i g 1 0 3 3.cpp
// Driver for Employee hierarchy.
#inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;
us ing s td : : f ixed ;

#include < i omanip>

us ing std : : setprec i s ion ;

#inc lude <vector>

us ing std : : vector ;

#inc lude < type info>

#inc lude " employee . h "
#inc lude " sa l aried.h "
#include " commi s s ion.h "
#inc lude " baseplus.h "
#inc lude " hourly.h "

int main ()
{

// Employee base c la s s
/1 SalariedEmployee c la s s
/ / Comm i s s iOnEmployee c la s s
// BaseP lusComm i s s i onEmployee c la s s
/ / HourlyEmployee c l a s s

1 / set f loat ing-po int output format t ing
cout « f ixed « setprec i s i on (2) ;

1/ c reate vec t or employees
vector < Employee * > employees (4);

Fig. 10.33 Employee class h ierarchy driver program, (Port 1 of 3.)

7 1 2 Object-Oriented Progra mming: Polymorphism

33 I I ini t ia l i z e vector with Employees

Chapter 10

34 employee s [0] = new SalariedEmployee ("John " , " Sm i t h " ,
35 " 1 1 1 - 1 1 - 1 1 11 " , 8 0 0 . 0 0) ;
36 employees [1] = new Conun i s s ionEmployee (" Sue " , " Jone s " ,
37 " 2 2 2 - 2 2 - 2 2 2 2 " , 1 0 0 0 0 , . 0 6) ;
38 empl oyees [2] = new BasePlusConun i s s i onEmployee (" Bob " ,
39 " Lewi s " , " 3 3 3-3 3-3 3 3 3 " , 3 0 0 , 5 0 0 0 , . 0 4) ;
40 employees [3] = new HourlyEmployee (" Karen " , " Pr i c e " ,
41 " 4 4 4 - 4 4 - 4 4 4 4 " , 1 6 . 75 , 4 0) ;
42
43 I I generical ly process each e l ement in vector empl oye e s
44 for (int i = 0 ; i < employees . s i ze () ; i + +) {
45
46 I I output empl oyee information
47 employee s [i] - >print () ;
48
49 I I downcast pointer
50 BasePlusConun i s s i onEmployee *conun i s s ionptr =
51 dynami c_cast < BasePlusConun i s s i onEmployee * >
52 (employees [i]) ;
53
54 I I determine whether e l ement point s to base - sal aried
55 I I conun i s s i on employee
56 i f (conun i s s ionptr ! = 0) {
57 cout « "old base salary: $"
58 « conun i s s ionPtr- >getBaseSalary () « endl ;
59 conun i s s ionPtr - > setBaseSalary (
60 1. 1 0 * conun i s s ionPtr- > getBaseSalary ()) ;
61 cout « " new base salary with 1 0 % increase i s : $ "
62 « conun i s s ionPtr- > getBaseSalary () « endl ;
63
64 } I I end i f
65
66 cout « " earned $ " « employees [i] - > earnings () « endl ;
67
68 I I end for
69

70 I I release memory held by vector employee s
71 for (int j = 0 ; j < employees . s i ze () ; j + +) {
72
73 I I output c l a s s name
74 cout « " \ndel eting obj ect of "
75 « type id (* employees [j) . name () ;
76
77 de lete employee s [j] ;
78
79 I I end for
80
81 cout « endl ;
82
83 return 0 ;
84
85 I I end main

Fig. 1 0.33 Employee class h ierarchy driver program, (Part 2 of 3,)

Chapter 10 Object-Oriented Program ming: Polymorphism

salaried empl oyee : John Smi th
social security number : 1 1 1 - 1 1 - 1 1 1 1
earned $ 8 0 0 . 0 0

comm i s s i on employee : Sue Jones
soc ial security number : 2 2 2 - 2 2 - 2 2 2 2
earned $ 6 0 0 . 0 0

bas e - salaried comm i s s ion employee : Bob Lewi s
soc ial secur i ty number : 3 3 3 - 3 3 - 3 3 3 3
old base salary : $3 0 0 . 0 0
new base salary with 10% increase i s : $3 3 0 . 0 0
earned $ 5 3 0 . 0 0

hourly employee : Karen Price
soc ial security number : 4 4 4 - 4 4 - 4 4 4 4
earned $670 . 0 0

de let ing object of c l a s s SalariedEmployee
de let ing objec t of c l a s s Comm i s s ionEmployee
de let ing obj ect of c l a s s BasePlusCommi s s i onEmployee
de let ing object o f c l a s s HourlyEmployee

Fig. 10.33 Employee class h ierarchy driver program. (Part 3 of 3.)

713

v i rtual i n the base c lass, the system i nvokes the appropriate derived-c l ass obj ect ' s print

funct ion polymorphical l y . Thi s funct ion cal l i s another example of dynamic b i nd i ng-the
v i rtual funct ion is i nvoked through a base-class poin ter, so the dec i s ion as to what funct ion
to i nvoke i s deferred unt i l run t ime.

I n thi s example, we want to do some processi ng speci fic to objects of c lass BasePlu s

Corrani s s i onEmployee; as we encounter these objects, we w i sh to i ncrease by 1 0% the i r

base salary. We process the employees generical ly (i .e . , polymorphical ly) ; therefore, we

cannot be certa in as to which type of Employee i s be ing manipulated at any g iven t ime . Thi s
creates a problem, because BasePlusCorrani ssionEmployee employees mus t be iden

t ified so they can be paid properly . To accompl i sh this , we use operator dynami c_ca s t to
help determine whether the type of each object is compat ib le w i th type BasePlusCom

mi s s i onEmployee. Lines 50-52 dynamjcal ly downcast employee s [i] from type
Employee * to type BasePlusCorrani s s ionEmployee *. I f the vector e lement points
to a BasePlusCorrani s s ionEmployee object, then that object ' s address i s assigned to
corrani s s i onpt r; otherwise, 0 is assigned to corrani s s i onptr.

I f the va lue returned by the dynamic_cast i n l i nes 50-52 i s not 0, the if structure

(l ines 56-64) performs the specia l processing requ i red for the BasePlusCorrani s s ion

Employee object . L i nes 58, 59, 60 and 62 i nvoke BasePlusCorrani s s ionEmployee

functions getBaseSalary and setBaseSalary to retrieve and update the employee ' s
salary .

Line 66 i nvokes member funct ion earnings on the object to which employee [i]

points . Because we declared earnings as a v i rtual funct ion i n the base c l ass, the program
i nvokes the derived-class object ' s earnings function . Thi s , too, uses dynamic bi nding.

The for loop (l i nes 7 l -79) d i splays each employee ' s object type and uses operatoi'
delete to deal locate the dynamic memory to which each vector e lement points . Operator

7 14 Object-Oriented Program ming: Polymorphism Chapter 10

typeid
' (l i n e 75) returns a reference to an object of c lass type_info that contai n s the

i nformation about the type of i ts operand, i nc luding the name of that data type. When
i nvoked, type_info member function name (l i ne 75) returns a stri ng that conta ins the
type name (e .g . , c l a s s BaseP lusCommi s s ionEmployee) of the argument passed to
typeid. To use typeid, the program must inc lude header fi le <typeinfo> (l i ne 1 7) .

SUMMARY

• With virtual functions and polymorphism, it becomes possible to design and implement systems
that are more easily extensible. Programs can be written to process objects of types that may not
exist when the program is under development.

• Polymorphic programming with virtual functions can eliminate the need for swi tch logic. The
programmer can use the virtual function mechanism to perform the equivalent logic automatically,
thus avoiding the kinds of errors typically associated with swi tch logic. Client code making de
cisions about object types and representations indicates poor class design.

• Derived classes can provide their own implementations of a base-class virtual function if neces
sary, but if they do not, the base class's implementation is used.

• If a virtual function is called by referencing a specific object by name and using the dot member
selection operator, the reference is resolved at compile time (this is called Sialic binding); the vir
tual function that is called is the one defined for the class of that particular object.

• There are many situations in which it is useful to define abstract classes for which the programmer
never intends to create objects. Because these are used only as base classes, we refer to them as
abstract base classes. No objects of an abstract class may be instantiated.

• Classes from which objects can be instantiated are called concrete classes.

• A class is made abstract by declaring one or more of its virtual functions to be pure. A pure virtual
function is one with an initializer of = 0 in its declaration.

• If a class is derived from a class with a pure virtual function and that derived class does not supply
a definition for that pure virtual function, then that virtual function remains pure in the derived
class. Consequently, the derived class is also an abstract class.

• C++ enables polymorphism-the ability for objects of different classes related by inheritance to
respond 'differently to the same member-function call.

• Polymorphism is implemented via virtual functions.

• When a request is made through a base-class pointer or reference to use a virtual function, C++
chooses the correct overridden function in the appropriate derived class associated with the object.

• Through the use of virtual functions and polymorphism, a member-function call can cause differ
ent actions depending on the type of the object receiving the call.

• Although we cannot instantiate objects of abstract base classes, we can declare pointers and refer
ences to objects of abstract base classes. Such pointers and references can be u sed to enable poly
morphic manipulations of derived-class objects instantiated from concrete derived classes.

I. Operators dynamic_cast and type id are part of C++'s run-time type information (RTTf)
feature, which allows programmers to determine an object ' s type at run time. Some compilers,
such as Microsoft Visual C++ 6, require that RTTI be enabled before it can be used in a program.
To enable RTTI in Visual C++ 6, select Project> Settings> C/C++, and select C++ Lan

guage from the Category combo box. Then check Enable Run-Time Type Information

(RTTI). Consult your compiler 's documentation to determine whether your com piler has similar
requirements.

Chapter 10 Object-Oriented Program ming: Polymorphism 715

• Dynamic binding requires that at run time, the call to a virtual member function be routed to the
virtual function version appropriate for the class . A virtual function table called the Viable is im
plemented as an array containing function pointers. Each class with virtual functions has a vIable.

For each virtual function in the class, the vIable has an entry containing a function pointer to the
version of the virtual function to use for an object of that class. The virtual function to use for a
particular class could be the function defined in that class, or it could be a function inherited either
directly or indirectly from a base class higher in the hierarchy.

• When a base class provides a virtual member function, deri ved classes can override the virtual
function, but they do not have to override it. Thus, a derived class can use a base class' version of
a virtual function, and this would be indicated in the vIable

• Each object of a class with virtual functions contains a pointer to the Viable for that class. The ap
propri ate function pointer in the Viable is obtained and dereferenced to complete the call at exe
cution time. This Viable lookup and pointer dereferencing require nominal run-time overhead.

• Any class that h as one or more 0 pointers in its VIable is an abstract class . Classes without any 0
Viable pointers are concrete classes.

• New kinds of classes are regularly added to systems . New classes are accommodated by dynamic
binding (also called late binding) . The type of an object need not be known at compile time for a
virtual-function call to be compiled. At run time, the appropriate member function will be called
for the object to which the pointer points.

• Dynamic binding enables independent software vendors (ISVs) to distribute software without re
vealing proprietary secrets . Software distributions can consist of only header files and object files .
No source code needs to be revealed. Software developers can then use inheritance to derive new
classes from those provided by the ISVs. The software that works with the classes the ISVs pro
vide will continue to work with the derived classes and will use (via dynamic binding) the over
ridden virtual functions provided in these classes.

• Declare the base-class destructor vi rtual if the class contains virtual functions . This makes all
derived-class destructors virtual even though they do not have the same name as the base-class de
structor. If an object in the hierarchy is destroyed explicitly by applying the de l e t e operator to
a base-class pointer to a derived-class object, the destructor for the appropriate class is called. Af
ter a derived-class destructor runs, the destructors for all of that class' base classes run all the way
up the hierarchy-the root class' destructor runs last.

• Operator dynamic_cast checks the type of the object to which the pointer points, then deter
mines whether this type has an is-a relationship with the type to which the pointer is being con
verted. If they have an is-a relationship, dynamic_cast returns the object's address . If not,
dynami c_cast returns o.

• Operator type id returns a reference to an object of class type_info that contains information
about the data type of its operand, including the name of the data type. To use typeid, the pro
gram must include header file <typeinfo>.

• When invoked, type_info member function name returns the name of the type that the
type_info object represents .

• Operators dynami c_cast and typeid are part of C++'s run-time type information (RTTI)
feature, which allows a program to determine an object's type at run time.

TERMINOLOGY
abstract base class
abstract class
base-class virtual function

class hierarchy
concrete class
derived class

7 1 6 Object-Oriented Programming: Polymorphism

derived-class constructor
direct base class
displacement into vtable

downcasting
dynamic binding
dynamic_cast operator
early binding
eliminating swi tch statements
extensibility
implementation inheritance
independent software vendor (ISV)
indirect base class
inheritance
interface inheritance
late binding
name member function of class type_info

offset into vtable

override a pure virtual function
override a virtual function
pointer to a base class
pointer to a derived class

SELF-REVIEW EXERCISES

pointer to an abstract class
polymorphism
programming "in the general"
programming "in the specific"
pure virtual function (= 0)
reference to a base class
reference to a derived class
reference to an abstract class
RTTI (run-time type information)
run-time type information (RTTI)
static binding
swi tch logic
typeid operator
< type info> header file
type_info class
vi rtual destructor
virtual function
virtual function table
VIable

VIable pointer

1 0. 1 Fill in the blanks in each of the following statements:
a) Treating a base-class object as a(n) can cause errors.
b) Polymorphism helps eliminate logic.

Chapter 1 0

c) If a class contains at least one pure virtual function, it is a(n) class.
d) Classes from which objects can be instantiated are called classes.
e) Operator can be used to downcast base-class pointers safely.
f) Operator type id returns a reference to a(n) object.
g) involves using a base-class pointer or reference to invoke virtual functions

on base-class and derived-class objects.
h) Overridable functions are declared using keyword ____ _

i) Casting a base-class pointer to a derived-class pointer is called ____ _

1 0. 2 State whether each o f the following is true orfalse . I f false, explain why.
a) All virtual functions in an abstract base class must be declared as pure virtual

functions.
b) Referring to a derived-class object with a base-class handle is dangerous.
c) A class is made abstract by declaring that class vi rtual.

d) If a base class declares a pure vi rtual function, a derived class must implement that
function to become a concrete class.

e) Polymorphic programming can eliminate the need for swit ch logic.

ANSWERS TO SELF-REVIEW EXERCISES

1 0. 1 a) derived-class object. b) swi tch. c) abstract. d) concrete. e) dynami c_cas t.

f) type_info. g) Polymorphism. h) virtual. i) downcasting.

1 0.2 a) False. An abstract base class can include virtual functions with implementations. b) False.
Referring to a base-class object with a derived-class handle is dangerous. c) False. Classes are never

Chapter 1 0 Object-Oriented Programming: Polymorphism 71 7

declared vi rtual. Rather, a class is made abstract by including at least one pure virtual function in
the class. d) True. e) True.

EXERCISES

1 0.3 How is it that polymorphism enables you to program "in the general" rather than "in the spe
cific"? Discuss the key advantages of programming "in the general."

1 0.4 Discuss the problems of programming with swi tch logic. Explain why polymorphism can
be an effective alternative to using swi tch logic.

1 0.5 Distinguish between inheriting interface and inheriting implementation. How do inheritance
hierarchies designed for inheriting interface differ from those designed for inheriting implementa
tion?

1 0.6 What are virtual functions? Describe a circumstance in which virtual functions would be ap
propriate.

1 0. 7 Distinguish between static binding and dynamic binding. Explain the use of virtual functions
and the vtable in dynamic binding.

1 0.8 Distinguish between virtual functions and pure virtual functions.

1 0.9 Suggest one or more levels of abstract base classes for the Shape hierarchy discussed in this
chapter. (The first level is Shape, and the second level consists of the classes TwoD imens ion

a l Shape and ThreeD imens ional Shape.)

1 0. 1 0 How does polymorphism promote extensibility?

1 0. 1 1 You have been asked to develop a flight simulator that will have elaborate graphical outputs.
Explain why polymorphic programming would be especially effective for a problem of this nature.

1 0. 1 2 Modify the payroll system of Fig. 10.23-Fig. 10.33 to include privat e data members
bi rthDate (use class Date from Fig. 8.IO-Fig. 8.11) to class Employee . Assume that payroll is
processed once per month. Create a vector of Employee references to store the various employee
objects. In a loop, calculate the payroll for each Emp loyee (polymorphically), and add a $100.00
bonus to the person's payroll amount if this is the month in which the Employee's birthday occurs.

1 0. 1 3 implement the Shape hierarchy shown in Fig. 9.3. Each TwoDimensionalShape should
contain function getArea to calculate the area of the two-dimensional shape. Each ThreeD imen

s i onal Shape should have member functions getArea and getVolume to calculate the surface
area and volume of the three-dimensional shape, respectively. Create a program that uses a vector of
Shape pointers to objects of each concrete class in the hierarchy. The program should print the object
to which each vector element points. Also, in the loop that processes all the shapes in the vector,

determine whether each shape is a TwoDimens ionalShape or a ThreeDimens ional Shape. If
a shape is a TwoD imens ional Shape, display its area. If a shape is a ThreeD imens ion

al Shape, display its area and volume

1 0. 1 4 Develop a basic graphics package. Use the Shape class inheritance hierarchy from
Chapter 9. Limit yourself to two-dimensional shapes such as squares, rectangles, triangles and circles.
Interact with the user. Let the user specify the position, size, shape and fill characters to be used in
drawing each shape. The user can specify more than one of the same shape. As you create each shape,
place a Shape * pointer to each new Shape object into an array. Each class has its own draw mem
ber function. Write a polymorphic screen manager that walks through the array, sending draw mes
sages to each object in the array to form a screen image. Redraw the screen image each time the user
specifies an additional shape.

II
Templates

Objectives

• To be able to use function templates to create a group

of related (overloaded) functions.

• To be able to distinguish between function templates

and function-template specializations.

• To be able to use class templates to create a group of

related types.

• To be able to distinguish between class templates and

class-template specializations.
• To understand how to overload function templates.

• To understand the relationships among templates,

friends, inheritance and static members.

Behind that outside pattern

the dim shapes get clearer every day.

It is always the same shape, only very numerous.

Charlotte Perk in s Gi l man

A Mighty Maze! but not without a plan.

Alexander Pope

Chapter 1 1

Outl ine

1 1 . 1 I ntroduction

1 1 .2 Function Templates

1 1 .3 Overloading Function Templates

1 1 .4 Class Templates

1 1 .5 Class Templates and Nontype Parameters

1 1 .6 Templates and I nheritance

1 1 .7 Templates and Friends

1 1 .8 Templates and stat ic Members

Tem plates 7 19

Summary · Terminology · Self-Review Exercises · Answers 10 Self-Review Exe rcises · Exercises

1 1 . 1 I ntroduction

I n th is chapter, we d i scuss one of C++'s more powerfu l features, namely templates. Function

templates and class templates enable programmers to spec ify , w i th a s ing le code segment, an

ent i re range of re lated (overloaded) functions--calledjimction -template specializations-or

an ent ire range of re lated c 1asses--cal led class-template specializations.

We might write a s i ng le funct ion template for an array -sort funct ion , then have C++
generate separate funct ion-template spec ial izat ions that w i l l sort int arrays , f l oat

arrays , arrays of stri ngs and so on .
We d i scussed funct ion templates i n Chapter 3 . For the benefi t of those readers who

sk i pped that treatment , we present an add i t ional d i scuss ion and example i n t h i s chapter.
We m ight write a s ing le c lass template for a stack c lass , then have C++ generate sep

arate c l ass-template spec ia l i zat ions , such as a stack-of-int c lass , a stack-of- f loat c l ass ,

a stack-of-string c lass and so on .

Note the d i s t i nct ion between templates and temp late spec ia l izat ions : Funct ion tem
plates and c lass templates are l i ke stenc i l s ou t of which we trace shapes ; funct ion- template
spec ial izat ions and c lass-template spec ia l i zat ions are l i ke the separate trac i ngs that all have
the same shape, but could, for example, be drawn i n d i fferen t colors .

o 1

Templates are one of c+ + 's 1 I 10st powelful capabilities for software reuse.

In th i s chapter, we present examples of a funct ion template and a c lass template . We
also consider the re lationsh ips between templates and other C++ features , such as over
load ing , i nheritance, friends and stat ic members.

The design and detai l s of the template mechan i sms d i scussed here are based on the
work of 8jarne S troustrup as presented i n his paper, Parameterized Typesfor C+ + , and as
publ i shed in the Proceedings of the USENIX C+ + Conference held in Denver, Colorado,
in October 1 988 .

Th i s chapter i s des igned on l y a s an i n troduct ion t o t h e complex topic o f templates .
Chapter 2 1 , Standard Template Library (STL) , presents an i n -depth treatment of the tem
plate container c lasses , i terators and algori thms of the STL. Chapter 2 1 conta i n s dozens of

720 Templates Chapter 1 1

l i ve-code template-based examples i l l ustrat ing more sophis t icated template-programm i ng

techn iques than those used here i n Chapter I l .

1 1 .2 Function Templates

Overloaded funct ions normal l y are used to perform similar operat ions on d i fferen t types of
data. I f the operat ions are identical for each type, they can be performed more compactly

and conven ien t ly us ing jitnction templates. The programmer writes a s i ng le funct ion-tem

p late defi n i t ion . Based on the argument types provided exp l ic i t ly or i n ferred from cal l s to
this funct ion , the compi ler generates separate object-code funct ions (i .e . , funct ion- template

spec ia l i zat ions) to handle each funct ion call appropriatel y . In C , this task can be performed
us ing macros created w i th the preprocessor d i rect i ve #de f ine (see Chapter 1 9 , Prepro
cessor) . However, macros can have serious side effects and do not enable the compi ler to
perform type checki ng . Function templates provide

'
a compact solut ion , l i ke macros, but en

able fu l l type check i ng .

Function templates, like macros, enable software reuse. Unlike macros, jimction templates

help eliminate many types of errors through the scrutiny offull C+ + type checking.

Al l funct ion-template defi n i t ions begi n wi th keyword t emplate fol l owed by a l i st

of formal type parameters to the function template enclosed i n angle brackets « and » ;

each formal type parameter must be preceded by e i ther of the i nterchangeable keywords
c l a s s or typename, as i n

t emplate< class T >

or

template< typenarne ElementType >

or

t emp late< c la s s BorderType , c lass F i l lType >

The formal type parameters of a template defi n i t ion are used to spec i fy the types of the ar
guments to the funct ion , to spec i fy the return type of the funct ion and to declare variables
w i th in the funct ion . The funct ion defi n i t ion fol lows and i s defined l i ke any other funct ion .

Note that keywords c l a s s and typename used to spec i fy funct ion-template type param

eters actual l y mean "any bu i l t - i n type or user-defi ned type ."

Common Programming Error 1 1 . 1
Not placing class or typename before eachformal type parameter o/a fimction template

is a syntax error.

Let us examine funct ion template printArray i n F ig . 1 1 . 1 , l i nes 9- 1 7 . Funct ion

template printArray declares (l ine 9) a s i ngle formal type parameter T (T can be any

val id ident ifier) for the type of the array to be pri nted by funct ion printArray; T is

referred to as a type parameter. When the compi ler detects a printArray funct ion i nvo

cat ion i n the program source code (e .g . , l i nes 32 , 37 and 42) , the type of print Array's

fi rst argument i s subst i tuted for T throughout the template defi n i t ion , and C++ creates a

complete funct ion-template spec ia l ization for pri nt ing an array of the spec i fied data type .

Then . the newly created specia l i zation i s compi led . I n Fig . 1 1 . 1 . the compi ler creates three

Chapter 1 1 Templates 72 1

printArray spec ia l i zat ions-one that expects an int array , one that expects a double

array and one tha t expects a char array . For example, the funct ion- template spec ial i zat ion
for type int i s

void printArray (const int * array , const int count }
{

for (int i = 0 ; i < count ; i + +
cout « array [i 1 « " "

cout « endl ;

I I end funct i on printArray

Every formal type parameter i n a funct ion-template defi n i t i on (e .g . , T i n l i ne 9) must
appear i n the funct ion ' s parameter l i st at least once (e .g . , T i n l i ne 1 0) . The name of a formal
type parameter can be used only once in the parameter l i st of a template header. Formal type

parameter names among funct ion templates need not be un ique .

1 I I Fig . 1 1 . 1 : f i g 1 1_0 1 . cpp
2 I I Using t emplate funct ions .
3 # inc lude < iostream>
4
5 us ing s td : : cout ;
6 u s ing std : : endl ;
7
8 I I funct i on t emplate printArray de finition
9 t emplate< c lass T >

1 0 void printArray (const T * array , const int count }
1 1 {
1 2 for (int i = 0 ; i < count ; i + +
1 3 cout « array [i 1 « " " ;
1 4
1 5 cout « endl ;
1 6
1 7 } I I end funct ion printArray
1 8
1 9
20
2 1
22
23
24

int main (}
{

const int
const int
const int

aCount 5 ;
bCount 7 ;
cCount 6 ;

25 int a [aCount 1 = { 1 , 2 , 3 , 4 , 5 } ;
26 double b [bCount] = { 1 . 1 , 2 . 2 , 3 . 3 , 4 . 4 , 5 . 5 , 6 . 6 , 7 . 7 } ;
27 char c [cCount] = " HELLO " ; I I 6th pos i t ion for nul l
28
29 cout < < " Array a contains : " < < endl ;
30
3 1 I I c a l l integer func t ion- t emplate spec i a l i z a t i on
32 printArray (a , aCount } ;
33
34 cout « " Array b contains : " « endl ;

Fig. 1 1 . 1 Function-template specia l izations of function template printArray.
(Part 1 of 2 .)

722 Tem p lates

35
36 I I cal l double funct ion - t emplate spec i a l i zat ion
37 printArray (b, bCount) ;
38
39 cout < < " Array c contains : " < < endl ;
40
4 1 I I cal l character function-templ at e spec i a l i zat ion
42 printArray (c , cCount) ;
43
44 return 0 ;
45
46 } I I end main

Array a contains :
1 2 3 4 5
Array b contains :
1 . 1 2 . 2 3 . 3 4 . 4 5 . 5 6 . 6 7 . 7
Array c contains :
H E L L 0

Chapter 1 1

Fig . 1 1 . 1 Function-template special izations of function template pr intArray.
(Part 2 of 2.)

Figure 1 1 . 1 demonstrates funct ion template printArray. The program beg i n s by

i n stant iat i ng fi ve-e lement int array a, seven-e lement doubl e array b and s i x -e lement
char array c. Then , the program outputs each array by cal l i ng printArray-o n ce

with a fi rst argument a of type int * (l i ne 32) , once wi th a fi rst argument b of type
double * (l i ne 37) and once wi th a fi rst argument c of type char * (l i ne 42) . The ca l l
on l i ne 32 , for example , causes the compi ler to i n fer that T i s int and to i n stant i ate a
printArray funct ion - template spec ia l i zat ion , for which type parameter T i s int o The

cal l on l i ne 37 causes the compi ler to i n fer that T i s doubl e and to i n stant i ate a second
printArray funct ion- template spec ia l i zat ion , for which type parameter T is doubl e.

The cal l on l i ne 42 causes the compi ler to i n fer that T i s char and to i n stant iate a th i rd

printArray funct ion- template spec ia l izat ion , for which type parameter T i s char. I t

i s important t o note that i f T (l i ne 9) represents a user-defi ned type, the first stream- i n ser

t ion operator i n l i ne 1 3 must be overloaded for c lass T.

I n th i s example , the template mechan i sm saves the programmer from hav ing to wr i te

three separate overloaded funct ions with prototypes

void printArray (const int * , const int) ;
vo id printArray (const double * , const int) ;
void printArray (const char * , const int) ;

that a l l use the same code , except for type T.

Performance Tip 1 1 . 1
A lthough templates offer software-reusability benefits, remember that rl 1ultiple function -tem

plate specializations and class-template specializations are instantiated in a program, de

spite the facl that the lernplale is wrillen ol1ly Ollce. These copies can consume considerable

memory.

Chapter 1 1 Tem plates 723

1 1 .3 Overloading Function Templates

Funct ion templates and overload i ng are i n t i mate ly re lated. The re lated funct ion-template

spec i al izat ions generated from a funct ion template all have the same name, so the compi ler

uses overload ing reso lu t ion to invoke the proper funct ion .
A funct ion template may be overloaded i n several ways . We can prov ide o ther funct ion

templates that spec i fy the same funct ion name but d i fferen t funct ion parameters. For
example , funct ion template printArray of Fig. 1 1 . 1 could be overloaded w i th another
printArray funct ion template with addi t iona l parameters lowSubsc ript and
highSubsc ript to spec i fy the port ion of the array to output (see Exerc i se I I A) .

A funct ion template al so can be overloaded by prov id ing non-temp late funct ions w i th

the same funct ion name but d i fferent funct ion arguments . For example , funct ion template

printArray of Fig. 1 1 . 1 could be overloaded with a non-template vers ion that spec i fi

ca l l y pri nts an array of character str ings i n neat, tabu lar format (see Exerc i se 1 1 . 5) .

Common Programming E rror 1 1 .2

If a template is in voked with a user-defined type, alld if that template uses operators (e .g . ,

==, + , <=) with objects of that class type, then those operators must be overloaded for the

user-defined type. Forgelling 10 overload such operators causes errors.

The compi ler performs a match ing process to determ i ne what funct ion to ca l l when a

funct ion i s i n voked. First , the compi ler tr ies to fi nd and use a prec i se match i n wh ich the

funct ion names and argument types match those of the funct ion cal l . I f th is fai l s , the com

p i l er determ i nes whether a funct ion template i s avai lable that can be used to generate a
funct ion-template spec i a l i zat ion wi th a prec i se match of funct ion name and argument
types . If such a funct ion template i s found, the compi ler generates and uses the appropr iate
funct ion-template spec ia l izat ion .

Common Programming Error 1 1 .3

The compiler pelforms a matching process to deterrnine what function to call when a func

tion is in voked. If 1 10 match can be fOllnd, or if the l I Iatching process produces multiple

matches (of equal rallk) , the compiler gellerates all error.

1 1 .4 Class Templates

It is poss ib le to understand the concept of a "stack" (a data structur e i nto wh ich we i n sert
i tems at the top and retr ieve those items i n last- i n-fi rst-out order) i ndependent of the type
of the i tems be i ng p laced i n the stack . However, to i nstan t iate a stack , a data type must be
spec i fied . Th i s c reates a wonderfu l opportun i ty for software reusab i l i t y . We need the means
for describ ing the not ion of a s tack generical ly and i nstan t i at i ng classes that are type-spe
c i fi c vers ions of this generic class . C++ prov ides this capab i l i ty through class templates,

and the techn ique is cal led generic programming.

Class templates encourage software reusability by enabling type-specific versions of generic

classes to be instantiated.

Class templates are ca l led parameterized types, because they requ i re one or more type
parameters to spec i fy how to custom ize a "generic c lass" template to form a c lass-template
spec ia l i zat ion .

724 Templates Chapter 1 1

The programmer who wi shes to produce a variety of c l ass-template spec ia l i zat ions

wri tes on ly one c lass-template defi n i t ion . Each t ime the programmer needs an add i t iona l

c lass-template spec ia l i zat ion , the programmer uses a concise , s imple notat ion , and the

compi ler wr i tes the source code for the spec ia l i zat ion the programmer requ i res . One

Stack c lass template, for example , could thus become the bas i s for creat ing many S t ack

c lasses (such as "Stack of double," "Stack of int ," "Stack of char," "Stack of
Emp l oyee," etc .) used in a program.

Note the Stack c lass-template defi n i t ion i n Fig . 1 1 . 2 . I t looks l i ke a convent ional

c l ass defin i t ion , except that i t i s preceded by the header (l i ne 6)

t emplate < class T >

to spec ify a c lass-template defi n i t ion with type parameter T that i nd icates the type of the
Stack c lass to be created. The programmer need not spec i fica l l y use ident ifier T-the pro
grammer can use any va l id ident ifier . The type of e lement to be stored on th i s Stack i s

ment ioned generical l y a s T throughout the Stack c lass header and member funct ion def
i n i t ions . I n a moment , we show how T becomes assoc i ated wi th a spec i fic type, such as
double or int o There are two constrai nts for non-pri m i t i ve data types used with th i s
Stack: They must have a copy constructor, and they mus t support the ass ignment opera

tor. If an object of the c lass used wi th th i s Stack contains dynamical l y a l located memory,

the assignment operator shou ld be overl oaded for that type, as we saw in Chapter 8.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27

I I Fig . 1 1 . 2 : t s tack1 . h
I I Stack c lass t emplate .
i fnde f TSTACK1_H
#de f ine TSTACK1_H

t emplate < class T >
c l a s s Stack {

public :
Stack (int = 1 0) ; I I de fault constructor (stack s i z e 1 0)

I I destructor
- Stack ()
{

de lete [] stackPt r ;

I I end -Stack destructor

bool push (const T&) ;
bool pop e T&) ;

I I push an e l ement onto the stack
II pop an e l ement o f f the stack

I I determine whether Stack i s empty
bool i sEmpty () const
{

return top == - 1 ;

I I end funct i on i sEmpty

Fig . 1 1 .2 Class template Stack. (Part 1 of 3 .)

Chapter 1 1

I I determine whether Stack i s ful l
bool i sFul l {) const
{

return top = = s i z e - 1 ;

I I end funct i on i sFul l

private :
int s i z e ;
int top ;
T * stackP t r ;

I I # of e l ement s in t h e stack
I I locat ion of the top e l ement
I I pointer to the stack

} ; I I end c la s s Stack

I I construc tor
t emplate < c l a s s T >
Stack< T > : : Stack { int s)
{

s i z e = s > 0 ? s : 1 0 ;
t op = - 1 ; I I Stack ini t i a l ly empty

Templates

stackPt r = new T [s i z e] ; I I al locate memory for e l ement s

I I end Stack constructor

I I push e l ement onto stack ;
I I i f succ e s s ful , return true ; otherwi se , return f a l s e
t emplate < c lass T >
bool Stack< T > : : push { const T &pushValue
{

i f (! i sFul l ()) (
s tackPt r [+ + t op] = pushValue ; I I place i t em on Stack
return true ; I I push succe s s ful

I I end i f

return f a l s e ; I I push unsucces s ful

I I end funct i on push

I I pop e l ement o f f stack ;
I I i f succ e s s ful , return true ; otherwi se , return f a l s e
template < c la s s T >
bool Stack< T > : : pop (T &popValue)
{

i f (! i sEmpty ()) {

725

28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80

popValue = stackPtr [top - -] ; I I remove i t em f rom Stack
return t rue ; I I pop succe s s ful

I I end if

return f a l s e ; I I pop unsuc c e s s ful

Fig. 1 1 .2 Class template Stack, (Part 2 of 3 ,)

726 Tem p lates

8 1 } I I end funct ion pop
82
83 #end i f

F ig . 1 1 .2 Class template S tack, (Part 3 of 3 ,)

Chapter 1 1

The member-funct ion defi n i t ions outs ide the c lass each beg i n wi th the header

t emplate < c l a s s T >

(l i nes 44, SS and 70) . Thus, each defi n i t ion resembles a convent ional funct ion defi n i t ion ,
except that the Stack e lement type always i s l i sted generical ly as type parameter T . The
b inary scope-resol ut ion operator i s used with the c lass-template name Stack< T > (l i nes
4S, S6 and 7 1) to t ie each member funct ion defi n i t ion to the c lass template ' s scope. I n th i s

case , the c lass name i s Stack< T >. When doubleStack i s i n stant iated as type
Stack< double > , the Stack constructor funct ion-template spec ia l i zat ion uses new to

create an array of e lements of type double to represent the stack (l i ne 49) . The statement

stackPtr = new T [size] ;

i n the Stack c lass-template defi n i t ion i s generated by the compi ler i n the c l ass-template

spec ia l i zation Stack< double > as

stackPtr = new double [s i z e] ;

Now, let us cons ider the driver (Fig . 1 1 . 3) that exerc i ses the Stack c lass temp late .

The driver beg ins by i nstant iat ing object doubleStack of s i ze 5 (l i ne 1 3) . This obj ect is

dec l ared to be of c lass Stack< double > (pronounced "Stack of double") . The com

p i ler assoc iates type doubl e wi th type parameter T i n the template to produce the source
code for a Stack c lass of type double. Al though the programmer does not see th i s
source code, i t i s i nc luded i n the program and compi led .

1 I I Fig . 1 1 . 3 : f i g 1 1_0 3 . cpp
2 I I Stack - c l a s s - t emplate te st program .
3 # inc lude < iostream>
4
5 us ing std : : cout ;

6 us ing std : : c in ;
7 us ing std : : endl ;
8
9 # inc lude " t stack1 . h " I I Stack class t emplate de f init ion

1 0
1 1 int main ()
1 2 {
1 3 Stack< doubl e > doubl eStack (5) ;
1 4 doubl e doubleValue = 1 . 1 ;
1 5
1 6 cout « " Pushing e l ement s onto doubleStack\ n " ;

1 7
1 8 whi l e (doubleStack . push (doubleValue)) {
1 9 cout « doubleValue « ' ' ;

Fig . 1 1 . 3 C lass template St ack test program (Part 1 of 2)

Chapter 1 1

20 doubl eValue += 1 . 1 ;
2 1
22 I I end whi l e
23

Tem plates

24 cout « " \nStack i s ful l . Cannot push " « doubl eValue
25 « " \n\nPopping e l ement s f rom doub l eStack \ n " ;
26
27 whi l e (doubleStack . pop (doubleValue))
28 cout « doubleVa lue « ' ' ;
29
30 cout « " \nStack i s empty . Cannot pop \ n " ;
3 1
32 Stack< int > intStack ;
33 int intValue = 1 ;
34 cout « " \nPushing e l ement s onto int Stack\n " ;
35
36 whi l e (intStack . push (intValue)) {
37 cout « intValue « ' ' ;
38 + + intValue ;
39
40 } I I end whi l e
4 1
42 cout « " \nStack i s ful l . Cannot push " « intValue
43 « " \n \ nPopping e l ement s f rom intStac k \ n " ;
44
45 whi l e (intStack . pop (intValue))
46 cout « intValue « ' ' ;
47
48 cout « " \ nStack is empty . Cannot pop \ n " ;
49
50 return 0 ;
5 1
52 I I end main

Pushing e l ement s onto doubl eStack
1 . 1 2 . 2 3 . 3 4 . 4 5 . 5
Stack i s ful l . Cannot push 6 . 6

Popping e l ement s from doubleStack
5 . 5 4 . 4 3 . 3 2 . 2 1 . 1
Stack i s empty . Cannot pop

Pushing e l ement s onto int Stack
1 2 3 4 5 6 7 8 9 1 0
Stack i s ful l . Cannot push 1 1

Popping e l ement s from intStack
1 0 9 8 7 6 5 4 3 2 1
Stack i s empty . Cannot pop

Fig. 1 1 .3 Class template Stack test progra m , (Part 2 of 2 ,)

727

Li nes 1 8-22 i n voke push to p l ace the double va lues I . L , 2 .2 , 3 . 3 , 4 .4 and 5 . 5 onto
doubleStack. The pu sh loop term inates when the dri ver attempts to push a s i xth
v a l u e onto doub l e Stack (w h i c h i s fu l l . bec a u se i t was c reated to ho ld a max imum of

728 Tem p lates Chapter 1 1

fi ve e lements) . Note that funct ion push returns fal se when i t i s unable to push a value
onto the stack . I

Lines 27-28 i nvoke pop i n a whi le loop to remove the fi ve values from the stack
(note , in Fig. 1 1 . 3 , that the values do pop off in last- i n-fi rst-out order) . When the dri ver
attempts to pop a s i xth value, the doubleStack i s empty, so the pop l oop term inates .

L i ne 32 i nstant iates i n teger stack int Stack with the declarat ion

Stack< int > int Stack ;

(pronounced "int Stack i s a Stack of int") . Because no s ize i s spec i fied , the s ize de
fau l ts to 1 0 as spec i fied in the defaul t constructor (Fig. 1 1 . 2 , l i ne 1 0) . Lines 36-40 loop and
i n voke push to p lace values onto int Stack unt i l i t i s fu l l , then l i nes 45-46 loop and i n
voke pop to remove values from intStack unt i l i t i s empty . Once agai n , the values pop

off i n last- i n-fi rst-out order.

Notice that the code in function main of Fig. 1 1 . 3 is almost ident ical for both the
doubleStack manipulat ions in the top half of main and the int Stack manipu lations i n
the bottom half of·main. T h i s presents another opportun i ty t o use a funct ion template .

Figure 1 1 .4 defi nes function template test Stack (l i nes 1 3-36) to perform the same tasks
as main in Fig. I l . 3-push a series of values onto a Stack< T > and pop the values off
a Stack< T > . Function template testStack uses formal type parameter T (specified at

l i ne 1 3) to represent the data type stored in the Stack< T > . The function template takes four
arguments (l i nes l 5- 1 8)-a reference to an object of type Stack< T >, a value of type T that

w i l l be the fi rst value pushed onto the Stack< T > , a value of type T used to i ncrement the

values pushed onto the Stack< T > and a character string of type const char * that rep
resents the name of the Stack< T > object for output purposes. Function main i nstant iates

an object of type Stack< double > called doubleStack (l i ne 40) and an object of type
Stack< int > called intStack (l i ne 4 1) and uses these objects in l i nes 43 and 44. Each
l i ne resul ts in a testStack function-template spec ial i zation . The compi ler infers the type
of T for t e s t Stack from the type used to i n stantiate the funct ion ' s first argument (i .e . , the
type used to i nstantiate doubleStack or int Stack). Note that the output of Fig. I 1 .4

precise ly matches the output of Fig. 1 1 . 3 .

1 I I Fig . 1 1 . 4 : f i g 1 1_0 4 . cpp
2 I I Stack c lass t emplate test program . Funct ion main u s e s a
3 I I funct i on template to manipulate obj e c t s of type Stack< T > .
4 #inc lude < iostream>
5
6 us ing std : : cout ;
7 us ing std : : c i n ;
8 us ing std : : endl ;

Fig. 1 1 .4 Pass ing a Stack template object to a function template . (Part 1 of 3 .)

I . Class Stack (Fig. 11.2) provides function i sFul l , which the programmer can use t o determine
whether the stack is full before attempting a push operation . This would avoid the potential error
of pushing onto a full stack. In Chapter 13, Exception Handling, the technique is to push the ele
ment onto the stack. If the operation cannot be completed, function push would "throw an excep
tion ." The program mer can write code to "catch" that exception, then decide how to handle it
appropriately for the application . The same technique can be used with function pop when an at
tempt is made to pop an element from an empty stack .

Chapter 1 1 Templates

9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48

inc lude " t stack1 . h " I I Stack class t emplate def ini t i on

I I func t ion template to manipulate Stack< T >
t emplate< c l a s s T >
void t e s t Stack (

{

Stack< T > &theStack,
T value ,
T inc rement ,
const char * stackName

I I reference to Stack< T >
I I ini t i a l value to push
I I increment for subs equent values
I I name of the Stack < T > obj ect

cout « " \nPushing e l ement s onto " « stackName « ' \n ' ;

whi l e (theStack . push (value)) {
cout « value « ' ' ;
value + = increment ;

I I end whi l e

cout « " \nStack i s ful l . Cannot push " « value
« " \ n \ nPopping element s f rom " « stackName « ' \n ' ;

whi l e (theStack . pop (value
cout « value « ' ' ;

cout « " \ nStack i s empty . Cannot pop \ n " ;

} I I end funct i on t e s tStack

int main ()
{

Stack< double > doubleStack (5) ;
Stack< int > intStack ;

test Stack (doubleStack, 1 . 1 , 1 . 1 , " doubleStack ") ;
testStack (intStack, 1 , 1 , " intStack ") ;

return 0 ;

I I end main

Pushing e l ement s onto doubleStack
1 . 1 2 . 2 3 . 3 4 . 4 5 . 5
Stack i s full . Cannot push 6 . 6

Popping e l ement s from doubleStack
5 . 5 4 . 4 3 . 3 2 . 2 1 . 1
Stack i s empty . Cannot pop

Pushing e l ement s onto intStack
1 2 3 4 5 6 7 8 9 10

729

Stack is ful l . Cannot push 1 1 (continued next page)

Fig. 1 1 .4 Pass ing a Stack template object to a function template . (Part 2 of 3 .)

730 Tem plates Chapter 1 1

Popping e l ement s from intStack
10 9 8 7 6 5 4 3 2 1
Stack i s empty . Cannot pop

Fig. 1 1 .4 Pass ing a Stack template object to a function template , (Part 3 of 3 .)

1 1 .5 Class Templates and Nontype Parameters

Class template Stack of Sect ion I 1 .4 used on ly type parameters i n the template header. I t

i s a l so poss ib le to u se nontype parameters, which can have defau l t arguments and are treat
ed as cons t s , For example , the template header could be mod i fied to take an int e l e

ment s parameter a s fo l lows :

t emplate < c l a s s T , int e l ement s > I I not e nontype parameter

Then , a dec larat ion such as

Stack< double , 100 > mostRecentSalesFigure s ;

could be used t o i nstantiate (at compi le t ime) a I OO-e lement Stack c lass-template spec ia l

izat ion of double values named mostRecent SalesFigure s ; th i s c lass-template

spec ia l i zat ion would be of type Stack< double , 1 0 0 >. The class header then might
contain a pri vate data member wi th an array declarat ion such as

T stackHolder [e l ement s] ; I I array to ho l d stack content s

I n addi t ion , a type parameter can spec i fy a defau l t type, For example ,

t emplate < class T = string >

might spec i fy that a Stack contai ns st ring objects by defau l t .

Performance Tip 1 1 .2

Whenever possible, specify the size of a conrainer class (such as al 1 array class or a stack

class) at compile time (possibly through a nOl1type template size parameter). This eliminates

the execution -time overhead of using new 10 create the space dynam.ically.

oft are En ne In o

Whenever possible, specify the size of a conrainer at compile time (possibly through a non

type templale size parameter). This avoids the possibility of a potentiallyfatal executiun -time

error if new is unable to obtain the needed memory.

I n the exerc i ses , you w i l l be asked to use a nontype parameter to c reate a template for

our c lass Array developed i n Chapter 8, Operator Overload ing . Thi s template w i l l enable
Array objects to be i n stant i ated wi th a spec i fied nu mber of e l ements of a spec i fied type
at comp i l e t i me, rather than creat ing space for the Array objects at execut ion t ime .

A c lass for a spec i fic type that does no t match a common c lass template can be pro
v ided to override the c lass template for that type. For example, an Array c lass template
can be used to i nstant iate an array of any type. The programmer may choose to take control
of i n stanti ati ng the Array c lass of a spec i fic type, such as Mart i an. This is done by
form i ng the new class with a class name of Array< Mart ian > as fo l l ows :

Chapter 1 1 Templates

template < >
c l a s s Array< Mart ian > {

I I body of c la s s de f ini t i on
} ;

1 1 .6 Templates and I n heritance

Templates and i nheri tance relate i n several ways :

A c lass template can be derived from a c lass-template specia l i zat ion .

A c l ass template can be derived from a non-template c l ass .

73 1

A c lass-template spec ial ization can be derived from a c lass-template spec ia l i zation .

A non-template c l ass can be deri ved from a c lass-template spec ia l i zat ion .

1 1 . 7 Templates and Friends

We have seen that funct ions and ent i re c lasses can be declared as f r i ends of non-tem

p late c lasses . W i th c l ass templates, friendship can be estab l i shed between a c l ass template

and a g lobal funct ion , a member funct ion of another c l ass (poss ib ly a c l ass- template spe
c ial i zation) , or even an ent i re c lass (poss ib ly a c lass-template spec ia l i zat ion) . The notat ions
requ i red to estab l i sh these friendsh ip re lat ionsh ips can be cumbersome.

I n s ide a c l ass template for c lass X that has been dec lared with

t emplate < class T > c lass X

a friendship declarat ion of the form

friend void f l () ;

makes funct ion f 1 a friend of every c lass-template spec ia l i zat ion i n stant iated from the pre
ced ing c lass template .

I n s ide a c l ass template for c lass X that has been dec l ared w i th

template < c l a s s T > c lass X

a fri endship declarat ion of the form

fri end void f 2 (X < T > &) ;

for a part i cu lar type T such as f l oat makes funct ion f 2 (X< f loat > &) a friend of

on ly c l ass-temp late spec ia l i zat ion X< f l oat > .

I n s ide a c l ass template , you can declare that a member funct ion o f another c lass i s a
friend of any c lass-template spec ia l izat ion generated from the c l ass temp late . Name the
member funct ion of the other c lass , us ing the c lass name and the b i nary scope-reso lu t ion
operator. For example , i n s ide a c l ass template for c lass X that has been declared wi th

template < c l a s s T > c l ass X

a friendsh ip declarat ion of the form

friend void A : : f 4 () ;

makes member funct ion f4 of c lass A a friend of every c lass-temp late spec ia l i zation i n stan
t iated from the preceding c lass template .

I n s ide a c lass templ ate for c l ass X t hat has been decl ared w i t h

732 Templates Chapter 1 1

t emplate< c l a s s T > class X

a friendsh ip declarat ion of the form

friend void C < T > : : f 5 (X< T > &) ;

for a part icu lar type T such as f loat makes member funct ion

C < f l oat > : : f 5 (X < f loat > &)

a friend funct ion of only c lass-template spec ia l i zation X< f l oat > .

I n s ide a c l ass template for c lass X that has been declared wi th

t emplate< c l a s s T > c lass X

a second class Y can be declared with

friend class Y ;

making every member funct ion o f c lass Y a friend o f every c lass-template spec ial i zat ion

produced from the c lass template x.
I ns ide a c l ass template for c lass X that has been declared wi th

t emplate< c l a s s T > class X

a second c lass z can be declared wi th

friend c lass Z < T > ;

Then , when a c l ass- temp late spec ia l i zat ion i s i n stant i ated w i th a part i cu l ar type for T

(such as f l oat) , a l l members of c l a s s z < f l oat > become fri ends of c l ass- temp late

spec i a l i zat ion X < f l oat > . We use th i s part i cu lar re l at ionsh ip i n several examples of
Chapter 1 7 , Data S tructure s .

1 1 .8 Templates and s t at i c Members

What about stat ic data members? Remember that, wi th a non-template c l ass , one copy

of a stat ic data member is shared among all objects of the c lass and the stat i c data

member must be i n i t ia l i zed at fi le scope .
Each c lass-template spec ia l i zation i n stant iated from a c lass template has i t s own copy

of each stat ic data member of the c lass template ; all objects of that spec i al iption share
that one stat ic data member. I n addi t ion , as wi th stat ic data members of non-tem
p late c lasses, static data members of c lass-template spec ial i zat ions must be i n i t i a l i zed
at fi le scope . Each c lass-template spec ia l ization gets i ts own copy of the c lass template ' s
static member funct ions .

SUMMARY

• Templates enable u s t o specify a range o f related (overloaded) functions-called function-tem
plate specializations-or a range of related classes-called class-template specializations .

• To use function-template specializations, the programmer writes a single function-template defi
nition. Based on the argument types provided in calls to this function, C++ generates separate spe
cializations to handle each type of call appropriately. These are compiled along with the rest of a
program' s source code.

Chapter 1 1 Templates 733

• All function-template definitions begin with the keyword t emplate followed by formal type pa
rameters to the function template enclosed in angle brackets « and » ; each formal type parameter
must be preceded by keyword c l a s s or typename . Keywords c l a s s and typename used to
specify function-template type parameters mean "any built-in type or user-defined type."

• Template-definition formal type parameters are used to specify the kinds of arguments to the func
tion, the return type of the function and to declare variables in the function.

• The name of a formal type parameter can be used only once in the type-parameter list of a template
header. Formal type-parameter names among function templates need not be unique.

• A function template may be overloaded in several ways. We can provide other function templates
that specify the same function name but different function parameters. A function template can
also be overloaded by providing other non-template functions with the same function name, but
different function parameters.

• Class templates provide the means for describing a class generically and for instantiating classes
that are type-specific versions of this generic class.

• Class templates are called parameterized types; they require type parameters to specify how to cus
tomize a generic class template to form a specific class-template specialization.

• The programmer who wishes to use class-template specializations writes one class template. When
the programmer needs a new type-specific class, the programmer uses a concise notation, and the
compiler writes the source code for the class-template specialization.

• A class-template definition looks like a conventional class definition, except that it is preceded by
t emplat e < c l a s s T > (or t emplate< typename T » to indicate this is a class-template
definition with type parameter T indicating the type of the class to create. The type T is mentioned
throughout the class header and member-function definitions as a generic type name.

• Member-function definitions outside a class template each begin with t emp l at e < c la s s T >

(or t emp l a t e < typename T » . Then, each function definition resembles a conventional func
tion definition, except that the generic data in the class always is listed generically as type param
eter T. The binary scope-resolution operator is used with the class-template name to tie each
member function definition to the class template's scope.

• It is possible to use nontype parameters in the header of a class template.

• A class for a specific type can be provided to override the class template for that type.

• A class template can be derived from a class-template specialization. A class template can be de
rived from a non-template class. A class-template specialization can be derived from a class tem
plate. A non-template class can be derived from a class template.

• Functions and entire classes can be declared as friends of non-template classes. With class templates,
the obvious kinds of friendship a1Tangements can be declared. Friendship can be established between
a class template and a global function, a member function of another class (possibly a class-template
specialization) or even an entire class (possibly a class-template specialization).

• Each class-template specialization instantiated from a class template has its own copy of each
static data member of the class template; all objects of that specialization share that stat i c

data member. A n d as with static data members of non-template classes, stat i c data mem
bers of class-template specializations must be initialized at file scope.

• Each class-template specialization gets a copy of the class template's stat i c member functions.

TERMINOLOGY

angle brackets « and »
class template
class-template name

class-template specialization
class-template specialization member function
formal type parameter in a template header

734 Tem plates Chapter 1 1

f r i end of a templ ate static data member of a c lass template
static data member of a c lass-templ ate

specialization
function templ ate
function-temp late definition
function-templ ate specialization
generic programming
keyword c l a s s in a templ ate type parameter
keyword template

member function of a class-templ ate
specialization

nontype parameter in a template header
overloading a function templ ate
parameterized type

SELF-REVIEW EXERCISES

stat ic member function of a c lass templ ate
static member function of a c lass-template

special ization
template argument
templ ate name
template parameter
templat e < c l a s s T >

type parameter in a template header
typename

1 1 . 1 Answer each of the fo l lowing true or false. For those that are false, state why.
a) A friend function of a function templ ate must be a function-templ ate special ization.
b) If several class-templ ate specializations are generated from a single c lass template with

a single stat ic data member, each of the class-template specializations shares a single
copy of the class templa te' s stat ic data member.

c) A function templ ate can be overloaded by another function templ ate with the same func
tion name.

d) The name of a formal type parameter can be lI sed only once in the formal type parameter
list of the template definition. Formal type parameter names among templ ate definitions
must be unique.

e) Keywords c l a s s and typename as used with a templ ate type parameter specifica l ly
mean "any user-defined c l ass type."

1 1 .2 Fil l in the b lanks in each of the fo l lowing:
a) Templ ates enable us to specify, with a single code segment, an entire range of rel ated

functions cal led , or an entire range of related c lasses ca l l ed ____ _

b) A l l function-template definitions begin with the keyword ,fo l lowed by a l ist
of formal type parameters to the function telilp l ate encl osed in ____ _

c) The related functions generated from a function template a l l have the same name, so the
compiler uses resolution to invoke the proper function.

d) Class templ ates a lso are cal led types.
e) The operator is used with a c lass-template name to tie each member function

definition to the c lass template ' s scope.
f) As with stat ic data members of non-template c lasses, stat ic data members of

c lass-template specia lizations must a l so be initialized at scope.

ANSWERS TO SELF-REVIEW EXERCISES

1 1 . 1 a) False. It could be a non-templ ate function. b) False. Each c l ass-templ ate special ization
wil l have a copy of the stat ic data member. c) True. d) False. Formal type parameter names
among function templ ates need not be unique. e) Fal se. Keywords c l a s s and typename in this
context a l so a l l ow for a type parameter of a bui l t-in type.

1 1 .2 a) function-templ ate specializations, class- templ ate special izations. b) t emp l ate, angle
brackets « and » . c) overloading. d) parameterized . e) binary scope resolution. t) fi le .

Chapter 1 1 Templates 735

EXERCISES

1 1 .3 Write a function template bubbleSort based on the sort program of Fig. 5 . 15 . Write a
driver program that inputs, sorts and outputs an int array and a f loat array.

1 1 .4 Overload function template printArray of Fig. 11.1, so that it takes two additional integer
arguments lowSub s c ript and hi ghSub s c r ipt . A call to this function prints only the desig
nated portion of the array. Validate lowSubs c r ipt and hi ghSub s c r i p t ; if either is out-of
range, or i f h i ghSub s c r ipt is less than or equal to lowSub s c r i p t , the overloaded pr intAr

ray function should return 0 ; otherwise, printArray should return the number of elements print
ed. Then modify ma in to exercise both versions of printArray on arrays a, b and c . Test all
capabilities of both versions of printArray.

1 1 .5 Overload function template printArray of Fig. I I . I with a non-template version that spe
cifically prints an array of character strings in neat, tabular, column format.

1 1 .6 Write a simple function template for predicate function i sEqual To that compares its two
arguments with the equality operator (= =) and returns true if they are equal and fa l s e if they are
not. Use this function template in a program that calls i sEqualTo only with a variety of built-in
types. Write a separate version of the program that calls i sEqua l To with a user-defined class type,
but does not overload the equality operator. What happens when you attempt to run this program?
Overload the equality operator (with operator function operator = =) . What happens when you at
tempt to run this program?

1 1 . 7 Use a nontype parameter nwnberOfE l ement s and a type parameter e l ementType to
help create a template for the Array class we developed in Chapter 8, "Operator Overloading." This
template will enable Array objects to be instantiated with a specified number of elements of a speci
fied element type at compile time.

1 1 .8 Write a program with class template Array. The template can instantiate an Array of any
element type. Override the template with a specific definition for an Array of f l oat elements
(c l a s s Array < float » . The driver should demonstrate the instantiation of an Array of int

through the template and should show that an attempt to instantiate an Array of f l oat uses the def
inition provided in c l a s s Array < float > .

1 1 .9 Distinguish between the terms "function template" and "function-template specialization."

1 1 . 1 0 Which is more like a stenci l-a cl ass tem plate or a class-template specia lization? Explain
your answer.

1 1 . 1 1 What is the relationship between function templates and overload ing?

1 1 . 1 2 Why might you choose to use a function template instead of a macro?

1 1 . 1 3 What performance problem can result from using function templates and class templates?

1 1 . 1 4 The co m p i l e r perfo r m s a m a t c h i ng process to determ ine which fu nc t i o n - t e m p l a t e s pec i al i za

t i o n to c a l l w h e n a fl l n c t i o n i , i n vo k ed . U nder what c i rc u m s t a n c e s does an a t t e m p t to m a k e a m a t c h

result in a compile error?

1 1 . 1 5 Why is it appropriate to call a class template a parameterized type?

1 1 . 1 6 Explain why a C++ program would use the statement

Array < Emp loyee > workerLi st (1 0 0) ;

1 1 . 1 7 Review your answer to Exercise I 1 . 16 . Why might a C++ program use the statement

Array < Employee > workerLi st ;

736 Templates Chapter 1 1

1 1 . 1 8 Explain the use of the following notation in a C++ program:

t ernplate < c l a s s T > Array< T > : : Array (int s)

1 1 . 1 9 Why might you use a nontype parameter with a class template for a container such as an array
or stack?

1 1 .20 Describe how to provide a class for a specific type to override the class template for that type.

1 1 .2 1 Describe the relationship between class templates and inheritance.

1 1 .22 Suppose that a class template has the header

ternplate < c l a s s Ti > class C i

Describe the friendship relationships established b y placing each o f the following friendship declara
tions inside this class-template header. Identifiers beginning with "f" are functions, identifiers
beginning with "c" are classes and identifiers beginning with "T" can represent any type (i.e., built
in types or class types).

a) friend void f i () ;

b) friend void f2 (C i < Ti > &) ;

c) friend

d) fri end

e) friend

f) friend

void C2 : : f4 () ;

void C 3 < Ti > : : f 5 (C i < Ti > &) ;

c l a s s C 5 ;

c l a s s C 6 < Ti > ;

1 1 .23 Suppose that class template Employee has a static data member count . Suppose that
three class-template specializations are instantiated from the class template. How many copies of the
static data member will exist? How will the use of each be constrained (if at all)?

Objectives

12
c++ Stream
Input/Output

• To understand how to use C++ object-oriented stream

input/output.

• To be able to format input and output.

• To understand the stream-IIO class hierarchy.

• To understand how to input/output objects of

programmer-defined types.

• To be able to use stream manipulators.

• To be able to determine the success or failure of input/

output operations.

• To be able to tie output streams to input streams.

Consciousness . . . does not appear to itself chopped up in bits

. . . A "river " or a "stream " are the metaphors by which it is

most naturally described.

Wi l l iam James

All the news that 's fit to print.

Adolph S . Ochs

738 C++ Strea m I n put/Output

Oufline

1 2. 1 Introduction

1 2.2 Streams

1 2.2. 1 Classic Streams vs. Standard Streams

1 2 .2.2 i o s t ream Library Header Files

1 2.2.3 Stream Input/Output Classes and Objects

1 2.3 Stream Output

1 2.3. 1 Output of char * Variables

1 2 .3.2 Character Output using Member Function put

1 2 .4 Stream I nput

1 2.4. 1 get and get l ine Member Functions

Chapter 12

1 2.4.2 i s t ream Member Functions peek, putback and

ignore

1 2 .4.3 Type-Safe I/O

1 2 .5 Unformatted I/O using read, write and gcount

1 2.6 I ntroduction to Stream Manipulators

1 2.6. 1 Integral Stream Base: dec , oct , hex and setbas e

1 2.6.2 Floating- Point Precision (prec i s ion, setprec i s i on)

1 2.6.3 Field Width (width, setw)

1 2 .6.4 Programmer-Defined Manipulators

1 2.7 Stream Format States and Stream Manipulators

1 2.7 . 1 Trail ing Zeros and Decimal Points (showpoint)

1 2 .7 .2 Justification (le f t , right a n d internal)

1 2.7 .3 Padding (f i l l , set f i l l)

1 2. 7 .4 Integral Stream Base (dec, oct , hex, showbase)

1 2 .7 .5 Floating- Point Numbers; Scientific a n d Fixed Notation

(sc i ent i f i c , f ixed)

1 2 .7 .6 Uppercase/Lowercase Control (uppercase)

1 2.7 .7 Specifying Boolean Format (boolalpha)

1 2.7 .8 Setting and Resetting the Format State v ia Member

Function f l ags

1 2 .8 Stream E rror States

1 2 .9 Tying an Output Stream to an Input Stream

Summary · Terminology · Self Review Exercises · Answers 10 Selr Review Exercise,l' • Exercises

Chapter 1 2 C++ Strea m I n p ut/Output 739

1 2 . 1 Introduction

The C++ standard l ibraries provide an extensive set of i nput/output capab i l i t i es . This chap

ter di scusses a range of capab i l i t ies suffic ient for perform i ng most common I/O operat ions

and overv iews the remai n i ng capab i l i t i e s . We di scussed some of these features earl ier in

the text , but now we provide a more complete t reatment . Many of the I/O features that we

wi I I d iscuss are object-oriented. This sty le of I/O makes use of other C++ features , such as

references, funct ion overload ing and operator overloading .
C++ uses type-safe liD. Each I/O operat ion i s executed i n a manner sens i t i ve to the

data type . I f an I/O member funct ion has been defi ned to handle a part i cu lar data type, then
that member funct ion i s ca l led to handle that data type . I f there i s no match between the

type of the actual data and a funct ion for hand l i ng that data type, the compi ler generates an

error. Thus, improper data cannot "sneak" through the system (as can occur in C , a l lowing

for some subt le and bi zarre errors) .

Users can spec ify how to perform I/O for objects of programmer-defi ned types . Th i s

extensibility i s one of C++ ' s most val uable features .

Use the C+ + -style flO exclusively in C+ + programs, despite thefact that C-style flO i s avail

able to C+ + programmers.

Observation 1 2 .2

C+ + flO i s type safe.

f

C+ + enables a common treatrnent of flO for predefined types and programmer-defined

types. This commonality facilira/es software development and reuse.

1 2 .2 Streams

C++ I/O occurs i n streams, which are sequences of bytes . I n i nput operat ions , the bytes

flow from a device (e .g . , a keyboard , a d i sk dr ive , a network connect ion) to main memory .

I n output operat ions , bytes flow from ma i n memory to a device (e . g . , a di sp lay screen , a
pri nter, a d i sk drive , a network connect ion, etc .) .

A n appl icat ion assoc i ates mean i ng w i t h bytes . The bytes could represent characters,
raw data, graphics i mages , digital speech , d ig i tal v ideo or any other i n format ion an app l i
cat ion may requ i re .

The system I/O mechani sms should transfer bytes from devices to memory (and v ice
versa) con s i s ten t ly and re l i ab l y . Such t ransfers often i n vo lve some mechan ica l mot ion ,
such as the rotat ion of a d i sk or a tape, or the typi ng of keystrokes at a keyboard . The t i me

these transfers take is typical ly much greater than the t ime the processor requ i res to manip
u l ate data i nternal l y . Thus, I /O operat ions requ i re carefu l p lann ing and tun ing to ensure
max imum performance .

C++ provides both " low-level" and "high- level" l /O capab i l i t i e s . Low- leve l I/O
capab i l i t ies (i . e . , unformatted liD) spec ify that some number of bytes should be transferred
device-to-memory or memory-to-dev ice . In such transfers, the i nd i v idual byte is the i tem
of in terest . Such low- leve l capabi l i t i es prov ide h igh-speed, h igh-vol u me t ransfers, but are
not part i cu larly conven ien t for programmers .

740 c++ Stream Input/Output Chapter 1 2

Programmers general l y prefer a h igher- level v iew of I/O (i . e . ,formatted /10), i n wh ich

bytes are grouped i nto meani ngful un i ts , such as i ntegers, float i ng-po in t numbers, charac

ters, stri ngs and programmer-defi ned types. These type-oriented capab i l i t i es are sati sfac

tory for most 110 other than h igh-vo lume fi l e process ing .

Performance Tip 1 2 . 1

Use unformatted liD for the best pelformance in high- volume file processing.

fI Portabil ity Tip 1 2 . 1

Using unformatted liD can lead to portability problems, because unformatted data is not

portable across all platforms.

1 2 .2 . 1 Classic Streams vs. Standard Streams

In the past, the C++ classic stream libraries enabled i nput and output of chars. Because
a char occupies one byte, i t can represent on ly a l im i ted set of characters (such as the char
acters in the ASCI I character set) . However, many l anguages use alphabets that contain
more characters than a s i ng le-byte char can represent . The ASCI I character set does not

provide these characters ; the Unicode character set does . (U nicode is an extens ive i nterna

tional character set that represents the majority of the worl d ' s commerc ial l y v i ab le l an
guages, mathematical symbol s and much more . For more i n format ion on Un icode, v i s i t

www . unicode . org.)

C++ i nc l udes the standard stream libraries, which enable developers t o bu i ld systems
capable of pelforming I/O operat ions with Un icode characters. For thi s purpose, C++
inc ludes an addi t ional character type called wchar_ t , which can store U nicode charac
ters . The C++ standard a l so redes igned the c lass ic C++ stream c lasses, wh ich processed
only chars, as class templates wi th separate specia l i zations for process ing characters of

types char and wchar_t , respective ly .

1 2 .2 .2 iostream library Header Fi les

The C++ iostream l ibrary provides hundreds of I/O capab i l i t i es . Several header fi l es

contain port ions of the l ibrary i nterface .

Most C++ programs i nc lude the < iostream> header fi l e , wh ich declares basi c ser
v ices requ i red for a l l stream- I/O operat ions . The < iostream> header fi l e defines the
c in, cout, cerr and c l og objects, which cOlTespond to the standard i n put stream, the

standard output stream, the unbuffered standard error stream and the buffered standard

error stream, respective ly . (cerr and clog are d i scussed i n Sect ion 1 2 . 2 . 3 .) Both unfor
matted- and formatted-I/O serv ices are provided.

The < iomanip> header dec lares services usefu l for performing formatted I /O wi th
so-cal led parameterized stream manipulators, such as setw and setprec i s ion.

The < f s t ream> header declares serv ices for user-contro l led fi le process ing . We use
this header in the fi le-process ing programs of Chapter 1 4 .

C++ i mplementations general l y contai n other I/O-re lated l ibrar ies that provide system
spec i fi c capab i l i t ies , such as the contro l l i ng of spec ia l -purpose devices for audio and v i deo
I/O.

Chapter 1 2 C++ Strea m I n p ut/Output 74 1

1 2.2.3 Stream Input/Output Classes and Objects

The iostream l ibrary prov ides many templates for handl i ng common 1/0 operat ions . For
example, c l ass template bas ic_i stream supports stream- input operat ions , c l ass tem
plate bas i c_os t ream supports stream-output operat ions , and c l ass template
bas i c_i o s t ream supports both stream-input and stream-output operat ions . Each tem
p late has a predefined template spec ial ization that enables char I /O. In addi t ion , the i o s

t ream l i b rary provides a set o f typede:fs that provide a l iases for these template

spec ia l i zations . The typede f specifier declares synonyms (a l i ases) for prev ious ly de
fined data types. Programmers sometimes uses typede f to create shorter or more read

able type names . For example, the statement

typede f Card * CardPtr ;

defi nes a n addit ional type name, CardPtr, a s a synonym for type Card * . Note that c re
ati ng a name us ing typede f does not create a data type; typedef creates on ly a type
name that may be used in the program. The typede f i s t ream represents a spec ia l i za
tion of bas i c_i s t ream that enables char i nput . S im i l ar ly , the typede f os tream

represents a spec ia l i zation of bas i c_os t ream that enables char output. A l so, the ty

pede f ios t ream represents a spec ial ization of bas i c_i o s t ream that enables both

char i nput and output . We use these typede f s throughout th is chapter.
Templates bas i c_i stream and bas ic_ostream both derive through s ingle inher

i tance from base template bas ic_ios. 1 Template bas ic_iostream derives through
mult ip le i nheritance2 from both templates bas ic_i stream and bas i c_os tream. The
UML c lass d iagram of Fig. 1 2 . 1 summarizes these i nheritance rel at ionships .

Operator overload ing provides a convenient notat ion for performing i nput/output. The

left-shift operator « <) is overloaded to designate stream output and is referred to as the

stream-insertion operator. The right-shift operator (> » i s overloaded to designate stream

. i nput and is referred to as the stream-extraction operator. These operators are used wi th the
standard stream objects c in, cout, cerr and c log and, commonly , w ith programmer-
defi ned stream objects .

basic ios

Fig. 1 2 . 1 Stream-I/O template h ierarchy portion .

I . Technically, templates d o not inherit from other templates. However, i n this chapter, w e discuss
templates only in the context of the template specializations that enable char !lO. These special
izations are classes and thus can inherit from each other.

2. Multiple inheritance is discussed in Chapter 22, Other Topics .

742 c++ Stream Input/Output Chapter 1 2

The predefi ned object c i n i s an i stream i nstance and i s said to be "connected to"

(or attached to) the standard input device, which usual ly is the keyboard . The stream

ex.traction operator (> » as used i n the fol lowing statement causes a value for i n teger vari

able grade (assuming that grade has been declared as an int variable) to be i nput from

c in to memory :

c i n » grade ; I I data " f lows " in the direct ion of the arrows

Note that the compi ler determi nes the data type of grade and selects the appropriate over
loaded stream-ex.traction operator. Assuming that grade has been declared properly , the
stream-extraction operator does not requ i re addit ional type i nformat ion (as is the case, for
example, i n C-sty le VO) . The » operator i s overloaded to input data i tems of bu i l t - i n
types, stri ngs and poi nter values .

The predefi ned object cout i s an ostream i nstance and i s sajd to be "connected to"

the standard output device, which usual ly is the d i splay screen. The stream- i n sert ion oper

ator « <) , as used i n the fol lowing statement, causes the value of variable grade to be

output from memory to the standard output device:

cout « grade ; I I data " f lows " in the direct ion o f the arrows

Note that the compi ler a lso determi nes the data type of grade (assuming grade has been

declared properl y) and selects the appropriate stream- i nsert ion operator, so the stream- in

sert ion operator does not requ i re addi tional type information . The < < operator i s overload

ed to output data i tems of bu i l t- i n types, stri ngs and poi nter values .

The predefi ned object cerr i s an ostream i nstance and i s said to be "connected to"

the standard error device. Outputs to object cerr are unbuffered, imp ly ing that each

stream insert ion to cerr causes i ts output to appear immediately-th i s is appropriate for

notify ing a user promptly about errors .

The predefi ned object c log is an i nstance of the o s t ream c lass and i s said to be

"connected to" the standard error device. Outputs to c l og are buffered. This means that

each insert ion to c log could cause its output to be held in a buffer unt i l the buffer is fi l led

or unt i l the buffer i s fl ushed.3

C++ fi le process ing uses c lass templates ba s i c_ifs t ream (for fi le i n put) ,

bas i c_ofs t ream (for fi le output) and basi c_fs t ream (for fi le i nput and output) .

Each c lass template has a predefi ned template spec ia l ization that enables char [/0. C++

provides a set of typede f s that provide a l iases for these template spec ia l i zations . For
example, the typede f ifs t ream represents a spec ia l i zation of bas i c_i f s t ream

that enables char input from a fi le . S im i larly , typede f ofs t ream represents a spec ia l

i zation of bas i c_o f s t ream that enables char output to a fi le . A l so, typede f

fs tream represents a spec ia l i zation of bas i c_f stream that enables char i nput from,
and output to , a fi le . Template basic_i f stream i nherits from bas i c_i s t ream,

bas i c_o f s t ream i nherits from basic_ostream and bas i c_f s t ream i nherits

from bas i c_iostream. The UML class diagram of Fig . 1 2 . 2 summarizes the various

i nheritance relat ionships of the [/O-related c lasses. The fu l l stream- I/O c lass h ierarchy pro

v ides most of the capab i l i t ies that programmers need. Consu l t the c lass- l ibrary reference
for your C++ system for addi tional fi le-process ing information .

3. B u fferi ng is an [f0 performance-enhancement technique discussed i n operating systems courses.

Chapter 1 2 C++ Strea m I n put/Output 743

bas i c ios

F ig . 1 2 .2 Stream-I/O template h ierarchy portion showing the main f i le-processing
templates.

1 2 .3 Stream Output

Formatted and unformatted output capab i l i t ies are provided by o s t ream. Capab i l i t ies for

output i nc lude output of standard data types with the stream- i n sertion operator « <) ; output

of characters v ia the pu t member function ; unformatted output via the wri te member

function (Section 1 2 . 5) ; output of i ntegers i n dec imal , octal and hexadeci mal formats

(Section 1 2 .6 . 1) ; output of float i ng-poi nt val ues wi th various prec i s ion (Section 1 2 .6 .2) ,

wi th forced dec i mal points (Section 1 2 . 7 . 1) , i n scient ific notat ion and i n fixed notat ion

(Section 1 2 . 7 . 5) ; output of data j ust ified i n fie lds of des ignated widths (Sect ion 1 2 . 7 . 2) ;

output o f data i n fie lds padded wi th spec ified characters (Section 1 2 . 7 . 3) ; a n d output o f up

percase letters i n sc ient ific notat ion and hexadec i mal notat ion (Sect ion 1 2 . 7 .6) .

1 2 .3. 1 Output of char * Variables

C++ determi nes data types automatical ly , an improvement over C . Unfortunate ly , th i s fea

ture somet imes "gets in the way ." For example, suppose we want to prin t the va lue of a

char * to a character str ing (i .e . , the memory address of the fi rst character of that stri ng) .

However, the < < operator has been overloaded to pri nt data of type char * as a n u l l -ter

mi nated stri ng . The solut ion is to cast the char * to a void * (i n fact , th i s should be done

to any poin ter variable the programmer wi shes to output as an address) . F igure 1 2 . 3 dem

onstrates prin t ing a char * variable in both stri ng and address formats. Note that the ad

dress pri nts as a hexadeci mal (base 1 6) number. We say more about contro l l i ng the bases
of numbers in Section 1 2 .6 . 1 , Section 1 2 . 7 .4, Section 1 2 . 7 . 5 and Section 1 2 . 7 . 7 . [Note:

The output of the program in Fig . 1 2 . 3 may differ among compi lers .]

1 I I Fig . 12 . 3 : fig12 0 3 . cpp
2 I I Print ing the addre s s stored in a char * variable .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;

Fig. 1 2 .3 Pr int ing the address stored in a char * var iable . (Part 1 of 2 .)

744 c++ Strea m I n put/Output

7
8 int main ()
9 {

1 0 char *word = " te s t " ;
1 1

Chapter 1 2

1 2 I I d i splay value o f char * , then display value o f char *
1 3 I I s t at i c_cast t o void *
1 4 c out « " Value o f word i s : n « word « endl
1 5 « " Value of static_cast < void * > (word i s : n

1 6 « stat ic_cast < void * > (word) « endl ;
1 7
1 8 return 0 ;
1 9
20 I I end main

Value of word i s : t e s t
Value of stat ic_ca s t < void * > (word) i s : 0 0 4 6C 0 7 0

Fig. 1 2.3 Pr int ing the address stared in a char * var iable . (Part 2 of 2 .)

1 2 .3.2 Character Output using Member Function put

We can use the put member function to output characters. For example, the statement

cout . put (' A ') ;

disp lays a s i ngle character A. Cal l s to put may be cascaded, as i n the statement

cout . put (' A ') . put (' \ n ') ;

which outputs the letter A fol l owed by a new l i ne character. As wi th < < , the preced ing state

ment executes in th i s manner, because the dot operator (.) evaluates from left to right, and

the put member function returns a reference to the ostream object that rece i ved the put

cal l . The put function also may be cal led with a numeric express ion that represents an

A SC I I value, as in the statement cout . put (65) ; , which also outputs A.

1 2 .4 Stream I nput

Now let us consider stream i nput . Formatted and unformatted i nput capab i l i t ies are prov id

ed by i s t ream. The stream-extract ion operator (i .e . , the overloaded > > operator) normal

ly skips whitespace characters (such as b lanks, tabs and new l i nes) i n the i nput stream; we

w i l l see how to change this behav ior. The stream-extract ion operator returns 0 (f a l s e)

when end-of-fi le i s encountered o n a stream; otherwi se, the stream-extract ion operator re

turns a reference to the object that rece i ved the extract ion message (e .g . , c in in the expres

s ion c in » grade) . Each stream conta ins a set of state bits used to contro l the state of

the stream (i .e . , formatt ing , sett ing error states, etc .) . Stream extraction causes the stream ' s

fai lbi t to b e set i f data of the wrong type i s i nput and causes the stream ' s badbi t to

be set i f the operat ion fai l s . Section 1 2 .7 and Section 1 2 . 8 d i scuss stream state bits in detai l ,

then show how t o test these bits after a n I/O operat ion.

Chapter 1 2 C++ Strea m Input/Output 745

1 2 .4. 1 get and get 1 ine Member Functions

The ge t member function with no arguments i nputs one character from the designated

stream (even if th i s is whi tespace) and returns this character as the va lue of the funct ion cal l .

Thi s vers ion o f get returns EOF when end-of-fi l e o n the stream i s encountered .

Figure 1 2 .4 demonstrates the use of member functions eof and get on input stream

cin and member function put on output stream cout o The program fi rst pri nts the value

of c i n . eof () -i .e . , false (0 on the output)-to show that end-of-fi l e has not occurred

on c in. The user enters a l i ne of text and presses Enter fol lowed by end-of-fi l e « ctrl> -z

on I B M PC-compat ib le systems, <ctrl> -d on U N I X and M ac i ntosh systems) . Line 1 8 reads

each character, which l i ne 1 9 outputs to cout us ing member funct ion put . When end-of

fi le is encountered, the whi l e structure ends, and l i ne 23 disp lays the va lue of

c i n . eof () , wh ich is now true (1 on the output), to show that end-of-fi l e has been set

on c in. Note that this program uses the version of i s t ream member funct ion get that

takes no arguments and returns the character be ing i nput (l ine 1 8) .

The get member function w i th a character-reference argument i nputs the nex t char

acter from the i nput stream (even if th is is a whi tespace character) and stores it in the char

acter argument . Thi s version of get returns - 1 when end-of-fi le is encountered; otherw i se ,

i t returns a reference to the i s t ream object for which the get member funct ion i s be ing

i nvoked.

1 I I Fig . 12 . 4 : fig12_04 . cpp
2 I I Using member funct ions get , put and eof .
3 # inc lude < iostream>
4
5 us ing s td : : cout ;
6 u s ing std : : c i n ;
7 us ing std : : endl ;
8
9 int main ()

1 0 {
1 1 int character ; I I use int , because char cannot repre sent EOF
1 2
1 3 I I prompt user to enter l ine of ,text
1 4 cout « " Be fore input , c i n . eof () i s " « c in . eof () « endl
1 5 « " Enter a sentence fol lowed by end - of - f i l e : " « end l ;
1 6
1 7 I I use get to read each charact e r ; use put t o display i t
1 8 whi l e ((character = c in . get ()) ! = EOF)
1 9 cout . put (character) ;
20
21 I I display end-of - f i l e character
22 cout « " \nEOF in thi s syst em i s : " « charact e r « endl ;
23 cout « "After input , cin . eof () i s " « c i n . eof () « endl ;
24
25 return 0 ;
26
27 I I end main

F ig. 1 2.4 get. put and eof member functions. (Part 1 of 2 .)

746 c++ Stream I n p ut/Output

Be fore input , cin . eof () i s 0

Enter a sentence f o l l owed by end-of - f i l e :

Test ing the get and put member func t i ons

Tes t ing the get and put member funct ions
" Z

EOF in thi s system i s : - 1

After input cin . eof () i s 1

Fig. 1 2 .4 get, put and eof member functions. (Part 2 of 2 .)

Chapter 1 2

A third version of get takes three arguments-a character array, a s ize l i m i t and a

del im i ter (w ith default value I \n ') . This version reads characters from the i n put stream . I t

e i ther reads one fewer than the specified max imum number of characters and term inates or

termi nates as soon as the del i m i ter i s read . A nu l l character i s i n serted to terminate the i nput

stri ng i n the character array used as a buffer by the program. The del i miter i s not p laced in

the character array, but does remain in the input stream (the del i miter wi l l be the next char

acter read) . Thus, the resu l t of a second consecut ive get is an empty l i ne, un less the del i m

i ter character is removed from the input stream (poss ib ly wi th c in . ignore (») .
Figure 1 2 .5 compares input using cin with stream extraction (which reads characters

unt i l a whitespace character is encountered) and input using c in . get . Note that the cal l to

c in . get (l ine 25) does not specify a de l imi ter, so the defau l t I \n I character is used.

1 / / F ig . 1 2 . 5 : f ig 1 2 0 5 . cpp

2 1/ Cont rast ing input of a st ring vi a c in and c i n . get .

3 # inc lude < i o s t ream>
4
5 us ing s td : : cout ;

6 us ing std : : c i n ;

7 us ing std : : endl ;

8
9 int ma in ()

1 0 (
1 1 / / creat e two char arrays , each wi th 8 0 e l ement s

1 2 const int S I ZE = 8 0 ;

1 3 char bu f f er 1 [S I ZE] ;
1 4 char buf fer2 [S I ZE] ;

1 5
1 6 / / use c in to input character s into bu f f er 1

1 7 cout « " Enter a sentence : " « endl ;

1 8 c i n » buf f e r 1 ;
1 9
20 // di sp l ay buf f e r 1 content s

2 1 cout « " \nThe string read with c i n was : " « endl

22 « buf f e r 1 « endl « endl ;

23
24 // use c in . get to input characters into bu f fer2
25 c i n . get (bu f f er2 , S I ZE) ;

Fig. 1 2.5 Input of a string using c in with stream extraction contrasted with input
us ing c i n . get . (Part 1 of 2 .)

Chapter 1 2

26
27 I I di spl ay buf f er2 content s

C++ Stream I n p ut/Output

28 cout « " The string read with cin . get was : " « endl
29 « bu f f er2 « endl ;
30
3 1 return 0 ;
32
33 I I end ma in

Enter a sentenc e :

Contras t i ng s t r i ng i nput with cin and cin . get

The s t ring read with c in was :

Contrast ing

The s t r ing read with c in . get was :

string input with c i n and c in . get

Fig. 1 2.5 I nput of a string us ing c in with stream extraction contrasted with input
using c in . get . (Part 2 of 2.)

747

Member-funct ion ge t l ine operates s i m i l ar ly to the th ird vers ion of the get member

function and i n serts a nul l character after the l i ne i n the character array . The get l ine

function removes the del i m iter from the stream (i .e . , reads the character and d i scards i t) ,

but does not store i t i n the character array . The program of Fig . 1 2 .6 demonstrates the use

of the get l ine member function to input a l i ne of tex t (l ine 1 6) .

1 I I Fig . 1 2 . 6 : f ig 1 2 0 6 . cpp

2 I I Inputt ing characters using c in membe r func t ion get l ine .

3 #inc lude < iostrearn>
4
5 u s i ng std : : cout ;
6 u s ing std : : c i n ;
7 us ing s td : : endl ;

8
9 int main ()

1 0 {
1 1 const int S I ZE = 8 0 ;
1 2 char buf fer [S I ZE] ; I I create array of 8 0 charac t e r s
1 3
1 4 I I inpu t charac ters in buf f er via c in func t ion get l ine
1 5 cout « " Enter a sentence : " « endl ;
1 6 c in . ge t l ine (buf f e r , SIZE) ;
1 7
1 8 I I di sp l ay buf f e r cont ent s
1 9 cout « " \ nThe sentence entered i s : " « endl « buf f e r « endl ;
20
2 1 return 0 ;
22
23 } I I end main

Fig. 1 2.6 Inputting character data with c in member function get l i ne . (Part 1 of 2 .)

748 c++ Stream Input/Output Chapter 1 2

Enter a sentenc e :

Using the get l ine member funct ion

The sentence entered i s :

Us ing the get l ine member funct i on

Fig. 1 2.6 Inputting character data with cin member function getline. (Part 2 of 2.)

1 2.4.2 i s t ream Member Functions peek, putback and ignore

The i gnore member function of i stream either reads and di scards a des ignated n umber

of characters (the defaul t i s one character) or terminates upon encountering a designated de

l i mi ter (the defaul t de l i m iter is EOF, which causes i gnore to sk ip to the end of the fi le

when reading from a fi le) .

The pu tback member function p laces the previous character obtained by a get from

an i nput stream back i nto that stream . Thi s function is usefu l for appl icat ions that scan an

i nput stream look ing for a fie ld beg inn ing with a speci fic character. When that character i s

i nput, the appl ication returns the character t o the stream, s o the character can b e i nc luded

in the i nput data.

The peek member function returns the next character from an i nput stream, but does

not remove the character from the stream.

1 2 .4.3 Type-Safe I/O

c++ offers type-safe /10. The « and » operators are overloaded to accept data i tems of

specific types. If unexpected data i s processed, various error bits are set, which the user may

test to determine whether an I/O operat ion succeeded or fai led. Thi s enables the program

to "stay in contro l . " We d iscuss these error states in Section 1 2 . 8 .

1 2.5 Unformatted I/O using read, wri te and gcount

Unformatted inputloutput is performed us ing the read and wri te member funct ions of

i stream and ostream, respect ively . Member function read i n puts some number of

bytes to a character array i n memory ; member function wri te outputs bytes to a character
array. These bytes are not formatted in any way . They are i nput or output as raw bytes . For
example, the cal l

char bu f fer [] = " HAPPy BIRTHDAY " ;

cout . write (buf fer , 1 0) ;

outputs the first 1 0 bytes of buf fer (i nc luding nu l l characters, i f any, that would cause

output w i th cout and « to terminate) . The call

cout . write (" ABCDEFGHIJKLMNOPQRSTUVWXYZ " , 10) ;

d i splays the first 1 0 characters of the a lphabet.

The read member function i nputs a des ignated number of characters i nto a character

array . If fewer than the designated number of characters are read, fai lbit is set .

Chapter 1 2 C++ Stream Input/Output 749

Section 1 2 . 8 shows how to determine whether fai lbi t has been set . Member function

gcount reports the n umber of characters read by the last i nput operat ion .

Figure 1 2 . 7 demonstrates i s tream member fu nct ions read and gcount and

ostream member function wri t e . The program inputs 20 characters (from a longer

i n put sequence) i nto character array buf fer with read (l ine 1 6) , determi nes the number

of characters i n put w i th gcount (l i ne 20) and outputs the characters in bu f fer with

wri t e (l i ne 20) .

1 2.6 Introduction to Stream Manipulators

c++ provides various stream manipuLators that perform formatti n g tasks . The stream ma

n ipu lators provide capab i l i t ies such as sett ing fie ld widths, sett ing prec i s ion , sett i ng and u n

sett ing format state, sett ing the fi l l character i n fie lds, fl ush ing streams , i n sert i ng a newl i ne

i nto the output stream (and flush ing the stream), i n sert ing a n u l l character i nto the output

stream and skipping whi tespace i n the i nput stream. These features are described in the fol

lowing sect ions .

1 I I Fig . 1 2 . 7 : f ig12 _0 7 . cpp
2 I I Unformatted I IO us ing read , gcount and write .
3 #inc lude < io s t ream>

4
5 us ing s t d : : cout ;

6 us ing s td : : c i n ;

7 using s td : : endl ;

8
9 int main ()

1 0 (
1 1 const int S I Z E = 8 0 ;

1 2 char buf fe r [S I ZE] ; I I create array o f 8 0 charact e r s
1 3
1 4 I I use func t ion read to input characters int o bu f f er

1 5 cout « " Enter a sentence : " « endl ;

1 6 cin . read (buf f e r , 2 0) ;

1 7
1 8 I I use func t ions write and gcount to disp l ay buf fer charac t ers

1 9 cout « endl « " The sentence ent ered was : " « endl ;
20 cout . wr i t e (buf fer , c in . gcount ()) ;
2 1 cout « endl ;
22
23 return 0 ;

24
25 I I end main

Enter a sentence :

Us ing the read , wri t e , and gcount member func t i ons
The sentence entered was :
Using the read , wri t

Fig. 1 2. 7 Unformatted I /O using the read, gcount and wr i t e member functions .

750 c++ Strea m I n put/Output Chapter 1 2

1 2 .6. 1 I ntegral Stream Base: dec, oc t , hex and setbase

I n tegers are i nterpreted norma l ly a s dec i mal (base- I O) va lues . T o change the base i n which
i n tegers are i n terpreted on a stream, insert the hex manipu lator to set the base to hexadec
i mal (base 1 6) or i n sert the oct manipu lator to set the base to octal (base 8) . I n sert the dec

manipu lator to reset the stream base to dec ima l .

The base of a stream a lso may be changed by the se tba s e stream man ipu lator, which

takes one in teger argument of 1 0 , 8 , or 16 to set the base to dec i mal , octal or hexadeci mal ,

respect ive ly . Because setbase takes an argument, i t i s cal led a parameterized stream

manipulator. Using setbase (or any other parameteri zed man ipu lator) requ i res the i nc lu

s ion of the < iomanip> header fi le . The stream base val ue remai ns the same unt i l changed

exp l ic i t ly . F igure 1 2 . 8 demonstrates stream man ipu lators hex, oct , dec and setba s e .

1 I I Fig . 1 2 . 8 : f ig1 2 0 8 . cpp
2 I I Us ing st ream manipulators hex , oct , dec and setba s e .
3 # inc lude < i ostream>

4
5
6
7
8
9

1 0
1 1

using

using

u s ing

using

us ing

using

std : : cout ;
std : : c i n ;

std : : endl ;

std : : hex ;

std : : dec ;

std : : oct ;

1 2 # inc lude < i omanip>
1 3
1 4 us ing std : : setbase ;

1 5
1 6 int main ()
1 7 {
1 8 int numbe r ;

1 9
20 cout « " Ent e r a dec ima l number : " ;

2 1 c in » number ; I I input number

22
23 I I us e hex s tream manipulator to show hexadec ima l number

24 cout « number « " in hexadec imal i s : " « hex

25 « number « endl ;
26
27 I I use oct s t ream manipulator to show oc t a l numbe r
2 8 cout « dec « number « " in oc tal i s : "
29 « oct « number « endl ;

30
3 1 I I u se se tbase st ream manipulator to show dec ima l number
32 cout « setbase (10) « number « " in dec imal i s : "
33 « number « endl ;

34
35 return 0 ;

36
37 / 1 end ma in

Fig . 1 2.8 Stream manipu lators hex, oct, dec and setbase . (Part 1 of 2 .)

Chapter 1 2

Enter a dec ima l number : 2 0

2 0 in hexadec imal i s : 1 4

2 0 i n octal i s : 2 4

2 0 i n decimal i s : 2 0

C++ Stream I n p ut/Output

Fig. 1 2.8 Stream man ipu lators hex, oct, dec and setbase . (Part 2 of 2 .)

1 2 .6.2 F loating- Point Precision (prec i s ion, setprec i s i on)

75 1

We can control the precision of floati ng-po in t numbers (i . e . , the number of d ig i t s to the

right of the dec i mal poi n t) by using e i ther the se tpreci s i on stream man ipu lator or the

preci s i on member funct ion of ios_base. A cal l to e i ther of these sets the prec i s ion

for a l l subsequent output operat ions unt i l the next prec i s i on-sett i ng cal l . A ca l l to member
funct ion prec i s ion with no argument return s the current prec i s ion sett i ng . The program
of F ig . 1 2 .9 uses both member-funct ion prec i s ion (l i ne 29) and the setprec i s ion

man ipu lator (l i n e 3 8) to pri n t a table that shows the square root of 2 , with prec i s ion vary ing

from 0-9 .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32

I I Fig . 12 . 9 : f ig 12 0 9 . cpp
I I Cont ro l l ing prec i s ion of f loat ing - point value s .

#inc lude < iostream>

us ing std : : cout ;

using std : : c in;

us ing s td : : endl ;

using std : : f i xed ;

inc lude < iomanip >

us ing s td : : setprec i s ion ;

#inc lude < cmath> I I sqrt prototype

int main ()

(
doubl e root2

int p l ac e s ;
sqrt (2 . 0) ; I I ca l cu late square root o f 2

cout « " Square root of 2 with prec i s ions 0 - 9 . " « endl
« " Prec i s ion set by ios_base member- func t i on "
« " prec i s i on : " « endl ;

cout « f ixed ; I I use f ixed prec i s ion

I I di sp l ay square root us ing ios base func t i on prec i s i on
for (places = 0 ; places < = 9 ; place s + +) (

cout . prec i s ion (places) ;
c out « root 2 « endl ;

}

Fig . 1 2 .9 Precis ion of f loating-point va lues . (Part 1 of 2 .)

752 c++ Stream Input/Output

33 cout « " \nPrec i si on set by stream-manipu l ator "
34 « " setpre c i s ion : " « endl ;
35

Chapter 1 2

36 I I set prec i s i on for each digit , then display square root
37 for (places = 0 ; places < = 9 ; plac e s + +)
38 cout « setprec i s ion (places) « root2 « endl ;
39
40 return 0 ;
41
42 I I end main

Square root o f 2 with preC 1 S 1 ons 0 - 9 .
Prec i s i on set by ios_base member- funct ion prec i s ion :
1
1 . 4
1 . 4 1
1 . 4 1 4
1 . 4 1 4 2
1 . 4 1 4 2 1
1 . 4 1 4 2 1 4
1 . 4 1 4 2 1 3 6
1 . 4 14 2 1 3 5 6
1 . 4 14 2 1 3 5 6 2

Pre c i s ion s e t by s tream-manipulator setprec i s ion :
1
1 . 4
1 . 4 1
1 . 4 1 4
1 . 4 14 2
1 . 4 1 4 2 1
1 . 4 1 4 2 14
1 . 4 14 2 1 3 6
1 . 4 14 2 1 3 5 6
1 . 4 1 4 2 1 3 5 6 2

Fig. 1 2.9 Precis ion of floating-point values. (Part 2 of 2 .)

1 2 .6.3 Field Width (width, setw)

The wi dth member function (of base-class ios_bas e) sets the fie ld width (i .e . , the num

ber of character posit ions i n which a va lue shou ld be output or the max i m u m n umber of

characters that shou ld be i nput) and returns the previous width . I f va lues output are narrow

er than the fie ld width, jill characters are i nserted as padding. A value wider than the des

ignated width w i l l not be truncated-the fu l l number w i l l be pri nted.

Common Programming Error 1 2 . 1

The width setting applies only for the next insertion or extraction; afterward, the width is set

implicitly to 0 (i. e. , input and output will be peljormed with default settings). The wi dth
function with no argument returns the current selling. Assul'n.ing that the width setting applies

to all subsequent outputs is a logic error.

Chapter 12 C++ Stream Input/Output 753

Common Progra mming Error 12.2

When a field is not sL!fficiently wide to handle OUTputs, the outputs print as wide as necessary,

which can yield confusing outputs.

Figure 12.10 demonstrates the use of the width member function on both input and

output. Note that , on input into a char array, a maximum of one fewer characters than the

width will be read , because provision is made for the null character to be placed in the input

string. Remember that stream extraction terminates when nonleading whitespace IS

encountered. T he setw stream manipulator also may be used to set the field width.

1 II Fig . 1 2 . 1 0 : f i g 1 2_1 0.cpp
2 II Demonst rat ing member funct ion width .
3 # inc lude < iostream>
4

5 us ing std : : cout ;
6 us ing s td : : c in ;
7 us ing std : : endl ;
8
9 int main ()

1 0 (
1 1 int widthValue = 4;
1 2 char sentence[1 0];
1 3

1 4 cout « " Enter a s entence : " « endl ;
1 5 c in . width (5) ; II input only 5 characters f rom sent ence
1 6

1 7 II set f i e ld width , then di splay characters based on that width
1 8 whi l e (c in » sentence) (
1 9 cout . width (widthValue++) ;
20 cout « sentence « endl ;
21 c in . width (5) ; II input 5 more characters f rom s entence
22 } II end whi l e
23

24 return 0 ;
25
26 II end main

Enter a s entenc e :

Thi s i s a test of the width member funct ion

Thi s
i s

a
test

of
the

widt
h

memb

er

func
t i on

Fig. 1 2.1 0 width member function of class io s_ba se.

754 c++ Stream Input/Output Chapter 1 2

[Note: When prompted for input i n Fig. 12.10, the user should enter a line o f text and
press Enter fol lowed by end-of-file «ctrl>-z on I BM PC-compatible systems, <ctrl>-d on

UNIX and Macintosh systems).]

12.6.4 Programmer-Defined Manipulators

Programmers can create their own stream manipulators.4 Figure J 2 . J l shows the creation

and use of new stream manipulators bel l , carriageReturn, tab and endLine.

1 II Fig . 12.1 1 : f i g 1 2 1 1. cpp
2 II Creat ing and test ing programmer-def ined , nonparameterized
3 II stream manipulators .
4 # inc lude < iostream>
5
6 using std : : ostream;
7 using std : : cout;
8 using std : : f lush;
9

1 0 II be l l manipulator (using escape sequence \a)
1 1 ostreama be l le ostreama output)
1 2 {
1 3 return output « '\a'; II issue system beep
1 4

1 5

1 6 II carriageReturn manipulator (using escape sequence \r)
1 7 ostreama carriageReturn (ostreama output)
1 8 {
1 9 return output « '\r'; II issue carriage return
20
21
22 II tab manipulator (us i ng escape sequence \t)
23 ostreama tab (ostream& output)
24 {
25 return output « '\t'; II issue tab
26
27
28 II endLine manipulator (using escape sequence \n and member
29 II funct i on f lush)
30 ostreama endLine (ostreama output)
31 {
32 return output « '\n' « f lush; II issue end of l ine
33 }
34

35 int main ()
36 {
37 II use tab and endLine manipulators
38 cout « " Test ing the tab manipulator : " « endLine
39 « 'a' « t ab « 'b' « tab « 'c' « endLine;

Fig. 1 2.1 1 Programmer-defined, nonparameterized stream manipulators. (Part 1 of 2.)

4. Users also may create their own parameterized stream manipu lators---consu l t your C++ compi l
er's documentation for instruct ions on how to do this.

Chapter 1 2 C + + Strea m Input/Output 755

40
41 cout « " Test ing the carriageReturn and bel l manipulators : "
42 « endLine « " • . • • • • • • • • " ;
43
44 cout « be l l; II use be l l manipulator
45
46 II use carriageReturn and endLine manipulators
47 cout « carriageReturn « " - - - - -,, « endLine;
48
49 return 0 ;
50

5 1 II end main

Test ing the t ab manipulator :

a b c

Tes t ing the carriageReturn and be l l manipulators :

Fig. 1 2. 1 1 Programmer-defined. nonparameterized stream manipulators. (Part 2 of 2.)

1 2.7 Stream Format States and Stream Manipulators

Various stream manipulators can be used to specify the kinds of formatting to be performed

during stream-I/O operations. Stream manipulators control the output's format settings .

Figure 12 .12 lists each stream manipulator that controls a given stream's format state . All

these manipulators belong to class ios_base. We show examples of most of these stream

manipulators in the next several sections.

Stream Manipulator

skipws

l e f t

right

internal

dec

oct

hex

showbase

Description

Skip whi tespace characters on an i nput stream. Thi s sett ing is reset w i th

stream-manipu lator noskipws.

Left just ify output in a field . Padd ing characters appear to the right if

necessary.

Right just ify output i n a field. Paddi ng characters appear to the left if

necessary .

Indicate that a number's sign should be left j ustified i n a fie ld and a

number's magnitude should be right j ustified i n that same field (i .e . ,

padding characters appear between the s i gn and the number) .

Specify that integers should be treated as deci mal (base 10) val ues .

Specify that i ntegers shou ld be treated as octal (base 8) val ues .

Specify that i ntegers shou ld be treated as hexadecimal (base 16) val ues .

Specify that the base of a number i s to be output ahead of the number (a

leading 0 for octals; a leading Ox or O x for hexaclecimals). This sett ing
i s reset with stream-manipulator no showb se.

Fig. 1 2. 1 2 Format-state stream manipulators from <io stream>. (Part 1 of 2.)

756 c++ Strea m In put/Output C h a pter 1 2

Stream Manipulator Description

showpoint Specify that float i ng-point numbers should be output with a decimal

poi nt . This i s used normally wi th f ixed to guarantee a certai n number

of digits to the right of the decimal point, even i f they are zeros . Th i s

sett ing i s reset wi th stream-manipulator noshowpoint.

uppercase Specify that uppercase letters (i.e., x and A through F) should be u sed in

the hexadecimal i nteger and that uppercase E should be used when rep

resent ing a floating-point val ue in scient ific notat ion . This sett ing is

reset with stream-manipu lator nouppercase.

showpos Spec ify that pos i t ive numbers shou ld be preceded by a p lus s ign (+).

This sett ing is reset wi th stream-manipu lator noshowpos.

scient i f ic

f ixed

Specify output of a float i ng-point value in scientific notat ion.

Specify output of a floating-point value i n f i xed-point notation with a

specific number of digits to the right of the decimal point .

Fig. 1 2. 1 2 Format-state stream manipulators from <io stream>. (Part 2 of 2.)

12.7.1 Trailing Zeros and Decimal Points (showpoint)

Stream manipulator showpoint forces a floating-point number to be output with its dec

imal point and trailing zeros. For example, the floating-point value 79. 0 prints as 79 with

out using showpoint and prints as 79 . 0 0 0 0 0 0 (or as many trailing zeros as are

specified by the current precision) using showpoint . To reset the showpoint setting,

output the stream manipulator noshowpoint. The program in Fig . 12 .13 shows how to

use stream manipulator showpoint to control the printing of trailing zeros and decimal

points for floating-point values.

1 II Fig . 1 2 . 1 3 : f i g 1 2_1 3.cpp
2 II Using showpoint to control the print ing o f
3 II trai l ing zeros and dec imal points for doubles .
4 # inc lude < iostream>

5
6 using std : : cout;
7 using std : : endl;
8 using std : : showpoint;
9

1 0 int main ()
1 1 {

1 2 II display double values with default stream format

1 3
1 4
1 5
1 6
1 7

cout «
«
«
«

" Before
" 9 . 99 0 0
" 9 . 90 0 0
" 9 . 0 0 0 0

using showpoint "

prints as : " «

prints as : " «

prints as : " «

« endl

9 . 99 0 0 « endl

9 . 90 0 0 « endl

9 . 0 0 0 0 « endl « endl;

Fig. 1 2. 1 3 Controlling the printing of trailing zeros and decimal points for doubles.
(Part 1 of 2.)

Chapter 12 C++ Stream Input/Output

II disp l ay doubl e value after showpoint
cout « showpo int

1 8

1 9

20

21
22
23

24

« " After using showpoint " « endl

« " 9.990 0
« " 9.9 0 0 0
« " 9.0 0 0 0

25 return 0 ;
26
27 } II end main

Before u s ing showpoint

9.990 0 prints as : 9.99

9.90 0 0 prints as : 9.9

9.0 0 0 0 prints as : 9

prints
prints
prints

After u s i ng showpoint

9.990 0 print s as : 9.99 0 0 0

9.9 0 0 0 prints as : 9.9 0 0 0 0
9.0 0 0 0 pri nts as : 9.0 0 0 0 0

as : " « 9.990 0 « endl

as : " « 9.9 0 0 0 « endl

as : " « 9.0 0 0 0 « endl;

757

Fig. 1 2.1 3 Controlling the printing of trailing zeros and decimal points for doubles.
(Part 2 of 2.)

1 2.7.2 Justification (left, right and internal)

Stream manipulators left and right enable fields to be left-justified with padding char

acters to t he right or right-justified with padding characters to t he left, respectively . T he

padding character is specified by the fi l l member function or the setfi l l parameter

ized stream manipulator (which we discuss in Section L2 .7 .3). Figure 12.14 uses the setw,

l eft and r i ght manipulators to left-justify and right-justify integer data in a field.

1 II Fig. 1 2 . 1 4 : f i g 1 2_1 4.cpp
2 II Demonstrat ing l e f t j ust i f icat ion and right j ust i f ication .
3 # inc lude < iostream>
4

5 using std : : cout;
6 using std : : endl;
7 using std : : l e ft;
8 using std : : right;
9

1 0 # inc lude < iomanip>
1 1

1 2 using std : : setw;
1 3

1 4 int main ()

15 {

1 6 int x = 1 2 3 4 5;

17

Fig. 1 2.1 4 Left justification and right justification with stream-manipulators left and
right. (Part 1 of 2.)

758 c++ Stream Input/Output

1 8 II display x right j ust i f ied (de fault)
1 9 cout « " Default is right j ust i f i ed : " « endl
20 « setw (1 0) « x;
21
22 II use le ft manipulator to display x le f t j ust i f i ed
23 cout « " \n\nUse std : : left to left j u st i fy x : \n "
24 « left « setw (1 0) « x;
25

Chapter 12

26 II use right manipulator to display x right j ust i f ied
27 cout « " \n\nUse std : : right to right j u st i fy x : \n "
28 « right « setw (1 0) « x « endl;
29

30 return 0;
31
32 } II end main

Def ault is right j ust i f ied :
1 2 3 4 5

U s e s td : : l e f t t o le f t j u s t i fy x :
12 3 4 5

U s e s td : : right t o right j u s t i fy x :

1 2 3 4 5

Fig. 1 2.1 4 Left justification and right justification with stream-manipulators left and
right. (Part 2 of 2.)

Stream manipulator int ernal indicates that a number's sign (or base when using

stream manipulator showbas e) should be left-justified within a field, that the number's

magnitude should be right-justified and that intervening spaces should be padded with the

fill character. Figure 12.15 shows the internal stream manipulator specifying internal

spacing (line 17). Note that showpos forces the plus sign to print (line 17). To reset the

showpos setting, output the stream-manipulator noshowpos.

1 II Fig. 1 2 . 1 5 : f ig 1 2 1 5 . cpp
2 II Print ing an integer with internal spac ing and plus sign.
3 # include < i ostream>
4

5 using std : : cout;
6 using std : : endl;

7 using std : : internal;
8 using std : : showpos;
9

1 0 # include < i omanip>
1 1
1 2 using std : : setw;
1 3

1 4 int main ()
1 5 {

Fig. 1 2.1 5 Printing an integer with internal spacing and plus sign. (Part 1 of 2.)

Chapter 1 2 C + + Stream Input/Output

1 6 II display value with internal spac ing and plus sign
1 7 cout « internal « showpos « setw (1 0) « 1 2 3 « endl;
1 8

1 9 return 0;
20
21 } II end main I + 12 3

Fig. 1 2.1 5 Printing an integer with internal spacing and plus sign. (Part 2 of 2.)

1 2.7.3 Padding (fill, setfill)

759

The fill member function specifies the fill character to be used with justified fields; if no

value is specified, spaces are used for padding. The fi l l function returns the prior pad

ding character. The setfill manipulator also sets the padding character. Figure 12.16
demonstrates using member function fi l l (line 43) and stream manipulator s etfi l l

(lines 47 and 50) to set and reset the fill character.

1 II Fig. 1 2 . 16 : f ig 1 2 16.cpp
2 II Using member - function f i l l and stream-manipulator set f i ll
3 II to change the padding character for f i el ds larger the
4 II printed value .
5 # i nc lude < iostream>
6

7 using std : : cout;
8 using std : : endl;
9 using std : : showbase;

1 0 using std : : l e ft;
1 1 using std : : r ight;
12 using std : : internal;
1 3 using std : : hex;
1 4 using std : : dec;
1 5
1 6 # inc lude <iomanip>
17

1 8 using std : : setw;
1 9 using std : : setf i l l;
20
21 int main ()
22 {
23 int x = 1 0 0 0 0;
24
25 II disp l ay x
26 cout « x « " printed as int right and left j ust i f i ed\n "
27 « " and as hex with internal j ust i f i c ation . \n "
28 « " Using the default pad character (space) : " « endl;
29

Fig. 1 2.1 6 Using member function fill and stream manipulator setfill to
change the padding character for fields larger than the values being
printed. (Part 1 of 2.)

760 c++ Stream Input/Output

30 II display x with p lus sign
31 cout « showbase « setw (1 0) « x « endl ;
32

33 II display x with left j ust i f ication
34 cout « left « setw (1 0) « x « endl ;
35
36 II display x as hex with internal j ustificat ion

C h a pter 12

37 cout « internal « setw (1 0) « hex « x « endl « endl ;
38

39 cout « " Us ing various padding charac ters : " « endl ;
40
41 II display x using padded characters (right j ust i f ication)
42 cout « right ;
43 cout. f i l l ('*') ;
44 cout « setw (1 0) « dec « x « endl ;
45
46 II display x using padded characters (left j ust i f ication)
47 cout « left « setw (1 0) « setf i l l (' %') « x « endl ;
48

49 II display x using padded characters (internal j ust ificat ion)
50 cout « internal « setw (10) « set f i l l (' A ') « hex
5 1 « x « endl ;
52

53 return 0 ;
54

55 II end main

1 0 0 0 0 printed as int right and left j ustified

and as hex with internal j ust i f icat ion.

Using the default pad character (space) :
1 0 0 0 0

1 0 0 0 0
Ox 2 7 1 0

Using various padding characters :
*****1 0 0 0 0
1 0 0 0 0%%%%%

Ox A 2 7 1 0

Fig. 1 2.1 6 Using member function fill and stream manipulator setfill to
change the padding character for fields larger than the values being
printed. (Part 2 of 2.)

12.7.4 Integral Stream Base (dec, oct, hex, showbase)

c++ provides stream manipulators dec, hex and oct to specify that integers are to be dis

played as decimal, hexadecimal and octal values, respectively. Stream insertions default to

decimal if none of these manipulators is used. Integers prefixed with 0 (zero) are treated as

octal values, integers prefixed with Ox or ox are treated as hexadecimal values, and all oth

er integers are treated as decimal values. Once a particular base is specified for a stream ,

all integers on that stream are processed using that base until a different base is specified or

until the program terminates.

Chapter 12 C++ Stream Input/Output 76 1

Stream manipulator showbase forces the base of an integral value to be output. Dec

imal numbers are output by default, octal numbers are output with a leading 0, and hexa

decimal numbers are output with either a leading Ox or a leading ox (as we discuss in

Section 12.7.6, stream manipulator uppercase determines which option is chosen).

Figure 12.17 demonstrates the use of stream manipulator showbase to force an integer to

print in decimal, octal and hexadecimal formats. To reset the showbas e setting, output

the stream manipulator noshowbase.

12.7.5 Floating- Point Numbers; Scientific and Fixed Notation
(scientific, fixed)

Stream manipulators s c i ent if ic and fixed control the output format of floating-point

numbers. Stream manipulator s c i ent ific forces the output of a floating-point number

in scientific format. Stream manipulator fixed forces a floating-point number to display

a specific number of digits (as specified by member function prec i s ion or stream-ma

nipulator s etprec i s ion) to the right of the decimal point. Without using another ma

nipulator, the floating-poi nt-number value determines the output format.

1 1/ Fig . 1 2 . 17 : f i g 1 2_17 . cpp
2 II Using stream-manipulator showbase .
3 # inc lude < iostream>
4

5 us ing std : : cout;
6 us ing std : : endl;
7 u sing std : : showbase;
8 using std : : oct;
9 using std : : hex;

10
11 int main ()
12 {
13 int x = 1 0 0;
14

15 II use showbase to show number base
16 cout « " Print ing integers preceded by their base : " « endl
17 « showbase;
18

19

20
21
22
23
24

cout « x « endl;

cout « oct
cout « hex

return 0;

25 II end main

« x «
« x «

II print
endl; 1/ print
endl; II print

Print ing integers preceded by the ir base :
1 0 0
0 14 4
Ox64

Fig. 12.17 Stream-manipulator showbase.

dec imal value

octal value
hexadec imal value

762 c++ Strea m Input/Output Chapter 1 2

Figure 12.18 demonstrates displaying floating-point numbers in fixed and scientific for

mats using stream manipulators sc ient ific (line 22) and fixed (line 26). The exponent

format in scientific notation might differ across different compilers.

12.7.6 Uppercase/lowercase Control (uppercase)

Stream manipulator uppercase forces an uppercase X or E to be output with hexadecimal

integer values or with scientific-notation floating-point values, respectively (Fig . 12.19). Us

ing stream manipulator uppercase causes all letters in a hexadecimal value to be upper

case . By default, the letters for hexadecimal values and the exponents in scientific-notation

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30

II Fig . 1 2 . 1 8 : f i g 1 2 1 8 . cpp
II Displaying f loat ing - point va lues in system de faul t,

II sc i ent i f i c and f ixed formats.
inc lude < iostream>

using std : : cout;

using std : : endl;
using std : : sc ient i f ic;
using std : : f ixed;

int main ()
{

doubl e x

doubl e y

0 . 0 0 12 3 4 567;

1 . 9 46e9;

II display x and y in default format
cout « " Displayed in de fault format : " « endl

« x « ' \t' « y « endl ;

II display x and y in sc ient i f ic format
cout « " \nDisplayed in sc i ent i f i c format : " « endl

« scient i f ic « x « ' \t ' « y « endl;

II disp lay x and y in f ixed format
cout « " \nDisplayed in f ixed format : " « endl

« f ixed « x « ' \t ' « y « endl;

return 0;

} II end main

Displayed in de fault format :
0 . 0 0 12 3 4 57 1 . 9 46e+ 0 09

Displayed in sc ientific format:
1.234567e-003 1.946000e+009

Displayed in f ixed format :
0 . 0 0 12 3 5 19460 0 0 0 0 0 . 0 0 0 0 0 0

Fig. 1 2. 1 8 Floating-point values displayed in default. scientific and fixed formats.

Chapter 1 2

1 I I Fig. 12. 19: f ig1 2 19.cpp
2 II Stream - manipulator uppercase.
3 #inc lude < iostream>

4
5 us ing s td : : cout ;

6 us ing std : : endl ;
7 us ing std : : uppercase ;
8 us ing std : : hex;

9
1 0 int main ()
1 1 {

C++ Strea m Input/Output

1 2 cout « " Print ing uppercase letters i n s c i ent i f i c " « endl

763

1 3 « " notat ion exponent s and hexadec imal values: " « endl ;

1 4
1 5 II use std:uppercase to di splay uppercase l et t ers;

1 6 II use std : : hex to di splay hexadec imal values

1 7 cout « uppercase « 4.3 4 5 e 1 0 « endl « hex « 1 2 3 4 567 89

1 8 « endl ;

1 9
20 return 0 ;

2 1
22 } II end ma in

Print ing uppercase letters in scient i f i c

notat ion exponent s and hexadec imal values :

4.34 5E+0 1 0

7 5 BCD1 5

Fig. 1 2. 1 9 Stream manipulator uppercase.

floating-point values appear in lowercase. To reset the uppercase setting, output the

stream-manipulator nouppercase.

1 2.7.7 Specifying Boolean Format (boolalpha)

c++ provides data type bool, whose values may be fal s e or t rue, as a preferred alter

native to the old style of using 0 to indicate fal s e and nonzero to indicate t rue. A bool

variable outputs as 0 or 1 by default , because the stream-insertion operator « <) has been

overloaded to display bool s as integers . However, we can use stream manipulator bool

alpha to set the output stream to display bool values as the strings "true" and

"fal se." Use stream man ipulator noboolalpha to set t he output stream to display

bool values as integers (i.e. , the default setting) . The program of Fig. 12.20 demonstrates

these stream manipulators . Line 16 displays the bool value, w h ich l ine 13 sets to t rue,

a s a n integer. Line 20 uses man ipulator boolalpha t o display the bool value a s a string.

Lines 23-24 then change the bool's value and use manipulator nobool alpha, so line

27 can display the bool value as an integer . Line 31 uses manipulator bool alpha to dis

play the boo l value as a string .

Good Program ming Practice 12.1

� Displaying bool values as true or false, rather than non-zero or 0, respectively, makes

� program outputs clearer.

764 c++ Strea m Input/ Output Cha pter 12

1 II Fig . 1 2 . 2 0: fig1 2_2 0 . cpp

2 II Demonst rat ing stream -manipulators boolalpha and noboolalpha.
3 # inc lude < i ostream>

4
5 u s ing std : : cout ;

6 u s ing std : : endl ;
7 u s ing std : : c in ;

8 u s ing std : : boolalpha ;
9 u s ing std : : noboolalpha ;

1 0
1 1 int main ()

1 2 {

1 3 bool booleanvalue = true ;

1 4
1 5 II di splay default true booleanValue
1 6 cout « " booleanValue i s n « booleanvalue « endl ;

1 7
1 8 II di splay booleanValue after us ing boolalpha

1 9 cout « " booleanValue (after us ing boolalpha) i s n

20 « boolalpha « booleanValue « endl « endl ;

2 1
22 cout « " switch booleanValue and use noboolalpha " « endl ;

23 booleanValue = false ; II change booleanValue

24 cout « noboolalpha « endl ; II use noboolalpha
25
26 II di splay defaul t false booleanValue after us ing noboolalpha
27 cout « " booleanValue is .. « booleanValue « endl ;
28
29 II di splay booleanValue after us ing boolalpha again
30 cout « " bool eanValue (after us ing boolalpha) is "
3 1 « boolalpha « booleanValue « endl ;

32
33 return 0 ;

34
35 } II end main

booleanValue is 1
bool eanValue (after us ing boolalpha) i s t rue

switch booleanValue and use noboolalpha

booleanValue i s 0
booleanValue (after us ing boolalpha) i s fal s e

Fig. 1 2.20 Stream manipulators boolalpha and noboolalpha.

12.7.8 Setting and Resetting the Format State via Member-Function
flags

Throughout Section 12.7, we have been using stream manipulators to change output-format

characteristics . We now discuss how to return an output stream 's format to its default state

after having applied several manipulations . Member function flags without an argument

returns the current format settings as a fmtflags data type (of namespace i o s_bas e) ,

Chapter 1 2 C + + Stream Input/O utput 765

which represents t he format state. Member-funct ion flags w ith a fmtflags argument

sets the format state as speci fied by the argument and returns the pr ior state settings. The

init ial settings of the value that flags returns might differ across several systems. The pro

gram of F ig. 12.21 uses member funct ion flags to save the stream 's orig inal format state

(l ine 23), then restore the or iginal format settings (l ine 31).

1 II F ig. 1 2.2 1: fig1 2_2 1.cpp

2 II Demonst rat ing the flags member func t i on .

3 #inc lude < iostream>
4
5 using std : : cout ;

6 us ing std : : endl ;
7 using std: :oct ;

8 u sing std : : s c ient i f i c ;
9 us ing std : : showbase ;

10 u sing s td : : ios_base ;
1 1
12 int main ()
13 {
14 int integerValue 1 0 0 0 ;

15 doubl e doublevalue = 0. 09 4 762 8 ;
16
17 II di splay flags value , int and double value s (original format)

1 8 cout « " The value of the flags variab l e i s : " « cout . f lags ()
19 « " \nPrint int and double in original format : \n "
20 « integerValue « '\t' « doubleValue « endl « endl ;
2 1
22 II use cout flags funct ion to save original format

23 ios_base : :fmt f lags original Format = cout . flags () ;
24 cout « showbase « oct « scient i f i c ; II change format
25
26 II di splay flags value , int and doubl e values (new format)
27 cout « " The value of the flags variab l e i s: " « cout . flags ()
28 « " \nPrint int and double in a new format : \n "
29 « integerValue « ' \t' « doubleValue « endl « endl ;
30
3 1 cout . f lags (original Format) ; II restore format
32
33 II di splay flags value , int and doubl e values (original format)
34 cout « " The restored value of the flags variab l e i s: "
35 « cout . flags ()

36 « " \nPrint values in original format again : \n "
37 « integerValue « '\t' « doubleValue « endl ;
38
39 return 0 ;
40
4 1 } II end main

The value of the flags var iabl e i s : 5 1 3

Print int and doubl e in original format:
1 0 0 0 0. 09 4 762 8

Fig. 12 .2 1 flags member function. (Part 1 of 2.)

(continued next page)

766 c++ Stream Input/Output

The value of the f lags variable i s : 0 1 2 0 1 1
Print int and double i n a new format :
0 1 7 5 0 9. 4 762 8 0e - 0 0 2

The restored value o f the f lags variable i s : 5 1 3

Print values in original format again :

1 0 0 0 0. 094762 8

Fig. 1 2.2 1 flag s member function, (Part 2 of 2,)

12.8 Stream Error States

Chapter 1 2

The state of a stream may b e tested through bits in class ios_base, I n a moment, we show

how to test these bits , in the example of Fig. 1 2 .22 .

The eofbi t i s set for a n input stream after end-of-file i s encountered . A program can

use member function eof to determine whether end-of-file has been encountered on a

stream after an attempt to extract data beyond the end of the stream . The call

c in . eof ()

returns t rue if end-of-file has been encountered on cin and fal s e otherwise .

The failbit is set for a stream when a format error occurs on the stream . For

e xample, a format error occurs when the program is inputting integers and a non-digit char

acter is encountered in the input stream . When such an error occurs, the characters are not

lost . The fail member function reports whether a stream operation has failed; usually ,

recovering from such errors is possible .

The badbit is set for a stream when an error occurs that results in the loss of data.

The bad member function reports whether a stream operation failed . Generally , such

serious failures are nonrecoverable .

The goodbi t is set for a stream if none of the bits eofbi t, fai lbi tor badbit

is set for the stream .

The good member function returns true if the bad, fai l and eof functions would

all return fal se. [/0 operations should be performed only on "good" streams .

The rdstate member function returns the error state of the stream . A call to

cout. rdstate, for example, would return the state of the stream , which then could be

tested by a swit ch statement that examines eofbit, badbit, fai lbit and

goodbi t. The preferred means of testing the state of a stream is to use member functions

eof, bad, fai l and good-using these functions does not require the programmer to be

familiar with particular status bits .

The clear member function is used to restore a stream's state to "good," so that 1I0

may proceed on that stream . The default argument for c l ear is goodbit, so the state

ment

c in . clear () ;

clears cin and sets goodbi t for the stream. The statement

c in . clear (ios : : failbit)

Chapter 12 C++ Stream Input/Output 767

sets the fai lbit. The programmer might want to do this when performing input on cin

with a programmer-defined type and encountering a problem . T h e name c l ear might

seem inappropriate in this context, but it is correct.

The program of Fig . 12.22 illustrates the use of member functions rdstate, eof,

fai l , bad, good and c l ear. [Note: The actual values output may differ across different

compilers .]

1 II Fig. 1 2.2 2: fig12 2 2 .cpp
2 II Tes t ing error st ates .

3 # i nc lude < iostream>

4
5 us ing std::cout ;

6 us ing std::endl ;
7 us ing std::c in;

8
9 int main ()

1 0 {
1 1 int integerValue ;
1 2

II display result s of cin functions
cout « nBefore a bad input operat i on: "

« n \ nc i n . rdstate () : " « cin . rdstate ()
« n \ n c in.eof () : n « c in . eof ()
« n \ n c i n . fai l () : " « cin . fai l ()
« n \ n c in . bad () : n « c in . bad ()
« n \ n c in . good () : n « c in . good ()
« n \ n \ nExpects an int eger , but ent er a

c i n » integerValue ; 1/ enter character value
cout « endl ;

II di splay resul t s of cin functions after bad

cout « nAfter a bad input operat ion:n
« n \ nc i n . rdstate () : n « c in . rdstate ()
« " \n c i n . eof () : " « c in . eof ()
« " \ n c i n . f a i l () : n « c in . f a i l ()
« " \ n c in . bad {) : " « c in . bad ()

character: n . ,

input

1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32

« " \n c i n.good () : " « c in . good () « endl « endl ;

33 cin . c l ear () ; II c l ear stream
34
35 II display results of cin functions after clearing cin

36 cout < < n After c in. c l ear () "
37 « n \ nc in . f a i l () : n « c in . fai l ()

38 « n \ nc i n . good () : n « c in . good () « endl ;
39
40 return 0 ;
4 1
4 2 } II end main

Fig. 1 2.22 Testing error states. (Part 1 of 2.)

768 c++ Stream Input/Output

Before a bad input operat ion :

c i n.rdstate () : 0

c in.eof () : 0

c in.fai l () : 0
c i n.bad () : 0

c in. good () : 1

Expects an integer , but enter a character : A

After a bad input operat ion :
c i n.rdstate () : 2

cin.eof () : 0

c in. fai l () : 1

c i n.bad () : 0

cin. good () : 0

After c in.c lear ()

c i n.fa i l () : 0

c in.good () : 1

Fig. 12.22 Testing error states. (Part 2 of 2.)

Chapter 12

The operator! member function of bas ic_ios returns t rue if the badbi t is

set, the fai lbi t is set or both are set. The operator void * member function returns

fal s e (0) if the badbit is set, the fai lbit is set or both are set. These functions are

useful in file processing when a t rue/false condition is being tested under the control

of a selection structure or repetition structure.

12.9 Tying an Output Stream to an Input Stream

lnteractive applications generally involve an i stream for input and an o s t ream for out

put. When a prompting message appears on the screen, the user responds by entering the

appropriate data. Obviously, the prompt needs to appear before the input operation pro

ceeds. With output buffering, outputs appear only when the buffer fills, when outputs are

flushed explicitly by the program or automatically at the end of the program. C++ provides

member function tie to synchronize (i.e., "tie together") the operation of an i s t ream

and an o s t ream to ensure that outputs appear before their subsequent inputs. The call

c in . t ie (&cout) ;

ties cout (an ostream) to c in (an i stream). Actually, this particular call is redundant,

because C++ performs this operation automatically to create a user's standard input/output

environment. However, the user would tie other i s t reamlostream pairs explicitly. To

untie an input stream, inputStream, from an output stream, use the call

inputStream . t ie (0) ;

SUMMARY

• [f0 operations are performed in a manner sensit ive to the type of the data.

• C++ 110 occurs in streams. A stream is a sequence of bytes.

Chapter 12 C++ Stream Input/Output 769

• 1/0 mechan isms of the system move bytes from devices to memory and vice versa effic ient ly and

re l iably.

• C++ provides " low-level" and "high- level" 110 capab i l i t ies. Low-level lIO-capabi l i t ies specify

that some n umber of bytes should be transferred device-to-memory or memory-to-dev ice. High

level llO i s performed with bytes grouped into such mean ingfu l units as i n tegers, floats , characters,

strings and programmer-defi ned types.

• C++ provides both u nformatted-IIO and formatted-1I0 operat ions. Unformatted-lIO transfers are

fast, but process raw data that is d ifficul t for people to use. Formatted lIO processes data in mean

i ngful un i ts, but requ i res extra processing t ime that can degrade the performance of high-volume

data transfers.

• The < iostream> header fi le declares a l l stream-I/O operat ions.

• Header < i omanip> declares the parameterized stream manipu lators.

• The <fstream> header declares fi le-processing operat ions.

• The bas i c_i stream template supports stream- input operat ions.

• The bas ic_ostream template supports stream-output operat ions.

• The bas i c_iostream template supports both stream-i nput and stream-output operat ions.

• The bas ic_i stream template and the bas i c_ostream template are each derived through

s ingle i nheritance from the bas i c_ios template.

• The bas i c_iostream template is derived through mu lt ip le inheritance from both the

bas i c_i stream template and the bas ic_ostream template.

• The left-shift operator « <) is overloaded to designate stream output and is referred to as the

stream- insertion operator.

• The right-shift operator (») is overloaded to designate stream input and is referred to as the

stream-extract ion operator.

• The i s tream object c i n i s t ied to the standard input device, normal ly the keyboard.

• The ostream object cout is t ied to the standard output device, normal ly the screen.

• The ostream object cerr is t ied to the standard error device. Outputs to c err are unbuffered;

each insertion to c err appears immediately.

• The C++ compi ler determines data types automatical ly for i nput and output.

• Addresses are d i splayed in hexadec imal format by defau lt.

• To print the address in a pointer variable, cast the pointer to void * .

• Member funct ion put outputs one character. Cal l s to put may be cascaded.

• Stream input is performed with the stream-extraction operator » . This operator automat ica l ly

sk ips whitespace characters i n the input stream.

• The » operator returns false after end-of-fi le is encountered on a stream.

• Stream extract ion causes failbit to be set for improper i nput and badbit to be set i f the op

erat ion fai l s.

• A series of values can be input us ing the stream-extract ion operat ion in a while l oop header. The

extract ion returns 0 when end-of-fi le i s encountered.

• The get member function with no arguments inputs one character and returns the character; EOF

is returned if end-of-ti le is encountered on the stream.

• Member function get with an argument of type char reference i nputs one character. EOF is re

turned when end-of-fi le is encountered; otherwise, the i stream object for which the get mem

ber function i s be ing invoked i s returned.

770 c++ Stream Input/Output Chapter 1 2

o Member function g e t wi th three arguments-a character array , a s ize l im i t and a del i m iter (wi th

defaul t value newl ine)-reads characters from the input stream up to a max imum of l imi t - I char

acters and terminates, or terminates when the del im i ter is read . The input string is termi nated with

a nul l character. The del im i ter i s not placed in the character array, but remains i n the input stream.

o The get l ine member function operates l i ke the three-argument get member function . The

get l ine function removes the de l imi ter from the input stream, but does not store i t i n the stri ng .

o Member function ignore sk ips the spec ified number of characters (the defau l t i s I) in the i nput

s tream ; i t termi nates i f the spec ified de l im i ter i s encountered (the defaul t de l im i ter i s EOF) .

o The putback member function places the previous character obtained by a get on a stream back

onto that stream.

o The peek member function returns the next character from an input stream, but does not extract

(remove) the character from the stream .

o C++ offers type-safe I/O. If unexpected data is processed by the « and > > operators, various error

bi ts are set, which the user may test to determi ne whether an I/O operat ion succeeded or fai led .

o Unformatted I/O i s performed wi th member functions read and wri t e o These i nput or output

some number of bytes to or from memory, begi nn ing at a designated memory address . They are

input or output as raw bytes wi th no formatt ing.

o The gcount member function returns the number of characters input by the previous read op

erat ion on that stream .

o Member function read inputs a spec ified number of characters i nto a character array . fai lb i t

is set if fewer than the spec ified number of characters are read.

o To change the base in which in tegers output, use the manipu lator hex to set the base to hexadec

imal (base 1 6) or oct to set the base to octal (base 8) . Use manipu lator dec to reset the base to

dec imal . The base remains the same unt i l changed expl ic i t ly .

o The parameterized stream manipu lator setbase also sets the base for i nteger output . setbase

takes one in teger argument of 1 0 , 8 or 16 to set the base .

o Float i ng-point prec is ion can be control led using e i ther the setprec i s ion stream man ipu lator

or the prec i s ion member function. Both set the prec is ion for all subsequent output operat ions

unt i l the next prec is ion-sett ing cal l . The pre c i s ion member function with no argument returns

the current prec is ion value .

o Parameteri zed manipu lators requ ire the inclusion of the < iomanip> header fi le .

o Member function width sets the f ie ld width and returns the previous width . Values narrower than

the fie ld are padded with fi l l characters . The fie ld-width sett ing appl ies only for the next i n sertion

or extraction; the fie ld width i s set to 0 impl ic i t ly (subsequent values w i l l be output as large as

necessary) . Values wider than a fie ld are printed in the ir ent irety. Function width with no argu

ment returns the current width sett ing. Man ipulator setw also sets the width .

o For input, the setw stream man ipulator estab l i shes a max imum stri ng s ize; if a larger stri ng i s en

tered, the l arger l i ne i s broken in to pieces no larger than the designated s ize .

o Programmers may create the ir own stream manipulators.

o Stream manipu lator showpoint forces a floati ng-point number to be output with a dec ima l point

and wi th the number of s ign ificant digits spec ified by the prec is ion .

o Stream manipu lators left and right cause fie lds to be left-justified with padding characters to

the right or right-just i fied with padding characters to the left .

o Stream manipulator internal ind icates that a number' s s ign (or base when us ing stream man ip

u lator showbase) shou ld be left-just ified within a fie ld, i ts magn itude should be right-j ust ified

and i nterven ing spaces should be padded with the fi l l character.

Chapter 12 C++ Stream I n p ut/Output 77 1

• Member funct ion fill spec ifies the fi l l character to be used w ith stream man ipu lators left ,

right and internal (space i s the defau l t); the prior padding character i s returned. Stream ma

n ipu lator setfill also sets the fi l l character.

• Stream man ipu lators oct , hex and dec specify that i ntegers are to be treated as octal, hexadec

i mal or dec i mal values, respect ive ly . Integer output defaul ts to dec i mal if none of these bits is set;

stream extract ions process the data i n the form the data is suppl ied .

• Stream man i pu lator showbase forces the base of an i ntegral value to be output .

• Stream man ipu lator s c i ent ific i s used to output a float ing-point number i n sc ient ific format .

Stream manipu lator fixed i s used to output a f loat ing-po int number w ith the prec i s ion speci fied

by the pre c i s i on member funct ion.

• Stream man ipu lator uppercase forces an uppercase X or E to be output with hexadeci mal i nte

gers or w i th sc ient ific-notat ion float i ng-point values, respect i ve ly. When set, uppercase causes

all letters in a hexadeci mal value to be uppercase.

• Member funct ion flags with no argument returns the long value of the current settings of the

format state. Member funct ion flags with a long argument sets the format state speci fied by

the argument .

• The state of a stream may be tested through bi ts i n c lass ios_base.

• The eofbit i s se t for an i nput stream after end-of-f i le i s encountered dur ing an i nput operat ion .

The eof member funct ion reports whether the eo fbi t has been set .

• The failbi t i s set for a stream when a format error occurs on the stream . The fail member

function reports whether a stream operation has fai l ed; i t i s normal ly poss ib le to recover from such

errors.

• The badbit is set for a stream when an error occurs that resu l ts in data loss . The bad member

function reports whether such a stream operat ion fa i led. Such serious fai l u res are normal ly nonre

coverable .

• The good member funct ion returns true if the bad, fail and eof funct ions would al l return

false. lIO operat ions should be performed only on "good" streams.

• The rdstate member funct ion returns the error state of the stream .

• Member function clear i s used to restore a stream ' s state to "good," so that I/O may proceed on

that stream.

• C++ provides the t ie member function to synchron ize i stream and ostream operat ions to

ensure that outputs appear before subsequent inputs.

TERMINOLOGY

bad member funct ion of bas i c ios

badbit

bas i c_fstream c lass template

bas i c_if stream c lass template

bas i c_ios c lass template

bas i c_iostream c lass template

bas i c_i s t ream c lass template

bas i c_of stream c lass template

bas i c_ostream class template

boolalpha stream manipulator

cerr

cin

clear member function of bas i c ios

clog

cout

dec stream man ipu lator

default fi l l character (space)

default prec is ion

end-of-fi le

eof member function of bas i c i o s

eofbit

fail member funct ion of bas i c ios

failbit

fie ld width

fi I I character

fill member funct ion of bas i c ios

7 72 c++ Stream Input/Output

fixed stream manipulator

flags member function of ios_base

fmtflags

format states

formatted I/O

fstream

gcount member function of

bas i c_i st ream

get member function of bas i c_i stre�
getline member function of

bas i c i st ream

good member function of bas ic_ios

hex stream manipu lator

h igh-level I/O

ifstream

ignore member function of

bas i c_i st ream

i n-memory formatt ing

internal stream manipulator

< i omanip> header fi le

ios_base c lass

iostream

i s t ream

lead i ng a (octa l)

lead ing Ox or ox (hexadec imal)

left j usti fication

l eft stream manipu lator

low-level I/O

noboolalpha stream manipu lator

noshowbase stream manipu lator

noshowpoint stream manipu lator

noshowpos stream manipu lator

noskipws stream manipu lator

nouppercase stream man ipu lator

oct stream man ipu lator

of stream

operator void * member function of

bas i c_ios

operator ! member function of

bas i c ios

SELF-REVIEW EXERCISES

1 2. 1 Answer each of the fol lowing:

ostream

output buffering

padding

parameterized stream man ipu lator

Chapter 12

peek member function of bas i c_i stream

prec i s ion member funct ion of ios_bas e

predefined streams

put member funct ion of bas i c_ostream

putback member function of

bas i c_i s t ream

rdstate member function of bas i c ios

read member function of bas i c i s t ream

right just ification

right stream manipulator

scient ific stream man ipu lator

setbase stream man ipu lator

setfi l l stream manipu lator

setpre c i s ion stream manipu lator

setw stream manipu lator

showbase stream manipu lator

showpoint stream manipu lator

showpos stream manipu lator

skipws stream man ipu lator

stream input

stream manipu lator

stream output

stream-extract ion operator (»)

stream-insert ion operator « <)
t i e member function of bas i c ios

typedef

type-safe I/O

unbuffered output

unformatted [/0

uppercase stream manipu lator

programmer-defi ned streams

whitespace characters

width stream man ipu lator

write member function of

bas i c_ostream

a) I nput/output i n C++ occurs as of bytes .

b) The stream manipu lators that format just ificat ion are ____ _

c) Member function can be used to set and reset format state.

_____ and

d) Most C++ programs should inc lude the header fi le that contain s the declara-

t ions requ i red for a l l stream-I/O operat ions .

Chapter 12 C++ Stream Input/Output 773

e) When using parameterized manipu lators, the header fi l e must be inc l uded.

f) Header fi le contains the declarat ions requ i red for user-controlled fi le pro-

cessing.

g) The ostream member function i s used to perform unformatted output.

h) Input operations are supported by ____ _

i) Outputs to the standard error stream are d irected to e i ther the or the

_____ stream object .

j) Output operat ions are supported by ____ _

k) The symbol for the stream- insertion operator is ____ _

I) The four objects that correspond to the standard devices on the system inc lude

_____ _____ and ____ _

m) The symbol for the stream-extraction operator is ____ _

n) The stream man ipu lators and specify that in tegers

should be d isp layed in octal , hexadec imal and dec imal formats, respect ive ly .

0) When used, the stream manipu lator causes posit ive numbers to d i sp lay with

a p lus s ign .

1 2.2 State whether the fol lowing are true or fa lse . I f the answer i s false , exp la in why.

a) The stream member function flags with a long argument sets the flags state vari

able to i t s argument and returns its previous value.

b) The stream-i nsertion operator « and the stream-extraction operator » are overloaded

to handle all standard data types-including stri ngs and memory addresses (stream- i n

sert ion on ly)-and al l programmer-defi ned data types.

c) The stream member function flags with no arguments resets the stream ' s format state.

d) The stream-extraction operator » can be overloaded wi th an operator function that takes

an i s tream reference and a reference to a programmer-defined type as arguments and

returns an i stream reference.

e) The stream-insert ion operator « can be overloaded with an operator funct ion that takes

an i s tream reference and a reference to a programmer-defi ned type as arguments and

returns an i stream reference.

f) I nput wi th the stream-extraction operator » always sk ips leading whi tespace characters

in the i nput stream, by defaul t .

g) The stream member function rdstate returns the current state of the stream.

h) The cout stream normal ly i s connected to the disp lay screen .

i) The stream member function good returns true if the bad, f a i l a n d eof member

funct ions al l return false.

j) The c i n stream normal ly i s connected t o the disp lay screen .

k) I f a nonrecoverable error occurs during a stream operation , the bad member function

w i l l return true.

I) Output to cerr i s unbuffered and output to clog i s buffered.

m) Stream manipu lator showpoint forces float ing-point values to pri nt with the defau l t

s i x digi ts of prec is ion un less the prec i s ion value has been changed, i n which case float

i ng-point val ues print with the specified prec is ion .

n) The ostream member function put outputs the specified number of characters.

0) The stream manipu lators dec, oct and hex affect only the next i nteger output operat ion .

p) By defaul t , memory addresses are d isp layed as long i n tegers.

J 2.3 For each of the fo l l owing, write a s ingle statement that performs the indicated task.

a) Output the stri ng " Enter your name : " .

b) Use a stream manipu lator that causes the exponent i n scient ific notat ion and the letters i n

hexadec i mal values to print in capital letters.

7 74 c++ Stream Input/Output Chapter 12

c) Output the address of the variable myS t ring of type char * .

d) U se a stream manipulator to ensure float i ng-point values print i n scient ific notat ion.

e) Output the address in variable integerPtr of type int * .

f) Use a stream manipulator such that, when integer values are output, the in teger base for

octal and hexadec imal values is di splayed.

g) Output the value poi nted to by f l oatPtr of type f l oat * .

h) Use a stream member function to set the fill character t o ' * ' for prin t ing i n field w idths

larger than the values be ing output. Write a separate statement to do th i s with a stream

manipulator.

i) Output the characters ' 0 ' and ' K ' in one statement with o s t ream function put .

j) Get the value of the nex t character in the inpu t stream without extracting i t from the stream.

k) Input a s ingle character i nto variable charva lue of type char, us ing the i s t ream

member fUi ct ion get in two different ways.

I) I nput and di scard the next s i x characters in the input stream.

m) Use i s t ream member function read to input 50 characters i nto char array l ine .

n) Read 1 0 characters i nto character array name . Stop reading characters if the ' • ' del im

iter is encountered. Do not remove the del imi ter from the input stream. Write another

statement that performs th i s task and removes the del imiter from the input.

0) Use the i st ream member function gcount to determine the number of characters i n

put i nto character array l ine by the last call to i s t ream member function read, and

output that number of characters, using ostream member function wri t e o

p) Output t he following values : 1 2 4 , 1 8 . 3 7 6 , ' Z ' , 1 0 0 0 0 0 0 and " St r i ng " .

q) Print the current prec i s ion sett i ng, us ing a member function of object cou t o

r) I nput an i nteger value in to int variable months and a floating-point value i nto f l oat

variable perc ent ageRat e.

s) Print 1 . 92, 1 . 9 2 5 and 1 . 9 2 5 8 separated by tabs and with 3 digi ts of prec is ion , us ing

a manipulator.

t) Pri nt i nteger 1 0 0 i n octal , hexadecimal and dec imal, us ing stream manipulators.

u) Pri nt in teger 1 0 0 in decimal, octal and hexadecimal , us ing a stream manipulator to

change the base.

v) Print 1 2 3 4 right-j ust ified in a 1 0 -digi t field.

w) Read characters i nto character array l ine unt i l the character ' z ' is encountered, up to

a l im i t of 2 0 characters (i ncluding a termi nating nu ll character). Do not extract the de

l im i ter character from the stream.

x) Use i nteger vari ables x and y to specify the field width and prec is ion used to di splay the

doubl e value 8 7 . 4 5 7 3 , and di splay the value.

1 2.4 Ident ify the error i n each of the following statements and explain how to correct i t.

a) cout « " Va lue of x < = y i s : " « x < = y ;

b) The following statement should print the integer value of ' c ' •

cout « ' c ' ;

c) cout « " " A string in quote s " " ;

1 2.5 For each of the following, show the output.

a) cout « " 1 2 3 4 5 " « endl ;

cout . width (5) ;

cout . f i l l (' * ,) ;

cout « 1 2 3 « endl « 1 2 3 ;

b) cout « s e tw (1 0) « set f i l l (' $,) « 1 0 0 0 0 ;

c) cout « setw (8) « setprec i s i on (3) « 1 0 2 4 . 9 8 7 6 5 4 ;

d) cout « showba se « oct « 9 9 « endl « hex « 9 9 ;

Chapter 12

e) cout «

t) cout «

C++ Stream I n put/Output

1 0 0 0 0 0 « end1 « showpo s « 1 0 0 0 0 0 ;

setw (1 0) « setprec i s ion (2) «

« s c i ent i f i c « 4 4 4 . 9 3 7 3 8 ;

ANSWERS TO SELF-REVIEW EXERCISES

775

1 2 . 1 a) streams. b) l e f t , r i ght and

e) < iomanip > . t) < f s t ream> . g) wr i t e .

k) « . I) c in, cout , cerr and c l og. m) » .

interna l . c) f l ags . d) < io s t ream> .

h) i s t ream. i) cerr or c l og. j) o s t ream.

n) oc t , hex and dec . 0) showpos .

1 2 .2 a) True. b) False. The stream-insertion and stream-extraction operators are not overloaded

for all programmer-defined types. The programmer of a c lass must specifical l y provide the overloaded

operator functions to overload the stream operators for use with each programmer-defined type.

c) False. The stream member function f l ags with no arguments returns the current value of the

f l ags state variable . d) True. e) False. To overload the stream- insertion operator « , the overloaded

operator function must take an o s t ream reference and a reference to a program mer-defi ned type as

arguments and return an ostream reference. t) True. g) True. h) True. i) True. j) False . The c in

stream is connected to the standard i nput of the computer, which normal ly i s the keyboard. k) True .

I) True. m) True . n) Fa lse . The ostream member function put outputs i ts s ing le-character argu

ment . 0) False. The stream manipulators dec , oct and hex set the output format state for i ntegers to

the specified base unt i l the base i s changed again or the program terminates. p) False. Memory ad

dresses are d isp layed i n hexadecimal format by default . To display addresses as l ong i ntegers, the ad

dress must be cast to a long value .

1 2.3 a) cout « " Enter your name : " . ,

b) cout « uppe rcase ;

c) cout « stat i c cast < vo id * > (mySt r ing) ; -
d) cout « sc ient i f i c ;

e) c out « integerPt r ;

t) cout « showba s e ;

g) cout « * f loat pt r ;

h) c out . f i 1 1 (' * ,) ;

cout « s e t f i 1 1 (' * ,) ;

i) cout . put (' 0 ') . put (' K ') ;

j) c in . peek () ;

k) c = c in . get () ;

c in . get (c } ;

I) c i n . i gnore (6 } ;

m) c in . read (l ine , 5 0 } ;

n) c in . get (name , 1 0 , , } ;

c in . get l ine (name , 1 0 , , } ;

0) cout . wr i t e (l ine , c in . gc ount (} } ;

p) c out « 1 2 4 « 1 8 . 3 7 6 « ' Z ' « 1 0 0 0 0 0 0 « " St r i ng " ;

q) cout « cout . prec i s ion (} ;

r) c in » months » perc ent ageRat e ;

s) c out « s e tprec i s i on (3 } « 1 . 9 2 « ' \ t '

« 1 . 9 2 5 « , \ t ' « 1 . 9 2 5 8 ;

t) cout « oct « 1 0 0 « hex « 1 0 0 « dec « 1 0 0 ;

u) cout « 1 0 0 « setbase (8 } « 1 0 0 « setbase (1 6 } « 1 0 0 ;

v) cout « setw (1 0 } « 1 2 3 4 ;

w) c i n . get (l ine , 2 0 , ' z ' } ;

x) cout « setw (x) « setprec i s ion (y } « 8 7 . 4 5 7 3 ;

7 76 c++ Stream Input/Output Chapter 1 2

12.4 a) Error: The precedence of the « operator i s h igher than the precedence of < = , which

causes the statement to be evaluated i mproperly and also causes a compi ler error.

Correct ion : To correct the statement, p lace parentheses around the expression x <= y.

This problem wi I I occur wi th any expression that uses operators of lower precedence than

the « operator i f the expression i s not placed in parentheses.

b) Error: I n C++, characters are not treated as smal l i ntegers, as they are i n C.

Correction : To pri nt the numerical value for a character i n the computer's character set,

the character must be cast to an in teger value, as i n the fol lowing :

cout « stat i c_cast < int > (' c ') ;

c) Error: Quote characters cannot be pri nted in a stri ng unless an escape sequence i s used.

Correct ion : Prin t the string i n one of the fol lowing ways :

cout « . " . « " A string in quote s " «

cout « " \ " A s t ring in quote s \ " " ;

12.5 a) 1 2 3 4 5

* * 1 2 3

1 2 3

b) $ $ $ $ $ 1 0 0 0 0

c) 1 0 2 4 . 9 8 8

d) 0 1 4 3

Ox6 3

e) 1 0 0 0 0 0

+ 1 0 0 0 0 0

f) 4 . 4 5 e + 0 2

EXERCISES

12.6 Write a statement for each of the fol lowing:

a) Prin t i n teger 4 0 0 0 0 left-justified i n a I S -digit fie ld .

b) Read a s tr ing in to character array variable stat e .

c) Prin t 2 0 0 with and w ithout a s ign.

1 11 1 . ,

d) Prin t the decimal value 1 0 0 i n hexadecimal form preceded by Ox.

e) Read characters i n to array charArray unt i l the character ' P ' i s encountered, up to a

l im i t of 1 0 characters (i ncluding the terminating nu l l character) . Extract the del im i ter

from the input stream, and discard it .

f) Print 1 . 2 3 4 i n a 9-digi t fie ld wi th preceding zeros.

g) Read a string of the form " characters " from the standard input. S tore the string in

character array charArray. El im inate the quotat ion marks from the input stream . Read

a max imum of 50 characters (inc luding the terminat ing nu l l character) .

12.7 Write a program to test the inputt ing of i nteger values in deci mal , octal and hexadecimal for

mats. Output each in teger read by the program i n al l three formats . Test the program with the fol low

ing i nput data: 1 0 , 0 1 0 , Ox1 0 .

1 2.8 Write a program that prints pointer values, us ing casts t o a l l the i nteger data types. Which

ones prin t strange values? Which ones cause errors?

12.9 Write a program to test the resul ts of print ing the integer value 1 2 3 4 5 and the float ing-point

value 1 . 2 3 4 5 i n various-s ized fie lds . What happens when the values are printed i n fie lds conta in ing

fewer d ig i t s than the values?

12. 10 Write a program that prints the value 1 0 0 . 4 5 3 6 2 7 rounded to the nearest d ig i t , tenth, hun

dredth, thousandth and ten-thousandth .

Chapter 12 C++ Strea m Input/Output 7 7 7

12. 1 1 Write a program that i nputs a string from the keyboard a n d determines the length o f the

string. Print the str ing in a length that i s twice the fie ld width .

12. 12 Write a program that converts in teger Fahrenheit temperatures from 0 to 2 1 2 degrees to

float ing-point Ce ls ius temperatures with 3 digi ts of precis ion . Use the formula

c e l s ius = 5 . 0 / 9 . 0 * (fahrenheit - 3 2) ;

to perform the ca lcu lat ion . The output should be printed i n two right-j ust ified co lumns and the Cel

s ius temperatures should be preceded by a s ign for both posit ive and negative val ues .

1 2. 13 I n some programming l anguages, strings are entered surrounded by e ither s ing le or double

quotat ion marks . Wri te a program that reads the three strings suzy, " suzy" and ' suzy ' . Are the

s ingle and double q uotes ignored or read as part of the string?

12. 14 In Fig . 8.3 , the stream-extraction and stream- insertion operators were overloaded for i nput

and output of objects of the PhoneNwnber class . Rewrite the stream-extract ion operator to perform

the fol lowing error checking on input . The operator» funct ion w i l l need to be reimplemented.

a) Input the ent i re phone number i nto an array . Test that the proper number of characters

has been entered. There shou ld be a total of 1 4 characters read for a phone number of the

form (8 0 0) 5 5 5 - 1 2 1 2 . Use ios_base-member-funct ion c lear to set failbit

for improper input .

b) The area code and exchange do not begin with 0 or 1 . Test the f irst d ig i t of the area-code

and exchange port ions of the phone number to be sure that neither beg ins wi th 0 or 1 .

Use ios_base-member-function c lear t o set failbit for i mproper i nput .

c) The middle d ig i t of an area code used to be l i mi ted to 0 or 1 (al though th i s has changed

recent ly) . Test the middle digit for a value of 0 or 1. Use the ios_base-member-func

t ion c l ear to set fai lbit for improper i nput . If none of the above operations resu l ts

i n failbit being set for i mproper input , copy the three parts of the telephone number

i nto the areaCode, exchange and l ine members of the PhoneNwnber object . In

the main program, i f fai lbi t has been set on the i nput , have the program prin t an error

message and end, rather than print the phone number.

12. 15 Write a program that accompl i shes each of the fol lowing:

a) Create a programmer-defined class Point that contain s the private i n teger data mem

bers xCoordinate and yCoordinate and declares stream- insert ion and stream-ex

traction overloaded-operator functions as friends of the c lass .

b) Define the stream-insertion and stream-extraction operator functions . The stream-extrac

tion operator funct ion should determine whether the data entered is val id , and, i f not, it

should set the fai lbit to indicate i mproper input . The stream-insert ion operator

should not be able to d isp lay the poin t after an input en'or occurred .

c) Wri te a main function that tes ts i nput and output of programmer-defi ned c l ass Point,

us i ng the overloaded stream-extraction and stream- insert ion operators.

1 2. 1 6 Write a program that accompl i shes each of the fol lowing:

a) Create a programmer-defined class Complex that contai ns the private i nteger data mem

bers real and imaginary and declares stream- insert ion and stream-extract ion over

loaded operator functions as friends of the c lass .

b) Defi ne the stream- insertion and stream-extraction operator funct ions . The stream-ex

tract ion operator function shou ld determine whether the data entered i s va l id , and, i f not ,

i t should set failbit to indicate i mproper input . The i nput shou ld be of the form

3 + 8 i

c) The values can b e negative o r pos i t ive , and i t i s poss ib le that one o f the two values i s not

provided. I f a value is not provided, the appropriate data member shou ld be set to O. The

778 c++ Stream I n put/Output Chapter 12

stream- insertion operator should not be able to di splay the point if an i nput error oc

curred . The output format should be identical to the i nput format shown above. For neg

ative imaginary values, a minus sign shou ld be printed rather than a plus s ign .

d) Wri te a ma in function that tests i nput and output of programmer-defi ned c lass Com-

p l ex, us ing the overloaded stream-extract ion and stream- insertion operators.

1 2. 1 7 Write a program that uses a for structure to print a table of ASCn values for the characters

in the ASCI I character set from 3 3 to 1 2 6 . The program shou ld print the decimal value, octal value,

hexadeci mal value and character value for each character. Use the stream manipu lators dec , oct and

hex to print the i nteger values .

1 2. 1 8 Write a program to show that the get l ine and three-argument get i st ream member

functions both end the input string wi th a string-terminating nul l character. A l so, show that get

leaves the del i m iter character on the i nput stream, whereas get l ine extracts the del im i ter character

and d iscards it . What happens to the unread characters i n the stream?

13
Exception Handling

Objectives
• To use t ry, throw and catch to detect, indicate

and handle exceptions, respectively.
• To process uncaught and unexpected exceptions.
• To handle new failures .
• To use auto-ptr to prevent memory leaks .
• To understand the standard exception hierarchy.

I never forget a face, but in your case I 'll make an exception.

Groucho (Jul iu s Henry) Marx

No rule is so general, which admits not some exception.

Robert Burton

it is common sense to take a method and try it. If it fails,

admit itfrankly and try another. But above all, try something.

Franklin Delano Roosevelt

Of throw away the worser part of it,

And live the purer with the other half.

William Shakespeare

If they 're running and they don 't look where they 're going

I have to come out from somewhere and catch them.

Jerome David Salinger

And oftentimes excusing of a fault

Doth make the fault the worse by the excuse.

William S hakespeare

To err is human, to forgive divine.

Alexander Pope

780 Exception Handl ing

Outline

1 3 . 1 Introduction

1 3.2 Exception -Handling Overview

1 3.3 Other Error- Handling Techniques

1 3.4 Simple Exception- Handling Example: Divide by Zero

1 3.5 Rethrowing an Exception

1 3.6 Exception Specifications

1 3.7 Processing Unexpected Exceptions

1 3.8 Stack Unwinding

1 3.9 Constructors, Destructors and Exception Handling

1 3. 1 0 Exceptions and Inheritance

1 3. 1 1 Processing new Failures

1 3. 1 2 Class auto....pt r and Dynamic Memory Allocation

1 3. 1 3 Standard Ubrary Exception Hierarchy

Chapter 13

Summary · Tenninology • Self-Review Exercises ' Answers to Self-Review Exercises ' Exercises

1 3 . 1 Introduction

In this chapter, we introduce exception handling. An exception is an indication of a problem

that occurs during a program 's execution. The name "exception" comes from the fact that ,

although a problem can occur, the problem occurs infrequently-if the " ru le" is that a state

ment normally executes correctly , then the "exception to the rule" is that a problem occurs.

Exception handling enables programmers to create applications that can resol ve (or handle)

exceptions. In many cases , handling an exception allows a p rogram to continue executing

as if no problem had been encountered. A more severe problem could p revent a program

from continuing normal execution, instead requiring the program to notify the user of the

problem before terminating in a controlled manner. The features presented in this chapter

enab le programmers to write robust and fault-tolerant programs. The style and details of

C++ exception handl ing are based in part on the work of Andrew Koenig and Bjarne

Stroustrup , as p resented in thei r paper, "Exception Handling for C++ (revised) .")

The chapter begins w ith an overview of exception-handling concepts, then demon

strates basic exception-handling techniques. We show these techniques via an example that

demonstrates handling an except ion that occurs when a function attempts to divide by zero.

We then discuss addi tional exceptio n-handling issues, such as how to handle exceptions

that occur in a constructor or destructor and how to handle exceptions that occur if operator

new fails to allocate memory for an object. We conclude the chapter by introducing several

c lasses that the C++ standard l ibrary provides for handling exceptions.

I . Koenig, A. and B . Stroustrup, "Exception Handl ing for C++ (revi sed) ," Proceedings of the Usenix
C+ + Conference, p. 1 49- 1 76, San Franc i sco, Apri l 1 990.

Chapter 13 Exception Handl ing 78 1

13.2 Exception - Handling Overview

Program logic frequently tests conditions that determine how program execution proceeds .

Consider the following p seudocode :

Perform a task

If the preceding task did not execute correctly

Perform error processing

Perform next task

If the preceding task did not execute correctly

Perform error processing

[n this pseudocode, we begin by performing a task . We then test whether that task executed

correctly . If not , we perform error processing . Otherwise, we restart the entire process and

continue with t he next task . Although this form of error handling wor k s , intermixing pro

gram logic with error-handling logic can make the program difficult to read, modify, main

tain and debug-especially in large applications . In fact , if many of t he potential problems

occur infrequently, intermixing program logic and error-handling logic can degrade a pro

gram 's performance, because the program must test the error-handling logic to determine

whether the next tas k can be performed .

Exception handling enables the programmer to remove error-handling code from the

"main line" of t he program ' s execution, which improves program clarity and enhances

modifiability . Programmers can decide to handle any exceptions they c hoose-all excep

tions, al l exceptions of a certain type or a l l exceptions of a group of re lated types (e .g . ,

exception types that belong to an inheritance hierarchy) . Such flexibility reduces the like

lihood that errors will be overlooked and thereby makes a program more robust .

Exception handling helps improve a program 'sfault tolerance. When it is easy to write error

processing code, programmers are more likely 10 use il.

Soft a r fnginG In 0 a ion

A void using exceplion handling to handle potential errors in the conventional flow of control.

Handling a larger number of exception cases can be cumbersome, and programs with a large

number of exception cases can be difficult to read and m.aintain.

Exception handling is designed to process synchronous errors, which occur when a state

ment executes . Common examples of these errors are out-of-range array subscripts , arith

metic overflow (i .e . , a va lue outside the representable range of va lues) , division by zero,

invalid function parameters and unsuccessful memory a l location (due to lack of memory) .

Exception handling i s not designed to process errors associated with asynchronous events

(e .g. , disk 110 completions, network message arrivals, mouse clicks and keystrokes) , which

occur in paral lel with , and independent of, the program 's flow of contro l .

f:Jll Good Program ming Practice 13.1

Il:::2J For clarity, avoid using exceplion handling for purposes olher Ihan error handling.

782 Exceptio n Handl ing Chapter 13

With programming languages that d o not support exception handling, programmers
often delay writing elTor-processing code or sometimes forget to include it. This results in
less robust software products. C++ enables the programmer to deal with exception handling
eas ily from the inception of a project. However, the programmer must continue to incorpo
rate an exception-handling strategy into software projects.

So vatlo 1

Try to incorporate an exception-handling strategy into a systemfrom the inception of the de

sign process. Including effective exception handling after a system has been implemented can

be difficult.

rv 1

In the past, programmers used many techniques to implement error-processing code. Excep

tion handling provides a single, uniform technique for processing errors. This helps pro

grammers working on large projects to understand each other's error-processing code.

The exception-handling mechanism also is useful for processing problems that occur

when a program interacts with software elements, such as member functions, constructors,

destructors and classes. Rather than handling problems internally, such software elements

often use exceptions to notify progra ms when problems occur. This enables programmers

to implement customized error handling for each application.

Performance Tip 13. 1

When no exceptions occur, exception -handling code incurs little or no performance penal

ties. Thus, programs that implement exception handling operate more efficiently than do pro

grams that intermix error-handling code with program logic.

Performance Tip 13.2

Exception handling should be used only for problems that occur infrequently. As a "rule of

thumb, " if a problem occurs at least 30% of the time when a particular statement executes,

the program should test for the error in line; otherwise, the overhead of exception handling

causes the program to execute more slowly.

E g O e

Functions with common error conditions should return 0 or NULL (or other appropriate val

ues) rather than throw exceptions. A program calling such a function can check the return

value to determine success or failure of the function call.

Complex applications normally consist of predefined software components and appli

cation-specific components that use the predefined components. When a predefined com

ponent encounters a problem, that component needs a mechanism to communicate the

problem to the app lication-specific component-the predefined component cannot know in

advance how each application processes a problem that occurs. Exception handling simpli

fies combining software components and having them work together effectively by

enabling predefined components to communicate problems to applicat ion-specific compo

nents, which can then process the problems in an application-specific manner.

Exception handling is geared to situations in which the function t hat detects an error is

unable to handle it. Such a function throws an exception . There is no guarantee that t here

will be an excepiion handler-code that executes when the program detects an exception

to process that kind of exception. If there is, the exception handler catches and handles the

Chapter 1 3 Exception H a n d l i n g 783

exception. The result of an uncaught exception often yields adverse effects and might ter

minate program execution.

Common Progra mming Error 13.1

Aborting a program compone/U due to an uncaught exception could leave a resource-such

as a file stream or an 110 device-in a state in which other programs are unable to acquire

the resource. This is known as a " resource leak. "

c++ provides try blocks to enable exception handling. A t ry block consists of key

word try followed by braces ({ }) that define a block of code in which exceptions might

occur. The try block encloses statements that might cause exceptions. At least one catch

block (also called a catch handler) must immediately follow the try block. Each catch

handler specifies in parentheses an exception parameter that represents the type of exception

the catch handler can process. If an exception parameter includes a parameter name, the

catch handler can use that parameter name to interact with a caught exception object.

T he point in the program at which an exception occurs (i.e., the location w here a func

tion detects and throws an exception) is called the throw point. If an exception occurs in a

t ry block, the t ry block expires (i.e., terminates immediately), and program control

transfers to t he first catch handler that follows the t ry block. C++ uses the termination

model of exception handling, because the t ry block that encloses a thrown exception

expires immediately when that exception occurs.2 As with any other block of code, when

a try block terminates, local variables defined in the block go out of scope. Next, t he pro

gram searches for the first catch handler that can process the type of exception that

occurred. The program locates t he matching catch by comparing the thrown exception ' s

type to each catch' s exception-parameter type until the program finds a match. A match

occurs if the types are identical or if the thrown exception ' s type is a derived c lass of the

exception-parameter type. When a match occurs, the code contained within t he matching

catch handler executes. When a catch handler finishes processing, local variables

defined within the catch handler (including the catch parameter) go out of scope. Any

remaining catch handlers that correspond to the try block are ignored, and execution

resumes at the first line of code after the try/catch sequence.

If no exceptions occur in a try block, the program ignores the catch handler(s) for

that block. Program execution resumes with the next statement after the t ry/catch

sequence. If an exception that occurs in a try block has no matching catch handler, or

if an exception occurs in a statement that is not in a t ry block, the function that contains

the statement terminates immediately, and the program attempts to locate an enclosing t ry

block in t he calling function . This process is called stack unwinding (discussed in

Section 13.8).

1 3 .3 Other E rror- Handling Techniques

We have discussed several ways to deal with exceptional situations prior to this chapter.

T he following summarizes these and other error-handling techniques :

2 . Some languages use the resul'nption model o.l exceptiol1 handling, i n which, after the hand l i ng of
the except ion, control returns to the point at which the except ion was thrown and execution re
sumes from that point .

784 Exception Handl ing Chapter 1 3

Ignore the exception . If an exception occurs, the program might fail as a result of

the uncaught exception. This is devastating for commercial software products or

for special-purpose software designed for mission-critical situations, but, for soft

ware developed for your own purposes, ignoring many kinds of errors is common .

Abort the program . This, of course, prevents a program from running to comple

tion and producing incorrect results . For many types of errors, this is appropriate,

especially for nonfatal errors that enable a program to run to completion (poten

tially misleading the programmer to think that the program functioned correctly) .

This strategy also is inappropriate for mission-critical applications . Resource is

sues also are important here. If a program obtains a resource, the program should

release that resource before program termination.

Set error indicators . The problem with this approach is that programs might not

check these error indicators at all points at which the errors could be troublesome.

Test for the error condition, issue an error message and call exi t (in < c s td

l ib» t o pass a n appropriate error code t o the program 's environment .

Use functions set j ump and longjump. These < c s e t j mp > library functions

enable the programmer to specify an immediate jump from a deeply nested func

tion call to an error handler . Without using set j ump or longj ump, a program

must execute several returns to exit the deeply nested function calls . Functions

set j ump and longjump are dangerous, because they unwind the stack without

calling destructors for automatic objects . This can lead to serious problems .

Certain specific kinds of errors have dedicated capabilities for handling them . For

example, when operator new fails to allocate memory, it can cause a

new_handler function to execute to handle the error . This function ca n be cus

tomized by supplying a function name as the argument to set_new_handler,

as we discuss in Section 1 3 . 1 I .

1 3 .4 Simple Exception - Handling Example: Divide by Zero

Let us consider a simple example of exception handling . The application in Fig . 1 3 . 1 uses

t ry and catch to wrap code that might throw a "divide-by-zero" exception and to handle

that exception, should one occur . The application enables the u ser to enter two integers,

which are passed as arguments to function quot ient (lines 28-37) . This functio n divides

the first number (numerator) by the second number (denominator) . Assuming that

the user does not specify 0 as the denominator for the division, function quot i ent returns

the division result . However, if the user inputs a 0 value as the denominator, function quo

t i ent throws an exception .

In the Fig . 1 3 . 1 output, the first two lines show a successful calculation, and the next

two lines show a failed calculation due to an attempt to divide by zero. Let us consider the

user inputs and flow of program control that yield these outputs . The program begins after the

user inputs values that represent the numerator and denominator (] jne 48) . Line 53 passes

these values to function quot ient (lines 28-37) , whjch either divides the integers and

returns a result or throws an exception on an attempt to divide by zero . Note that a t ry block

(lines 52-56) encloses the invocation of function quot ient . As we discussed previollsly,

Chapter 13 Exception Handl ing 785

a t ry block wraps code that might throw a n exception . I n this example, because the invo

cation to function quot i ent (line 5 3) can throw an exception, we enclose this function

invocation in the t ry block .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46

II Fig . 1 3 . 1 : f ig 1 3_0 1 . cpp
II A s impl e except i on-handling example that checks for

II divide - by- zero except ions .

#inc lude < iostream>

using std : : cout ;
us ing std : : c in ;

us ing std : : endl ;

inc lude < except ion>

us ing std : : except ion ;

I I DivideByZeroException obj ects should b e thrown b y funct ions
II upon detect ing divi s ion-by- zero except i ons

c lass DivideByZeroExcept ion : pub l i c except ion {

publ i c :

II const ructor spec i f ie s de fault error me s s age

DivideByZeroExcept ion : : DivideByZeroExcept ion ()
: exception (" attempted to divide by zero ") { }

} ; II end c lass DivideByZeroExcept ion

II perform divi s i on and throw DivideByZeroExcept i on obj ect if
II divide -by- zero except ion occurs

doubl e quot i ent { int numerator , int denominator)

{
II throw DivideByZeroExcept ion if t rying to divide by zero

if (denominator == °)
throw DivideByZeroExcept ion () ; II terminate func t i on

II return divi s i on result

return stat i c_cast < double > (numerator) I denominator ;

II end funct ion quot ient

int main {)

{
int numberl ;

int number2 ;
doubl e re sult ;

II user- spec i f i ed numerator
II user - spec i f ied denominator
II result of divi s i on

cout « " Enter two integers (end-of - f i l e to end) : " ;

Fig. 1 3. 1 Exception-handling example that throws exceptions on attempts to divide
by zero. (Part 1 of 2.)

786 Exception Handl ing

47 II enable user to enter two integers to divide

48 whi l e (c in » number1 » number2) {
49

Chapter 1 3

50 II t ry block contains code that might throw exc ept i on

5 1 II and code that should not execute i f a n except ion occurs
52 t ry {
53 result = quot ient (number1 , number2) ;
54 cout « " The quot ient i s : " « result « endl ;
55
56 II end try
57
58 II except ion handler handles a divide - by- zero except ion

59 catch (DivideByZeroExcept ion ÷ByZeroExcept ion) {
60 cout « " Except ion occurred : "

6 1 « divideByZeroExcept ion . what () « endl ;
62
63 } II end catch
64
65 cout « " \ nEnter two integers (end- o f - f i le to end) : " ;
66
67 II end whi l e
68
69 cout « endl ;
70
7 1 return 0 ; II terminate normal ly
72
73 II end main

Enter two integers (end-of - f i l e to end) : 1 0 0 7

The quot ient i s : 14 . 2 8 5 7

Enter two integers (end-of - f i l e to end) : 1 0 0 a
Except ion occurred : attempted to divide by zero

Enter two integers (end-of - f i l e to end) : A Z

Fig. 1 3. 1 Exception-handling example that throws exceptions on attempts to divide
by zero. (Part 2 of 2.)

Let us consider the flow of control when the user inputs the numerator 1 0 0 and the

denominator 7 (i.e., the fU'st two lines of Fig. 1 3 . 1 output). In l ine 3 1 , function quot ient

determines that the denominator does not equal zero, so line 35 performs the division and

returns the result (14 . 2 8 5 7) to line 53 as a double (the stat ic_cast in line 35 ensures

the proper return value type). Program control then continues sequential ly from line 5 3 , so

line 54 displays the divis ion result and line 56 reaches the end of the try block. Because the

try block did not throw an exception, the program does not execute the statements contained

in the catch handler (lines 59-63) , and control continues to line 65 (the fLrst line of code

after the catch handler), which prompts the user to input two more integers .

Now let us consider a more interesting case in which the user inputs the numerator

1 0 0 and the denominator a (i.e., the third and fourth l ines of Fig. 1 3 . 1 output) . In line 3 1 ,

quot ient determ ines that the denominator equa l s zero, which indicates an attempt to

divide by zero . Line 32 throws an exception, which we represent as an object of class

Chapter 13 Exception Handl ing 787

DivideByZeroExcept ion (l ines 1 6-24) . Class DivideByZeroExcept ion i s a

der ived c lass of standard- l ibrary-class excep t i on (def ined in < exception» , wh ich

is the standard C++ base class for except ions .

Note that, to throw an except ion, l ine 32 uses keyword throw fo llowed by an operand

that represents the type of except ion to thro w . Normally, a throw statement specifies one

operand. (In Sect ion 1 3 . 5 , we d i scuss how to use a throw statement that spec if ies no oper

ands .) The operand of a throw can be of any type . If the operand is an object, we call it an

exception object-in th i s example, the except ion object i s an object of type DivideBy

ZeroExcep t i on. However, a throw operand a l so can assume other values, such a s the

va lue of an express ion (e .g., throw x > 5) , or the value of an int (e.g ., throw 5) . The

examples in t h i s chapter focus exclusively on throwing except ion objects .

Common Programming Error 13.2

Use caution when throwing a value returned by a conditional expression, because promo

tion rules could cause the value to be of a type different from the one expected. For example,

when throwing an int or a doublefrom the same conditional expression, the conditional

expression con verts the int to a double. However, the catch handler always catches the

result as a double, rather than catching the result as a double when a double is thrown,

and catching the result as an int when an int is thrown.

As part of throw ing an exception, the throw operand is created and used to in i t ial ize

the parameter in the catch handler, which we d i scuss momentar ily . In this example, the

throw statement in l ine 32 creates an object of class Di videByZeroExcept ion. The

Di videByZeroExcept ion constructor (lines 2 1 -22) passes to the except ion base

class constructor a s tring that specif ies the default error message for a DivideByZe

roExcept i on. W hen l ine 32 throws the except ion, function quot i ent exi ts immed i

ately . Therefore, l ine 32 throws the except ion before function quot i ent can perform the

divis ion in l ine 3 5 . This is a central characterist ic of exception handl ing : a funct ion should

throw an except i on before the error has an opportuni ty to occur.

Because we dec ided to enclose the invocat ion of funct ion quot i ent (l ine 5 3) in a

t ry b lock, program control enters the catch block (lines 5 9-63) that immediately fol

lows the try block . This catch block serves as the except ion handler for the d iv ide-by

zero exception . In genera l, when an except ion i s thrown with in a t ry block, the except ion

is caught by a catch block that specifies the type match ing the thrown except ion . In th is

program, the catch block spec ifies that it catches DivideByZeroExcept ion

objects-t h i s type matches the object type thrown in function quot i ent . Actually, the

catch handler catches a reference to the Di videByZeroExcept i on object created by

funct ion quot i ent ' s throw statement (l ine 3 2) .

Performanc p 3
--

Catching an exception object by reference eliminates the overhead of copying the object that

represents the thrown exception.

Good Programming Practice 13.2

Associating each type of run -time error with an appropriately named exception object im

proves prograll1 clarity.

The catch handler' s body (l ines 60-6 1) prints the associated error message returned

by calling funct ion wha t of base-class except ion. Th i s funct ion retu rn s the string that

788 Exception Handl ing Chapter 13

t he DivideByZeroExcept ion constructor (lines 2 1 -22) passed to the except i on

base-class constructor.

13.5 Rethrowing an Exception

It is possible that an exception handler, upon receiving an exception, might decide either
that it cannot process that exception or that it can process the exception only partially. In

such cases, the exception handler can defer the exception handling (or perhaps a portion of
it) to another exception handler. In either case, the handler achieves this by rethrowing the

exception via the statement

throw ;

Regardless of whether a handler can process (even partially) an exception, the handler

can rethrow the exception for further processing outside the handler. The next enclosing

t ry block detects the rethrown exception, which the catch handler listed after that

enclosing t ry block attempts to handle. � Common Programming E rror 13.3

Executing an empty throw statem.ent that is situated outside a catch handler causes a call

to fitnction terminate.

The program of Fig. 1 3 . 2 demonstrates rethrowing an exception. In main' s t ry block

(lines 38-43) , line 40 calls function throwExcept ion (lines 1 3-3 3) . Function throw

Except ion also contains a t ry block (lines 1 6-20) , from which the throw statement

at line 1 8 throws an instance of standard-library-c lass except ion. Function throw

Except ion' s catch handler (lines 23-29) catches this exception, prints an error mes

sage (lines 24-2 5) and rethrows the exception (line 27) . This terminates function

throwExcept ion and returns contro l line 40 in the t ry/catch block in main. The

t ry block terminates (so line 4 1 does not execute) , and the catch block in main (lines

46-49) catches this exception and prints an error message (line 47) .

1 I I Fig . 1 3 . 2 : f ig13_0 2 . cpp

2 II Demonstrat ing except ion rethrowing .

3 # inc lude < iostrearn>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 # inc lude < except ion>

9
1 0 us ing s td : : except ion ;
1 1
1 2 II throw, catch and rethrow except ion

1 3 void throwExcept ion ()
1 4 {
1 5 II throw except ion and catch it immediate ly
1 6 try {

Fig. 1 3.2 Rethrowing an exception. (Part 1 of 2 .)

Chapter 13 Exception Handling 789

17 c out « " Funct ion throwExcept ion throws an except i on \ n " ;
18 throw except i on () ; I I generate except i on
1 9
20 I I end t ry
2 1
22 I I hand l e except ion
23 catch (except i on &caughtExcept i on) {
24 c out « " Except ion handled in func t i on throwExcept ion "
25 « " \ n Func t i on throwExcept ion rethrows excep t i on " ;
26
27 throw ; I I rethrow except ion for further proce s s i ng
28
29 } I I end catch
30
31 cout « " Thi s also should not print \ n " ;
32
33 } I I end funct ion throwExc ept ion
34

35 int main ()
36 {
37 I I throw except ion
38 t ry {
39 c out « " \ nmain invokes funct ion throwExcept i on \ n " ;
40 throwExcept ion () ;
4 1 cout « " Th i s should not print \ n " ;
42
43 I I end t ry
44
45 I I hand l e except ion
46 catch (except i on &caughtExc ept i on) {
47 c out « " \n \ nExcept i on handled in mai n \ n " ;
48
49 I I end catch
50
51 c out « " Program cont rol cont inues after catch in mai n \ n " ;
52
53 return 0 ;
54
55 } I I end main

main invoke s func t i on throwException
Func t ion throwExcept ion throws an excep t i on
Except i on handled in funct ion throwExcept ion
Funct i on throwExcept i on rethrows except i on

Except ion handled in main
Program c ont rol cont inues after catch in ma in

Fig. 1 3.2 Rethrowing an exception, (Part 2 of 2,)

13.6 Exception Specifications

An exception specification (a lso cal led a throw list) enumerates a l i st of except ions that a

function can throw, For example, cons ider the function dec larat ion

790 Exception Handling Chapter 13

int s omeFunct ion (double va lue)
throw (Exc ept ionA, Except ionB, Except i onC)

I I func t i on body

I n th is defi n i t ion, the exception spec ificat ion, which beg ins wi th keyword throw i mmedi
atel y fol lowing the closing parenthesis of the function ' s parameter l i st , i ndicates that func
t ion someFunc t i on can throw exceptions of types Exc ept i onA, Exc ept i onB and
Exc ept i onC . A function can throw only exceptions of the types i ndicated by the spec i
fication or exceptions of any type deri ved from these types . I f the function throws an ex
ception that does not be long to a specified type, function unexpec ted i s cal led.

A function with no exception specification can throw any exception. Plac ing

throw () -an empty exception specification-after a funct ion ' s parameter l i st states that the

function does not throw exceptions. If the function attempts to throw an exception, func

t ion unexpec t ed i s i nvoked, which normal ly terminates the program. Section 13.7 shows

that function unexpec t ed can be customjzed by cal l i ng function set_unexpec t ed.

Common Programming Error 13.4

Throwing an exception that has not been declared in a jimction' s exception specification

causes a cail to jimction unexpected

One in terest ing aspect of exception hand l ing is that the compi ler w i l l not generate a

sy ntax error if a function contai ns a throw expression for an exception not l i sted in the

function ' s exception spec ificat ion . An error occurs on ly when that function attempts to

throw that exception at execution t ime.

13.7 Processing Unexpected Exceptions

Function unexpected cal l s the function registered with function se t_unexpec ted

(defined i n header fi le < except ion» . If no function has been registered i n th i s manner,

function t erminate i s cal led by default . Function t erminate can be ca l led in one of

the five following ways: if a thrown exception cannot be caught ; i f the stack becomes cor

rupted during exception handl i ng ; if a cal l to function unexpected defaults to cal l i ng

function terminate; if stack unwinding i s i n i t iated by an exception ; and if a destructor

attempts to throw an except ion . Function se t_ termina te can spec ify the funct ion to

i nvoke when t erminate i s cal led. Otherwise, t erminate cal l s abort .

Function set_t erminate and function set_unexpected each return a poi n ter
to the last function cal led by t erminat e and unexpec t ed, respective ly (0 , the first

t i me each is cal led) . Th is enables the programmer to save the function poi nter so i t can be

restored l ater. Functions set_t erminat e and set_unexpected take as arguments

pointers to functions with vo id return types and no arguments .

I f the l ast act ion of a programmer-defined terrrunation function i s not to exi t a program,

function abort w i l l be cal led to end program execution after the other statements of the

programmer-defi ned terminat ion function are executed.

13.8 Stack Unwinding

When an exception i s thrown but not caught in a part icu lar scope, the funct ion-cal l stack i s

unwound, and a n attempt i s made t o catch the exception i n the next outer t ry/c a t c h

Chapter 13 Exception Handling 79 1

block . Unwinding the fu nction-cal l stack means that the function in which the exception

was not caught termi nates , all local variables i n that function are destroyed and control re

turns to the statement that orig ina l ly invoked that function . If a t ry block enc loses that

statement, an attempt is made to catch the except ion . If a t ry block does not enc lose that

statement, stack unwinding occurs again . If no catch handler ever catches th is exception,

function t erminate i s cal led to terminate the program. The program of F ig . 1 3 . 3 dem

onstrates stack unwinding .

1 II Fig . 13 . 3 : fig13_0 3 . cpp
2 I I Demonstrat ing stack unwinding .
3 # inc1ude < i ostream>
4
5 u s ing s td : : cout ;
6 u s ing s td : : endl ;
7
8 # inc lude < s tdexcept >
9

1 0 u s i ng s td : : runt ime_error ;
1 1
1 2 I I funct i on3 throws run - t ime error
1 3 void func t i on3 () throw (runt ime_error
1 4 (
1 5 throw runt ime_error (" runt ime_error in func t i on3 ") ; I I fourth
1 6
1 7
1 8 I I funct i on2 invoke s funct i on3
1 9 void funct i on2 () throw (runt ime error
20 {
2 1 funct i on3 () ; I I third
22
23
24 I I func t i on1 invoke s func t i on2
25 void func t i on1 () throw (runt ime_error
26 (
27 func t i on2 () ; I I second
28
29
30 I I demonstrate s tack unwinding
3 1 int main ()
32 {
33 I I invoke func t ion1
34 try (
35 func tion1() ; I I first
36
37 } I I end t ry
38
39 I I handle run - t ime error
40 catch (runt ime_error &error) I I fi fth
4 1 (
42 cout « " Except i on occurred : " « error . what () « endl ;
43
44 I I end catch

Fig. 1 3.3 Stack unwind ing . (Part 1 of 2.)

792 Exception Handling

45
46 return 0 ;
4 7
48 I I end main

Except ion occurred : runt ime_error in func t i on3

Fig. 1 3.3 Stack unwinding. (part 2 of 2.)

Chapter 13

In main, the t ry block (l i nes 34-37) cal ls funct ionl (l i nes 25-28). Next,

funct ionl cal l s funct ion2 (l i nes 19-22), which i n turn cal l s funct i on3 (l i nes 13-
16). Line IS of funct ion3 throws a run time_error object (defi ned in header

<s tdexcep t» , which is the C++ standard base c lass for representing run-ti me errors.

However, because no t ry block encloses the throw statement in l ine J 5, stack unwinding

occurs-function3 terminates at l i ne 15, then returns control to the statement in

funct i on2 that i nvoked funct ion3 (i .e . , l i ne 2 I). Because no t ry block enc loses l i ne

2 1, stack unwinding occurs again-funct i on2 terminates at l i ne 2 1 and returns control to

the statement in funct i onl that invoked funct ion2 (i .e . , l i ne 27) . Because no t ry

block encloses l i ne 27, stack unwinding occurs one more time-funct ionl terminates at

l i ne 27 and returns control to the statement in ma in that invoked funct ionl (i .e . , l i ne 35).
The t ry block of l i nes 34-37 encloses this statement, so the fi rst match ing catch handler

located after this t ry block (l i ne 40-44) catches and processes the except ion.

13.9 Constructors, Destructors and Exception Handling

First, let us d i scuss an i ssue that we have mentioned but not yet resol ved sat i sfactori l y:

What happens when an error is detected i n a constructor? For example, how should an ob

ject ' s constructor respond when new fai ls and indicates that i t was unable to a l locate re

qu ired memory for storing that object ' s in ternal representation? Because the constructor

cannot return a value to i nd icate an error, we must choose an alternative means of indicat ing

that the object has not been constructed properl y. One scheme i s to return the i mproperly

constructed object and hope that anyone us ing the object would make appropri ate tests to

determine that the object exhibits an i nconsi stent state . Another scheme i s to set some vari

able outside the constructor. Perhaps the best alternative i s to requ ire the constructor to

throw an exception that contai ns the error informat ion, thus offeri ng an opportuni ty to

handle the fai lure .

In addi t ion , except ions thrown by constructors cause destructors to be cal led for any

objects bui l t as part of the object being constructed before the except ion i s thrown. Destruc

tors are cal led for every automatic object constructed i n a t ry block before an except ion

is thrown . Stack unwind ing is guaranteed to have been completed at the poi nt that an excep

tion handler begins execut ing . If a destructor invoked as a resu l t of stack unwi nding throws

an exception , t e rminate i s cal led.

If an object has member objects, and if an exception is thrown before the outer object

i s fu l l y constructed, then destructors wil l be executed for the member objects that have been

constructed prior to the occurrence of the except ion . If an array of objects has been part ia l l y

constructed when a n exception occurs, o n l y the destructors for the constructed array e le

ments wi l l be cal led .

Chapter 13 Exception Handling 793

An exception could precl ude the operation of code that would normal l y rel ease a

resource, thus causi ng a resource leak. One technique to resolve thi s problem i s to i ni t ial ize

a local object to acquire the resource. When an exception occurs, the destructor for that

object w i l l be i n voked and can free the resource.

It i s poss ib le to catch exceptions thrown from destructors by enclosing the function

that cal l s the destructor in a t ry block and providing a catch handler w i th the proper type.

The thrown object ' s destructor executes after an exception handler completes execut ion.

13. 10 Exceptions and Inheritance

Various exception c l asses can be derived from a common base c lass , as we d i scussed i n

Section 1 3 .4, when w e created c lass D i videByZe roExcept i on a s a derived c lass of

c lass except i on. If a catch catches a pointer or reference to an exception object of a

base-cl ass type, i t a lso can catch a poi nter or reference to a l l objects of c lasses deri ved

from that base c lass . Thi s can a l low for polymorphic process ing of rel ated errors .

Using inheritance with exceptions enables an exception handler to catch related errors with

concise notation. One approach is to catch each type o.l pointer or reference to a derived

class exception object individually, but a more concise approach is to catch pointers or rei

erences 10 base-class exception objects instead. Also, catching pointers or relerences to de

rived-class exception objects individually is error prone, especially if the programmerforgets

to test explicitly for one or more of the derived-class pointer or relerence types.

13. 1 1 Processing new Failures

The C++ standard spec ifies that, when operator new fai l s , i t throws a bad_a l l oc ex

ception (defi ned in header fi le <new» . However, some compi l ers are not comp l i an t w i th

the C++ standard and therefore use the version of new that returns 0 on fai l ure . In th i s sec

tion, we present three examples of new fai l ing. The first example returns 0 when new fai l s .

The second a n d thi rd examples u s e the version o f new that throws a bad_a l l oc excep

tion when new fai l s .

Figure 1 3 .4 demonstrates new return i ng 0 on fai lure t o a l locate t h e requested amount

of memory . The for structure at l i nes 1 3-30 should loop 50 t imes and, on each pass, a l lo

cate an array of 5 ,000,000 doubl e values (i . e . , 40,000,000 bytes, because a doubl e i s

normal ly 8 bytes) . The i f structure at l i ne 1 7 tests the resu l t o f each new operat ion to

determi ne whether new a l located the memory successfu l l y . If new fai l s and returns 0, l i ne

1 8 prints an error message, and the loop termi nates .

1 II Fig . 13 . 4 : f ig13_ 0 4 . cpp
2 I I Demons t rat ing pre - s t andard new returning ° when memory
3 II is not a l located .
4 #inc lude < i o s t ream>
5
6 us ing std : : cout ;
7

Fig. 1 3.4 new retu rn ing 0 on fa i lu re . (Part 1 of 2.)

794 Exception Handling

8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
18
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34

int main ()

{
doubl e *ptr [5 0] ;

I I a l locate memory for ptr
0 ; i < 5 0 ; i++) { for (int i

ptr[i = new double [5 0 0 0 0 0 0] ;

I I new returns 0 on fai lure t o al locate memory
i f (ptr [i] == 0) {

cout « " Memory a l l ocat ion fai l ed for ptr ["
« i « "] \ n " ;

break ;

I I end i f

I I succes s ful memory a l l ocat ion
e l s e

cout « " Al l ocated 5 0 0 0 0 0 0 doub l e s in ptr ["
« i « "]\ n " ;

} I I end for

return 0 ;

I I end main

Al l ocated 5 0 0 0 0 0 0 doub l e s in ptr [0
Allocated 5 0 0 0 0 0 0 doub l e s i n ptr [1
Allocated 5 0 0 0 0 0 0 doub l e s in ptr [2
Al l ocated 5 0 0 0 0 0 0 doub l e s in ptr [3
Memory a l locat i on f a i l ed for ptr [4

Fig. 1 3.4 new retu rning 0 on fa i lu re. (Part 2 of 2.)

Chapter 13

The output shows that the program performed only four i terations before new fai led, and

the loop terminated. Your output might differ based on the physical memory, disk space avai l

able for v i rtual memory on your system and the compiler used to compi le the program.

Figure 13.5 demonstrates new throwing bad_a l l oc on fai l u re to a l locate the

requested memory. The for structure (l ines 22-26) i n s ide the t ry block shou ld l oop 50

t i mes and, on each pass , a l locate an array of 5,000,000 doub l e values . I f new fai l s and

throws a bad_a l loc exception, the loop terminates, and the program cont i n ues i n the

exception-handl ing flow of control at l i ne 3 1, where the catch handler catches and pro

cesses the exception . Lines 32-33 print the message " Excep t i on occurred : " fol

lowed by the message returned from the base-class-except ion vers ion of funct ion

what (i .e . , an except ion-speci fic message, such as " Al l ocat i on Fai lure "). The

output shows that the program performed only four iterat ions of the loop before new fai led

and threw the bad_a l l oc except ion . Your output might d iffer based on the phys ica l

memory, d i sk space avai lable for v i rtual memory on your system and the compi ler you use

to compi le the program.

Chapter 13 Exception Handling

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39

II Fig . 13 . 5 : f i g 1 3 _0 5 . cpp

II Demonstrat ing s tandard new throwing bad_a l l oc when memory

II cannot be a l located .
inc lude < iostream>

u s ing s td : : cout ;
u s ing std : : endl ;

inc lude <new> II s tandard operator new

u s ing s td : : bad_a l l oc ;

int main ()
{

doubl e *pt r [5 0] ;

II attempt to a l locate memory
try {

II a l locate memory for ptr [i]; new t hrows bad_a l loc
li on fai lure

for (int i = 0 ; i < 5 0 ; i++) {
ptr [i] = new doubl er 5 0 0 0 0 0 0] ;
cout « " Al l ocated 5 0 0 0 0 0 0 doub l e s in ptr["

« i « "]\n " ;

I I end t ry

II hand l e bad_al loc except ion
catch (bad_a l loc &mernoryAl locat ionExcept i on {

c out « " Except i on occurred : "

« memoryAl locat ionException . what () « endl ;

} II end catch

return 0 ;

II end main

Al located 5 0 0 0 0 0 0 doubles in ptr[0
Al l ocated 5 0 0 0 0 0 0 doub l e s in ptr[1
Al l ocated 5 0 0 0 0 0 0 doubles in ptr[2
Al located 5 0 0 0 0 0 0 doub l e s in ptr [3
Except ion occurred : Al l ocat i on Fai lure

Fig. 1 3.5 new throwing bad_a l loe on fa i lure .

795

Compi lers vary i n the i r support for new-fai l ure handl i ng . Many C++ compi l ers return

o by defaul t when new fai l s . Some compi lers support new throwing an exception i f header

fi le <new> (or <new.h» is inc luded . Other compi lers throw bad_a l l oc by defaul t ,

796 Exception Handling Chapter 13

regardless of whether header fi le <new> is inc luded. Consult the compiler documentat ion

to determine the compi ler' s support for new-fai lure handl i ng .

The C++ standard spec ifies that standard-compl iant compi lers can cont inue to use a

version of new that returns 0 upon fai l ure . For this purpose, header fi le < new> defines

object nothrow (of type no throw_ t), which i s used as fol lows :

doubl e *pt r = newt nothrow) doubler 5 0 0 0 0 0 0];

The preceding statement uses the vers ion of new that does not throw bad_a l l oc excep

tions (i .e . , nothrow) to a l locate an array of 5 ,000,000 doubl e s.

Software Engineering Observation 13.5

To make programs more robust, use the version of new that throws bad_alloe exceptions

on failure.

An addit ional feature for handl ing new fai l ures is function set_new_handler

(prototyped i n standard header fi le <new» . Thi s function takes as i ts argument a poi nter

to a funct ion that takes no arguments and returns vo id. Essent ia l ly , th is pointer points to

the function that w i l l be called if new fai l s . Thi s prov ides the programmer wi th a un iform

approach to hand l ing all new fai lures, regardless of where a fai l u re occurs in the program.

Once s e t_new_hand l e r regi sters a new handler i n the program, operator new does not

throw bad_a l l oc on fai l ure ; rather, it defers the error handl ing to the new-handler

function .

If new al locates memory successfu l ly , it returns a poi nter to that memory. If new fai l s

to al locate memory and set_new_handler d id not regi ster a new-handler funct ion,

new throws a bad_a l l oc except ion . If new fai Is to a l locate memory , and a new-handler

function has been registered, the new-handler function i s cal led. The C++ standard spec i

fies that the new-handler function should perform one of the fol lowing tasks :

I . M ake more memory avai lable by delet ing other dynamical ly al located memory

(or te l l i ng the user to c lose other appl ications) and return to operator new to at

tempt to al locate memory agai n .

2 . Throw a n exception o f type bad_al l oc.

3 . Call function abort or exi t (both found in header fi le <cstdl ib» to terminate

the program.

Figure 1 3 .63 demonstrates set_new_handl e r. Function cu s t ornNewHandl e r
(l i nes 14-18) pri nts an error message (li ne 1 6) then terminates the program via a call to

abort (l i ne 17). The output shows that the program performed only four i terat ions of the

loop before new fai led and i nvoked function cu s t o�ewHandl e r. Your output might

differ based on the physical memory, disk space avai lable for v i rtual memory on your

system and the compiler you use to compile the program .

3. The program of Fig . 13.6 works in Microsoft Visual C++ .NET, Borland C++ 5.5 and in GNU C++.
The program does not work in Visual C++ 6, which, for backwards compatibility reasons, does not

implement set_new_handler. I n Visual C++ 6, function _set_new_handler provides

similar functionality. For more information on this function, visit msdn . microsoft . com/

l ibrary/de fault . asp?url =/l ibrary/en-us/vccore98/HTML/
_crt __ set_new_handl er . asp.

Chapter 13

I I Fig . 1 3 . 6 : f i g1 3 _0 6.cpp
I I Demons t rat ing s et_new_handler .
inc lude < i o s t ream>

us ing s td : : c out ;
u s ing s td : : c e rr ;

Exception Handling 797

1
2
3
4
5
6
7
8
9

inc lude < new> I I s t andard operator new and set_new_handler

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1

us ing s td : : set_new_handler;

#inc lude < c s tdlib> I I abort funct ion prototype

void customNewHandl er {)
{

}

cerr « " customNewHandler was c a l l ed " ;
abort {) ;

I I us ing s et new handl er to handl e fai led memory a l locat i on
int main {)
{

doubl e *pt r [5 0];

1/ spec i fy that customNewHandler should be c a l l ed on f a i led
I I memory a l l ocat ion
set_new_handler { cust omNewHandler) ;

I I a l l ocat e memory for pt r[i] ; cus t omNewHandl er wi l l be
// c a l led on fai l ed memory a l locat i on
for (int i 0 ; i < 5 0 ; i++) {

ptr[i] = new double [5 0 0 0 0 0 0];

cout « " Al l ocated 5 0 0 0 0 0 0 doubles in ptr["

< < i < < "] \n " ;

} // end for

return 0 ;

} I I end main

Al l ocated 5 0 0 0 0 0 0 doubles in ptr[0
Al l ocated 5 0 0 0 0 0 0 doub l e s in ptr [1
Al l ocated 5 0 0 0 0 0 0 doub l e s in ptr [2
Al l ocated 5 0 0 0 0 0 0 doub l e s in ptr[3
customNewHandler was c a l l ed

Fig. 13.6 set_new_handler specify ing the function to call when new fa i ls.

13.12 Class auto-ptr and Dynamic Memory Allocation

A common programming practice is to al locate dynamic memory, assign the address of that

memory to a pointer, use the pointer to manipu late the memory and dea l locate the memory

798 Exception Handling Chapter 13

w ith de l e t e when the memory is no longer needed . If an exception occurs after memory

a l location but before the de l e t e statement executes, a memory leak could occur . The

C++ standard provides class template aut o-pt r in header fi l e <memory> to deal w i th

thi s s i tuation .

A n obj ect of c lass aut o-ptr maintains a pointer to dynamical ly al l ocated memory .

When an aut o-ptr object goes out of scope, it performs a de l e t e operat ion on i t s

pointer data member. Class template auto-pt r provides operators * and -> so that an

aut o-pt r object can be used just as a regular poin ter variable is . F igure 1 3 .7 demon

strates an aut o-pt r object that points to a dynamical ly a l located obj ect of class

Int eger (l i nes 12-48).

1 I I F i g . 1 3 . 7 : f i g 1 3_07 . cpp
2 I I Demonstrat ing auto-pt r .
3 # inc lude < iostream>

4
5 us ing s td : : cout ;

6 u s i ng s t d : : endl ;

7
8 # inc lude <memory>

9
10 using std : : auto-pt r ; I I auto-ptr c l a s s de f in i t i on
1 1
1 2 c l a s s Integer
1 3
14 publ i c :
1 5
1 6 I I Integer con s t ructor
1 7 Integer (int i = °)

1 8 : value (i)

1 9
20 c out « " Cons t ructor for Integer " « value « endl ;

2 1
22 } I I end Int eger const ructor
23
24 I I Integer de s t ructor

25 -Integer ()

26 {
27 c out « " De s t ructor for Integer " « value « endl ;

28
29 I I end Integer de s t ructor

30
3 1 I I func t ion t o set Integer

32 void set Integer (int i)

33 {
34 value = i ;

35
36 I I end funct ion set Integer

37
38 I I funct ion t o return Integer

39 int get Integer () const
40 {

Fig. 1 3. 7 auto-ptr object manages dynamical ly a l located memory. (Part 1 of 2.)

Chapter 13

4 1 return value ;
42
43 I I end funct ion get Integer

44
45 privat e :
46 int va lue ;
47
48 } ; I I end c l a s s Integer
49

Exception Handling

50 I I use auto-ptr to manipulate Integer obj ect
5 1 int ma in ()

52 {
53 cout « " Creat i ng an auto-ptr obj ect that point s to an "
54 « " Integer\n " ;

55
56 I I " ai m " auto-ptr at Integer obj ect
57 aut o-pt r < Integer > ptrToInteger (new Intege r (7)) ;

58

799

59 cout « " \nUs ing the auto-pt r to manipu late the I nt eger\n " ;

60
6 1 I I u s e auto-ptr t o set Integer value
62 ptrToInteger - > set Integer (99) ;

63
64 I I u s e auto-pt r to get Integer value

65 cout « " Integer after set Integer : n
66 « (*pt rToInteger) • get Integer ()

67 « " \n\nTerminat ing program" « endl ;
68
69 return 0 ;

70
7 1 } I I end ma i n

Creat i ng an auto-ptr obj ect that point s to a n Integer
Const ructor for Integer 7

Using the auto-ptr to manipu late the Integer
Integer a f t e r set Integer : 9 9

Terminat ing program
De structor for Integer 9 9

Fig. 1 3. 7 auto-ptr object manages dynamical ly a l located memory. (Part 2 of 2.)

Line 57 creates aut o-pt r object pt rToInteger and i ni t ial i zes i t with a pointer

to a dynamical l y al located Int eger object that contain s the value 7. Line 62 uses the

aut o-pt r overloaded -> operator to i nvoke function set Int eger on the Int eger
object pointed to by p t rTo Int eger. Line 66 uses the auto-pt r overloaded * operator

to dereference pt rToInt eger, then uses the dot (.) operator to i nvoke funct ion get
Int eger on the Int eger object poi nted to by ptrTo Int eger. Note that us ing the

aut o-pt r -> operator i s j ust as effective as us ing the aut o-ptr * and. operators

both approaches can be used to manipulate the Int eger obj ect data v ia an aut o-pt r.

800 Exception Handling Chapter 13

Because pt rToInteger i s a local automatic variable i n ma in, pt rToInteger i s

destroyed when ma in termi nates . Thi s forces a de l e t e of the Int eger object poi nted

to by pt rToInteger, which in turn cal l s the Int eger class destructor. The memory

that Int eger occupies is released, regardless of how control leaves the b lock (e .g . , by a

return statement or by an exception) . Most important ly, us ing th is technique can prevent

memory leaks . For example, suppose a function returns a poi nter aimed at some object .

Unfortunate ly , the function cal ler that receives this pointer might not de l e t e the object,

thus resul t ing in a memory leak . However, if the function returns an aut o-.pt r to the

obj ect, the object w i l l be deleted automatical ly .

Software Engineering Observation 13 6

A n auto-ptr has restrictions on certain operations. For example, an auto-ptr cannot

point to an array or a standard-container class.

13. 13 Standard library Exception Hierarchy

Experience has shown that exceptions fal l n icely i nto a n umber of categories . The C++

standard i nc ludes a hierarchy of exception c lasses. As we first d iscussed in Section 1 3 .4,

th is hierarchy i s headed by base-class exception (defi ned i n header fi le < excep

t i on» , which contain s vi rtual function what , which derived c lasses can override to

i ssue appropriate error messages .

Immediate derived c lasses of base c lass excep t i on i nc lude runt ime_error

and logic_error (both defi ned in header < s tdexcept» , each of which has several

derived c lasses . Also deri ved from except i on are the except ions thrown by C++ oper

ators-for example, bad_a l l oc is thrown by new (Sect ion 1 3 . 1 1) , bad_cas t i s

thrown b y dynamic_ca s t (Chapter 1 0) and bad_ typeid i s thrown by type i d

(Chapter 1 0) . I nc luding bad_excep tion i n the throw l i s t of a funct ion means that, i f

an unexpected exception occurs, function unexpect ed can throw bad_except i on

rather than termi nating the program ' s execution (by defau l t) or cal l i ng another funct ion

spec i fied by s e t_unexpect ed.

Common Programming Error 13.5

Placing a catch handler that catches a base-class object before a catch that catches an ob

ject of a class derivedfrom that base class is a syntax error. The base-class catch catches all

objects of classes derivedfrom that base class, so the derived-class catch will never execute.

Class logic_error is the base class of several standard exception c lasses that ind i

cate errors i n program logic . For example, c lass invalid_argwnen t i ndicates that an

i nval id argument was passed to a funct ion . (Proper coding can, of course, prevent inva l id

arguments from reaching a function .) Class leng th_error i ndicates that a l ength l arger

than the max imum size al lowed for the object being manipu lated was used for that object .

(We bui ld programs that throw l ength_errors i n Chapter 1 5 , when we discuss

s t rings.) Class ou t_of_range indicates that a value, such as a subscript i nto an array ,

exceeded its a l lowed range of values.

Class runt ime_error, which we used briefly i n Section 1 3 . 8 , i s the base c lass of

several other standard exception classes that i ndicate errors that occur at execution t ime .

For example, c lass overflow_error describes an ari thmetic overflow error and c lass

underflow_error describes an arithmetic underflow error.

Chapter 13 Exception Handling 801

Software Engineering Observation 13.7

The standard exception hierarchy serves as a useful starting point for creating excep

tions. Programmers can build programs that can throw standard exceptions, throwex

ceptions derived from the standard exceptions or throw their own exceptions not derived

from the standard exceptions.

Common Programming Error 13.6

Programmer-defined exception classes need not be derived from class exception Thus,

writing catch (exception anyException) is not guaranteed to catch all excep

tions a program could encounter.

To catch all exceptions potentially thrown in a try block, use ca tch (• • •) . Be aware

that one weakness associated with catching exceptions in this manner is that the actual type

of the caught exception is ambiguous. Another weakness is that, without a named parameter,

there is no way to refer to the exception object inside the exception handler.

Software Enginee ing Observation 13 8

Use catch (• • •) to perform recovery that does not depend on the exception type (e.g. , re

leasing common resources). The exception can be rethrown to alert more specific enclosing

catch handlers.

SUMMARY

• Some common examples of exceptions are an oUl-of-bounds array subscript, ari thmet ic overflow,

d iv i s ion by zero, inval id funct ion parameters and determin ing that there i s i nsuffic ient memory to

sati sfy an al locat ion request by new.

• The spirit behind except ion handl i ng i s to enable programs to catch and handle errors rather than

lett i ng them occur and suffering the consequences . With except ion hand l i ng, i f the programmer

does not provide a means of hand l i ng an except ion, the program w i l l terminate; nonfatal errors

normal ly a l low a program to cont i n ue execut ion but produce i ncorrect resu l t s .

• Exception handl i n g i s des igned for deal ing with synchronous errors (i .e . , errors that occur as the

resu l t of a program's execution).

• Except ion handl ing i s not designed to deal wi th asynchronous s i tuations , such as network message

arrivals , d i sk VO complet ions , mouse c l icks and the l i ke.

• Except ion handl ing typical ly i s used i n s i tuat ions in which the error w i l l be deal t with by a d iffer

ent part of the program (i .e . , a different scope) from that which detected the error.

• Except ions should not be used as a mechan i sm for spec ify ing flow of contro l . Flow of control wi th

convent ional control structures general ly i s c learer and more efficient than wi th except ions .

• Except ion handl ing should be used to process except ions from software components such as func

t ions , l ibraries and widely used c lasses, wherever it does not make sense for those components to

handle their own except ions .

• Exception hand l ing should be used on large projects to handle error process ing i n a u n i form man

ner for the ent i re project .

• C++ except ion hand l i ng i s geared to s i tuat ions i n which the fu nct ion that detects an error i s unable

to deal with i t. Such a funct ion wi II throw an exception. If the except ion matches the type of the

parameter in one of the catch blocks, the code for that catch block i s executed . Otherwi se,

function terminate i s cal led, which by defaul t cal ls funct ion abort.

802 Exception Handling Chapter 13

o The programmer encloses i n a t ry block the code that might generate an exception. The t ry

block i s i m mediately fol lowed by one or more catch blocks. Each catch block defines an ex

ception handler that specifies the type of exception i t can catch and handle.

o Program control on a thrown exception leaves the try block and searches the catch blocks in

order for an appropriate handler. If no exceptions are thrown i n the t ry block, the exception han

dlers for that block are sk ipped, and the program resumes execut ion after the last catch block.

o Once an exception i s thrown, the block i n which the exception occurred terminates and control

cannot return d irectly to the throw point.

o It is possible to communicate i nformat ion to the exception handler from the point of the exception.

That i nformation i s the type of the thrown object or i nformation placed in the thrown object.

o The exceptions thrown by a part icu lar function can be spec ified wi th an exception spec ification.

An empty exception specificat ion states that the function w i l l not throw any exceptions.

o Exceptions are caught by the c losest exception handler (for the t ry block from which the excep

t ion was thrown) spec ify ing an appropriate type.

o As part of throwing an except ion, the throw operand i s created u sed to in i t ial i ze the parameter i n

the exception handler, assuming that a proper exception handler ex i sts.

o Errors are not a lways checked expl ic i t ly. A t ry block, for example, might appear to conta in no

error check ing and inc l ude no throw statements, but code referenced in the t ry block could cer

tai n ly cause error-checking code to execute.

o Exception handlers are contai ned in catch blocks. Each catch block starts wi th the keyword

catch, followed by parentheses contain ing a type and an optional parameter name. This is fol

lowed b y braces del ineating t h e exception-hand l ing code. When a n exception i s caught, t h e code

in the catch block i s executed. The catch handler defines its own scope.

o The parameter in a catch handler can be named or unnamed. I f the parameter is named, the pa

rameter can be referenced i n the handler. If the parameter is unnamed (i.e., only a type is l i sted for

the purpose of matching wi th the thrown object type or an e l l ips is for a l l types) , then the handler

w i l l ignore the thrown object. The handler can rethrow the object to an outer t ry block.

o It i s possible to specify custom ized behav ior to replace function terminat e by creat ing another

function to execute and prov id ing that function's name as the argu ment i n a set_t erminat e

function cal l .

o I t i s possible that no handler wi l l match a part icu lar thrown object. Thi s causes the search for a

match to cont inue in an enclosing try block.

o The exception handlers are searched in order for an appropriate match. The first handler that y ie lds

a match i s executed. When that handler fi n i shes executing, control resumes wi th the first statement

after the last catch block.

o The order of the exception handlers affects how an exception i s handled.

o A derived-class object can be caught e i ther by a handler specify ing the deri ved-c lass type or by

handlers spec ify ing the types of any base c lasses of that derived c lass.

o Somet imes a program must process many c losely re lated types of except ions. Rather than provid

ing separate exception c lasses and catch hand lers for each, a programmer can provide a s ing le

exception c lass and catch handler for a group of exceptions.

o I t is possible that, even though a prec ise match is avai lable, a match requiring standard conversions

w i l l be made because that handler appears before the one that would resu l t i n a prec i se match.

o By defau l t, i f no handler i s found for an exception, the program term inates.

o An exception handler cannot d irectly access variables i n the scope of i ts t ry block. I nformat ion

the handler needs normal ly i s passed in the thrown object.

Chapter 13 Exception Handling 803

• A handler that catches a derived-class object should be placed before a handler that catches a base

c lass object.

• When an exception is caught, it is possible that resources might have been a l l ocated but not yet

released in the t ry block. The catch handler should release these resources .

• It is possible that a catch handler wil l decide that it cannot process an exception . I n this case, the

handler can rethrow the exception . A throw with no arguments rethrows the exception . If no ex

ception was thrown to begin with , then the rethrow causes a ca l l to terminate.

• Even if a handler can process an exception, and regardless of whether it does any processing on

that exception, the handler can rethrow the exception for further processing outside the handler . A

rethrown exception is detected by the next enclosing t ry block and is handled by an exception

handler l isted after that enc losing try block .

• Function unexpected cal l s a function specified with function set_unexpect ed. I f no func

tion has been specified i n this manner, terminate is cal led by default .

• Function terminate can be cal led in various ways: explicitly ; if a thrown exception cannot be

caught; if the stack is corrupted during exception handling ; as the default action on a ca l l to un

expected; or if, during stack unwinding initiated by an exception, an attempt by a destructor to

throw an exception causes terminate to be cal led .

• Header < except i on> contains rototypes for set_terminate a n d set_unexpect ed.

• Functions set_t e rminate and set_unexpected return pointers to the l ast function ca l led

by t erminate and unexpect ed, respectively (0, if they are being ca l led for the first time).

They enable the programmer to save the function pointer so it can be restored l ater.

• Functions set_t erminate and set_unexpected take as arguments pointers to function

with vo id return types and no arguments .

• If the last action of a programmer-defined termination function is not to exit a program, function

abort wil l be ca l led to end program execution after the other statements of the programmer-de

fined termination function are executed.

• An exception thrown outs i de a try block wil l cause the program to terminate.

• If a handler cannot be found after a try block, stack unwindi ng continues until an appropriate

handler is found. If no handler is u l t imate ly found, then terminate is cal led , which, by default ,

terminates the program with abort.

• Exception specifications l ist the exceptions that can be thrown from a function . A function can

throw either the indicated exceptions, or derived types . If an exception not listed in the exception

specification is thrown, unexpected is cal led.

• I f a function throws an exception of a particu lar c lass type, that function can also throw excep

tions of all c lasses deri ved from that c lass with pub l i c inheritance.

• Except ions thrown from constructo rs cause destructors to be ca l led for all completed base-class

objects and member objects of the object being constructed before the exception is thrown.

• If an array of objects has been partial l y constructed when an exception occurs, on ly the destructors

for the fu l l y constructed array elements wil l be cal led.

• Exceptions thrown from destructors can be caught by enclosing the function that cal l s the destruc

tor in a t ry block and provide a catch handler with the proper type.

The C++ standard speci fies that, when new fails , it throws a bad_a l l oc exception

(bad_al loc is defined in header fi le <new» .

• Some compi lers are not compl iant wi th the C++ standard and sti II use the version of new that re

turns 0 on fai lure.

804 Exception Handling Chapter 13

• Function set_new_handler (prototyped in header fi le <new» takes as its argument a function

pointer to a function that takes no arguments and returns void. The function pointer i s registered as

the function to cal l when new fai l s . Once a new handler i s registered with set_new_handler,

new w i l l not throw bad_al loc on fai lure .

• A n object of c lass auto-..J;>t r maintains a pointer to dynamical l y a l located memory . When an

auto-..J;>t r object goes out of scope, i t performs a de lete operation on i ts pointer data member.

C l ass template auto-..J;>t r provides operators * and - > so that an auto-..J;>t r object can be used

l i ke a regu lar pointer variab le .

• The C++ standard inc ludes a nierarchy of exception c lasses headed by base c lass exc ep t i on

(defined i n header fi l e < except ion» , which offers the serv ice what () that i s overridden i n

each derived c lass t o issue a n appropriate error message .

• I ncluding bad_except ion i n the throw l i st of a funct ion defi n i t ion means that, if an unexpect

ed exception occurs, funct ion unexpected w i l l throw bad_except ion rather than termi nat

ing (by defau l t) or cal l i n g another function specified with set_unexpected.

• Use catch (. • .) to catch al l exceptions .

TERMINOLOGY

abort

aut o-..J;>t r

bad_al loc

bad_cast

bad_except i on

bad_type id

catch (• • .)

catch a group of exceptions

catch an exception

catch argument

catch block

dynamic_cast

empty exception speci fication

empty throw specification

enclosing t ry block

exception

exception declaration

exception handler

< excep t i on> header fi le

exception l i st

exception object

exception spec ificat ion

exceptional condit ion

exit

fau l t tolerance

function with no exception specification

handle an exception

handler for a base c l ass

handler for a derived c lass

inva l id_argument

l ength_error

logic_error

<memory> header fi l e

mission-cri t ica l app l i cation

nested exception handlers

new_handler

<new> header fi le

nothrow

out_of_range

overflow_error

retnrow an exception

robustness

runt ime_error

set_new_handler

set_terminate

set_unexpected

stack unwinding

< s tdexcept > header fi le

terminate

throw an exception

throw an unexpected exception

throw expression

throw l i st

throw w ithout arguments

throw poin t

t ry block

uncaught exception

underflow_error

unexpected

Chapter 13

SELF-REVIEW EXERCISES

1 3. 1 List five common examples of except ions .

Exception Handling 805

1 3.2 G i ve several reasons why exception-hand l ing techn iques shou ld not be used for convent ional

program contro l .

1 3.3 Why are exceptions appropriate for deal ing with errors produced by l ibrary funct ions?

1 3.4 What is a "resource leak?"

1 3.5 I f no except ions are thrown i n a try block, where does control proceed to after the t ry

b lock completes execut ion?

1 3.6 What happens if an exception i s thrown outside a try block?

1 3. 7 G i v e a k e y advantage a n d a key d i sadvantage o f u s i n g catch (• • •) .

1 3.8 What happens if no catch handler matches the type of a thrown object?

1 3.9 What happens i f several handlers match the type of the thrown object?

1 3. 1 0 Why would a programmer specify a base-c lass type as the type of a catch handler, then

throw objects of derived-class types?

1 3. 1 1 Suppose a catch handler wi th a prec ise match to an except ion object type i s avai lab le . Un

der what c i rcumstances might a d ifferent handler be executed for exception objects of that type?

1 3. 1 2 Must throwing an exception cause program termi nat ion?

1 3. 1 3 What happens when a catch handler throws an except ion?

1 3. 1 4 What does the statement throw ; do?

1 3. 1 5 How does the programmer restrict the except ion types that a funct ion can throw?

1 3. 1 6 What happens if a funct ion throws an exception of a type not a l lowed by the except ion

spec ification for the funct ion?

1 3. 1 7 What happens to the automatic objects that have been constructed i n a t ry block when that

block throws an except ion?

ANSWERS TO SELF-REVIEW EXERCISES

1 3. 1 I n suffic ient memory to satisfy a new request, array subscript out of bounds , ari thmetic over-

flow, d iv i s ion by zero, inva l id funct ion parameters.

1 3.2 (a) Exception hand l i ng i s designed to handle infrequent ly occurri ng s i tuat ions that often re

sult in program termi nat ion, so compi ler wri ters are not requ ired to i mplement except ion hand l i n g to

perform opt ima l ly . (b) Flow of control with conventional contro l structures genera l l y i s c learer and

more effic ient than wi th except ions . (c) Prob lems can occur because the stack i s u n wound when an

exception occurs and resources a l located prior to the exception might not be freed. Cd) The "addi t ion

a l" exceptions make i t more d ifficu l t for the programmer to handle the l arger number of exception

cases.

1 3.3 I t i s u n l ike ly that a l i brary function w i l l perform error process i n g that w i l l meet the un ique

needs of a l l users.

1 3.4 A program that terminates abrupt ly could leave a resource in a state i n which other programs

would not be able to acqu i re the resource .

1 3.5 The except ion handlers (in the catch blocks) for that t ry b lock are sk ipped and the pro

gram resumes execut ion after the l ast catch block .

1 3.6 An exception thrown outs ide a t ry block causes a ca l l to t erminat e .

806 Exception Handl ing Chapter 13

1 3 . 7 The form catch (. . .) catches any type o f exception thrown i n a t ry block. A n advantage

is all possible exception w i l l be caught. A di sadvantage i s that the catch has no parameter, so it can

not reference i nformation i n the thrown object and cannot know the cause of the exception .

1 3.8 Thi s causes the search for a match to conti nue in the next enclos ing t ry block. As th is pro

cess conti n ues , i t m i ght eventual ly be determ ined that there is no handler in the program that matches

the type of the thrown object; i n this case, terminat e is ca l led, which by defau l t ca l l s abort . An

a l ternat ive terminate function can be prov ided as an argument to set_terminat e .

1 3.9 The first matching exception handler after the try block i s executed.

1 3. 1 0 This i s a n ice way to catch re l ated types of except ions .

1 3. 1 1 A handler requir ing standard conversions can appear before one w i th a precise match .

1 3. 1 2 No, but i t does termi n ate the block i n which the exception i s thrown .

1 3. 1 3 The exception w i l l b e processed b y a catch handler (if o n e ex i sts) associated w ith t h e t ry

block (i f one ex i sts) enclos ing the catch handler that caused the exception .

1 3. 1 4 I t rethrows the except ion .

1 3. 1 5 Provide an exception specification l i st ing the exception types that the function can throw.

1 3. 1 6 Function unexpected i s cal led.

1 3. 1 7 Through the process of stack unwinding, destructors are cal led for each of these objects.

EXERCISES

1 3. 1 8 List the various exceptional conditions that have occurred i n programs throughout th i s text .

L ist as many addi t ional exceptional condit ions as you can. For each of these, describe briefl y how a

program typical ly would handle the exception, us ing the exception-handl i ng techniques d iscussed i n

t h i s chapter. S o m e typical exceptions are d iv i sion b y zero, arithmetic overflow, array subscript o u t of

bounds, exhaustion of the free store , etc .

1 3. 1 9 Under what c i rcumstances would the programmer not prov ide a parameter name when defi n

ing the type of the object that wi l l be caught by a handler?

1 3.20 A program conta ins the statement

throw;

Where would you normal ly expect to fi nd such a statement? What if that statement appeared i n a d if

ferent part of the program ?

1 3. 2 1 Under what c i rcumstances would you use the fol lowing statement?

catch (. . .) { throw; }

1 3.22 Compare and contrast exception handl ing with the various other error-processing schemes

d iscussed i n the text .

1 3.23 List the advantages of exception hand l ing over conventional means of error process ing .

1 3. 24 Provide reasons why exceptions should not be used as an a lternative form of program contro l .

1 3.25 Describe a techn ique for handl ing re lated except ions .

1 3. 26 Unti l th is chapter, we have found that deal ing wi th errors detected by constructors can be

awkward. Exception handl i ng gives us a much better means of hand l ing such e rrors . Consider a con

structor for a String c lass . The constructor uses new to obta in space from the free store . S u ppose

Chapter 13 Exception Handl ing 807

new fai l s . Show how you would deal with this wi thout exception hand l i ng . Discuss the key i ssues .

S h o w how y o u w o u l d deal w i t h s u c h memory exhaustion w i t h exception hand l ing . Explain w h y the

exception-handl ing approach i s superior.

1 3.27 Suppose a program throws an exception and the appropriate exception handler begins exe

cut ing. Now suppose that the exception handler i tself throws the same exception . Does this create

infin i te recursion? Write a program to check your observat ion .

1 3.28 Use i n heritance to create a base exception c lass and various derived exception c l asses. Then

show that a catch handler specifying the base class can catch deri ved-class exceptions.

1 3.29 Show a condit ional expression that returns either a doubl e or an int o Provide an int

catch handler and a doubl e catch handler . Show that only the doubl e catch handler exe

cutes, regardless of w hether the int or the doubl e i s returned.

1 3.30 Write a program designed to generate and handle a memory exhaustion error. Your program

should loop on a request to create dynamic storage through operator new.

1 3. 3 1 Write a program i l l u strat ing that all destructors for objects constructed in a block are cal led

before an exception i s thrown from that b lock .

1 3.32 Write a program i l lustrat ing that member object destructors are cal led for on ly those member

objects that were constructed before an except ion occurred .

1 3.33 Write a program that demonstrates h o w a n y exception i s caught wi th c a t c h (. • •) .

1 3.34 Write a program i l lustrat ing that the order of exception handlers is i m portant . The first

matching handler is the one that executes . Attempt to compi le and run your program two different

ways to show that two different handlers execute with two different effects .

1 3.35 Write a program that shows a constructor pass ing i nformation about constructor fai l ure to an

exception handler after a try block.

1 3.36 Write a program that i l l ustrates rethrowing an except ion .

1 3.37 Write a program that i l l u strates that a function with its own t ry block does not have to catch

every possible error generated wi th in the try. Some exceptions can s l ip through to, and be handled

in , outer scopes .

1 3.38 Write a program that throws an exception from a deeply nested function and sti l l has the

catch handler fol lowing the t ry block enc los ing the cal l chain catch the except ion .

14
File Proces sing

Objectives

• To be able to create, read, write and update fi les .

• To become fami l i ar with sequential-access file

processmg.

• To become fami l i ar with random-access file

processing.

• To be able to specify h igh-performance unformatted

110 operation s .

• To u nderstand the differences between formatted-data

and raw-data fi l e processing.

• To bu i l d a transaction-processing program using

random-access fi le processing .

I read part of i t a l l the way through.

Samuel Go\dwyn

I can only assume that a "Do Not File " document is filed in

a "Do Not File " file.

Senator Frank Church

Senate I nte l l i gence S ubcommittee Hearing, 1 975

Chapter 14

Outline

1 4. 1 I ntroduction

1 4.2 The Data Hierarchy

1 4.3 Fi les and Streams

1 4.4 Creating a Sequential-Access File

1 4.5 Reading Data from a Sequential-Access Fi le

1 4.6 Updating Sequential-Access Fi les

1 4.7 Random-Access F iles

1 4.8 Creating a Random-Access Fi le

F i le Processing

1 4.9 Writing Data Randomly to a Random -Access Fi le

1 4. 1 0 Reading Data Sequential ly from a Random -Access Fi le

1 4. 1 1 Example: A Transaction - Processing Program

1 4. 1 2 Input/Output of Objects

809

Summary · Terminology · Se(rReviell' Exercises · Answers fo SellReview Exercises · Exercises

14. 1 Introduction

Storage of data in variables and arrays is temporary . Files are used for data persistence

permanent retent ion of l arge amounts of data. Computers store fi les on secondary storage

devices, such as magnetic disks , optical disks and tapes . In this chapter, we expla in how to

bui ld C++ programs that create, update and process data fi les . We cons ider both sequent ia l

access fi les and random-access fi les . We compare formatted-data fi le process ing and raw

data fi le process ing . We examine techniques for i nput of data from , and output of data to,

strings rather than fi les in Chapter I S .

14.2 The Data Hierarchy

Ult i mately , a l l data items that digital computers process are reduced to combi nations of ze

ros and ones. This occurs because i t i s s imple and economical to bu i ld e lectronic devices

that can assume two stable states-one state represents 0 and the other state represents 1 .

I t i s remarkable that the i mpress ive functions performed b y computers i nvolve only the

most fundamental man ipulat ions of Os and 1s .

The smal lest data i tem that computers support i s cal led a bit (short for "binary digit"

a digi t that can assume one of two values) . Each data i tem, or b i t , can assume ei ther the

value 0 or the value 1. Computer c i rcu itry performs various s imple bit manipulat ions , such

as examin ing the value of a bit, sett ing the value of a bit and revers ing a bit (from 1 to 0 or

from 0 to 1) .

Programming with data i n the low-level fom1 o f bits i s cumbersome. I t i s preferable to

program with data in forms such as decimal digits (i .e . , 0, I , 2, 3, 4, 5, 6, 7, 8 and 9), letters

(i . e . , A through Z and a through z) and special symbols (i .e . , $, @ , %, &, *, (,) , -, +, ", :, ?, /

and many others) . Digits, l etters and special symbols are referred to as characters. The set of

al l characters used to write programs and represent data items on a particular computer is called

that computer' s character set. Because computers can process only 1s and Os , every character

8 1 0 F i le Processing Chapter 1 4

i n a computer' s character set i s represented as a pattern of 1 s and Os . Bytes are composed of

e ight bits . Programmers create programs and data i tems with characters ; computers manipulate

and process these characters as patterns of bits . For example, C++ provides data type char,

which occupies one byte . C++ also provides data type wchar_t , which can occupy more than

one byte (to support larger character sets, such as the Unicode® character set) .

Just as characters are composed of bits , jzelds are composed of characters . A fie ld i s a

group of characters that conveys some mean i ng . For example, a fie ld cons i st ing of upper

case and lowercase letters can represent a person ' s name .

Data items processed by computers form a data hierarchy (Fig . 1 4 . 1) , i n which data

items become l arger and more complex in structure as we progress from bits , to characters,

to fields and to larger data structures .

Typical ly , a record (i .e . , a s t ruct or a c l a s s i n C++) i s composed of several fields

(cal led data members i n C++) . In a payrol l system, for example, a record for a part icu lar

employee might inc lude the fol lowing fie lds :

I . Employee ident ification number

2 . Name

3 . Address

4 . Hourly pay rate

5. N umber of exemptions c lai med

6 . Year-to-date earn i ngs

7 . Amount of taxes withheld

Sally I Black

Tom I Blue

I r i s I Orange I

Randy I Red

Judy I Green Record

i
J u d Y Field

i
0 1 0 0 1 0 1 0 Byte (ASCI I character J)

i
1 Bit

Fig. 1 4. 1 Data hierarchy.

F i le

Chapter 14 F i le Processing 8 1 1

Thus, a record i s a group of rel ated fie lds . I n the preceding example, each fie ld i s asso

c iated with the same employee. A file i s a group of re lated records . I A compan y ' s payro l l

fi l e normal ly contains one record for each employee. Thus, a payro l l fi l e for a smal l com

pany might contain only 22 records, whereas a payro l l fi le for a l arge company m ight con

tain 1 00,000 records . I t i s not unusual for a company to have many fi les , some contai n i ng

m i l l ions , b i l l ions , or even tri l l ions of characters of informat ion .

To fac i l i tate the retrieval of spec ific records from a fi le, at least one fie ld i n each record

i s chosen as a record key. A record key identifies a record as belonging to a part icu lar person

or entity and distingui shes that record from all other records. In the payro l l record described

previously, the employee identification number normal ly would be chosen as the record key .

There are many ways of organiz ing records in a fi le . A common type of organization i s

called a sequential file, i n which records typical ly are stored i n order b y a record-key fie ld . I n

a payrol l fi le , records usual ly are placed i n order by employee identification number. The first

employee record in the fi le contains the lowest employee identification number, and subse

quent records contain i ncreasingly higher employee identification numbers .

Most businesses use many different fi les to store data. For example, a company might

have payro l l fi les , accounts-receivable fi les (l i st ing money due from c l ients) , accounts-pay

able fi les (li s t ing money due to suppl iers) , i nventory fi les (l i st ing facts about all the items

handled by the bus iness) and many other types of fi les . A group of rel ated fi les often are

stored i n a database. A col lection of programs designed to create and manage databases i s

cal led a database management system (DBMS) .

14.3 Fi les and Streams

c++ views each fi l e as a sequence of bytes (Fig . 1 4 .2) . Each fi le ends e i ther wi th an end

of-file marker or at a spec i fic byte number recorded in a system-maintained, admin i strati ve

data structure. When a fi l e is opened, an object is created, and a stream is associated wi th

the obj ect . In Chapter 1 2 , we saw that objects c in, cout , cerr and c l og are created

when < i o s t ream> is i nc luded . The streams associated with these obj ects provide com

munication channe l s between a program and a part icu lar fi l e or device. For example, the

c in object (standard-input stream object) enables a program to i nput data from the key

board or from other devices, the cout object (standard-output stream object) enables a

program to output data to the screen or other devices, and the cerr and c l og obj ects

(s tandard error stream objects) enable a program to output error messages to the screen or

other devices .

0 1 2 3 4 5 6 7 8 9 n - l

'--.....J..._..l.----.J_-'-_-"-----'_--'--_"-----'-_-'-__J...I _..l.I_end-of -fi le marker

Fig. 1 4.2 C++' s view of a f i le of n bytes.

I . Generally, a fi le can conta in arbi trary data i n arbitrary formats . I n some operating systems, a fi l e
i s v iewed as nothing more than a col lection o f bytes. I n such an operating system, a n y organi zation
of the bytes in a fi le (such as organiz ing the data i nto records) i s a v iew created by the appl ication
programmer.

8 12 Fi le Processing Chapter 14

To perform fi le processing i n C++, header fi les < iostream> and < f stream> must

be i nc luded . Header < fstream> includes the defin it ions for the stream-class templates

basic_ifstream (for fi le input), basic_ofstream (for fi le output) and

basic_fstream (for fi le i nput and output) . Each class template has a predefined template

spec ial ization that enables char I/O. In addition, the fstream l ibrary provides a set of

typedefs that provide a l iases for these template specia l izations . For example, the

typedef i fstream represents a special ization of bas ic_i fstream that enables

char i nput from a fi le . S imi larly, typedef ofstream represents a special ization of

basic_ofstream that enables char output to fi les. Also, typedef fstream represents

a special ization of basic_fstream that enables char input from, and output to, fi les .

Fi les are opened by creat ing objects of these stream template specia l i zations . These

templates "derive" from c lass templates basic_i stream, bas ic_ostream and

bas i c_iostream, respect ive ly . Thus, al l member funct ions, operators and manipu la

tors that belong to these templates (which we described i n Chapter 1 2) also can be appl ied

to fi le streams . Figure 1 4 . 3 summarizes the inheritance rel at ionships of the 110 c lasses that

we have d i scussed to this poi nt .

14.4 Creating a Sequential-Access File

C++ imposes no structure on a fi le . Thus, a concept l i ke that of a "record" does not exis t in

a C++ fi l e . Therefore, the programmer must structure fi les to meet the app l icat ion ' s re

qu i rements . In the fol lowing example, we see how the programmer can i mpose a s imple

record structure on a fi le .

Figure 1 4 .4 creates a sequential-access fi le that might be used i n an accounts-receiv

ab le system to he lp manage the money owed by a company ' s credit c l ients . For each c l ient ,

the program obtai ns an account number, the c l ient ' s name and the c l ient ' s balance (i .e . , the

amount the c l ient owes the company for goods and serv ices received in the past) . The data

obtained for each c l ient consti tutes a record for that c l ient . The account number serves as

bas ic f s t ream

Fig. 1 4.3 Port ion of stream I/O template h ierarchy .

Chapter 1 4 Fi le Processing 8 13

the record key i n th is appl icat ion ; that i s , the program creates and maintain s the fi le i n

account-number order. This program assumes the user enters the records i n account

number order. i n a comprehens ive accounts-recei vable system, a sort ing capab i l i ty would

be provided for the user to enter records in any order-the records then would be sorted and

written to the fi l e .

1 I I Fig . 1 4 . 4 : f i g 1 4_0 4 . cpp
2 I I Create a s equent ial f i l e .
3 # inc iude < i os tream>
4
5 us ing std : : c out ;
6 us ing s td : : c i n ;
7 us ing s td : : io s ;
8 us ing std : : c err ;
9 using std : : endl ;

1 0
1 1 # inc lude < f s t ream>
1 2
1 3 u s ing s t d : : o f s t ream;
1 4
1 5 # inc lude < c s tdlib> I I exit prototype
1 6
1 7 int ma in ()
1 8 {
1 9 1 / o f s t ream const ructor opens f i le
20 of s t ream out C l i ent F i l e (" c l ient s . dat " , ios : : out) ;
2 1
22 I I exi t program if unable to create f i l e
23 if (! outC l i ent F i l e) { I I overloaded ! operator
24 cerr « " Fi l e could not be opened " « endl ;
25 exit (1) ;
26
27 I I end i f
28
29 cout « " Enter the account , name , and balance . " « endl
30 « " Enter end - o f - f i l e to end input . \ n ? " ;
3 1
32 int account ;
33 char name [3 0] ;
34 double ba l anc e ;
35
36 I I read account , name and balance f rom c i n , then place in f i le
37 whi l e (c in » account » name » balanc e) {
38 out C l ient F i l e « account « ' , « name « ' , « balance
39 « endl ;
40 cout « " ? " ;
4 1
42 I I end whi l e
43
44 return 0 ; I I of stream de s t ructor c l o s e s f i l e
45
46 I I end main

Fig. 1 4.4 Creating a sequential fi le.(Part 1 of 2.)

8 14 F i le Processing

Enter the account , name , and balance .
Ent er end - o f - f i l e to end input .
? 1 0 0 Jone s 2 4 . 9 8
? 2 0 0 Doe 3 4 5 . 6 7
? 3 0 0 White 0 . 0 0
? 4 0 0 Stone - 4 2 . 1 6
? 5 0 0 Rich 2 2 4 . 6 2
? " Z

Fig. 1 4.4 Creating a sequential f i le. (Part 2 of 2 .)

Chapter 14

Let us examine thi s program. As stated previously, fi les are opened by creat ing

i f s t ream, o f s t ream or f s t ream objects. I n Fig . 1 4 .4, the fi le i s to be opened for

output, so an of s t ream object is created. Two arguments are passed to the object ' s con

structor-the filename and the file-open mode. For an o f s t ream object, the fi le-open

mode can be e i ther i o s : : out to output data to a fi le or i o s : : app to append data to the

end of a fi le (wi thout modify ing any data already i n the fi le) . Ex i st ing fi les opened wi th

mode i o s : : out are truncated-all data i n the fi le i s discarded. If the spec ified fi le does

not yet ex i st, then o f s t ream creates the fi le, using that fi lename.

L ine 20 creates an o f s t ream object named outC l i ent F i l e associated wi th the

fi l e c l i ent s . dat that is opened for output. The arguments " c l i ent s . dat " and

i o s : : out are passed to the o f s t ream constructor, which opens the fi l e . Thi s estab

l i shes a " l ine of communication" with the fi le . By default, of s t ream objects are opened

for output, so l i ne 20 could have executed the statement

o f s t ream outCl i ent F i l e { " c l ient s . dat U) ;

to open c l i ent s . dat for output. Figure 1 4 .5 l i sts the fi le-open modes .

Common Programming Error 14. 1

Use caution when opening a n existingftle for output (ios : : out), especially when you want

to preserve the ftle 's contents, which will be discarded without warning.

Mode Description

ios : : app Append a l l output to the end of the fi le .

ios : : ate Open a file for output and move to the end of the file (normal l y used to append

data to a fi le) . Data can be wri tten anywhere in the fi l e .

ios : : in Open a file for i nput.

ios : : out Open a file for output.

ios : : t runc Discard the fi le ' s contents if they exi st (th i s also is the defau l t action for

ios : : out) .

ios : : binary Open a file for b inary (i . e . , non-text) i nput or output .

Fig. 1 4.5 F i le open modes.

Chapter 14 F i le Processing 8 15

An of s t ream object can be created without opening a spec ifi c fi l e-a fi l e can be

attached to the object l ater. For example, the statement

of s t ream outC l i ent F i l e ;

creates an o f s t ream object named out C l i ent F i l e . The o f s t re am member func

t ion open opens a fi le and attaches it to an ex ist ing of s t ream object as fol lows :

out C l ient F i l e . open (" c l i ent s . dat " , ios : : out) ;

Common Programming Error 1 4. 2

Not opening a file before attempting to reference it in a program will result in an error.

After creat ing an of s t ream object and attempting to open i t , the program tests

whether the open operation was successfu l . The if structure at l i nes 23-27 uses the over

loaded i o s operator member function operator ! to determi ne whether the open oper

ation succeeded. The condit ion returns a t rue val ue if e i ther the f a i l b i t or the

badb i t i s set for the stream on the open operat ion . Some poss ib le errors are attempting

to open a nonexi stent fi le for reading, attempting to open a fi le for read ing wi thout permi s

s ion and opening a fi l e for wri t ing when no disk space i s avai l ab le .

I f the condi t ion i ndicates an unsuccessfu l attempt to open the fi le , l i ne 24 outputs the

error message "Fi l e could not be opened," and l i ne 25 i nvokes funct ion exi t to

terminate the program. The argument to exi t is returned to the env ironment from which

the program was i n voked. Argument 0 i ndicates that the program terminated normal l y ; any

other value i ndicates that the program termi nated due to an error. The cal l i ng env i ronment

(most l i ke ly the operat ing system) uses the value returned by exi t to respond appropri

ate ly to the error.

Another overloaded ios operator member function-operator void*-converts

the stream to a pointer, so it can be tested as 0 (i .e . , the nu l l pointer) or nonzero (i .e . , any

other poin ter value) . I f the fai lbit or badb i t (see Chapter 1 2) has been set for the

stream, 0 (f a l s e) is returned. The condit ion in the whi l e structure of l i nes 37-42

i n vokes the operator vo id* member function on c in imp l ic i t ly . The condit ion

remain s t rue as long as neither the fai lbit nor the badb i t has been set for c in .

Entering the end-of-fi le i ndicator sets the fai lbi t for c i n. The operator vo i d *
function can be used to test an input object for end-of-fi le i nstead of cal l ing the e o f

member funct ion expl ic i t ly on the i nput object.

I f l i ne 20 opened the fi le successfu l ly , the program beg ins process ing data. Lines 29-

30 prompt the user to enter e i ther the various fie lds for each record or the end-of-fi le ind i

cator when data entry i s complete. Figure 1 4 .6 l i sts the keyboard combinat ions for entering

end-of-fi le for various computer systems.

Computer system Keyboard combination

UNIX systems <ctrl-d> (on a l i ne by itse lf)

IBM PC and compatibles <ctrl-z> (someti mes fol lowed by press ing Enter)

Fig. 1 4.6 End-of-f i le key combinotions for various popular computer systems .
(Port 1 of 2 .)

8 16 F i le Processing

Computer system

Macin tosh

VAX (VMS)

Keyboard combination

<clrl-d>

<ctrl-z>

Chapter 14

Fig. 1 4.6 End-of-fi le key combinations for various popular computer systems.
(Part 2 of 2 .)

Li ne 37 extracts each set of data and determi nes whether end-of-fi l e has been entered.

When end-of-fi le or bad data i s entered, operator vo id* returns 0 (normal ly oper
ator vo i d * returns t rue), and the whi l e structure termi nates . The user enters end-of

fi l e to i nform the program to process no addit ional data. The end-of-fi l e i ndicator is set

when the user enters the end-of-fi le key combination . The whi l e structure l oops unt i l the

end-of-fi l e ind icator is set.

Lines 38-39 write a set of data to the fi le " c l i ent s . dat " , us ing the stream- inser

t ion operator « and the outC l i ent F i l e object associated with the fi l e at the beg inn ing

of the program. The data may be retrieved by a program designed to read the fi le (see

Section 1 4 . 5) . Note that, because the fi le created in Fig. 1 4 .4 is a text fi le , any text editor

can parse i ts contents for v iewing .

Once the user enters the end-of-fi le i ndicator, ma i n terminates . Thi s i nvokes the

outC l i ent F i l e object ' s destructor function i mpl ic i t ly , which c loses the c l i

ent s . dat fi l e . The programmer also can c lose the o f s t ream obj ect expl ic i t ly , us ing

member function c l o s e i n the statement

out C l ient F i l e . c lose () ;

Performance Tip 14. 1

c-;;J Closing files explicitly when the program no longer needs 10 reference them can reduce re

• source usage (especially if the program continues execution after closillg the files).

In the sample execution for the program of Fig . 1 4 .4, the user enters i nformation for

fi ve accounts, then s ignals that data entry is complete by entering end-of-fi le ('· z appears

on screens of I B M PC compatib les) . Thi s dialog window does not show how the data

records appear in the fi l e . To verify that the program created the fi le successfu l l y , the next

section shows how to create a program that reads this fi l e and prints i ts contents .

1 4.5 Reading Data from a Sequential -Access File

Fi les store data so that data may be retrieved for process ing when needed. The previous sec

tion demonstrated how to create a fi le for sequential access . In this sect ion, we d i scuss how

to read data sequent ial ly from a fi le .

Figure 1 4 .7 reads records from the " c l i ent s . dat " fi l e that we created us ing the

program of Fig. 1 4 .4 and prints the contents of these records . Creat ing an i f s t ream

object opens a fi le for i nput . The i f s t ream constructor can receive the fi lename and the

fi le-open mode as arguments. L ine 3 1 creates an i f s t ream object cal led i nC l i ent

F i l e and assoc iates i t with the c l i ent s . dat fi le . The arguments i n parentheses are

passed to the i f s t ream constructor function, which opens the fi l e and estab l i shes a " l i ne

of communication" with the fi le .

Chapter 14

1 I I Fig . 1 4 . 7 : f i g 1 4_0 7 . cpp
2 I I Reading and print i ng a sequent i a l f i l e .
3 # inc 1ude < io s t ream>
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4

us ing
us ing
us ing
us ing
us ing
us ing
us ing
us ing
us ing

std : : c out ;
s t d : : c i n ;
s td : : ios ;
std : : c err ;
std : : end1 ;
s td : : l e f t ;
std : : right ;
std : : f ixed ;
s td : : showpo int ;

1 5 # inc 1ude < f s t ream>
1 6
1 7 us ing std : : i f stream;
1 8
1 9 # inc 1ude < i omanip>
20
21 us ing s td : : setw;
22 u s ing s td : : setpre c i s ion ;
23
24 # i nc 1ude < c std1ib> I I exit prototype
25

File Processing

26 void output Line (int , const char * const , doub l e) ;
27
28 int ma in ()
29 {
30 I I i f st ream const ructor opens the f i l e
3 1 i f s t ream inC 1 i ent Fi 1 e (" c 1 i ent s . dat " , i os : : in) ;
32
33 I I exit program if i f stream could not open f i l e
34 if (! inC 1 i ent F i 1 e) {
35 cerr « " F i l e could not be opened " « end1 ;
36 exit (1) ;
37
38 I I end i f
39
40 int account ;
4 1 char name [3 0];
42 double ba l anc e ;
43
44 cout « l e f t « setw (1 0) « " Account " « setw (1 3)
45 « " Name " « " Balance " « end1 « f ixed « showpo int ;
46
47 1 / display each record in f i l e
48 whi l e (inC 1 ient F i 1 e » account » name » bal anc e)
49 output Line (account , name , ba l ance) ;
50
51 return 0 ; 1 / i f s t ream de s t ructor c l o s e s the f i l e
52
53 / 1 end main

Fig. 1 4. 7 Reading and printing a sequential f i le . (Part 1 of 2 .)

8 1 7

8 1 8 F i le Processing

54
55 I I d i sp l ay s ingl e record from f i le
56 voi d outputLine (int account , const char * const name ,
57 doubl e balance)
58

Chapter 1 4

59 c out « l e f t « s etw (10) « account « s etw (13) « name
60 « setw (7) « setprec i s ion (2) « right « ba l ance
6 1 « endl ;
62
63 } I I end func t i on outputLine

Account Name Bal ance
1 0 0 Jone s 2 4 . 9 8
2 0 0 Doe 3 4 5 . 6 7
3 0 0 White 0 . 0 0
4 0 0 Stone - 4 2 . 1 6
5 0 0 Rich 2 2 4 . 6 2

Fig. 1 4. 7 Reading and printing a sequentia l f i le . (Part 2 o f 2 .)

Good Programming Practice 1 4. 1

Open afile for input only (using ios : : in) if the file 's contents should not be modified. This

prevents unintentional modification of the file ' s contents and is an example of the principle

of least privilege.

Objects of c lass i f s t ream are opened for i nput by defaul t . We could have used the

statement

i f s t ream inC l i ent F i l e (" c l i ent s . dat ") ;

to open c l i ent s . dat for i nput . Just as with an of s t re am object, an i f s t re am ob

ject can be created wi thout opening a spec ific fi le , because a fi le can be attached to i t l ater.

The program uses the condit ion ! inC l i ent F i l e to determine whether the fi l e was

opened successfu l ly before attempting to retrieve data from the fi le . L ine 48 reads a set of

data (i . e . , a record) from the fi le . After the precedi ng l i ne is executed the first t i me,

account has the value 1 0 0, name has the value " Jone s " and bal ance has the value

2 4 . 9 8 . Each t ime l i ne 48 executes, i t reads another record from the fi le i nto the variables

account , name and bal anc e . Line 49 di splays the records, using function output
Line (l i nes 56-63), which uses parameterized stream manipu lators to format the data for

d i splay. When the end of fi le has been reached, the impl ic i t cal l to operator vo i d * i n

the whi l e structure returns f a l s e (normal ly operator vo id* returns t rue), the

i f s t ream destructor function closes the fi le and the program termi nates .

To retrieve data sequential ly from a fi le , programs normal ly start reading from the

beg inn ing of the fi l e and read al l the data consecutively unt i l the desired data is found . It

might be necessary to process the fi le sequential ly several t imes (from the beg inn ing of the

fi le) during the execution of a program. Both the i s t ream and the o s t ream provide

member funct ions for reposi t ioning the file-position pointer (the byte number of the next

byte i n the fi l e to be read or written) . These member functions are seekg ("seek get") for

the i s t ream and seekp ("seek put") for the o s t ream. Each i s t ream object has a

"get poin ter," which i ndicates the byte number in the fi le from which the next i nput i s to

Chapter 1 4 Fi le Processing 8 1 9

occur, and each o s t ream object has a "put poi nter," which i ndicates the byte n umber i n

the fi le at which the next output should be p laced. The statement

inC l i entF i l e . s eekg (0) ;

reposit ions the fi le-posit ion pointer to the beginn ing of the fi l e (l ocation 0) attached to in

C l ientFi l e . The argument to seekg normal l y i s a l ong i nteger. A second argument

can be speci fied to i nd icate the seek direction . The seek d irection can be i os : : beg (the

defaul t) for posit ion ing rel at ive to the beg inn ing of a stream, i os : : c u r for position ing

rel at ive to the current posi t ion i n a stream or i os : : end for pos i t ion ing rel at ive to the end

of a stream. The fi le-posit ion pointer i s an i nteger va lue that speci fies the locat ion in the fi le

as a number of bytes from the fi le ' s start ing location (th i s i s occas ional ly referred to as the

offset from the beg inn i ng of the fi l e) . Some examples of position ing the "get" fi le-posi t ion

pointer are

I I po s i t ion t o the nth byt e of f i l eObj ect (a s sume s i os : : beg)
f i l eObj e c t . seekg (n) ;

II po s i t ion n byt e s forward in f i l eObj ect
f i l eObj ect . seekg (n , io s : : cur) ;

I I pos i t i on n byte s back from end of f i leObj ect
f i l eObj e c t . seekg (n , io s : : end) ;

II pos i t i on at end of f i l eObj ec t
f i l eObj e c t . seekg (0 , i os : : end) ;

The same operat ions can be performed us ing o s t ream member funct ion s eekp .

Member funct ions t e l l g and t e l lp are provided to return the current l ocat ions of the

"get" and "put" poin ters, respect ive ly . The fol lowing statement assigns the "get" fi le-posi

t i o n pointer value t o variable locat ion o f type l ong:

locat i on = f i l eObj ect . te l lg () ;

Figure 1 4. 8 enables a credi t manager to display the account i n format ion for those cus

tomers with zero balances (i .e . , customers who do not owe the company any money), c redi t

balances (i .e . , customers to whom the company owes money) , and debi t balances (i .e . , cus

tomers who owe the company money for goods and services received in the past) . The pro

gram d isplays a menu and al lows the credi t manager to enter one of three options to obtain

credit i nformation . Option 1 produces a l i st of accounts with zero balances . Option 2 pro

duces a l i st of accounts with credit balances. Option 3 produces a l i st of accounts w i th debit

balances. Option 4 terminates program execution . Enteri ng an i nval i d option d isp lays the

prompt to enter another choice .

1 II Fig . 1 4 . 8 : fig14 0 8 . cpp
2 I I Credi t - inqu i ry program .
3 # inc lude < io s t ream>
4
5 u s ing s td : : c out ;
6 using s td : : c i n ;
7 us ing s td : : io s ;

Fig. 1 4.8 Credit-inquiry progrom.(Port 1 of 5.)

8 20 Fi le Processing

8 u s ing s td : : cerr ;
9 using std : : endl ;

1 0 us ing s td : : f ixed ;
1 1 using s td : : showpoint ;
1 2 using s td : : l e f t ;
1 3 using s td : : right ;
1 4
1 5 # inc lude < f stream>
1 6
1 7 u sing s td : : i f s t ream;
1 8
1 9 #inc lude < i omanip>
20
2 1 us ing s td : : setw;
22 us ing s td : : setprec i s ion ;
23
24 # include < c stdl ib>
25
26 enum Reque stType { ZERO_BALANCE 1 , CREDIT_BALANCE ,
27 DEBIT_BALANCE , END } ;
28 int getReque st () ;
29 bool shouldDisplay (int , double) ;
30 void outputL ine (int , const char * const , double) ;
3 1
32 int main ()
33 {
34 I I i f s t ream const ructor opens the f i l e

35 i f s t ream inC l ient F i l e (" c l ient s . dat " , ios : : in) ;
36
37 I I exit program if i f stream could not open f i l e
38 if (! inC l i ent F i l e) {
39 cerr « " Fi l e could not be opened " « endl ;
40 exit (1) ;
4 1
42 } I I end i f
43
44 int request ;
45 int account ;
46 char name [3 0];
47 double balance ;
48

Chapter 1 4

49 I I get user ' s reque st (e . g . , zero , credit or debit ba lanc e)
50 reque s t = getRequest () ;
5 1
52 I I proc e s s user ' s reque st
53 whi l e (reque st ! = END) {
54
55 switch (request) {
56
57 case ZERO_BALANCE :
58 cout < < " \ nAccount s with zero bal anc e s : \ n " ;
59 break;
60

Fig. 1 4.8 Credit- inquiry program.(Part 2 of 5.)

Chapter 1 4

6 1 case CREDIT_BALANCE :

F i le Processing

62 cout « " \nAccount s with c redit bal anc e s : \n " ;
63 break;
64
65 case DEBIT_BALANCE :
66 cout « " \ nAccount s with debit ba l ance s : \ n " ;
67 break;
68
69 } I I end swi tch
70
7 1 I I read account , name and balance f rom f i l e

72 inC l i ent F i l e » account » name » bal ance ;

73
74 I I di splay f i l e content s (unt i l eof)
75 whi l e (! inC l i ent F i l e . eo f ()) {
76
77 I I di splay record
78 if (shouldDi splay (reque s t , balance))
79 outputLine (account , name , bal ance) ;
80
8 1 I I read account , name and bal ance f rom f i l e

82 inC l ient F i l e » account » name » balanc e ;

83
84 I I end inner whi l e
85
86 inC l i ent F i l e . c l ear () ; I I reset eof for next input
87 inC l i ent Fi l e . seekg (0) ; I I move t o beginning of f i l e

8 2 1

88 reque s t = getReque st () ; I I get addit ional reque s t f rom user
89
90 I I end out er whi l e
9 1
92 cout « " End of run . " « endl ;

93
94 return 0 ; I I i f s tream de s t ructor c l o s e s the f i l e
95
96 } I I end ma in
97
98 I I obt ain reque s t f rom user
99 int getReque s t ()
1 00 {
1 0 1 int reque s t ;
1 02
1 03 I I di sp l ay reque s t opt i ons
1 04 cout « " \ nEnter request " « endl
1 05 « " 1 - L i s t account s with zero bal anc e s " « endl
1 06 « " 2 - L i s t account s with credit balanc e s " « endl
1 07 « " 3 - L i s t account s with debit balanc e s " « endl
1 08 « " 4 - End of run " « f ixed « showpoint ;
1 09
1 1 0 I I input user reque s t
1 1 1 do {
1 1 2 cout « " \n? " ;
1 1 3 c in » reque s t ;

Fig. 1 4.8 Credit-inquiry progrom.(Port 3 of 5.)

8 22 Fi le Processing

1 1 4
1 1 5 } whi l e (reque s t < ZERO_BALANCE && reque s t > END) ;

1 1 6
1 1 7 return reque s t ;
1 1 8
1 1 9 } I I end func t i on getReque s t
1 20
1 2 1 I I det ermine whether to display given record
1 22 bool shou ldD i sp l ay (int type , doubl e ba l ance
1 23 {
' 24 / / determine whether to di splay credi t balanc e s
1 25 i f (type = = CREDIT_BALANCE && balance < 0)
1 26 return t rue ;

1 27
1 28 I I determine whether to display debit balanc e s
1 29 i f (type = = DEBIT_BALANCE && balance > 0)
1 30 return true ;
1 3 1
1 32 I I determine whether to display zero balance s
1 33 i f (type = = ZERO_BALANCE && balance = = 0)
1 34 return t rue ;
1 35
1 36 return f a l s e ;
1 37
1 38 } / 1 end funct ion shouldDi splay
1 39
1 40 I I d i sp l ay s ingl e record from f i l e
1 4 1 void outputLine (int account , const char * const name ,
1 42 double balance)
1 43

Chapter 1 4

1 44 cout « l e f t « setw (1 0) « account « setw (1 3) « name
1 45 « setw { 7) « setprec i s ion (2) « right « balance
1 46 « endl ;
1 47
1 48 } I I end func t ion outputLine

Ent er reque s t
1 - L i s t account s w i t h zero balance s
2 - L i s t account s with c redi t balance s
3 - L i s t account s w i t h debit bal ance s
4 - End o f run

? 1

Account s with zero balance s :
3 0 0 White 0 . 0 0

Enter reque s t
1 - L i s t account s with zero balance s
2 - L i s t account s w i t h c redi t balance s
3 - L i s t account s with debit balanc e s
4 - End o f run

? 2

Fig. 1 4.8 Credit-inquiry program.CPart 4 of 5.)

continued at top of next pag'

Chapter 1 4

Account s with credit bal ances :
4 0 0 Stone - 4 2 . 1 6

Enter request
1 - List account s with z ero balances
2 - List account s with credit balances
3 - List account s with debit balances
4 - End of run

? 3

Account s with debit
1 0 0 Jones
2 0 0 Doe
500 Rich

Enter reques t

balances :
2 4 . 9 8

3 4 5 . 6 7
2 2 4 . 6 2

1 - List account s with zero balances
2 - List account s with credit balances
3 - List account s with debit balances
4 - End of run

? 4
End of run .

Fig. 1 4.8 Credit- inquiry program.CPart 5 of 5.)

1 4.6 Updating Sequential-Access Files

Fi le Processing 823

continued ji"om prevIOus page

Data that are formatted and written to a sequential-access fi l e as shown i n Section 1 4 .4 can

not be modified wi thout the risk of destroying other data in the fi le . For example, i f the

name ' 'Wh i t e'' needs to be changed to ''worthingt on,'' the o ld name cannot be over

written without corrupting the fi le . The record for Whi t e was written to the fi l e as

3 0 0 White 0 . 0 0

I f th is record were rewritten beginn ing at the same l ocation i n the fi le us ing the l onger

name, the record would be

3 0 0 Worthington 0 . 0 0

The new record contains s ix more characters than the orig inal record . Therefore, the char

acters beyond the second "0" in ''worthingt on'' would overwrite the beginn ing of the

next sequential record in the fi l e . The problem is that, in the formatted i n put/output model

us ing the i n sert ion operator « and the extraction operator » , fie lds-and hence

records-can vary i n s ize . For example, values 7 , 1 4, - 1 1 7 , 2074, and 27383 are a l l ints,

which store the same number of "raw data" bytes i nternal l y . However, these i n tegers be

come different-s ized fie lds when output as formatted text (character sequences) . Therefore,

the formatted i nput/output model usual l y i s not used to update records i n p l ace .

Such updating can be done awkward ly . For example, to make the preceding name

change, the records before 3 00 Whi t e 0 . 00 in a sequential access fi l e could be copied

to a new fi le , the updated record then would be written to the new fi le , and the records after

3 00 White 0 . 00 would be copied to the new fi le . Thi s requ i res process ing every record

8 24 Fi le Processing Chapter 1 4

i n the fi l e to update one record . I f many records are be ing updated i n one pass of the fi le ,

th i s technique can be acceptable .

1 4. 7 Random-Access Fi les

So far, we have seen how to create sequential access fi les and search them to locate i nfor

mation . Sequent ia l -access fi les are inappropriate for instant-access applications, in which

a part icu lar record must be located immediate ly . Common i nstant-access appl icat ions are

a irl i ne-reservat ion systems, banking systems, point-of-sale systems, automated-te l ler ma

chines and other k inds of transaction -processing systems that require rapid access to spe

c i fic data. A bank might have hundreds of thousands (or even m i l l ions) of other customers,

yet, when a customer uses an automated-tel ler machine, the program checks that custom

er' s account in seconds for sufficient funds. This kind of i n stant access i s made possible

w i th random-access files. Ind iv idual records of a random-access fi le can be accessed di

rect ly (and quick ly) without having to search other records .

As we have sa id , C++ does not i mpose structure on a fi l e . So the appl ication that wants

to use random-access fi les must create them. A variety of techn iques can be used to create

random-access fi les . Perhaps the easiest method is to require that all records in a fi le be of

the same fixed length . Us ing fixed- length records makes i t easy for a program to calcu late

(as a funct ion of the record s ize and the record key) the exact locat ion of any record re lat i ve

to the beg inn ing of the fi le . We soon w i l l see how th i s fac i l i tates i mmediate access to spe

c i fi c records, even in l arge fi les .

Figure 1 4.9 i l lustrates C++' s v iew of a random-access fi l e composed of fixed- length

records (each record i s 1 00 bytes long) . A random-access fi le is l i ke a rai l road tra in with

many cars-some empty and some with contents.

Data can be i n serted i nto a random-access fi le wi thout destroy ing other data in the

fi l e . Data stored prev ious ly also can be updated or deleted w i thout rewri t i ng the ent i re

fi l e . I n the fo l lowing sect ions , we expla in how to create a random-access fi l e , enter data,

read the data both sequent ia l ly and randomly , update the data and delete data when no

longer needed .

1 4.8 Creating a Random-Access Fi le

The o s t ream member function wr i t e outputs a fixed number of bytes, beginn ing at a

spec ific locat ion i n memory , to the spec ified stream. When the stream i s associated with a
fi le , function wr i t e writes the data at the location i n the fi le spec ified by the "put" fi le

posit ion pointer. The i s t ream member function read i nputs a fixed number of bytes

from the spec ified stream to an area in memory beginn ing at a spec ified address . I f the

stream i s assoc iated with a fi le , function read i nputs bytes at the location in the fi le spec

ified by the "get" fi l e-posi t ion pointer.

When wri t ing an i n teger nwnber to a fi le, i nstead of us ing the statement

out F i l e « numbe r ;

which cou ld print as few as one d ig i t or as many as 1 1 d ig i t s (1 0 d ig i t s p lus a s ign , each of

which requires a s i ngle byte of storage) for a four-byte in teger, we can use the statement

out F i l e . wr i t e (reinterpret_cast < const char * > (&number) ,
s i zeof (number)) ;

Chapter 1 4 Fi le Processing 825

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

� � � � � � } byte offsets

� � � � � �
1 00 1 00 1 00 1 00 1 00 1 00

bytes bytes bytes bytes bytes bytes

Fig. 1 4.9 C++ view of a random-access f i le .

which always writes four bytes (on a machine w i th four-byte i n tegers) . Funct ion wr i t e

expects data type canst char * a s i t s fi rst argument; hence, we u s e operator

reinterpret_c a s t < canst char * > to convert the address of numbe r to a c an s t

char * pointer. The second argument of wri t e i s an in teger of type s i z e_t spec ify i ng

the number of bytes to be written . As we w i l l see, i s t ream funct ion read then can be

used to read the four bytes back i nto i nteger variable number.

If a program reads unformatted data (written by wri t e) , i t must be compi led and exe

cuted on a system that i s compatible with the program that wrote the data.

Random-access fi le-processing programs rare ly write a s ing le fie ld to a fi le . Normal ly ,

they write one s t ruct or c l a s s object a t a t ime, as we show i n the fol lowing examples .

Consider the fo l lowing problem statement:

Create a credit-processing program capable of storing at most 1 00 fixed-length records for

a company that can have up to 100 customers. Each record should consist of an account

number that acts as the record key, a last name, a first name and a balance. The program

should be able to update an account, insert a new account, delete an account and list all the

account records in a formalfed text file for prill ting.

The next several sect ions i ntroduce the techn iques for creat ing th is credi t-process ing

program. Figure 1 4 . 1 2 i l l ustrates opening a random-access fi le , defin ing the record format

us ing an object of c lass C l i entData (Fig . 1 4 . 1 0-Fig . 1 4 . 1 1) and wri t ing data to the d isk

i n b inary format (F ig . 1 4 . 1 2 l i ne 1 8 specifies b inary mode i a s : : b i nary) . Thi s program

in i t ia l izes all 1 00 records of the fi le " c redi t . dat " with empty objects , us ing funct ion

wri t e o Each empty object contains 0 for the account number, the nul l stri ng (represented

by empty quotat ion marks) for the last and first name and 0 • 0 for the balance. Each record

i s i n i t ial ized wi th the amount of empty space i n which the account data w i l l be stored .

1 I I Fig . 1 4 . 1 0 : c l i entData . h
2 I I C l a s s C l i entData de f init ion used in F i g . 1 4 . 1 2 - F i g . 1 4 . 1 5 .
3 #i fndef CLIENTDATA_H
4 #de fine CLIENTDATA_H
5
6 #inc lude < io s t rearn>
7
8 using std : : string ;
9

Fig. 1 4. 1 0 C l i entData class header fi le . (Part 1 of 2 .)

8 26 F i le Processing Chapter 14

1 0 c l a s s C l i entData
1 1
1 2 publ i c :
1 3
1 4 I I default C l i entData constructor
1 5 C l i entData (int = 0 , string = , s t ring
1 6
1 7 I I acces sor funct ions for accountNumber
1 8 voi d setAccountNumber (int) ;
1 9 int getAccountNumber () const ;
20
2 1 I I acces sor funct ions for lastNarne
22 void setLastNarne (string) ;
23 string getLastNarne () const ;
24
25 I I acces sor func t ions for f i r stNarne
26 void setFirstNarne (string) ;
27 s t ring getFirstNarne () const ;
28
29 I I acces sor funct ions for bal ance
30 void setBalance (double) ;
3 1 double getBalance () const ;
32
33 private :
34 int accountNumber ;
35 char lastNarne [15] ;
36 char f i r stNarne [1 0] ;
37 doubl e balance ;
38
39 } ; I I end c l a s s C l ientData
40
41 #end i f

Fig. 1 4. 1 0 C l i entData class header f i le . (Part 2 of 2 .)

1 I I Fig . 1 4 . 1 1 : C l i ent Data . cpp

.. .. doubl e

2 I I C l a s s Cl ientDat a stores customer ' s credi t informat i on .
3 # inc lude < iostrearn>
4
5 u s ing s td : : s tring ;
6
7 #inc lude < c s tring>
8 # inc lude " c l ientDat a . h "
9

1 0 I I de fau l t C l i entData const ructor
1 1 C l i entData : : C l i entData (int accountNumberValue ,
1 2 s t ring lastNarneValue , string firstNarneValue ,
1 3 doubl e balanceValue)
1 4 {
1 5 setAccountNumber (accountNumberValue) ;
1 6 setLastNarne (lastNarneValue) ;

0 . 0) ;

Fig. 1 4. 1 1 C l i entData class represents a customer's credit information.(Part 1 of 3 .)

Chapter 1 4

1 7 setFirstName (f i r stNameValue) ;
1 8 setBalance (balanceValue) ;
1 9
20 I I end C l i entData constructor
2 1
2 2 I I get account -number value
23 int C l i entData : : getAccountNumber () const
24 {
25 return accountNumber ;
26
27 } I I end funct ion getAccountNumber
28
29 I I set account -number value

File Processing

30 void C l i entData : : setAccountNumber (int accountNumberValue)
3 1 {
32 accountNumber = accountNumberValue ;
33
34 } I I end func t ion setAccountNumber
35
36 I I get l a st -name value
37 string C l i entData : : getLastName () const
38 {

39 return lastName ;
40
4 1 } I I end funct ion getLastName
42
43 I I set l as t - name value
44 void C l i entData : : setLastName (string lastNameString)
45 {
46 I I copy at mos t 1 5 characters f rom string to lastName
47 const char * lastNameValue = lastNameString . data () ;
48 int l ength = strlen (lastNameValue) ;
49 l ength = (length < 15 ? length : 14) ;
50 strncpy (lastName , lastNameValue , l ength) ;
5 1
52 I I append nul l character to lastName
53 lastName [length] = ' \ 0 ' ;
54
55 I I end func t ion setLastName
56
57 I I get f i r st -name value
58 string C l i entData : : getFirstName () const
59 {
60 return f i r s tName ;
6 1
62 I I end funct ion getFirstName
63
64 I I set f irst -name value
65 void C l i entData : : setFirstName (string f i r s tNameString)
66 {
67 I I copy at mos t 1 0 characters f rom st ring to f i r s t Name
68 const char * f irstNameValue = f irstNameString . data () ;
69 int l ength = s t r l en (f irstNameValue) ;

827

Fig. 1 4. 1 1 C l i entData class represents a customer 's credit information . CPart 2 of 3 .)

8 28 File Processing Chapter 1 4

70 l ength = (l ength < 10 ? length : 9) ;
7 1 s t rncpy (f i r stName , firstNameVa1ue , l ength) ;
72
73 I I append new- l ine character to f i r stName
74 f ir stName [l ength] = ' \ 0 ' ;
75
76 } I I end func t i on setFirstName
77
78 I I get balance value
79 double C 1 i entData : : getBa1ance () const
80 {
8 1 return balanc e ;
82
83 I I end func t i on getBa1ance
84
85 I I set balance value
86 void C 1 i entData : : setBa1ance (double ba1anceVa1ue)
87 {
88 bal ance = ba1anceVa1ue ;
89
90 I I end funct ion setBa1ance

Fig. 1 4. 1 1 ClientData class represents a customer's credit information.(Part 3 of 3 .)

I n Fig. 1 4 . 1 2, l i nes 32-34 cause the blankC l i ent to be written to the c redi t . dat

fi le associated with of s t ream object outCredit. Remember that operator s i zeof

returns the s ize i n bytes of the object contained in parentheses (see Chapter 5) . The fi rst argu

ment to function wri te on l i ne 32 must be of type const char *. However, the data type

of &blankC l i ent i s C l i entData *. To convert &bl ankC l i ent to const char * ,

l i ne 3 3 uses the cast operator reinterpret_cast to convert the address o f blank
C l i ent to a const char * , so the cal l to wri t e compi les wi thout issu ing a syntax error.

1 I I Fig . 1 4 . 12 : f i g 1 4_12 . cpp
2 1 / Creat ing a randomly accessed f i le .
3 #include < iost ream>
4
5 using s td : : cerr ;
6 using std : : end1 ;
7 using std : : ios ;
8
9 #include < f stream>

1 0
1 1 using s td : : o f s t ream;
1 2
1 3 #inc1ude <c std1 ib>
14 #include " c 1 ientDat a . h" 1 / C 1 i entData c l a s s de f in i t i on
1 5
1 6 int main ()
1 7 {
1 8 of s tream outCredit (" c redit . dat " , ios : : binary) ;

Fig. 1 4. 1 2 Creating a random-access file sequentiaUy.(Part 1 of 2.)

Chapter 1 4 Fi le Processing

1 9
20 I I exit program if of stream could not open f i l e
2 1 if (! outCredit) {
22 cerr « " Fi l e could not be opened . " « endl ;
23 exit (1) ;

24
25 } I I end i f
26
27 I I create C l i entData with no informat i on
28 C l i entData blankC l i ent ;
29
30 I I output 1 0 0 blank records to f i le
3 1 for (int i = 0 ; i < 1 0 0 ; i + +)
32 outCredi t . write (
33 reinterpret_cast < const char * > (&blankC l i ent) ,
34 s i zeof (C l i entData)) ;
35
36 return 0 ;
37
38 } I I end main

Fig. 1 4. 1 2 Creating a random-access f i le sequentlal ly . (Part 2 of 2 .)

14.9 Writing Data Randomly to a Random -Access Fi le

829

Figure 1 4 . 1 3 writes data to the fi le " c red i t . dat " and uses the combinat ion of o s

t ream funct ions seekp and wr i t e to store data a t exact locat ions i n the fi l e . Funct ion

seekp sets the "put" fi le-posit ion poi nter to a spec ific posit ion in the fi le , then wr i t e out

puts the data. Note that l i ne 20 inc ludes the header fi le c l i entDat a . h defi ned in

Fig . 1 4 . 1 0 , so the program can use C l i entDat a objects .

L ines 62-63 posit ion the "put" fi le-posit ion poi nter for object outCredi t to the byte

locat ion calculated by

(c l i ent . getAccountNumber () - 1) * s i zeof (C l i entData)

Because the account number i s between I and 1 00, I is subtracted from the account number

when calcu lat ing the byte locat ion of the record . Thus , for record I , the fi le-posit ion poi nter

is set to byte 0 of the fi le . Note that l ine 29 uses the o f s t ream object out C redi t to

open the c redi t . dat fi le with fi le-open mode ios : : binary.

1 II Fig . 14 . 1 3 : f i g 1 4_1 3 . cpp
2 I I Wri t ing to a random acces s f i le .
3 # i nc lude < iostream>
4
5 using std : : cerr ;
6 u s ing s td : : endl ;
7 u s ing std : : cout ;
8 us ing std : : c in;
9 us ing s td : : ios ;

1 0

Fig. 1 4. 1 3 Writing to a random-access fi le . (Part 1 of 3 .)

830 Fi le Processing

1 1 # include < iomanip>
1 2
1 3 u sing s td : : setw;
1 4
1 5 # include < f stream>
1 6
1 7 using s td : : o f stream;
1 8
1 9 # inc lude < c stdl ib>

Chapter 1 4

2 0 # include " c l i entData . h " I I C l i entData c l a s s de f init ion
2 1
22 int main ()
23 {
24 int accountNumber ;
25 char lastName [15] ;
26 char firstName [10] ;
27 double balanc e ;
28
29 of s t ream outCredit (" credit . dat " , ios : : binary) ;
30
31 I I exit program if of stream cannot open f i le
32 if (! outCredit) {
33 cerr « " Fi l e could not be opened . " « endl ;
34 exit (1) ;
35
36 I I end i f
3 7
38 cout « " Enter account number "
39 « " (1 to 1 0 0 , 0 to end input) \n? " ;
40
4 1 I I require user to specify account number
42 C l i entData c l ient ;
43 cin » accountNumbe r ;
44 c l i ent . setAccountNumber (accountNumber) ;
45
46 I I user enters information , which i s copied into f i l e
47 whi l e (c l i ent . getAccountNumber () > 0 &&
48 c l ient . getAccountNumber () < = 1 0 0) {
49
50 I I user enters last name , f irst name and balance
5 1 cout « " Enter lastname , firstname , balanc e \ n ? " ;
52 cin » setw (1 5) » lastName ;
53 cin » setw (1 0) » firstName ;
54 cin » balance ;
55
56 I I set record lastName , firstName and balance values
57 c l ient . setLastName (lastName) ;
58 c l ient . setFirstName (firstName) ;
59 c l ient . setBalance (balance) ;
60
61 I I seek pos i t i on in file of user- spec i f ied record
62 outCredit . seekp ((c l i ent . getAccountNumber () - 1) *

63 s i zeof (C l i entData)) ;

Fig. 1 4. 1 3 Writing to a random-access file. (Part 2 of 3.)

Chapter 1 4 F i le Processing

64
65 I I wri t e user- spec i f ied informat ion in f i l e
66 outCredit . write (
67 reinterpret_cast < const char * > (& c l i ent) ,
68 s i z eof (C l i entData)) ;
69
70 I I enable user to spec i fy another account number
7 1 cout « " Enter account number\n? " ;
72 c in » accountNumber ;
73 c l i ent . setAccountNumber (accountNumber) ;
74
75 I I end whi le
76
77 return 0 ;
78
79 I I end main

Enter account number (1 to 1 0 0 , 0 to end input)
? 3 7
Enter lastname , f i r stname , balance
? Barker Doug 0 . 0 0
Enter account number
? 2 9
Enter lastname , f i rstname , balance
? Brown Nancy - 2 4 . 5 4
Enter account number
? 9 6
Enter lastname , f irstname , balance
? Stone Sam 3 4 . 9 8
Enter account number
? 8 8
Enter lastname , f i rs tname , balance
? Smi th Dave 2 5 8 . 3 4
Enter account number
? 33
Enter lastname , f i r s tname , balance
? Dunn Stacey 3 1 4 . 3 3
Enter account number
? 0

Fig. 1 4. 1 3 Writing to 0 random-access f i le . (Part 3 of 3 .)

83 1

14. 10 Reading Data Sequentially from a Random-Access File

r n the previous sect ions , we created a random-access fi le and wrote data to that fi l e . I n th is

section , we develop a program that reads the fi le sequent ia l ly and pri nts on ly those records

that contain data. These programs produce an addit ional benefi t . See i f you can determine

what i t i s ; we wi l l reveal i t a t the end of th is sect ion .

The i s t re am function read i nputs a spec ified number of bytes from the current

pos it ion i n the spec i fied stream i nto an object . For example , l i nes 58-59 from Fig . 1 4 . 1 4

read the number of bytes spec ified by s i zeof (C l ientData) from the fi le associated

with i f s t ream object inCred i t and store the data in the c l i ent record . Note that

832 Fi le Processing Chapter 1 4

function read requires a first argument of type char * . S ince & c l i ent i s of type C l i

entDa t a * , & c l i ent must be cast t o char * us ing the cast operator

re interpret_ca s t . Note that l i ne 25 inc ludes the header fi l e c l i entDat a . h

defi ned i n Fig. 1 4 . 1 0, so the program can use C l i entData objects .

Figure 1 4 . 1 4 reads every record i n the " c redit . dat I I fi l e sequentia l ly , checks each

record to determine whether i t contains data, and disp lays formatted outputs for records

contain ing data. The condition in l ine 5 1 uses the ios member function eof to determine

when the end of fi le i s reached and causes execution of the whi l e structure to termi nate .

Also , if an error occurs when reading from the fi le , the loop terminates, because

inCredi t evaluates to f a l s e . The data input from the fi l e i s output by function out

putL ine (l i nes 68-76), which takes two arguments-an o s t ream object and a c l i

entData structure to b e output. The o s t ream parameter type i s i nterest ing because any

o s t ream object (such as cou t) or any object of a derived c lass of o s t ream (such as an

object of type o f s t ream) can be suppl ied as the argument . This means that the same func

tion can be used, for example, to perform output to the standard-output stream and to a fi l e

stream wi thout writ ing separate functions .

1 I I Fig . 14 . 14 : f ig 1 4_14 . cpp
2 I I Reading a random access f i l e .
3 # include < iostream>
4
5 us ing std : : cout ;
6 using std : : endl ;
7 us ing std : : ios ;
8 us ing s td : : cerr ;
9 us ing s td : : left ;

1 0 us ing std : : right ;
1 1 us ing std : : f ixed ;
1 2 us ing s td : : showpoint ;
1 3
1 4 #inc lude < iomanip>
1 5
1 6 us ing s td : : setprec i s ion ;
1 7 using std : : setw;
1 8
1 9 #inc lude < f stream>
20
2 1 us ing s td : : i f s t ream;
22 using s td : : ostream;
23
24 # inc lude < c stdlib> I I exit protoyype
25 # inc lude " c l ientData . h " I I C l i entData c l a s s de f init ion
26
27 void outputLine (ostream& , const ClientData & } ;
28
29 int main ()
30 {
3 1 i f st ream inCredit (" c redit . dat " , ios : : in } ;
32

Fig. 1 4. 1 4 Reading a random-access fi le sequential ly . (Part 1 of 2 .)

Chapter 1 4 Fi le Processing

33 II exit program if i f stream cannot open f i l e
34 i f (! inCredit) {
35 cerr « " Fi l e could not be opened . " « endl ;
36 exit { 1) ;

37
38 I I end i f
39
40 cout « l e f t « setw { 10) « " Account " « setw { 1 6)
4 1 « " Last Name " « setw { 1 1) « " First Name " « l e f t
42 « setw { 10) « right « " Balance " « endl ;
43
44 C l i entData c l ient ; I I create record
45
46 I I read f irst record from f i l e
4 7 inCredi t . read { reinterpret_cast < char * > (& c l i ent) ,
48 s i zeof { C l i entData)) ;
49
50 I I read a l l records f rom f i l e
5 1 whi l e (inCredit & & ! inCredit . eof {)) {
52
53 I I d i splay record
54 i f (c l ient . getAccountNumber {) ! = 0)
55 outputLine { cout , c l i ent) ;
56
57 I I read next f rom f i l e
58 inCredi t . read { reinterpret_cast < char * > (& c l i ent) ,
59 s i zeof { C l i entData)) ;
60
6 1 } I I end whi le
62
63 return 0 ;
64
65 } I I end main
66
67 I I d i sp l ay s ingle record
68 void outputLine { ostream &output , const C l i entData &record)
69 {
70 output « l e f t « setw { 1 0) « record . getAccountNumber {)
7 1 « setw { 1 6) « record . getLastName () . data ()
72 « setw (11) « record . getFirs tName () . data {)

833

73 « setw (1 0) « setprec i s i on (2) « r i ght « f ixed
74 « showpoint « record . getBalance () « endl ;
75
76 } I I end outputLine

Account Last Name First Name Balance
2 9 Brown Nancy - 2 4 . 5 4
3 3 Dunn Stacey 3 14 . 3 3
3 7 Barker Doug 0 . 0 0
8 8 Smith Dave 2 5 8 . 3 4
9 6 Stone Sam 3 4 . 9 8

Fig. 1 4. 1 4 Reading a random-access fi le sequential ly . (Part 2 of 2 .)

834 File Processing Chapter 1 4

What about that addit ional benefit we promised? I f you examine the output w indow,

you wil l notice that the records are l i sted i n sorted order (by account number) . Thi s is a con

sequence of how we stored these records i n the fi le, us ing d irect-access techniques . Com

pared to the bubble sort we used i n Chapter 4, sorting using d irect-access techniques is

rel at ively fast . The speed is achieved by making the fi le large enough to hold every poss ible

record that might be created. Thi s of course means that the fi le could be occupied sparsely

most of the t ime, result ing i n a waste of storage. Thi s i s another example of the space-t ime

trade-off: By using large amounts of space, we are able to develop a much faster sort ing

algorithm. Fortunately, the continuous reduction i n price of storage units has made thi s less

of an i s sue.

1 4. 1 1 Example: A Transaction- Processing Program

We now present a substantial transaction-process ing program (Fig. 1 4 . 1 5) using a random

access fi le to achieve " instant" access process ing . The program maintains a bank ' s account

information . The program updates exist ing accounts, adds new accounts, deletes accounts

and stores a formatted l i st ing of al l current accounts in a text fi le . We assume that the pro

gram of Fig . 1 4 . 1 2 has been executed to create the fi le c redi t . dat and that the program

of Fig. 1 4 . 1 3 has been executed to i nsert the i n it ial data.

The program has five options (option 5 is for termjnat ing the program) . Option I cal l s

function printRecord t o store a formatted l i st o f a l l the account i nformation i n a text

fi le cal led print . txt that may be printed. Function printRecord (l i nes I 1 5- 1 52)

takes an f s t ream object as an argument to be used to i nput data from the c redi t . dat

fi le . Function printRec ord i nvokes i s t ream member function read (l i nes 1 47- 1 48)

a n d uses the sequential-fi le-access techn iques o f Fig. 1 4 . 1 4 t o i nput data from

c redi t . da t . Function output Line, discussed in Sect ion 1 4 . 1 0, is used to output the

data to fi le print . txt . Note that printRecord uses i s t re am member funct ion

seekg (l ine 1 32) to ensure that the fi le-posit ion pointer i s at the beg inn i ng of the fi le . After

choosing Option 1 , the print . txt fi le contains

Account Las t Name First Name Balance
2 9 Brown Nancy - 2 4 . 5 4
3 3 Dunn Stacey 3 14 . 3 3

3 7 Barker Doug 0 . 0 0
8 8 Smith Dave 2 5 8 . 3 4
9 6 Stone Sam 3 4 . 9 8

Option 2 cal l s updat eRecord (l i nes 1 55- 1 99) to update an account. Thi s function

updates only an exist ing record, so the function first determi nes whether the speci fied

record i s empty. Lines 1 66- 1 67 read data i nto object c l i ent , us ing i s t ream member

function read. Then l i ne 1 70 compares the values returned by getAc c ountNumber of

the c l i ent structure to zero to determi ne whether the record contain s i nformation . I f thi s

value i s zero, l i nes 1 96- 1 97 print a message that states that the record i s empty. I f the record

contain s i nformation , l i ne 1 7 1 d isplays the record, us ing function outputLine, l i ne 1 76

i nputs the transaction amount and l ines 1 79- 1 90 calculate the new balance and rewrite the

record to the fi le . A typical output for Option 2 i s

Chapter 1 4

Enter account t o update (1 - 1 0 0) : 3 7
3 7 Barker Doug

Enter charge (+) or payment (-) : + 8 7 . 9 9
3 7 Barker Doug

Fi le Processing 835

0 . 0 0

8 7 . 9 9

Option 3 cal l s function newRecord (l i nes 202-25 1) to add a new account to the fi le .

I f the user enters an account number for an ex i s t ing account, newRecord di sp lays a mes

sage that the account exi sts (l i nes 248-249) . Th is function adds a new account i n the same

manner as the program of Fig. 1 4 . 1 2 . A typical output for Option 3 i s

Enter new account number (1 - 1 0 0) : 2 2
Ente r lastname , f irstname , balance
? Johnston Sarah 2 4 7 . 4 5

Option 4 cal l s function de l e t eRecord (l ines 254-289) to delete a record from the

fi le . Line 257 prompts the user to enter the account number. Only an ex is t ing record may

be deleted, so, i f the specified account i s empty, l i ne 287 di splays an error message . If the

account ex i sts , l ines 277-279 rei n it ia l ize that account by copy ing an empty record

(blankC l i ent) to the fi le . L i ne 28 1 di splays a message to inform the user that the record

has been deleted. A typical output for Option 4 i s

Enter account to de lete (1 - 1 0 0) : 2 9
Account # 2 9 de l eted .

Note that l i ne 44 opens the c redi t . dat fi le by creat ing an f s t ream object for

reading and writ i ng, us ing modes i o s : : in and ios : : out "or-ed" together.

1 I I Fig . 14 . 1 5 : f ig14 1 5 . cpp
2 I I Thi s program reads a random acce s s f i le sequent i a l ly , updat e s
3 I I data previous ly wri t t en to the f i le , c reate s data to be p l aced
4 I I in the f i le , and de letes data previou s ly in the f i l e .
5 # include < iostream>
6
7 u sing s td : : cout ;
8 us ing s td : : cerr ;
9 us ing s td : : c i n ;

1 0 using std : : endl ;
1 1 us ing std : : ios ;
1 2 u sing s td : : l e f t ;
1 3 us ing s td : : right ;
1 4 using std : : f ixed ;
1 5 using s td : : showpoint ;
1 6

Fig. 1 4. 1 5 Bank-account program.(Part 1 of 7 .)

836 Fi le Processing Chapter 1 4

1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69

include < f s t ream>

us ing s td : : o f s t ream;
us ing s td : : ostream;
using s td : : f st ream;

include < iomanip>

us ing s td : : setw;
using s td : : setprec i s ion ;

#include <c stdlib> I I exi t prototype
inc lude " c l ientDat a . h " I I C l i entData c l a s s de f init ion

int enterChoice () ;
void printRecord (f s t ream&) ;
void updateRecord (f s t ream&) ;
void newRecord (f s t ream&) ;
void de leteRecord (f s t ream&) ;
void outputLine (ostream& , const C l i entData &) ;
int getAccount (const char * const) ;

enum Choices { PRINT = 1 , UPDATE , NEW , DELETE , END } ;

int main ()
{

I I open f i l e for reading and wri t i ng
f s t ream inOUtCredit (" c redit . dat " , ios : : in

I I exit program i f f st ream cannot open f i l e
i f (! inOUtCredit) {

ios : : out) ;

cerr « " Fi l e could not be opened . " « endl ;
exit (1) ;

} / I end i f

int choice ;

I I enable user to spec i fy act i on
whi l e ((choice = enterChoice ()) ! = END) {

switch (choice

I I create t ext f i le from record f i l e
case PRINT :

printRecord (inOUtCredit) ;
break ;

I I update record
case UPDATE :

updateRecord (inOutCredit) i
break ;

Fig. 1 4. 1 5 Bank-account program.(Part 2 of 7 .)

Chapter 1 4

70 I I c reate record
7 1 case NEW :
72 newRecord (inOUtCredit) ;
73 break;
74
75 I I delete exi s t ing record
76 case DELETE :
77 de leteRecord (inOUtCredit) ;
78 break;
79

Fi le Processi ng 837

80 I I d i sp l ay error i f user does not s e lect val id choice
81 de f ault :
82 cerr « " Incorrect choice " « endl ;
83 break;
84
85 } I I end switch
86
87 inOUtCredi t . c lear () ; I I reset end-of - f i l e i ndi cator
88
89 I I end whi l e
90
9 1 return 0 ;
92
93 I I end main
94
95 I I enable user to input menu choice
96 int enterChoi ce ()
97 {
98 I I display ava i lable opt i ons
99 cout « " \nEnter your choice " « endl
1 00 « " 1 - s tore a formatted t ext f i l e of account s " « endl
1 0 1 « " c a l l ed \ " print . txt \ " for print ing " « endl
1 02 « " 2 - update an account " « endl
1 03 « " 3 - add a new account " « endl
1 04 « " 4 - delete an account " « endl
1 05 « " 5 - end program\ n? " ;
1 06
1 07 int menuChoice ;
1 08 c i n » menuChoice ; I I rece ive choice f rom user
1 09
1 1 0 return menuChoice ;
1 1 1
1 1 2 } I I end func t ion enterChoice
1 1 3
1 1 4 I I create formatted t ext f i l e for print ing
1 1 5 void printRecord (f s t ream &readFromF i l e)
1 1 6 {
1 1 7 I I create t ext f i l e
1 1 8 of s t ream out PrintF i l e ("print . txt " , i os : : out) ;
1 1 9
1 20 I I exit program i f of stream cannot create f i l e
1 2 1 i f (l outPrint F i l e) {
1 22 cerr « " F i l e could not be c reated . " « endl ;

Fig. 1 4. 1 5 Bank-account program , (Part 3 of 7 ,)

838 F i le Processing

1 23 exit (1) ;
1 24
1 25 I I end i f
1 26

Chapter 1 4

1 27 outPrint F i l e « left « setw (1 0) « " Account " « setw (1 6
1 28 « " Last Name " « setw (11) « " First Name " « right
1 29 « setw (1 0) « " Balance " « endl ;
1 30
1 3 1 I I set f i le -pos i t ion pointer to beginning of record f i l e
1 32 readFromF i l e . seekg (0) ;
1 33
1 34 I I read first record from record f i le
1 35 C l i entData c l i ent ;
1 36 readFromF i l e . read (reinterpret_cast < char * > (& c l i ent) ,
1 37 s i zeof (C l i entData)) ;
1 38
1 39 I I copy a l l records from record f i l e into text f i l e
1 40 whi le (! readFromFi le . eof ()) {
1 4 1
1 42 I I write s ingl e record to text f i le
1 43 i f (c l ient . getAccountNumber () ! = 0
1 44 outputLine (outPrintFi l e , c l i ent) ;
1 45
1 46 I I read next record from record f i l e
1 47 readFromF i l e . read (reinterpret_cast < char * > (& c l ient) ,
1 48 s i zeof (C l i entData)) ;
1 49
1 50 I I end whi l e
1 5 1
1 52 I I end funct ion printRecord
1 53
1 54 I I updat e balance in record
1 55 void updateRecord (f s t ream &updateFile
1 56 {
1 57 I I obtain number of account to update
1 58 int accountNumber = getAccount (" Enter account to updat e ") ;
1 59
1 60 I I move f i l e -pos i t i on pointer to correct record in f i le
1 6 1 updateFi le . seekg (
1 62 (accountNumber - 1) * s i zeof (C l i entData)) ;
1 63
1 64 I I read f i r s t record f rom f i l e
1 65 C l i entData c l ient ;
1 66 updateFi l e . read (reinterpret_cast < char * > (&c l i ent) ,
1 67 s i zeof (C l i entData)) ;
1 68
1 69 I I update record
1 70 i f (c l i ent . getAccountNumber () ! = 0) {

1 7 1 outputLine (cout , c l i ent) ;
1 72
1 73 I I reque s t user to spec i fy transact ion
1 74 cout « " \nEnter charge (+) or payment (-) : " ;
1 75 doubl e t ransaction ; I I charge or payment

Fig. 1 4. 1 5 Bank-account program . (Part 4 of 7 .)

Chapter 1 4

1 76 cin » transaction;
1 77
1 78 I I update record balance
1 79 double oldBa1ance = c1ient.getBa1ance();

File Processing

1 80 client. setBa1ance (oldBa1ance + transaction);
1 8 1 outputLine(cout, client);
1 82
1 83 I I move file-position pointer to correct record in file
1 84 updateFi1e.seekp(
1 85 (accountNumber - 1) * sizeof(C1ientData));
1 86
1 87 I I write updated record over old record in file
1 88 updateFi1e.write(
1 89 reinterpret_cast< const char * > (&client),
1 90 sizeof(C1ientData));
1 9 1
1 92 } I I end if
1 93
1 94 I I display error if account does not exist
1 95 else
1 96 cerr « "Account #" « accountNumber
1 97 « " has no information." « endl;
1 98
1 99 } I I end function updateRecord
200
20 1 I I create and insert record
202 void newRecord(fstream &insertlnFi1e
203 {
204 I I obtain number of account to create

839

205 int accountNumber = getAccount ("Enter new account number");
206
207 I I move file-position pointer to correct record in file
208 insertlnFi1e.seekg(
209 (accountNumber - 1) * sizeof(ClientData));
2 1 0
2 1 1 I I read record from file
2 1 2 C1ientData client;
2 1 3 insertlnFi1e. read (reinterpret_cast< char * > (&c1ient),
2 1 4 sizeof(C1ientData));
2 1 5
2 1 6 I I create record, if record does not previously exist
2 1 7 if (c1ient.getAccountNumber() == 0) {
2 1 8
219 char 1astName [15] ;
220 char firstName[10] ;
22 1 double balance;
222
223 I I user enters last name, first name and balance
224 cout « "Enter lastname, firstname, ba1ance\n? ";
225 cin » setw(15) » 1astName;
226 cin » setw(10) » firstName;
227 cin » balance;
228

Fig. 1 4. 1 5 Bank-account program,(Part 5 of 7,)

840 File Processing

229 I I use values to populate account values
230 client.setLastName{ lastName);
23 1 client.setFirstName{ firstName);
232 client. setBalance { balance);
233 client.setAccountNumber{ accountNumber);
234

Chapter 1 4

235 I I move file-position pointer to correct record in file
236 insertlnFile.seekp{ (accountNumber - 1) *
237 sizeof{ ClientData));
238
239 I I insert record in file
240 insertlnFile.write{
24 1 reinterpret_cast< const char * > (&client),
242 sizeof{ ClientData));
243
244 } I I end if
245
246 I I display error if account previously exists
247 else
248 cerr < < "Account #" < < accountNumber
249 « " already contains information." « endl;
250
25 1 } I I end function newRecord
252
253 I I delete an existing record
254 void deleteRecord{ fstream &deleteFromFile
255 {
256 I I obtain number of account to delete
257 int accountNumber = getAccount ("Enter account to delete");
258
259 I I move file-position pointer to correct record in file
260 deleteFromFile.seekg{
26 1 (accountNumber - 1) * sizeof{ ClientData));
262
263 I I read record from file
264 ClientData client;
265 deleteFromFile.read{ reinterpret_cast< char * > (&client),
266 sizeof{ ClientData));
267
268 I I delete record, if record exists in file
269 if (client.getAccountNumber{) 1= 0) {
270 ClientData blankClient;
27 1
272 I I move file-position pointer to correct record in file
273 deleteFromFile.seekp{ accountNumber - 1) *
274 sizeof{ ClientData));
275
276 I I replace existing record with blank record
277 deleteFromFile.write{
278 reinterpret_cast< const char * > (&blankClient),
279 sizeof{ ClientData));
280
28 1 cout « "Account # " « accountNUmber « " deleted. \n";

Fig. 1 4. 1 5 Bank-account program. (Part 6 of 7 .)

Chapter 1 4

282
283 } I I end if
284

File Processing

285 I I display error if record does not exist
286 else
287 cerr « "Account i" « accountN'l.unber « " is empty. \n";
288
289 } I I end deleteRecord
290
29 1 I I display single record
292 void outputLine(ostream &output, const ClientData &record)

output « left « setw(1 0) « record.getAccountN'l.unber()
« setw(1 6) « record.getLastName().data()
« setw(1 1) « record.getFirstName().data()

84 1

293 {
294
295
296
297
298
299

« setw(1 0) « setprecision(2) « right « fixed
« showpoint « record.getBalance()

300 } I I end function output Line
30 1
302 I I obtain account-number value from user
303 int getAccount(const char * const prompt
304 {
305 int accountN'l.unber;
306
307 I I obtain account-number value
308 do {
309 cout « prompt « " (1 - 1 0 0) : " ;
3 1 0 cin » accountN'l.unber;
3 1 1

« endl;

3 1 2 while (accountN'l.unber < 1 I I accountN'l.unber > 1 0 0) ;
3 1 3
3 1 4 return accountN'l.unber;
3 1 5
3 1 6 } I I end function getAccount

Fig. 1 4. 1 5 Bank-account program . (Part 7 of 7 .)

1 4. 1 2 Input/Output of Objects

This chapter and Chapter 1 2 introduced C++'s object-oriented style of input/output. How

ever, our examples concentrated on va of traditional data types rather than focusing on ob

jects of user-defined types. In Chapter 8 , we showed how to input and output objects us ing

operator overloading. We accomplished object input by overloading the stream-extraction

operator» for the appropriate istream. We accomplished object output by overloading

the stream-insertion operator « for the appropriate ostream. In both cases, only an ob

ject's data members were input or output, and, in each case, they were in a format meaning

ful only for objects of that particular abstract data type. An object's member functions are

avail able i nternally in the computer and are combined with the data values as these data are

i nput via the overloaded stream-insertion operator.

When object data members are output to a disk fi le , we lose the object's type informa

tion. We store only data bytes , not type information, on a disk. If the program that reads this

842 File Processing Chapter 1 4

data knows the object type to which the data corresponds, the program w i l l read the data

i nto objects of that type.

An interesti ng problem occurs when we store objects of different types in the same fi l e.

How can we dist inguish them (or their col lections of data members) as we read them into

a program? The problem is that objects typically do not have type fields (we studied this

i ssue carefu l ly in Chapter 1 0) .

One approach would be to have each overloaded output operator output a type code

preceding each col lection of data members that represents one object. Then object input

would always begin by reading the type-code field and using a switch statement to

invoke the proper overloaded function. Although this solut ion lacks the elegance of poly

morphic programming, it provides a workable mechanism for retain ing objects in fi les and

retrieving them as needed .

SUMMARY

• Al l data items processed by a computer are reduced to combinations of zeros and ones.

• The smallest data item in a computer can assume only the value 0 or the value 1. Such a data item

is cal led a bit.

• Digits , letters and special symbols are referred to as characters. The set of a l l characters that may

be used to write programs and represent data items on a particular computer is cal led that comput

er's character set. Every character in the computer's character set is represented as a pattern of

eight 1s and Os (cal led a byte).

• A field is a group of characters (or bytes) that conveys meaning.

• A record is a group of related fields.

• At least one field in a record is chosen as a record key to identify a record as belonging to a par

ticular person or entity that is distinct from al l other records in the file.

• A col lection of programs designed to create and manage databases is called a database manage-

ment system (DBMS).

• C++ views each file as a sequential stream of bytes.

• Each file ends in some machine-dependent form of end-of-file marker.

• Streams provide communication channels between files and programs.

• The header files < iostream> and < f stream> must be included in a program to perform a C++

file [/0. Header < f stream> includes the definitions for i f stream, of stream and fstream.

• Files are opened by instantiating objects of i f stream, of stream and f s tream.

• C++ imposes no structure on a file. Thus, notions like "record" do not exist in C++. The program

mer must structure a file to meet the requirements of a particular application.

• Files are opened for output by creating an of stream object. Two arguments are passed to the

object-the filename and the file-open mode. For an of stream object, the file-open mode can

be either ios : : out to output data to a file or ios : : app to append data to the end of a file. Ex

isting files opened with mode ios : : out are truncated. I f the file does not exist, it is created.

• The ios operator member function operator! returns a t rue value if either the f a i lb i t or

the badbit has been set for a stream on the open operation.

• The ios operator member function operator void* converts the stream to a pointer for com

parison with 0 (the null pointer). [f either the fai lbit or the badbit has been set for the

stream, 0 (fal se) is returned.

Chapter 1 4 File Processing 843

o Programs may process no files , one file or several files. Each file has a unique name and is asso

ciated with an appropriate file stream object. All file-processing functions must refer to a file with

the appropriate object.

o A "get pointer" indicates the position in the file from which the next input is to occur, and a "put

pointer" indicates the position in the file at which the next output is to be placed. Both i st ream

and ostream provide member functions for repositioning the file-position pointer. The functions

are seekg ("seek get") for i stream and seekp ("seek put") for ostream.

o Member functions t e l lp and t e l l g return the current locations of the "put" and "get" pointers.

o A convenient way to implement random-access files is by using only fixed-length records. Using

this technique, a program can quickly calculate the exact location of a record relative to the begin

ning of the file.

o Data can be inserted in a random-access file without destroying other data in the file. Data can be

updated or deleted without rewriting the entire file.

o The ostream member function wri te outputs to a specified stream some number of bytes be

ginning at a designated location in memory. When the stream is associated with a file, the data is

written at the location specified by the "put" file-position pointer.

o The i s t ream member function read extracts some number of bytes from the specified stream

to an area in memory beginning with a designated address. The bytes are extracted beginning at

the location specified by the "get" file-position pointer. Function read requires a first argument

of type char * .

o Function wri t e expects a first argument of type const char * , so this argument must be cast

to const char* if it is of some other pointer type. The second argument is an integer that spec

ifies the number of bytes to be written.

o The compile-time, unary operator s i zeof returns the size in bytes of the object contained in pa

rentheses; s i zeof returns an unsigned integer.

o The ios member function eof reports whether the end-of-file indicator has been set for the des

ignated stream. End-of-file is set after an attempted read fails.

TERMINOLOGY

alphabetic field

bas i c_fstream template

bas ic_i f stream template

bas i c_i s t ream template

bas i c_iostream template

bas ic_of stream template

bas ic_ostream template

binary digit

bit

byte

cerr (standard error unbuffered)

character field

character set

cin (standard input)

c l og (standard error buffered)

close a file

close member function

cout (standard output)

database

data hierarchy

database management system (DBMS)

decimal digit

end-of-file

end-of-file marker

field

file

file name

file-position pointer

f stream

< f stream> header file

i f stream

input stream

ios : : app fi Ie open mode

ios : : ate file open mode

ios : : beg seek starting point

ios : : binary file open mode

844 File Processing Chapter 1 4

ios : : cur seek starting point

ios : : end seek starting point

ios : : in fi le-open mode

ios : : out fi le-open mode

i o s : : t runc fi le-open mode

i st ream

persistence

random-access fi le

record

record key

seekg i s t ream member function

seekp ostream member function

sequential access fi le numeric field

of stream

open a fi le

open member function

operator! member function

ostream

output stream

SELF-REVIEW EXERCISES

special symbol

stream

tellg i stream member function

t e l lp ostream member function

truncate an existing fi le

1 4. 1 Fil l in the blanks in each of the fol lowing:

a) Ultimately , all data items processed by a computer are reduced to combinations of

and ____ _

b) The smal lest data item a computer can process is cal led a ____ _

c) A is a group of related records.

d) Digits, letters and special symbols are referred to as ____ _

e) A group of related files is cal led a ____ _

f) Member function of the file streams f s t ream, i f s t ream and of-

stream c loses a file.

g) The i stream member function _____ reads a character from the specified stream.

h) The i s t ream member functions and read a line from the spec

ified stream.

i) Member function _____ of the file streams f s t ream, i f s t ream and of-

stream opens a file.

j) The i s t ream member function _____ is normal ly used when reading data from a

file in random-access applications.

k) Member functions _____ and _____ of i s t ream and ostream set the file-

position pointer to a specific location in an input or output stream, respectively.

1 4.2 State which of the fol lowing are true and which arejalse. Tfjalse, explain why.

a) Member function read cannot be used to read data from the input object c in.

b) The programmer must create the c in, cout , cerr and c l og objects explicitly.

c) A program must cal l function c lose explicitly to c lose a file associated with an i f
st ream, o f stream or fstream object.

d) If the file-position pointer points to a location in a sequential file other than the beginning

of the fi le, the file must be closed and reopened to read from the beginning of the file.

e) The ostream member function write can write to standard-output stream couto

f) Data in sequential-access files always is updated without overwriting nearby data.

g) Searching a l l records in a random-access file to find a specific record is unnecessary.

h) Records in random-access files must be of uniform length.

i) Member functions seekp and seekg must seek relative to the beginning of a file.

Chapter 1 4 File Processing

1 4.3 Assume that each of the fol lowing statements applies to the same program.

845

a) Write a statement that opens file " oldmast . dat " for input; use i f stream object

inOldMaster.

b) Write a statement that opens file " trans . dat " for input; use i f s t ream object in

Transact i on.

c) Write a statement that opens file " newmast . dat " for output (and creation); use of

stream object outNewMaster.

d) Write a statement that reads a record from the file " ol dmast . dat " . The record con

sists of integer accountNUmber, string name and floating-point currentBa l

ance; use i f stream object inOldMaster.

e) Write a statement that reads a record from the file " trans . dat " . The record consists

of integer accountNUm and floating-point dol larAmount; use i f st ream object

inTransact ion.

f) Write a statement that writes a record to the file " newmast . dat " . The record consists

of integer accountNwn, string name, and floating-point currentBalance; use

of stream object outNewMaster.

1 4.4 Find the error(s) and show how to correct it (them) in each of the fol lowing.

a) File " payables . dat " referred to by of stream object outPayabl e has not been

opened.

outPayable « account « company « amount « endl ;

b) The fol lowing statement should read a record from the file " payable s . dat " . The

i f stream object inPayable refers to this file, and i s t ream object inRece iv

able refers to the file " receivables . dat " .

inRece ivable » account » company » amount ;

c) The file " tool s . dat " should be opened to add data to the file without discarding the

current data.

of stream outTool s(" tools.dat " , i os : : out) ;

ANSWERS TO SELF-REVIEW EXERCISES

1 4. 1 a) Is, Os. b) bit. c) fi le. d) characters. e) database. f) c lose. g) get . h) get , get-

l ine. i) open. j) read. k) seekg, seekp.

1 4.2 a) False. Function read can read from any input stream object derived from i st ream.

b) False. These four streams are created automatical l y for the programmer. The < io

s tream> header file must be included in a file t o use them. This header includes decla

rations for each stream object.

c) False. The files wil l be closed when destructors for i f stream, o f s t ream or

f stream objects execute when the stream objects lose scope or before program execu

tion terminates, but it is a good programming practice to close a l l files explicit ly with

close once they are no longer needed.

d) False. Member function seekp or seekg can be used to reposition the put or get file

position pointer to the beginning of the file.

e) True.

f) False. In most cases, sequential file records are not of uniform length. Therefore, it is pos

sible that updating a record will cause other data to be overwritten.
g) True.

846 File Processing Chapter 1 4

h) False. Records in a random-access file normally are of uniform length.

i) False. It is possible to seek from the beginning of the file, from the end of the file and

from the current position in the file.

1 4.3 a) i f stream inOldMaster (" oldmast . dat " , ios : : in) ;

b) i f stream inTransact ion (" trans . dat " , ios : : in) ;

c) of stream outNewMaster (" newmast . dat " , ios : : out) ;

d) inOldMaster » accountNum » name » currentBalance ;

e) inTransact i on » accountNum » dol larAmount ;

D outNewMaster « accountNum « name « currentBal anc e ;

1 4.4 a) Error: The file " payables . dat " has not been opened before the attempt is made to

output data to the stream.

Correction: Use ostream function open to open " payables . dat " for output.

b) Error: The incorrect i stream object is being used to read a record from file " pay

abl e s . dat " .

Correction: Use i s t ream object inPayable to refer to " payab l e s . dat " .

c) Error: The contents of the file are discarded because the file is opened for output

(ios : : out).

Correction: To add data to the file, open the file either for updating (ios : : ate) or for

appending (ios : : app).

EXERCISES

1 4.5 Fill in the blanks in each of the following:

a) Computers store large amounts of data on secondary storage devices as ____ _

b) A is composed of several fields.

c) A field that may contain only digits, letters and blanks is called an field.

d) To facilitate the retrieval of specific records from a file, one field in each record is chosen

as a ____ _

e) The vast majority of information stored in computer systems is stored 111

_____ files.

D A group of related characters that conveys meaning is called a ____ _

g) The standard stream objects declared by header file < iostream> are ____ _

____ ____ and

h) ostream member function _____ outputs a character to the specified stream.

i) ostream member function is generally used to write data to a randomly ac-

cessed file.

j) i stream member function _____ repositions the file-position pointer in a file.

1 4.6 State which of the following are true and which are false. If false, explain why.

a) The impressive functions performed by computers essentially involve the manipulation

of zeros and ones.

b) People prefer to manipulate bits instead of characters and fields because bits are more

compact.

c) People specify programs and data items as characters; computers then manipulate and

process these characters as groups of zeros and ones.

d) A person's 5-digit zip code is an example of a numeric field.

e) A person's street address is generally considered to be an alphabetic field in computer ap

plications.

D Data items represented in computers form a data hierarchy in which data items become

larger and more complex as we progress from fields to characters to bits, etc.

g) A record key identifies a record as belonging to a particular field.

Chapter 1 4 File Processing 847

h) Most organizations store all information in a single file to facilitate computer processing.

i) Each statement that processes a file in a C++ program refers to that file explicitly by name.

j) When a program creates a file, the file is retained automatically b y the computer for fu

ture reference.

1 4.7 Exercise 14.3 asked the reader to write a series of single statements. Actually, these state

ments form the core of an important type of file processing program, namely, a file-matching pro

gram. In commercial data processing, it is common to have several files in each application system.

In an accounts-receivable system, for example, there is generally a master file containing detailed in

formation about each customer, such as the customer's name, address, telephone number, outstanding

balance, credit limit, discount terms, contract arrangements and, possibly, a condensed history of re

cent purchases and cash payments.

As transactions occur (e.g., sales are made and cash payments arrive) , they are entered into a file.

At the end of each business period (a month for some companies , a week for others and a day in some

cases) , the file of transactions (called 11 trans . dat 11 in Exercise 14.3) is applied to the master file

(called " o1dmast . dat " in Exercise 14.3), thus updating each account's record of purchases and

payments. During an updating run, the master file is rewritten as a new file (llnewmast . dat "),

which is then used at the end of the next business period to begin the updating process again.

File-matching programs must deal with certain problems that do not exist in single-file pro

grams. For example, a match does not always occur. A customer on the master file might not have

made any purchases or cash payments in the current business period, and therefore no record for this

customer will appear on the transaction file. Similarly, a customer who did make some purchases or

cash payments may have just moved to this community, and the company may not have had a chance

to create a master record for this customer.

Use the statements from Exercise 14.3 as a basis for writing a complete file-matching accounts

receivable program. Use the account number on each file as the record key for matching purposes.

Assume that each file is a sequential file with records stored in increasing order by account number.

When a match occurs (i.e., records with the same account number appear on both the master

and transaction files) , add the dollar amount on the transaction file to the current balance on the mas

ter file, and write the " newmast . dat 11 record. (Assume purchases are indicated by positive

amounts on the transaction file and payments are indicated by negative amounts.) When there is a

master record for a particular account but no corresponding transaction record, merely write the

master record to " newmast . dat ". When there is a transaction record but no corresponding mas

ter record, print the message " urunat ched transac t i on record for account number

... " (fill in the account number from the transaction record).

1 4.8 After writing the program of Exercise 14.7, write a simple program to create some test data

for checking out the program. Use the following sample account data:

Masterftle

Account number Name Balance

100 Alan Jones 348. 17

300 Mary Smith 27. 19

500 Sam Sharp 0.00

700 Suzy Green - 14.22

848 File Processing Chapter 1 4

Transaction file

Account number Transaction amount

100

300

400

900

27.14

62.l l

lOO.56

82.l 7

1 4.9 Run the program of Exercise 14.7, using the files of test data created in Exercise 14.8. Print

the new master file. Check that the accounts have been updated correctly.

1 4. 1 0 It is possible (actually common) to have several transaction records with the same record key.

This occurs because a particular customer might make several purchases and cash payments during a

business period. Rewrite your accounts-receivable file-matching program of Exercise l4.7 to provide

for the possibility of handling several transaction records with the same record key. Modify the test

data of Exercise 14.8 to include the following additional transaction records:

Account number Dollar amount

300

700

700

83.89

80.78

1.53

1 4. 1 1 Write a series of statements that accomplish each of the following. Assume that we have de

fined class Person that contains private data members

char lastName [15] ;
char firstName [15];
char age [4] ;

and public member functions

I I acces sor funct i ons for lastName
void setLastName (string) ;
s tring getLastName () const ;

I I accessor func t i ons for f irstName
void setFirstName (string) ;
string getFirstName () const ;

I I acces sor functions for age
void setAge (string) ;
string getAge () const ;

Also assume that any random-access files have been opened properly.

a) Initialize the file " nameage. dat " with I 00 records that store values lastName =
" una s s i gned " , f irstName = " " and age = "0 ".

b) Input 10 last names, first names and ages, and write them to the file.

c) Update a record that already contains information. If the record does not contain infor

mation, inform the user " No info " .

d) Delete a record that contains information by reinitializing that particular record.

Chapter 1 4 File Processing 849

1 4. 1 2 You are the owner of a hardware store and need to keep an inventory that can tell you what

different tools you have, how many of each you have on hand and the cost of each one. Write a pro

gram that initializes the random-access file " hardware . dat " to one hundred empty records, lets

you input the data concerning each tool, enables you to list all your tools, lets you delete a record for

a tool that you no longer have and lets you update any information in the file. The tool identification

number should be the record number. Use the following information to start your file:

Record # Tool name Quantity Cost

3 Electric sander 7 57.98

17 Hammer 76 11.99

24 Jig saw 21 11.00

39 Lawn mower 3 79.50

56 Power saw 18 99.99

68 Screwdriver 106 6.99

77 Sledge hammer I I 21.50

83 Wrench 34 7.50

1 4. 1 3 Modify the telephone number word-generating program you wrote in Chapter 4 so that it

writes its output to a file. This allows you to read the file at your convenience. If you have a comput

erized dictionary available, modify your program to look up the thousands of seven-letter words in

the dictionary. Some of the interesting seven-letter combinations created by this program might con

sist of two or more words. For example, the phone number 8432677 produces "THEBOSS." Modify

your program to use the computerized dictionary to check each possible seven-letter word to deter

mine whether it is a valid one-letter word followed by a valid six-letter word, a valid two-letter word

followed by a valid five-letter word and so on.

1 4. 1 4 Write a program that uses the s i zeof operator to determine the sizes in bytes of the various

data types on your computer system. Write the results to the file " datasi z e . dat " , so that you

may print the results later. The format for the results in the file should be

Data type Size Data type Size

char 1 long int 4

unsigned char 1 unsigned long int 4

short int 2 f loat 4
unsigned short int 2 double 8

int 4 long doubl e 1 6

uns igned int 4

[Note: The sizes of the built-in data types on your computer might differ from those listed above.]

15
Class string and

String Stream Processing

Objectives

• To use class string from the C++ standard library

to treat strings as full-fledged objects.

• To assign, concatenate, compare, search and swap

strings.
• To determine string characteristics.

• To find, replace and insert characters in a string.
• To convert strings to C-style strings.

• To use string iterators.

• To perform input from and output to strings in

memory.

The difference between the almost-right word and the right

word is really a large matter- it's the difference between the

lightning bug and the lightning.

Mark Twain

f have made this letter longer than usual, because flack the

time to make it short.

B laise Pascal

Mum's the word.

Miguel de Cervantes

Suit the action to the word, the word to the action; with this

special observance, that you o'erstep not the modesty of

nature.

Will iam Shakespeare

Chapter 1 5 Class string and String Stream Processing 85 1

Oufline

15.1 Introduction

15.2 string Assignment and Concatenation

15.3 Comparing strings

15.4 Substrings

15.5 Swapping strings

15.6 string Characteristics

15.7 Finding Strings and Characters in a string

15.8 Replacing Characters In a string

15.9 Inserting Characters Into a string

15.10 Conversion to C-Style char * Strings

15.11 Iterators

15.12 String Stream Processing

Summary • Terminology· Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1 5. 1 Introduction

The C++ template c lass bas i c_ s tring provides typical string-manipulation operations

such as copying, searchi ng, etc. The template defin ition and al l support fac i l i t ies are de

fined in name space s t d; these include the typede f statement

typede f basic_string< char > string ;

that creates the a l ias type string for ba si c_ s t ring< char >. A typede f also i s

provided for the wchar_t type . Type wchar_t I stores characters (e .g., two-byte charac

ters, four-byte characters, etc.) for supporting other character sets. We use s tring exclu

sively throughout this chapter. To use strings, include header f i le < s t ring > .

A string object can b e in i tial ized with a constructor argument such as

string text(" He l l o ") ; I I creates string from const char *

which creates a string containing the characters in "Hel l o " except, perhaps, the ter

mi nating I \ 0 I, or with two constructor arguments as in

string name(8, ' x ') ; I I string of 8 ' x ' characters

which creates a string contain ing eight I x I characters. Class string also provides a

default constructor and a copy constructor.

I. Type wchar_t commonly is used to represent Unicode®, which does have 16-bit characters, but
the size of wchar_t is not fixed by the standard. The Unicode Standard outlines a specification
to produce consistent encoding of the world's characters and symbols. To learn more about the
Unicode Standard, visit www . unicode . org.

852 Class string and String Stream Processing Chapter 1 5

A string also can be i nitial ized via the alternate construction syntax i n the defin i tion

of a string as in

string month = " March " ; II same as : string month(" March ") ;

Remember that operator = i n the preceding declaration i s not an assignment; rather i t i s an

implicit cal l to the string class constructor, which does the conversion.

Note that c lass string provides no conversions from int or char to string in a

s tring defin it ion. For example, the defin itions

st ring error l = ' c ' ;
string error2(' u ') ;
string error3 = 2 2 ;
string error4 (8) ;

resul t i n syntax errors. Note that assigning a single character to a string object is permit

ted in an assignment statement as in

stringl = ' n ' ; IJ Common Programming Error 1 5. 1

Attempting to convert an int or char to a string via an assignment in a declaration or

VLG a constructor argument IS a syntax error.

Unl ike C-style char * strings, strings are not necessari ly nu l l terminated.2 The

l ength of a string i s a data member of the string object and can be retrieved with

member function l engt h.
3 The subscript operator, [], can be used with st rings to

access individual characters. Like C-style strings, strings have a first subscript of 0 and

a last subscript of l en gt h-l.

Most string member functions take as arguments a start ing subscript location and

the number of characters on which to operate.

The stream extraction operator (») is overloaded to support strings. The statement

s t ring stringObj ect ;
c in » stringObj ect ;

reads a string from the standard input device. I nput is del imited by whitespace charac

ters. When a del imi ter i s encountered, the input operation i s terminated. Function get

l ine also is overloaded for strings. The statement

string stringl ;
get l ine(c in, st ringl) ;

reads a string from the keyboard into stringl. Input is deLimited by a newl ine (' \n ') .

1 5 .2 string Assignment and Concatenation

Figure 1 5 . 1 demonstrates string assignment and concatenation. Line 8 includes header

string for c lass string. The strings stringl, string2 and string3 are cre-

2. The C++ standard provides only a description of the interface for class string-implementation
is platform dependent.

3. Class string also provides member function size, which returns the same value as length.

Chapter 1 5 Class string and String Stream Processing 853

ated in l ines 1 4- 1 7 . Line 1 8 assigns stringl to string2 . After the assignment takes

place, string2 is a copy of stringl . Line 1 9 uses member function assi gn to copy

stringl into string 3 . A separate copy is made (i .e . , st ringl and s tring3 are in

dependent objects) . Class string also provides an overloaded version of member func

tion ass ign that copies a specified number of characters as i n

mySt ring . as s ign(stringObj ect, start, numberOfCharac ters) ;

where stringObj ect i s the st ring to be copied, start i s the start ing subscript and

numberOfCharacters i s the number of characters to copy .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3

1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40

I I Fig . 1 5 . 1 : f iglS_0 l . cpp
I I Demonstrating string assignment and concatenat ion .
#inc lude < iostream>

using std : : cout ;
us ing std : : endl ;

#inc lude < st ring>

using std : : st ring ;

int main ()
{

string stringl(" cat ") ;
string s t ring2 ;
string string3 ;

string2 = stringl ; I I ass ign stringl to s t ring2
string3 . as s ign(stringl) ; I I ass ign stringl t o string3
cout « " stringl : " « stringl « " \nstring2 : " « s t ring2

« " \nstring3 : " « string3 « " \n \ n " ;

I I modi fy string2 and string3
string2 [°] = string3 [2] ' r ' ;

cout « "After mod i f i cation of string2 and s tring3 : \n "
« " stringl : " « st ringl « " \nstring2 : " « s t ring2
« " \nstring3 : " ;

I I demonstrat ing member funct ion at
for (int i = 0 ; i < string3 . length() ; i++

cout « string3 . at(i) ;

I I dec l are string4 and stringS
string st ring4(stringl + " apult ") ;
string stringS ;

I I over loaded + =
string3 + = "pet " ;
stringl . append (" acomb ") ;

I I create " carpet "
I I create " catacomb "

Fig. 1 5. 1 Demonstrat ing string assignment and concatenation . (Part 1 of 2.)

854 Class string and String Stream Processing Chapter 1 5

4 1
42 I I append subscript locat ions 4 through end of st ringl to
43 I I create string " comb " (stringS was ini t i a l ly empty)
44 stringS . append (string l, 4, st ringl . length (} } ;
45
46 cout « " \n\nAfter concatenat ion:\nstring l : " « stringl
47 « " \nstring2 : " « string2 « " \nstring3 : "
48 « string3 « " \nstring4 : " « string4
49 « " \nstringS : " « stringS « endl ;
50
5 1 return 0 ;
52
53 } I I end main

string1: cat

string2: cat

string3: cat

After modi f icat ion o f string2 and string3:

string1: cat

string2: rat

string3: car

After concatenat ion:

string1: catacomb

string2: rat

string3: carpet

string4: catapult

stringS: comb

Fig. 1 5. 1 Demonstrating string assignment and concatenation . (Part 2 of 2 .)

Line 24 uses the subscript operator to assign I r I to string3 [2] (forming "car")
and to assign I r I to string2 [0] (forming "rat ") . The strings are then output.

Lines 3 1 -32 output the contents of string3 one character at a t ime using member

function a t. Member function at provides checked access (or range checking), i.e., going

past the end of the string throws an out_of_range exception. (See Chapter 1 3 for a

detailed discussion of exception handl ing .) Note that the subscript operator, [], does not

provide checked access. Thi s is consistent with its use on arrays.

Common Prog ramming Error 15.2

Accessing a string subscript outside the bounds of the string using function at throws

an out_of_range exception.

Common Programming Error 15.3

Accessing an element beyond the size of the string using the subscript operator is a logic error.

String string4 is declared (line 35) and init ial ized to the result of concatenating

string! and "apul t" using the overloaded addition operator, +, which for class

string denotes concatenation. Line 39 uses the addition assignment operator, +=, to con-

Chapter 1 5 Class string and String Stream Processing 855

catenate string3 and " pet " . Line 40 uses member function append to concatenate

stringl and " acomb " .

Line 44 appends the string " comb " to empty string stringS. An empty string

is a string that does not contain any characters .

This member function i s passed the string (stringl) to retrieve characters from,

the starting subscript i n the string (4) and the number of characters to append (the value

returned by stringl . length ()).

1 5 .3 Comparing strings

Class string provides member functions for comparing strings. Figure 1 5 . 2 demon

strates class string's comparison capabil i t ies .

The program declares four strings with l ines 1 4- 1 7 and outputs each string

(l ines 1 9-2 1). The condition i n l ine 24 tests stringl against string4 for equality using

the overloaded equal i ty operator. If the condition i s true, " stringl == string4 " i s

output. If the condition i s false, the condition in l i ne 27 i s tested. Al l the string class

overloaded operator functions demonstrated here as wel l as those not demonstrated here

(! =, <, >= and < =) return bool values.

L ine 34 uses string member function compare to compare stringl to

string2 . Variable result is assigned 0 if the strings are equivalent, a positive

number i f stringl is lexicographically greater than string2 or a negative number if

stringl i s lexicographically less than string2 . Because a string start ing with I T I
is considered lexicographically greater than a string start ing with I H', so resul t i s

assigned a value greater than 0 , a s i s confirmed b y the output .

1 I I Fig. 1 5.2: f i g 1 5 0 2 . cpp
2 I I Demons t rat ing string compari son capabi l i t i e s .
3 #inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing s td : : endl ;
7
8 #inc lude < string>
9

1 0 using std: : st ring ;
1 1
1 2 int main ()
1 3 {
1 4 string string1 (" Test ing the compari son func t i ons_") ;
1 5 st ring string2 (" He l l o ") ;
1 6 st ring string3 (" st inger ") ;
1 7 st ring string4 (string2) ;
1 8
1 9 cout « " string1 : " « string1 « " \nstring2 : " « s t ring2
20 « " \nstring3: " « string3 « " \nstring4 : " « string4
2 1 « " \n\n " ;
22

Fig. 1 5.2 Compar ing strings. (Part 1 of 3.)

856

23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73

Fig. 1 5.2

Class string and String Stream Processing Chapter 1 5

II comparing stringl and string4
if (s tringl == string4)

cout « " st ringl == string4 \ n " ;
e l s e { II stringl ! = string4

i f (stringl > string4)
cout « " stringl > string4 \ n " ;

e l s e II stringl < string4
cout « " stringl < string4 \ n " ;

II comparing s tringl and string2
int result = stringl . campare (string2) ;

i f (re sult == 0)
cout « " st ringl . compare (string2)

e l s e II re su l t ! = 0
i f (result > 0)

cout « " stringl . compare (string2
else II result < 0

cout « " stringl . compare (string2

O \ n " ;

> O \ n " ;

< O\n " ;

II comparing stringl (element s 2-5) and string3 (e l ement s 0-5)
result = stringl . campare (2 , 5 , string3 , 0, 5) ;

i f (result == 0)
cout « " st ringl . compare (2 , 5 , string3 , 0, 5)

e l se II result ! = 0
i f (result > 0)

cout « " stringl . compare (2 , 5, string3 , 0, 5
e l s e II result < 0

cout « " st ringl . compare (2 , 5, string3 , 0, 5

II comparing string2 and string4

O \ n " ;

> O \ n " ;

< O \ n " ;

result = string4 . compare (0 , string2 . length () , string2) ;

i f (result == 0)
cout « " string4 . compare (0, string2 . length () , "

« " string2) == 0 " « endl ;
e l s e II result ! = 0

i f (result > 0)
cout « " string4 . compare (0 , s t ring2 . l ength () , "

« " string2) > 0 " « endl ;
e l s e II resu l t < 0

cout « " string4 . compare (0, string2 . length () , "
« " st ring2) < 0 " « endl ;

II comparing string2 and string4
result = string2 . campare (0 , 3 , string4) ;

i f (result == 0)
cout « " st ring2 . compare (0 , 3 , string4) 0 " « endl ;

Comparing strings. (Part 2 of 3.)

Chapter 1 5 Class string and String Stream Processing

74 e l s e / I resu l t ! = 0
75 if (result > 0)
76 cout « " string2 . compare (0 , 3 ,
77 e l s e I I resu l t < 0
78 cout « " string2 . compare (0 , 3,
79
80 return 0 ;
8 1
82 / I end main

stringl : Test ing the comparison funct i ons .
string2 : Hel l o
string3 : st inger
string4 : He l l o

stringl > string4
stringl . compare (string2) > 0

string4

string4

stringl . compare (2 , 5, string3 , 0 , 5) = = 0
string4 . compare { 0 , string2 . length () , string2) •• 0
string2 . compare (0 , 3 , string4) < 0

Fig. 1 5 .2 Compar ing strings. (Part 3 of 3.)

> 0 " «

< 0 " «

857

endl ;

endl ;

Line 45 uses an overloaded version of member function compare to compare por

tions of stringl and string3 . The first two arguments (2 and 5) specify the starting

subscript and length of the portion of st ringl (st ing) to compare wi th string3 . The

third argument i s the comparison string. The l ast two arguments (0 and 5) are the

starting subscript and length of the portion of the compari son string being compared

(also st ing) . The value assigned to re sult i s 0 for equality, a positive number if

stringl is lexicographical ly greater than string3 or a negative number if stringl

i s lexicographical ly less than string3 . Because the two pieces of s trings being com

pared here are identical, so result is assigned O .
Line 5 6 uses another overloaded version of function compare t o compare string4

and string2 . The first argument specifies the beginning subscript of string4 used in

the comparison. The second argument specifies the length of the portion of string4 used

in the comparison. Member function length returns the number of characters i n the spec

ified string. The last argument i s the comparison string. The value assigned to

result i s 0 for equality, a positive number if string4 i s lexicographical l y greater than

string2 or a negative number if string4 i s lexicographically less than string2 .

Because the two pieces of strings being compared here are identical, so re sult i s

assigned O .
Line 70 cal l s member function compare to compare the first 3 characters in

string2 to string4 . Because "Hel " i s l e s s than "Hel lo " , so a value less-than zero

is returned .

1 5 .4 Substrings

Class string provides member function s ubs tr for retrieving a substring from a

string. Figure 1 5 . 3 demonstrates substr.

858 Class string and String Stream Processing

1 II Fig . 1 5 . 3 : f ig15_03 . cpp
2 II Demonstrat ing string member function substr .
3 # inc lude < iostream>
4
5 u s ing s td : : cout ;
6 us ing std : : endl ;
7
8 # inc lude < s tring>
9

1 0 u s ing std : : string ;
1 1
1 2 int main ()
1 3 {
1 4 st ring string1 (" The airplane landed on t ime. ") ;
1 5
1 6 II retrieve substring "plane " which
1 7 II begins at subscript 7 and cons i s t s of 5 element s
1 8 cout « string1.substr (7 , 5) « endl ;
1 9
20 return 0 ;
2 1
22 } II end main

Fig. 1 5.3 Demonstrating string member function substr.

Chapter 1 5

The program declares and initializes a string on l ine 1 4. Line 1 8 uses member func

tion substr to retrieve a substring from string!. The first argument specifies the begin

ning subscript of the substring. The second argument specifies the length of the substring.

1 5 .5 Swapping strings

Class st ring provides member function swap for swapping strings. Figure 1 5 .4

swaps two strings.

1 II Fig . 1 5 . 4 : f i g 1 5 0 4 . cpp
2 II Us ing the swap funct ion to swap two strings .
3 #include < iostream>
4
5 us ing s td : : cout ;
6 u s ing std : : end1 ;
7
8 #inc lude < string>
9

1 0 using std : : string ;
1 1
1 2 int main ()
1 3 {
1 4 string f irst (" one ") ;

Fig. 1 5.4 Us ing function swap to swap two str ings. (Part 1 of 2 .)

Chapter 1 5 Class string and String Stream Processing

1 5 string second (" two ") ;
1 6
1 7 I I output strings
1 8 cout « " Be fore swap : \n first : " « f i r s t
1 9 « " \nsecond : " « second ;
20
2 1 f irst . swap (second) ; I I swap strings
22
23 cout « " \n\nAfter swap : \n first : " « f i r s t
24 « " \ nsecond : " « second « endl ;
25
26 return 0 ;
27
28 I I end main

Before swap:

f i rst: one

second: two

After swap:

f i rst: two

second: one

Fig. 1 5.4 Us ing function swap to swap two strings. (Part 2 of 2 .)

859

Lines 1 4- 1 5 dec lare and init ial ize strings first and second. Each string is

then output. Line 2 1 uses string member function swap to swap the values of f irst and

second. The two strings are printed again to confirm that they were indeed swapped.

1 5 .6 string Characteristics

Class string provides member functions for gathering information about a string' s

s ize, length, capaci ty, maximum length and other characteri stics . A s t ring ' s size or

length is the number of characters currently stored in the string. A s t ring' s capacity
is the total number of characters that can be stored in the string without the string

requiring additional memory . The maximum size is the largest possible s ize a string can

have. If th i s value i s exceeded, a l engt h_ error exception is thrown . Figure 1 5 .5 dem

onstrates string c lass member funct ions for determining various characteri st ics of

strings .

1 I I Fig . 1 5 . 5 : f i g 1 5 0 5 . cpp
2 I I Demonstrat ing member funct ions related to s i ze and capac i ty .
3 #inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7 us ing std : : c i n ;
8 us ing std : : boolalpha ;
9

Fig. 1 5.5 Pr int ing string characterist ics . (Part 1 of 3.)

860 Class string and String Stream Processing

1 0 # inc lude < string>
1 1
1 2 us ing std : : string ;
1 3
1 4 void printStat i st i c s (const string &) ;
1 5
1 6 int main ()
n {
1 8 string string 1 ;
1 9
20 cout « " Stat i s t i c s before input : \n " « boolalpha ;
2 1 printStat i st i c s (string1) ;
22
23 I I read in " tomato "
24 cout < < " \n \ nEnter a string : " ;
25 cin » string 1 ; I I de l imited by whitespace
26 cout « " The s t ring entered was : " « string1 ;
27
28 cout « " \nStat i s t i c s after input : \ n " ;
29 printStat i s t i c s (string1) ;
30
3 1 I I read i n " soup "
32 cin » string1 ; I I de l imited by whi tespace

Chapter 1 5

33 cout « " \n\nThe remaining string i s : " « string1 « endl ;
34 printStat i s t i c s (string1) ;
35
36 I I append 4 6 characters to string1
37 string1 + = " 12 3 4 5 6 7 8 9 0abcdefghi j klmnopqrstuvwxyz 1 2 3 4 5 6 7 8 9 0 " ;
38 cout « " \n\nstring1 i s now : " « string1 « endl ;
39 printStat i s t i c s (string1) ;
40
4 1 I I add 1 0 element s to string1
42 string1 . re s i z e (string1 . length () + 1 0) ;
43 cout « " \n\nStat s after res 1 z 1ng by (length + 1 0) : \n " ;
44 printStat i s t i c s (string1) ;
45
46 cout « endl ;
47 return 0 ;
48
49 I I end main
50
5 1 I I display string stat i st i c s
52 void printStat i s t i c s (const string &stringRe f)
53 {
54 cout « " capac ity : " « stringRef • capac ity ()
55 « " \nmax s i z e : " « stringRef . max_s i ze ()
56 « " \n s i z e : " « stringRe f . s i ze ()
57 < < " \nlength : " < < stringRe f • length ()
58 « " \nempty : " « stringRe f . empty () ;
59
60 } I I end print Stat i st ic s

F ig. 1 5 .5 Pr int ing string characteristics . (Part 2 of 3.)

Chapter 1 5

Stat i st i c s be fore input :

capac ity : 0

max s i z e : 4 2 9 4 9 6 7 2 9 3

s i z e : 0

length : 0

empty : t rue

Class string and String Stream Processing

Enter a string : tomato soup

The string entered was : tomato

Stat i s t i c s after input :

capac ity : 3 1

max s i z e : 4 2 9 4 9 6 7 2 9 3

s i z e : 6

length : 6

empty : false

The remaining string i s : soup

capac ity : 3 1

max s i z e : 4 2 9 4 9 6 7 2 9 3

s i z e : 4

length : 4

empty : false

86 1

string 1 i s now : soup 1 2 3 4 567 8 9 0 abcde fghi j klmnopqrstuvwxyz 1 2 3 4 56 7 8 9 0

capac ity : 6 3

max s i z e : 4 2 9 4 9 6 7 2 9 3

s i ze : 50

length : 50

empty : false

Stats after re s i z ing by (length + 1 0) :

capac ity : 6 3

max s i z e : 4 2 9 4 9 6 7 2 9 3

s i z e : 6 0

length : 6 0

empty : false

Fig. 1 5.5 Pr int ing string characteristics . (Part 3 of 3.)

The program declares empty string string1 (l i ne 1 8) and passes i t to function

print Stat i s t i c s (l ine 2 1) . Function printStat i s t i c s (lines 5 1 -60) takes a ref

erence to a canst string as an argument and outputs the capacity (us ing member func

tion capac ity), maximum size (us ing member function max_si ze) , size (using

member function s i ze) , length (using member function length) and whether the

string i s empty (us ing member function empty) . The init ial call to print Stat i s

t i c s indicates that the initial values for the capacity, s ize and length o f s tring 1 are O .
Because the in i tial capacity i s 0 , when characters are p laced in string1 , memory is

allocated to accommodate the new characters. The s ize and length of 0 i ndicate that there

are no characters stored in string1 . Recal l that the s ize and length are always identical .

The maximum size is 4294967293 for this implementation. Object string 1 i s an empty

string, so function empty returns true.

862 Class string and String Stream Processing Chapter 1 5

Line 2 5 reads a string from the command l ine . I n this example, " tomato soup " i s

i nput. Because a space character i s a del imi ter, so on ly " tomato " i s stored in string 1 ;

however, " soup " is sti l l located in the input buffer. Line 29 cal l s function print S t a

t i st i c s t o output statistics for string1 . Notice in the output that the length i s 6 and

that the capacity i s 3 1 .

Performance Tip 1 5. 1

To minimize the number of times memory is allocated and deallocated, some string class

implementations provide a default capacity above and beyond the length of the string.

Line 32 reads " soup " from the input buffer and stores it in string1, thereby

replacing " tomato " . Line 34 passes string1 to print Stat i s t i c s .

Line 37 uses the overloaded + = operator t o concatenate a 46-character long string to

string 1 . Line 39 passes string1 to print Stat i s t i c s . Notice that the capacity

has i ncreased to 63 elements and that the length i s now 5 0 .

Line 4 2 uses member function res i z e to increase the length of s tring1 b y 1 0

characters. The additional elements are popu lated with the n u l l characters . Notice that i n

the output the capacity has not changed and that the length is now 6 0 .

1 5 . 7 Finding Strings and Characters in a string

C lass string provides const member functions for finding substrings and characters i n

a string. Figure 1 5 .6 demonstrates the find functions.

1 I I Fig . 1 5 . 6 : f i g 1 5_0 6 . cpp
2 I I Demonstrat ing the string f ind member funct ions
3 #inc lude < iostream>
4
5 using std : : cout ;
6 us ing s td : : endl ;
7
8 #inc lude < st ring>
9

1 0 us ing std : : string ;
1 1
1 2 int main ()
1 3 {
1 4 string string1 (" noon i s 12 p . m . ") ;
1 5 int locat ion ;
1 6
1 7 I I f i nd " i s " at locat ion 5
1 8 cout « " Original st ring : ' n " « st ring1
1 9 « " ' n\n (f ind) \ " i s ' " was found at : "
20 « stringl . f ind (" i s ")
2 1 « " \ n (rfind) ' '' i s \ '' was found at : "
22 « stringl . rf ind (" i s ") ;
23
24 I I f ind ' 0 ' at locat ion 1
25 locat ion = st ringl . f ind_f irst_of ("mi sop ") ;
26

Fig. 1 5.6 Demonstrat ing the string f ind functions . (Part 1 of 2 .)

Chapter 1 5 Class string and String Stream Processing 863

27 cout « " \n\n (find_first_of) found , ,, « st ring1 [locat ion]
28 « " , f rom the group \ "misop \ " at : "
29 « locat ion ;
30
3 1 I I f ind ' m ' a t locat ion 1 3
32 locat ion = string1 . f ind_last_of ("mi sop ") ;
33 cout « " \n\n (f ind_last_of) found , ,, « string1 [l ocat ion]
34 « " , from the group \ "mi sop \ " at : "
35 « locat ion ;
36
37 I I f i nd ' 1 ' at locat ion 8
38 locat ion = string1 . f ind_first_not_of (" noi spm") ;
39 cout « " \ n\n (f ind_first_not_of) , ,, « s t ring1 [locat ion
40 « " , i s not contained in \ " noi spm\ " and was found at : "
4 1 « l ocat ion ;
42
43 I I f ind ' . ' at locat ion 12
44 locat ion = stringl . f ind_first_not_of (" 12noi spm") ;
45 cout « " \n\n (f ind_f i rst_not_of) , ,, « s t ring1 [locat ion
46 « " , i s not contained in \ " 12noi spm\ " and was "
47 « " found at : " « locat ion « endl ;
48
49 I I search for characters not in s tring1
50 location = string1 . f ind_first_not_of (" noon is 12 p . m . ") ;
5 1 cout « " \nf ind_first_not_of (\ " noon i s 1 2 p . m . \ ") "
52 « " returned : " « locat ion « endl ;
53
54 return 0 ;
55
56 } I I end main

Original string :
noon i s 1 2 p . m .

(f ind) " i s " was found at : 5

(rf i nd) " i s n was found at : 5

(f ind_f irst_of) found ' 0 ' f rom the group nmisop n at : 1

(find_last_o f) found ' m ' from the group nmi sop n at : 1 3

(find_first_not_of) ' 1 ' i s not contained in n noi spmn and was found
at : 8

(f ind_f i r st_not_of) ' . ' i s not contained in n 12noi Spm" and was found
at : 12

f ind_f irst_not_of (n noon i s 12 p . m . ") returned : - 1

Fig. 1 5 .6 Demonstrat ing the string find functions. (Part 2 of 2 .)

String stringl i s declared and init ial ized on l ine 1 4 . L ine 20 attempts to find I I i s "

i n stringl using function find. I f II i s " i s found, the subscript of the start ing location

864 Class string and String Stream Processing Chapter 1 5

of that string i s returned. If the string i s not found, the value s tring : : npos (a

public stat i c constant defined in c lass string) i s returned . Th i s value i s returned by

the string f ind-related functions to indicate that a substring or character was not found

i n the string.

Line 22 uses member function rfind to search stringl backwards (i .e ., r ight-to

left) . I f " is " i s found, the subscript location is returned. If the string i s not found,

string : : npos is returned. [Note: The rest of the find functions presented in this sec

tion return the same type unless otherwise noted .]

L ine 25 uses member function find_ f i rs t_of to locate the first occurrence i n

string1 o f any character in "misop " . The searching i s done from the beginning of

string1 . The character ' 0 ' is found in element l .

Line 32 uses member function find_ l a s t_of to find the last occurrence i n

string1 of any character in "misop " . The searching is done from the end of string 1 .

The character ' m ' is found i n element 1 3 .

Line 38 uses member function find_ fi rs t_not_of to find the first character in

string1 not contained in " noi spm " . The character ' 1 ' i s found i n element 8 .

Searching is done from the beginning of st ring1.

Line 44 uses member function find_ firs t_not_ of to find the first character not

contained in " 12noi spm " . The character ' • ' i s found in element 1 2 . Searching i s done

from the end of string1 .

Line 50 uses member function find_ fi rs t_no t_of to find the first character not

contained in " noon is 12 p . m . " . In this case, the string being searched contains

every character specified in the string argument. Because a character was not found,

string : : npos (which has the value - 1) is returned.

1 5.8 Replacing Characters in a string

Figure 1 5 . 7 demonstrates s tring member functions for replacing and eras ing charac

ters . Lines 1 5- 1 9 decl are and in i tialize string st ring 1 . Line 25 uses s t r ing mem

ber function erase to erase everything from (and inc luding) the character i n posi t ion 62

to the end of string 1 . [Note : Each newl ine character occupies one element in the

string .]

Lines 3 2-37 u s e f i nd t o locate each occurrence o f the space character. Each space

i s then replaced with a period by a call to string member function rep l a ce. Function

replace takes three arguments : the subscript of the character i n the string at which

replacement should beg in , the number of characters to replace and the replacement

string . Member function f i nd returns string : : npos when the search character is

not found. I n l ine 36, 1 is added to posit ion to continue searching at the location of

the next character.

Lines 43-48 use function f ind to find every period and another overloaded function

replace to replace every period and its fol lowing character with two semicolons. The

arguments passed to this version of replace are the subscript of the e lement where the

replace operation begins, the number of characters to replace, a replacement character

string from which a substring i s selected to use as replacement characters, the element in

the character string where the replacement substring begi ns and the number of characters

in the replacement character string to use.

Chapter 1 5 Class string and String Stream Processing

1 I I Fig . 1 5 . 7 : f i g 1 5_0 7 . cpp
2 I I Demonstrat ing string member functions erase and replace .
3 #inc1ude < iostream>
4
5 us ing std : : cout ;
6 using std : : end1 ;
7
8 #inc1ude < st ring>
9

1 0 using std : : string ;
1 1
1 2 int main ()
1 3 {
1 4 I I comp i l e r concatenates a l l part s into one s t ring
1 5 string s t ring1 (" The values in any left subtree "
1 6 " \ nare l e s s than the value in the "
1 7 " \nparent node and the values in"
1 8 " \ nany right subtree are greater "
1 9 " \nthan the value in the parent node ") ;
20
2 1 cout « " Original string : \ n " « string1 « endl « endl ;
22
23 I I remove a l l characters from (and inc luding) locat ion 6 2
24 / / through the end of string1
25 string1 . erase (6 2) ;
26
27 I I output new string
28 cout « " Original string after erase : \n " « string1
29 « " \n\nAfter f irst replacement : \n " ;
30
3 1 I I replace a l l spaces with period
32 int pos it ion = stringl . f ind (" ") ;
33
34 whi le (pos i t ion 1 = string : : npos) {
35 s t ring1 . replace (posit ion , 1 , " . ") ;
36 pos i t ion = stringl . find (" " , pos i t i on + 1) ;
37 } I I end whi l e
38
39 cout « string1 « " \n\nAfter second replacement : \ n " ;
40
4 1 I I replace a l l periods with two semicolons
42 I I NOTE : thi s wi l l overwrite characters
43 pos i t ion = string1 . f ind (" . ") ;
44
45 whi l e (pos i t ion 1 = string : : npos) {
46 string 1 . replace (posit ion , 2 , " xxxxx; ; yyy " , 5 , 2) ;
47 pos i t i on = string1 . f ind (. , pos i t ion + 1) ;
48 } I I end whi l e
49
50 cout « string1 « endl ;
5 1 return 0 ;
52
53 / 1 end main

Fig. 1 5.7 Demonstrat ing functions era se and rep l a c e . (Part 1 of 2 .)

865

866 Class string and String Stream Processing

Origina l st ring :

The values in any left subt ree

are l e s s than the value in the

parent node and the value s in

any right subtree are greater

than the value in the parent node

Original string after erase :

The values in any left subtree

are less than the value in the

After first replacement :

The . values . in . any . left . subtree

are . le s s . than . the . value . in . the

After second replacement :

The ; ; alue s ; ; n ; ; ny; ; e ft ; ; ubtree

are ; ; e •• ; ; han ; ; he ; ; alue ; ; n ; ; he

Fig. 1 5 . 7 Demonstrat ing functions era se and rep l a c e . (Part 2 of 2 .)

1 5 .9 Inserting Characters into a string

Chapter 1 5

Class string provides member functions for insert ing characters i nto a string.

Figure 1 5 . 8 demonstrates the string insert capabi l i t ies .

1 II Fig . 1 5 . 8 : f ig 1 5 0 8 . cpp
2 I I Demonst rat ing c l ass string insert member func t ions .
3 #inc lude < iostream>
4
5 us ing std : : cout ;
6 using std : : endl ;
7
8 #inc lude < st ring>
9

1 0 using std : : string ;
1 1
1 2 int main ()
1 3 {
1 4 string string1 (" beginning end ") ;
1 5 string string2 ("middle ") ;
1 6 string string3 (" 1 2 3 4 5 67 8 ") ;
1 7 string string4 (" xx ") ;
1 8
1 9 cout « " Initial strings : \nstring1 : " « string1
20 « " \nstring2 : " « string2 « " \ns t ring3 : " « s t ring3
2 1 « " \nstring4 : " « string4 « " \n \ n " ;
22

Fig. 1 5.8 Demonstrating the string insert member functions. (Part 1 of 2 .)

Chapter 1 5 Class string and String Stream Processing

23 I I insert " middle " at locat ion 1 0 in stringl
24 stringl . insert (1 0 , string2) ;
25
26 I I insert " xx " at locat ion 3 in string3
27 str ing3 . insert (3 , s t ring4 , 0 , string : : npos) ;
28
29 cout < < " St rings after insert : \nstringl : " < < st r ingl

867

30 « " \ nst ring2 : " « st ring2 « " \ nstring3 : " « s t ring3
3 1 « " \ns t ring4 : " « string4 « ehdl ;
32
33 return 0 ;
34
35 } I I end main

Ini t ial strings :

string1 : beginning end

string2 : middle

string3 : 1 2 3 4 56 7 8

string' : xx

Strings after insert :

string1 : beginning middle end

string2 : middle

string3 : 1 2 3xx' 56 7 8

string' : xx

Fig . 1 5.8 Demonstrating the string insert member functions . (Part 2 of 2 .)

The program declares, in it ia l izes then outputs strings string!, string2 ,

string3 and string4 . Line 24 uses string member function insert to i nsert

string2's content before element 1 0 of string! .

Line 27 uses insert to i nsert string4 before string3's element 3 . The last two

arguments specify the start ing element of string4 and the number of characters from

string4 that should be i nserted.

1 5 . 1 0 Conversion to C-Style char * Strings

Class string provides member functions for converting strings to C-style strings . As

mentioned earl ier, un l ike C-style strings, strings are not necessari ly nul l terminated.

These conversion functions are usefu l when a given function takes a C-style string as an

argument. Figure 1 5 .9 demonstrates conversion of strings to C-sty le stri ngs.

1 I I Fig . 1 5 . 9 : f ig 1 5 0 9 . cpp
2 I I Converting to C - style strings .
3 #inc lude < io s t ream>
4
5 us ing std : : cout ;
6 us ing s td : : endl ;
7

Fig. 1 5.9 Convert ing strings to C-style strings and character arrays . (Port 1 of 2 .)

868 Class string and String Stream Processing

8 #include < s tring>
9

1 0 using s td : : st ring ;
1 1
1 2 int main ()
1 3 {
1 4 string stringl (" STRINGS ") ;
1 5 const char *ptrl = 0 ;
1 6 int length st ringl . length () ;

Chapter 1 5

1 7 char *ptr2 = new char [length + l] ; I I inc luding nul l
1 8
1 9 I I copy characters from stringl into a l l ocated memory
20 stringl . copy (ptr2 , length, 0) ;
2 1 ptr2 [length] = ' \ 0 ' ; I I add nul l terminator
22
23 I I output
24 cout « " string s i s " « stringl
25 « " \nstringl converted to a C - Style string is "
26 « string1 . c_st r () « " \ nptr l i s " ;
27
28 I I As sign to pointer ptrl the const char * returned by
29 I I function dat a l) . NOTE : thi s i s a potent ially dangerous
30 I I a s s ignment . If stringl is modi f ied , pointer ptrl can
3 1 I I become invalid .
32 ptrl = stringl . data () ;
33
34 I I output each character us ing pointer
35 for (int i = 0 ; i < length; i + +)
36 cout « * (ptrl + i) ; I I use pointer ari thmet ic
37
38 cout « " \nptr2 i s " « ptr2 « endl ;
39 delete [] ptr2 ;
40 return 0 ;
4 1
42 } I I end main

string s is STRINGS
stringl converted to a C - Style string is STRINGS
ptrl is STRINGS
ptr2 is STRINGS

Fig. 1 5.9 Converting strings to C-style strings and character arrays . (Part 2 of 2 .)

The program declares a string, an int and two char pointers . The st ring

stringl is in i tial ized to II STRINGS " , ptrl i s in i tial ized t o 0 and length i s in i t ial i zed

to the length of string l . Memory of sufficient size to hold a C-sty le string equivalent of

st ring stringl i s a l located dynamical ly and attached to pointer char ptr2 .

Line 20 uses string member function copy to copy stringl i nto the char array

pointed to by ptr2 . Line 2 1 places a terminating nu l l character in the array pointed to by

ptr2 .

The first stream insertion (l i ne 26) displays the nu l l -terminated const char *

returned from c_ s tr when string stringl is converted to a C-style stri ng .

Chapter 1 5 Class string and String Stream Processing 869

Line 3 2 ass igns the const char * ptrl a pointer returned by member function

data to a non-nu l l term inated C-style character array . Note that we do not modify

string s t r ing l i n th i s example. If st ringl were to be modified (e .g . , the

st ring' s dynamic memory changes its address due to a member funct ion cal l such as

st ringl . insert (0 , " abcd ") i) , ptrl could become i nval id-which could lead

to unpredictable resu l t s .

L ines 35-36 use pointer ari thmetic to output the array pointed to by ptrl . I n l i nes 38-

39, the C-style string pointed to by ptr2 is output and the memory al located for ptr2 i s

de leted to avoid a memory leak.

Common Programming Error 1 5.4

Not terminating the character array returned by da ta with a null character can lead to ex

ecution- time errors.

Good Programming Practice 1 5. 1 � Whenever possible, use the more robust strings rather than C-style strings.

� Common Programming Error 15.5

Con verting strings that contain one or more null characters to C-style strings can cause

logic errors, because null characters are interpreted as terminators for C-style strings.

1 5 . 1 1 Iterators

Class st ring provides iterators for forward and backward traversal of strings . I tera

tors provide access to i ndiv idual characters with syntax that is s imi lar to pointer operat ions .

I terators are not range checked. Note that in this section we provide "mechanical examples"

to demonstrate the use of iterators . We discuss more robust uses of i terators in Chapter 20.

Figure 1 5 . 1 0 demonstrates i terators .

Lines 1 4- 1 5 declare string stringl and s t ring : : con s t_ i t era t or

i teratorl . A const_i terator is an iterator that cannot modify the container-in

th i s case the string-through which it is iterating. lterator i teratorl i s in it ial ized to

the beginning of stringl with the st ring class member function begin. Two ver

sions of begin exi st-one that returns an i t era t or for i terat ing through a non - const

string and a const version that returns a const_i terator for i terat ing through a

const string. Line 1 7 outputs stringl .

1 I I Fig . 1 5 . 1 0 : f i g 1 5_1 0 . cpp
2 I I Us ing an iterator to output a string .
3 #inc lude < iostrearn>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 # inc lude < s t ring>
9

1 0 us ing std : : st ring ;
1 1

Fig. 1 5. 1 0 Using an iterator to output a string. (Part 1 of 2 .)

870 Class string and String Stream Processing

1 2 int main ()
1 3 {
1 4 string stringl (" Test ing iterators ") ;
1 5 string : : const_iterator iteratorl = stringl . begin () ;
1 6
1 7 cout « " stringl = " « stringl
1 8 « " \n (Us ing iterator iterator l) stringl i s : " ;
1 9
20 I I iterate through string
2 1 whi le (iteratorl 1 = stringl . end ()) {

Chapter 1 5

22 cout « * iterator l ; I I dereference i terator to get char
23 + + iterator l ; I I advance iterator to next char
24 } I I end whi l e
25
26 cout « endl ;
27 return 0 ;
28
29 } I I end main

stringl • Test ing iterators
(Us ing i terator i terator l) stringl i s : Test ing iterators

Fig. 1 5. 1 0 Using an iterotor to output a string . (Part 2 of 2 ,)

Lines 2 1 -24 use the iterator iterator! to "walk through" string!. Class string

member function end returns an iterator at the first position after the l ast element of

string!. The contents of each element are printed by dereferencing the iterator much as

you would dereference a pointer, and the iterator is advanced one position using operator + + .

Class string provides member functions rend and rbegin for accessing indi

vidual string characters in reverse from the end of a string towards the beginning of

a string. Member functions rend and rbegin can return reverse_ i t era t ors and

cons t_reverse_ i t era t ors (based on whether the string i s non-const or

const) . In the exercises, we ask the reader to write a program that demonstrate these capa

bi l ities. We wi l l use iterators and reverse iterators more in Chapter 20.

Use string member function at (rather than iterators) when you want the benefit of range

checking.

1 5 . 1 2 String Stream Processing

In addition to standard stream UO and fi le stream UO, C++ stream 110 inc ludes capabi l ities

for inputting from strings in memory and outputting to strings i n memory . These ca

pabi l ities often are referred to as in-memory 110 or string stream processing.

Input from a string is supported by class i s t rings t ream. Output to a string

is supported by c lass ostrings tream. The c lass names istringstream and

ostringst ream are actual ly aliases. These names are defined with the typedefs

typede f bas ic_i stringstream< char > i stringstream;
typede f bas i c_ostringstream< char > ostringstream;

Chapter 1 5 Class string and String Stream Processing 87 1

Classes bas ic_i stringstream and bas i c_ostringstream provide the same

functionality as c lasses i s t ream and ostream plus other member functions specific to

in-memory formatting . Programs that use in-memory formatting must inc lude the

< s stream> and < iostream> header fi les .

One appl ication of these techniques i s data validation. A program can read an entire

l i ne at a t ime from the input stream into a string. Next, a val idation routine can scrutinize

the contents of the string and correct (or repair) the data, if necessary . Then the program

can proceed to i nput from the string, knowing that the input data is in the proper format.

Outputt ing to a string i s a nice way to take advantage of the powerful output for

matting capabi l i ties of C++ streams . Data can be prepared in a string to mimic the edited

screen format. That string could be written to a disk fi le to preserve the screen i mage .

An ostringstream object uses a string object to store the data that are output.

The ostringstream member function str returns a string copy of the s tring.

Figure 1 5 . 1 1 demonstrates an ostringstream object. The program creates

ostringstream object output String (l ine 1 8) and uses the stream-insertion

operator to output a series of strings and numerical values to the object .

1 I I Fig . 1 5 . 1 1 : f i g 1 5_1 1 . cpp
2 I I Us ing a dynamically al located ost ringstream obj ect .
3 #inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing s td : : endl ;
7
8 #inc lude < string>
9

1 0 us ing s td : : st ring ;
1 1
1 2 #inc 1ude < s st ream>
1 3
1 4 using std : : ostringstream;
1 5
1 6 int main ()
1 7 (
1 8 ostringstream output String ; I I c reate ostrings t ream instance
1 9

string string1 (" OUtput of several data types 20
2 1
22
23
24
25

s t ring s t ring2 (" to an ostringstream obj ect : "
s t ring s t ring3 (" \ n
string string4 (" \ n
string st ringS (n \naddres s

26 doubl e doubl e 1 = 1 2 3 . 4 5 6 7 ;
2 7 int integer = 2 2 ;
28

double : ") ;
int : n) ;

of int : n) ;

") ;
) ;

29 I I output strings , double and int to outputSt ring
30 output String « st ring1 « string2 « string3 « doub l e 1
3 1 « string4 « integer « s tringS « & intege r ;
32

Fig. 1 5. 1 1 Using a dynamical ly a l located o stringstream object. (Part 1 of 2 .)

8 72 Class string and String Stream Processing

33 I I call str to output content s

Chapter 1 5

34 cout « " output String contains : \ n" « outputString . str () ;
35
36 I I add additional characters and c a l l str to output s tring
37 output String « " \nmore characters added " ;
38 cout « " \n\nafter additional stream insert ions , \ n "
39 « " outputString contains : \n " « output String . str ()
40 « endl ;
4 1
42 return 0 ;
43
44 I I end main

outputString contains :
OUtput of several data types to an ostringstream obj ect :

double : 1 2 3 . 4 57

int : 2 2

addres s of int : 0 0 1 2 FE 9 4

after additional stream insert ions ,
outputString contains :
OUtput of several data types to an ostringstream obj ect :

double : 1 2 3 . 4 57

int : 2 2
addres s o f int : 0 0 12FE94

more characters added

Fig. 1 5. 1 1 Using a dynamical ly a l located ostringstream object. (Part 2 of 2 .)

Lines 30-3 1 output s tring string1, string string2 , string string3 ,

double double1, string string4 , int integer, string s tringS and the

address of int integer, all to output String in memory . L ine 34 uses the call out

putString . str () to output a copy of the string created in l i nes 30-3 1 . Line 37

demonstrates that more data can be appended to the string i n memory by s imply issuing

another stream i nsertion operation to outputString. Lines 3 8�0 output s tring

outputString after appending additional characters .

An i s tringstream object inputs data from a string in memory to program vari

ables . The data is stored i n an i stringstream object as characters. Input from the

i s tringstream object works identical ly to input from any fi le , in general , or from stan

dard input, in particular . The end of the string i s i nterpreted by the i s tringst ream

object as end-of-fi le .

Figure 1 5 . 1 2 demonstrates input from an i stringstream object . Lines 1 8- 1 9

create string input containing the data and istringstream object input

String constructed to contain the data in string input . The string input con

tains the data

Input test 123 4 . 7 A

which when read as input to the program consist of two strings (" Input " and " t e s t ") ,

an int value (1 2 3), a double value (4 . 7) and a char value (' A ') . These characters

Chapter 1 5 Class string and String Stream Processing 873

are extracted to variables st ringl, string2 , integer, doublel and character,

respectively, in l i nes 26-27 .

1 I I Fig . 1 5 . 12 : f ig 1 5_12 . cpp
2 I I Demonstrat ing input from an i st ringstream obj ect .
3 #inc lude < iostream>
4
5 using s td : : cout ;
6 us ing std : : endl ;
7
8 #inc lude < string>
9

1 0 us ing s td : : string ;
1 1
1 2 #inc lude < s st ream>
1 3
1 4 us ing std : : i stringstream;
1 5
1 6 int main ()
1 7 {
1 8 string input (" Input test 1 2 3 4 . 7 A ") ;
1 9 i s t r ingstream input String (input) ;
20 string string1 ;
2 1 string s t ring2 ;
22 int intege r ;
23 doubl e double 1 ;
24 char character ;
25
26 input String » string1 » string2 » integer » doub l e 1
2 7 » character ;
28
29 cout « " The f o l l owing items were extracted \ n "
30 « " from the i st ringstream obj ect : "
3 1 « " \nstring : " « string1
32 < < " \nstring : " < < string2
33 « " \n int : " « integer
34 « " \ndouble : " « double1
35 « " \n char : " « character ;
36
37 I I attempt to read f rom empty stream
38 long value ;
39
40 input String » value ;
4 1
42 I I test s t ream result s
43 if (inputString . good ()
44 cout « " \n \ nl ong value i s : " « value « end l ;
45 e l s e
46 cout « " \n \ninputString i s empty " « endl ;
47
48 return 0 ;
49
50 } I I end main

Fig. 1 5. 1 2 Demonstrating input from an istring stream object. (Part 1 of 2 .)

8 74 Class string and String Stream Processing

The f o l l owing items were extracted

f rom the i stringstream obj ect :

s t ring : Input

string : test

int I 1 2 3
double : 4 . 7

char : A

inputString i s empty

Chapter 1 5

Fig. 1 5. 1 2 Demonstrating input from a n istringstream object . (Part 2 of 2 .)

The data i s then output i n l i nes 29-35 . The program attempts to read from input

String again in l ine 40. Because no data remain, the i f condition (l i ne 43) evaluates as

false and the else part of the i f/else structure is executed.

SUMMAR Y

• c++ template c lass bas i c_string provides typical string-manipulation operations such as

copying, searching, etc.

• The typedef statement

typede f bas ic_string< char > string ;

creates the type string for bas ic_string< char > . A typede f also i s provided for the

wchar_t type. Type wchar_t normally stores two-byte (16-bit) characters for supporting other

character sets. The size of wchar_t is not fixed by the standard.

• To use strings, include C++ standard library header file < s tring > .

• Class string provides no conversions from int or char to string.

• Assigning a single character to a string object is permitted in an assignment statement.

• strings are not necessarily null terminated.

• Most string member functions take as arguments a starting subscript location and the number

of characters on which to operate.

• Class string provides overloaded operator= and member function a s s ign for string as

signments.

• The subscript operator, [] , provides read/write access to any element of a string.

• string member function at provides checked access-going past either end of the s tring

throws an out_of_range exception. The subscript operator ([]) does not provide checked ac

cess.

• Class string provides the overloaded + and += operators and member function append to per

form string concatenation.

• Class string provides overloaded = = , ! =, <, >, <= and >= operators for string comparisons.

• string function compare compares two strings (or substrings) and returns 0 if the

strings are equal, a positive number if the first string is lexicographically greater than the

second or a negative number if the first string is lexicographically less than the second.

• string member function substr retrieves a substring from a st ring.

• string member function swap swaps the contents of two strings.

Chapter 1 5 Class string and String Stream Processing 875

• string member functions s i z e and length return the size or length of a str ing (i.e . , the

number of characters currently stored in the st ring) .

• string member function capac i ty returns the total number of characters that can be stored in

the string without increasing the amount of memory allocated to the s t ring.

• string member function max_s i z e returns the maximum size a s t ring can have.

• st ring member function re s i z e changes the length of a st ring.

• Class string find functions f ind, rf ind, find_f irst_of, f ind_last_of,

f ind_f i r st_not_of and f ind_last_not_of locate substrings or characters in a

string.

• string member function erase deletes elements of a st ring.

• s tring member function replace replaces characters in a string.

• string member function insert inserts characters in a string.

• s t ring member function c_str returns a const char * pointing to a null-terminated C-sty le

character string that contains all the characters in a st ring.

• string member function data returns a const char * pointing to a non-nul l-terminated C

style character array that contains a l l the characters in a string.

• Class s tring provides member functions end and begin to iterate through individual ele

ments.

• Class s t ring provides member functions rend and rbegin for accessing individual s t ring

characters in reverse from the end of a string towards the beginning of a s tring.

• Input from a s t ring is supported by type i stringstream. Output to a s t ring is supported

by type ostringstream.

• ost ringstream member function str returns a string copy of a st ring.

TERMINOLOGY

access member function of class string
at member function of c lass string

c_st r member function of class string

capacity

capac ity member function of class st ring

checked access

compare member function of class st ring

const iterator

const_reverse_iterator

data member function of class st ring
empty member function of class st ring
empty string

equality operators: = = , ! =

erase member function of c lass string

find member function of class string

f ind_first_not_of member function of

class string

f ind_first of member function of c lass

string
find_last_not_of member function of

class string

f ind_last_of member function of class

st ring

get l ine member function of class string

in-memory lIO

insert member function of c lass s t r ing

istringstream class

iterator

length member function of class s t ring

length of a string

length_error exception

max_s i z e member function of c lass s t ring

maximum size of a s t ring

operators: +, + = , « , » , []

ostringst ream class

out_of_range exception

range_error exception

rbegin member function of c lass s t ring

relational operators: >, <, > = , < =
rend member function of c lass s t ring
replace member function of class string
re s i z e member function of class s t r ing

876 Class string and String Stream Processing Chapter 1 5

reverse_iterator subscript operator, []
s i z e member function of class string

< s stream> header file
substr member function of class s tring

swap member function of class string

typede f bas i c_string<char> s t r string-stream member function

s t r ing class string

wchar_t type < string> header file

s t ring : : npos constant

SELF-REVIEW EXERCISES

1 5 . 1 Fill in the blanks in each of the following:

a) Header must be included for class string.

b) Class string belongs to the name space.

c) Function deletes characters from a string.

d) Function finds the first occurrence of any character from a series of characters.

1 5.2 State which of the following statements are true and which are false. If a statement i s false,

explain why.

a) Concatenation of string objects can be performed with the addition operator, + = .

b) Characters within a string begin at element O.

c) The assignment operator, = , copies a string.

d) A C-style string is a string.

1 5.3 Find the error(s) in each of the following, and explain how to correct it (them):

a) string sv (2 8) ; / / construct sv

s t ring bc (' z ') ; / / construct bc
b) / 1 as sume std name space is known

const char *ptr = name . data () ; / / name i s " j oe bob "

ptr [3] = • - • ;

cout « ptr « endl ;

ANSWERS TO SELF-REVIEW EXERCISES

1 5 . 1 a)

1 5.2 a)

b)

c)

d)

1 5.3 a)

b)

< s tring>. b) std. c) erase. d) f ind_first_o f.

True.

True.

True.

False. A string is an object that provides many different services. A C-style string does

not provide any services. C-style strings are null terminated and strings are not. C

style strings are pointers and strings are not.

Constructors do not exist for the arguments passed. Other valid constructors should be

used-converting the arguments to strings if need be.

Function data does not add a null terminator. Use c str instead.

EXERCISES

1 5.4 Fill in the blanks in each of the following:
a) Class string member functions and convert s t rings to C-

style strings.
b) Class string function is used for assignment.

c) is the return type of function rbegin.
d) Class string function is used to retrieve a substring.

Chapter 1 5 Class string and String Stream Processing 877

1 5.5 State which of the following statements are true and which are false. If a statement is false,

explain why.

a) strings are always null terminated.

b) Class string function max_size returns the maximum size for a string.
c) Class string function at is capable of throwing an out_of_range exception.

d) Class string function begin returns an iterator.
e) strings are passed by reference by default.

1 5.6 Find any error(s) in each of the following and explain how to correct it (them):

a) std : : cout « s.data O « std : : endl; / / s is "hello"
b) erase (s.rfind("x") , 1) ; / / s is "xenon"

c) string& foo ()
{

string s ("Hello");

}

/ / other statements of function
return;

1 5. 7 (Simple Encryption) Some information on the Internet may be encrypted with a simple algo

rithm known as "rot 13," which rotates each character by 13 positions in the alphabet. Thus, I a I cor

responds to I n I , and I x I corresponds to I k I . rot 13 is an example of symmetric key encryption.

With symmetric key encryption, both the encrypter and decrypter use the same key.

a) Write a program that encrypts a message using rot l 3.

b) Write a program that decrypts the scrambled message using 13 as the key.

c) After writing the programs of part (a) and part (b), briefly answer the following question:

If you did not know the key for part (b), how difficult do you think it would be to break

the code? What if you had access to substantial computing power (e.g., supercomputers)?

In Exercise 15.27 we ask you to write a program to accomplish thjs.

1 5.8 Write a program using iterators that demonstrates the use of functions rbegin and rend.

1 5.9 Write your own versions of functions data and c_str.

1 5. 1 0 Write a program that reads in several strings and prints only those ending in "r" or "ay" .
Only lowercase letters should be considered.

1 5. 1 1 Write a program that demonstrates passing a string both by reference and by value.

1 5. 1 2 Write a program that separately inputs a first name and a last name and concatenates the two

into a new string.

1 5. 1 3 Write a program that plays the game of hangman. The program should pick a word (which is

either coded directly into the program or read from a text file) and display the following:

Guess the word : xxxxxx

Each x represents a letter. If the user guesses correctly, the program should display

Congratulations ! ! ! You guessed my word. Play again? yes / no

The appropriate response yes or no should be input. If the user guesses incorrectly, display the

appropriate body part.

After seven incorrect guesses, the user should be hanged. The display should look as follows:

o
/ 1 \

I
/ \

After each guess, you want to display all user guesses.

8 7 8 Class string and String Stream Processing Chapter 1 5

1 5. 1 4 Write a program that inputs a string and prints the string backwards. Convert a l l up

percase characters to lowercase and al l lowercase characters to uppercase.

1 5. 1 5 Write a program that uses the comparison capabilities introduced in this chapter to alphabet

ize a series of animal names. Only uppercase letters should be used for the comparisons.

1 5. 1 6 Write a program that creates a cryptogram out of a string. A cryptogram is a message or

word where each letter is replaced with another letter. For example the string

The birds name was squawk

might be scrambled to form

xms kbypo zhqs fho obrhfu

Note that spaces are not scrambled. In this particular case, I T I was replaced with I x I , each I a I

was replaced with I h ' , etc. Uppercase letters become lowercase letters in the cryptogram. Use tech

niques similar to those in Exercise 15.7.

1 5. 1 7 Modify Exercise 15. 16 to al low users to solve the cryptogram. Users should input two char

acters at a time: The first character specifies a letter in the cryptogram, and the second letter specifies

the replacement letter. If the replacement letter is correct, substitute the letter in the cryptogram with

the replacement letter in uppercase.

1 5. 1 8 Write a program that inputs a sentence and counts the number of palindromes in the sentence.

A palindrome is a word that reads the same backwards and forwards. For example, " tree " is not a

palindrome but " noon " is.

1 5. 1 9 Write a program that counts the total number of vowels in a sentence. Output the frequency

of each vowel.

1 5.20 Write a program that inserts the characters " * * * * * * " in the exact middle of a string.

1 5. 2 1 Write a program that erases the sequences "by" and " BY " from a string.

1 5.22 Write a program that inputs a line of text, replaces a l l punctuation marks with spaces and uses

the C-string library function st rtok to tokenize the string into individual words.

1 5.23 Write a program that inputs a line of text and prints the text backwards. Use iterators in your

solution.

1 5.24 Write a recursive version of Exercise 15.23.

1 5.25 Write a program that demonstrates the use of the erase functions that take i terator ar

guments.

1 5.26 Write a program that generates the fol lowing from the s t ring " abcde fgh i j klm

nopqrstuvwxyz { " :

a
bcb

cdedc
defgfed

efghihgfe
fghi j kj ihgf

ghi j klmlkj ihg
hij klmnonmlkj ih

i j klmnopqponmlkj i
j klmnopqrsrqponmlkj

klmnopqrstut srqponmlk
Imnopqrstuvwvut srqponml

mnopqrstuvwxyxwvut srqponm
nopqrstuvwxyz { zyxwvutsrqpon

Chapter 15 Class string and Str ing Stream Process ing 879

1 5.27 [n Exercise 15.7, we asked you to write a simple encryption algorithm. Write a program that

will attempt to decrypt a "rot 13" message using simple frequency substitution. (Assume that you do

not know the key.) The most frequent letters in the encrypted phrase should be substituted with the

most commonly used English letters (a, e, i, 0, u, S, t, r, etc.). Write the possibilities to a file. What

made the code breaking easy? How can the encryption mechanism be improved?

1 5.28 Write a version of the bubble sort routine (Fig. 5.15) that sorts strings. Use function swap

in your solution.

1 5. 29 Modify class Empl oyee in Fig. 10.23-Fig. 10.24 by adding private utility function

called i sVal idSoc ial SecurityNumber. This member function should validate the format of

a social security number (e.g., ###-##-####, where # is a digit). If the format is valid, return

true; otherwise return fal se.

16
Web Programming

with CGI

Objectives
• To understand the Common Gateway Interface (CGI)

protocol.

• To understand the Hypertext Transfer Protocol

(HTTP) and to use HTTP headers.

• To understand a Web server's functionality.

• To introduce the Apache HTTP Server.

• To request documents from a Web server.

• To implement a simple CGI script.

• To send input to CGI scripts using XHTML forms.

This is the common air that bathes the globe.

Walt Whitman

The longest part of the journey is said to be the passing of the

gate.

Marcus Terentius Yarro

Railway termini. .. are our gates to the glorious and

unknown. Through them we pass out into adventure and

sunshine, to them, alas! we return.

E . M. Forster

There comes a time in a man's life when to get where he has

to go-if there are no doors or windows-he walks through

a wall.

Bernard Malamud

Chapter 16 Web Progra m m i n g with CGI 88 1

OuHine
16.1 Introduction

16.2 HTTP Request Types

16.3 Multi-TIer Architecture

16.4 Accessing Web Servers

16.5 Apache HTTP Server

16.6 Requesting XHTML Documents

16.7 Introduction to CGI

16.8 Simple HTTP Transaction

16.9 Simple CGI Script

16.10 Sending Input to a CGI Script

16.11 Using XHTML Forms to Send Input

16.12 Other Headers

16.13 Case Study: An Interactive Web Page

16.14 Cookies

16.15 Server-Side Files

16.16 Case Study: Shopping Cart

16.17 Intemet and Web Resources

Summary • Terminology· Self-Review Exercises· Answers to Self-Review Exercises • Exercises

16.1 Introduction
With the advent of the World Wide Web, the Internet gained tremendous popularity . This

greatly increased the volume of requests users made for information from Web sites. I t be

came evident that the degree of interactivity between the user and the Web site would be

crucial . The power of the Web resides not only in serving content to u sers, but al so in re

sponding to requests from users and generating Web content dynamical l y .

I n thi s chapter, we discuss special ized software-call ed a Web server-that responds

to c l ient (e .g . , Web browser) requests by providing resources (e .g . , XHTML I documents) .

For example, when users enter a Uniform Resource Locator (URL) address, such as

www . de i t e l . com. into a Web browser, they are requesting a specific document from a

Web server. The Web server maps the URL to a fi l e on the server (or to a fi l e on the server' s

network) and returns the requested document to the client . During this interaction, the Web

server and the c l ient communicate through the platform-independent Hypertext Transfer

Protocol (HTTP), a protocol for transferring requests and fi les over the I nternet (i .e . ,

between Web servers and Web browsers) .

I. The Extensible HyperText Markup Language (XHTML) has replaced the HyperText Markup Lan
guage (HTML) as the primary way of describing Web content. Readers not familiar with XHTML
should read Appendix E, Introduction to XHTML, before reading this chapter.

882 Web Programming with CGI Chapter 16

Our Web-server di scussion introduces the Apache HITP Server. For i l lustration pur

poses, we use Internet Explorer to request documents and, l ater, to display content returned

from "eGT scripts ."

16.2 HTTP Request Types
HTTP defines several request types (also known as request methods), each of which spec

ifies how a client makes requests from a server. The two most common are get and post.

These request types retrieve and send c l ient form data from and to a Web server. A form i s

a n XHTML element that may contain text fields, radio buttons , check boxes and other

graphical user i nterface components that al low users to enter data into a Web page. Forms

can also contain h idden fields , not exposed as GUT components. A get request is used to

send data to the server. A post request also i s used to send data to the server. A get request

sends form data as part of the URL (e .g . , www . searchsomething . com/

search?query=userquery) . In this fictitious request, the information fol lowing the?

(query=userquery) indicates user-specified input . For example, if the user performs a

search on "Massachusetts," the last part of the URL would be ?query=Massachu

setts. A get request l imits the query string (e .g . , query=Massachuset ts) to a pre

defined number of characters . Thi s l imit varies from server to server. If the query string ex

ceeds thi s l imit , a post request must be used.

En ille o
The data sent in a post request is not part of the URL and cannot be seen by users. Forms

that contain many fields often are submitted via a post request. Sensitiveformfields, such as

passwords, usually are sent using this request type.

An HTTP request often sends data to a server-side form handler that processes the

data. For example, when a user participates in a Web-based survey, the Web server receives

the i nformation specified i n the form as part of the request and processes the survey in the

form handler.

Browsers often cache (save on a local disk) Web pages for quick reloading, to reduce

the amount of data that the browser needs to download. However, browsers typical ly do not

cache the responses to post requests, because subsequent post requests might not contain

the same information. For example, users part icipating in a Web-based survey may request

the same Web page . Each user' s response changes the overal l results of the survey, thus the

i nformation presented in the resulting Web page is different for each request.

Web browsers often cache the server' s responses to get requests. A static Web page, such

as a course syl l abus, is cached in the event that the user requests the same resource again .

16.3 Multi-Tier Architecture
A Web server is part of a multi-tier application, sometimes referred to as an n-tier appl ica

tion. Multi-t ier appl ications divide functionality into separate tiers (i . e . , logical groupings

of functional i ty) . Tiers can be located on the same computer or on separate computers .

Figure 16.1 presents the basic structure of a three-tier appl ication .

The information tier (al so cal led the data tier or the bottom tier) maintains data for the

application . Thi s tier typical ly stores data in a relational database management system

(RDBMS). For example, a retai l store might have a database of product information, such

Chapter 16

Client tier

Middle tier

Information tier

Fig. 1 6. 1 Three-tier application model.

/.
-

Web Program ming with CGI

D
I

- -

�
-

Application

I
- - - -

,

i"-- ---

Database

883

as descriptions, prices and quantit ies in stock. The same database also might contain cus

tomer information, such as user names for logging into the online store, b i l l ing addresses

and credit-card numbers.

The middle tier i mplements business logic and presentation logic to control interactions

between appl ication clients and application data. The middle tier acts as an intermediary

between data in the information tier and the application clients. The middle-tier controller

logic processes client requests from the top tier (e .g. , a request to view a product catalog) and

retrieves data from the database . The middle-tier presentation logic then processes data from

the information tier and presents the content to the client. In Web-based applications, the

middle tier presentation logic typically presents content as XHTML documents .

Business logic i n the middle tier enforces business rules and ensures that data i s rel i

able before updating the database or presenting data to a user . Business rules dictate how

cl ients can and cannot access appl ication data and how appl ications process data.

The client tier, or top tier, i s the appl ication ' s user interface . U sers i nteract directly

with the appl ication through the user interface. The client i nteracts with the middle tier to

make requests and to retrieve data from the information tier. The c l ient then displays to the

user the data retrieved from the middle tier.

16.4 Accessing Web Servers
To request documents from Web servers, users must know the URLs at which those docu

ments reside. A URL contains a machine name (called a host name) on which the Web serv-

884 Web Programming with CGI Chapter 16

er resides . Users can request documents from local Web servers (i .e . , ones res id ing on

user' s machines) or remote Web servers (i . e . , ones residing on machines across a network) .

Local Web servers can be accessed in two ways: through the machine name, o r through

localhos t-a host name that references the local machine . We use loealhost in th is

chapter. To determine the machine name in Windows Me, right-click My Network

Places, and select Properties from the context menu to display the Network dialog. In

the Network dialog, c l ick the Identification tab. The computer name di splays in the

Computer name: fie ld . Cl ick Cancel to close the Network dialog. In Windows 2000,

right cl ick My Computer and select Properties from the context menu to display the

System Properties dialog. In the dialog, c l ick Network Identification. The Full

Computer Name: field in the System Properties window displays the computer

name. In Windows XP, select Start> Control Panel> Switch to Classic View>

System to view the System Properties dialog. In the dialog, select the Computer

Name tab .

A domain name represents a group of hosts on the Internet; it combines with a host

name (e .g . , www-World Wide Web) and a top-level domain (TLD) to form afully qual�fied

host name, which provides a user-friendly way to identify a site on the Internet. In a fu l l y

qualified host name, the TLD often describes the type of organ ization that owns the domain

name. For example, the com TLD usual ly refers to a commercial business, whereas the

org TLD usual ly refers to a non-profit organ ization. In addit ion, each country has i ts own

TLD, such as en for China, et for Eth iopia, om for Oman and us for the Uni ted States .

Each ful l y qual ified host name i s ass igned a unique address cal led an IP address,

which is much l i ke the street address of a house. Just as people use street addresses to locate

houses or businesses in a c i ty , computers use IP addresses to locate other computers on the

Internet. A domain name system (DNS) server, a computer that maintains a database of host

names and their corresponding IP addresses, translates fu l l y qual ified host names to IP

addresses. This trans lation i s referred to as a DNS lookup. For example, to access the Deitel

Web site, type the hostname (www . deitel . eom) into a Web browser. The DNS server

trans lates www.deitel.eominto the IP address of the Deitel Web server (i . e . ,

63 . 1 1 0 . 43 . 82) . The IP address of localhost i s always 127 . 0 . 0 . 1.

16.5 Apache HTTP Server2
The Apache HTTP server, maintained by the Apache Software Foundation, i s currently the

most popular Web server because of its stabi l i ty, cost, efficiency and portabi l i ty . It is an

open-source product that runs on Unix , Linux and Windows platforms .

To download the Apache HTTP server, v is i t www . apache . org. 3 For instructions

on i nsta l l ing Apache, vis i t www . deitel . com After instal l ing the Apache HTTP server,

s tart the server by selecting the Start menu, then Programs> Apache HTTP Server

2.0.39> Control Apache Server> Start. If the server starts successfu l ly , a command

prompt window opens, and states that the serv ice i s starting (Fig. 1 6.2). To stop the Apache

HTTP server, select Start > Programs> Apache HTTP Server 2.0.39 > Control
Apache Server> Stop.

2. This section applies to Windows 98/NT/2000/Me/XP, Unix and Linux users.

3. In this chapter, we use version 2.0.39.

Chapter 16 Web Prog ramming with CGI

Start � J

Fig. 1 6.2 Starting the Apache HTIP server,

16.6 Requesting XHTML Documents

885

This section shows how to request an XHTML document from the Apache HTTP server.

In the Apache HTTP server directory structure, XHTML documents must be saved in the

h tdocs directory . On Windows platforms, the htdocs directory resides in c: \Pro

gram F i l e s \Apache Group \Apache; o n Linux p latforms , the htdocs directory re

sides in the / u s r / local /ht tpd directory .4 Copy the test . html document from the

Chapter 1 6 examples directory on the book ' s CD-ROM into the htdocs directory. To re

quest the document, l aunch a Web browser, such as Internet Explorer, Netscape or equiv

alent and enter the URL in the Address fie ld (i .e . , http : / / localhost /

t e s t . htm l) . Figure 1 6 .3 shows the resul t of requesting test . htm l . [Note: In Apache,

the root of the URL refers to the default directory, htdocs, so we do not enter the directory

name in the Address field.]

16.7 Introduction to CGI
The Common Gateway Interface (CGl) is a standard for enab l ing app l ications (commonly

cal led CGI programs or CGI scripts) to interact wi th Web servers and (indirectly) with c l i

ents (e.g., Web browsers) . CGT is often used to generate dynamic Web content using c l ient

i nput, databases and other information services. A Web page i s dynamic i f i ts content is

generated programmatical l y when the page i s requested, unl ike static Web content, which

i s not generated programmatical ly when the page i s requested (i . e., the page already ex ists

before the request i s made) . For example, we can use CGI to have a Web page ask users for

their ZIP codes, then redirect users to another Web page that is speci fical l y for people in

Fig. 1 6.3 Requesting te st . html from Apache,

4. Linux users may already have apache installed by default. The htdoc s directory may be found
in a number of places depending on the Linux distribution.

886 Web Programming with CG I Chapter 16

that geographical area. In this chapter, we introduce the basics of CGT and use C++ to wri te

our first CGI scripts .

The Common Gateway Interface is "common" in the sense that it is not specific to any

particular operating system (such as Linux or Windows) or to any one programming lan

guage . CGI was designed to be used with virtual ly any programmjng l anguage . Thus , CGJ

scripts can be written in C, C++, Perl , Python or Visual Basic without difficul ty .

CGI was developed in 1 993 by NCSA (National Center for Supercomputing Applica

tions-www . ncsa . uiuc . edu) for use with its popular HTTPd Web server. Unlike Web

protocols and languages that have formal specifications, the initial concise description of CGI

written by NCSA proved simple enough that CGI was adopted as an unofficial standard

worldwide . CGI support was incorporated quickly into other Web servers, including Apache.

16.8 Simple HTTP Transaction
Before exploring how CGI operates, it is necessary to have a basic understanding of net

working and how the World Wide Web works . In thi s section, we wi l l examine the inner

workings of the Hypertext Transfer Protocol (HTTP) and di scuss what goes on behind the

scenes when a browser requests and then di splays a Web page. HTTP describes a set of

methods and headers that al lows cl ients and servers to interact and exchange information

in a uniform and predictable way .

A Web page in its simplest form is an XHTML document, which is a plain text fi l e that

contains markings (markup or elements) that describe the structure of the data the document

contains . For example, the XHTML

<t it l e >My Web Page</tit le >

indicates to the browser that the text between the <ti tle> start element and the < /ti

tle> end element i s the t i t le of the Web page . XHTML documents also can contain hyper

text i nformation (usual l y cal led hyperlinks), which create l i nks to other Web pages or to

other locations on the same page . When a user activates a hyperl ink (usual ly by cl icking i t

wi th the mouse) , the Web browser "fol lows" the hyperl ink by l oading the new Web page

(or a different part of the same Web page) .

Each XHTML fi le avai lable for viewing over the Web has a URL (Universal Resource

Locator) associated with i t-an address of sorts . The URL contains information that directs

a browser to the resource (most often a Web page) that the user wi shes to access . For

example , consider the URL

http : / /www . deitel . com/books / downloads . html

The http : //indicates that the Web browser should request the resource using the

Hypertext Transfer Protocol . The middle portion, www . deitel . com. is the hostname of

the server. The hostname is the name of the computer where the resource resides; l ikewise,

this computer i s usual ly referred to as the host, because it houses and maintains the resource.

The name of the resource being requested, /books / downloads . html (an

X HTML document) , i s the remainder of the URL. Thi s portion of the URL specifies both

the name of the resource (downloads . html) and its path (lbooks). The path could

represent an actual directory in the Web server' s fi le system. However, for security reasons ,

the path often i s a virtual directory. In this case, the server translates the path into a real

Chapter 16 Web Program ming with CGI 887

l ocation on the server (or even on another computer) , thus hiding the true location of the

resource. In fact , i t is even possible that the resource i s created dynamical l y and does not

reside anywhere on the server computer. As we wi l l see, URLs also can be used to provide

input to a program on the server.

Now we consider how a browser, when given a URL, performs a simple HTTP trans

action to retrieve and display a Web page . Figure 16.4 i l lustrates the transaction in detai l .

The transaction i s performed between a Web browser and a Web server.

In Step 1 of Fig . 16.4, the browser sends an HTTP request to the server. The request

(in i ts s implest form) looks l ike the fol lowing:

GET I books / downloads . html HTTP / 1 . l
Hos t : www . deite l . com

The word GET i s an HITP method, that indicates the c l ient wishes to retrieve a resource.

The remainder of the request provides the name and path of the resource (an XHTML doc

ument) and the protocol's name and version number (HTTP/l . l).

Any server that understands HTTP (version 1 .1) wi l l be able to trans late this request

and respond appropriate ly . S tep 2 of Fig. 16.4 shows the results of a successful request . The

Client

CD The GET request is

sent from the

= client to the Web

Server.

Web Server

o After it receives

the request. the

Web Server

searches through

its system for the

resource.

Fig. 16.4 Client interacting with server and Web server. Step 1: The get request.
GET /book s /download s .htm HTTP/1.1. (Part 1 of 2.)

Client

Web Server

The server
responds to the
request with an

appropriate
message. along

with the resource

contents.

Fig. 16.4 Client interacting with server and Web server. Step 2: The HTTP response.
HTTP/l .l 200 OK. (Part 2 of 2.)

888 Web Program ming with CGI Chapter 16

server first responds with a line i ndicating the HlTP version, followed by a numeric code

and a phrase describing the status of the transaction. For example,

HTTP / 1 . 1 200 OK

i nd icates success ;

HTTP / l . l 404 Not found

i nforms the client that the requested resource was not found on the server in the speci fied

location .

The server then sends one or more HIT? headers, which provide information about

the data being sent to the client . In thi s case, the server is sending an XHTML document,

so the HlTP header reads

Content - Type : t ext /html

The i nformation i n the Content-Type header identifies the MIME (Multipurpose Inter

net Mail Extensions) type of the content. Each type of data sent from the server has a MIME

type by which the browser determines how to process the data i t receives . For example, the

MIME type text/plain indicates that the data contain s text that should be displayed

wi thout attempting to i nterpret any of the content as XHTML markup. S im i larly, the MIME

type image/gi f i ndicates that the content i s a GIF i mage. When thi s M IME type i s re

ceived by the browser, it attempts to di splay the data as an i mage .

The headers are followed by a blank line, which indicates to the client that the server

is fin ished sending HlTP headers . The server then sends the contents of the requested

XHTML document (e.g., downloads . html) . The connection i s terminated when the

transfer of the resource is complete . The cl ient-side browser in terprets the XHTML i t

receives and renders (or d isplays) the results .

16.9 Simple CGI Script
As long as an XHTML file on the server remains unchanged, i t s associated U RL will dis

play the same content in clients ' browsers each t ime the file i s accessed. For that content to

change (e .g . , to include new links or the latest company news), someone must alter the fi le

manual ly on the server, probably with a text editor or Web-page-design software.

Thi s need for manual change i s a problem for Web page authors who want to create

in teresting and dynamic Web pages . To have a person cont inually alter a Web page i s

tedious . For example, i f you want your Web page always t o d isplay the current date or

weather conditions, the page would require continuous updat ing .

I t i s fairly straightforward to write a C++ program that outputs the current t ime and

date (to the moni tor of the local computer) . I n fact, this requires only a few l ines of code:

t ime_t currentTime ;

t ime (¤tTime) ;

I I t ime_t de fined in <ctime >

I I asct ime and localtime def ined in <ctime >
c out « asct ime (localtime (¤tTime)) ;

c++ library function local t ime, when passed a t ime_t variable (e .g . , current

Time) returns a pointer to a structure contain ing the "broken-down" local t ime (i .e . , days,

Chapter 16 Web Prog ramming with CGI 889

hours, etc. are placed in individual structure members). Function asctime, which takes a

pointer to a structure containing "broken-down" time, returns a string such as

Wed JUI 31 1 3 : 1 0 : 3 7 2 0 0 2

What if we wish to send the current time to a client' s browser window for display

(rather than outputting it to the screen)? CGI makes this possible by allowing the server to

redirect the output of a program to the Web server itself, sending the output to a cl ient ' s

browser. Redirection of output allows output (e.g., from a cout statemen t) to be sent

somewhere other than the screen.

Figure 16.5 shows the full program l isting for our first CGI script. Note that the pro

gram consists mainly of cout statements (l ines 15-29). Unti l now, the output of cout

always has been displayed on the screen. However, technically speaking, the defaul t target

for cout is standard output. When a C++ program is executed as a CGI script, the standard

output is redirected by the Web server to the c l ient Web browser. To execute the program,

we placed the compiled C++ executable file in the Web server's cgi-bin directory. For

the purpose of this chapter, we have changed the executable file exte nsion from • exe to

. cgi.5 Assuming that the Web server is on your local computer, you can execute the script

by typing

http : / / localhost / cgi -bin/ localt ime . cgi

i n your browser' s Address or Location field. [f you are requesting this script from a re

mote Web server, you wil l need to replace localhost with the server ' s hostname or IP
address.

1 I I Fig . 1 6 . 5 : localt ime . cpp
2 I I Di splays the current date and t ime in a Web browser .
3
4 # inc lude < iostream>
5
6 us ing s td : : c out ;
7
8 # inc lude < c t ime >
9

10 int main ()
1 1 {
1 2 t ime_t currentTime ; I I variable for storing t ime
1 3

1 4 I I output header
1 5 cout « " Content -Type : t ext /html \ n \ n " ;
1 6

1 7 I I output XML dec larat ion and DOC TYPE
18 cout « " < ?xml version = \ " 1 . 0 \ " ? > "
1 9 « " < I DOCTYPE html PUBLIC \ " - / /W3C I I DTD XHTML 1 . 0 n
20 « " Tran s i t ional I I EN\ " \ " http : / /www . w3 . org/TR /xhtml1 ''
2 1 « " / DTD/xhtml1- t rans i t ional . dtd\ " > " ;

Fig. 1 6. 5 First CGI script. (Part 1 o f 2.)

5. On a server running Microsoft Windows, the executable may be run directly in • exe form.

890 Web Programming with CGI

22
23 t ime (¤tTime) ; II store t ime in currentTime
24
25 II output html e l ement and some of i t s content s

Chapter 16

26 cout « n <html xmlns = \ '' http : / /www . w3 . org / 1 9 9 9 / xhtml \ n > ,,
27 « "<head><title>Current date and time</title></head>n

28 « n <body> <p> " « asct ime (localt ime (¤tTime))
29 « " </p > < / body> </ html > " ;
30
3 1 return 0 ;
32
33 } II end main

Fig. 1 6.5 Fi rst CGI script. (Part 2 of 2.)

III n localintronet 4

The notion of standard output is s imi lar to that of standard i nput, which we have seen

frequently referenced with the expression cin. Just as standard i nput refers to the standard

method of input in to a program (normal ly, the keyboard) , standard output refers to the stan

dard method of output from a program (normal ly , the screen) . I t i s poss ible to redirect (or

pipe) standard output to another destination . Thus, in our CGI script, when we output an

HTTP header (l i ne 1 5) or XHTML elements (l i nes 1 8-2 1 and 26-29) , the output is sent to

the Web server, as opposed to the screen. The server sends that output to the client over

HTTP, which i nterprets the headers and elements as if they were part of a normal server

response to an XHTML document request.

Figure 1 6 .6 i l l u strates this process in more detai l . In Step I, the c l ient requests the

resource named local t ime . cgi from the server, j ust as i t requested down

loads . html in the previous example. If the server was not configured to handle CGI

scripts, it might j ust return the contents of the C++ executable fi le to the cl ient , as if it were

any other document. However, based on the Web server configuration, the server executes

local t ime . cgi and sends the CGI program ' s output to the Web browser.

A properly configured Web server, however, will recognize that certain resources

should be handled different ly . For example, when the resource i s a CGT script, the script

must be executed by the server. A resource usual ly i s designated as a CGI script i n one of

two ways : e i ther it has a special fi lename extension (such as • cgi or • exe) or it is located

in a specific directory (often cgi-bin) . In addition, the server admin i strator must g ive

permission expl ic i t ly for remote cl ients to be able to access and execute CGI scripts .6

6. If you are using the Apache HTTP Server and would like more information on configuration, con
sult the Apache home page at www . apache.org.

Chapter 16

Client

CD The GET request is
sent from the

client to the Web
Server,

Web Program m i n g with CGI

Web

Server CGI

C++

Application

® After it receives the
request, the Web Server

searches through its

system for the resource,

89 1

Fig . 16. 6 Step 1 : The get request, GET /cgi-bin/localtime.cgi HTTP/
1. 1. (Part 1 of 4.)

Client

Web
Server

C++
CGI Application

D--D
The CGI script is run.

creating the output to be

sent back to the client,

Fig. 16.6 Step 2: The Web seNer starts the CGI script. (Part 2 of 4.)

gJJ!J
Client

Web

Server CGI

�--C
C++

Application

The output produced from

the script is sent back to the

Web Server.

Fig.16.6 Step 3: The output of the script is sent to the Web seNer. (Part 3 of 4.)

892 Web Programming with CGI

Client

Web
Server CGI

Cha pter 16

c++
Application

The server responds to the

request with an appropriate
message along with the

results of the CGI script.

Fig. 1 6.6 Step 4: The HTIP response, HTTP /1.1 200 OK. (Part 4 of 4 .)

In Step 2 of F ig . 1 6 .6 , the server recognizes that the resource i s a CGI script and exe

cutes the script . I n Step 3 , the three cout statements (li nes 1 5 , 1 8-2 1 and 26-29 of

Fig. 1 6 . 5) are executed, and the text is sent to the standard output and i s returned to the Web

server. Finally , in S tep 4, the Web server adds a message to the output that i ndicates the

status of the HTTP transaction (such as HTTP / 1 . 1 20 0 OK, for success) and sends the

ent ire output from the CGI program to the client .

The client-side browser then processes the XHTML output and di splays the results. I t

i s i mportant to note that the browser i s unaware of what has transpired on the server. In

other words, as far as the browser i s concerned, i t requests a resource like any other and

receives a response like any other. The client receives and i nterprets the script ' s output, j u st

as if it were a s imple, static XHTML document.

In fact , you can view the content that the browser receives by executing loca l

t ime . cgi from the command line, as we normally would execute any of the programs

from the previous chapters . [Note: The file extension must be changed to • exe prior to

executi ng from the command l i ne on a system running Windows] . F igure 1 6 .7 shows the

output. For the purpose of this chapter, we formatted the output for readabil ity .

Content - Type : text /html

< ?xml vers ion = " 1 . 0 " ? >
<IDOCTYPE html PUBLIC " - / /W3C / / DTD XHTML 1 . 0 Trans i t i onal / / EN "

" http : / /www . w3 . org / TR/xhtml l / DTD/xhtml l - t rans i t i onal . dtd " >

<html xmlns = " http : / /www . w3 . org/ 1 9 9 9 /xhtml " >
<head>

< t i t l e >Current date and t ime < / t i t l e >
< /head>

<body>
<p>Mon Jul 15 13 : 5 2 : 4 5 200 2 < /p>

< /body>
< /html >

Fig. 1 6. 7 Output of local time .cgi when executed from the command l ine.

Chapter 16 Web Prog ra m m i n g with CGI 893

Notice that, wi th the CGr script, we must output the Content -Type header, whereas, for

an XHTML document, the Web server wou ld include the header.

To review, a CGI program prints the Content-Type header, a blank l i ne and the

data (XHTML, p la in text, etc .) to standard output . The Web server retrieves this output,

i nserts the HTTP response to the beginning and del ivers the content to the cl ient . Later, we

w ill see other content types that may be used in this manner, as well as other headers that

may be used i n addition to Content-Type.

The program of Figure 1 6 . 8 outputs the environment variables that the Web server

provides when executing the CGI script. These variables contain information about the

client and server environment, such as the type of Web browser being used and the location

of the document on the server. Lines 1 5-24 i n i t ial ize an array of string objects with the

CGI environment variable names. Line 4 1 begins the XHTML tab le in which the data w i l l

be d isplayed.

Lines 45-48 output each row of the table . Let us examine each of these l ines close ly .

Line 45 outputs an X HTML <tr> (table row) start tag , which i ndicates the beg inn ing of a

new table row . Line 48 outputs i ts corresponding </tr> end tag, which indicates the end

of the row. Each row of the table contains two table cel l s . Each row contai ns the name of

an environment variable and the data associated with that variable . The < td> start tag (l ine

45) begins a new table ce l l . The for loop (line 44) i terates through each of the 24 string

objects. Each environment variable ' s name i s output in the left table ce l l . The value asso

ciated with the environment variable is output by cal l ing

1 II Fig . 1 6 . 8: envi ronment . cpp
2 II Program to di splay CGI environment variable s .
3 #inc lude < iostream>
4

5 using std::cout ;
6
7 # inc lude < s tr ing>
8
9 us ing std::string ;

1 0

1 1 # inc lude < c stdl ib>
1 2
13 int main ()
1 4 {
1 5 string environmentVariables [2 4] = {
1 6 " COMSPEC " , " DOCUMENT_ROOT " , " GATEWAY_INTERFACE " ,
1 7 " HTTP_ACCEPT " , " HTTP_ACCEPT_ENCODING " ,
18 " HTTP_ACCEPT_LANGUAGE " , " HTTP_CONNECTION " ,
1 9 " HTTP_HOST " , " HTTP_USER_AGENT " , n pATH " ,
20 " QUERY_STRING " , n REMOTE_ADDR " , " REMOTE_PORT " ,
2 1 " REQUEST_METHOD " , " REQUEST_URI " , " SCRIPT_FILENAME " ,
22 " SCRIPT_NAME " , " SERVER_ADDR " , " SERVER_ADMIN" ,
23 " SERVER_NAME " , " SERVER_PORT " , " SERVER_PROTOCOL " ,
24 " SERVER_SIGNATURE " , n SERVER_SOFTWARE " } ;
25
26 II output header
27 cout « " Content -Type: t ext /html \ n \ n " ;

Fig. 1 6.8 Retrieving environment variables via function getenv. (Part 1 of 3.)

894

28
29
30
3 1
32
33

34
35
36
37
38
39
40
4 1
42
43

44
45

46
47
48
49
50
5 1
52
53
54

Web Programming with CGI

I I output XML dec larat ion and DOCTYPE
c out « " < ?xml version = \ " 1 . 0 \ " ? > "

Chapter 16

« " < I DOCTYPE html PUBLIC \ " - I IW3C I I DTD XHTML 1 . 0 "
« " Tran s i t i onal I I EN\ " \ " http: / /www.w3 . org / TR/xhtmll ''
« " / DTD/xhtml 1 - trans itional.dtd \ " > " ;

I I output html e lement and some of i t s c ontent s
cout « " <html xmlns = \ '' http:/ /www . w3 . org/ 1 9 9 9 / xhtml \ '' > ''

« " <head> < t i t le>Environment Vari abl e s < / t i t l e > < /head> "
« " <body> " ;

I I begin outputt ing table
c out « " <table border = \ " 0 \ " c e l l spac ing

I I iterate through environment vari ables
for (int i = 0 ; i < 2 4 ; i++)

\ " 2 \ " > " ;

cout « " < t r > < td> " « environmentVariables[i]
« " < / td> < td> "
« getenv (environmentVariables[i] . data ()
« " < / td> < /tr> " ;

cout « " < / tabl e > < / body> < /html > " ;

return 0 ;

I I end main

Flo Edt VIew Favortes Tools Help

COMSPEC

DOCUMENT_ROOT

GATEWAY _INTERFACE

C:IWlNNT\system32Icmd.exe

d:/program files/apache group/apachelhtdoc s

CGIILl
image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

HITP _ACCEPT applicationlvnd.ms-excel, applic ationlvnd.ms-powerpoint,
applicationlmsword, */*

HITP _ACCEPT_ENCODING grip, deBate

HITP _ACCEPT_LANGUAGE en-us

HITP _CONNECTION Keep-Alive

HITP_HOST

HITP _USER_AGENT

PATH

localliost

Mozillal4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR
103705)

E:\Perl\bin\;C:IWlNNT\system32;C:IWINNT;C:IWINNT\System32
IWbem;D:\PROGRA-IIULTRAE-l;C:\Program FileslCommon
FileslAdaptec SharedlSystem;C:\Program FileslMicrosoft SQL
Server\80lToolslBINN

Fig. 1 6.8 Retrieving environment variables via function getenv. (Part 2 of 3.)

Chapter 16 Web Programming with CGI

1 Environment Variables - Microsoft Int-=�t E)(!1lor«:�_________ '",:
Fie Edt View Favorles T ooIs �

QUERY_STRlNG

REMOTE_ADDR

REMOTE]ORT

REQUEST_METHOD

REQUEST_URI

SCRIPT]ILENAME

SCRIPT_NAME

SERVER_ADDR

SERVER_ADMIN

SERVER_NAME

127.0.0.1

2564

GET

/cgi-bin/environment. cgi

d:/program files/apache group/apache/cgi-bin/environment. cgi

/ cgi -bin/environment. cgi

127.0.0.1

webmaster@localhost

localhost
J

Fig. 1 6.8 Retrieving environment variables via function getenv. (Part 3 of 3 .)

895

function getenvof <cstdl ib> and pass ing i t the string value returned from the func

tion call envi rorunentVariables [i] • data () . Function data returns a C-style

char * string containing the contents of the envirorunentVari ables [i] s tring.

Common Programming Error 16.1
Forgetting to place a blank line after a header is a logic error.

16.10 Sending Input to a CGI Script
Though preset environment variables provide much information, we would l ike to be able

to supply any type of data to our CGI scripts, such as a user' s name or a search-engine que

ry . The environment variable QUERY_STRING provides a mechanism to do j ust that. The

QUERY_STRING variable contai ns information that i s appended to a U RL in a get request .

For example, the U RL

www . somesite . com/ cgi -bin/ script . cgi?state=Cali fornia

causes the Web browser to request a resource from www.somesite.com. The resource i s a

CGI script (cgi-bin/ script . cgi) . The Web server stores the data following the?

(state=Cal ifornia) in the QUERY_STRING environment variable . The query string

provides parameters that customize the request for a particular client . Note that the question

mark i s not part of the resource requested, nor i s i t part of the query string . It serves as a

del i mi ter (or separator) between the two.

Figure 1 6 .9 shows a simple example of a CGI script that reads data passed through the
QUERY_STRING. Note that data i n a query string can be formatted i n a variety of ways.
The CGI script readi ng the string must know how to interpret the formatted data. In the
example in Fig. 1 6 .9, the query string contains a series of name-value pairs de l im ited by
ampersands (&), as i n

name=Jil l&age =22

896 Web Prog ramming with CGI Chapter 16

In line 15 of Figure 16.9, we pass "QUERY_STRING" to function getenv, which

returns the query string and assigns it to string variable query. After outputting a

header, some XHTML start tags and the title (lines 21-29), we test if query contains data

(line 34). If not, we output a message instructing the user to add a query string to the URL.

We also provide a link to a URL that includes a sample query string. Query-string data may

be specified as part of a hyperlink in a Web page when encoded in this manner. The con

tents of the query string are output on line 42.

1 I I Fig . 1 6 . 9: querystring . cpp
2 I I Demonstrat ing QUERY_STRING .
3 # inc lude < iostream>
4
5 us ing std::cout ;
6
7 # inc lude < st ring>
8
9 us ing std::string ;

1 0
11 #inc lude < c stdlib>
1 2
1 3 int main ()
1 4 (
15 string query = getenv (" QUERY_STRING ") ;
16
17 I I output header
18 cout « " Content -Type: text /html \ n \ n " ;
19
20 I I output XML dec larat ion and DOCTYPE
21 c out « " < ?xml ver s i on = \ " 1 . 0 \ " ? > "
22 « " < I DOCTYPE html PUBLIC \ " - I IW3C I I DTD XHTML 1 . 0 "
23 « " Trans i t i onal I IEN\ " \ '' http:/ /www . w3 . org / TR/xhtml 1 ''
24 « " /DTD/xhtml 1 - trans itional . dtd \ " > " ;
25
26 I I output html e lement and some of i t s content s
27 cout « " <html xmlns = \ '' http:/ /www . w3 . org/ 1 9 9 9 / xhtml \ '' > ''
28 « " <head> < t i t l e>Name /Value Pairs < / t it l e > < /head> "

29 « " <body> " ;
30
31 cout « " <h2 >Name /Value Pairs < /h2 > " ;
32
33 I I i f query contained no data
34 if (query == " ")
35 cout « " Please add some name-value pairs t o the URL "

36 « " above . <br / >Or try "
37 « " <a hre f = \ " querystring . cgi ?name=Joe&age = 2 9 \ " > "

38 « " thi s < / a> . " ;
39
40 I I user entered query string
41 e l s e
42 c out « " <p>The query string i s : " « query « " < /p> " ;

43

Fig. 1 6.9 Reading input from QUERY_STRING. (Part 1 of 2 .)

Chapter 16

44 cout « " < / body> < /html > " ;
45
46 return 0 ;
47
48 } I I end main

Web Prog ramming with CGI

Fig. 1 6.9 Reading input from QUERY_STRING. (Part 2 of 2 .)

16.11 Using XHTML Forms to Send Input

897

Having a client enter input directly into a URL is not a user-friendly approach. Fortunately,

XHTML provides the ability to includejorms on Web pages that provide a more intuitive

way for users to input information to be sent to a CGI script.

The form element encloses an XHTML form. The form element generally takes two

attributes. The first attribute is act i on, which specifies the action to take when the user

submits the form. For our purposes, the act ion usually will be to call a CGI script to pro

cess the form's data. The second attribute used in the form element is method. The

method attribute identifies the type of HTTP request to use when the browser submits the

898 Web Programmi ng with CGI Chapter 1 6

form to the Web server. I n this section, we will show examples using both methods to illus

trate them in detail.

An XHTML form may contain any number of form elements . Figure 1 6 . 10 gives a

brief description of several form elements .

Figure 16. 1 1 demonstrates a basic XHTML form using the HTTP get method. The

form is output in lines 35-38 with the form element. Notice that attribute method has the

value " get " and attribute action has the value " getquery . cgi " (i .e. , the script

actually calls itself to handle the form data once they are submitted) .

The form contains two input fields. The first (line 36) is a single-line text field

(type = " text ") named word. The second (line 37) displays a button, labeled Submit
Word, to submit the form data.

Element name

input

select

text area

type aHrlbute
value (tor
input
elements)

text

pas sword

checkbox

radio

but t on

submi t

image

reset

f i l e

hidden

Fig. 1 6. 10 XHTM L form elements.

Description

Provides a single-line text field for text input .

Like text , but each character typed by the user appears

as an asterisk (*) .
Displays a checkbox that can be checked (true) or

unchecked (false).

Radio buttons are like checkboxes, except that only one

radio button in a group of radio buttons can be selected

at a time.

A push button.

A push button that submits form data according to the

form's act ion.

The same as submit , but displays an image rather than

a push button.

A push button that resets form fields to their default

values.

Displays a text field and button that allow the user to

specify a file to upload to a Web server. When clicked,

the button opens a file dialog that allows the user to

select a fi Ie.

Hidden form data that can be used by the form handler

on the server. These inputs are not visible to the user.

Drop-down menu or selection box. This element is used

with the option element to specify a series of select

able items.

This is a multiline text field in which text can be i nput or

displayed.

Chapter 16 Web Programming with CGI

1 I I Fig . 1 6 . 1 1 : getquery . cpp
2 I I Demonstrates GET method with XHTML form .
3 # inc 1ude < iostream>
4
5 us ing std : :cout ;
6
7 # inc 1ude < s t ring>
8
9 us ing s td : : str ing ;

10
1 1 # inc lude < c stdlib>
1 2
1 3 int main ()
1 4 {
1 5 string nameString = " " ;
1 6 string wordSt ring = " .. ;
1 7 string query = getenv (" QUERY_STRING ") ;
1 8
1 9 I I output header
20 cout « " Content - Type: t ext /html \ n \ n " ;
2 1
22 I I output XML dec l arat ion and DOCTYPE
23 cout « " < ?xml vers ion = \ " 1 . 0 \ " ? > "
24 « " < ! DOCTYPE html PUBLIC \ " - I !W3 C / / DTD XHTML 1 . 0 "
25 « " Trans i t i onal / /EN\ " \ '' ht tp:/ /www . w3 . org / TR / xhtml 1 ''
26 « " / DTD/xhtml 1 - trans i t i onal . dtd \ " > " ;
27
28 / / output html e lement and some of i t s content s
29 cout « " <html xmlns = \ '' http:/ /www . w3 . org/ 1 9 9 9 / xhtml \ '' > ''
30 « " <head> < t i t l e >Using GET with Forms < / t i t l e > < / head> "
3 1 « " <body> " ;
32
33 / / output xhtml form
34 cout « " <p>Enter one of your favori t e words here:< /p> "

899

35 « " < form method = \ " get \ " act i on = \ " getquery . cgi \ " > "
36 « " < input type \ .. text \ .. name = \ "word\ " / > "
37 « " < input type = \ " submi t \ .. value = \ " Submit Word\ " / > "
38 « " < / form> " ;
39
40 / / query i s empty
4 1 i f (query = = )
42 c out « " <p>Please enter a word . < /p> " ;
43

44 / / user entered query string
45 e l s e {
46 int wordLocat ion = query . f ind_first_o f (" word= ") + 5 ;
47
48 wordString = query . substr (wordLocat ion) ;
49
50 / 1 no word was entered
5 1 i f (wordString = =
52 c out « " <p > P l ease enter a word . < /p> " ;
53

Fig. 1 6. 1 1 Using GET with an XHTM L form . (Part 1 of 3 .)

900 Web Programming with CGI Chapter 16

54 I I word was entered
55 e l s e
56 cout « n <p>Your word i s : n « wordString « n < /p > n ;
57
58
59 cout « n < / body> < /html > n ;
60
6 1 return 0 ;
62
63 } I I end main

Itechnology

Please enter a word.

Subm� Word

l USlng GET wIth Forms - Microsoft Internet EHplor� .-

Enter one of your favorite words here:

Your word is: technology

Ihigh-tech Submrt Word

Please enter a word.

Fig. 1 6. 1 1 Using GET with an XHTML form . (Part 2 of 3 .)

Chapter 16 Web Programming with CGI

SUbmiI.Word

Fig. 16.11 Using GET with a n XHTML form. (Part 3 of 3.)

90 1

The first time the script is executed, there should be no value in QUERY_STRING

(unless the user has appended the query string to the URL). Once the user enters a word

into the word field and presses Submit Word, the script is requested again. This time, the

name of the input field (word) and the value entered by the user are placed in the

QUERY_STRING variable by the browser. That is, if the user enters the word "tech

nology" and presses the Submit Word, QUERY_STRING is assigned the value

word= technology and the query string is appended to the URL in the browser window.

During the second execution of the script, the query string is decoded. Lines 46-48 in

Fig . 1 6 . 1 1 search query for the first occurrence of word= , using string method

find_first_of, which returns an integer value corresponding to the location in the

string where the first match was found. A value of 5 is added to the location to move

the position in the string to the first character of the user's favorite word . Method

substr (line 48) returns the remainder of the string starting at the location specified

by wordLocat ion, which is then assigned to wordString. Line 5 1 determines

whether the user entered a word. If so, l ine 56 outputs the word entered by the user.

The two previous examples used get to pass data to the CGr scripts through an envi

ronment variable. Web browsers typically interact with Web servers by submitting forms

using HTTP post. CGI programs read the contents of post requests using standard input.

For comparison purposes, let us now reimplement the application of Fig . 1 6 . 1 1 , using

POST (as in Fig . 1 6 . 1 2) . Notice that the code in the two figures is virtually identical. The

XHTML form indicates that we are now using the POST method to submit the form data.

1 I I Fig . 1 6 . 1 2 : post . cpp
2 I I Demonstrate s POST method with XHTML form .
3 # inc lude < iostream>
4
5 us ing std : : c out ;
6 us ing std : : c i n ;
7
8 # inc lude < string>
9

10 using std : : s tring ;
11

Fig. 16.12 Using POST with a n XHTML form . (Part 1 of 4 .)

902

1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33

34
35
36
37
38
39
40
4 1
42
43

44
45
46
47
48
49
50
5 1
52
53

54
55
56
57
58
59
60
6 1
62
63

64

Web Programming with CGI

include < c stdl ib>

int main ()
{

Chapter 1 6

char postString [1 0 2 4]
s t ring dataString " " ;
string nameSt ring " " ;
s t ring wordString " " ;
int c ontentLength 0 ;

" " ; I I variable to hold POST data

I I content was submitted
i f (getenv (" CONTENT_LENGTH ")) {

contentLength = atoi (getenv (" CONTENT_LENGTH ")) ;

c in . read (postString , contentLength) ;
dataString = postString ;

/ I end i f

I I output header
cout « " Content -Type : text / html \n\ n " ;

I I output XML dec larat ion and DOC TYPE
cout « " < ?xml version = \ " 1 . 0 \ " ? > "

« " < l DOCTYPE htm1 PUBLIC \ " - I IW3C I IDTD XHTML 1 . 0 "
« " Transi t i onal I IEN\ " \ " http : / /www . w3 . org / TR /xhtml 1 "
« " /DTD/xhtml 1 -trans itional . dtd\ " > " ;

I I output XHTML e lement and some of i t s c ontent s
cout « " <html xm1ns = \ " http : / /www . w3 . org/ 1 9 9 9 / xhtml \ '' > ''

« " <head> < t it le>Us ing POST with Forms < / t i t l e > < / head> "
« " <body> " ;

I I output XHTML form
cout « " <p>Enter one of your favorite words here : < /p> "

« " < form method = \ " post \ " act ion = \ " post . cgi \ " > "
« " < input type = \ " text \ " name = \ "word\ " I > "
« " < input type = \ " submit \ " value = \ " Submit Word\ " I > "
« " < / form> " ;

I I data was s ent us ing POST
if (contentLength > 0) {

int nameLocation =

dataString . f ind_f i rst_of ("word= ") + 5 ;

int endLocat ion = dataString . f ind_f i rst_of (" & ") - 1 ;

I I retrieve entered word
wordString = dataString . substr (nameLocation,

endLocat ion - nameLocat ion) ;

I I no data was entered in text f i e ld
i f (wordString == " ")

cout « " <p>Please enter a word . < /p > " ;

Fig. 1 6. 1 2 Using POST with an XHTML form . (Part 2 of 4.)

Chapter 16 Web Programming with CGI

65
66 I I output word
67 e l s e
68 c out « " <p >Your word i s : " « wordString « " < /p> " ;
69
70 } I I end i f
7 1
72 II no dat a was sent
73 e l s e
7 4 cout « " <p>Please enter a word . < /p> " ;
75
76 cout « " < /hody> < /html > " ;
7 7
7 8 return 0 ;
79
80 I I end main

Address I
Enter one of your favorite words here :

Itechno logy Submit Word

----,-_ .!.l r � Locoi lntronet

Please enter a word.

Dono

, I

fie Edit VIew FaYOO'tes T ooIs �
,:... Back • !11 !::I I <t\ Search

Address

Enter one of your favorite words here :

If

Your word is : technology

Dono

, I
Fie Edit VIew Favorites

Submit Word

Tools �

Locoi lntranet
...J.gj�

-
-:.. eack · .. . (£9 � !::IJ <t\Se"Ch � F_es c(jMedia � I »

Address I� http : //localhost/clJi-bln/post .clJi � ,�Go l Links »

..!.
Enter one of your favorite words here:

Ih igh-tech I Submit Word I
Ple ase enter a word. .!.l imDono l r lr r � Locoi lntrOMt .&

Fig. 1 6. 1 2 Using POST with an XHTM L form . (Part 3 of 4.)

903

904 Web Programming with CGI Chapter 16

Submit Word

Your word is: high-tech

Fig. 1 6. 1 2 Using POST with an XHTM L form . (Part 4 of 4 .)

The Web server sends post data to a CGI script via standard i nput . The data i s encoded

(i .e . , formatted) just as in QUERY_STRING (that is, with name-value pai rs connected by

equals signs and ampersands) , but the QUERY_STRING environment variable i s not set .

Ins tead, the POST method sets the environment variable CONTENT_LENGTH, to indicate

the number of characters of data that were sent in the post requests .

The value of the CONTENT_LENGTH environment variable i s used by the CGI script

to process the correct amount of data. Line 23 determines whether CONTENT_LENGTH

contai ns a value. Line 24 reads in the value and converts it to an integer by cal l i ng

<cstdl ib> function ato i . Line 26 cal l s function cin . read to read characters from

standard i nput and stores the characters in array postString. Line 27 converts post

String ' s data to a string by assigning it to dataString.

In earlier chapters , we read data from standard input using an expression such as

cin » data ;

The same approach might work in our CGI script a s a rep lacement for t he cin . read

statement. Recall that cin reads data from standard input up to and including the fi rst new

line character, space or tab, whichever comes first. The CGT specification does not require

a newl ine to be appended after the last name-value pair. Although some browsers append

a newl ine or EOF, they are not required to do so. I f cin i s used with a browser that sends

only the name-value pai rs (as per the CGI specification) , cin must wait for a newline that

wil l never arrive. In th i s case, the server eventually "times out" and the CGI script termi

nates . Therefore, cin . read is preferred over cin, because the programmer can specify

exactly how much data to read .

The CGI scripts from this sect ion, whi le usefu l for explaining how get and post

operate, do not include many of the features described in the CGI specificat ion. For

example, if we enter the words didn ' t translate into the text fie ld and cl ick the

submit button, the script i nforms us that our word is didn%2 7t+translate .

What has happened here? Web browsers URL encode the XHTML form data they

send. Thi s means that spaces are replaced with plus signs, and other symbols (e .g . , apostro

phes) are translated into their ASCI I value in hexadecimal format and preceded with a per

cent s ign . URL encoding is necessary because URLs do not allow certain characters , such

as spaces and apostrophes.

Chapter 1 6 Web Programming with CGI 905

16. 12 Other Headers
We mentioned i n Sect ion 1 6 .9 that there are several HTTP headers i n addi t ion to the

Content - Type header. A CGI script can supply other HTTP headers in addi t ion to

Content-Type. In most cases , the server passes these extra headers to the c l ient

w i thout execut ing them . For example , the fol lowing Refresh header red i rects the c l i

e n t t o a n e w locat ion after a spec i fied amount o f t ime :

Re fresh : " 5 ; URL = http : / /www . deitel . c om/ newpage . html ..

Five seconds after the Web browser receives this header, the browser requests the resource

at the speci fied URL. Al ternat ively, the Re fresh header can omit the URL, in which case

i t w i l l refresh the current page after the given t ime has expired.

The CGI speci fication indicates that certain types of headers output by a CGI script are

to be handled by the server, rather than be passed direct ly to the c l ient . The first of these i s

the Loca t i on header. Like Re fre sh, Location redirects the c l ient to a new location :

Locat i on : http : / /www . deitel . com/newpage . html

If used with a rel at ive (or v i rtual) URL (i .e . , Locat ion : / newpage . htm l) , the Lo

cat ion header i ndicates to the server that the redirection i s to be performed on the server

s ide wi thout sending the Locat ion header back to the c l ient . In th is case, i t appears to the

user as if the document rendered in their Web browser was the resource they requested.

The CGI specification also includes a Sta t u s header, which i nstructs the server to

output a corresponding status header l i ne (such as HTTP / 1 . 1 2 0 0 OK) . Normal ly , the

server w i l l send the appropriate status line to the cl ient (adding, for example, the 2 0 0 OK

status l i ne in most cases) . However, CGI allows programmers to change the response

status . For example, sending a

Status : 2 0 4 No Response

header indicates that, although the request was successfu l , the c l ient should not d isplay a

new page i n the browser window. This header might be useful i f you want to al low users

to submit forms w ithout relocating to a new page .

We have now covered the fundamentals of the CGI specificat ion . To review, CGI

al lows scripts to in teract wi th servers in three basic ways :

1 . through the output of headers and content to the server v ia standard output;

2 . by the server' s setting of environment variables (i nc luding the U RL-encoded

QUERY_STRING) whose values are avai lable within the script (v ia getenv); and

3. through POSTed, URL-encoded data that the server sends to the script ' s standard

i nput .

16. 13 Case Study: An Interactive Web Page
Figure 1 6 . 1 3 and Fig . 1 6 . 1 4 show the implementation of a s imple i nteract ive portal for the

fictional B ug2Bug Travel Web site. The example queries the c l ient for a name and pass

word, then d isplays information about weekly travel specials based on the data entered. For

s implicity, the example does not encrypt the data sent to the server.

906 Web Programming with CG I Chapter 1 6

Figure 1 6 . 1 3 displays the opening page . It i s a static XHTML document contain i ng a

form that POSTs data to the port a l . cgi CGI script (l i ne 1 6) . The form contain s one

fie ld each to col lect the user' s name (l i ne 1 8) and the user' s password (l i ne 1 9) . [Note: Thi s

X HTML document was p laced in the document directory of the Web server.]

Figure 1 6 . 1 4 contains the CGI script. First, let us examine how the data i s retrieved

from standard input and stored i n strings. The string l i brary find function searches

dataString (l i ne 30) for an occurrence of namebox= . Function f ind returns a loca

t ion in the string where namebox= was found. To retrieve the value assoc iated wi th

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25

< ?xml vers i on .. " 1 . 0 " ? >
< I DOCTYPE html PUBLIC " - I /W3C I / DTD XHTML 1 . 0 Transit i ona l l / EN "
'' http : / /www . w3 . org/ TR/xhtml l / DTD/xhtml l - t rans i t i onal . dtd'' >

< 1 - - Fig . 1 6 . 1 3 : travel . html - - >
< 1 - - Bug2Bug Trave l Homepage - - >

<html xmlns = '' http : / /www . w3 . org/ 1 9 9 9 / xhtml '' >
<head>

< t i t l e >Bug2 Bug Trave l < / t i t l e >
< /head>

<body>
<hl >We lcome to Bug2 Bug Trave l < /h l >

< form method .. " post " action .. " / cgi -bin /portal . cgi " >
<p>Please enter your name : < /p >
< i nput t yp e .. " t ext " name .. " namebox " / >
< i nput type .. " pas sword " name .. " pa s swordbox " / >
<p>pas sword i s not encrypted < /p>
< input type " " submit " name = " button " / >

< / form>

< /body>
< /html >

-] lhll,?lhlll l l .tvpl MICrO.,ofl lntf'I I1f't EKplmf'1 '
FIe Edt _ Favortes Tools �

Welcome to Bug2Bug Travel
Please enter your name:

IJohn l====j
password is not encrypted

I Subm� Query

Done

Fig. 1 6. 1 3 Interactive porta l to create a password-protected Web page.

Chapter 1 6 Web Programming with CGI 907

namebox=-the value entered by the user-the posit ion i n the string moves forward 8

characters . Recal l that a query string contains name-value pairs separated by equals s igns

and ampersands. To find the ending location for the data we wish to retrieve, we search for

the & character on l i ne 3 1 . The program now contains an in teger "point ing" to the start ing

locat ion. The length of the entered word i s determi ned by the calculat ion endNameloc

ation - namelocat ion. On l i nes 37-4 1 , w e assign the form-field values t o variables

nameString and pas swordString. We use nameString i n l ine 58 to output a per

sonal ized greet ing to the user. The current weekly specials are displayed i n l ines 5 8-62 . (T n

thi s example, w e inc lude this i nformation a s part o f the script.)

If the member password i s correct, addit ional specials are output (l i nes 66-67) . If the

password is i ncorrect, the c l ient i s informed that the password was inval id .

Note that we use a combination of a static Web page and a CGI scr ipt here . We could

have i ncorporated the opening X HTML form and the process ing of the data i nto a s ingle

CGI script, as we did i n previous examples in this chapter. We ask the reader to do this in

Exerc i se 1 6 . 8 .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25

Performance Tip 16.1
It is always much more efficient for the server to provide static content rather than execute

a eel script, because it takes time for the server to load the script from hard disk into mem

ory and execute the script (whereas an XHTML file needs to be sent only to the client). It is

a good practice to use a mix of static XHTM L (jor content that generally remains unchanged)

and eel scripting (for dynamic content). This practice allows the Web server to respond to

clients more efficiently than if only eel scripting were used.

I I Fig . 1 6 . 14 : portal . cpp
I I Handle s ent ry to Bug2Bug Trave l .
inc lude < iostrearn>

us ing std : : cout ;
using std : : c in;

inc lude < s tring>

us ing std : : st ring ;

#inc lude < c stdlib>

int main ()
{

char postSt ring [1 0 2 4]
string dataString = " " ;
string narneString = " " ;
string pas swordSt ring =
int contentLength = 0 ;

I I data was posted

I I .. .
I

II II .
I

i f (getenv (" CONTENT_LENGTH "))
content Length = atoi (getenv (" CONTENT_LENGTH ")) ;

Fig. 1 6. 1 4 Interactive porta l handler . (Port 1 of 3 .)

908 Web Programming with CGI

26 c in . read (postString , contentLength) ;
27 dataString = postString ;
2 8
2 9 I I search s t ring for input data

Chapter 1 6

30 int name loca t i on = da taString • f ind (" namebox= ") + 8 ;
3 1 int endNamelocat i on = dataString . f ind (" & ") ;
32
33 int pas sword = dataString . f ind (" pas swordbox= " + 1 2 ;
34 int endPas sword = dataString . f ind (" &but ton ") ;
35
36 I I get values for name and pas sword
37 nameString = dataString . substr (namelocation,
38 endNamelocat ion - namelocat ion) ;
39

40 pas swordString = dataString . substr (pas sword , endPas sword -
4 1 pas sword) ;
42

43 I I output header
44 cout « " Content -Type : text /html \ n \ n " ;
45
46 I I output XML dec laration and DOCTYPE
47 cout « n < ?xml version = \ " 1 . 0 \ n ? > "
48 « " < I DOCTYPE html PUBLIC \ n _ I /W3C I / DTD XHTML 1 . 0 "
49 « " Trans i t i onal I I EN\ " \ n http : / /www . w3 . org / TR /xhtml 1 ''
50 « n /DTD/xhtml 1 - trans itional . dtd\ " > " ;
5 1
52 I I output html e lement and some of i t s c ontent s
53 cout « n <html xmlns = \ '' http : / /www . w3 . org/ 1 9 9 9 / xhtml \ n > ,,
54 « " <head> < t i t l e >Bug2Bug Trave l < / t i t l e > < /head> "
55 « n <body> " ;
56
57 I I output spec ial s
58 cout « n <hl >Welcome " « nameString « " ! < /hl> "
59 < < " <p>Here are our weekly spec ial s : < Ip> "
60 « " < l i >Boston to Taiwan ($ 8 7 5) < / l i > n
6 1 « n < l i > S an Diego to Hong Kong ($7 5 0) < / l i > "
62 « " < l i >Chicago to Mexico City ($ 5 6 8) < / l i > < /ul > n ;
63

64 I I pas sword i s correct
65 i f (pas swordSt ring == " coast2coas t ")
66 cout « " <hr 1 > <p>Current member spec i a l : "
67 « " Seattle to Tokyo ($4 0 0) < /p> " ;
68
69 I I pas sword was incorrect
70 e l s e
7 1 c out « " <p>Sorry . You have ent ered an incorrect "
7 2 « n pas sword< /p> " ;
73
74 cout « " < / body> < /html > n ;
75 return 0 ;
76
7 7 } I I end main

Fig. 1 6. 1 4 Interactive portal handler. (Part 2 of 3.)

Chapter 1 6 Web Programming with CGI 909

Welcome John!
Here are our weddy specials:

• Boston to Taiwan ($875)
• San Diego to Hong Kong ($750)
• Chicago to Mexico City ($ 568)

Sony. You have entered an incorrect password

Welcome John!
Here are our weddy specials:

• Boston to Taiwan ($875)
• San Diego to Hong Kong ($750)
• Chicago to Mexico City (1)568)

Current member special: Seattle to Tokyo (1)400)

Fig. 1 6. 1 4 Interactive portal handler. (Part 3 of 3.)

1 6. 1 4 Cookies
I n the last two sections, we discussed two ways in which information may be passed between

programs (or executions of the same program) through a browser. Thi s section concentrates

on storing state information on the client computer with cookies. Cookies are essentially small

text files that a Web server sends to your browser, which then writes the cookies onto your

computer. Many Web sites use cookies to track a user' s progress through their s i te (as i n a

shopping-cart application) or to help customize the site for an individual user.

Cookies do not break i nto your computer, nor do they erase your hard dri ve. However,

they can be used to identify users and keep track of how often users v i s i t a site or what users

buy at a s i te . For thi s reason, cookies are considered to be a security and privacy concern .

Popular Web browsers provide support for cookies . These browsers also al low u sers who

are concerned about their privacy and security to di sable thi s support. Most major Web s i tes

use cookies . As a programmer, you should be aware of the possib i l i ty that cookies might

9 1 0 Web Programming with CGI Chapter 1 6

be disabled by your clients. Figure 1 6 . 1 5 , Fig. 1 6 . 1 6 and Fig. 1 6 . 1 7 use cookies to store and

manipulate information about a user.

Figure 1 6 . 1 5 is an XHTML page that contains a form in which values are to be input.

The form posts its information to writecookie . cgi (Fig. 1 6 . 1 6) . This program

retrieves the data contained in the CONTENT_LENGTH environment variable. Line 24 of

Fig. 1 6 . 1 6 declares and initializes string expires to store the expiration date of the

cookie (i.e., how long the cookie resides on the client's machine). This value can be a

string, like the one in this example, or it can be a relative value. For instance, + 3 0d sets the

cookie to exist for 30 days. For the purposes of this chapter the expiration date is deliber

ately set to expire in 20 1 0 to ensure that the program will run properly well into the future.

You may set the expiration date of this example to any future date as needed. The browser

deletes cookies when they expire.

1
2
3
4
5

6

7
8
9

1 0
1 1
1 2
1 3

1 4

1 5
1 6
1 7
1 8
1 9

20

2 1
22
23
24

25
26
27
28
29

30
3 1
32
33

34
35
36
37

< ?xml version = " 1 . 0 " ? >
< I DOCTYPE html PUBLIC " - / /W3 C / / DTD XHTML 1 . 0 Transit i ona l / / EN "

'' http : / /www . w3 . org/ TR/xhtml l / DTD/xhtml l -t rans i t ional . dtd'' >

< 1 - - F ig . 1 6 . 1 5 : cookie form . html - - >
< ! - - Cookie Demons trat ion - - >

<html xmlns = '' http : / /www . w3 . org/ 1 9 9 9 /xhtml '' >
<head>

< t i t l e >Writ ing a cookie to the c l i ent computer< / t it l e >
< /head>

<body>
<hl> Cl ick Write Cookie to save your cookie data . < /hl >

< f o rm method = " post "
act i on = " / cgi -bin/writecookie . cgi " >

<p >Name : <br / >
< input type = " t ext " name = " name " / >

< /p>

<p>Age : <br / >
< input type = " text " name

< /p >

<p> Favorite Color : <br / >

" age " / >

< input type = " text " name = " co l or " / >
< /p >

< p >
< input type .. " submit " name = " button " / >

< /p >
< / form>

< /body>
< /html >

Fig. 1 6. 1 5 XHTML document containing a form to post data to the seNer (Part 1 of 2 .)

Chapter 1 6 Web Programming with CG I

fie Eel: _ FOYOrtes Tools Hot>
':"' Back • � • ' FOYOrtes B/'Meda I • ..;; ..

Adchss Ii) http://IocatlostjcoolOelorm.htmi ::1 �Go r Lilks ..

Click Write Cookie to save your
cookie data.
Name:

Izoe

Age:

Favorite Color:

IRed

I Submrt Query

Done

9 1 1

Fig. 1 6. 1 5 XHTML document containing a form to post data to the server (Part 2 of 2 .)

1 II Fig . 1 6 . 1 6 : writecookie . cpp
2 I I Program to write a cookie to a c l ient ' s machine .
3 #inc lude < iostream>
4
5 using std : : cout ;
6 u s ing std : : c i n ;
7
8 #inc lud < c stdl ib>
9 #inc lude < s t ring>

1 0

1 1 us ing std : : st ring ;
1 2

1 3 int main ()
1 4 {
1 5 char query [1 0 2 4 1 = " " ;
1 6 string dataSt ring = " " ;
1 7 string nameString = " " ;
1 8 string ageString = " " ;
1 9 string colorString = " " ;
20
2 1 int contentLength = 0 ;
22
23 I I expirat ion date of cookie
24 string expires = " Friday, 1 4 -MAY- 1 0 1 6 : 0 0 : 0 0 GMT " ;
25

Fig. 1 6. 1 6 Writing a cookie. (Part 1 of 3 .)

9 1 2 Web Progra mming with CGI

26 I I data was entered
27 if (getenv (" CONTENT_LENGTH ")) {

Chapter 1 6

28 contentLength = atoi (getenv (" CONTENT_LENGTH ")) ;
29

30 I I read data from standard input
3 1 c in . read (query , contentLength) ;
32 dataString = query ;
33
34 I I search s t ring for data and store locat ions
35 int nameLocat ion = dataString . f ind (" name= ") + 5 ;
36 int endName = dataString . f ind (" &: ") ;
37
38 int ageLocat ion = dataString . f ind (" age= ") + 4 ;

39 int endAge = dataString . f ind (" &:color ") ;

40

4 1 int colorLocat ion = dataString . f ind (" color= ") + 6 ;

42 int endColor = dataString . f ind (" &:button ") ;
43
44 I I get value for user ' s name
45 nameString = dataString . substr (nameLocation, endName -
46 nameLocation) ;
47
48 I I get value for user ' s age
49 i f (ageLocat ion > 0)
50 ageString = dataString . subst r (ageLocation , endAge -
5 1 ageLocat ion) ;
52
53 I I get value for user ' s favorite color
54 i f (colorLocation > 0)
55 colorString dataString . substr (colorLocat ion ,
56 endColor - colorLocation) ;
57
58 I I set cookie
59 cout « " Set -Cookie : Name= " « nameString « " age : "

60 « ageString « " color : " « colorString

6 1 « " ; expires= " « expires « " ; path= \ n " ;

62

63 } I I end i f
64
65 I I output header
66 cout « " Content -Type : text /html \ n \ n " ;
67
68 I I output XML dec l arat ion and DOCTYPE
69 cout « " < ?xml version = \ " 1 . 0 \ " ? > "
70 « " < ! DOCTYPE html PUBLIC \ n _ I /W3C I I DTD XHTML 1 . 0 "

7 1 « " Trans i t i onal I IEN\ " \ " http : / /www . w3 . org / TR/xhtml l "
72 « " / DTD/xhtml l - t rans itional . dtd\ " > " ;
73
74 I I output html e l ement and some of i t s content s

75 cout « " <html xmlns = \ " http : / /www . w3 . org / 1 9 9 9 /xhtml \ " > "

76 « " <head > < t i t le>Cookie Saved< / t i t l e > < /head> "

77 « " <body> " ;
78

Fig. 1 6. 1 6 Writing a cookie. (Part 2 of 3.)

Chapter 1 6

79 II output user ' s informat ion

Web Progra m m i n g with CGI

80 cout « n <p > The cookies have been set with the f o l l owing n
8 1 « n data : < /p > n
82 « n <p>Name : " « nameString « n <br/ > < /p > "
83 « n <p >Age : " « ageString « n <br / > < /p > "
84 « " <p > Color : " « colorString « n <br / > < /p > n
85 « n <p > C l ick n
86 « n here < / a > to read saved cookie data : < /p > n
8 7 « " < / body> < /html > n ;
88
89 return 0 ;
90
9 1 } I I end main

J [ookle Save�Mlcro�oft lnternet Explorer __ __ - - !'\

The cookies have been set with the fonowing data:

Name: Zoe

Age:24

Color Red

Click here to read saved cookie data:

Fig. 1 6. 1 6 Writing a cookie . (Part 3 of 3 .)

9 1 3

After obtain i ng the data from the form, the program creates a cookie (l ines 59-6 I) . I n

this example, w e create a cookie by adding a l i ne of text contain ing the name-val ue pairs

of the posted data, del i mited by a colon character (:) . The l i ne must be output before the

header is written to the c l ient . The l i ne of text begins with the Set-Cookie : header, i ndi

cati ng that the browser should store the incoming data in a cookie . We set three attri butes

for the cookie : a name-value pair contain ing the data to be stored, a name-value pair con

tai n ing the expiration date and a name-value pair contai n ing the URL of the server domain

(e .g . , www . de i t e l . com) for which the cookie is val id . For thi s example, path is not set

to any value, making the cookie readable from any server in the domain of the server that

orig inal ly wrote the cookie . Lines 66-87 send a Web page i ndicating that the cookie has

been written to the c l ient . � Portabil ity Tip 16.1
Web browsers sLOre the cookie information in a vendor·specific manner. For example, Inter

net Explorer stores cookies as text files in the Temporary Internet Files directory on the

client 's machine. Netscape stores its cookies in a single file named cooki es . txt.

Figure J 6. 1 7 reads the cookie written in Fig. 1 6 . 1 6 and displays the information . When

a request i s made from the c l ient Web browser, the Web browser locates any cookies pre

viously written by the server to which the request is being made . These cookies are sent by

9 1 4 Web Programming with CGI Chapter 1 6

the browser as part of the request. On the server, the environment variable HTTP_COOKIE

stores the c l ient ' s cookies sent as part of the request. Line 20 cal l s function getenv with

the HTTP_COOKIE environment variable as the first parameter. The value returned is

stored in dataString. The name-value pairs are decoded and stored in strings on l i nes

23-36 according to the name : value encoding scheme used i n Fig. 1 6 . 1 6 . The contents

of the cookie are output as a Web page on l ines 39-58 .

r

Cookies present a security risk. If unauthorized users gain access to a computer, they can

examine the local disk and view flles, which include cookies. For this reason, sensitive data,

such as passwords, should never be stored in cookies.

1 I I Fig . 1 6 . 17 : readcookie . cpp
2 I I Program to read cookie data .
3 #inc lude < iostream>
4
5 us ing std : : cout ;
6 using s td : : c in ;
7
8 #inc lude < c stdlib>
9 #inc lude < st ring>

1 0
1 1 us ing std : : st ring ;
1 2
1 3 int main ()
1 4 {
1 5 string dataString = " " ;
1 6 string nameString = n " ;
1 7 s t ring ageString = n ,, ;
1 8 s t ring colorString = " " ;
1 9

20 dataString = getenv (" HTTP_COOKI E ") ;
2 1

22 I I search through cookie data string
23 i nt nameLocation = dataString . f ind (" Name = ") + 5 ;
24 int endName = dataString . f ind (" age : ") ;
25
26 i nt ageLocat ion = dataString . f ind (" age : ") + 4 ;
27 int endAge = dataString . f ind (" color : ") ;
28
29 int colorLocation = dataString . f ind (" co l or : ") + 6 ;
30
3 1 I I store cookie data in strings
32 nameString = dataString . substr (nameLocat ion , endName -
33 nameLocat ion) ;
34 ageString = dataString . substr (ageLocat ion , endAge -
35 ageLocat ion) ;
36 colorString = dataString . subst r (colorLocat ion) ;
37
38 I I output header
39 cout « " Content -Type : text /html \ n \ n " ;
40

Fig. 1 6. 1 7 Program to read cookies from the client 's computer . (Part 1 of 2 .)

Chapter 1 6 Web Programming with CGI

4 1 / / output XM L dec larat ion and DOCTYPE
42 cout « " < ?xml ver s i on = \ " 1 . 0 \ " ? > "
43 < < " < ! DOCTYPE html PUBLIC \ " - / /W3C / / DTD XHTML 1 . 0 "

44 « " Trans i t i onal / / EN\ " \ " http : / /www . w3 . org/ TR/xhtml 1 ''
45 « " / DTD/xhtml 1 - trans i t i onal . dtd\ " > " ;
46
47 / / output html e l ement and some of i t s content s
48 cout « " <html xmlns = \ '' http : / /www . w3 . org/ 1 9 9 9 / xhtml \ " > ''
49 « " <head> < t i t l e>Read Cookies < / t i t l e > < /head> "
50 « " <body> " ;
51
52 // data was found
53 if (dataString ! = " ")

9 1 5

54 cout « " <h3 >The following data i s saved in a cookie on "
55
56
57

58
59

« " your computer < /h3 > "
« " <p>Name :
« " <p>Age : "
« " <p >Color :

60 / / no data was found
6 1 e l s e

" « nameString
« ageString

" « colorString

62 c out « " <p >No cookie data . < /p> " ;
63
64 cout « " < /body> < /html > " ;
65
66 return 0 ;
67

« " <br/ > < /p > "
« " <br/ > < /p > "
« " <br/ > < /p > " ;

The foUowin, data is saved in a cookie on your computer

Name: Zoe

Age: 24

Color: Red

Done rr: I @Localntr.-t

F ig. 1 6. 1 7 Program to read cookies from the client's computer. (Part 2 of 2.)

1 6. 1 5 Server-Side Files
The other mechan i sm by which to maintain state i nformation is to create server-side files

(i . e . , fi les that are located on the server or on the server' s network) . This mechanism is a

s l ightly more secure method by which to maintain vital information . I n th i s mechan i sm,

on ly someone with access and permiss ion to change fi les on the server can alter fi les .

Figure 1 6 . 1 8 and Fig . 1 6 . 1 9 ask users for contact information then store i t on the server.

The fi le that i s created by the script i s shown in Fig. 1 6 .20.

9 1 6 Web Programming with CGI Chapter 1 6

The XHTML document i n Fig. 1 6 . 1 8 posts the form data to the cor script i n

Fig . 1 6 . 1 9 . I n the COl script, l i nes 46- 1 06 decode the parameters that were sent b y the

c l i en t . L ine 1 23 creates an instance of the output fi le stream (out F i l e) that opens a fi l e

for append ing . If the fi l e c l ient s . txt does not ex i s t , i t i s created . L ines 1 3 2- 1 36

output the personal i nformat ion to the fi le . (See Fig . 1 6 . 20 for the contents of the fi l e .)

The remainder o f the program outputs a n XHTML document that summarizes t h e user ' s

i nformat ion .

There are a few important points to make about th i s program. First, we do not perform

any val idat ion on the data before writ ing the data to disk. Normal ly , the script would check

for bad data, i ncomplete data, etc . Second, our fi le i s located i n the cgi-bin directory,

which i s publ ic ly accessible . If someone knew the fi lename, i t would be rel at ively easy to

access someone e lse ' s contact information .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38

< ?xml vers ion = " 1 . 0 " ? >
< ! DOCTYPE html PUBLIC " - I IW3C I IDTD XHTML 1 . 0 Tran s i t i onal l lEN "
'' http : / /www . w3 . org / TR/xhtml l / DTD/xhtml l - t rans i t i onal . dt d '' >

< ! - - Fig . 1 6 . 1 8 : save f i l e . html - - >
< ! - - Form t o input c l i ent informat ion - - >

<html xmlns = " ht tp : / /www . w3 . org/ 1 9 9 9 /xhtml '' >
<head>

< t i t l e > Please enter your contact information< / t it l e >
< /head>

<body>
<p> P l ease enter your information in the form be low . < /p >
<p> Note : You must f i l l in a l l f i e lds . < /p >
< form method = " post "

act ion = " / cgi -bin / s ave f i l e . cgi " >
<p>

First Name :
< input type
Last Name :
< input type

< /p >

<p>
Addre s s :
< input type
<br I >
Town :
<input type
State :
< input type
<br / >
Z ip Code :
<input type
Country :
<input type

< /p >

" text " name " fi rstname " s i z e = " 1 0 " I >

" text " name " lastname " s i z e = " 1 5 " I >

" text " name " addre s s " s i z e " 2 5 " I >

" text " name " town " s i z e = " 1 0 " I >

" text " name " s tate " s i z e = " 2 " I >

" text " name " z ipcode " s i z e " 5 " I >

" text " name " country" s i z e " 1 0 " I >

Fig. 1 6. 1 8 XHTM L document to read user 's contact information . (Part 1 of 2 .)

Chapter 1 6

39 <p>
40 E -ma i l Addres s :

Web Programming with CGI

4 1 < input type " text " name = " emai l " I >
42 < /p >
43 < input type " submi t " value = " Ente r " I >
44 < input type " reset " value = " Clear " I >
45 < / for.m>
46 < /body>
47 < /html >

N ole: You must IiII in a11 6elds_

First Name: IJane

Address: 11 23 Main Street
Last Name: IOoe

Town: IBoston Slate: IMA
Zip Code: 11 2345 Couolry: II':""U"'SA-:----

Fig. 1 6. 1 8 XHTM L document to read user 's contact information , (Part 2 of 2 ,)

9 1 7

Thi s script i s not robust enough for deployment on the In ternet, but i t does provide

an example of the use of server- s ide fi les to store i nformat ion . Once the files are stored

on the server, users cannot change the fi les unless they are al lowed to do so by the server

admin i strator. Thus , storing these fi les on the server is safer than storing user data i n

cookies . [Note: Many systems store user informat ion i n password-protected databases for

higher levels of security .]

1 I I Fig . 1 6 . 1 9 : save f i l e . cpp
2 I I Program to ent er user ' s contact informat i on into a
3 I I serve r - s ide f i l e .
4
5 # inc lude < iostream>
6
7 us ing s td : : cerr ;

Fig. 1 6. 1 9 Creating a server-side fi le to store user data , (Part 1 of 5 ,)

9 1 8

8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33

34
35
36
37
38
39
40
4 1
42
43

44
45
46
47
48
49
50
5 1
52
53

54
55
56
57
58
59
60

Web Prog ramming with CGI

us ing std : : cout ;
us ing std : : c in ;
us ing std : : ios ;

#inc lude < f st ream>

us ing std : : o f s t ream;

#inc lude < string>

us ing std : : string ;

#inc lude < c stdlib>

int main ()

{
char postSt ring [1 0 2 4]
int contentLength = 0 ;

II .. . ,

I I variables to store user data
st ring dataString = " " ;
string f irstname = n " ;
s t ring lastname = " " ;
string addre s s = " " ;
string town = " " ;
string state =

string z ipcode
string country
string ema i l =

li n . ,
= 11 11 ;

= " " i
" " . ,

I I data was posted
i f (getenv (" CONTENT_LENGTH "))

Chapter 1 6

contentLength = atoi (getenv (n CONTENT_LENGTH ")) ;

c i n . read (pos t String , contentLength) ;
dataString = postString ;

/ 1 search f o r f i rst ' + ' character
int charLocat ion = dataString . f ind (" + ") ;

I I search for next ' + ' character
whi l e (charLocat ion < string : : npos) {

dataString . replace (charLocation , 1 , " ") ;
charLocation = dataString . f ind (" + " , charLocat ion + 1) ;

/ 1 end whi l e

I I f ind locat i on of f irstname
int f i rstStart = dataString . f ind (" f irstname = ") + 1 0 ;
int endFirst = dataString . f ind (" &:lastname ") ;

f i r stname = dataString . substr (first Start ,
endFirst - f irst Start) ;

Fig. 1 6. 1 9 Creating a seNer-side fi le to store user data . (Part 2 of 5.)

Chapter 1 6

6 1 II f i nd locat i on o f lastname

Web Programming with CGI

62 int lastStart = dataString . f ind (" lastname = " } + 9 ;
63 int endLast = dataString . find (" &addres s " } ;
64
65 lastname = dataSt ring . substr (lastStart ,
66 endLas t - last Start } ;
67
68 II f i nd locat ion of address
69 int addre s s Start = dataString . f ind (" addre s s = " } + 8 ;
70 int endAddre s s = dataString . f ind (" &town " } ;
7 1
72 addre s s = dataString . subst r (addres sStart ,
73 endAddre s s - addre ss Start } ;
74
75 II f i nd locat ion o f town
76 int townStart = dataString . f ind (" town= ") + 5 ;
77 int endTown = dataString . f ind (" & state ") ;
78
79 town = dataString . substr (townStart , endTown - t ownStart } ;
80
8 1 I I f ind locat i on o f state
82 int stateStart = dataString . f ind (" state= " } + 6 ;
83 int endState = dataString . f ind (" & z ipcode " } ;
84
85 state = dataString . subst r (stateStart ,
86 endState - stateStart } ;
87
88 II f i nd locat ion of z ip code
89 int z ipStart = dataString . f ind (" z ipcode = " } + 8 ;
90 int endzip = dataString . f ind (" &country " } ;
9 1

9 1 9

92 z ipcode = dataString . substr (z ipStart , endz ip - z ipStart } ;
93
94 II f i nd locat i on of count ry
95 int countryStart = dataString . f ind (" count ry= " } + 8 ;
96 int endCount ry = dataString . find (" &ema i l ") ;
97
98 country = dataString . subst r (count ryStart ,
99 endCount ry - countryStart } ;
1 00
1 0 1 1 / f ind locat i on o f e -mai l address
1 02 int ema i l S tart = dataString . f ind (" ema i l = " + 6 ;
1 03 int endEmai l = dataString . find (" & submi t " } ;
1 04
1 05 ema i l = dataString . substr (ema i l Start ,
1 06 endEmai l - ema i l Start } ;
1 07
1 08 II output header
1 09 cout « " Content - Type : text /html \ n \ n " ;
1 1 0

Fig. 1 6. 1 9 Creating a server-side file to store user data . (Port 3 of 5 .)

920 Web Programming with CGI

1 1 1 I I output XML dec larat ion and DOCTYPE
1 1 2 cout « " < ?xml version = \ " 1 . 0 \ " ? > "

Chapter 1 6

1 1 3 « " < I DOCTYPE htm1 PUBLIC \ " - / /W3C / /DTD XHTML 1 . 0 "
1 1 4 « " Tran s i t iona 1 / I EN\ " \ '' http : / /www . w3 . org / TR/xhtm1 1 ''
1 1 5 « " /DTD/xhtml 1 -trans it ional . dtd\ n > ,, ;
1 1 6
1 1 7 I I output html e lement and some of i t s c ontent s
1 1 8 cout « n <html xm1ns = \ n http : / /www . w3 . org/ 1 9 9 9 /xhtml \ n > n
1 1 9 « " <head> < t i t l e>Contact Informat ion entered "
1 20 « n < / t i t l e > < /head> <body> n ;
1 2 1
1 22 / 1 output to f i l e
1 23 of s t ream outFi 1 e (" c 1 ient s . txt n , ios : : app) ;
1 24
1 25 / 1 f i l e was not opened properly
1 26 if (! outFi le) {
1 27 cerr « " Error : could not open contact f i le . " ;
1 28 exit (1) ;
1 29 I I end i f
1 30

1 3 1 1 / append data to c 1 ient s . txt f i l e
1 32 out F i l e « f i r stname « " n « 1astname « n \n "
1 33 « addre s s « n \n " « town «
1 34 « state « " n « country «
1 35 « z ipcode « n \ n " « ema i l
1 36 « " \ n \ n n ;
1 37
1 38 I I output data to user
1 39 cout « " <t abl e > < tbody> "
1 40 « n <t r > <td>First Name : < / td > < td> "
1 4 1 « f i r stname « " < /td> < / t r > n
1 42 « n <t r > <td>Last Name : < / td > < td> "
1 43 « 1astname « " < /td> < / tr> "
1 44 « n <tr> < td>Addres s : < / td > < td> n
1 45 « addre s s « n < /td> < / t r> n
1 46 « n <t r > <td>Town : < / td> < td> n
1 47 « town « n < / td> < / t r> n
1 48 « n < t r > < td>State : < / td > < td> n
1 49 « state « n < / td> < / t r > n
1 50 « n <t r > <td>Zip Code : < / td> <td> n
1 5 1 « z ipcode « n < / td> < / tr> n
1 52 « n <t r > <td>Country : < / td > < td> n
1 53 « country « n < /td> < / t r > "
1 54 « n <t r > <td>Emai l : < / td> < td> n
1 55 « ema i l « n < /td> < / tr> "
1 56 « " < / tbody> < / table> "
1 57 « n < / body> \n< /html > \n " ;
1 58
1 59 return 0 ;
1 60
1 6 1 } / 1 end main

Fig. 1 6. 1 9 Creating a server-side fi le to store user data . (Part 4 of 5 .)

Chapter 1 6

First Name: Jane

Last Name: Doe

Address: 123 Main Street

Town: Boston

State: MA
Zip Code: 12345

Counl:!y USA

Email: jane@doe. com

Done

Web Programming with CGI

Fig. 1 6. 1 9 Creating a server-side fi le to store user data . (Part 5 of 5.)

Jane Doe
1 2 3 Main S t reet
Boston MA USA 1 2 3 4 5
j ane@doe • com

Fig. 1 6. 20 Contents of client s. txt data fi le.

1 6. 1 6 Case Study: Shopping Cart

=

92 1

Many bus inesses ' Web s i tes contai n shopping-cart appl icat ions , which a l low customers

to buy i tems convenient ly on the Web. The sites record what the consumer wants to pur

chase and provide an easy, i n tu i t ive way to shop on l ine . They do so by us ing an e lectron ic
shopping cart, j ust as people would use physical shopping carts i n reta i l stores . As users

add i tems to their shopping carts , the sites update the carts ' contents . When users "check

out," they pay for the items i n the i r shopping carts . To see a real -world e lectron ic shop

p ing cart , we suggest going to the on l i ne bookstore Amaz on . c om (www . ama

zon . com) .

The shopping cart implemented in this sect ion (Fig . 1 6 . 2 1 -Fig . 1 6 .24) a l lows users to
purchase books from a fict it ious bookstore that se l ls four books (see Fig. 1 6 . 23) . Thi s
example uses four scripts, two server-side fi les and cookies .

Figure 1 6 . 2 1 shows the fi rst of these scripts, the login page. Th i s scr ipt i s the most
complex of a l l the scripts i n this sect ion. The fi rst if condit ion (l ine 39) determines
whether data was posted to the program. The second if condit ion (l ine 70) determines
whether the dataString was set (i . e . , the decoding completed successfu l ly) . The first
t ime we run this program, both conditions fai l , so l i nes 75-86 output an XHTML form to
the user, as shown in the fi rst screen capture of Fig. 1 6 .2 1 . When the user fi l l s out the form
and cl icks the login button, login . cgi is requested agai n .

922 Web Programming with CGI Chapter 1 6

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33

34
35
36
37
38
39
40
4 1
42
43

44
45
46
47
48
49
50
5 1
52
53

I I Fig . 1 6 . 2 1 : login . cpp
I I Program to output an XHTML for.m, ver i fy the
/ / username and pas sword entered , and add members .
inc lude < iostream>

us ing std : : cerr ;
us ing std : : cout ;
using std : : c in;
using std : : ios ;

inc lude < f stream>

us ing std : : i f s t ream;
us ing std : : o f s t ream;

#inc lude < string>

us ing std : : string ;

include < c stdl ib>

void header () ;
void writeCookie () ;

int main ()
{

char query [1 0 2 4] = " " ;
st ring dataSt ring = " " ;

I I strings to store username and pas sword
string userName
s t ring pas sWord
string newCheck

.. I I ;

.. II • ,

.. .. ;

int content Length = 0 ;
int endPas sword = 0 ;

I I data was posted
i f (getenv (" CONTENT_LENGTH ")) {

1 / retrieve query st ring
contentLength = atoi (getenv (" CONTENT LENGTH ")) ;
c in . read (query , contentLength) ;
dataString = query;

/ 1 f ind username locat ion
i nt userLocat ion = dataString . f ind (" user= ") + 5 ;
int endUser = dataString . f ind (" & ") ;

/ / f ind pas sword locat ion
int pas swordLocat ion = dataString . f ind (" pas sword= "

endPas sword = dataString . f ind (" &new ") ;

Fig. 1 6.2 1 Program that outputs a login page. (Part 1 of 7 .)

) + 9 ;

Chapter 1 6 Web Programming with CGI

54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1
82
83
84
85
86
87
88
89
90
9 1
92
93
94
95
96
97
98
99
1 00
1 0 1
1 02
1 03
1 04
1 05
1 06

Fig. 1 6.2 1

I I new membership requested
i f (endPas sword > 0)

pas sWord = dataString . substr (pas swordLocation,
endPas sword - pas swordLocat ion) ;

I I exi st ing member
e l s e

pas sWord = dataString . substr (pas swordLocat ion) ;

userName = dataString . substr (userLocat i on , endUser -
userLocat ion) ;

} I I end i f

I I n o data was retrieved
if (dataString == " ") (

header () ;
c out « " <p > P l ease login . < /p> " ;

I I output login form
c out « " < form method = \ " post \ " "

«
«

" ac t i on = \ " / cgi -bin / l ogin . cgi \ " > <p> "
" User Name : "

«
«

" < input type \ " text \ " name = \ " u s e r \ " I > <br / > "
" Pas sword : "

«
«
«
«
«
«
«

} I I end i f

" < input type \ " pas sword \ " "
" name = \ " pas sword \ " I > <br / > "
" New? < input type = \ .. checkbox\
.. name = \ " new\ " "
" value = \ " l \ " I > < /p> "
" < input type = \ " submit \ .. value
" < / form> " ;

I I proc e s s entered data
e l s e {

/ 1 add new member
i f (endPas sword > 0)

s t ring f i l eUsername " " ;
s t ring f i lePassword " " ;
bool nameTaken = false ;

1 / open pas sword f i l e

\ " login\ " I > "

i f s t ream userData ("userdata . txt " , i os : : in) ;

/ 1 could not open f i le
i f (! userData) (

cerr « " Could not open databas e . " ;
exit (1) ;

} I I end i f

Program that outputs a login page . (Part 2 of 7 .)

923

924

1 07

1 08

1 09

1 1 0

1 1 1

1 1 2

1 1 3

1 1 4

1 1 5

1 1 6

1 1 7

1 1 8

1 1 9

1 20

1 2 1

1 22

1 23

1 24

1 25

1 26

1 27

1 28

1 29

1 30

1 3 1

1 32

1 33

1 34

1 35

1 36

1 37

1 38

1 39

1 40

1 4 1

1 42

1 43

1 44

1 45

1 46

1 47

1 48
1 49

1 50

1 51

1 52

1 53

1 54

1 55

1 56
1 57

1 58

1 59

Web Programming with CGI Chapter 1 6

I I read username and pas sword f rom f i l e
while (userData » f i l eUsername » f i lePa s sword) {

I I name i s already taken
if (userName == f i l eUsername

name Taken = true ;

} I I end whi l e

I I user name i s taken
if (nameTaken) {

header () ;
cout « " <p>Thi s name has already been taken . < /p > "

« " "
« " Try Again< /a> " ;

} / I end i f

I I proc e s s data
else {

I I wr ite cookie
writeCookie () ;
header () ;

I I open user data f i l e
of s t ream userData ("userdata . txt " , ios : : app) ;

I I could not open f i le
if (! userData) {

cerr « " Could not open database . " ;
exi t (1) ;

} / I end i f

I I write user data t o f i l e
userData « " \n " « userName « " \n " « pas sWord ;

cout « " <p>Your information has been proce s sed . "
« " <a hre f = \ " / cgi -bin/ shop . cgi \ " > "
« " Start Shopping< / a > < /p> " ;

} I I end e l se
} / I end i f

I I search for pas sword i f entered
e l s e {

I I strings to store username and pas sword f rom f i le
string f i leUsername = " " ;
string f i lePassword = " " ;
bool authent icated = false ;
bool userFound = false ;

Fig. 1 6.21 Program that outputs a login page. (Part 3 of 7.)

Chapter 1 6

1 60 I I open pas sword f i l e

Web Programming with CGI

1 6 1 i f s t ream userData (u userdata . txt U , ios : : in) ;
1 62

1 63 I I c ould not open f i le
1 64 i f (! userData) {
1 65 cerr « U Could not open database . n ;
1 66 exit (1) ;
1 67 I I end i f
1 68

1 69 I I read in user data
1 70 while (userData » f i l eUsername » f i l ePas sword) {
1 7 1

1 72 I I username and pas sword match
1 73 i f (userName == f i l eUsername &&
1 74 pas sWord == f i lePassword)
1 75 authent icated = t rue ;
1 76

1 77 I I username was found
1 78 if (userName == f i l eUsername
1 79 userFound = true ;
1 80 I I end whi le
1 8 1

1 82 I I user i s authent icated
1 83 i f (authent icated) {
1 84 writeCookie () ;
1 85 header () ;
1 86

1 87 c out « u <p>Thank you for returning , U
1 88 « userName « U ! < /p > u
1 89 « U u
1 90 « " Start Shopping < / a > " ;
1 9 1 } / I end i f
1 92

1 93 I I user not authent icated
1 94 else {
1 95 header () ;
1 96

1 97 I I pas sword i s incorrect
1 98 if (userFound
1 99 cout « u <p>You have entered an incorrect U
200 « " pas sword . Please t ry again . < / p > u
20 1 « U <a hre f= \ U / cgi -bin/ login . cgi \ u > "
202 « " Back to login< / a > u ;
203

204 I I user i s not regi stered
205 e l se

925

206 cout « " <p>You are not a regi s tered user . < /p > u
207 « U u
208 « U Regi ster< / a > " ;
209

2 1 0 } I I end el se
2 1 1 } I I end e l s e
2 1 2 I I end i f

Fig. 1 6.21 Program that outputs a login page. (Part 4 of 7 .)

926 Web Programming with CGI

2 1 3
2 1 4 c out « " < /body> \ n< /html > \n " ;
2 1 5 return 0 ;
2 1 6
2 1 7 I I end main
2 1 8
2 1 9 I I funct ion to output header
220 void header ()
22 1 {
222 I I output header
223 cout « "Content -Type : text /html \ n \ n " ;
224
225 I I output XML dec larat ion and DOCTYPE
226 cout « " < ? xml version = \ " 1 . 0 \ " ? > "

Cha pter 1 6

227 < < " < ! DOC TYPE html PUBLIC \ " - I IW3C I I DTD XHTML 1 . 0 "
228 « " Trans itional I I EN\ " \ '' http : / /www . w3 . org/TR/xhtml 1 ''
229 « " / DTD/xhtml 1 - t rans itional . dtd\ " > " ;
230
23 1 I I output html e l ement and some of it s c ontent s
232 cout « " <html xmlns = \ '' http : / /www . w3 . org/ 1 9 9 9 / xhtml \ '' > ''
233 « " <head> < t i t le > Login Page < / t i t l e > < /head> "
234 « " <body> " ;
235
236 } I I end header
237
238 I I func t i on to write cookie data
239 void writeCookie ()
240 {
24 1 s t ring expires = " Friday , 14 -MAY- 0 4 1 6 : 0 0 : 0 0 GMT " ;
242 cout « " Se t - Cooki e : CART= ; expire s = "
243 « expires « " ; path= \ n " ;
244
245 } I I end writeCookie

Please login.

User Name: I
Password: I r '-------
New? r

Local iltranot

Fig. 1 6. 2 1 Program that outputs a login page. (Part 5 o f 7 .)

Chapter 1 6 Web Programming with CGI

!I t (JlIIII Pdl)e Microsoft Internpt [)cplnrel

Flo Edt

� Bac:k •

�����=---�----����
Address

Ple ase login

User Name: IBernard
Password: rl-:.-------
New? P'

� local intronet

' , . "

Address 1
Your information has been processed Start Shoppmg

Dono r � [I" � local intronet

Flo Edt View Favorites Tools �

'This name has already been taken.

Dono rrr � local intronet

Fie Edt View Favor�es Tools Ho\o

� Back • !!l !i:1 1 @Search

Address

You have entered an incorrect pas sword. Please try again.

Back to loW

, Dono

::J
DC � local intronet ---;:;;'

Fig. 1 6. 2 1 Program that outputs a login page . (Part 6 of 7 .)

927

928 Web Programmi ng with CGI

You are not a registered user.

Fig. 1 6.2 1 Program that outputs a login page. (Port 7 of 7 .)

Chopter 1 6

If the user checked the New checkbox on the Web page to create a new membership ,

the condit ion on l i ne 94 eval uates to true. Next , we open userdata . txt (l i ne 1 00)

the fi le that contains al l the usernames and passwords. Lines 1 09- 1 1 5 read through this fi le ,

comparing each username with the name entered . I f the name i s already in the l i st , l i nes

1 20- 1 22 output a message to the user indicat ing that the name has been taken , and a l ink

to the form i s provided. Otherwise , the new user i s added to the l i st . The fi le i s opened again

on l i ne B3-thi s t ime for appending. Line 1 42 adds the new user information to user

data . txt i n the format

Bernard
Jone s

Each username and password is separated by a newl ine character. Lines 1 44- 1 46 provide

a hyperlink to the script of Fig. 1 6 .22 , which al lows users to purchase i tems .

The last poss ible scenario for th is script i s for return ing users (l i nes 1 52-2 1 1) . Thi s

port ion o f the program executes when the user enters a name and password b u t does not

select the New checkbox (i . e . , the e l s e of l i ne 1 52 is evaluated) . In this case, we assume

that the user already has a username and password i n userdata . txt . Lines 1 70- 1 80

read through userdata . txt i n an attempt to locate the username entered. If the user

name i s found and the password entered i s correct (l ines 1 73- 1 74) , boolean variable

authenticated is set to true. Line 1 83 determi nes whether the user has been

authenticated. Function writeCookie i s cal led to i n i t ia l i ze the cookie and to remove

ex i st ing data from prior sess ions (l ine 1 84) . The cookie , which is named CART (l i ne 242) ,

i s used by other scripts to store book i nformat ion . A message i s output welcoming the

user back to the Web s i te and provid ing a l ink to purchase books (shop . c g i) on l i nes

1 87- 1 90 .

If the user was not authenticated, the program determi nes whether the u ser was found

(l i ne 1 98) . If the user was found but not authenticated, a message i s output i ndicat ing that

the password is i nval id . A hyperl ink i s provided to the login page « a hre f = " /cgi

bin/ login . cgi II » , where the user can attempt to login again . I f neither the username

nor the password were found, an unregi stered user has attempted to sign on (l i ne 205) . A

message i s output i ndicat ing that the user does not have the proper authorizat ion to access

the page, and l i nes 206-208 provide a l i nk that a l lows the user to attempt another logi n .

Figure 1 6 .22 uses the values in catalog . txt (Fig . 1 6 .25) t o output the i tems that

the user can purchase . The while structure (l i nes 73-93) outputs a table contain ing the

items. The last column for each row i nc ludes a button for adding the item to the shoppi ng

Chapter 1 6 Web Programming with CGI 929

cart. Hidden form fie lds are specified for each book and its associated i nformation . Lines

73-77 output the different values for each book, and l i nes 83-93 output a form contain ing

submit buttons for purchasing books.

When a user purchases a book, the viewcart . cgi script i s requested, and the ISBN

for the book to be purchased is sent to the script. Figure 1 6 .23 beg ins by reading the value

of the cookie stored on the user' s system on l i ne 38. Any exist ing cookie data i s stored in

string cookieString (l i ne 39) . The entered I SBN number from the form of

Fig. 1 6 .22 i s stored i n string isbnEntered (l i ne 54) . The script determines whether

the cart already contain s data (l i ne 65) . If not, the cookieString is given the value of

the entered ISBN number (l i ne 66). If the cookie already contain s data, the e ntered ISBN

is appended to the ex i st ing cookie data (line 70). The new book i s stored in the CART cookie

on l i nes 73-74. The cart ' s contents are output i n a table by cal l i ng function output Books

(l i ne 95) .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36

I I Fig. 16 . 2 2 : shop . cpp
I I Program to display available books.
#include < iostream>

using std::cerr;
using std::cout;
using std: :cin;
using std::ios;

#include < istream>

#include <fstream>

using std::ifstream;
using std::ofstream;

#include <string>

using std::string;

#include <cstdlib>

void header() ;

int main ()
{

I I variables to
char book[5 0

char year[5 0]
char isbn [5 0]

store product information
.. II. ,

= .. n;

= II ";
char price[5 0] = "";

string
string
string
string

bookString
yearString
isbnString

"'1. ,
.. II. ,
, . .. ;

priceString = " ";

Fig. 1 6.22 CGI scr ipt that a l lows users to buy a book. (Port 1 of 3 .)

930 Web Programming with CGI

37
38 bool name Taken = falsei

39
40 II open file for input
4 1 ifstream userData("catalog. txt", ios: :in) i
42
43 II file could not be opened
44 if (! userData) {
45 cerr « "Could not open database . "i
46 exit (1) i
47 } II end if
48
49 header() i II output header
50
5 1 II output available books
52 cout « "<center><brl>Books available for sale<brl>"
53 « "Sign OUt"
54 « "<brl><brl>"

Cha pter 1 6

55 « "<table border = \"1\" cellpadding = \"7\" >"i
56
57 II file is open
58 while (userData) {
59
60 II retrieve data from file
6 1 userData.getline(book , 5 0) i
62 bookString = booki
63
64 userData . getline(year , 5 0) i
65 yearString = yeari
66
67 userData . getline(isbn , 5 0) i
68 isbnString = isbni
69
70 userData . getline(price , 5 0) i
7 1 priceString = pricei
72

cout « n<tr>"
« "<td>" « bookString
« n<td>" « yearString
« "<td>" « isbnString
« "<td>" « priceString

«
«
«

"<ltd>"
"<ltd>"
"<ltd>"

« "</td>"i

73
74
75
76
77
78
79
80
8 1

II file is still open after reads
if (userData)

82 II output form with buy button
83 cout « "<td><form method=\"post\" "
84 « "action=\"/cgi-bin/viewcart.cgi\">"

85 « "<input type = \ "hidden\" name = \ "add\""
86 « "value=\ "true\" I >n
87 « "<input type=\nhidden\n name=\nisbn\""
88 « "value=\"" « isbnString « "\"1>"
89 « "<input type=\ " submit \ "n

Fig. 1 6.22 CGI script that a l lows users to buy a book . (Part 2 of 3,)

Chapter 1 6 Web Programming with CGI

90 « "value=\"Buy\"I>\n"

9 1 « "</form></td>\n" ;

92
93 cout « "</tr>\n" ;
94
95 } II end while
96
97 cout « "</table></center></body></html>" ;
98 return 0 ;
99
1 00
1 0 1 II function to output header information
1 02 void header ()
1 03 {
1 04 II output header
1 05 cout « "Content-Type: text/html \n\n" ;
1 06
1 07 II output XML declaration and DOC TYPE
1 08 cout « "<?xml version = \"1.0\"?>"
1 09 « "< ! DOCTYPE html PUBLIC \"-IIW3CIIDTD XHTML 1.0 "
1 1 0 « "Transitionall IEN\" \ '' http://www.w3 .org/TR/xhtml1"
1 1 1 « "/DTD/xhtml1-transitional.dtd\">" ;
1 1 2
1 1 3 II output html element and some of its contents
1 1 4 cout « "<html xmlns = \ '' http://www.w3 .orgl1999/xhtml \ ">"
1 1 5 « "<head><title>Login Page</title></head>"
1 1 6 « "<body>" ;
1 1 7 } II end header

Fig. 1 6.22 CGI scr ipt that a l lows users to buy a book. (Part 3 of 3 .)

93 1

Figure 1 6 . 24 a l lows the user to log out of the shopping-cart appl ication . Thi s script

outputs a message to the user and cal l s wri teCookie (line 20), thus eras ing the current

i nformation in the shopping cart .

1 II Fig. 1 6.2 3: viewcart.cpp
2 II Program to view books in the shopping cart.
3 #include <iostream>
4
5 using std::cerr ;
6 using std::cout ;
7 using std::cin ;
8 using std::ios ;
9

1 0 #include <istream>
1 1
1 2 #include <fstream>
1 3
1 4 using std::ifstream;
1 5 using std::ofstream ;
1 6

Fig. 1 6.23 CGI scr ipt that a l lows users to view their carts' content. (Part 1 of 5 .)

932

1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67

Web Programming with CGI

#include <string>

using std::string ;

#include <cstdlib>

void output Books (const string &, const string &) ;

int main ()

{
II variable to store query string
char query[102 4] = "";
char *cartData ; II variable to hold contents of cart

string dataString = "";
string cookieString = "";
string isbnEntered = "";
int contentLength = 0;

II retrieve cookie data
if (getenv("HTTP_COOKIE")) {

cartData = getenv("HTTP_COOKIE") ;
cookieString = cartData ;

} II end if

II data was entered
if (getenv("CONTENT_LENGTH")) {

Chapter 1 6

contentLength = atoi(getenv("CONTENT_LENGTH")) ;
cin . read(query, content Length) ;
dataString = query ;

II find location of isbn value
int addLocation = dataString . find("add=") + 4 ;
int endAdd = dataString . find("&isbn") ;
int isbnLocation = dataString . find("isbn=" + 5 ;

II retrieve isbn number to add to cart
isbnEntered = dataString . substr(isbnLocation) ;

II write cookie
string expires = " Friday, 14-MAY-10 1 6:00:00 GMT";

int cartLocation = cookieString . find("CART=") + 5 ;

II cookie exists
if (cartLocation > 0)

cookieString = cookieString . substr(cartLocation) ;

II no cookie data exists
if (cookieString == "")

cookieString = isbnEntered ;

Fig. 1 6.23 CGI script that a l lows users to view their carts' content. (Part 2 of 5 .)

Chapter 1 6 Web Programming with CGI 933

68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1
82
83
84
85
86
87
88
89
90
9 1
92
93
94
95
96
97
98
99
1 00
1 0 1
1 02
1 03
1 04
1 05
1 06
1 07
1 08
109
1 1 0
1 1 1
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7

II cookie data exists
else

cookieString +=

II set cookie

" " , + isbnEntered ;

cout « "Set-Cookie: CART=" « cookieString « " ; expires="
« expires « " ; path=\n" ;

} I I end if

II output header
cout « "Content-Type: text/html\n\n" ;

II output XML declaration and DOC TYPE
cout « "<?xml version = \"1 . 0\"?>"

« "< ! DOCTYPE html PUBLIC \"-IIW3CIIDTD XHTML 1.0 "
« "TransitionalIIEN\" \'' http://www.w3.org/TR/xhtml1''
« "/DTD/xhtml1-transitional . dtd\">" ;

// output html element and some of its contents
cout « "<html xmlns = \'' http://www . w3 . org/1 9 9 9 /xhtml\'' >''

« "<head><title>Shopping Cart</title></head>"
« "<body><center>"
« "<p>Here is your current order:</p>" ;

II cookie data exists
if (cookieString ! = ""

output Books (cookieString, isbnEntered) ;

cout « "</body></html>\n" ;
return 0 ;

// end main

1/ function to output books in catalog . txt
void outputBooks(const string &cookieRef, const string &isbnRef)

{
char book [50
char year [50
char isbn[50
char price [50]

string bookString
string yearString
string isbnString

II .. . ,
11 11 • ,
.. .. ;

= "" ;

11 11 • ,
II II ;
11 11 • ,

string priceString = "" ;

II open file for input
ifstream userData ("catalog . txt", ios:: in) ;

Fig. 1 6.23 CGI scr ipt that al lows users to view their carts' content. (Part 3 of 5 ,)

934 Web Programming with CGI

1 1 8 II file could not be opened
1 1 9 if (! userData) {
1 20 cerr « "Could not open database . " ;
1 2 1 exit (1) ;
1 22 II end if
1 23
1 24 II output link to log out and table to display books
1 25 cout « "Sign Out" ;
1 26 cout « "

";
1 27 cout « "<table border = 1 cellpadding = 7 >";
1 28
1 29 II file is open
1 30 while (userData) {
1 3 1
1 32 II retrieve book information
1 33 userData . getline { book , 50) ;
1 34 bookString = book ;
1 35
1 36 II retrieve year information
1 37 userData . getline { year , 50);
1 38 yearString = year ;
1 39
1 40 II retrieve isbn number
1 4 1 userData . getline { isbn , 50) ;
1 42 isbnString = isbn ;
1 43
1 44 II retrieve price
1 45 userData . getline { price , 50) ;
1 46 priceString = price ;
1 47
1 48 int match = cookieRef . find { isbn) ;
1 49
1 50 II match has been made
1 5 1 if (match > 0 I I isbnRef == isbnString) {
1 52
1 53 II output table row with book information

cout « "<tr>"
« "<form method=\"post\""

1 54
1 55
1 56
1 57
1 58
1 59
1 60
1 6 1

« "action=\"/cgi-bin/viewcart . cgi\">"
«
«
«
«

1 62 } II end if
1 63

"<td>" « bookString
"<td>" « yearString
"<td>" « isbnString
"<td>" « priceString

1 64 cout « "</form></tr>" ;
1 65
1 66 } II end while
1 67
1 68 II output link to add more books

« "<ltd>"
« "</td>"
« "<ltd>"

« "<ltd>" ;

Chapter 1 6

1 69 cout « "Back to book list" ;
1 70 II end outputBooks

Fig. 1 6.23 CGI scr ipt that a l lows users to view their carts' content. (Part 4 of 5 ,)

Chapter 1 6 Web Programming with CGI 935

Here is your current order:

Back to book hst

I Visual Basic .NETHow to Program FI 0-13-029363-6 F

Fig. 1 6.23 CGI scr ipt that a l lows users to view their carts' content. (Part 5 of 5 .)

Figure 1 6 .25 shows the contents of the catalog. txt fi l e . This fi l e must reside in

the same d i rectory where the CGI scripts res ide for this shoppi ng-cart appl ication to work

correct ly .

1 II Fig. 16 . 2 4 : logout . cpp
2 II Program to log out of the system .
3 #include <iostream>
4
5 using std::cout ;
6
7 #include <string>
8
9 using std::string ;

1 0
1 1 #include <ctime>
1 2
1 3 #include <cstdlib>
1 4
1 5 void writeCookie () ;
1 6
1 7 int rna in ()
1 8 {
1 9 1/ write the cookie
20 writeCookie () ;
2 1
22 1/ output header
23 cout « "Content-Type: text/html \n\n" ;
24
25 // output XML declaration and DOCTYPE
26 cout « "<?xrnl version = \"1 . 0\"?>"
27 « "< ! DOCTYPE html PUBLIC \"-/IW3CIIDTD XHTML 1 . 0 "
28 « "TransitionalIIEN\ "";
29

Fig. 1 6.24 Logout program . (Part 1 of 2.)

936 Web Programming with CGI

30 II output html element and its contents

Cha pter 1 6

3 1 cout « "<html lClIIlns = \'' http://www . w3 . org/1 9 9 9/xhtml\'' >''
32 « "<head><title>Logged out</title></head>"
33 « "<body>"
34 « "<center><p>You are now logged out
"
35 « "You will be billed accordingly
"
36 « "To login again, "
37 « "click here"
38 « "</body></html>\n" ;
39
40 return 0 ;
4 1
42 II end main
43
44 II function to write cookie
45 void writeCookie()
46 {
47 II string containing expiration date
48 string expires = "Friday, 14-MAY-10 16:00:00 GMT" ;
49
50 II set cookie
5 1 cout « "Set-Cookie: CART= ; expires=" « expires
52 « " ; path=\n" ;
53
54 } II end writeCookie

llogged Out - Microsoft Internet !..Kp lorer

Fig. 1 6.24 Logout program . (Part 2 of 2 .)

16.17 Internet and Web Resources

Apache

www . apache . org

This is the product home page for the Apache HTTP server. Users may download Apache from this

site.

www . apacheweek . com

This online magazine contains articles about Apache jobs, product reviews and other information

concerning Apache software.

linuxtoday . com/stories/ 1 8 7 8 0 . html

This site contains an article about the Apache HTTP server and the platforms that support it. It also

contains links to other Apache articles.

Chapter 1 6

Visual Basic . NET How to Program
2 0 0 2
0-13-0 2 9 363-6
$5 0 . 0 0
C# How to Program
2 0 0 2
0-13-062 2 2 1-4
$49 . 9 5
C How to Program 3e
2 0 0 1
0-13-0 8 9 5 7 2-5
$5 0 . 0 0
Java How to Program 4e
2 0 0 2
0-13-0 3415 1-7
$49 . 9 5

Fig. 1 6.25 Contents of catalog. txt.

CGI

www . gnu . org/software/cgicc/cgicc . html

Web Programming with CGI

This site contains a free open-source COl library for creating COl scripts in C++.

www . hotscripts . com

93 7

This site contains a rich collection of scripts for performing image manipulation, server administra

tion, networking, etc. using COl.

www . jmarshall . com/easy/cgi

This page contains a brief explanation of COl for those with programming experience.

www . speakeasy . org/-cgires

This site contains a collection of COl-related tutorials and scripts.

www . w3 . org/CGI

This World Wide Web Consortium page discusses COl security issues.

www . w3 . org/Protocols

This World Wide Web Consortium site contains information on the HTTP specification and links to

news, mailing lists and published articles.

SUMMARY

• Web servers respond to client requests by providing resources, such as XHTML documents.

• Web servers and clients communicate with each other via the platform-independent Hypertext

Transfer Protocol (HTTP).

• The most common HTTP request types are get and post; these requests send client form data to a

Web server.

• The get request sends form content as part of the URL; the post request attaches form contents to

the end of an HTTP request. The data sent in a post request are not part of the URL and cannot be

seen by the user.

• Browsers often cache Web pages for quick reloading. However, browsers typically do not cache

the server's response to a post request, because the information might have changed.

• The information tier maintains data for the application in a database.

93 8 Web Programming with CGI Cha pter 1 6

• A Web server is part of a multi-tier application-sometimes referred to as an n-tier application. A

multi-tier application divides functionality into separate tiers. The three-tier application contains

an information tier, a middle tier and a client tier.

• The middle tier implements business logic and presentation logic to control interactions between

application clients and application data. A Web server is a middle-tier application.

• The client tier is the application's user interface. The client interacts with the middle tier to make

requests and to retrieve data from the information tier. The client then displays data retrieved from

the middle tier to the user.

• The Apache HTTP server, developed by the Apache Group, is the most popular Web server in use

today. It runs on Windows and non-Windows platforms.

• A virtual directory is an alias for an existing directory on a local machine.

• The Common Gateway Interface (CGI) describes a set of protocols through which applications

(commonly called CGI scripts or CGI programs) can interact with Web servers and interact (indi

rectly) with clients.

• CGI is "common" in the sense that it is not specific to any particular operating system (such as

Linux or Windows) or to any one programming language.

• A Web page, in its simplest form, is nothing more than an XHTML document. This document is

just a plain text file containing markings (markup or elements) that describe to a Web browser how

to display and format the information in the document.

• Hypertext information creates links to different pages or to other portions of the same page.

• Any XHTML file available for viewing over the Internet has a URL (Universal Resource Locator)

associated with it. The URL contains information that directs a browser to the resource that the

user wishes to access.

• The hostname is the name of the computer where the resource resides and is translated into an IP

address, which identifies the server on the Internet.

• To request a resource, the browser first sends an HTTP request message to the server. The server

responds with a line indicating the HTTP version, followed by a numeric code and a phrase de

scribing the status of the transaction. The server normally then sends one or more HTTP headers,

which provide additional information about the data being sent. The header or set of headers is fol

lowed by a blank line, which indicates that the server finished sending HTTP headers. Then the

server sends the contents of the requested resource, and the connection is terminated. The client

side browser interprets the XHTML it receives and displays the results.

• A properly configured Web server will recognize a CGI script and execute it. A resource usually

is designated as a CGl script in one of two ways: Either it has a specific filename extension (such

as • cgi or • exe), or it is located in a special directory (often /cgi-bin). The server adminis

trator must give permission for remote clients to access and execute CGI scripts.

• When the server recognizes that the resource requested is a CGl script, the server executes the

script. The output is piped to the Web server. Finally, the Web server adds an additional line to the

output indicating the status of the HTTP transaction (such as HTTP/1 . 1 2 0 0 OK, for success)

and sends the whole body of text to the client. The browser on the client side then interprets the

output and displays the results appropriately.

• With a CGI script, programmers must include the Content-Type header explicitly, whereas

with a normal XHTML document, the header would be added by the Web server.

• The CGl protocol for output to be sent to a Web browser consists of printing to standard output

the Content-Type header, a blank line and the data (XHTML, plain text, etc.) to be output.

• CGI-enabled Web servers set environment variables that provide information about both the serv

er's and the client's script-execution environment.

Chapter 1 6 Web Programming with CGI 939

• The environment variable QUERY_STRING provides a mechanism that enables programmers to

supply any sort of data to their CGI scripts. The QUERY_STRING variable contains information

that is appended to a URL. A question mark character (?) delimits the resource requested from the

query string.

• Data placed in a query string can be structured in a variety of ways, provided that the CGY script

that reads the string knows how to interpret the encoded data.

• Forms provide another way for users to input information that is sent to a CGI script.

• The <form> element generally takes two attributes. The first attribute is action, which speci

fies the action to take when the user submits the form. The second attribute is method, which is

either GET or POST.

• Using gel with a form causes data to be passed to the CGI script through environment variable

QUERY_STRING.

• The POST method enables CGI scripts to interact with servers via standard input.

• With POST, data is encoded just as with QUERY_STRING, but the QUERY_STRING environment

variable is not set. Instead, the POST method sets the environment variable CONTENT_LENGTH

to indicate the number of characters of data that are being sent or posted, then function read is

used with STDIN to obtain the data.

• Web browsers encode the form data before it is sent. This means that spaces are replaced with plus

signs, and certain other symbols (such as the apostrophe) are converted into their ASCI I value

equivalent and displayed in hexadecimal notation (preceded by a percent sign).

• A CGI script can supply HTTP headers in addition to Content-Type. In most cases, the server

passes these extra headers to the client untouched.

• The CGI protocol indicates that certain types of headers output by a CGI script are to be handled

by the server, rather than be passed directly to the client.

• Function getenv from library <cstdlib> returns a character array containing the value of the

CGI environment variable passed to it.

TERMINOLOGY

action attribute of element form

Apache HTTP Server

asctime

<body> element

bottom tier

button type attribute for input element

cache

/ cgi -bin directory

CGI (Common Gateway Interface)

· cgi fi Ie extension

CGI program

CGI script

CGI specification

checkbox type attribute for input element

client tier

CONTENT_LENGTH environment variable

Content-Type header

• cpp file extension

data tier

DNS lookup

domain name

domain name system (DNS)

dynamic vs. static Web content

dynamic Web content

Extensible HyperText Markup Language

(XHTML)

file type attribute for input elements

filepath

form

form element

fully qualified host name

get (HTTP request)

getenv function of <cstdlib>

head element

hidden type attribute for input elements

host

hostname

htdocs directory

940 Web Programming with CGI Chapter 1 6

html element post (HTTP request)

HTTP (Hypertext Transfer Protocol)

HTTP connection

HTTP header

QUERY_STRING environment variable

radio type attribute for input element

redirect

HTTP host

HTTP method

HTTP transaction

HTTP_USER_AGENT environment variable

HyperText Markup Language (HTML)

HyperText Transfer Protocol (HTTP)

image type attribute for input element

information tier

input element

IP address

local Web server

localhost

local time

markup

method attribute of form element

middle tier

multi-tier application

n-tier appl ication

open source

password type attribute for input element

pipe

SELF-REVIEW EXERCISES

remote Web server

request method

request type

reset type attribute for input element

select element

standard output

static Web content

submit type attribute for input element

text type attribute for input element

textarea element

title element

top tier

top-level domain (TLD)

URL (Universal Resource Locator)

virtual directory

Web server

XHTML

XHTML element

XHTML form

X HTML form element

1 6. 1 Fill in the blanks in each of the following statements:

a) The two most common HTTP request types are and ____ _

b) Browsers often Web pages for quick reloading.

c) In a three-tier application, a Web server is typically part of the tier.

d) In the URL http://www . deitel . com/books/downloads . htm. the part that

consists of www . deitel . comis the _____ of the server, where a client can find

the desired resource.

e) A(n) document is a text file containing markings that describe to a Web

browser how to display and format the information in the document.

f) The environment variable provides a mechanism for supplying data to CGI
scripts.

g) A common way of reading input from the user is to implement ____ _

1 6.2 State whether each of the following is true or false. If false, explain why.

a) Web servers and clients communicate with each other through the platform-independent

HTTP.

b) Web servers often cache Web pages for reloading.

c) The information tier implements business logic to control the type of information that is

presented to a particular client.

d) A dynamic Web page is a Web page that is not created programmatically.

e) We put data into a query string using a format that consists of a series of name-value pairs

joined with exclamation points (!).

Chapter 1 6 Web Programming with CGI 94 1

f) Using a CGI script is more efficient than using an XHTML document.

g) The post method of submitting form data is preferable when sending personal informa

tion to the Web server.

ANSWERS TO SELF-REVIEW EXERCISES

1 6. 1 a) get and post. b) cache. c) middle. d) hostname. e) X HTML. f) QUERY_STRING.

g) forms.

1 6.2 a) True. b) True. Web browsers often cache Web pages for quick reloading c) False. The mid

dle tier implements business logic and presentation logic to control interactions between application

clients and application data. d) False. A dynamic Web page is a Web page that is created program

matically. e) False. The pairs are joined with an ampersand (&). f) False. X HTML documents are

more efficient than CGI scripts because XHTML documents do not need to be executed on the server

side before they are output to the client. g) True.

EXERCISES

1 6.3 Define the following terms:

a) HTTP.

b) Multi-tier application.

c) Request method.

1 6.4 Explain the difference between the get request type and the post request type. When is it ideal

to use the post request type?

1 6.5 Write a CGI script that prints the squares of the integers from I to lOon separate lines.

1 6.6 Write a CGr script that receives as input three numbers from the client and returns a statement

indicating whether the three numbers could represent an equilateral triangle (all three sides are the

same length), an isosceles triangle (two sides are the same length) or a right triangle (the square of

one side is equal to the sum of the squares of the other two sides.)

1 6.7 Write a soothsayer script that allows the user to submit a question. When the question is sub

mitted, the script should choose a random response from a list of vague answers and return a new page

displaying the answer.

1 6.8 Modify the program of Fig. 16.14 to incorporate the opening X HTML form and the process

ing of the data into a single CGI script (i.e., combine the X HTML of Fig. 16.13 into the CGI script

of Fig. 16.14.) When the CGI script is requested initially, the form should be displayed. When the

form is submitted, the CGI script should execute.

1 6.9 Modify the shopping-cart application to enable users to remove items from the cart.

17
Data Structures

Objectives
• To be able to form linked data structures using

pointers, self-referential classes and recursion.

• To be able to create and manipulate dynamic data

structures such as linked lists, queues, stacks and

binary trees.

• To understand various important applications of

linked data structures.

• To understand how to create reusable data structures

with class templates, inheritance and composition.

Much that I bound, I could not free;

Much that I freed returned to me.

Lee W i l son Dodd

'Will you walk a little faster?
,
said a whiting to a snail,

There's a porpoise close behind us, and he's treading on my

tail.'

Lewis Carrol l

There is always room a t the top.

Danie l Webster

Push on - keep moving.

Thomas Morton

I think that I shall never see

A poem lovely as a tree.

Joyce K i lmer

Chapter 1 7

Outline

17.1 Introduction

17.2 Self-Referential Classes

Data Structu res

17.3 Dynamic Memory Allocation and Data Structures

17.4 Linked Usts

17.5 Stacks

17.6 Queues

17.7 Trees

943

Summary· Terminology· Self-Review Exercises' Answers to Self-Review Exercises' Exercises'

Special Section: Building Your Own Compiler

17.1 Introduction

We have studied fixed-size data structures such as s ingle-subscripted arrays , double-sub

scripted arrays and structs. Thi s chapter i ntroduces dynamic data structures that grow

and shrink duri ng execut ion . Linked lists are col lections of data items " l i ned up in a row"

insert ions and removals are made anywhere in a l i nked l i st . Stacks are i m portant i n compi l

ers and operat ing systems : Insert ions and removal s are made only a t one end of a stack-its

top. Queues represent wait ing lines ; insert ions are made at the back (also referred to as the

tail) of a queue and removals are made from the front (al so referred to as the head) of a

queue. Binary trees faci l i tate high-speed searching and sort ing of data, effic ient e l im ination

of dupl icate data items, representation of fi le system directories and compi lat ion of expres

s ions i nto machi ne language . These data structures have many other i nterest ing app l ications .

We w i l l d iscuss the major types of data structures and i mplement programs that create

and manipu late these data structures . We use c lasses, c lass templates, i nheritance and com

posit ion to create and package these data structures for reusab i l i ty and maintain abi l i ty .

Study i ng th is chapter i s sol id preparation for Chapter 2 1 , Standard Template Library

(STL) . The STL is a major port ion of the C++ Standard Library . The STL provides con

tai ners, iterators for traversing those containers and algori thms for process ing the e lements

of those contai ners. You wi II see that the STL has taken each of the data structures we dis

cuss i n th is chapter and packaged them into templat ized c lasses. The STL code i s carefu l l y

written to be portable , effic ient and extens ible . Once you understand the princ ip les and con

struct ion of data structures as presented i n th is chapter, you wi l l be able to make the best

use of the prepackaged data structures, i terators and algorithms i n the STL, a world-class

set of components for helping real i ze the vi sion of software reuse .

The chapter examples are practical programs that you wi l l be able to use i n more

advanced courses and in i ndustry app l ications . The programs are espec ia l ly heavy on

poi nter manipu lat ion . The exercises i ncl ude a r ich col l ect ion of usefu l appl i cations .
We encourage you to attempt the major project described i n the speci al section entit led

"Bui lding Your Own Compi ler." You have been using a compiler to trans late your C++ pro
grams to machine language so that you could execute these programs on your computer. [n
this project, you w i l l actual ly bui ld your own compiler. It w i l l read a f i le of statements
written i n a s imple, yet powerfu l , high- level language s imi lar to early vers ions of the popul ar
language BAS IC . Your compiler wil l translate these statements i n to a fi le of S impletron

944 Data Structures Chapter 1 7

Machine Language (SML) instructions-SML is the l anguage you learned i n the Chapter 5
spec ial sect ion, "Bui ld ing Your Own Computer. " Your Simpletron Simulator program wi l l
then execute the SML program produced by your compi ler! I mplementing th is project us ing
a heavi ly object-oriented approach wi l l give you a wonderful opportunity to exerc ise most
of what you have learned i n this course. The spec ial section careful ly walks you through the
spec ifications of the high-level language and describes the algorithms you w i l l need to con
vert each type of high-level l anguage statement into machine language i n structions . I f you
enj oy be ing chal lenged, you might attempt the many enhancements to both the compiler and
the Si mpletron Simulator suggested in this chapter' s exerc i ses .

17.2 Self-Referential Classes

A self-referential class contai ns a poi nter member that poi nts to a c lass obj ect of the same

c lass type. For example, the defi n it ion

class Node

public:
Node (int) ;
void setData(int) ;
int getData() const;
void setNextPtr(Node *) ;
Node *getNextPtr() const;

private:
int data;
Node *nextptr;

} ; II end class Node

defines a type, Node. Type Node has two private data members-integer member

data and pointer member nextPtr. Member nextPtr points to an object of type

Node-another object of the same type as the one being declared here, hence the term

"self-referent ial c lass ." Member nextPtr is referred to as a link-i .e . , nextPtr can be

used to "tie" an object of type Node to another object of the same type. Type Node a lso

has five member functions-a constructor that receives an in teger to i n i t ia l i ze member da

ta, a setData function to set the value of member data, a getData function to return

the value of member data, a setNextPtr function to set the val ue of member nextp

tr and a getNextPtr function to return the value of member nextPtr.

Self-referential c lass objects can be l i nked together to form usefu l data structures such

as l i sts, queues, stacks and trees . Figure 1 7 . 1 i l lustrates two self-referent ial c lass obj ects

l i n ked together to form a l i st . Note that a s l ash-representi ng a nu l l (0) poin ter-is p laced

in the l i n k member of the second self-referential c lass object to i ndicate that the l i nk does

not point to another object . The s lash i s only for i l l ustrat ion purposes ; i t does not corre

spond to the backs lash character in C++ . A n u l l pointer normal ly i ndicates the end of a data

structure j ust as the nu l l character (, \ 0 ,) i ndicates the end of a stri ng .

Common Programming Error 17.1

Not setting the link in the last node of a linked data structure to null (0) is a (possibly fatal)

logic error.

Chapter 1 7

G
Fig. 1 7.1 Two self-referential c lass objects l i nked together .

Data Structu res

17.3 Dynamic Memory Allocation and Data Structures

945

Creat ing and main tain ing dynamic data structures requ ires dynamic memory al l ocat ion,

which enables a program to obtain more memory at execution t ime to hold new nodes .

When that memory is no longer needed by the program, the memory can be released so that

i t can be reused to a l locate other objects in the future. The l i mi t for dynamic m emory al l o

cation can be as l arge as the amount of avai l able physical memory i n the computer or the

amount of avai l able virtual memory in a virtual memory syste m . Often , the l imi ts are much

smal ler because avai lable memory must be shared among many programs .

Operators new and delete are essential to dynamic memory a l location . Operator

new takes as an argument the type of the obj ect being dynamical l y a l located and returns a

pointer to an obj ect of that type . For example, the statement

Node *newptr = new Node(1 0) ;

a l locates sizeof (Node) bytes , runs the Node constructor and stores a pointer to this

memory in newPtr . If no memory i s avai lable, new throws a bad_al loe exception . The

value 10 i s the node's data.

The delete operator runs the Node destructor and deal locates memory a l located

with new-the memory i s returned to the system so that the memory can be real located i n

the future . T o free memory dynamical ly a l located b y the preceding new, u s e the statement

delete newPtr ;

Note that newPtr i tse lf i s not deleted ; rather the space newPtr points to i s deleted. I f

newPtr has the value 0 (i .e . , a pointer to noth i ng) , the preceding statement has n o effect.

The fol lowing sections discuss l i sts, stacks, queues and trees . The data structures pre

sented in thi s chapter are created and maintained wi th dynamic memory al l ocation and self

referential c lasses .

Common Programming Error 17.2

Not returning dynamically allocated memory when it is no longer needed can cause the sys

tem to run out of memory prematurely. This is sometimes called a "memory leak."

17.4 Linked Lists

A linked list i s a l i near col lect ion of self-referent ial c lass obj ects, ca l led nodes, connected

by pointer links-hence, the term " l inked" l i st . A l inked l i st i s accessed via a poin ter to the

first node of the l i st . Subsequent nodes are accessed via the l i nk-pointer member stored i n

each node . By convention, the l i nk pointer i n the last node o f a l i st i s set t o n u l l (zero) to

mark the end of the l i st . Data are stored in a l inked l i st dynamical l y-each node is created

as necessary . A node can contain data of any type, i nc luding obj ects of other c lasses . If

nodes contain base-c lass pointers or base-class references to base-class and derived-class

946 Data Structures Chapter 1 7

obj ects rel ated by inheritance, we can have a l i nked l i st of such nodes and use virtual

function cal l s to process these objects polymorphical ly . Stacks and queues are a lso l inear
data structures and, as we w i l l see, can be viewed as constrained vers ions of l in ked l i sts .

Trees are non l i near data structures .

L is ts of data can be stored i n arrays , but l i nked l i sts provide several advantages . A
l i nked l i st i s appropriate when the number of data e lements to be represented at one t ime i s
u npredictable . L inked l i sts are dynamic, s o the l ength o f a l i st c a n increase or decrease as
necessary . The s ize of a "conventional" C++ array , however, cannot be altered, because the

array size is fi xed at compi le time. "Conventional" arrays can become fu l l . L i nked l i sts

become fu l l only when the system has i nsuffic ient memory to sati sfy dynamic storage al lo

cation requests .

Performance Tip 17.1

An array can be declared to contain more elements than the number of items expected, but

this can waste memory. Linked lists can provide better memory utilization in these situations.

Linked lists allow the program to adapt at run time.

Linked l i sts can be maintained i n sorted order by i n sert ing each new element at the

proper point in the l i st . Ex is t ing l i st e lements do not need to be moved.

Performance Tip 17.

Insertion and deletion in a sorted array can be time consuming-all the elements following

the inserted or deleted element must be shifted appropriately.

Performance Tip 17.3

The elements of an array are stored contiguously in memory. This allows immediate access

to any a rray element because the address of any element can be calculated directly based on

its position relative to the beginning of the array. Linked lists do not afford such immediate

"direct access" to their elements.

Linked l i s t nodes are normal ly not stored contiguous ly i n memory . Logical l y , how

ever, the n odes of a linked l i st appear to be contiguous . Figure 1 7 .2 i l l u strates a linked l i st

with several nodes .

Performance Tip 17.4

f. � Using dynamic memory allocation (instead of arrays) for data structures that grow and

shrink at execution time can save memory. Keep in mind, however, that pointers occupy

space and that dynamic memory allocation incurs the overhead offunction calls.

firstPtr

H D [...-+-. [-� • • •

Fig. 1 7 .2 A graphical representation of a l ist.

lastptr

Q

Chapter 1 7 Data Structures 947

The program of Fig. 1 7 . 3-Fig . 1 7 .5 uses a List c lass template (see Chapter I I for

information on c lass templates) to manipulate a l i st of i n teger values and a l i st of f1oat i ng

poin t values . The driver program (Fig . 1 7 . 5) provides five options : 1) I nsert a value at the

beginn ing of the l i st , 2) i nsert a value at the end of the l i st , 3) delete a value from the fron t

of the l i st , 4) delete a value from the end of the l i st and 5) terminate the l i s t process ing . A

detai led discuss ion of the program fol lows. Exerc ise 1 7 .20 asks you to i mp lement a recur

s ive funct ion that prints a l inked l i st backwards, and Exerc i se 1 7 . 2 1 asks you to i mplement

a recursive funct ion that searches a l inked l i st for a part icu lar data i tem .

The program uses c lass templates ListNode (Fig . 1 7 . 3) and List (F ig . 1 7 .4) .

Encapsu lated in each List object i s a l i n ked l i st of ListNode objects . C l ass ListNode

(Fig . 1 7 . 3) contain s private members data and nextPtr (l i nes 1 8- 1 9) , a constructor to

i n i t ia l ize these members and function getData to return the data in a node. Member

data stores a value of type NODETYPE, the type parameter passed to the c lass template .

Member nextPtr stores a pointer to the next ListNode obj ect i n the l i nked l i st . Note

that l i ne I I of the c lass declares c lass List as a friend of class ListNode. This makes

al l member funct ions of c lass List friends of c lass ListNode that can access the private

members of ListNodes . A l so, note that template notat ion is used in the friend dec larat ion

because ListNodes of a part icu lar type can be processed only by a List of the same type

(e .g . , a List of int values manages ListNode objects that store int values) .

L ines 27-28 o f the List c lass template (F ig . 1 7 .4) declare private data members

fir stPtr (a poin ter to the first ListNode in a List) and lastptr (a pointer to the

l ast ListNode in a List) . The default constructor (l i nes 36-43) i n i t ia lizes both pointers

to 0 (nu l l) . The destructor (l ines 46-67) ensures that all ListNode obj ects in a List

object are destroyed when that List object i s destroyed . The pri mary List funct ions are

insertAtFront (l i nes 70-84) , insertAtBack (l i nes 87- 1 0 1) , removeFrom

Front (l i nes 1 04- 1 25) and removeFromBack (l i nes 1 28- 1 5 8) .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
19
20
2 1

I I Fig . 17 . 3 : listnode . h
I I Template ListNode class definition .
#ifndef LISTNODE_H
#define LISTNODE_H

I I forward declaration of class List
template< class NODETYPE > class List ;

template< class NODETYPE>
class ListNode {

friend class List< NODETYPE > ; I I make List a friend

public:
ListNode(const NODETYPE &) ;
NODETYPE getData() const ;

private:

I I constructor
I I return data in node

NODETYPE data ; I I data
ListNode< NODETYPE > *nextPtr ; I I next node in list

} ; I I end class ListNode

Fig. 1 7 .3 Li stNode closs-template definit ion . (Port 1 of 2 .)

948 Data Structures

22
23 II constructor
24 temp1ate< class NODETYPE>
25 ListNode< NODETYPE >::ListNode(const NODETYPE &info)
26 data (info) ,

27 nextPtr(0)
28 {
29 1 / empty body
30
3 1 } II end ListNode constructor
32
33 1 / return copy of data in node
34 temp1ate< class NODETYPE >
35 NODETYPE ListNode< NODE TYPE >::getData() const
36 {
37 return data ;
38
39 } 1 / end function getData
40
41 #endif

Fig. 1 7 .3 Li stNode class-template definition . (Part 2 of 2 .)

1
2
3
4
5
6
7
8
9

II Fig . 17 . 4: 1 i st . h
/ / Template List class definition .
#ifndef LIST_H
#define LIST_H

#inc1ude <iostream>

using std: :cout ;

#inc1ude <new>
#inc1ude 1 1 istnode . h " / / ListNode class definition

temp1ate< class NODETYPE >
class List {

public:
List() ; / / constructor
-List() ; / 1 destructor
void insertAtFront(const NODETYPE &) ;
void insertAtBack(const NODETYPE &) ;
boo1 removeFrOmFront(NODETYPE &) ;
boo1 removeFromBack(NODETYPE &) ;
boo1 i SEmpty() const;
void print() const;

private:

Cha pter 1 7

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29

ListNode< NODETYPE > *firstptr ;
ListNode< NODETYPE > *lastptr ;

/ / pointer to first node
II pointer to last node

Fig. 1 7 .4 L i s t c lass-template definit ion . (Part 1 of 5 .)

Chapter 1 7 Data Structures

30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1
82

II utility function to allocate new node
ListNode< NODETYPE > *getNewNode { const NODE TYPE &) ;

} ; II end class List

I I default constructor
template< class NODETYPE >
List< NODETYPE > ::List {)

{

firstPtr (0) I

lastPtr { 0)

II empty body

II end List constructor

I I destructor
template< class NODETYPE >
List< NODETYPE >::-List {)

{
i f (! isEmpty {)) { II List is not empty

cout « "Destroying nodes • • • \n";

ListNode< NODETYPE > *currentptr
ListNode< NODETYPE > *tempPtr ;

firstptr ;

while (currentptr ! = 0) { II delete remaining nodes
tempPtr = currentptr ;
cout « tempPtr- >data « ' \n ' ;
currentPtr = currentPtr- >nextPtr ;
delete tempPtr ;

} II end while

II end if

cout « "All nodes destroyed\n\n";

} II end List destructor

I I insert node at front of list
template< class NODETYPE >
void List< NODETYPE >::insertAtFront { const NODETYPE &value
{

ListNode< NODE TYPE > *newptr = getNewNode { value) ;

if (isEmpty { » II List is empty
firstPtr = lastptr = newptr ;

else { II List is not empty
newPtr- >nextPtr = firstptr ;
firstPtr = newptr ;

II end else

Fig. 1 7.4 Li s t class-template definition. (Part 2 of 5.)

949

950 Data Stru ctures Chapter 1 7

83
84
85
86
87
88
89
90
9 1
92
93
94
95
96
97
98
99
1 00
1 0 1
1 02
1 03
1 04
1 05
1 06
1 07
1 08
1 09
1 1 0
1 1 1
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7
1 1 8
1 1 9
1 20
1 2 1
1 22
1 23
1 24
1 25
1 26
1 27
1 28
1 29
1 30
1 3 1
1 32
1 33
1 34
1 35

} II end function insertAtFront

II insert node at back of list
template < class NODETYPE >
void List< NODETYPE > ::insertAtBack(const NODETYPE &value

{
ListNode< NODETYPE > *newptr = getNewNode(value) ;

if (isEmpty(» II List is empty
firstPtr = lastptr = newptr ;

else { II List is not empty
lastPtr->nextPtr = newptr ;
lastptr = newptr ;

} II end else

II end function insertAtBack

II delete node from front of list
template < class NODETYPE >
bool List< NODETYPE >::removeFromFront(NODETYPE &value)
{

if (isEmpty(» II List is empty
return false ; II delete unsuccessful

else {
ListNode< NODETYPE > *tempPtr

if (firstPtr = = lastptr)
firstPtr

else
firstPtr

lastptr = 0 ;

firstPtr->nextPtr ;

firstptr ;

value = tempPtr- >data ; II data being removed
delete tempPtr ;

return true ; II delete successful

} II end else

II end function removeFromFront

II delete node from back of list
template < class NODETYPE >
bool List< NODETYPE >::removeFromBack(NODETYPE &value)
{

if (isEmpty ())
return false ; II delete unsuccessful

else {
ListNode< NODETYPE > *tempPtr = lastptr ;

Fig. 1 7 .4 L i s t c lass-template defin it ion . (Part 3 of 5 .)

Chapter 1 7 Data Structu res

1 36
1 37
1 38
1 39
1 40
1 4 1
1 42
1 43
1 44
1 45
1 46
1 47
1 48
1 49
1 50
1 5 1
1 52
1 53
1 54
1 55
1 56
1 57
1 58
1 59
1 60
1 6 1
1 62
1 63
1 64
1 65
1 66
1 67
1 68
1 69
1 70
1 7 1
1 72
1 73
1 74
1 75
1 76
1 77
1 78
1 79
1 80
1 8 1
1 82
1 83
1 84
1 85
1 86
1 87
1 88

if (firstPtr = = lastptr)
firstPtr = lastptr 0 ;

else {
ListNode< NODETYPE > *currentPtr

II locate second-to- last element

firstPtr;

while (currentPtr->nextPtr ! = lastptr
currentptr = currentPtr->nextPtr;

lastptr = currentptr;
currentPtr->nextPtr 0 ;

II end else

value = tempPtr->data;
delete tempPtr;

return true; II delete successful

II end else

II end function removeFromBack

II is List empty?
template< class NODETYPE >
bool List< NODETYPE >::isEmpty {) const

{
return firstPtr = = 0 ;

II end function isEmpty

II return pointer to newly al located node
template< class NODETYPE >
ListNode< NODETYPE > *List< NODETYPE >::getNewNode {

const NODETYPE &value)

return new ListNode< NODETYPE > (value) ;

} II end function getNewNode

II display contents of List
template< class NODETYPE >
void List< NODETYPE >::print {) const
{

if (isEmpty ())
cout « "The list is empty\ n \ n";
return;

II end if

ListNode< NODETYPE > *currentptr firstptr;

Fig. 1 7 .4 L i s t class-template defin ition . (Part 4 of 5 .)

95 1

952 Data Structu res

1 89 cout « " The list is: " i
1 90
1 9 1 while (currentPtr ! = °)
1 92 cout « currentPtr- >data « I ' i
1 93 currentptr = currentPtr->nextPtri
1 94
1 95 II end while
1 96
1 97 cout « " \n\n"i
1 98
1 99 II end function print
200
20 1 #endif

Fig. 1 7 .4 L i s t class-template definit ion . (Part 5 of 5.)

Chapter 1 7

Function isEmpty (l i nes 1 6 1 - 1 66) i s cal led a predicate function-i t does not alter

the List; rather, i t determi nes whether the List is empty (i . e . , the poi nter to the fi rst node

of the List i s nu l l) . I f the List is empty, true is returned; otherwise, false is

returned. Function pr int (l i nes 1 78- 1 99) displays the List's contents . Ut i l i ty function

getNewNode (l i nes 1 69- 1 75) returns a dynamical ly al located ListNode object . This

function i s cal led from functions insertAtFront and insertAtBack. � Good Programming Practice 17.1

Assign null (zero) to the link member of a new node. Pointers should be initialized before they

are used.

The driver program (Fig. 1 7 . 5) uses function template testList to enable the user

to manipulate objects of c lass List. Lines 8 1 and 85 create List obj ects for types int

and double, respectively . L ines 82 and 86 i nvoke the testList funct ion template with

these List obj ects .

1 II Fig . 17 . 5: fig17_0 5 . cpp
2 II List class test program .
3 #include <iostream>
4
5 using std : : cin i
6 using std : : endl i
7
8 #include <string>
9

1 0 using std : : string i
1 1
1 2 #include " list . h " II List class definition
1 3
1 4 II function to test a List
1 5 template< class T >
1 6 void testList(List < T > &listObject , const string &typeName

1 7 {
1 8 cout « " Testing a List of " « typeName « " values\n " i

Fig. 1 7 .5 Manipu lating a l inked l ist. (Part 1 of 4 .)

Chapter 1 7

1 9
20 instruct ions () ; II di splay instruc t i ons
2 1
22 int choice ;
23 T value ;
24
25 do
26 cout « "? ";
27 c in » choice ;
28
29 swit ch (choice) {
30 case 1:

D ata Structures

3 1 cout « " Enter " « typeName « " : " ;

32 c i n » value ;
33 l i stObj ect . insertAtFront (value) ;
34 l i s tObj ect . print () ;
35 break ;
36
37 case 2:
38 cout « " Enter " « typeName « " : " ;

39 cin » value ;
40 l i stObj ect . insertAtBack (value) ;
4 1 l i stObj ect . print () ;
42 break;
43

44 case 3:
45 if (l i s tObj ect . removeFromFront (value))
46 cout « value « " removed f rom l i s t \ n " ;
47
48 l i s tObj ect . print () ;
49 break;
50
5 1 case 4:
52 i f l i stObj ect . removeFromBack (value))
53 cout « value « " removed f rom l i s t \ n " ;
54
55 l i stObj ect . print () ;
56 break;
57
58 } II end swi tch
59
60 whi l e (choice ! = 5) ; I I end do /whi l e
6 1
62 cout « " End l. i st test \ n \ n " ;
63
64 } I I end func t i on t e s t L i s t
65
66 II display program inst ruc t i ons to user
67 void instruct ions ()
68 {
69 cout « " Enter one of the following : \ n "
70 « " 1 t o insert at beginning of l i s t \ n "
7 1 « " 2 t o insert at end o f l i s t \ n "

Fig. 1 7 .5 Manipu lat ing a l i nked l ist . (Part 2 of 4 .)

953

954 Data Structu res

7 2 « " 3 to de lete from beginning o f l i s t \ n "
7 3 « " 4 to delete from end of l i s t \ n "
74 « " 5 to end l i s t proc e s s ing \ n " ;
7 5
76 } I I end funct ion instruc t ions
7 7
7 8 int main {)
79 {
80 I I test Li st of int values
8 1 L i s t < int > integerLi st ;
82 t e s t L i s t { integerList , " integer ") ;
83
84 I I test L i s t of double values
85 L i s t < double > doubleLi s t ;
86 testList (doubleLi st , " double ") ;
87
88 return 0 ;
89
90 I I end main

Test ing a L i s t of integer values
Enter one of the following :

1 to insert at beginning of l i s t
2 to insert at end of l i st
3 to delete from beginning of l i st
4 to de lete f rom end of l i st
5 to end l i st proc e s s ing

? 1
Enter integer : 1
The l i s t i s : 1

? 1
Ente r integer : 2
The l i st i s : 2 1

? 2
Enter integer : 3
The l i s t i s : 2 1 3

? 2
Enter integer : ,
The l i s t i s : 2 1 3

? 3
2 removed f rom l i st
The l i s t i s : 1 3 ,

? 3
1 removed f rom l i s t
The l i s t i s : 3 ,

4

Cha pter 1 7

(continued next page)

Fig. 1 7 .5 Manipulat ing a l inked l ist. (Part 3 of 4 .)

Chapter 1 7

? 4

4 removed f rom l i s t
The l i st i s : 3

? 4

3 removed f rom l i s t
The l i s t i s empty

? 5
End l i s t t e s t

Tes t ing a L i s t of doubl e values
Enter one o f the following :

1 to insert at beginning of l i s t
2 to insert at end of l i s t
3 to delete f rom beginning of l i s t
4 to delete f rom end of l i st
5 to end l i s t proc e s s ing

? 1

Enter double : 1 . 1

The l i st i s : 1 . 1

? 1

Enter double : 2 . 2

The l i s t i s : 2 . 2 1 . 1

? 2

Enter double : 3 . 3
The l i s t i s : 2 . 2 1 . 1 3 . 3

? 2

Enter double : 4 . 4

The l i s t i s : 2 . 2 1 . 1 3 . 3 4 . 4

? 3
2 . 2 removed f rom l i s t
The l i s t i s : 1 . 1 3 . 3 4 . 4

? 3
1 . 1 removed f rom l i s t
The l i s t i s : 3 . 3 4 . 4

? 4

4 . 4 removed f rom l i s t
The l i s t i s : 3 . 3

? 4

3 . 3 removed f rom l i s t
The l i s t i s empty

? 5
End l i s t t e s t

Al l nodes de stroyed

Al l nodes des troyed

Fig. 1 7 .5 Manipulat ing a l inked l ist . (Part 4 of 4 .)

D ata Structures 955

956 Data Structu res Chapter 1 7

Over the next several pages, we discuss each of the member functions of c lass List

i n detai l . Function insertAtFront (Fig . 1 7 .4, l i nes 70-84) places a new node at the
front of the l i st . The function consists of several steps :

1 . Cal l function getNewNode (l ine 73) , passing i t value, which i s a constant ref

erence to the node value to be i nserted.

2 . Function getNewNode (lines 1 69- 1 75) uses operator new to create a new l i st

node and return a pointer to this newly a l located node, which i s assigned to

newPtr i n insertAtFront.

3 . I f the l i st i s empty (l ine 75), then both f irstPtr and lastptr are set to

newPtr (l ine 76) .

4 . I f the l i st i s not empty (l i ne 78) , then the node pointed to by newPtr i s threaded

i nto the l i st by copying f irstPtr to newPtr - >nextPtr (l i ne 79) so that the

new node points to what used to be the fi rst node of the l i st and copying newPtr

to fir stPtr (l i ne 80) so that fir stPtr now points to the new first node of the

l i st .

Figure 1 7 . 6 i l l u strates function insertAtFront . Part a) of the figure shows the l i s t

and the new node before the insertAtFront operat ion . The dotted arrows in part b)

i l l ustrate t h e steps 2 and 3 o f t h e insertAtFront operat ion that enable t h e node con

tai n i ng 12 to become the new l i st front .

Function insertAtBack (Fig . 1 7 .4, l i nes 87- 1 0 I) p laces a new node at the back of

the l i s t . The function consi sts of several steps:

l . Cal l function getNewNode (l i ne 90), pass ing i t value, which i s a constant ref

erence to the node value to be inserted .

2 . Function getNewNode (lines 1 69- 1 75) uses operator new to create a new l i s t

node and return a pointer to this newly a l located node, which i s assigned to

newPtr i n insertAtBack.

a) firstPtr

newPtr

G
b) firstPtr

[:]
newPtr

G

�1 12 1�

"- ,

� 1 12 1 � 1

Fig. 1 7 .6 Operation insertAtFront represented g raphical ly .

Chapter 1 7 Data Structu res 957

3. If the l i st is empty (l ine 92), then both f irstPtr and lastptr are set to

newPtr (l i ne 93) .

4. If the l i st i s not empty (l i ne 95) , then the node pointed to by newPtr i s threaded

i nto the l i s t by copying newPtr i nto lastPtr - >nextPtr (l i n e 96) so that the

new node is poin ted to by what used to be the l ast node of the l i st and copying

newPtr to lastptr (l i ne 97) so that lastptr now poin ts to the new l ast node

of the l i s t .

Figure 1 7 . 7 i l lus trates an insertAtBack operat ion . Part a) of the figure shows the

l i st and the new node before the operat ion . The dotted arrows i n part b) i l l ustrate the steps

of funct ion insertAtBack that enable a new node to be added to the end of a l i st that is

not empty .

Function removeFromFront (Fig . 1 7 .4, l i nes 1 04- 1 25) removes the fron t node of

the l i s t and copies the node value to the reference parameter. The funct ion returns false

if an attempt is made to remove a node from an empty l i st (l ines 1 07- 1 08) and returns

true i f the removal is successfu l . The function consi sts of several steps :

1 . Ass ign tempPtr the address t o which f irstPtr poin ts (l i n e I I I) . Eventua l ly ,

tempPtr wi l l be used to delete the node being removed.

2 . If f ir stPtr i s equal to lastptr (l i ne 1 1 3) , i . e . , i f the l i st has on ly one e lement

pr ior to the removal attempt, then set f irstptr and lastptr to zero (l i ne 1 1 4)

to dethread that node from the l i st (leav ing the l i st empty) .

3 . I f the l i st has more than one node prior to removal, then leave lastptr as i s and

set f ir stPtr to f irstPtr - >nextPtr (l i ne 1 1 6) , i .e . , modify f irstPtr

to point to what was the second node prior to removal (and i s the new first node

now) .

4 . After a l l these pointer manipulat ions are complete, copy t o reference parameter

value the data member of the node being removed (l i ne 1 1 8) .

a) f irstPtr

�I .
b) f i rstPtr

1 2

�I 7 I • I

1 7 1 • I

lastptr newPtr

k ��
lastptr newPt r

8 � .1" 1 . + 5

Fig. 1 7.7 Operation insertAtBack represented graphical ly .

958 Data Structures Chapter 1 7

5 . Now delete the node pointed to by ternpPtr (l i ne L L 9) .

6 . Return true, i ndicat ing successfu l removal (l i ne 1 2 1) .

Figure 1 7 . 8 i l l u strates function rernoveFrornFront. Part a) i l l u strates the l i st before

the removal operat ion . Part b) shows actual pointer man ipulat ions .

Function rernoveFrornBack (Fig . 1 7 .4, l i nes 1 28- 1 5 8) removes the back node of

the l ist and copies the node value to the reference parameter. The function returns false

i f an attempt is made to remove a node from an empty l i st (l i nes 1 3 1 - 1 32) and returns

true i f the removal i s successfu l . The function consists of several steps :

1 . Ass ign ternpPtr the address to which lastptr points (l i ne 1 35) . Eventual ly ,

ternpPtr w i l l be used to delete the node being removed.

2 . If f i rstPtr is equal to lastptr (l i ne 1 37) , i .e . , i f the l i st has on ly one element

prior to the removal attempt, then set f irstPtr and lastptr to zero (l i ne 1 3 8)

t o dethread that node from the l i st (leaving the l i st empty) .

3 . If the l i st has more than one node prior to removal , then ass ign currentptr the

address to which f ir stPtr points (l i ne 1 40) .

4. Now "walk the l i st" wi th currentptr unti l i t po ints to the node before the last

node. Thi s i s done with a while loop (l i nes 1 43- 1 44) that keeps rep lac ing cur

rentPtr by currentPtr - >nextPtr, whi le currentPtr - >nextPtr i s

n o t lastptr.

S . Assign lastptr to the address to which currentptr points (l i ne 1 46) to de

thread the back node from the l i st .

6 . Set currentPtr - >nextPtr to zero (l ine 1 47) in the new last node of the l i st .

a) f irstPtr lastptr

cp
1 12 1 • 1

b) firstPtr lastptr

8- -

t empPtr

Fig. 1 7 .8 Operation removeFromFront represented g raphical ly .

Cha pter 1 7 Data Structu res 959

7. After a l l the pointer manipu lations are complete, copy to reference parameter

value the data member of the node be ing removed (l i ne 1 5 1) .

8 . Now delete the node pointed to by tempPtr (l i ne 1 52) .

9 . Return true (l i ne 1 54) , i ndicat ing successfu l removal .

Figure 1 7 .9 i l l ustrates function removeFromBack. Part a) of the figure i l l ustrates

the l i st before the removal operat ion . Part b) of the figure shows the actual pointer

manipu lat ions .

Funct ion print (l ines l 78- l 99) fi rst determi nes whether the l i st i s empty (l i ne l 8 1) .

If so, print prints " The list is empty " and returns (l i nes 1 82- 1 83) . Otherw i se , i t

prints the data i n the l i st . The function i n i tia l izes currentptr as a copy of firstPtr

(l i ne 1 87) , then prints the string " The list is : " (l ine 1 89) . While currentPtr is not

nu l l (l i ne 1 9 1) , currentptr - >data i s printed (l i ne 1 92) and currentptr is assigned

the value of currentptr - >nextPtr (l i ne 1 93) . Note that if the l i n k in the last node of

the l i st i s not nu l l , the print ing algori thm wil l erroneous ly print past the end of the l i st . The

pri nt ing algorithm i s identical for l i nked l i sts, stacks and queues .

The k ind of l i nked l i st we have been discussing i s a singly linked list-the l i st beg ins

w i th a pointer to the first node, and each node contai ns a pointer to the nex t node " in

sequence." Thi s l i st terminates w i th a node whose pointer member has the va lue O. A s ingly

l i n ked l i st may be traversed i n only one direction .

A circular, singly linked list begins with a pointer to the first node, and each node con

tains a pointer to the next node. The " last node" does not contain a 0 pointer; rather, the

poi nter i n the l ast node poi nts back to the fi rst node, thus c los ing the "circ le ."

a) f irstPtr lastptr

12
b) f i r stPtr current ptr lastptr

k2 1 • I

� : - - - - - - -[:]

t empPtr

Fig. 1 7 .9 Operation removeFromBack represented graphical ly .

960 Data Structures Chapter 1 7

A doubly linked list al lows traversal s both forwards and backwards . Such a l i s t i s often
i mplemented with two "start poi nters"-one that points to the fi rst e lement of the l i st to
al low front-to-back traversal of the l i st and one that poi nts to the last e lement of the l i st to
a l low back-to-front traversal of the l i st . Each node has both a forward pointer to the next
node in the l i st in the forward direction and a backward poin ter to the next node in the l i st
i n the backward direct ion . I f your l i s t contain s an alphabetized telephone d irectory , for
example, a search for someone whose name begins with a l etter near the fron t of the
alphabet might beg in from the front of the l i st . Searching for someone whose name beg ins
wi th a l etter near the end of the alphabet might begin from the back of the l i st .

I n a circular, doubly linked list, the forward poi nter of the las t node poin ts to the fi rst
node, and the backward pointer of the first node poi nts to the l ast node, thus c los ing the
"c i rc le ."

1 7.5 Stacks

I n Chapter 1 1 , Templates, we explained the notion of a stack c lass template with an u nder

ly ing array implementat ion . In this section, we use an underly ing pointer-based l i nked- l i st

implementation . We also discuss stacks i n Chapter 2 1 , Standard Template Library (STL) .

A stack data structure al lows nodes to be added to a stack and removed from a stack

only at the top . For this reason, a stack i s referred to as a last-in, first-out (LIFO) data struc

ture . One way to i mplement a stack i s as a constrained version of a l i n ked l i s t . I n such an

i mplementation , the l i nk member in the l ast node of the stack i s set to n u l l (zero) to i ndicate

the bottom of the stack .

The primary member functions used to manipulate a stack are push and pop. Func

t ion push adds a new node to the top of the stack. Function pop removes a node from the

top of the stack, stores the popped value in a reference variable that i s passed to the cal l i ng

function and returns true if the pop operation was successfu l (fa l se otherw i se) .

Stacks have many i nterest ing appl icat ions . For example, when a function cal l i s made,

the cal led function must know how to return to its cal ler, so the return address i s pushed

onto a stack. I f a series of function cal l s occurs, the success ive return values are pushed onto

the stack in l ast- in , fi rst-out order so that each function can return to i ts cal ler . Stacks sup

port recurs ive function cal l s in the same manner as conventional nonrecurs ive cal l s .

Stacks provide the memory for, and store the values of, automatic variables on each

i nvocation of a function . When the function returns to its caller or throws an except ion, the

destructor (if any) for each local object i s called, the space for that functi on ' s automatic

variables is popped off the stack and those variables are no longer known to the program.

Stacks are used by compi lers i n the process of evaluating express ions and generat ing

machine language code . The exerc ises explore several app l ications of stacks, i nc lud ing

us ing them to develop a complete working compi ler.

We w i l l take advantage of the close rel at ionship between l i sts and stacks to i mplement

a stack class pri mari l y by reus ing a l i st c lass . We use two different forms of reusab i l i ty .

F irst , we i mplement the stack c lass through private i nheritance of the l i st c lass . Then we

i mplement an identical ly performing stack c lass through composit ion by inc lud ing a l i st

obj ect as a pri vate member of a stack class . Of course, a l l of the data structures in th i s

chapter, inc luding these two stack classes, are i mplemented a s templates t o encourage fur

ther reusab i l i ty .

Chapter 1 7 Data Structures 96 1

The program of Fig . 1 7 . 1 O-Fig. 1 7 . 1 1 creates a Stack c l ass template (F ig . 1 7 . 1 0) pri

mari ly through private i nheritance of the List class template of Fig. 1 7 .4 . We want the

Stack to have member functions push (l ines 1 3- 1 7) , pop (l i nes 20-24), isStack

Empty (l i nes 27-3 L) and printStack (l ines 34-3 8) . Note that these are essent ia l ly the

insertAtFront, removeFromFront, isEmpty and print funct ions of the List

c lass template . Of course, the List c lass template contain s other member funct ions (i . e . ,

insertAtBack a n d removeFrOmBack) that w e would not want t o m ake access ib le

through the public i nterface to the Stack c lass . So when we ind icate that the Stack

c lass template is to i nherit from the List c lass templ ate, we spec ify private i nheri

tance. Thi s makes a l l the List c lass template ' s member funct ions private i n the

Stack class template. When we i mplement the Stack ' s member functions , we then have

each of these cal l the appropriate member function of the List c lass-push cal l s

insertAtFront (l i ne 1 5) , pop cal l s removeFromFront (line 22) , isStackEmpty

cal l s isEmpty (l i ne 29) and printStack cal l s print (l i ne 36) .

The stack c lass template i s used in main (Fig . 1 7 . 1 1) to i nstantiate i nteger stack

intStack of type Stack < int > (l i ne I I) . In tegers 0 through 3 are pushed onto

intStack (l i nes 1 6-20), then popped off intStack (l i nes 23-30) . The program uses

the Stack c l ass template to create doubleStack of type Stack < double > (l i ne 3 2) .

Values 1 . 1 , 2 .2 , 3 . 3 and 4 . 4 are pushed onto doubleStack (l ines 3 8-43) , t h e n popped

off doubleS tack (46-5 3) .

1 / / Fig . 1 7 . 1 0 : s tack . h
2 / / Template Stack c l a s s def init ion derived f rom c l a s s Li st .
3 # i fndef STACK_H
4 #def ine STACK_H
5
6 # inc lude " l i s t . h " / / L i s t c l a s s def init ion
7
8 t emplate < c l a s s STACKTYPE >
9 c la s s Stack : private L i s t < STACKTYPE > {

1 0
1 1 pub l i c :
1 2 / / push cal l s L i s t func t i on insertAt Front
1 3 void push (const STACKTYPE &data)
1 4 {
1 5 insertAtFront (data) ;
1 6
1 7 / / end funct ion push
1 8
1 9 / / pop cal l s L i s t funct ion removeFromFront
20 bool pop (STACKTYPE &data)
2 1 {
22 return removeFromFront (data) ;
23
24 // end funct i on pop
25
26 1 / i s StackEmpty cal l s List func t ion i sEmpty
27 bool i sStackEmpty () const
28 {

Fig. 1 7 . 1 0 Stack class-template defin it ion . (Part 1 of 2 .)

962 Data Structures

29 return i s Empty () ;
30
3 1 I I end func t i on i sStackEmpty
32
33 I I printStack cal l s List funct i on print
34 void print Stack () const
35 {
36 print () ;
37
38 I I end funct i on print
39
40 } ; I I end c la s s Stack
4 1
4 2 #end i f

Fig. 1 7 . 1 0 S t ack class-template defin ition . (Part 2 of 2 .)

1 II Fig . 17 . 1 1 : f ig17 1 1 . cpp
2 I I Template Stack c l a s s test program .
3 # inc lude < iostream>
4
5 using std : : endl ;
6
7 # inc lude " stack . h " I I Stack class def init ion
8
9 int main ()

1 0 {
1 1 Stack< int > intStack ; I I create Stack o f int s
1 2
1 3 cout « " proc e s s ing an integer Stack " « endl ;
1 4
1 5 I I push integers onto int Stack
1 6 for (int i = 0 ; i < 4 ; i + +) (
1 7 intStack . push (i) ;
1 8 intStack . printStack () ;
1 9
20 I I end for
2 1
22 I I pop integers from intStack
23 int poplntege r ;
24
25 whi l e (! int Stack . i sStackEmpty ()) (
26 int Stack . pop (poplnteger) ;

Chapter 1 7

27 cout « poplnteger « " popped from stack " « endl ;
28 intStack . print Stack () ;
29
30 I I end whi l e
3 1
32 Stack< doubl e > doubleStack ; I I create Stack of doubles
33 doubl e value = 1 . 1 ;
34
35 cout « " proc e s s ing a double Stack " « endl ;

Fig. 1 7 . 1 1 A s imple stack program, (Part 1 of 3 ,)

Chapter 1 7 D ata Structures

36
37 II push f loat ing-po int values onto doubleStack
38 for (int j = 0 ; j < 4 ; j + +) {
39 doubleStack . push (value) ;
40 doubleStack . print Stack () ;
4 1 value + = 1 . 1 ;

42
43 II end for
44
45 II pop f l oat i ng-point values from doubleStack
46 double popDouble ;
47
48 whil e (! doubleStack . i sStackEmpty ()) {
49 doubleStack . pop (popDouble) ;
50 cout « popDouble « " popped from stack " « endl ;
5 1 doubleStack . print Stack () ;
52
53 I I end whi l e
54
55 return 0 ;
56
57 } I I end main

proc e s s ing an integer
The l i s t i s : 0

The l i s t i s : 1 0

The l i s t i s : 2 1 0

The l i s t i s : 3 2 1 0

3 popped f rom stack
The l i st i s : 2 1 0

2 popped f rom stack
The l i s t i s : 1 0

1 popped from stack
The l i s t i s : 0

o popped f rom stack
The l i s t i s empty

Stack

proc e s s ing a double Stack
The l i s t i s : 1 . 1

The l i s t i s : 2 . 2 1 . 1

The l i st i s : 3 . 3 2 . 2 1 . 1

963

The l i s t i s : 4 . 4 3 . 3 2 . 2 1 . 1 (continued next page)

Fig. 1 7 . 1 1 A simple stack progra m . (Part 2 of 3 .)

964 Data Stru ctures

4 . 4 popped f rom stack
The l i s t i s : 3 . 3 2 . 2 1 . 1

3 . 3 popped from stack
The l i s t i s : 2 . 2 1 . 1

2 . 2 popped from stack
The l i s t i s : 1 . 1

1 . 1 popped from stack
The l i s t i s empty

All node s des troyed

All nodes de s troyed

Fig. 1 7. 1 1 A simple stack progra m . (Part 3 of 3.)

Chapter 1 7

Another way to i mplement a Stack class template i s by reus ing the List c lass tem

p late through composi t ion . Figure 1 7 . 1 2 i s a new i mplementat ion of the Stack class tem

p late that contai ns a List< STACKTYPE > object cal led stackList (l i ne 43) . This

version of the Stack c lass template uses c lass List from Fig . 1 7 .4 . To test th is c l ass , use

the driver program in Fig . 1 7 . 1 1 , but i nc lude the new header fi le-stackcomposi

tion. h i n l i ne 7 of that fi le . The output of the program i s identical for both vers ions of

c lass Stack.

1 I I Fig . 1 7 . 12 : s tackcompo s i t i on . h
2 I I Template Stack c la s s def init ion with composed L i s t obj ect .
3 # i fndef STACKCOMPOSITION
4 #de f ine STACKCOMPOSITION
5
6 #inc lude " l i s t . h " I I List c l a s s de f init ion
7
8 template < c l a s s STACKTYPE >
9 c l a s s Stack {

1 0
1 1 pub l i c :
1 2 I I no const ructor ; List constructor doe s ini t ial i z at ion
1 3
1 4 I I push cal l s stackLi st obj ect ' s insertAtFront funct i on
1 5 voi d push (const STACKTYPE &data
1 6 (
1 7 stackLi s t . insertAtFront (data) ;
1 8
1 9 } I I end funct ion push
20
2 1 I I pop cal l s stackList obj ect ' s removeFromFront funct ion
22 bool pop (STACKTYPE &data)
23 (
24 return stackLi st . removeFromFront (dat a) ;
25
26 II end funct ion pop

F ig. 1 7 . 1 2 S t ack class template with a composed L i s t object. (Part 1 of 2 .)

Chapter 1 7 D ata Structures

27
28 I I i sStackEmpty cal l s stackList obj ect ' s i s Empty funct ion
29 bool i sStackEmpty () const
30 (
3 1 return stackL i s t . i sEmpty () ;
32
33 I I end funct ion isStackEmpty
34
35 I I printStack cal l s stackList obj ect ' s print funct ion
36 void printStack () const
37 (
38 stackLi s t . print () ;
39
40 I I end funct ion printStack
4 1
4 2 private :
43 L i s t < STACKTYPE > s tackLi st ; I I composed L i s t obj ect
44
45 } ; I I end c l a s s Stack
46
47 #end i f

Fig. 1 7 . 1 2 St ack c lass template with a composed List object . (Part 2 of 2 .)

17.6 Queues

965

A queue is s im i l ar to a supermarket checkout l i ne-the first person in l i ne i s serviced first,

and other customers enter the l ine at the end and wait to be serviced. Queue nodes are re

moved only from the head of the queue and are i nserted only at the tail of the queue. For

th i s reason , a queue is referred to as afirst-in,f irst-out (FIFO) data structure . The i nsert and

remove operat ions are known as enqueue and dequeue.
Queues have many appl ications in computer systems . Most computers have only a

s ingle processor, so only one user at a t ime can be served. Entries for the other u sers are

placed in a queue . Each entry gradual l y advances to the front of the queue as users receive

serv ice . The entry a t the front of the queue i s the next to receive serv ice .

Queues are also used to support pri nt spool ing . A mul t iuser env i ronment may have

only a s i ngle printer. Many users may be generat ing outputs to be printed. I f the pr inter i s
busy, other outputs m a y sti l l b e generated. These are "spooled" t o d i sk (much as thread i s
wound onto a spool) where they wait i n a queue unt i l the printer becomes avai lable .

I nformation packets a lso wait i n queues i n computer networks . Each t ime a packet

arrives at a network node, i t must be routed to the next node on the network along the path
to the packet ' s fi nal destination . The rout ing node routes one packet at a t ime , so addit ional
packets are enqueued unt i l the router can route them.

A fi le server in a computer network handles fi le access requests fro m many c l i ents

throughout the network . Servers have a l im i ted capacity to serv ice requests from c l ients .

When that capaci ty i s exceeded, c l ient requests wait i n queues .

The program of Fig . 1 7 . 1 3-Fig . 1 7 . 1 4 creates a Queue c lass template (Fig . 1 7 . 1 3) pri
mari ly through private i nheritance of the Li s t c lass template of Fig . 1 7 .4 . We want the
Queue to have member functions enqueue (l i nes 1 3- 1 7) , dequeue (l i nes 20-24) ,
isQueueEmpty (l i nes 27-3 1) and printQueue (l i nes 34-3 8) . We note that these are

966 Data Structures

1 I I Fig . 1 7 . 1 3 : queue . h

Chapter 1 7

2 I I Template Queue c lass de f init ion derived from c l a s s L i s t .
3 # i fndef QUEUE_H
4 #de f i ne QUEUE_H
5
6 # inc lude " l i s t . h " I I List c lass de fini t i on
7
8 template< c l a s s QUEUETYPE >
9 c l a s s Queue : private Li s t < QUEUETYPE > {

1 0
1 1 pub l i c :
1 2 I I enqueue c a l l s List funct i on insertAtBack
1 3 void enqueue (const QUEUETYPE &data)
1 4 {
1 5 insertAtBack (data) ;
1 6
1 7 I I end funct i on enqueue
1 8
1 9 I I dequeue cal l s List funct ion removeFromFront
20 bool dequeue (QUEUETYPE &data)
2 1 {
22 return removeFromFront (data) ;
23
24 I I end funct i on dequeue
25
26 I I i s QueueEmpty cal l s List func t i on i S Empty
27 bool i s QueueEmpty () const
28 {
29 return i S Empty () ;
30
3 1 } I I end funct i on i sQueueEmpty
32
33 I I printQueue cal l s List funct ion print
34 void printQueue () const
35 {
36 print () ;
37
38 II end funct ion printQueue
39
40 } ; I I end c la s s Queue
4 1
4 2 #end i f

Fig. 1 7 . 1 3 Queue c lass-template defin it ion .

essent ial ly the insertAtBack, removeFromFront, isEmpty and print functions

of the List c lass template. Of course, the List class template contain s other member

functions (i . e . , insertAtFront and removeFromBack) that we would not want to

make access ib le through the public i nterface to the Queue class . So when we i nd icate

that the Queue c lass template i s to i nherit the List c lass template, we spec ify private

i n heritance. This makes al l the List class template ' s member functions private i n the

Queue c lass template. When we implement the Queue' s member functions , we have each

of these call the appropriate member function of the l i st c lass-enqueue cal l s insert-

Chapter 1 7 Data Structu res 967

AtBack (l i ne 1 5) . dequeue ca l l s removeFromFront (l i ne 22) , isQueueEmpty

ca l l s isEmpty (l i ne 29) and printQueue cal l s print (l i ne 36) .

Figure 1 7 . 1 4 u ses the queue c l ass templ ate to i n stant iate i n teger queue intQueue of

type Queue< int > (l i ne I I) . I n tegers 0 through 3 are enqueued to intQueue (l i nes 1 6-

20) , then dequeued from intQueue in fi rst-i n , fi rst-out order (l i nes 23-30) . Next , the pro

gra m i nstant iates q ueue doubleQueue of type Queue< double > (l i ne 3 2) . Val ues 1 . 1 ,

2 . 2 , 3. 3 and 4 .4 are enqueued to doubleQueue (l i nes 38-43) , then dequeued from dou

bleQueue i n fi rst- i n . fi rst-out order (l i nes 46-5 3) .

1 I I Fig . 17 . 1 4 : f i g 1 7 1 4 . cpp
2 I I Templat e Queue c l ass test program .
3 # inc lude < io s t ream>
4
5 using std : : endl ;
6
7 #inc lude " queue . h " I I Queue c lass de f i n i t i on
8
9 int main ()

1 0 {
1 1 Queue < int > intQueue ; I I create Queue o f int s
1 2
1 3 cout « " proc e s s ing an integer Queue " « endl ;
1 4
1 5 I I enqueue integers onto intQueue
1 6 for (int i = 0 ; i < 4 ; i + +) {
1 7 intQueue . enqueue (i) ;
1 8 intQueue . printQueue () ;
1 9
20 } I I end for
2 1
22 II dequeue integers f rom i ntQueue
23 int dequeue Int ege r ;
24
25 whi l e (! intQueue . i sQueueEmpty ()) {
26 intQueue . dequeue (dequeue Integer) ;
27 cout « dequeue Int eger « II dequeued " « endl ;
28 intQueue . printQueue () ;
29
30 } I I end whi l e
3 1
32 Queu e < double > doubl eQueue ; I I create Queue of doub l e s
33 doubl e va lue = 1 . 1 ;
34
35 cout « " proc e s s ing a double Queue " « end l ;
36
37 I I enqueue f l oating-point values onto doubl eQueue
38 for (int j = 0 ; j < 4 ; j + +) {
39 doubleQueue . enqueue (value) ;
40 doubleQueue . printQueue () ;
4 1 value + = 1 . 1 ;
42
43 I I end for

Fig. 1 7 . 1 4 Queue-processing program . (Part 1 of 3 .)

968 Data Structures

44
45 I I dequeue f l oat ing-point values from doubleQueue
46 doubl e dequeueDouble ;
47
48 whi l e (I doubl eQueue . i sQueueEmpty ()) {
49 doubleQueue . dequeue (dequeueDoubl e) ;
50 cout « dequeueDouble « II dequeued " « endl ;
5 1 doubleQueue . printQueue () ;
52
53 I I end whi l e
54

55 return 0 ;

56

57 I I end main

process ing an integer Queue
The l i st i s : 0

The l i st i s : 0 1

The l i s t i s : 0 1 2

The l i st i s : 0 1 2 3

o dequeued
The l i s t i s : 1 2 3

1 dequeued
The l i st i s : 2 3

2 dequeued
The l i s t i s : 3

3 dequeued
The l i s t i s empty

proce s s ing a double Queue
The l i st i s : 1 . 1

The l i s t i s : 1 . 1 2 . 2

The l i st i s : 1 . 1 2 . 2 3 . 3

The l i s t i s : 1 . 1 2 . 2 3 . 3 4 . 4

1 . 1 dequeued
The l i s t i s : 2 . 2 3 . 3 4 . 4

2 . 2 dequeued
The l i s t i s : 3 . 3 4 . 4

Chapter 1 7

3 . 3 dequeued
The l i s t i s : 4 . 4 (continued next page)

Fig. 1 7 . 1 4 Queue-processing program, (Part 2 of 3 .)

Cha pter 1 7 Data Structures 969

4 . 4 dequeued
The l i st is empty

Al l nodes de stroyed

Al l nodes destroyed

Fig. 1 7 . 1 4 Queue-process ing program . (Part 3 of 3 .)

17.7 Trees

Li nked l i sts , stacks and queues are linear data structures. A tree i s a non l i near, two-dimen

s ional data structure wi th spec ia l propert ies . Tree nodes contain two or more l i nks . Th i s

sect ion discusses binary trees (Fig . 1 7 . 1 5)-trees whose nodes al l contain t w o l i nks (none,

one or both of which may be nu l l) . For the purposes of th i s d iscuss ion, refer to the nodes in

Fig . 1 7 . 1 5 . The root node (node B) i s the fi rst node i n a tree. Each l ink i n the root node re

fers to a child (nodes A and D). The left child (node A) is the root node of the leli subtree

(which contain s on ly node A), and the right child (node D) is the root node of the right sub
tree (which contai n s nodes D and C). The ch i ldren of a s ing le node are cal led siblings (e .g . ,

nodes A and D are s ib l i ngs) . A node wi th no ch i ldren i s cal l ed a leaf node (e .g . , nodes A and

C are l eaf nodes). Computer scient ists normal l y draw trees from the root node down-ex

act ly the opposite of trees in nature .

Th i s section d i scusses a special b inary tree cal l ed a binary search tree . A binary search

tree (w i th no dupl icate node values) has the characterist ic that the values i n any left subtree

are less than the va lue in its parent node, and the values in any right subtree are greater than

the value in its parent node . Figure 1 7 . 1 6 i l l u strates a b inary search tree with 1 2 va lues .

Note that the shape of the b inary search tree that corresponds to a set of data can vary ,

depending on the order i n wh ich the values are i nserted i nto the tree .

The program of Fig . 1 7 . 1 7-Fig . 1 7 . 1 9 creates a b inary search tree and traverses it (i . e . ,

walks through a l l i t s nodes) three ways-using recursive inorder, preorder and postorder

traversals.

Fig. 1 7 . 1 5 A graphical representation of a binary tree .

970 Data Stru ctu res

4 7

�
2 5

�
1 1 4 3

1\ 1\
7 17 31 4 4

Fig. 1 7 . 1 6 A binary search tree ,

7 7

�
6 5 9 3

\
6 8

Chapter 1 7

We begi n our discuss ion with the driver program (Fig . 1 7 . 1 9) , then conti n ue with the

i mplementat ions of c lasses TreeNode (Fig. 1 7 . 1 7) and Tree (Fig . 1 7 . 1 8) . Funct ion

main (Fig . 1 7 . L 9) begi n s by i n stantiat ing in teger tree intTree of type Tree< int >

(l i ne 1 6) . The program prompts for 1 0 in tegers , each of which i s i n serted i n the b inary tree

by ca l l i ng insertNode (l i ne 23) . The program then performs preorder, i norder and

postorder traversal s (these are explai ned short ly) of intTree (l i ne s 28 , 3 1 and 34,

respecti ve l y) . The program then in stanti ates floati ng-point tree doubleTree of type

Tree < double > (l i nes 36) . The program prompts for 1 0 double va lues , each of

which i s i n serted i n the b inary tree by cal l i ng insertNode (l i ne 44) . The program then

performs preorder, i norder and postorder traversa ls of doubleTree (l i nes 49, 52 and 5 5 ,
respective ly) .

1 / / Fig . 1 7 . 1 7 : t reenode . h
2 / / Temp l a t e TreeNode c l a s s de f i n i t ion .
3 #i fnde f TREENODE_H
4 #de f ine TREENODE_H
5
6 / / forward dec l arat ion of c l a s s Tree
7 temp l at e< c la s s NODETYPE > c l a s s Tree ;
8
9 template < c l a s s NODETYPE >

1 0 c l a s s TreeNode (
1 1 friend c l a s s Tree< NODETYPE > ;
1 2
1 3 pub l i c :
1 4
1 5 / / const ructor
1 6 TreeNode (const NODETYPE &d)
1 7 l e f t Pt r (0) ,

1 8 dat a (d) ,
1 9 rightptr (0
20 {
2 1 / 1 empty body
22
23 II end TreeNode const ructor
24

Fig. 1 7 . 1 7 TreeNode class-template defin ition . (Part 1 of 2 ,)

Chapter 1 7

25 I I return copy of node ' s data
26 NODETYPE getData () cons t
27 {
28 return dat a ;
29
30 I I end getData func t i on
3 1
3 2 private :

Data Structures

33 TreeNode < NODETYPE > * leftPtr; I I pointer to l e f t subt ree
34 NODETYPE dat a ;

97 1

35 TreeNode < NODETYPE > *rightptr ; I I point er to r i ght subtree
36
37 } ; I I end c l a s s TreeNode
38
39 #end i f

Fig. 1 7 . 1 7 TreeNode class-template defin ition . (Part 2 of 2 .)

1 I I Fig . 1 7 . 1 8 : t ree . h
2 I I Template Tree c l a s s de f init ion .
3 # i fnde f TREE_H
4 #de f ine TREE_H
5
6 #inc lude < iostream>
7
8 us ing std : : endl ;
9

1 0 #inc lude < new>
1 1 #inc lude " treenode . h "
1 2

1 3 t emplate < c l a s s NODETYPE >
1 4 c lass Tree {
1 5
1 6 pub l i c :
1 7 Tree () ;
1 8 void insertNode (const NODETYPE &) ;
1 9 void preOrderTraversal () const ;
20 void inOrderTraversal () const ;

2 1 void postOrderTraversal () const ;

22
23 private :
24 TreeNode < NODETYPE > * rootpt r ;
25
26 I I ut i l ity func t i ons
27 void insertNodeHe lper (
28 TreeNode < NODETYPE > * * , const NODETYPE &) ;
29 void preOrderHelper (TreeNode < NODETYPE > *) const ;
30 void inOrderHe lper (TreeNode < NODETYPE > *) const ;
31 void postOrderHe lper (TreeNode < NODETYPE > *) const ;
32
33 } ; I I end c l a s s Tree
34

Fig. 1 7 . 1 8 Tree c lass-template defin it ion . (Part 1 of 4 .)

972 Data Stru ctures

35 I I const ructor
36 template < c lass NODETYPE >
37 Tree< NODETYPE > : : Tree ()
38 {
39 rootPtr = 0 ;

40
4 1 } I I end Tree construc tor
42
43 I I insert node in Tree
44 template < c lass NODETYPE >

Chapter 1 7

45 void Tree< NODETYPE > : : insertNode (const NODETYPE &value)
46 {
47 insertNodeHe lper (&rootPt r , value) ;
48
49 I I end funct i on insertNode
50
5 1 I I ut i l ity funct ion cal led by insertNode ; receives a pointer
52 II to a pointer so that the function can mod i fy pointer ' s value
53 template < c l a s s NODETYPE >
54 void Tree< NODETYPE > : : insertNodeHe lper (
55 TreeNode < NODETYPE > * *pt r , const NODETYPE &value)
56 {
57 I I subtree is empty ; create new TreeNode containing value
58 if (*ptr == 0)

59 *ptr = new TreeNode < NODETYPE > (value) ;
60
6 1 e l s e I I subtree i s not empty
62
63 I I data to insert i s le s s than data in current node
64 i f (value < (*ptr) - >data)
65 insertNodeHe lper (& ((*ptr) - > l e f t Pt r) , value) ;
66
67 . e l s e
68
69 I I data to insert is greater than data in current node
70 if (value > (*ptr) - >data)
7 1 insertNodeHe lper (& ((*ptr) - > rightPtr) , value) ;
72
73 else I I dupl icate data value i gnored
74 cout « value « II dup ll « endl ;
75
76 } I I end funct ion insertNodeHe lper
77
78 II begin preorder traversal of Tree
79 template < class NODETYPE >
80 void Tree< NODETYPE > : : preOrderTraversal () const
8 1 {
82 preOrderHe lper (rootPtr) ;
83
84 } I I end function preOrderTraversal
85

Fig. 1 7 . 1 8 Tree class-template definit ion . (Part 2 of 4 .)

Cha pter 1 7

86
87
88
89
90
9 1
92

I I ut i l ity funct ion to perform preorder
template < c l a s s NODETYPE >
void Tre e < NODETYPE > : : preOrderHe lper (

TreeNode < NODETYPE > *ptr) const

if (ptr ! = 0) (

Data Structu res 973

t raversal of Tree

I I proce s s node
93
94

cout « ptr- >data « ' ' ;
preOrderHe lper (pt r - > leftPtr) ;
preOrderHe lper (ptr - > right Ptr) ;

I I go t o l e f t subtree
I I go to right subtree

95
96
97
98
99

I I end i f

I I end func t ion preOrderHelper

I I begin inorder traversal o f Tree
t emplate < c l a s s NODETYPE >
void Tre e < NODETYPE > : : inOrderTraversal ()
{

inOrderHe lper (rootPtr) ;

I I end func t ion inOrderTraversal

const

I I ut i l i ty funct ion to perform inorder
t emplate < c l a s s NODETYPE >

1 00
1 0 1
1 02
1 03
1 04
1 05
1 06 }
1 07
1 08
1 09
1 1 0
1 1 1
1 1 2
1 1 3
1 1 4
1 1 5
1 1 6
1 1 7
1 1 8
1 1 9
1 20
1 2 1
1 22
1 23
1 24
1 25
1 26
1 27
1 28
1 29
1 30
1 3 1
1 32
1 33
1 34
1 35
1 36
1 37
1 38

t raversal o f Tree

void Tree< NODETYPE > : : inOrderHe lper (
TreeNode < NODETYPE > *ptr) const

if (ptr ! = 0) {
inOrderHelper (ptr- > leftPtr) ;
cout « ptr- >data « ' ' ;
inOrderHelper (ptr- > right Ptr) ;

I I end i f

} I I end funct ion inOrderHelper

I I begin postorder traversal of Tree
t emplate < c l a s s NODETYPE >

1/ go to l e f t subt ree
I I proc e s s node
I I go to right subtree

void Tree< NODETYPE > : : postOrderTraversal () const
{

pos tOrderHe lper (rootPtr) ;

I I end funct ion postOrderTraversal

I I ut i l ity funct ion to perform pos torder
t emplate < c l a s s NODETYPE >
void Tree< NODETYPE > : : postOrderHelper (

TreeNode < NODETYPE > *ptr) cons t

i f (ptr ! = 0) {
pos tOrderHe lper (ptr- > leftPtr) ;
postOrderHe lper (ptr- > rightPtr) ;
cout « ptr - >data « ' ' ;

Fig. 1 7 . 1 8 Tree class-template defin it ion . (Part 3 of 4 .)

t raversal of Tree

I I go to l e f t subt ree
I I go to r i ght subtree
I I proc e s s node

974 Data Structu res

1 39
1 40 } I I end i f

1 4 1
1 42 I I end func t i on p o s t OrderHe lper

1 43
1 44 #endi f

Fig. 1 7 . 1 8 Tree class-template defin it ion . (Part 4 of 4 .)

1 I I Fig . 1 7 . 1 9 : f i g 1 7_1 9 . cpp
2 I I Tree c la s s t e s t program .
3 # inc lude < i ostream>
4
5 using std : : cout ;
6 using std : : c i n ;
7 using std : : f ixed ;
8
9 # inc lude < iomanip>

1 0 us ing std : : setpre c i s ion;
1 1
1 2 # inc lude " tree . h " I I Tree c l a s s de f in i t i on

1 3
1 4 int main ()
1 5 {
1 6 Tree < int > intTree ; I I creat e Tree o f int value s

1 7 int intValue ;
1 8
1 9 cout « " Enter 1 0 integer value s : \ n " ;

20
2 1 for (int i = 0 ; i < 1 0 ; i + +) {
22 c in » intValue ;
23 intTree . insertNode (intValue) ;
24
25 I I end f o r

26
27 cout < < " \ nPreorder t rave r s a l \ n " ;
28 intTree . preOrderTraversal () ;
29
30 cout « " \ nInorder t rave r s a l \ n " ;

3 1 intTree . inOrderTraversal () ;
32
33 cout < < " \ nP o s torder t rave r s a l \ n " ;

34 intTree . postOrderTraversal () ;
35

Chapter 1 7

36 Tre e < double > doubleTree ; I I c r e a t e Tree of doub l e value s

37 doubl e doubl eValue ;
38
39 cout « f ixed « setprec i s ion (1)
40 « " \ n \ n \ nEnte r 1 0 doubl e value s : \ n " ;

4 1
42 for (int j = 0 ; j < 1 0 ; j + +) {
43 c in » doubl eValue ;

Fig. 1 7 . 1 9 Creating and traversing a binary tree . (Part 1 of 2 .)

Chapter 1 7

44 doubleTree . insertNode (doubleValue) ;
45
46 I I end for
47
48 cout < < " \ nPreorder traversal \n" ;
49 doubleTree . preOrderTraversal () ;
50
5 1 cout « " \nlnorder traver sal \ n " ;
52 doubleTree . inOrderTraversal () ;
53
54 cout < < " \ nPostorder traversal \ n " ;
55 doubleTree . postOrderTraversal () ;
56
57 cout « endl ;
58
59 return 0 ;

60
6 1 } I I end main

Enter 10 integer value s :
5 0 2 5 7 5 1 2 3 3 6 7 8 8 6 1 3

Preorder t raversal

50 25 12 6 1 3 3 3 7 5 6 7 6 8

Inorder traversal
6 1 2 1 3 25 33 50 67 68 7 5

Postorder traversal

6 1 3 12 33 25 68 67 8 8 7 5

Enter 1 0 double value s :

6 8

8 8

8 8

5 0

3 9 . 2 1 6 . 5 8 2 . 7 3 . 3 6 5 . 2 9 0 . 8 1 . 1 4 . 4 8 9 . 5 9 2 . 5

Preorder traversal
3 9 . 2 1 6 . 5 3 . 3 1 . 1 4 . 4 8 2 . 7 6 5 . 2 9 0 . 8 8 9 . 5 9 2 . 5

Inorder t raversal
1 . 1 3 . 3 4 . 4 1 6 . 5 3 9 . 2 6 5 . 2 8 2 . 7 8 9 . 5 9 0 . 8 9 2 . 5

Postorder traversal

1 . 1 4 . 4 3 . 3 1 6 . 5 6 5 . 2 8 9 . 5 9 2 . 5 9 0 . 8 8 2 . 7 3 9 . 2

Fig. 1 7 . 1 9 Creating and traversing a binary tree . (Part 2 of 2 .)

Data Structu res 975

Now we d i sc u ss the c l ass-te m p l ate defi n i t ions . We beg i n with the TreeNode c l ass

te mp l ate (F i g . 1 7 . 1 7) that dec l are s as i ts frie l ld (l i n e I I) t h e Tree c l ass te mplate

(F i g . 1 7 . 1 8) . L i nes 3 3-35 decl are a TreeNode' s pri vate data-the node ' s data value ,

and poi n ters leftPtr (to the node ' s left s u btree) and rightPtr (to the node ' s r ight sub

tree) . The constructor (l ines 1 6-2 3) sets data to the v a l ue suppl ied as a constructor argu

ment and sets poi n ters leftPtr and rightPtr to zero (thus i n i t i a l i z i n g th is node to be

a leaf node) . Member function getData (l i nes 26-30) returns the data value .

The Tree c l ass tem p l ate (F i g . 1 7 . 1 8) has as private data rootPtr (l i ne 24) , a

poi l l ter to the root node of the tre e . L i n e s 1 8-2 1 of the c l ass dec l are the p u b l i c member

fu nct ions insertNode (that i n se rt � a new node in the tree) and preorderTraver sal.

976 Data Structu res Chapter 1 7

inorderTraversal and postorderTraversal, each of which walks the tree i n

the des ignated manner. Each o f these member functions cal l s i ts o w n separate recurs i ve

u t i l i ty function to perform the appropriate operations on the i nternal representation of the

tree . The Tree constructor i n it ial izes rootPtr to zero to i ndicate that the tree i s i n i t ia l ly

empty .

The Tree c lass ' s ut i l i ty function insertNodeHelper (l i nes 5 3-76) i s cal led by

insertNode (l i nes 44-49) to recurs ively insert a node i nto the tree . A node can only be

inserted as a leaf node in a binary search tree. If the tree i s empty, a new TreeNode i s

created, i n i t ial ized and i nserted in the tree (l i nes 58-59) .

If the tree is not e mpty, the program compares the value to be i nserted wi th the data

value i n the root node. If the i nsert value is smaller (l i ne 64), the program recursively cal l s

insertNodeHelper (l i ne 65) t o insert the value i n the left subtree. If t h e i nsert value i s

larger (l ine 70), the program recursively cal l s insertNodeHelper (l i ne 7 1) to i nsert the

value i n the right subtree. If the value to be inserted is identical to the data value i n the root

node, the program prints the message " dup " (l i ne 74) and returns without insert i ng the

dupl icate value i nto the tree. Note that insertNode passes the address of rootPtr to

insertNodeHelper (l i ne 47) so i t can modify the value stored in rootPtr (i . e . , the

address of the root node) . To receive a pointer to rootPtr (which is' also a pointer),

insertNodeHelper 's fLrst argument i s declared as a pointer to a pointer to a TreeNode.

Each of the member functions inOrderTraversal (l i nes 1 0 I. - I 06), preOrder

Traversal (l ines 79-84) and postOrderTraversal (l i nes 1 23- 1 28) traverses the

tree and prints the node values . For the purpose of the fol lowing discuss ion , we use the

b inary search tree in Fig . 1 7 . 20.

Function inOrderTraversal i nvokes uti l i ty function inOrderHelper to per

form the i norder traversal of the binary tree. The steps for an i norder traversal are :

l . Traverse the left subtree with an i norder traversal . (This i s performed by the cal l

to inOrderHelper at l ine I 1 4) .

2 . Process t h e value i n the node-i .e . , pri nt the node value (l i ne 1 1 5) .

3 . Traverse the right subtree with a n i norder traversal . (This i s performed b y the cal l

to inOrderHelper at l i ne 1 1 6) .

The value i n a node i s not processed unt i l the values i n i ts left subtree are processed, be

cause each call to inOrderHelper i mmediate ly cal l s inOrderHelper again with the

pointer to the left subtree . The i norder traversal of the tree i n Fig. 1 7 . 20 is

6 13 1 7 27 33 42 4 8

2 7

.�
1 3 4 2

� �
6 17 3 3 48

Fig. 1 7 .20 A binary search tree .

Chapter 1 7 Data Structu res 977

Note that the inorder traversal of a bi nary search tree pri nts the node va lues i n

ascending order. The process o f creating a b inary search tree actual ly sorts the data-thus,

th is process i s cal led the binary tree sort.

Function preOrderTraversal i nvokes ut i l i ty function preOrderHelper to

perform the preorder traversal of the binary tree. The steps for an preorder traversal are :

I . Process the va lue i n the node (l i ne 92) .

2 . Traverse the left subtree with a preorder traversal . (Th is i s performed by the cal l

to preOrderHelper at l i ne 93) .

3 . Traverse the r ight subtree with a preorder traversal . (This i s performed by the cal l

to preOrderHelper at l i ne 94) .

The value i n each node i s processed a s the node i s v i sited. After t h e value i n a g i v e n node

i s processed, the values in the left subtree are processed. Then the values in the right subtree

are processed. The preorder traversal of the tree in Fig . 1 7 .20 i s

2 7 1 3 6 1 7 4 2 3 3 4 8

Function postOrderTraversal invokes uti l i ty function postOrderHelper to

perform the postorder traversal of the binary tree. The steps for an postorder traversal are :

I . Traverse the l eft subtree with a postorder traversal . (This i s performed by the cal l

to postOrderHelper at l i ne 1 36) .

2 . Traverse the right subtree wi th a postorder traversal . (This i s performed by the cal l

to postOrderHelper at l i ne 1 37) .

3 . Process the va lue i n the node (l i ne 1 3 8) .

The value i n each node i s no t pri nted un t i l the values of i t s chi ldren are pri nted. The post

OrderTraversal of the tree i n F ig . 1 7 .20 i s

6 1 7 1 3 3 3 4 8 4 2 2 7

T h e b inary search tree fac i l i tates duplicate elimination. As the tree i s bei ng created, a n

attempt t o insert a dupl icate value w i l l b e recogn ized, because a dup l icate w i l l fo l low the

same "go left" or "go right" dec is ions on each compari son as the orig ina l val ue did when

i t was i nserted in the tree. Thus, the dupl icate w i l l eventual ly be compared w i th a node con

tai n ing the same value . The dupl icate value may be di scarded at th i s poi nt .

Searching a b inary tree for a va lue that matches a key val ue i s also fast . I f the tree i s

balanced, then each level contai ns about twice a s many e lements as the prev ious leve l . S o

a b inary search tree with n e lements would have a max imum o f l og2n leve l s ; t h u s , a max

imum of log2n compari sons would have to be made ei ther to fi nd a match or to determine

that no match ex i sts . Th is means , for example, that when search ing a (balanced) 1 0 00-e le

ment b inary search tree, no more than 1 0 compari sons need to be made because 2 1 0 > 1 000.

When search ing a (balanced) I ,OOO,OOO-element bi nary search tree , no more than 20 COI11-

pari sons need to be made because 220 > 1 ,000,000.

[n the exerc i ses , algori thms are presented for several other b inary tree operat ions such

as de let ing an item from a binary tree , pri nt ing a b inary tree i n a two-di mens ional tree

format and performing a level -order traversal of a b inary tree . The level -order traversal of

a binary tree v i s i ts the nodes of the tree row by row, start ing at the root node leve l . On each

level of the tree . the nodes are v i sited from left to right. Other b inary tree exerc i ses i nc lude

978 Data Structu res Chapter 1 7

al lowing a b inary search tree to contai n dupl icate values, i n sert ing stri ng values i n a bi nary

tree and determin ing how many levels are contained in a b inary tree .

SUMMARY

• Self-referential classes contain members cal led links that point to objects of the same class type.

• Self-referential classes enable many objects to be linked together in stacks, queues, lists and trees.

• Dynamic memory all ocation reserves a block of bytes in memory to store an object during pro-

gram e xecution.

• A linked list is a linear collection of se l f-referential class objects.

• A linked list is a dynamic data �tructur e-the le ngth of the list increases or decreases as necessary .

• Linked lists can continue to grow until me mory is exhausted.

• Linked lists provide a mechanism for insertion and de letion of data by pointer manipulation.

• A singly linked list begin� with a pointer to the first node, and each node contains a pointer to the

next node "in sequence . " ' This list terminates with a node whose pointer member is O. A sing l y

linked list m a y b e traversed i n only one direction .

• A circular, singl y linked list begins with a pointer t o the first node, and each node contains a point

er to the next node . The pointer in the last node points to the first node, thus c losing the " circle . "

• A doubly linked li�t allows traversals both forwards and backwards. Each node has both a forward

pointer to the next node in the list in the forward direction and a bac k ward pointe r to the nex t node

in the list in the backward direc tion.

• In a circular, doubly linked list, the forward pointer of the last node points to the first node . and

the backward pointer of the first node points to the last node, thus closing the ·'circle. "

• Stacks and queues are co'nstrained versions o f linked lists.

• New stack nodes are added to a stack and are removed from a stack only at the top of the stack.

For this reason, a stack is refelTed to as a last-in, first-out (LI FO) data structure .

• The link me mber in the la�t node of the !>tac k is set to n u l l (L:ero) to indicate the bottom of the stack.

• The primary operations used to manipulate a stac k a r e push and pop. The push operation c re

ates a ne w node and places it on the top of the stack. The pop operation remove, a node frorTl the

top of the stack, de letes the memory that was a l located to that node and returns the popped value.

• In a queue data structure, nodes are removed from the head and added to the tai l . For this reason,

a queue is referred to as a first-in, first-out (F LFO) data structure . The add and remove operations

are known as enqueue and dequeue .

• Trees are two-dimensional data structures requiring two or more links per node .

• Binary tree, contain two links per node .

• The root node is the first node in the tree .

• Each of the pointers in the root node refers to a child. The left child is the first node in the left sub

tree, and the right child is the first node in the right subtree . The children of a node are called sib

lings. Any tree node that does not have any children is cal led a leaf node.

• A binary search tree has the characteristic that the value in the left child of a node is less than the

value in its parent node, and the value in the right child of a node is greater than or equal to the

value in its parent node. If there are no duplicate data values, the value in the right child is greater

than the value in its parent node.

• An inorder traversal of a binary tree traverses the left subtree inorder, . processes the value in the

root node and then traverses the right subtree inorder. The value in a node is not processed until

the values in its left subtree are proce,sed.

Chapter 1 7 Data Structures 979

• A preorder traversal processes the value in the root node, traverses the left subtree preorder then

traverses the right subtree preorder. The value in each node is processed as the node is encountered.

• !'- postorder traversal traverses the left subtree postorder, traverses the right subtree postorder then

processes the value in the root node. The value i n each node is not processed un t i l the values in

both i ts subtrees are processed.

TERMINOLOGY

bi nary search tree

bi nary tree

bi nary tree sort

ch i ld node

ch i ldren

c i rcu lar, doub ly l i n ked l i st

c i rcular, s ing ly l i n ked l i st

delet ing a node

dequeue

double ind irect ion

doubly l i nked l i st

dupl icate e l iminat ion

dynamic data structures

dynamic memory a l locat ion

enqueue

FIFO (fi rst-i n , fi rst-out)

head of a queue

i norder traversa l of a b inary tree

i nsert i ng a node

leaf node

left child

left subtree

level-order traversal of a b inary tree

LIFO (l ast- in , fi rst-ollt)

l i near data structure

l i n ked l is t

SELF-REVIEW EXERCISES

node

nonli near data structure

n u l l poi nter

parent node

pointer to a poi nter

pop

postorder traversal of a bi nary tree

predicate function

preorder traversa l of a bi nary tree

push

q ueue

right child

right subtree

root node

self-referent ia l structure

s ib l ings

s ing ly l inked l i st

s izeof

stack

subtree

ta i l of a queue

top

traversal

tree

vis i t a node

17. 1 Fill in the b lanks in each of the fol lowi ng:

a) A sel f- c lass is lIsed to form dynamic data structures that can grow and shri n k

a t execut ion t ime

b) Operator is lIsed to dynamically allocate memory and construct an object;

th i s operator returns a poi nter to the object.

c) A is a constrai ned vers ion of a l i n ked l i st in which nodes can be i nserted and

deleted only from the start of the l i st and node values are returned i n l ast-i n , fi rst-out order.

d) A fu nct ion that does not alter a l i n ked l i st , but looks at the l i st to determine whether it i s

empty, i s referred to a s a _____ funct ion .

e) A q ueue i s referred to as a data structure because the fi rst nodes i nserted are

the fi rst nodes removed.

f) The poi nter to the next node in a l i n ked l i st i s referred to as a ____ _

g) Operator is used to destroy an object and rec la im dynamica l l y a l located

memory.

980 Data Structures Chapter 17

h) A is a constrained version of a l i n ked l i st i n which nodes can be inserted on ly

at the end of the l i st and deleted only from the start of the l i st.

i) A i s a non l i near, two-d imen s ional data structure that contains nodes wi th

two or more l i n ks.

j) A stack i s referred to as a _____ data structure because the last node i nserted i s the

first node removed.

k) The nodes of a tree conta in two l i n k members.

I) The first node of a tree is the node.

m) Each l i n k in a tree node points to a _____ or _____ of that node.

n) A tree node that has no ch i ldren is cal led a _____ node.

0) The four traversal a lgori thms we mentioned i n the text for b inary search trees are

_____ ______ _____ and ____ _

17.2 What are the d ifferences between a l i n ked l i st and a stack?

17.3 What are the d ifferences between a stack and a queue?

17.4 Perhaps a more appropriate t i t le for th is chapter would have been "Reusable Data Struc
tures." Comment on how each of the fol lowing entit ies or concepts contributes to the reusabi l i ty of
data structures:

a) c lasses

b) c lass templates

c) i nheritance

d) private i n heritance

e) composi t ion

17.5 Manua l ly provide the i norder, preorder and postorder traversals of the b inary search tree of

F ig. 1 7.2 1 .

ANSWERS TO SELF-REVIEW EXERCISES

17. 1 a) referent ia l . b) new. c) stack. d) predicate.

g) delete. h) queue. i) tree. j) last-in , first-out (UFO).

n) leaf. 0) i norder, preorder, postorder and level order.

e) fi rst- in , first-ou t (FIFO). f) l i nk.

k) b inary. I) root. m) chi ld or subtree.

17.2 I t is poss ib le to i nsert a node anywhere in a l i n ked l i st and remove a node from anywhere i n

a l i n ked l i st. Nodes i n a stack may only b e i nserted a t the top o f t h e stack a n d removed from the top

of a stack.

17.3 A queue has poin ters to both its head and i ts tai l so that nodes may be i nserted at the tai l and

deleted from the head. A stack has a s ingle poin ter to the top of the stack, where both insertion and

delet ion of nodes are performed.

4 9

�
2 8

�
1 8 4 0

/\ /\
1 1 1 9 3 2 4 4

Fig. 17.2 1 A 15-node binary search tree.

8 3

�
7 1 9 7

/\ /\
6 9 7 2 9 2 9 9

Chapter 1 7 Data Structures 98 1

1 7.4 a) Classes al low us to instant i ate as many data structure objects of a certa in type (i .e . , c lass)

as we wish .

b) C lass templates enable us to instant iate related classes-each based on different type pa

rameters-we can then generate as many objects of each templ ate c l ass as we l i ke.

c) I nheritance enables us to reuse code from a base c lass in a derived c lass so that the deri ved

c lass data structure is a lso a base-c lass data structure (w ith publ ic i nheritance, that i s).

d) Private inheritance enables us to reuse port ions of the code from a base c lass to form a

derived-c lass data structure; because the i nheritance is privat e, a l l pub l i c base

c l ass member funct ions become private in the deri ved c lass . Th i s enables us to pre

vent c l ients of the derived-c lass data structure from accessing base-c l ass member func

tions that do not apply to the derived c lass.

e) Composit ion enables us to reuse code by mak i ng a c lass object data structure a member

of a composed c l ass; if we make the c lass object a private member of the composed

c lass , then the c lass object's public member funct ions are not avai l ab le through the

composed object's i nterface.

1 7.5 The i norder traversal i s

1 1 1 8 1 9 28 32 40 4 4 49 6 9 71 72 8 3 92 9 7 9 9

The preorder traversa l i s

4 9 28 1 8 1 1 19 4 0 32 4 4 8 3 7 1 6 9 72 9 7 92 9 9

The postorder traversa l i s

1 1 1 9 1 8 3 2 4 4 4 0 28 6 9 7 2 7 1 92 99 9 7 8 3 4 9

EXERCISES

1 7.6 Write a program that concatenates two l i n ked l i st objects of characters. The program shou ld

inc l ude funct ion concat enate, which takes references to both l i st objects as arguments and con

catenates the second l i s t to the fi rst l ist.

1 7.7 Write a program that merges two ordered l i st objects of i ntegers i nto a s i ng le ordered l i st ob

ject of integers . Funct ion merge should receive references to each of the l i st objects to be merged

and should return an object contain ing the merged l i st .

1 7.8 Write a program that i nserts 25 random integers from 0 to 100 i n order in a l i n ked l i st object .

The program should ca lcu late the sum of the elements and the float i ng-point average of the elements .

1 7.9 Write a program that creates a l i n ked l i st object of 10 characters and creates a second l i st ob

ject contai n ing a copy of the f irst l i st , but i n reverse order.

1 7. 1 0 Write a program that i nputs a l i ne of text and uses a stack object to print the l i ne reversed.

1 7. 1 1 Write a program that uses a stack object to determine if a string i s a pal i ndrome (i.e., the stri ng

is spel led identical ly backwards and forwards) . The program should ignore spaces and punctuat ion .

1 7. 1 2 Stacks are used by compi lers to he lp i n the process of eval uating express ion s' and generating

machine language code. In th i s and the next exerc ise, we i nvestigate how compi lers eval uate arith

metic expressions consist ing only of constants, operators and parentheses.

Humans genera l ly write expressions l ike 3 + 4 and 7 / 9 i n which the operator (+ or / here) is

written between its operands-this i s cal led infix notation. Computers "prefer" postfix notation i n

which the operator i s wri tten t o the right of its two operands. The preceding i n fi x express ions would

appear i n postfix .notat ion as 3 4 + and 7 9 /, respectively.

To evaluate a complex i n fi x express ion, a compi ler would first convert the express ion to post fi x

notat ion a n d evaluate t h e postfix vers ion o f the expression. Each o f these algorithms requ i res on ly·a

982 Data Structures Chapter 17

single left-to-right pass of the expression. Each algorithm uses a stack object in support of its opera

tion, and in each algorithm the stack is used for a different purpose.

In this exercise, you will write a C++' version of the infix-to-postfix conversion algorithm. In the

next exercise, you will write a C++ version of the postfix expression evaluation algorithm. Later in

the chapter, you will discover that code you write in this exercise can help you implement a complete

working compiler.

Write a program that converts an ordinary infix arithmetic expression (assume a valid

expression is entered) with single-digit integers such as

(6 + 2) * 5 - 8 / 4

to a postfix expression. The postfix version of the preceding infix expression is

6 2 + 5 * 8 4 / -

The program should read the expression into character array inf ix and use modified versions of

the stack functions implemented in this chapter to help create the postfix expression in character

array pos t f ix. The algorithm for creating a postfix expression is as follows:

I) Push a left parenthesis I (I onto the stack.

2) Append a right parenthesis ') I to the end of inf ix.

3) While the stack is not empty, read inf ix from left to right and do the following:

If the current character in inf ix is a digit, copy it to the next element of pos t f ix.

If the current character in inf ix is a left parenthesis, push it onto the stack.

If the current character in inf ix is an operator,

Pop operators (if there are any) at the top of the stack while they have equal or

higher precedence than the current operator, and insert the popped

operators in post f ix.

Push the current character in infix onto the stack.

If the current character in inf ix is a right parenthesis

Pop operators from the top of the stack and insert them in pos t f ix until a left

parenthesis is at the top of the stack.

Pop (and discard) the left parenthesis from the stack.

The following arithmetic operations are allowed in an expression:

+ addition

*

/

%

subtraction

multiplication

division

exponentiation

modulus

The stack should be maintained with stack nodes that each contain a data member and a pointer to

the next stack node.

Some of the functional capabilities you may want to provide are:

a) function convertToPos t f ix that converts the infix expression to postfix notation

b) function i sOperator that determines whether c is an operator

c) function prec edence that determines whether the precedence of operatorl is less

than, equal to or greater than the precedence of operator2 (the function returns -1,0

and I, respectively)

d) function push that pushes a value onto the stack

e) function pop that pops a value off the stack

f) function stackTop that returns the top value of the stack without popping the stack

g) function i sEmpty that determines if the stack is empty

h) function printSt ack that prints the stack

Chapter 1 7 Data Structures 983

17. 13 Write a program that evaluates a postfix expression (assume it is valid) such as

6 2 + 5 * 8 4 / -

The program should read a postfix expression consisting of digits and operators into a character

array. Using modified versions of the stack functions implemented earlier in. this chapter, the pro

gram should scan the expression and evaluate it. The algorithm is as follows:

I) Append the null character (, \0 ') to the end of the postfix expression. When the null

character is encountered, no further processing is necessary.

2) While' \ 0 ' has not been encountered, read the expression from left to right.

If the current character is a digit,

Push its integer value onto the stack (the integer value of a digit character is its

value in the computer's character set minus the value of ' 0 ' in the

computer's character set).

Otherwise, if the current character is an opera/or,

Pop the two top elements of the stack into variables x and y.

Calculate y uperalOr x.

Push the result of the calculation onto the stack.

3) When the null character is encountered in the expression, pop the top value of the stack.

This is the result of the postfix expression.

Note: In step 2) above, if the operator is ' / ' , the top of the stack is 2 and the next element in the

stack is 8, then pop 2 into x, pop 8 into y, evaluate 8 / 2 and push the result, 4 , back onto the stack.

This note also applies to operator' - , . The arithmetic operations allowed in all expression are

+ addition

*

/
1\

%

subtraction

multiplication

division

exponentiation

modulus

The stack should be maintained with stack nodes that contain an int data member and a pointer to

the next stack node. You may want to provide the following functional capabilities:

a) function evaluatePostfixExpression that evaluates the postfix expre�sion

b) function calculate that evaluates the expression opl operator op2

c) function push that pushes a value onto the stack

d) function pop that pops a value off the stack

e) function i s Empty that determines if the stack is empty

f) function printStack that prints the stack

17. 14 Modify the postfix evaluator program of Exercise 17.13 so that it can process integer oper

ands larger than 9.

17. 15 (Supermarket Simulation) Write a program that simulate� a checkout line at a supermarket.

The line is a queue object. Customers (i.e., customer objects) arrive in random integer intervals of 1-

4 minutes. Also, each customer is served in random integer intervals of 1-4 minutes. Obviously, the

rates need to be balanced. If the average arrival rate is larger than the average service rate, the queue

will grow infinitely. Even with "balanced" rates, randomness can still cause long lines. Run the su

permarket simulation for a 12-hour day (720 minutes) using the following algorithm:

I) Choose a random integer between I and 4 to determine the minute at which the first cus

tomer arri ves.

2) Ar the first customer's arrival time:

Determine customer's service time (random integer from I to 4);

Begin servicing the customer;

Schedule arrival time of next customer (random integer I to 4 added to the cUlTent time).

984 Data Structures

3) For each m inute of the day:

If the next customer arrives,

Say so,

Enqueue the customer;

Schedule the arrival time of the next customer;

If service was completed for the last customer;

Say so

Dequeue next customer to be serv iced

Determi ne customer's service completion time

(random in teger from I to 4 added to the current t i me) .

Now run your s i mulation for 720 m inutes, and answer each of the fol lowi ng:

a) What is the maxi mum number of customers in the queue at any t i me?

b) What is the longest wait any one customer experiences?

Chapter 1 7

c) What happens i f the arrival interval i s changed from 1 -4 m i nutes to 1 -3 minutes?

1 7. 1 6 Modify the program of Fig. 1 7 . 1 7-Fig . 1 7 . 1 9 to a l low the b inary tree object to contain dup l i

cates .

17. 17 Write a program based on Fig . 1 7 . 1 7-Fig. 1 7 . 1 9 that inputs a l i ne of text, tokenizes the sentence

i nto separate words (you may want to use the strtok library function) , inserts the words in a b inary

search tree and prints the inorder, preorder and postorder traversals of the tree. Use an OOP approach .

1 7. 1 8 In th i s chapter, we saw that duplicate el i m ination i s straightforward when creat ing a binary

search tree. Descri be how you would perform dupl icate el i m inat ion using on ly a single-subscripted

array . Compare the performance of array-based dup l icate elimi nation wi th the performance of binary

search-tree-based dupl icate el i m i nation.

17. 19 Write a function depth that receives a b inary tree and determi nes how many levels i t has .

17.20 (Recursively Print a List Backwards) Write a member function printListBackwards

that recursively outputs the i tems in a linked list object in reverse order. Wri te a test program that cre

ates a sorted list of i ntegers and pri nts the l i st in reverse order.

1 7.2 1 (Recursively Search a List) Write a member function searchList that recurs i ve ly search

es a l i n ked l i s t object for a spec ified value. The function should return a pointer to the value if i t i s

found; otherwi se, nul l should b e returned. Use your function i n a test program that creates a l i st o f

i n tegers. The program should prompt the user for a value t o locate i n t h e list .

1 7.22 (Binary Tree Delete) I n this exercise, we discuss delet ing items from b i nary search trees. The

delet ion a lgori thm i s not as straightforward as the i nsert ion algorithm. There are three cases that are

encountered when delet ing an i tem-the item is contai ned in a leaf node (i .e . , it has no ch i l dren) , the

item i s contained in a node that has one ch i ld or the i tem i s contained in a node that has two children .

If the item to be deleted i s contained in a leaf node, the node is deleted and the pointer in the

parent node is set to nul l .

If the i tem t o b e deleted i s contai ned i n a node with one child, the pointer i n the parent node is

set to poi nt to the ch i ld node and the node contai n ing the data item is deleted . This causes the child

node to take the p lace of the deleted node i n the tree.

The l ast case is the most difficult . When a node with two ch i ldren is deleted, another node i n the

tree must take i ts p lace. However. the pointer in the parent node cannot be assigned to point to one of

the children of the node to be deleted. In most cases, the resulting binary search tree would not

adhere to the fol lowing characteristic of binary search trees (wi th no duplicate values): The values in

any left subtree are less than the value in the parent node, and the values in any right subtree are

greater than the value in the parenr node.

Which node is used as a replacement node to mai ntain th is characteri st ic ? Ei ther the node con

taining the largest value in the tree less than the value in the node being deleted. or the node con-

Chapter 17 Data Structures 985

taining the smal lest value in the tree greater than the value in the node being de leted. Let us consider

the node with the smal ler value. In a binary search tree, the largest value less than a paren t's value is

located in the left subtree of the parent node and is guaranteed to be contained in the rightmost node

of the subtree. This node is located by walking down the left subtree to the right until the pointer to

the right child of the current node is nul l . We are now pointing to the repl acement node, which is

either a leaf node or a node with one child to its left. If the repl acement node is a leaf node, the steps

to perform the deletion are as fol lows:

I) Store the pointer to the node to be deleted in a temporary pointer variab le (this pointer is

used to de lete the dynamica l ly a l located memory).

2) Set the pointer in the parent of the node be ing de leted to poin t to the rep l acement node

3) Set the pointer in the parent of the replacement node to nul l .

4) Set the pointer to the right subtree in the replacement node to point to the right subtree of

the node to be deleted.

5) Dele te the node to which the temporary pointer variab le points.

The deletion steps for a rep lacement node with a left child are similar to those for a repl acement

node with no chi ldren, but the algorithm al so must move the chi ld into the rep lacement node's posi

tion in the tree. If the rep lacement node is a node with a left child, the steps to perform the de let ion

are as fol lows:

I) S tore the pointer to the node to be deleted in a temporary pointer var iable.

2) Set the pointer in the paren t of the node being deleted to point to the rep lacement node.

3) Set the pointer in the parent of the replacement node to point to the left ch i ld of the re

p lacement node.

4) Set the pointer to theright subtree in the replacement node to point to the right subtree of

the node to be de leted.

5) Delete the node to which the temporary pointer variab le points.

Write member function de let eNode, which takes as its arguments a poi n ter to the root node

of the tree object and the value to be de leted. The function should locate in the tree the node contain

ing the value to be de leted and use the algorithms discussed here to de lete the node. The function

should print a message that indicates whether the value is de leted. Modify the program of

Fig. 1 7. 1 7-Fig. 1 7. 1 9 to use this function. After deleting an item, ca l l the inOrder, preOrder

and postOrder traversal funct ions to confirm that the delete operation was performed correct l y.

1 7.23 (Binary Tree Search) Write member function binaryTreeSearch, which attempts to l o

cate a specified value in a binary search tree object. The function should take as arguments a pointer

to the root node of the binary tree and a search key to be located. If the node containing the search

key is found, the function should return a pointer to that node; otherwise, the function should return

a nul l pointer.

1 7.24 (Level-Order Binary Tree Traversal) The program of Fig. 1 7. 1 7-Fig . 1 7. 1 9 i l lustrated three

recur sive methods of traversing a binary tree-inorder, preorder and postorder traversa l s. This exer

cise presents the level-order traversal of a binary tree in which the node values are printed level by

level , starting at the root node leve l . The nodes on each level are printed from left to right. The level

order traversal is not a recursive algorithm. I t uses a queue object to control the output of the nodes.

The algorith m is as fol lows:

I) I nsert the root node in the queue

2) While there are nodes left in the queue.

Get the next node in the queue

Print the node's value

If the poi nter to the left child of the node is not nul l

Jnsert the left child node in the queue

If the pointer to the right child of the node is not nul l

I n sert the right child node in the queue.

986 Data Structures Chapter 1 7

Write member function leve lOrder to perform a level-order traversal of a binary tree object.

Modify the program of Fig. 1 7. 1 7-Fig . 1 7. 1 9 to use this function. (Note: You w i l l a lso need to mod

ify and incorporate the queue-processing functions of Fig . 1 7. 1 3 in this program.)

17.25 (Printing Trees) Write a recursi ve member function outputTree to disp lay a binary tree

object on the screen. The function should output the tree row by row, with the top of the tree at the

left of the screen and the bottom of the tree toward the right of the screen. Each row is output verti

cal ly . For example, the binary tree i l l ustrated in Fig. 1 7.2 1 is output as fol lows:

99
97

92
83

72
7 1

69
49

"
4O

32
28

19
18

11

Note that the rightmost leaf node appears at the top of the output in the rightmost col umn and the

root node appears at the left of the output. Each column of output starts five spaces to the right of the

prev ious col umn. Function outputTree should receive an argument totalSpace s representing

the number of spaces preceding the value to be output (this variable should start at zero so the root

node is output at the left of the screen). The function uses a modified inorder traversal to output the

tree-it starts at the rightmost node in the tree and works back to the left. The a lgorithm i� a� fol

lows:

While the pointer to the current node is not null

Recursively ca l l output Tree with the right subtree of the current node and

totalSpaces + 5

Use a for structure to count from I to totalSpace s and output spaces

Output the va lue in the current node

Set the puinter tu the current node to point to the left subtree of the current node

Increment totalSpaces by 5.

SPECIAL SECTION-BUILDING YOUR OWN COMPILER

In Exerc ise 5 . 1 � and Exercise 5. 1 9, we intruduced Simpletron Machine Language (SML) and yuu

implemented a S impletron computer simulator tu execute programs written in S ML. In th is sectiun,

we build a compi ler that converts programs written in a high-level programming langu age to SML.

Th is section "ties" together the entire programming process. You w i ll write programs in th i s new

high-level language, compile these programs on the compi ler you bu ild and run the programs on the

simu latur you bu i l t in Exercise 5. 1 9. You shou ld make every effort to implement your compi ler in an

object-oriented manner.

Chapter 17 Data Structures 987

17.26 (The Sin/pie Language) Before we beg in bu i ld ing the compi ler, we discuss a simple, yet pow

erfu l , h igh- level language simi l ar to early vers ions of the popu lar language B A S IC. We ca l l the lan

guage Simple. Every S imple s talemel11 consists of a line number and a S imple instruction. Line

numbers must appear i n ascendi ng order. Each i nstruction beg ins wi th one of the fol lowing S imple

commands: rem, input, l e t , print, goto, i f/goto and end (see Fig . 1 7.22) . A l l commands

except end can be u sed repeatedly . S imple evaluates only i nteger expressions usi ng the +, - , * and

/ operators. These operators have the same precedence as in C++. Parentheses can be used to change

the order of evaluat ion of an expression .

Our Simple compi ler recognizes only lowercase letters. Al l characters i n a S imple fi le shou ld

be lowercase (uppercase letters resu l t i n a sy�tax error u n less they appear i n a rem statement, i n

which case they are ignored) . A variable name i s a s ingle letter. Simple does not al low descriptive

variable names, so var iables shou ld be explai ned in remarks to i ndicate their use i n a program. S im

ple uses only integer variables. S imple does not have variable dec l arations-merely mention i n g a

variable name i n a program causes the variable to be dec l ared and i n i t ia l ized to zero automatical l y.

The syntax of Simple does not a l low str ing man ipu lat ion (read ing a stri ng, wri t ing a str ing , compar

ing strings, etc .) . If a str ing is encountered in a S imple program (after a command other than rem),

the compiler generates a syntax error. The first version of our compi ler wi l l assume that S imple pro

grams are entered correct ly. Exerc ise 1 7.29 asks the student to modify the compi ler to perform syn

tax error checki ng.

S imple uses the conditional i f/goto statement and the uncondi t ional goto statement to a l ter

the flow of control during program execut ion. If the condit ion in the i f/goto statement is true, con

trol is transferred to a spec ific l i ne of the program. The fol lowing relat ional and equa l i ty operators

are valid in an i f/goto statement: <, >, <=, >= , = = and! =. The precedence of these operators is

the same as in C++.

Let us now consider several programs that demonstrate S imple's features. The first program

(Fig. 1 7.23) reads two i ntegers from the keyboard, stores the val ues in variables a and b and com

putes and prints their sum (stored in variable c).

Command Example statement Description

rem 5 0 rem thi s is a remark Text fol low ing rem is for documentat ion pur-

input

let

print

goto

i f / goto

end

3 0 input x

poses and is ignored by the compi ler.

Display a quest ion mark to prompt the u ser to

enter an i nteger. Read that i nteger from the key

board, and store the i nteger in x.

8 0 l e t u 4 * (j - 5 6) Assign u the value of 4 * (j - 5 6) . Note that

an arbi trar i ly complex express ion can appear to

the right of the equals sign .

1 0 print w Display the val ue ofw.

7 0 goto 4 5

3 5 i f i z goto 8 0

9 9 end

Transfer program control to l i ne 4 5.

Compare i and z for equa l i ty and transfer con

trol to l i ne 8 0 if the condition i s true; other

wise, continue execut ion w i th the next

statement.

Terminate program execut ion .

Fig. 17.22 Simple commands.

988 Data Structures Chapter 17

1 1 0 rem determine and print the sum of two integers

2 1 5 rem

3 2 0 rem input the two integers

4 3 0 input a

5 4 0 input b

6 4 5 rem

7 5 0 rem add integers and store resu l t in c

8 6 0 l e t c = a + b

9 6 5 rem

10 7 0 rem print the resu l t

1 1 8 0 print c

12 9 0 rem t erminate program execut ion

13 9 9 end

Fig. 17.23 Simple program that determines the sum of two integers.

The program of Fig . 1 7.24 determines and prints the larger of two integers. The integers are

input from the keyboard and stored in sand t. The i f/goto statement tests the condit ion s >= t .

I f the condit ion i s true, control i s transferred to l ine 9 0 and s i s output; otherwise , t i s output and

control is transferred to the end statement in l ine 9 9 where the program terminates.

S imple does not provide a repetition structure (such as C++'s for, whi l e or do/whi l e).

However, S imple can simu late each of C++'s repetition structures us ing the i f/goto and goto

statements . F igure 1 7.25 uses a sentine l-control led loop to calcu l ate the squares of several integers.

Each integer is input from the keyboard and stored in variable j . I f the value entered is the sentine l

value -9 9 9 9 , control is transferred to l ine 9 9 , where the program terminates . Otherw i se, k i s

ass igned the square o f j , k i s output t o the screen and control i s passed t o l ine 2 0 , where the next

integer is input.

1 1 0 rem determine the l arger of two integers

2 2 0 input s

3 3 0 input t

4 3 2 rem

5 3 5 rem t e s t i f s >= t

6 4 0 i f s >= t goto 9 0

7 4 5 rem

8 5 0 rem t i s greater than s , so print t

9 6 0 print t

10 7 0 goto 9 9

1 1 7 5 rem

12 8 0 rem s i s greater than o r equal to t , s o print s

13 9 0 print s

14 9 9 end

Fig. 17.24 Simple program that finds the larger of two integers .

1 1 0 rem calculate the square s of several integers

2 2 0 input j

3 2 3 rem

4 2 5 rem test for sent ine l value

5 3 0 i f j -- -9 9 9 9 goto 9 9

Fig. 17.25 Calculate the squares of several integers . (Part 1 of 2.)

Chapter 17 Data Structures 989

6 3 3 rem

7 3 5 rem c a l culate square of j and a s s i gn resu l t to k

8 4 0 let k j * j
9 5 0 print k

10 5 3 rem

11 5 5 rem l oop to get next j

12 6 0 goto 2 0

13 9 9 end

Fig. 17.25 Calculate the squares of several integers. (Part 2 of 2.)

Using the sample program s of F ig . 1 7.23, Fig. 1 7.24 and F ig . 1 7.25 as your gu ide, write a S i m -

p l e program t o accompl i sh each o f the fol l owi ng:

a) I nput three i ntegers, determine the ir average and pri nt the resu lt .

b) Use a senti ne l -control led loop to i n put 1 0 integers and compute and pri nt their s u m .

c) U s e a cou nter-control led loop t o i nput seven i ntegers, some posit ive a n d some negati ve,

and compute and pri nt their average .

d) I nput a series of integers and determine and pri nt the l argest. The first i nteger i nput i n -

d icates how many numbers should be processed .

e) I n put 1 0 i ntegers and print the smal lest.

f) Calcu l ate and pri nt the sum of the even i ntegers from 2 to 30.

g) Calcu l ate and pri nt the product of the odd integers from I to 9.

17.27 (Building A Compiler; Prerequisite: Complete Exercises 5.18, 5.19, 17.12, 17.13 and 17.26)
Now that the S i mple language has been presented (Exerci se 1 7. 26), we d i scuss how to bu i ld a S imp le

compi ler. First, we cons ider the process by which
.
a S i mple program i s con verted to SML and execut

ed by the S imp letron s imu lator (see F ig . 1 7.26). A fi le contain i ng a S i mple program is read by the

compi l er and con verted to SML code. The SML code is output to a f i le on d isk , i n which SML i n

structions appear o n e per l i ne . The SML f i l e i s then loaded i nto the S i mpletron s i m u l ator, a n d the re

su lts are sent to a f i le on d isk and to the screen . Note that the S i mpletron program developed i n

Exercise 5 . 1 9 took its i nput from the keyboard . I t must be mod ified t o read from a f i l e s o i t can run

the programs produced by our compi ler.

The S i mple compi ler performs two passes of the S i mple program to convert it to SML. The first

pass constructs a symbol table (object) i n which every line number (object) , variable name (object)

and constant (object) of the S i mple program i s stored with its type and corresponding l ocation in the

final SML code (the symbol table is di scussed in detai l be low) . The first pass a lso produces the corre

spond ing SML i nstruction object(s) for each of the S i mple statements (object, etc.) . As we w i l l see, if

� -- I'-

Simple file SML file Simpletron

1- compiler - f--. Simulator

1.. \ (:. , :;
output to output to

disk screen

Fig. 17.26 Writing, compiling and executing a Simple language program.

990 Data Structures Chapter 17

the S imple program conta ins statements that transfer control to a l ine later i n the program, the first

pass results i n an SML program contai n i ng some "unfin i shed" instruct ions . The second pass of the

compiler locates and completes the unfin i shed instructions, and outputs the SML program to a file .

First Pass
The compiler begi n s by read ing one statement of the S imple program i nto memory. The l i ne must be

separated i nto i ts ind iv idual tokens (i . e . , "pieces" of a statement) for process ing and compilat ion

(standard library fu nction s t rtok can be used to facili tate th is task) . Recall that every statement

begi ns wi th a l ine n umber followed by a command. As the compiler breaks a statement i nto tokens ,

i f the token i s a l ine number, a variable or a constant, i t i s placed i n the symbol table . A l ine n umber

i s placed in the symbol table only if i t i s the first token i n a statement. The symbol Table object is

an array of tabl eEnt ry objects represent ing each symbol i n the program. There is no restrict ion

on the n umber of symbols that can appear i n the program. Therefore, the symbol Table for a par

t icular program could be large . Make the symbol Table a 1 00-element array for now. You can

increase or decrease i ts s ize once the program i s working .

Each t abl eEnt ry object contai ns three members . Member symbol i s an i n teger contain i n g

t h e ASCn representation o f a variable (remember that variable names are s ingle characters), a l ine

number or a constant . Member type i s one of the following characters ind icati n g the symbol's type:

' c ' for constant, ' L ' for line number and ' v ' for variable . Member locat i on contai n s the S im

pletron memory locat ion (0 0 to 9 9) to which the symbol refers. S impletron memory is an array of

1 00 i ntegers i n which SML i nstruct ions and data are stored. For a l ine n umber, the location is the

element i n the S impletron memory array at which the SML i n struct ions for the S imple statement

beg in . For a variable or constant, the location i s the element i n the S impletron memory array in

which the variable or constant i s stored . Variables and constants are allocated from the end of S im

pletron's memory backwards . The first variable or constant i s stored in locat ion at 9 9 , the next in

locat ion at 9 8 , etc .

The symbol table plays an i ntegral part in convert ing S imple programs to SML. We learned i n

Chapter 5 that a n SML i nstruction i s a four-digi t in teger composed o f two parts-the operation code

and the ope rand. The operation code is determined by commands in S i mple . For example, the s imple

command input corresponds to SML operation code 10 (read) , and the S imple command print

corresponds to SML operat ion code 1 1 (wri te) . The operand i s a memory locat ion contain i ng the

data on which the operat ion code performs i ts task (e.g. , operation code 10 reads a value from the

keyboard and stores i t i n the memory locat ion speci fied by the operand) . The compiler searches

symbol Table to determine the Simpletron memory locat ion for each symbol so the correspond ing

location can be used to complete the SML instructions .

The compilation of each S imple statement i s based on i t s command. For example, after the l ine

n umber i n a rem statement i s i nserted i n the symbol table , the remainder of the statement i s ignored

by the compi ler because a remark i s for documentation purposes on l y. The input, print, goto

and end statements correspond to the SML read, write, hranch (to a spec ific location) and halt

i n struct ions . S tatements contai n i ng these S imple commands are converted d i rectly to SML (note that

a goto statement may contai n an unresolved reference if the spec ified l ine n umber refers to a state

ment further i nto the S imple program file ; this i s sometimes called a forward reference) .

When a goto statement is compiled with an unresolved reference, the SML i n struct ion must

be flagged to ind icate that the second pass of the compiler must complete the i n struct ion . The fl ags

are stored i n 1 00-element array f l ags of type int i n which each element i s i n i t i al ized to - l . lf the

memory location to which a l ine n umber i n the S imple program refers i s not yet known (i . e . , i t is not

i n the symbol table) , the l ine number i s stored i n array f lags i n the elemen t with the same sub

script as the i ncomplete i n struction . The operand of the i ncomplete i nstruct ion is set to 0 0 tem

porarily. For example, an uncondit ional branch i nstruction (making a forward reference) is left as

+ 4 0 0 0 until the second pass of the compiler. The second pass of the compiler is described shortly.

Chapter 1 7 Data Structures 99 1

Com p i l a tion of i f /goto and let statements is more compl i cated than . other statements
they are the o n l y statements that prod uce more than one S M L i n struct i o n . For an i f/goto, the
compi ler produces code to test the condi t ion and to branch to another l i n e i f necessary. The resu l t of
the branch cou l d be an u n resol ved reference. Each of the re l a t ional and equa l i ty operators can be
s i m u l ated u s i n g S M L' s branch zero or branrh negaTive i n struct ions (or a combinat ion of both) .

For a let statement , t h e compi ler prod uces code t o eva l u ate an arb i t rari l y complex arithmet ic
express ion consi s t i n g of i n teger variab les an d/or constants . Express ions should separate each oper
and and operator wi th space s . Exerc i se 1 7 . 1 2 and Exerc i se 1 7 . 1 3 presented the i nfi x - to-postfi x con
version al gori t h m and the postfi x eva l uat ion a lgori thm u sed by compi lers to eva l u ate express i o n s .
Before proceedi n g w i t h y o u r compi ler, y o u shou ld complete e a c h of t h e s e exerc i ses . When a com
pi ler encounters an e x press ion, it converts the ex pression from i n fi x notat ion to postfi x notation and
then eva l u ates the post fi x express ion .

H ow i s i t that the compi ler prod uces the mach ine language to eva l u ate an ex press ion contai n i n g
vari ables? T h e post fi x evaluat ion al gori thm conta ins a "hook" where t h e compi ler c a n generate S M L
i n struct ions rather t h a n act u a l l y eva luat ing t h e express i o n . To enable t h i s "book" i n t h e comp i l er, the
postfi x eval uat ion a l gori thm must be modi fi ed to search the symbol table for each s y m bo l i t encou n
ters (and pos s i b l y i n sert i t) , determ i ne t h e symbol 's correspo n d i n g m e mory locat ion a n d push The

memory location onTo The stack (instead of the symbol). When an operator is encountered in the post
'fi x e xpress ion , the two memory locat ions at the top of the stack are popped and m ac h i n e l anguage
for effect ing the operat ion is produced u s i n g the memory locat ions as operands . The resu l t of each
s ubexpress ion is stored in a temporary l ocation i n memory and pushed back onto the stack so the
eva l u at ion of the postfi x ex press ion can cont i n u e . When postfi x eva l u at ion is complete, the memory
l ocat ion conta i n i ng the res u l t is the o n l y location left on the stac k . Th i s is popped and S M L i n struc
t ions are generated to ass ign the res u l t to the vari able at the left of the l e t statem e n t .

Second Pass
The second pass of the compi ler performs two tasks: Eesol ve any u n resol ved references, and output
the S M L code to a fi l e . R esolut ion of references occurs as fol l ows :

a) Search i h e f lags array for an u n resol ved reference (i . e . , an e lement w i t h a v a l u e other
than - 1) .

b) Locate t h e object i n array symbolTable. contai n i ng t h e sym bol stored i n t h e f l ags

a rray (be sure that the type o f t h e symbol i s ' L ' for l i ne n u mber) .
c) I n sert the memory location from member 'l ocat ion i n to the i n struct ion with the u n

resol ved reference (remember that an i n struct ion conta i n i n g an u n resol ved reference h a s
operand 0 0) .

d) Repeat steps 1 . 2 and 3 u n t i l the end of the f l ags array i s reached .
After the resol u t i o n process is complete, the ent i re a rray conta i n i n g the S M L code i s output to a d i s k
fi l e w i th o n e S M L i n struct ion p e r l i ne . This fi l e c a n b e read by the S i m p l etron for execut ion (after
the s i m u l ator i s mod i fi e d to read i t s i n put from a fi l e) . Compi l i ng your fi rst S i m p l e program i nto an
SML fi l e a n d then execu t i ng t h a t fi l e �ho\. l l d g ive you a rea l �en se of person a l accompl i sh m e n t .

A Complete Example
The fol lowi n g example i l l ustrates a complete convers ion of a S i mple program to S M L as it w i l l be
performed by the S i mple compi l er. Consi der a S i mple program that i n puts an i n teger and sums the
values from I to that i nteger. The program and the SML i n struct ions produced by the fi rst pass of the
S i mple compi ler are i l l u strated i n F ig . 1 7 .27 . The symbol table con structed by the fi rst pass i s shown
in Fig . 1 7 . 28 .

M o s t S i mple statements convert d i rect ly to s i n g l e S M L i n struc t i o n s . T h e except i o n s i n t h i s pro
gram are remark s , the i f/goto statement in l i ne 2 0 and the l e t statemen t s . R e m a r k s do n ot trans
l ate i n to mac h i n e l a n g u age . However, the l i ne n u m ber for a re mark is pl aced i n the s y m bol table i n
case the l i n e n u m ber i s referenced i n a goto statement o r a n i f/goto state m e n t . L i n e 2 0 o f the

992 Data Structures Chapter 17

SML location
Simple program and instruction Description

5 rem sum 1 to x none rem i gnored

1 0 input x 0 0 + 1 0 9 9 read x in to l ocat ion 9 9

1 5 rem check y == x none rem ignored

2 0 i f y == x goto 6 0 0 1 + 2 0 9 8 load y (9 8) i n to acc u m u l ator

0 2 + 3 1 9 9 s u b x (9 9) from acc u m u l ator

0 3 + 4 2 0 0 branch zero to u n resol ved locat ion

2 5 rem increment y none rem ignored

3 0 let y = y + 1 0 4 + 2 0 9 8 load y in to acc u m u l ator

0 5 + 3 0 9 7 add 1 (9 7) t o acc u m u l ator

0 6 + 2 1 9 6 store i n temporary location 9 6

0 7 + 2 0 9 6 load from temporary locat ion 9 6

0 8 + 2 1 9 8 store accu m u lator i n y

3 5 rem add y to total none rem i gnored

4 0 l e t t = t + Y 0 9 + 2 0 9 5 load t (9 5) into acc u m u l ator

1 0 + 3 0 9 8 add y t o accu m u l ator

1 1 + 2 1 9 4 store i n temporary location 9 4

1 2 + 2 0 9 4 load from tem porary locat ion 9 4

1 3 + 2 1 9 5 store acc u m u l ator i n t

4 5 rem l oop y none rem ignored

5 0 goto 2 0 1 4 + 4 0 0 1 branch t o l ocat ion 0 1

5 5 rem output result none rem i g nored

6 0 print t 1 5 + 1 1 9 5 o u tpu t t t o screen

9 9 end 1 6 + 4 3 0 0 term i n ate execution

Fig. 17.27 SML instructions produced after the compiler ' s first pass.

Symbol Type Location

5 L 0 0

1 0 L 0 0

' x ' V 9 9

1 5 L 0 1

2 0 L 0 1

' y ' V 9 8

2 5 L 0 4

Fig. 17.28 Symbol table for program of Fig . 1 7 . 27. (Part 1 of 2.)

Chapter 17 Data Structures 993

Symbol Type Location

3 0 L 0 4

1 C 9 7

3 5 L 0 9

4 0 L 0 9

' t ' v 9 5

4 5 L 1 4

5 0 L 1 4

5 5 L 1 5

6 0 L 1 5

9 9 L 1 6

Fig. 17.28 Symbol table for program of Fig. 1 7 . 27. (Part 2 of 2.)

program speci fi e s that if the condit ion y == x is true, program control is transfe rred to l i ne 6 0 .

Because l i ne 6 0 appears l ater i n the program , the first pass o f the compi ler has not a s yet p l aced 6 0 i n
the symbol table (statement l i ne numbers are p laced i n the symbol table on ly when they appear a s the
fi rst token in a statement) . Therefore, i t i s not poss ib le at this t i me to determi ne the operand of the
S M L branch zero i n struct ion at location 03 i n the array of SML i n struct ions . The compiler p l aces 6 0

i n location 0 3 o f the f lags array to i n dicate that the second pass completes t h i s i nstructi o n .
We must k e e p track o f t h e n e x t i n struction l ocation i n t h e S M L array because there i s n o t a one

to-one correspondence between S i mple statements and S M L i n struct i o n s . For example , the i ff

goto statement of l i ne 2 0 compi les i n to three S M L i nstruct ions . Each t i m e an i n struct ion is pro
duced, we must i ncrement the ins/rue/ion eoun/er to the next locat ion i n the S M L array. Note that
the s i ze of S i m pletro n ' s me mory cou l d present a problem for S i mple program s with many state
ments, vari ables and constants . I t is conceivable that the compi ler w i l l ru n out of me mory. To test for
t h i s case, your program should conta i n a data counter to keep track of the locat ion at w h i c h the next
vari able or constant w i l l be stored i n the SML array. I f the value of the i nstruct ion counter is l arger
than the value of the data counter, the S M L array is fu l l . In t h i s case, the compi lat ion process shou l d
term i n ate a n d the com p i l e r s h o u l d pri nt an error message ind icat ing t h a t i t r a n out of memory d u r i n g
compi lat ion . T h i s serves to emphasize that a l though t h e programmer i s freed from the burden s o f
manag i n g memory by the compi ler, t h e comp i l er i tse lf m u st carefu l l y determ i n e the p l acement o f
i n struct ions and d a t a i n memory, and must check for s u c h errors as memory be i n g exhau sted during
the compi l at ion proces s .

A Step-by-Step View of the Compilation Process

Let us now w a l k through the compi l at ion process for the S i mple program i n F i g . 1 7 . 2 7 . The compi ler
reads the fi rst l i ne of the program

5 rem sum 1 to x

i nto memory . The fi rst token i n the statement (the l i ne number) i s determ i ned u s i n g s t rtok (see
Chapter 5 and Chapter 1 8 for a d i scuss ion of C++ ' s C-style str ing m a n i p u l at ion fun c t i o n s) . The to
ken returned by s t rtok is converted to an i nteger u s i n g atoi so the symbol 5 can be located i n
the symbol tab l e . I f the symbol i s not found, i t i s i n serted i n the symbol tab l e . S i nce we are a t the be
g i n n i ng of the program and th i s i s the first l i ne , 110 symbo l s are in the table yet . S o 5 is i n serted i nto

994 Data Structures Chapter 1 7

the symbol table as type L (l i ne nu mber) and assi gned the fi rst l ocat ion i n S M L array (0 0) . A l t ho u gh
t h i s l i ne is a remark, a space in the symbol table is s t i l l a l l ocated for the l i ne n u m ber (i n case it i s ref
erenced by a goto or an i f/goto) . No S M L i n struct ion is generated for a rem state m e n t , so the
i n struct ion counter i s not i ncremented.

The state ment

10 input x

is toke n i zed next . The l i ne n u m ber 1 0 is pl aced in the symbol table as type L and ass i gned the fi rst
locat ion in the S M L array (0 0 because a remark began the program so the i n struct ion counter i s c ur
rent ly 0 0) . The command input ind icates that the next token is a vari ab le (o n l y a vari able can
appear i n a n input statement) . Because input corresponds d i rect l y to an S M L operat ion code.
the com p i l e r has to determ i n e the locat ion of x i n the S M L array. S y m bol x i s not fou n d in the
symbol table. So i t i s i n serted into the symbol table as the A SC I I representat ion of x. g i ven t ype v,
and assigned location 99 i n the S M L array (data storage beg i n s at 99 and i s a l l ocated backward s) .
S M L code c a n n o w b e generated for t h i s state ment . Operat ion code 1 0 (t h e S M L read operat ion
code) i s m u l t i pl i ed by 1 00, and the locat ion of x (as determ i ned i n the symbol tab l e) i s added to
complete the i n struct i o n . The i n struct ion i s then stored i n the SML array at locat ion 0 0 . The
i n struct ion counter is i ncremented by I because a s i ngle S M L i n struct ion was produced.

The statement

15 rem check y == x

i s toke n i zed next . The symbol table is searched for l i ne n u m ber 1 5 (which is not fou n d) . The l i ne
n umber i s i n serted as type L and ass igned the next l ocation i n the array, 0 1 (remember that rem

statements do not produce code. so the i n struct ion counter is not i n c remented) .
The statement

20 if y == x goto 6 0

i s tokeni zed nex t . L i ne n u m ber 2 0 i s i n serted i n t h e symbol table and g i v e n type L w i t h the n e x t l o
cat ion i n the S M L array 0 1 . The command i f i n d i cates that a cond i t i o n i s to be eva l uated . The vari
able y i s not fou n d i n the symbol ta ble . so i t i s i nserted and g i ven the type V and t h e SML locat ion
9 8 . Next . SML i n st ruc t i o n s a re generated to eva l u ate the cond i t i o n . S i nce there i s n o d i rect eq u i va lent
i n S M L for the i f /got o. i t m u st be s i m u l ated by perform i n g a c a l c u l a t i o n us ing x and y and branch
i n g based on the res u l t . t f y i s equal to x, the res u l t of subtract i n g x from y i s zero, so the branch zero

i nstruct ion can be used w i t h the res u l t of the calcu l at ion to s i m u l ate the if / goto statement . The fi rst
step req u i res that y be l oaded (from S M L location 9 8) into the acc u m u l ator. Th i s produces the i n
struction 0 1 + 2 0 9 8. Next , x is subtracted from the acc u m u l ator. Th i s produces the i n struct ion 0 2

+ 3 1 9 9. The v a l ue i n the accu m u l ator may b e zero, pos i t i ve o r negat i v e . S i nce the operator i s = = . we
want to branch zero. First. the s y m bol table i s searched for the branch l ocat i o n (60 in t h i s case) .
w h i ch i s not fou n d . So 6 0 i s placed i n the f l ags array at locat ion 0 3 . a n d t h e i n struct ion 03 + 4 2 0 0

i s generated (we can not add the branch l ocat i o n , because we have nOI a s s i gned a locat ion t o l i ne 6 0

i n the S M L array yet) . The i n struct ion counter i s i ncremented t o 0 4 .

The compi ler proceeds t o the statement

25 rem increment y

The l i ne n u mber 2 5 i s i n serted i n the symbol table as type L and ass igned S M L locat ion 0 4 . The
i nstruc t i on counter i s not i ncremented.

When t h e statem e n t

30 l e t y = y + 1

Chapter 1 7 Data Structures 995

is token ized, the l i ne n u m ber 3 0 is i n serted in the symbol table as type L and assigned S M L l ocation
0 4 . Command let i n d i cates that the l i ne i s an assignment statement . First. a l l the symbols on the l i ne
are i n serted i n the symbol table (i f they are not a lready there) . The i n teger 1 i s added to the symbol
table as type c and ass igned SML location 9 7 . Next, the right s i de of the ass ignment i s converted
from i n fi x to postfi x notat i on . Then the postfi x expression (y 1 +) i s eva l uated . S y m bo l y i s located i n
t h e symbol tab le , a n d i t s corresponding memory location i s pushed onto t h e stac k . S ymbol 1 i s a l so
l ocated i n the symbol table . and i ts correspond ing memory locat ion is pushed onto the stac k . When
the operator + is encountered, the postfi x eval uator pops the stack i nto the right operand of the opera
tor, pops the stack aga i n i nto the left operand of the operator and produces the S M L i n struct ions

0 4 + 2 0 9 8

0 5 + 3 0 9 7

(Load y)

(add 1)

The res u l t of the express ion i s stored i n a tem porary l ocation i n memory (9 6) w i t h i n struct ion

06 + 2 1 9 6 (store temporary)

and the temporary l ocat ion is pushed on the stac k . Now that the express ion has been evaluated, the
res u l t m u st be stored in y (i . e . , the vari able on the left s ide of =) . So the tem porary l ocat ion is l oaded
i nto the acc u m u l ator, and the acc u m u lator i s stored i n y with the i n struct i o n s

0 7 + 2 0 9 6

0 8 + 2 1 9 8

(load temporary)

(store y)

The reader w i l l i m mediate ly notice that S M L i n struct ions appear to be redundant . We w i l l d i scuss
t h i s i ssue short l y.

When the statement

35 rem add y to total

i s token i zed, l ine n u mber 35 i s i n serted i n the symbol table as type L and ass igned l ocat ion 0 9 .

The statement

40 let t = t + Y

i s s i m j lar to l i n e 3 0 . The vari able t i s i n serted in the symbol table as type V and ass i gned S M L
location 9 5 . The i n struct i on s fol low the same logic and format as l i n e 3 0 , and the i n struct ions 0 9

+ 2 0 9 5 , 1 0 + 3 0 9 8 , 1 1 + 2 1 9 4 , 1 2 + 2 0 9 4 and 1 3 + 2 1 9 5 are generate d . Note that the res u l t of t
+ y i s ass igned to temporary location 9 4 before be i n g assigned to t (9 5) . Once agai n , the reader
w i l l note that the i n struct ions in memory locat ions 11 and 1 2 appear to be redu ndant . A ga i n , we w i l l
d i scuss t h i s short l y.

The statement

4 5 rem l oop y

i s a remark, so l i ne 4 5 i s added to the symbol table as type L and ass igned S M L locat ion 1 4 .

The statement

5 0 goto 2 0

tran sfers control to l i ne 2 0 . Line n u mber 5 0 i s i nserted i n the symbol table as type L and ass igned
S M L location 1 4 . The equivalent of goto i n SML i s the unconditional branch (4 0) i n struct ion that
tran sfers control to a spec i fi c S M L l ocat ion . The compiler searches the symbol table for l i ne 20 and
fi nds that i t correspond s to S M L location 0 1 . The operation code (4 0) is m u l t i p l i ed by 1 00, and
locat ion 01 i s added to i t to produce the i n struction 1 4 + 4 0 0 1 .

996 Data Structures Chapter 1 7

The statement

55 rem output result

i s a re mark, so l i ne 55 i s i n serted i n the symbol table as type L and assi gned SML locat ion 1 5 .

The statement

60 print t

is an output statement . L ine n u mber 6 0 is i n serted in the symbol table as type L and assigned S M L
l ocat ion 1 5 . The eq u i valent o f print i n S M L i s operat ion code 1 1 (write) . The location o f t i s de
term i ned from the symbol table and added to the res u l t of the operat ion code m u l t i p l ied by 1 00 .

The statement

99 end

is the fi na l l i n e of the progra m . L i ne nu mber 99 is stored in the symbol table as type L and ass igned
SML locat ion 16. The end command produces the S M L i nstruct ion + 4 3 0 0 (4 3 i s halt in S M L) ,
w h i c h i s written as t h e fi na l i n struction i n t h e S M L memory array.

This completes the fi rst pass of the compiler. We now con s i der the second pass. The f lags

array i s searched for values other than - 1 . Locat ion 03 contai n s 6 0 , so the compiler knows that
i nstruct ion 03 i s i ncomplete. The compi ler completes the i nstruct ion by searc h i n g the symbol table
for 60, determ i n i ng i ts l ocation and adding the location to the i ncomplete i n structi o n . T n this case, the
search determ i nes that l i ne 60 corresponds to SML location 15, so the completed i nstruct ion 0 3

+ 4 2 1 5 i s produced, replacing 0 3 + 4 2 0 0 . The S i mple program has now been compi led successfu l l y.
To bu i l d the compi l er, you w i l l h ave to perform each of the fol lowi ng tasks :

a) Modify the S i mp letron s i m u l ator program you wrote i n Exerc i se 5 . 1 9 to take i t s i nput
from a fi le speci fied by the user (see Chapter 1 4) . The s i m u l ator shou l d output i t s res u l t s
to a d i s k fi l e i n the s a m e format as the screen output. Con vert the s i m u l ator to be an ob
j ect-oriented progra m . I n part icu lar, make each part of the hardware an object . A rrange
the i n struct ion types i n to a c l ass h ierarchy us ing i n heritance. Then execute the program
polymorph i c a l l y by te l l i ng each i n struction to execute i tse lf w i th an execute In

s t ruct ion message.
b) M od i fy the i n fi x - to-postfi x convers ion algori t h m of Exerc i se 1 7 . 1 2 to process m u l t i -d i g i t

i n teger operands and s i ng le- letter vari able n a m e operands . Hint: Standard l i brary func
t i o n s t rtok can be used to locate each constant and variable in an e xpress ion , and con
stants can be converted from stri ngs to i n tegers using standard l ibrary fu nct ion atoi

« c sdt l ib» . (Note: T h e data representation of the postfi x e x press ion must be a l tered
to support variab le names and i n teger constants .)

c) M od i fy the postfi x eval uation al gori thm to process m u l t i d i g i t i n teger operands and vari
able name operands. A l so, the a lgori thm shou l d now i mplement the "hook" d i scussed
previous ly so that SML i n struct ions are produced rather than d i rect l y eval uat ing the
express ion . Hint: Standard l i brary fu nction st rtok can be used to l ocate each constant
and variable i n an express ion, and constants can be converted from stri ngs to i n tegers us
i n g standard l ibrary function atoi . (Note: The data representat ion of the postfi x e xpres
s ion must be a l tered to support variable names and i n teger constant s .)

d) B u i l d t h e compi ler. Incorporate parts (b) a n d (c) for evaluat ing express ions i n l e t state
ments. Your program should contai n a fu nction that performs the fi rst pass of the compi ler
and a function that performs the second pass of the compi ler. Both funct ions can ca l l other
funct ions to accom p l i sh the ir tasks. Make your compiler as object oriented as pos s i b l e .

17.28 (Optimizing the Simple Compiler) W h e n a program i s compi led and converted i nto S M L, a
set of i nstruct ions i s generated . Certai n combinat ions of i n struct ions often repeat themse l ves , usua l l y

Chapter 1 7 Data Structures 997

in trip lets cal led productions . A production normal l y consists of three instructions such as load, add

and store . For example , F ig . 1 7 .29 i l l u strates five of the S M L instructions that were produced in the

comp i l ation of the program in Fig. 1 7 . 2 7 . The first three instructions are the production that adds 1

to y. Note that instructions 0 6 and 0 7 store the accumu l ator value in temporary location 9 6 and load

the value back into the accumul ator so instruction 0 8 can store the va lue in l ocat ion 9 8 . Often a pro

duction is fo l l owed by a load instruction for the same location that was j u st stored. This code can be

optimized by e l iminating the store instruction and the subsequent load instruction that operate on the

same memory location, thus enabl ing the S impletron to execute the program faster. Figure 1 7 .30 i l

l ustrates the optimized S M L for the program o f Fig. 1 7 .27 . Note that there are four fewer instructions

in the optimized code-a memory-space savings of 25%.

1 0 4 + 2 0 9 8 (load)
2 0 5 + 3 0 9 7 (add)
3 0 6 + 2 1 9 6 (store)
4 0 7 + 2 0 9 6 (load)
5 0 8 + 2 1 9 8 (store)

Fig. 17.29 Nonoptimized code from the program of Fig. 1 7 . 27 .

SML location

Simple program and instruction Description

5 rem sum 1 to x none rem ignored

1 0 input x 0 0 + 1 0 9 9 read x into location 9 9

1 5 rem check y == x none rem ignored

2 0 i f y = = x goto 6 0 0 1 + 2 0 9 8 load y (9 8) into accumu lator

0 2 + 3 1 9 9 sub x (9 9) from accumu l ator

0 3 + 4 2 1 1 branch to location 1 1 i f zero

2 5 rem increment y none rem i gnored

3 0 let y = y + 1 0 4 + 2 0 9 8 load y into accumu lator

0 5 + 3 0 9 7 add 1 (9 7) to accumulator

0 6 + 2 1 9 8 store accumulator i n y (9 8)

3 5 rem add y to total none rem i gnored

4 0 let t = t + Y 0 7 + 2 0 9 6 load t from location (9 6)

0 8 + 3 0 9 8 add y (9 8) accumu l ator

0 9 + 2 1 9 6 store accumu l ator i n t (9 6)

4 5 rem l oop y none rem i gnored

5 0 goto 2 0 1 0 + 4 0 0 1 branch to location 0 1

5 5 rem output result none rem i gnored

6 0 print t 1 1 + 1 1 9 6 output t (9 6) to screen

9 9 end 1 2 + 4 3 0 0 terminate execution

Fig. 17.30 Optimized code for the program of Fig. 1 7 . 27 .

998 Data Structures Chapter 1 7

Modify the compi ler to provide an option for optimizing the S impletron Machine Language

code i t produces. Manual l y compare the nonoptimized code with the optimized code, and ca lcu late

the percentage reduction.

17.29 (Modifications to the Simple compiler) Perform the fol lowing modi ficat ions to the S imple

compi ler . Some of these modi fications may also requi re modifications to the S impletron S imulator

program written in Exercise 5 . 1 9 .

a) A l low the modulus operator (%) to be used in let statements. S impletron M ac hine Lan

guage must be modi fied to inc lude a modulus instruct ion .

b) A l low e xponentiat ion in a let statement using " as the exponent i at ion operator. S im

p letron Machine Language must be modi fied to include an exponentiat ion instruct ion .

c) A l low the compi ler to recognize uppercase and lowercase letters in S imple statements

(e .g . , I A I is equivalent to I a ') . No modifications to the S imulator are required.

d) A l l ow input statements to read values for mul t ip le variables such as input x , y. No

modi fications to the S impletron S imulator are requi red.

e) A l l ow the comp i ler to output mult ip le values in a single print statement such as

print a, b, c. No modifications to the S impletron Simulator are required.

t) Add syntax-checking capabi l i t ies to the comp i ler so error messages are output when syn

tax errors are encountered in a S imple program. No modifications to the S impletron S im

u lator are required.

g) A l low arrays of integers. No modifications to the S impletron S imulator are requi red .

h) A l l ow subroutines specified by the S imple commands gosub and return. Command

go sub passes program control to a subroutine, and command return passes control

back to the statement after the go sub. Thi s i s s imi l ar to a funct ion cal l in C++. The same

subroutine can be cal led from many gosub commands d istributed throughout a pro

gram. No modifications to the Simpletron S imulator are required .

i) A l low repeti t ion structures of the form

for x = 2 to 1 0 step 2
Simple statements

next

This for statement loops from 2 to 10 with an increment of 2 . The next l ine marks the

end of the body of the for. No modi fications to the S impletron Simulator are requ i red .

j) A llow repet i t ion structures o f the form

for x = 2 to 1 0

Simple statements

next

This for statement loops from 2 to 10 with a defaul t increment of 1. No modifications

to the S impletron S imulator are required.

k) A l low the comp i ler to process string input and output . This requ ires the S impletron S im

u l ator to be modified to process and store string values . (Hint: Each S impletron word can

be d iv ided into two groups, each hold ing a two-dig i t integer. Each two-d ig i t integer rep

resents the ASC I I decimal equivalent of a character. Add a machine l anguage instruction

that w i l l print a string beginning at a certain S impletron memory location. The first ha lf

of the word at that location i s a count of the number of characters in the string (i .e . , the

l ength of the string) . Each succeeding half word contains one ASCI I character expressed

as two decimal digits . The mach ine language instruct ion checks the l ength and prints the

string by translat ing each two-digi t number into its equivalent character .)

I) A l low the compi ler to process floating-point values in addit ion to integers . The S im

p letron S imulator must also be modified to process floating-point va lues .

Chapter 1 7 Data Structures 999

1 7.30 (A Simple Interpreter) An in terpreter is a program that reads a h igh- leve l language program

statement, determi nes the operation to be performed by the statement and executes the operation i m

mediate l y . The h igh- leve l language program is not converted in to machine language first . I nterpreters

execute s lowly because each statement encountered in the program must fi rst be deciphered . If state

ments are contained in a loop, the statements are dec iphered each t i me they are encountered i n the

loop. Early vers ions of the B A S I C programming language were i m p lemented as i n terpreters.

Write an i nterpreter for the S imple language d i scussed i n Exerc i se 1 7 .26 . The program shou ld

use the i n fix-to-postfix converter deve loped i n Exerc i se 1 7 . 1 2 and the postfi x evaluator devel oped i n

Exerc i se 1 7 . 1 3 t o eva luate expressions i n a l e t statement . The same restrict ions p l aced on t h e S i m

p le language i n Exerc ise 1 7 .26 should b e adhered t o i n t h i s program. Test t h e i nterpreter w ith the

S i mple program s written i n Exerc i se 1 7 .26 . Compare the resu l ts of run n i ng these programs in the

i n terpreter with the resu l t s of compi l i ng the S i mple programs and run n i ng them in the S i mp letron

S i m u l ator bui l t in Exerc i se 5 . 1 9 .

1 7.3 1 (Insert/Delete A nywhere in a Linked List) Our l inked l i st c lass template a l lowed i n sert ions

and de let ions at on ly the front and the back of the l inked l i st . These capab i l i t ies were conven ient for

us when we used private i nheritance and composi t ion to produce a stack c l ass temp late and a queue

c lass template with a m i n i mal amount of code by reus ing the l i st c l ass temp l ate . Actual ly , l in ked l i sts

are more general than those we provided. Modify the l i n ked l i st c l ass template we developed i n this

chapter to handle i n sert ions and delet ions anywhere i n the l i st .

1 7.32 (List and Queues without Tail Pointers) Our i mplementat ion of a l inked l i st (Fig . 1 7 . 3-

Fig . 1 7 . 5) used both a f irstPtr and a lastptr. The lastptr was u sefu l for the insertAt

Back and removeFromBack member functions of the L i s t c lass. The insertAtBack funct ion

corresponds to the enqueue member function of the Queue c l ass . Rewri te the L i s t c l ass so that

i t does not use a lastptr . Thus, any operations on the tail of a l i st must beg i n search ing the l i st from

the front . Does th i s affect our i mp lementation of the Queue class (Fig . 1 7 . 1 3) ?

1 7.33 Use t h e composit ion vers ion o f the stack program (Fig . 1 7 . 1 2) t o form a complete work i n g

stack program. Modify th i s program t o inl ine t h e member funct ions . Compare t h e t w o approaches .

S u mmarize the advantages and d isadvantages of i n l i n i ng member funct ions .

1 7.34 (Performance of Binary Tree Sorting and Searching) One problem wi th the b inary tree sort

is that the order i n which the data are i nserted affects the shape of the tree-for the same col lect ion

of data, d i fferent orderings can yie ld b inary trees of dramat ical ly d ifferen t shapes . The performance

of the b inary tree sort i ng and search ing a lgori thms i s sens i t ive to the shape of the b in ary tree . What

shape would a b inary tree have if i ts data were i nserted i n increas ing order? in decreas ing order? What

shape should the tree have to achieve maximal search ing performance ?

1 7.35 (Indexed Lists) As presented i n the text , l i nked l i sts must be searched sequent ia l l y . For l arge

l i sts , th is can res u l t in poor performance. A common techn ique for i mpro v i ng l i st search ing perfor
mance is to create and maintain an i n dex to the l i st . An i ndex is a set of poi n ters to various key p laces

i n the l i st . For example, an app l i cation that searches a l arge l i st of names could i mprove performance
by creati ng an i ndex with 26 entries-one for each letter of the a lphabet . A search operation for a last
name beg inn ing w i th 'Y' would then fi rst search the i ndex to determine where the ' Y ' entries beg i n
a n d "j ump in to" t h e l i st a t that poin t a n d search l i nearly u n t i l the desired name i s found . Thi s would
be much faster than search ing the l i n ked l i st from the beg i n n i ng . U se the List c lass of F ig . 1 7 .3-
Fig . 1 7 .5 as the bas i s of an IndexedLi s t c lass. Wri te a program that demonstrates the operation
of i ndexed l i s ts . B e sure to i n c lude member functions insert lnlndexedL i s t , searchln

dexedL i s t and de leteFromlndexedLi s t .

1 8'
Bits , Characters , Strings

and Structures

Objectives
• To be able to create and use structures .

• To be able to pass structures to functions by value and

by reference.

• To manipulate data with the bitwise operators and to

create bit fields for storing data compactly.

• To be able to use the functions of the character

handl ing l ibrary < cctype > .
• To be able to use the string-conversion functions of

the general -uti l it ies l ibrary < c stdl ib> .
• To be able to use the string-processing functions of

the string-handl ing l ibrary < c string > .
• To appreciate the power o f function l ibraries a s a

means of achieving software reusabi l i ty.

The same old charitable lie

Repeated as the years scoot by

Perpetually makes a hit-

" You really haven 't changed a bit! "

M argaret Fi shback

The chief defect of Henry King

Was chewing little bits of string.

H i laire B e l l oc

Vigorous writing is concise. A sentence should contain no

unnecessary words, a paragraph no unnecessary sentences.

W i l l iam Strunk, Jr .

Chapter 1 8 Bits , Characters , Stri ngs and Structures

Outline

1 8. 1 Introduction

Structure Definitions

Initializing Structures

Using Structures with Functions

typede f

,

1 00 1

1 8.2

1 8.3

1 8.4

1 8.5

1 8.6

1 8. 7

1 8.8

1 8.9

1 8. 1 0

1 8. 1 1

Example: High- Performance Card-Shuffling and Dealing Simulation

Bitwise Operators

Bit Fields

Character-Handling Library

String-Conversion Functions

Search Functions of the String-Handling Library

1 8. 1 2 Memory Functions of the String- Handling Library

Summary • Terminology · Self-Review Exercises · Answers to Self-Review Exercises · Exercises

1 8 . 1 Introduction
I n this chapter, we say more about structures and discuss the man i p u l at ion of bits, charac

ters and C-style stri ngs . Many of the techniques we present are C - l i ke and are i n c l uded for

the benefi t of the C++ programmer who w i l l work with C legacy code .

S tructures may contai n variables of many different data types-i n contrast to arrays,

which contain only e l e ments of the same data type. Thi s fact, and most of w hat we say about

structures in the next several pages, appl ies to c l asses as wel l . Again , the major d ifference

between structures and c lasses i n C++ i s that structure members default to publ i c access

and c l ass members default to private access . We discuss how to declare structures, i n i

t ial i ze them a n d pass them t o functions. Then, w e present a high-performance card-shuffl i ng

and dea l i ng s i m u l at ion i n which we use structure objects to represent the card s .

1 8 .2 Structure Defin itions
Consider the fol lowing structure defi n i t ion :

s t ruct Card {

char * face ;

char * sui t ;

} ; I I end s t ruct Card

Keyword struct i ntroduces the defi n it ion for structure Card. The identifier Card is the

structure name and i s used i n C++ to declare vari ables of the structure type (in C , the type

name of the preceding structure i s struct Card). In th i s example, the structure type i s

Card. Data (and poss ib ly functions-j ust a s with c l asses) dec l ared wi th in t h e braces o f the

structure defi n i t ion are the structure ' s members. Members of the same structure must have

1 002 Bits , Characters, Str ings and Structures Chapter 1 8

u nique names, but two different structures may contai n members of the same name without

confl ict . Each structure defi n ition must end with a semicolon .

Common Programming Error 1 8. 1

Forgetting the semicolon that terminates a structure definition is a syntax error.

The defi n ition of Card contai ns two members of type char *-face and sui t .

Structure members can b e variables o f the basic data types (e .g . , int , double, etc .) or

aggregates , such as arrays and other structures . Data members i n a single structure defin i

t ion can be of many data type s . For example, an Employee structure might contain char

acter string members for the first and last names, an int member for the employee ' s age,

a char member contain ing I M I or I F I for the employee ' s gender, a doubl e member

for the employee ' s hourly salary and so on.

A structure cannot contai n an i nstance of itself. For example, a structure variable Card

cannot be declared i n the defi n ition for structure Card. A pointer to a Card structure, how

ever, can be included. A structure containing a member that i s a pointer to the same struc

ture type i s referred to as a sellreferential structure. We used a s imj lar construct-self

referential c lasses-in Chapter 1 7 to build various kinds of l inked data structures .

The preceding structure defi n ition does not reserve any space i n memory ; rather, the

defi nit ion creates a new data type that i s used to declare structure variables . S tructure vari

ables are dec lared l ike variables of other types . The fol lowing decl arations

Card oneCard ;

Card deck [5 2] ;

Card * c ardP t r ;

declare oneCard t o b e a structure variable o f type Card, deck t o b e a n array with 5 2

elements o f type Card a n d c ardPtr t o b e a pointer t o a Card structure. Variables o f a

given structure type can also be declared by placing a comma-separated l ist of the v ariable

names between the closing brace of the structure defi n ition and the semicolon that ends the

structure defi n ition . For example, the preceding dec laration could have been incorporated

i nto the Card structure defin ition as fol lows:

s t ruct Card {
char * face ;

char * suit ;

} oneCard , deck [5 2] , * cardPtr ;

The structure name i s optional . If a structure defi nition does not contain a structure

name, variables of the structure type may be declared only between the closing right brace

of the structure definit ion and the semicolon that termi n ates the structure defi nition . � Good Programming Practice 1 8 . 1

Provide a structure name when creating a structure type. The structure name is con venient

for declaring new variables of the structure type later in Ihe program and is required if Ihe

structure will be used in a function parameter declaration.

The only valid bui lt- i n operations that may be performed on structure obj ects are

assigning a structure object to a structure object of the same type, taki ng the address (&:) of

a structure obj ect, accessing the members of a structure object (see Chapter 6, C lasses and

Chapter 1 8 Bits, Characters, Strings and Structures 1 003

Data Abstraction) and using the s i zeof operator to determine the size of a structure. As

with classes, most operators can be overloaded to work with objects of a structure type.

Structure members are not necessarily stored in consecutive bytes of memory. Some

times there are "holes" in a structure, because some computers store specific data types

only on certain memory boundaries, such as half-word, word or double-word boundaries.

A word is a standard memory unit used to store data in a computer-usually 2 bytes or 4

bytes. Consider the following structure definition in which structure objects s ample l and

sample2 of type Example are declared:

struct Example {
char c ;
int i ;

samp le 1 , sample2 ;

A computer with 2-byte words might require that each of the members of Example be

aligned on a word boundary (i.e., at the beginning of a word-tills is machine dependent).

Figure \8.1 shows a sample storage alignment for an object of type Example that has been

assigned the character I a I and the integer 97 (the bit representations of the values are

shown). If the members are stored beginning at word boundaries, there is a I-byte hole

(byte 1 in the figure) in the storage for objects of type Example . The value in the I -byte

hole is undefined. If the member values of sample l and sample2 are in fact equal, the

structures do not necessarily compare equally, because the undefined i-byte holes are not

likely to contain identical values.

Common Programming Error 18.2

Comparing structures is a syntax error.

fI Portability Tip 18. 1

Because the size of data items of a particular type is machine dependent, and because storage

alignment considerations are machine dependent, so 100 is the representation of a structure.

18.3 Initializing Structures

Structures can be initialized using initializer lists, as is done with arrays. For example, the

declaration

Card oneCard = { "Three" , "Heart s" };

creates Card variable oneCard and initializes member face to " Three " and member

suit to " Hearts " . If there are fewer initializers in the list than members in the structure,

Byte 0 1

1011000011
2 3

1000000001011000011

Fig. 1 8.1 Poss ib le storage a l ignment for a variable of type Examp l e, showing a n
undefined area in memory.

1 004 Bits, Characters, Strings and Structures Chapter 1 8

the remaining members are initialized to O. Structure variables declared outside a function

definition (i.e., externally) are initialized to 0 if they are not explicitly initialized in the ex

ternal declaration. Structure variables may also be initialized in assignment statements by

assigning a structure variable of the same type or by assigning values to the individual data

members of the structure.

18.4 Using Structures with Functions

There are two ways to pass the information in structures to functions. You can either pass

the entire structure or pass the individual members of a structure. By default, the data passes

by value. Structures and their members can also be passed by reference by passing either

references or pointers.

To pass a structure by reference, pass the address of the structure object or a reference

to the structure object. Arrays of structures-like all other arrays-are passed by reference.

In Chapter 4, we stated that an array could be passed by value by using a structure. To

pass an array by value, create a structure (or a class) with the array as a member, then pass

an object of that structure (or class) type to a function by value. Because structure objects

are passed by value, the array member, too, is passed by value.

Common Programming Error 18.3

Assuming that structures, like arrays, are passed by reference and trying to modify the call

er's structure values in the called function is a logic error.

Performance Tip 18.1

Passing structures (and especially large structures) by reference is more efficient than pass

ing structures by value (which requires the entire structure to be copied).

18.5 typedef

Keyword typede f provides a mechanism for creating synonyms (or aliases) for previous

ly defined data types. Names for structure types are often defined with typedef to create

shorter or more readable type names. For examp le, the statement

typede f Card *CardPtr;

defines the new type name CardPtr as a synonym for type Card * .

� Good Programming Practice 18.2

Capitalize typedef names to emphasize that these names are synonyms for other type

names.

Creating a new name with typede f does not create a new data type; typede f

si mply creates a new type name that can then be used in the program as an alias for an

existing type name.

Synonyms for built-in data types can be created with typede f . For example, a pro

gram requiring 4 -byte integers could use type int on one system and type long int on

another system that has 2-byte integers. Programs designed for portability can use

typede f to create an a lias such as Integer for 4-byte integers. Integer can then be

aliased to int on systems with 4-byte integers and can be a liased to long int on systems

Chapter 1 8 Bits, Characters, Strings and Structures 1 005

with 2-byte integers where long int values occupy 4 bytes. Then, to write portable pro

grams, the program mer simply declares all4 -byte integer variables to be of type Integer.

IJtlt1 Portability Tip 18.2

_ Using typedef can help make a program more portable.

18.6 Example: High-Performance Card-Shuffling and Dealing
Simulation

The program in Fig. 18. 2 is based on the card-shuffling and dealing simulation discussed

in Chapter 5. The program represents the deck of cards as an array of structures and uses

high-performance shuffling and dealing algorithms. The output is shown in Fig. 18.3 .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

II Fig. 1 8.2: f i g 1 8_0 2 . cpp
II Card shu f f l ing and deal ing program us ing st ructure s .
inc lude < iostream>

using std::cout ;
using std: :c in;
us ing std::endl ;
us ing std::left ;
us ing std::right ;

#inc lude < i omanip>

us ing std::setw;

#inc lude < c stdlib>
#inc lude < c t ime >

II Card structure de f init ion
struct Card {

char * face ;
char * sui t ;

}; II end structure Card

void f i l lDeck { Card * const , char * [] , char * []) ;

void shuf f l e { Card * const) ;
void deale Card * const) ;

int main {)
{

Card deck [52] ;
char * face [] = { " Ace " , " Deuc e " , " Three " , " Four " ,

" Five " , " Si x " , " Seven" , " Eight 'l , " Nine n , " Ten " ,

" Jack " , " Queen " , " King " };
char * suit [] { " Heart s " , " Diamonds " , " Clubs " , " Spade s " };

srand (t ime (°); II randomi ze

Fig. 1 8.2 High-performance card-shuffl ing and deal ing s imu lat ion. (Part 1 of 2.)

1 006 Bits, Characters, Strings and Structures

39 f i 1 1Deck(deck , face , suit) ;

40 shu f f l e (deck) ;
41 dea1(deck) ;

42
43 return 0 ;

44
45 } // end main
46
47 // place strings into Card structures
48 void f i 1 1Deck(Card * const wDeck ,
49 char *wFace [] , char *wSuit [])
50 {
51 for (int i = 0 ; i < 52 ; i + +) {

52 wDeck [i] . face wFace [i % 13] ;
53 wDeck [i] . suit wSuit [i / 13] ;

54
55 // end for
56
57 1/ end function f i 11Deck
58
59 // shu f f le cards
60 void shu f f 1 e(Card * const wDeck)
61 {
62 for (int i = 0 ; i < 52 ; i + +) {

6 3 int j = rand() % 52 ;
64 Card temp = wDeck [i] ;

65 wDeck [i] = wDeck [j] ;

66 wDeck [j] = temp ;

67
68 // end for
69
70 } I I end funct ion shuff le
71
72 // deal cards
73 void dea1(Card * const wDeck)
74 {
75 for (int i = 0 ; i < 52 ; i + +

Chapter 1 8

76 cout « right « setw(5) « wDeck [i] . face « .. of ..

77 « left « setw(8) « wDeck [i] . suit
78 « ((i + 1) % 2 ? • \ t· : • \ n ') ;
79
80 } // end function deal

Fig. 1 8.2 High-performance card-shuffl ing and deal ing simu lation . (Part 2 of 2 .)

In the program, function f illDeck initializes the Card array in order with character

strings representing Ace through King of each suit. The Card array is passed to function

shuffle, where the high-performance shuffling algorithm is i mplemented. Function

shuffle takes an array of 52 Card structures as an argument. The function loops through

all 52 cards (array subscripts 0 to 5l). For each card, a number between 0 and 51 is picked

randomly. Next, the current Card structure and the randomly selected Card structure are

swapped in the array. A total of 52 swaps are made in a single pass of the entire array, and

the array of Card structures is shuffled! This algorithm does not suffer from indefinite

Chapter 1 8 Bits, Characters, Strings and Structures 1 007

King of C lubs Ten of Diamonds

Five of Diamonds Jack of Clubs

Seven of Spades Five of Clubs

Three of Spades King of Heart s
Ten of Clubs Eight of Spades

Eight of Heart s Six of Heart s
Nine of Diamonds Nine of Clubs

Three of Diamonds Queen of Heart s
Six of C lubs Seven of Heart s

Seven of Diamonds Jack of Diamonds
Jack of Spades King of Diamonds

Deuce of Diamonds Four of Clubs
Three of C lubs Five of Heart s
Eight of Clubs Ace of Heart s
Deuce of Spades Ace of Clubs

Ten of Spades Eight of Diamonds
Ten of Heart s Six of Spades

Queen of Diamonds Nine of Heart s
Seven of Clubs Queen of Clubs
Deuce of C lubs Queen of Spades
Three of Heart s Five of Spades
Deuce of Heart s Jack of Heart s

Four of Heart s Ace of Diamonds
Nine of Spades Four of Diamonds

Ace of Spades Six of Diamonds
Four of Spades King of Spades

Fig. 1 8.3 Output for the h igh-performance card-shuff l ing and dea l ing s imu lation .

postponement like the shuffling algorithm presented in Chapter 5 . Because the Card struc

tures were swapped in place in the array, the high-performance dealing algorithm i mple

mented in function deal requires only one pass of the array to deal the shuffled cards.

Common Programming Error 18.4

Forgetting to include the array subscript when referring to individual structures in an array

of structures is an error.

18.7 Bitwise Operators

C++ provides extensive bit-manipulation capabilities for program mers who need to get

down to the so-called "bits-and-bytes" level. Operating systems, test-equipment software,

networking software and many other kinds of software require that the programmer com

municate "directly with the hardware ." In this and the next several sections, we discuss

C++'s bit-manipulation capabilities. We introduce each of C++'s many bitwise operators,

and we discuss how to save memory by using bit fields.

All data are represented internally by computers as sequences of bits. Each bit can

assume the value 0 or the value 1. On most systems, a sequence of 8 bits forms a byte

the standard storage unit for a variable of type char. Other data types are stored in larger

numbers of bytes. Bitwise operators are used to manipulate the bits of integral operands

(char, short, int and long; both s i gned and uns i gned). Unsigned integers are

normally used with the bitwise operators.

1 008 Bits, Characters, Strings and Structures Chapter 1 8

IJTJt1 Portability Tip 18.3

_ Bitwise data manipulations are m.achine dependent.

Note that the bitwise operator discussions in this section show the binary representa

tions of the integer operands. For a detailed explanation of the binary (also called base-2)

number system, see Appendix C, Number Systems. Because of the machine-dependent

nature of bitwise manipulations, some of these programs might not work on your system

without modifications.

The bitwise operators are: bitwise AND (&), bitwise inclusive OR (I), bitwise exclusive

OR (A) , left shift «<), right shift (») and complement (-). (Note that we have been using

&, « a nd » for other purposes. This is a classic example of operator overloading.) The

bitwise AND, bitwise i nclusive OR and bitwise exclusive OR operators compare their two

operands bit by bit. The bitwise AND operator sets each bit in the result to I if the corre

sponding bit in both operands is 1. The bitwise inclusive-OR operator sets each bit in the

result to 1 if the corresponding bit in either (or both) operand(s) is 1. The bitwise exclusive

OR operator sets each bit in the result to 1 if the corresponding bit in exactly one operand

is I. The left-shift operator shifts the bits of its left operand to the left by the number of bits

specified i n its right operand. The right-shift operator shifts the bits in its left operand to the

right by the number of bits specified in its right operand. The bitwise complement operator

sets all 0 bits in its operand to 1 in the result and sets all 1 bits in its operand to 0 in the

result. Detailed discussions of each bitwise operator appear in the following exa mples. The

bitwise operators are summarized in Fig. 18.4.

When using the bitwise operators, it is usefu l to print va lues in their binary represen

tation to illustrate the precise effects of these operators. Figure 18.5 prints an uns igned

i nteger in its binary representation in groups of eight bits each.

Operator

&

«

»

Name

bitwise AND

bitwise inc lusive OR

bitwise exclusive OR

left shift

right shift with sign

extension

one's complement

Fig. 1 8.4 Bitwise operators .

Description

The bi ts in the result are set to 1 if the correspond

ing bits in the two operands are both 1.

The bits in the resu l t are set to 1 i f at least one of

the corresponding bi ts i n the two operands is 1 .

The bits in the resul t are set t o 1 if exact ly o n e o f

the corresponding bi ts in the two operands i s 1 .

Shifts the bits o f t h e fi rst operand left by the n u m

ber of bi ts spec ified by the second operand; fi l l

from right with 0 bits.

Shifts the bits of the fi rst operand right by the

number of bits specified by the second operand; the

method of fi l l i ng from the left is mach ine

dependent .

Al l 0 bits are set to 1 and a l l 1 bits are set to O.

Chapter 1 8 Bits, Characters, Strings and Structures

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

II Fig . 1 8 . 5: f i g 1 8_0 5 . cpp
II Printing an uns igned integer in bits .
inc lude < io s t ream>

us ing std : : cout ;
using std : :c i n ;
us ing std : : end1 ;

inc1ude < i omanip >

using std: : setw;

void di sp1ayB i t s (uns igned) ; II prototype

int main ()
{

uns igned inputVa1ue ;

cout « " Enter an uns i gned integer : " ;
cin » inputVa1ue ;
displayBit s (inputVa1ue) ;

return 0 ;

II end main

II display bits of an uns igned integer value
void di sp1ayB i t s (uns igned value)
{

const int SHIFT = 8 * s i zeof (uns igned) - 1 ;
const uns igned MASK 1 « SHIFT ;

cout « setw (1 0 « value « " "i

for (uns igned i 1; i < = SHIFT + 1 ; i + +) {
cout « (value & MASK ? ' 1' : ' 0 ') ;

value « = 1; II shift value l e ft by 1

H (i % 8 0
cout « ' ' ;

} II end for

cout « end1 ;

II output a space after 8 bits

II end func t ion di sp1ayBits

Enter an uns igned integer : 6 5 0 0 0
6 5 0 0 0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0

Fig. 1 8.5 Print ing a n u ns igned integer i n bits,

1 009

Function di splayBit s (lines 28-46) uses the bitwise A N D operator to combine

variable value with constant MASK. Often, the bitwise AND operator is used with an

1 0 1 0 Bits, Characters, Strings and Structures Chapter 1 8

operand called a mask-an integer value with specific bits set to 1. Masks are used to hide

some bits in a value while selecting other bits. In displayBits, line 31 assigns constant

MASK the value 1 < < SHIFT. The value of constant SHIFT was calculated in line 30 with

the expression

8 * s i zeof (unsigned) - 1

which multiplies the number of bytes an uns igned object requires in memory by 8 (the

number of bits in a byte) to get the total number of bits required to store an uns i gned

object, then subtracts I. The bit representation of 1 < < SHIFT on a computer that repre

sents uns i gned objects in four bytes of memory is

10000000 00000000 00000000 00000000

The left-shift operator shifts the value 1 from the low order (rightmost) bit to the high-order

(leftmost) bit in MASK, and fi l ls in 0 bits from the right. Line 36 determines whether a 1 or

a 0 should be printed for the current leftmost bit of variable value. Assume that variab le

value contains 65 0 0 0 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 0). When val

ue and MASK are combined using &, al l the bits except the high-order bit in variab le value

are "masked off' (hidden), because any bit "ANDed" with 0 yields o. If the leftmost bit is

1, value & MASK evaluates to

00000000 00000000 1 1 1 1 1 101 1 1 101000
10000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

(va lue)
(MASK)

(value & MASK)

which is interpreted as false, and 0 is printed. Then line 37 shifts variab le value left by

one bit with the expression value « = 1 (i.e., value = value « 1). These steps are

repeated for each bit variable value . Eventual ly, a bit with a value of 1 is shifted into the

leftmost bit position, and the bit manipulation is as fol lows:

1 1 1 1 1 101 1 1 101000 00000000 00000000
10000000 00000000 00000000 00000000

10000000 00000000 00000000 00000000

(value)
(MASK)

(value & MASK)

Because both left bits are 1s, the result of the expression is nonzero (true) and a va lue of 1

is printed. Figure 1 8.6 summarizes the results of combining two bits with the bitwise A N D

operator.

Bit 1

o

1

o

1

Bit 2

o

o

1

1

Bit 1 & Bit 2

o

o

o

1

Fig. 1 8.6 Resu lts of combin ing two bits with the bitwise AND operator (&).

Chapter 1 8 Bits, Characters, Strings and Structures 1 0 1 1

Common Programming Error 18.5

Using the logical AND operator (&&) for the bitwise AND operator (&) and vice versa is a

logic error.

The program of Fig. 18.7 demonstrates the bitwise A N D operator, the bitwise inclu

sive OR operator, the bitwise exclusive OR operator and the bitwise complement operator.

Function displayBits (lines 62-80) prints the unsigned integer values. The output

is shown in Fig. 18.8.

1 II Fig . 1 8 . 7 : f i g 1 8_0 7 . cpp
2 II Us ing the bitwi se AND , bitwi se inc lus ive OR, bi twi se
3 II exc lus ive OR and bitwi se complement operators.
4 # inc lude < iostream>
5
6 using std : : cout ;
7 using std : : c in;
8
9 # inc lude < iomanip>

1 0
1 1 us ing s td : : endl ;
1 2 using std : : setw;
1 3
1 4 void di splayBit s (uns igned) ; II prototype
1 5
1 6 int main ()
1 7 {
1 8 uns igned number1 ;
1 9 uns igned number2 ;
20 uns i gned mask ;
21 uns igned setBi t s ;
22
23 II demons t rate bitwi se &
24 number1 = 2 1 7 9 8 7 6 355 ;
25 mask = 1 ;
26 cout « " The result of combining the following\n " ;
27 displayBits (number1) ;
28 displayBit s (mask) ;
29 cout « "us ing the bi twi se AND operator & i s\n " ;
30 di splayBit s (number1 & mask) ;
31
32 II demonstrate bitwi s e
33 number1 = 1 5 ;
34 setBit s = 241 ;
35 cout « " \nThe result of combining the following\n " ;
36 di splayBit s (number1) ;
37 displayBit s (setBi t s) ;
38 cout « "us ing the bitwi se inclus ive OR operator I i s\n " ;
39 displayBit s (number1 I setBit s) ;
40

Fig. 1 8.7 Bitwise AND, bitwise inclusive-OR, bitwise exclus ive-OR and bitwise
complement operators . (Part 1 of 2 .)

1 0 1 2 Bits, Characters, Strings and Structures Chapter 1 8

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

II demonstrate bi twi se exc lus ive OR
nwnber 1 = 1 3 9 ;
nwnber2 = 1 9 9 ;

cout « " \nThe result of combining the fo11owing \ n " ;
disp1ayBits (nwnber1) ;
d i sp1ayBits (nwnber2) ;
cout « "us ing the bitwi se exc lus ive OR operator A i s \n " ;
di sp1ayBi t s (nwnber1 A nwnber2) ;

II demonstrate bitwi se complement
nwnber1 = 2 1 8 4 5 ;
cout « "\nThe one ' s complement o f \ n " ;
disp1ayBits (nwnber1) ;
cout « " i s" « end1 ;
disp1ayBits (-nwnber1) ;

return 0 ;

II end main

II d i splay bits o f an uns igned integer value
void di sp1ayBi t s (uns igned value)
{

const int SHIFT = 8 * s i zeof (uns igned) - 1 ;

const uns igned MASK 1 « SHIFT ;

cout « setw (1 0 « value « " "i

for (unsigned i 1 ; i < = SHIFT + 1 ; i + +) {
cout « (value & MASK ? ' 1 ' : ' 0 ') ;

value « = 1 ; II shi ft value left by 1

i f (i % 8 0
cout « ' ' ;

} II end for

cout « end1 ;

II output a space after 8 bit s

II end funct i on disp1ayBits

Fig.18.7 Bitwise AND, bitwise inclusive-OR, bitwise exclusive-OR and bitwise
complement operators. (Part 2 of 2.)

In Fig. l8.7, line 24 assigns 217 987 6355 (10000001 11101110 01000110

00000011) to variable number1, and line 25 assigns 1 (00000000 00000000

00000000 00000001) to variable mask. When mask and number1 are combined

using the bitwise AND operator (&) in the expression number1 & mask (line 30), the result

is 00000000 00000000 00000000 00000001. All the bits except the low-order bit in

variable number1 are "masked off' (hidden) by "ANDing" with constant MASK.
The bitwise inclusive-OR operator is used to set specific bits to I in an operand. In

Fig. 18.7, line 33 assigns 15 (00000000 00000000 00000000 00001111) to variable

number1, and line 34 assigns 241 (00000000 00000000 00000000 11110001) to

Chapter 18 Bits, Characters, Strings and Structures

The result of combining the following
2 17 9 8 7 6 3 5 5 = 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1

1 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
us ing the bi twi s e AND operator & i s

1 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

The result of combining the following
15 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

2 4 1 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1
us ing the bitwi s e inclus ive OR operator I i s

2 5 5 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

The result o f combining the following
1 3 9 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1
1 9 9 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1

us ing the bitwi se exclus ive OR operator A i s
7 6 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0

The one ' s complement o f
2 1 8 4 5 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

i s
4 2 9 4 9 4 5 4 5 0 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Fig. 18.8 Sample output for the program of Fig. 18.7.

1013

variable setBits. When number1 and setBits are combined using the bitwise OR

operator in the expression number1 I setBi t s (line 39), the result is 255 (00000000

00000000 00000000 11111111). F igure 18.9 summarizes the results of combining

two bits with the b itwise inclusive-OR operator.

. Common Programming Error 18.6

rlrI Using the logical OR operator (/ /) for the bitwise OR operator (/) and vice versa is a logic
� error.

The bitwise exclusive OR operator (A) sets each bit in the result to 1 if exactly one of

the corresponding bits in its two operands is l . In Fig. 18.7, lines 42-43 assign variables

number1 and number2 the values 139 (00000000 00000000 00000000

10001011) and 199 (00000000 00000000 00000000 11000111), respectively.

When these variables are combined with the exclusive-OR operator in the expression

number1 A number2 (line 48), the result is 00000000 00000000 00000000

01001100. Figure 18.10 summarizes the results of combining two bits with the bitwise

exclusive-OR operator.

Bit 1

o

1

o

1

Bit 2

o

o

1

1

Bit 1 I Bit 2

o

1

1

1

Fig. 1 8.9 Combining two bits with the bitwise inclusive-OR operator (I).

1 0 1 4

Bit 1

o

1

o

1

Bits, Characters, Strings and Structures

Bit 2

o

o

1

1

Bit 1 .. Bit 2

o

1

1

o

Chapter 1 8

Fig. 18.10 Combining two bits with the bitwise exclusive-OR operator (A).

The bitwise complement operator (-) sets all 1 bits in its operand to 0 in the result and

sets all 0 bits to 1 in the result-otherwise referred to as "taking the one's complement of

the value." In Fig. 18.7, line 51 assigns variable number1 the value 21845 (00000000

00000000 01010101 01010101). When the expression -number1 evaluates, the

result is (11111111 11111111 10101010 10101010).

Figure 18.11 demonstrates the left-shift operator (< <) and the right-shift operator

(»). Function displayBi ts (lines 38-56) prints the unsigned integer values.

1 I I Fig . lS . l l : fig1S_1 1 . cpp

2 I I Us ing the bitwi se shi ft operators .
3 #inc lude < i ostream>
4
5 using std : : cout ;
6 us ing std : : cin;
7 using std : : endl ;
8
9 # inc lude < iomanip>

10

1 1 using std : : setw;
12

1 3 void di splayBi t s (uns igned) ; I I prototype
14
1 5 int main ()
1 6 {
1 7 uns igned number1 = 9 6 0 ;
18
19 I I demonstrate bitwi se left shi ft
20 cout « "The result of left shi ft ing \ n" ;
21 displayBi t s (number1) ;
22 cout « "S bit pos it ions us ing the l e f t "
23 « "shi ft operator i s \n" ;
24 d i splayBi t s (number1 « S) ;
25
26 I I demonstrate bitwi se right shi ft
27 cout « "\nThe result of right shi fting \ n" ;
28 di splayBi t s (number1) ;
29 cout « "S bit pos i t ions us ing the right II

30 « "shi f t operator i s \n" ;
31 d i splayBi t s (number1 » S) ;

Fig. 18. 1 1 Bitwise shift operators. (Part 1 of 2.)

Chapter 1 8 Bits, Characters, Strings and Structures

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

return 0 ;

I I end main

II display bits o f an unsigned integer value
void disp1ayB i t s (uns igned value)

{
const int SHIFT = 8 * si zeof (uns igned) - 1 ;
const uns igned MASK 1 « SHIFT ;

cout « setw (1 0 « value « " " .
,

for (uns i gned i 1 ; i < = SHIFT + 1 ; i + +) {
cout « (value & MASK ? ' 1 ' : ' 0 ') ;
value « = 1 ; I I shi ft value left by 1

i f (i % 8 o
cout « ' ' ;

} I I end for

cout « end1 ;

II output a space after 8 b i t s

} I I end funct i on di sp1ayBits

The result of left shifting
9 6 0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

8 bit pos i t i ons us ing the left shi ft operator i s
2 4 5 7 6 0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The result o f right shi ft ing
9 6 0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

8 b i t pos i t i ons using the right shi ft operator i s
3 z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Fig. 1 8. 1 1 Bitwise sh ift operators . (Part 2 o f 2 .)

1 0 1 5

The left-shift operator (< <) shifts the bits of its left operand to the left by the number

of bits specified in its right operand. Bits vacated to the right are replaced with Os; bits

shifted off the left are lost. In the program of Fig. 18. I I, line 17 assigns variable numberl

the value 960 (00000000 00000000 00000011 11000000). The result of left

shifting variable number1 8 bits in the expression numberl « 8 (line 24) is 245760

(00000000 00000011 11000000 00000000).

The right-shift operator (> » shifts the bits of its left operand to the right by the number

of bits specified in its right operand. Performing a right shift on an unsigned integer

causes the vacated bits at the left to be replaced by Os; bits shifted off the right are lost. In

the program of Fig. 18.11, the result of right-shifting numberl in the expression

numberl» 8 (line 31) is 3 (00000000 00000000 00000000 00000011).

Common Programming Error 18.7

The result of shifting a value is undefined if the right operand is negative or if the right op
erand is greater than or equal to the number of bits in which the left operand is stored.

1 0 1 6 Bits, Characters, Strings and Structures Chapter 1 8

fI Portability Tip 18.4

The result of right-shifting a signed value is machine dependent. Some machines jill with ze
ros and others use the sign bit.

Each bitwise operator (except the bitwise complement operator) has a corresponding

assignment operator. These bitwise assignment operators are shown in Fig. 18.1 2 and are

used in a similar manner to the arithmetic assignment operators introduced in Chapter 2.

Figure 18.13 shows the precedence and associativity of the operators introduced up to

this point in the text. They are shown top to bottom in decreasing order of precedence.

Bitwise assignment operators

&= B i twise AND assignment operator.

I = B itwise inc lusive-OR assignment operator.

"= B itwise exclusive-OR assignment operator.

« = Left-shift assignment operator.

» = Right-shift with sign extension assignment operator.

Fig. 1 8.1 2 Bitwise assignment operators .

Operators Associativity

: : (unary ; right to left) : : (b inary ; left to right) left to right

() [] - > ++ left to right

static cast < - type > ()

++ + de lete s i zeof r ight to left
* & new

* / % left to right

+ left to right

« » left to right

< <= > >= left to right

!= left to right

& left to right

" left to right

left to right

&& left to right

II left to right

? : right to left

+= *= /= %= right to left

&= 1= "= « = » =
left to right

Fig. 1 8.1 3 Operator precedence and associativity.

Type

highest

unary

u nary

mul t ip l icative

additive

shift ing

re lat ional

equali ty

bitwise AND

bitwise XOR

bitwise OR

logical AND

logical OR

condit ional

assignment

comma

Chapter 1 8 Bits, Characters, Strings and Structures 1 0 1 7

18.8 Bit Fields

c++ provides the ability to specify the number of bits in which an integra l type or enum

type member of a c lass or a structure is stored. Such a member is referred to as a bit field.

Bit fields enable better memory utilization by storing data in the minimum number of bits

required. Bit field members must be declared as an integral or enum data type.

Performance Tip 18.2

Bit fields help conserve storage.

Consider the fol lowing structure definition:

struct B itCard {
uns igned face : 4 ;
uns igned suit : 2 ;
uns igned color : 1 ;

} ; II end s t ruct BitCard

The definition contains three unsigned bit fieldS-face, sui t and color-used to

represent a card from a deck of 52 cards. A bit field is declared by fol lowing an integral

type or enum type member with a colon (:) and an integer constant representing the width

of the field (i.e., the number of bits in which the member is stored). The width must be an

integer constant between zero and the total number of bits used to store an int on your

system.

The preceding structure definition indicates that member face is stored in 4 bits,

member sui t is stored in 2 bits and member color is stored in I bit. The number of bits

is based on the desired range of values for each structure member. Member face stores

values between 0 (Ace) and 1 2 (King)--4 bits can store a value between 0 and 15. Member

sui t stores values between 0 and 3 (0 = Diamonds, 1 = Hearts, 2 = C lubs, 3 = Spades)-

2 bits can store a value between 0 and 3. Final ly, member color stores either 0 (Red) or

1 (BJack)- l bit can store either 0 or 1 .

The program in Fig. 18.14 (output shown in Fig. 18.15) creates array deck containing

52 Bi tCard structures (line 25). Function fillDeck inserts the 5 2 cards in the deck

array, and function deal prints the 52 cards. Notice that bit field members of structures are

accessed exactly as any other structure member is (lines 38-40 and 51-56). The member

color is included as a means of indicating the card color on a system that a l lows color

displays.

1 II Fig . 1 8 . 1 4 : f ig 1 8 14 . cpp
2 II Represent ing cards with bit f ields in a struct .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 # inc lude < iomanip>

Fig. 18.14 Bit f ields used to store a deck of cards . (Part 1 of 2 .)

1018 Bits, Characters, Strings and Structures Chapter 18

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

using std : : setw ;

II BitCard structure definition with bit f i e lds
struct BitCard {

uns igned face : 4 ;
uns igned suit : 2 ;
uns igned color : 1 ;

II 4 bi t s ; 0-1 5
II 2 bit s ; 0-3
II 1 bit ; 0 - 1

} ; II end struct Bi tBard

void f i 1 1Deck(Bi tCard * const) ;
void dea1(const BitCard * const) ;

int main ()

(
BitCard deck [5 2] ;

f i 1 1Deck(deck) ;
dea1(deck) ;

return 0 ;

/1 end main

1/ init ialize Bi tCards
void f i 1 1Deck(BitCard * const wDeck
{

for (int i = 0 ; i < = 5 1 ; i++) {
wDeck [i] . face = i % 13 ;
wDeck [i] • suit = i I 13 ;
wDeck [i] . co1or = i I 2 6 ;

} II end for

} II end funct ion f i 1 1Deck

II prototype
1/ prototype

II output cards in two column format ; cards 0-2 5 subscripted
II with kl (column 1) ; cards 2 6-5 1 subscripted k2 (column 2)

void dea1(const BitCard * const wDeck)

{
for (int kl = 0 , k2 = kl + 2 6 ; kl < = 2 5 ; kl++ , k2++)

cout « " Card : " « setw(3) « wDeck [kl] . face
« " Sui t : " « setw(2) « wDeck [kl] . suit
« " Co1or : " « setw(2) « wDeck [kl] . co1or
« " " « " Card : " « setw { 3) « wDeck [k2] . face

« " Suit : " « setw { 2) « wDeck [k2] . suit

« " Co1or : " « setw(2) « wDeck [k2] . co1or

« end1 ;

} II end for

} II end funct ion deal

Fig. 18. 14 Bit f ields used to store a deck of cards, (Part 2 of 2,)

Chapter 1 8 Bits, Characters, Strings and Structures 1 0 1 9

Card : 0 Sui t : 0 Color : 0 Card : 0 Suit : 2 Color : 1
Card : 1 Suit : 0 Color : 0 Card : 1 Suit : 2 Color : 1
Card : 2 Suit : 0 Color : 0 Card : 2 Suit : 2 Color : 1
Card : 3 Suit : 0 Color : 0 Card : 3 Suit : 2 Color : 1
Card : , Suit : 0 Color : 0 Card : , Suit : 2 Color : 1
Card : 5 Suit : 0 Color : 0 Card : 5 Suit : 2 Color : 1
Card : 6 Suit : 0 Color : 0 Card : 6 Suit : 2 Color : 1
Card : 7 Suit : 0 Color : 0 Card : 7 Suit : 2 Color : 1
Card : 8 Suit : 0 Color : 0 Card : 8 Sui t : 2 Color : 1
Card : 9 Sui t : 0 Color : 0 Card : 9 Suit : 2 Color : 1
Card : 1 0 Suit : 0 Color : 0 Card : 1 0 Sui t : 2 Color : 1
Card : 1 1 Sui t : 0 Color : 0 Card : 1 1 Suit : 2 Color : 1
Card : 12 Sui t : 0 Color : 0 Card : 12 Suit : 2 Color : 1
Card : 0 Suit : 1 Color : 0 Card : 0 Sui t : 3 Color : 1
Card : 1 Suit : 1 Color : 0 Card : 1 Suit : 3 Color : 1
Card : 2 Sui t : 1 Color : 0 Card : 2 Suit : 3 Color : 1
Card : 3 Sui t : 1 Color : 0 Card : 3 Suit : 3 Color : 1
Card : , Sui t : 1 Color : 0 Card : , Suit : 3 Color : 1
Card : 5 Suit : 1 Color : 0 Card : 5 Suit : 3 Color : 1
Card : 6 Suit : 1 Color : 0 Card : 6 Suit : 3 Color : 1
Card : 7 Sui t : 1 Color : 0 Card : 7 Suit : 3 Color : 1
Card : 8 Suit : 1 Color : 0 Card : 8 Suit : 3 Color : 1
Card : 9 Suit : 1 Color : 0 Card : 9 Suit : 3 Color : 1
Card : 1 0 Sui t : 1 Color : 0 Card : 10 Suit : 3 Color : 1
Card : 1 1 Sui t : 1 Color : 0 Card : 1 1 Sui t : 3 Color : 1
Card : 12 Suit : 1 Color : 0 Card : 12 Suit : 3 Color : 1

Fig. 18.15 Sample output for the program of Fig. 1 8. 1 4.

It is possible to specify an unnamed bit field, in which case the field is used as padding

in the structure. For example, the structure definition uses an unnamed 3-bit field as pad

ding-nothing can be stored in those three bits. Memberb is stored in another storage unit.

struct Example {
uns igned a 13 ;
uns igned 3 ;
uns igned b 4 ;

} ; I I end st ruct Example

An unnamed bit field with a zero width is used to align the next bit field on a new

storage-unit boundary. For example, the structure definition

struct Example {
uns igned a 13 ;
uns igned 0 ;
uns igned b 4 ;

} ; I I end st ruct Examp le

uses an unnamed O-bit field to skip the remaining bits (as many as there are) of the storage

unit in which a is stored and align b on the next storage-unit boundary.

1 020 Bits, Characters, Strings and Structures Chapter 1 8

� Portability Tip 18.5

Bit-fieLd manipuLations are machine dependent. For exampLe, some computers aLLow bit
fieLds to cross word boundaries, whereas others do not.

Common Programming Error 18.8

Attempting to access individuaL bits of a bit fieLd as if they were elements of an array is a
syntax error. Bit fieLds are not "arrays of bits . ..

Common Programming Error 18.9

Attempting to take the address of a bit fieLd (the &: operator may not be used with bit fieLds
because they do not have addresses) is a syntax error.

Performance Tip 18.3

ALthough bit fieLds save space, using them can cause the compiler to generate sLower-exe
cuting machine-Language code. This occurs because it takes extra machine-language op
erations to access only portions of an addressable storage unit. This is one of many examples
of the kinds of space-time trade-offs that occur in computer science.

18.9 Character-Handling Library

Most data are entered into computers as characters-including letters, digits and various

special symbols. In this section, we discuss C++'s capabilities for examining and manipu

lating individual characters. In the remainder of the chapter, we continue the discussion of

character-string manipulation that we began in Chapter 5.

The character-handling library includes several functions that perform useful tests and

manipulations of character data. Each function receives a character-represented as an

int-or EOF as an argument. Characters are often manipulated as integers. Remember

that EOF normally has the value -1 and that some hardware architectures do not allow neg

ative values to be stored in char variables. Therefore, the character-handling functions

manipulate characters as integers. Figure 18.16 summarizes the functions of the character

handling library. When using functions from the character-handling library, be sure to

include the <cc type> header file.

Prototype Description

int i sdigit (int c Returns true if c is a d ig i t and false otherwise .

int i s alpha (int c Returns true if c is a letter and false otherw i se .

int i salnum (int c Returns true if c is a d ig i t or a letter and f a l se otherwise .

int i sxdigit (int c) Returns true i f c i s a hexadecimal d ig i t character and false

otherwise . (See Appendix C , Number Systems, for a detai led

explanation of binary numbers, octal n umbers, decimal num

bers and hexadecimal numbers .)

i n t i s l ower (int c Returns true if c is a lowercase letter and f a l s e otherwise .

int i supper (int c Returns true if c is an uppercase letter; false otherwise .

Fig. 18.16 Character-handl ing l ibrary functions. (Part 1 of 2.)

Chapter 1 8

Prototype

int tolower { int c

int toupper { int c

int i s space { int c

int i scntrl { int c

int i spunct { int c

int i sprint { int c

int i sgraph { int c

Bits, Characters, Strings and Structures 1 02 1

Description

If c is an uppercase letter, tolower returns c as a lowercase

letter. Otherwise , tolower returns the argument u nchanged.

I f c i s a lowercase letter, toupper returns c as an u ppercase

letter. Otherwise, toupper returns the argument u nchanged.

Returns t rue i f c i s a whitespace character-newl ine

(, \n ') , space (, ,) , form feed (, \ f ,) , carriage return

(, \ r ') , horizontal tab (, \ t ,) , or vert ical tab (, \ v ')-and

false otherwi se

Returns t rue if c i s a control character and false other

wise .

Returns true i f c i s a print ing character other than a space, a

digit , or a letter and false otherwi se .

Returns t rue value i f c i s a print ing character inc lud ing space

(, ,) and false otherwise .

Returns true i f c i s a print ing character other than space

(, ,) and false otherwise .

Fig. 1 8.1 6 Character-handl ing l ibrary functions . (Part 2 of 2 .)

Figure 18.17 demonstrates functions i sdi gi t, i sa lpha, i sa lnwn and i sx

di gi t . Function isdigit determines whether its argument is a digit (0-9). Function

isalpha determines whether its argument is an uppercase letter (A- Z) or a lowercase

letter (a-z). Function isalnum determines whether its argument is an uppercase letter, a

lowercase letter or a digit. Function isxdigi t determines whether its argument is a hexa

decimal digit (A-F, a-f , 0-9).

1 I I Fig . 1 8 . 17 : f ig1 8_17 . cpp
2 I I Us ing funct ions i sdigit , i salpha , i salnum and i sxdigit .

3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 # inc lude < cc type > I I character-handl ing funct ion prototypes
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6

int

{
main {)

cout «
«
«
«
«

" According
(i sdigit(
II digi t \ n "

i sdigit(
II digi t \ n " ;

to i sdigit : \n "
' 8 ') ? " 8 i s a " " 8 i s not a "

' # ' ? " # i s a" " # i s not a "

Fig. 1 8. 1 7 Character-handl ing functions i sd i g i t , i s a lpha, i s a l num and
i sxdi g i t . (Part 1 of 3 .)

1 022 Bits, Characters, Strings and Structures

17
18 cout « " \nAccording to isalpha : \n"
19 « { i salpha { ' A ' ? "A i s a "
20 « II letter \n"
2 1 « i salpha { ' b ' ? li b i s a "
22 « II letter \ n "
23 « i salpha { ' & ' ? " & i s a "
24 « II letter \ n "
25 « isalpha { ' 4 ' ? "4 i s a "
26 « II letter \ n " ;
27
28 cout « " \nAc cording to i salnum : \ n "
29 « (i salnum { ' A ') ? "A i s a "
30 « II digit or a letter \ n "
31 « i salnum { ' 8 ') ? "8 is a "
32 « II digit or a letter \ n "
33 « i salnum { ' # ') ? " # i s a "
34 « II digit or a letter \n" ;
35
36 cout « " \nAc cording to i sxdigit : \n "
37 « i sxdigit { ' F ') ? " F
38 « II hexadec imal digi t \ n "
39 « i sxdigit { ' J ') ? II J
40 « II hexadec imal digi t \ n "
41 « i sxdigit { ' 7 ') ? "7
42 « II hexadec imal digi t \ n "
43 « i sxdigit { ' $,) ? " $
44 « II hexadec imal digi t \ n "
45 « i sxdigit { ' f ') ?
46 « II hexadec imal digit "
47
48 return 0 ;
49
50 I I end main

According to i sdigit :
8 i s a digit
i s Dot a digit

According to isalpha :
A i s a letter

b i s a letter
& i s Dot a letter
4 i s not a letter

Ac cording to i salnum :
A i s a digit or a letter
8 is a digit or a letter
i s Dot a digit or a letter

II f
«

i s a "

i s a "

i s a "

i s a "

i s a "

endl ;

Chapter 1 8

" A i s not a "

li b i s not a "

" & i s not a "

" 4 i s not a "

" A i s not a "

" 8 i s not a "

" # i s not a "

" F i s not a "

II J i s not a "

"7 is not a "

" $ i s not a "

II f i s not a "

(continued next page)

Fig. 1 8. 1 7 Character-handl ing functions i sdigi t, i salpha, i s a l num and
i sxdi g i t , (Part 2 of 3,)

Chapter 1 8

According to i sxdigit :
F is a hexadec imal digit
J i s not a hexadec imal digit
7 i s a hexadecimal digit
$ i s not a hexadec imal digit
f i s a hexadec imal digit

Bits, Characters, Strings and Structures

Fig. 1 8. 1 7 Character-handl ing functions i sdigi t, i salpha, i s a l num and
i sxdi gi t . (Part 3 of 3 .)

1 023

Figure 18.17 uses the conditional operator (? :) with each function to determine

whether the string " is a " or the string " is not a " should be printed in the output for

each character tested. For example, line 13 indicates that if ' 8 ' is a digit-i.e., if

isdigit returns a true (nonzero) va lue-the string " 8 is a " is printed. If ' 8 ' is not a

digit (i.e. , if isdigi t returns 0), the string " 8 is not a " is printed.

The program of Fig. 18.18 demonstrates functions i sl ower, i supper, tol ower

and t oupper. Function islower determines whether its argument is a lowercase letter

(a- z). Function isupper determines whether its argument is an uppercase letter (A- Z).

Function tolower converts an uppercase letter to a lowercase letter and returns the low

ercase letter. If the argument is not an uppercase letter, tolower returns the argument

value. Function toupper converts a lowercase letter to an uppercase letter and returns the

uppercase letter. If the argument is not a lowercase letter, toupper returns the argument

value.

1 I I Fig . 1 8 . 1 8 : fig18_1 8 . cpp
2 II Us ing funct ions i s l ower , i supper , tolower and t oupper .
3 # include < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 # inc lude < cctype> II character-handl ing funct i on prototypes
9

10
11
1 2
13
14
15
16
17
1 8
1 9
20
21

int

{
main ()

cout «
«
«
«
«
«
«
«
«

" According
(i s lower (
" l owercase

i s lower (
II lowercase

i s lower (
II lowercase

i s l ower (
" l owercase

to i s l ower : \n "
' p ') ? " p i s a " " p i s not a "

letter \n"
' P ') ? " P i s a " " P i s not a "

letter\n"
' 5 ') ? " 5 i s a " li S i s not a "

letter\ n "
' ! •) ? " ! i s a " I I ! i s not a "

letter\n" ;

Fig. 1 8.1 8 Character-handl ing functions i s lower, i supper, t o l ower and
toupper . (Part 1 of 2 .)

1 024 Bits, Characters, Strings and Structures

22 cout « " \nAccording to i supper : \n"
23 « (i supper (' D ') ? " D i s an "
24 « " uppercase letter \ n "
25 « i supper (' d ') ? " d i s an "
26 « " uppercase letter \ n "
27 « i supper (' 8 ') ? " 8 i s an "
28 « " uppercase letter \ n "
29 « i supper (' $,) ? " $ i s an "
30 « " uppercase letter\ n " ;
31
32 cout « " \nu converted to uppercase i s
33 « stat i c -cast < char >(toupper (
34 « " \ n7 converted to
35 « stat ic cast < char -

36 « " \ n$ converted to
37 « stat i c cast < char -

38 « " \nL converted to
39 « stat ic cast < char -

40
41 return 0 ;
42
43 } I I end main

According to i s lower :
p i s a lowercase letter
P is not a lowercase letter
5 is not a lowercase letter

is not a lowercase letter

According to i supper :
D i s a n uppercase letter
d i s not an uppercase letter
8 i s not an uppercase letter
$ i s not an uppercase letter

u converted to uppercase is U
7 converted to uppercase is 7

$ converted to uppercase i s $
L converted to lowercase i s 1

uppercase i s
> (toupper (
uppercase i s
> (toupper (
lowercase i s
> (tolower (

" D i s

" d i s

" 8 i s

" $ i s

"
' u '

"
' 7 '

"
' $,

"
' L '

not

not

not

not

«

an II

an "

an "

an "

Chapter 1 8

endl ;

Fig. 18.18 Character-handl ing functions i s l ower, i supper, t o l ower and
t oupper. (Part 2 of 2 .)

Figure 18.19 demonstrates functions i sspace, i s cn trl, i spunct, i sprint

and i sgraph. Function isspace determines whether its argument is a whitespace char

acter, such as space (' '), form feed (' \ f '), newline (, \n '), carriage return (, \ r '), hor

izontal tab (' \ t ') or vertical tab (' \ v '). Function iscntrl determines whether its

argument is a contro l character such as horizonta l tab, vertical tab, form feed, a lert (' \ a '),

backspace (, \b '), carriage return or newline. Function ispunct determines whether its

argument is a printing character other than a space, digit or letter, such as $, #, (,) , [,] ,
{ , } , ; , : or %. Function isprint determines whether its argument is a character that can

Chapter 1 8 Bits, Characters, Strings and Structures 1 025

be displayed on the screen (including the space character). Function isgraph tests for the

same characters as isprint; however, the space character is not included.

int main ()
{

cout «
«
«
«
«
«
«

cout «
«
«
«
«

cout « " \nAc cording to i spunct : \n "
« (i spunct (, . ,) ? " . i s a " I I • i s not a " , , ,
« II punctuat ion character \ n "
« i spunct (' Y ') ? lI y i s a" " Y i s not a "
« II punctuat ion character \ n "
« i spunct (' # ') ? " # i s a" " # i s not a "
« " punctuation character \ n " ;

cout « " \nAc cording to i sprint : \n "
« (i sprint (, $ ') ? " $ i s a " : " $ i s not a "
« II print ing character\nAlert II

« i sprint (' \ a ') ? lI i s a " : " i s not a "
« II print ing character \ n " ;

cout « " \nAc cording to isgraph : \ n "
« (i sgraph (' Q ') ? " Q i s a " : " Q i s not a ")
« II print ing character other than a spac e \ nSpace II

« i sgraph (, ,) ? " i s a " : " i s not a ")
« II print ing character other than a space II « endl ;

Fig. 1 8. 1 9 Character-handling functions i s space, i s cnt r l , i spunc t,
i sprint and i sgraph. (Part 1 of 2 .)

1 026 Bits, Characters, Strings and Structures

According to i s space :
Newl ine i s a whitespace character
Hori z ontal tab is a whitespace character
% is not a whitespace character

According to i scntrl :
Newl ine i s a control character
$ is not a control character

According to i spunct :
i s a punctuat ion character

Y is not a punctuat ion character
is a punctuat ion character

According to i sprint :
$ i s a print ing character
Alert is not a print ing character

According to i sgraph :
Q i s a print ing character other than a space
Space is not a print ing character other than a space

Chapter 1 8

Fig. 18.19 Character-handl ing functions i s space, i s c nt r l, i spunc t,
i sprint and i s graph. (Part 2 of 2.)

18. 10 String-Conversion Functions

In Chapter S , we discussed several of C++'s most popular character-string-manipulation

functions. In the next several sections, we cover the remaining functions, including func

tions for converting strings to numeric values, functions for searching strings and functions

for manipulating, comparing and searching blocks of memory.

This section presents the string-conversion functions from the general-utilities library

<cs tdl ib>. These functions convert strings of characters to integer and f loating-point

values. Figure 18. 20 summarizes the string-conversion functions. Note the use of const to

declare variab le nPtr in the function headers (read from right to left as "nptr is a pointer

to a character constant"). When using functions from the genera l-uti lities library, be sure to

include the <cs t dl ib> header fi le .

Prototype

double atof (const char *nptr

int atoi (const char *nptr)

long atol (const char *nptr)

DescripHon

Converts the string nPt r to double.

Converts the stri ng nPtr to int o

Converts the string nPt r t o long int o

double strtod (const char *npt r , char * * endPtr)

Converts the string nPtr to double.

Fig. 1 8.20 Str ing-conversion functions of the general-uti l it ies l ibrary. (Part 1 of 2 .)

Chapter 1 8 Bits, Characters, Strings and Structures 1 027

Prototype Description

long strtol (const char *nPt r , char * * endPtr, int base)

Converts the string nPtr to l ong.

uns igned long strtoul (const char *nPtr , char * * endPtr , int base)

Converts the string nPtr to uns i gned l ong.

Fig. 1 8.20 String-conversion functions of the general-utilities library . (Part 2 of 2 .)

Function a t of (Fig. \8.21, line 1 2) converts its argument-a string that represents a

floating-point number-to a double value. The function returns the double value. If the

string cannot be converted-for example, if the first character of the string is not a digit

function atof returns zero.

Function a t oi (Fig. \ 8. 2 2 , line 1 2) converts its argument-a string of digits that rep

resents an integer-to an int value. The function returns the int value. If the string

cannot be converted, function atoi returns zero .

1 I I Fig . 1 8 . 2 1 : f i g 1 8_2 1 . cpp
2 I I Using atof .
3 #inc lude < iostream>
4
5 using std : : cout ;
6 us ing std : : endl ;
7
8 #include < c s tdl ib> I I atof prototype
9

1 0 int main ()
1 1 {
1 2 double d = atof (" 9 9 . 0 ") ;
1 3
1 4 cout « " The string ' " 9 9 . 0 ' '' converted t o double i s "
1 5 « d « " 'nThe converted value divided by 2 i s "
1 6 « d I 2 . 0 « endl ;
1 7
1 8 return 0 ;
1 9
20 I I end mai n

The string " 9 9 . 0 " converted to double i s 9 9
The converted value divided by 2 i s 4 9 . 5

Fig. 18.21 String-conversion function at o f .

1 I I Fig . 1 8 . 2 2 : f i g 1 8_2 2 . cpp
2 I I Us ing atoi .
3 # inc lude < iostream>

Fig. 18.22 String-conversion function atoi . (Part 1 of 2 .)

1 028 Bits, Characters, Strings and Structures

4
5 u s i ng std : : cout ;
6 using std : : endl ;
7
8 # include < c stdlib> I I atoi prototype
9

10 int main ()
11 {
12 int i = atoi (" 2 5 9 3 ") ;
13

Chapter 1 8

14 cout « n The string \ " 2 5 9 3 \ " converted to int i s " « i
15 « " \nThe converted value minus 5 9 3 i s n « i - 5 9 3
16 « endl ;
1 7
18 return 0 ;
19
20 I I end main

The string " 2 5 9 3 " converted to int is 2 5 9 3
The converted value minus 5 9 3 i s 2 0 0 0

Fig. 18.22 String-conversion function atoi . (Part 2 of 2.)

Function a t ol (Fig. 18. 23, line 1 2) converts its argument-a string of digits repre

senting a long integer-to a long value. The function returns the long value. If the string

cannot be converted, function atol returns zero. If int and long are both stored in 4

bytes, function atoi and function atol work identica l ly.

1 I I Fig . 1 8 . 2 3 : f i g 1 8_2 3 . cpp
2 I I Us ing atol .
3 # include < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 # inc lude < c stdl ib> I I atol prototype
9

10 int main ()
11 {
1 2 l ong x = atol (" 1 0 0 0 0 0 0 ") ;
13
14 cout « " The string \ " 1 0 0 0 0 0 0 \ " converted to long i s " « x

15 « " \nThe converted value divided by 2 i s " « x I 2

16 « endl ;
1 7
18 return 0 ;
19
20 } I I end main

The stri ng " 1 0 0 0 0 0 0 " converted to long int is 1 0 0 0 0 0 0
The converted value divided by 2 i s 5 0 0 0 0 0

Fig. 18.23 String-conversion function atol .

Chapter 1 8 Bits, Characters, Strings and Structures 1 029

Function s t rt od (Fig. 18. 24) converts a sequence of characters representing a

floating-point value to double . Function strtod receives two arguments-a string

(char *) and a pointer to a string (i.e., a char * *) . The string contains the character

sequence to be converted to double. The second argument enables strtod to modify a

char * pointer in the calling function, such that the pointer points to the location of the

f irst character after the converted portion of the string. Line 16 indicates that d is assigned

the double value converted from string and that &stringPtr is assigned the loca

tion of the first character after the converted value (5 1 . 2) in s t ring.

Function s trtol (Fig. 18.25) converts to long a sequence of characters representing

an integer. The function receives three arguments-a string (char *) , a pointer to a string

and an integer. The string contains the character sequence to convert. The second argument

is assigned the location of the first character after the converted portion of the string. The

integer specifies the base of the value being converted. Line 16 indicates that x is assigned

the long value converted from string. The second argument, &remainderPtr, is

assigned the remainder of string after the conversion. Using NULL for the second argu

ment causes the remainder of the string to be ignored. The third argument, 0, indicates that

the value to be converted can be in octal (base 8), decimal (base 10) or hexadecimal (base 16).

In a call to function s t rtol, the base can be specif ied as zero or as any value between

2 and 36. (See Appendix C for a detai led explanation of the octal, decimal, hexadecimal

and binary number systems). Numeric representations of integers from base 11 to base 36

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24

II Fig . 1 8 . 2 4 : f ig18_2 4 . cpp
II Using strtod .
inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

inc lude < c stdl ib> II st rtod prototype

int main ()
{

double d ;
const char * s tring1
char * s tr ingPtr ;

" 5 1 . 2% are admitted" ;

d = strtod (string1 , & stringPtr) ;

cout « " The string \ " " « string1
« " \ " is converted to the \ ndouble value " « d
« " and the string \ " " « stringPt r « " \ " " « endl ;

return 0 ;

II end main

The string " 5 1 . 2% are admitted" is converted to the
double value 5 1 . 2 and the string " % are admitted"

Fig. 18.24 Str ing-convers ion function s t rtod .

1 030 Bits, Characters, Strings and Structures Chapter 1 8

use the characters A-Z to represent the values 10 to 3 5. For example, hexadecimal values
can consist of the digits 0-9 and the characters A- F. A base- I I integer can consist of the
digits 0-9 and the character A. A base-24 integer can consist of the digits 0-9 and the char
acters A-N. A base-36 integer can consist of the digits 0-9 and the characters A- Z.

Function s trtoul (Fig. 18. 26) converts to uns igned long a sequence of charac

ters representing an uns igned long integer. The function works identically to function

strtol. Line 16 indicates that x is assigned the uns igned long value converted from

string. The second argument, &remainderPtr, is assigned the remainder of string

after the conversion. The third argument, 0, indicates that the value to be converted can be

in octal, decimal or hexadecimal format.

1
2
3
4
5
6
7
8
9

I I F i g . 1 8 . 2 5 : f i g 1 8_2 5 . cpp
I I Using strtol .
inc lude < iostream>

using std : : cout ;
us ing std : : endl ;

#inc lude < c stdl ib> I I strtol prototype

int main ()

{
long x ;
const char * string1
char * remainderpt r ;

" - 12 3 4 5 6 7 abc " ;

x = strtol (string1 , &remainderPtr , 0) ;

10
1 1
12
13
14
1 5
16
17
18
19
20
21
22
23
24
25
26
27

cout « " The original string i s \ " " « st ring1
« " \ " \ nThe converted value i s " «
« " \nThe remainder of the original
« remainderptr
« " \ " \ nThe converted value plus 5 6 7
« x + 5 6 7 « endl ;

return 0 ;

I I end main

The original string is " - 1 2 3 4 5 6 7 abc "
The converted value i s - 12 3 4 5 67
The remainder of the original string is " abc "
The converted value plus 5 6 7 i s - 1 2 3 4 0 0 0

Fig. 18.25 Str ing-convers ion function s t rto l .

1 I I Fig . 1 8 . 2 6 : f ig 1 8_2 6 . cpp
2 I I Us ing strtoul .
3 # inc lude < iost ream>

x
string

i s "

Fig. 18.26 Str ing-convers ion function s t rtou l . (Part 1 of 2 .)

i s \ 11 11

Chapter 1 8 Bits, Characters, Strings and Structures

4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
23
24
25
26
27

using std : : cout ;
us ing std : : endl ;

#inc lude < c stdlib> I I strtoul prototype

int main ()
{

uns igned long x ;
const char * stringl
char * remainderptr ;

" 12 3 4 5 6 7 abc " ;

x = strtoul (stringl , &remainderPt r , 0) ;

cout « " The original string i s , « stringl
« " ' '' 'nThe converted value i s .. « x
« " ' nThe remainder of the original string i s
« remainderptr
« " ' '' 'nThe converted value minus 5 6 7 is ..
« x - 5 6 7 « endl ;

return 0 ;

} I I end main

The original s t ring i s " 12 3 4 5 6 7 abc "
The converted value i s 1 2 3 4 5 6 7
The remainder o f the original string i s " abc "
The converted value minus 5 6 7 i s 1 2 3 4 0 0 0

Fig. 18.26 Str ing-conversion function s t rtou l . (Part 2 o f 2 .)

18. 1 1 Search Functions of the String-Handling Library

\ lI n

1 03 1

This section presents the functions of the string-handling library used t o search strings for

characters and other strings. The functions are summarized in Fig. 18. 27. Note that func

tions strcspn and strspn specify return type si ze_to Type size_t is a type defined

by the standard as the integral type of the value returned by operator s i z eof.

Prototype Description

char * strchr (const char * s , int c)

Locates the fi rst occurrence of character c in string S . If c is found, a pointer to c

in s is returned. Otherwi se, a NULL pointer is returned.

char * strrchr (const char * s , int c)

Searches from the end of string s and locates the last occu rrence of c i n string S . If

c i s found, a pointer to c i n string s i s returned. Otherwise , a NULL pointer is

returned.

Fig. 1 8.27 Search functions of the string-handling library. (Part 1 of 2 .)

1 032 Bits, Characters, Strings and Structures Chapter 1 8

Prototype Description

s i z e t strspn (const char * s 1 , const char * s 2)

Determ i nes and returns the length of the in it ial segment of string s 1 consist ing

on ly of characters contained in s tr ing s2 .

char * st rpbrk (const char * s 1 , const char * s 2)

Locates the fi rst occurrence in string s1 of any character in stri ng s 2 . If a charac

ter from stri ng s2 i s found, a pointer to the character in stri ng s1 is returned. Oth

erwise, a NULL pointer i s returned.

s i z e_t s t rc spn (const char * s 1 , const char * s 2)

Determ ines and returns the length of the in i t ial segment of string s 1 consist ing of

characters not contai ned in stri ng s 2 .

char * strstr (const char * s 1 , const char * s 2)

Locates the fi rst occurrence in stri ng s1 of string s 2 . If the stri ng is found, a

pointer to the string in s 1 is returned. Otherw i se , a NULL pointer i s returned.

Fig. 1 8.27 Search functions of the string-handl ing l ibrary. (Part 2 of 2 .)

Portability Tip 18.6

Type si ze_ t is a syslem-dependent synonym for either type unsigned l ong or type un
signed into

Function strchr searches for the first occurrence of a character in a string. If the

character is found, strchr returns a pointer to the character in the string; otherwise,

strchr returns NULL. The program of Fig. 18 .28 uses s trchr (lines 16 and 23) to

search for the first occurrences of ' a ' and ' z ' in the string " Thi s i s a te st " .

1 I I Fig . 1 8 . 2 8 : f i g 1 8_2 8 . cpp
2 I I Us ing strchr .
3 #inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 # inc lude <cstring> I I strchr prototype
9

1 0 int main ()
1 1 {
1 2 const char * st ring1 = " Thi s i s a test " ;
1 3 char character1 ' a ' ;
1 4 char character2 = ' z ' ;
1 5
1 6 i f strchr (string1 , character1) ! = NULL)
1 7 cout « ' \ " « character1 « " ' was found in \ " "
1 8 « string1 « " \ " . \n " ;
1 9 e l s e

Fig. 18.28 String-search function st rchr . (Part 1 of 2 .)

Chapter 1 8 Bits, Characters, Strings and Structures 1 033

20 cout « • \ ' I « charac ter1 « n , was not found in , II "

21 « st ring1 « " \ " . \n n ;
22
23 i f st rchr (string1 , character2) ! = NULL)
24 cout « I \ I I « character2 « " , was found in ,
25 « string1 « " \ " . \n " ;
26 else
27 cout « 1 \ ' • « character2 « II I was not found in \ " ..
28 « string1 « " \ It . II « endl ;
29
30 return 0 ;
31
32 1/ end main

' a ' was found in " This i s a test " .
' z ' was not found in " Thi s i s a test " .

Fig. 18.28 Str ing-search function s t rchr. (Part 2 of 2 .)

Function s trcspn (Fig. 18. 29, line 18) determines the length of t he initial part of the

string in its first argument that does not contain any characters from the string in its second

argument. The function returns the length of the segment.

Function s t rpbrk searches for the first occurrence in its first string argument of any

character in its second string argument. If a character from the second argument is found,

st rpbrk returns a pointer to the character in the first argument; otherwise, s t rpbrk

returns NULL. Line 16 of Fig. 18.30 locates the first occurrence in s t ringl of any char

acter from s t ring2.

1
2
3
4
5
6
7
8
9

10
11
1 2
1 3
14
15
16
17
18
19
20
21
22

II Fig . 1 8 . 2 9 : f ig 1 8_2 9 . cpp
II Us ing s t rc spn .
include < io strearn>

us ing s td : : cout ;
using std : : endl ;

#inc lude < c s t ring> II strc spn prototype

int main ()

(
const char * string1
const char * s t ring2

" The value i s 3 . 1 4 1 5 9 " ;
" 12 3 4 5 67 8 9 0 " ;

cout « " st ring1 = " « string1 « " \nstring2 = " « s tring2
« " \n \ nThe l ength of the initial segment of stringl "
« " \ncontaining no characters f rom s t ring2
« s t rc spn (string1 , string2) « endl ;

return 0 ;

1/ end main

Fig. 18.29 String-search function s t rc spn. (Part 1 of 2.)

1 034 Bits, Characters, Strings and Structures

s t ring1 • The value i s 3 . 1 4 1 5 9
s t ring2 = 1 2 3 4 5 6 7 8 9 0

The length o f the init ial segment of string1
containing no characters from string2 = 13

Fig. 18.29 Str ing-search function s t rc spn. (Part 2 of 2 .)

1
2
3
4
5
6
7
8
9

1 / Fig . 1 8 . 3 0 : f i g 1 8_3 0 . cpp
1 / Us ing strpbrk .
#inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

#inc lude < c string> II strpbrk prototype

int main ()
{

const char * string1
const char * string2

" This i s a test " ;
n beware " ;

Chapter 1 8

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22

cout « " O f the characters in \ " " « string2 « " \ " \n ' "
« * st rpbrk (string1 , string2) « ' \ "
« " i s the f i rst character to appear in\n\ " "
« string1 « ' \ '" « endl ;

return 0 ;

} II end main

Of the characters in " beware "
' a ' i s the f irst character to appear in
n Thi s i s a test n

Fig. 18.30 Str ing-search function s t rpbrk.

Function s t rrchr searches for the last occurrence of the specified character in a

string. If the character i s found, strrchr returns a pointer to the character in the string ;

otherwise, strrchr returns O. Line 19 of Fig . 18.31 searches for the l ast occurrence of

the character I z I i n the stri ng "A zoo has many animals including zebras " .

1 II Fig . 1 8 . 3 1 : f i g 1 8_3 1 . cpp
2 I I Us ing strrchr .
3 #inc 1ude < iostream>
4
5 using std : : cout ;
6 using std : : end1 ;

Fig. 18.31 String-search function st rrchr . (Part 1 of 2 .)

Chapter 1 8 Bits, Characters, Strings and Structures 1 035

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

inc lude < c s tring> I I strrchr prototype

int main ()
{

const char * string1 =
" A zoo has many animals inc luding zebra s " ;

int c ' z ' ;

cout « " The remainder of string1 beginning with the \ n "
« " last occurrence of character , ..
« stat ic_cast< char > (c I I pr int as char not int
« i s : \ « strrchr (string1 , c) « ' \ .. , « endl ;

return 0 ;

} 1 / end main

The remainder o f string1 beginning with the
last occurrence of character ' z ' i s : " zebras "

Fig. 18.31 Str ing-search function s t rrchr. (Part 2 of 2 .)

Function s trspn (Fig. 18.3 2, line 19) determines the length of the initial p art of the

string in its first argument that contains only characters from the string in its second argu

ment. The function returns the length of the segment.

Function s t rs t r searches for the first occurrence of its second string argument in its

first string argument. If the second string is found in the first string, a pointer to the location

of the string in the first argument is returned. Line 18 of Fig. 18.33 uses strstr to find

the string " def " in the string " abcdefabcdef " .

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
1 6
17
18
19

/ / Fig . 1 8 . 3 2 : f ig 1 8 3 2 . cpp
/ / Us ing strspn .
inc lude < iostream>

using std : : c out ;
us ing std : : endl ;

inc lude < c s tring> / / strspn prototype

int main ()
(

const char * string1
const char * st ring2

" The value i s 3 . 14 1 5 9 " ;
" aehi l s Tuv " ;

cout « " string1 = .. « st ring1
« " \nstring2 = .. « string2
« " \ n\nThe length o f the initial segment o f string 1 \ n "
« " containing only characters f rom s t ring2
« strspn (string1 , string2) « endl ;

Fig. 18.32 Str ing-search function s t rspn. (Part 1 of 2 .)

1 036 Bits, Characters, Strings and Structures

20
21 return 0 ;
22
23 } II end main

s tring1
string2 =

The value i s 3 . 1 4 1 5 9
aehi l s Tuv

The length of the initial segment of string1
containing only characters from string2 = 1 3

Fig. 18.32 Str ing-search function s t rspn. (Part 2 o f 2 .)

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22

II Fig . 1 8 . 3 3 : f i g 1 8_3 3 . cpp
II Us ing strstr .
inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

inc lude <cstring> II strstr prototype

int main ()
{

const char * st ring1
const char * s tring2

" abcdefabcde f " ;
" de f n ;

cout « " string 1 = " « st ring1 « n \ns t ring2 =
« " \n\nThe remainder of string1 beginning
« " f irst occurrence of string2 i s : "
« strstr (string1 , string2) « endl ;

return 0 ;

II end main

string1
string2

abcde fabcde f
de f

The remainder of string1 beginning with the
f i rst occurrence of string2 i s : de fabcde f

Fig. 18.33 Str ing-search function s t r s t r .

Chapter 1 8

" « string2
with the \ n "

18. 12 Memory Functions of the String-Handling Library

The string-handling library functions presented in this section facilitate manipulating, com

paring and searching blocks of memory. The functions treat blocks of memory as arrays of

bytes. These functions can manipulate any block of data. Figure 18.34 summarizes the

Chapter 1 8 Bits, Characters, Strings and Structures 1 037

memory functions of the string-handling library. In the function discussions, "object" refers

to a b lock of data. [Note: The string-processing functions in prior section s operate on nul l

terminated character strings. The functions in this section operate on arrays of bytes. The

nu l l-character va lue (i. e. , a byte conta ining 0) has no significance with the functions in this

section.]

The pointer parameters to these functions are declared void *. In Chapter 5, we saw

that a pointer to any data type can be assigned directly to a pointer of type void *. For this

reason, these functions can receive pointers to any data type. Remember that a pointer of

type void * cannot be assigned directly to a pointer to any data type. Because a void *

pointer cannot be dereferenced, each function receives a size argument that specifies the

number of characters (bytes) the function wil l process. For simplicity, the exa mples in this

section manipulate character arrays (b locks of characters).

Function memcpy copies a specified number of characters (bytes) from the object

pointed to by its second argument into the object pointed to by its first argument. The func

tion can receive a pointer to any type of object. The result of this function is undefi ned if

the two objects over lap in memory (i.e. , are parts of the same object). The program of

Fig. 18.35 uses rnerncpy (line 15) to copy the string in array s 2 to array s l .

Prototype Description

void *memcpy { void * s l , const void * s 2 , s i z e_t n)

Copies n characters from the object poin ted to by s 2 i n to the object pointed to by

s l . A pointer to the resu l t ing object i s returned. The area from which characters

are copied is not a l lowed to overlap the area to which characters are copied.

void *memmove { void * s l , const void * s 2 , s i z e_t n)

Copies n characters from the object pointed to by s2 i nto the object poi nted to by

s 1 . The copy i s performed as if the characters are fi rst copied from the object

pointed to by s 2 i nto a temporary array, and then copied from the temporary array

i nto the object pointed to by s 1 . A pointer to the resu l t ing object is returned. The

area from which characters are copied is al l owed to overl ap the area to which char

acters are copied.

int memcmp { const void * s l , const void * s 2 , s i z e_t n)

Compares the fi rst n characters of the objects pointed to by s l and s 2 . The func

t ion returns 0, less than 0 , or greater than 0 if sl is equal to, less than or greater

than s 2 , respectively.

void *memchr { const void * s , int c, s i ze_t n)

Locates the fi rst occurrence of c (converted to uns i gned char) in the fi rst n

characters of the object pointed to by s. If c is found, a pointer to c in the object i s

returned. Otherwise , 0 i s returned.

void *memset { void * s , int c, s i z e_t n)

Copies c (converted to uns igned char) i nto the fi rst n characters of the object

pointed to by s . A pointer to the resu l t i s returned .

Fig. 1 8.34 Memory functions of the string-handl ing l ibrary.

1 038 Bits, Characters, Strings and Structures

1 / I Fig . 1 8 . 3 5 : f i g 1 8 3 5 . cpp
2 I I Using memcpy .

3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 using std : : endl ;
7
8 # inc lude <cst ring > I I memcpy prototype
9

10 int main ()
11 {
12 char s l [17] ;
13 char s 2 [] = " Copy this string " ;
14
15 memcpy (s l , s 2 , 17) ;
16
17 cout « "After s 2 i s copied into s l with memcpy, \ n "
18 « " s l contains \ " " « s l « ' \ '" « endl ;
19
20 return 0 ;
2 1
22 } I I end main

After s 2 is copied into sl with memcpy ,
s l contains " Copy this string "

Fig. 18.35 Memory-handl ing function memcpy.

Chapter 1 8

Function menunove, like memcpy, copies a specified number of bytes from the object

pointed to by its second argument into the object pointed to by its first argument. Copying

is performed as if the bytes are copied from the second argument to a temporary array of

characters, and then copied from the temporary array to the first argument. This a llows

characters from one part of a string to be copied into another part of the same string.

Common Programming Error 18. 10

String-manipulation functions other than menunove that copy characters have undefined re
sults when copying takes place between parts of the same string.

The program in Fig. 18.36 uses memmove (line 16) to copy the last 10 bytes of array

x into the first 10 bytes of array x.

1 I I Fig . 1 8 . 3 6 : f ig18_3 6 . cpp
2 I I Us ing memmove .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 # inc lude <cstring> I I memmove prototype
9

Fig. 18.36 Memory-handl ing function menunove . (Part 1 of 2 .)

Chapter 1 8

10 int main ()
1 1 {

Bits, Characters, Strings and Structures

12 char x C] = " Home Sweet Home " ;
13
14 cout « " The string in array x before memmove i s : " « x ;
15 cout « " \nThe string in array x after memmove i s :

1 039

16 « static_cast < char * > (memmove (x , &x [5] , 1 0))
1 7 « endl ;
1 8
19 return 0 ;
20
21 } I I end main

The string in array x be fore memmove i s : Home Sweet Home
The string in array x after memmove i s : Sweet Home Home

Fig. 18.36 Memory-handl ing function memmove . (Part 2 of 2 .)

Function memcmp (Fig. 18.37, lines 21 , 2 2 and 24) compares the specified number of

characters of its first argument with the corresponding characters of its second argument.

The function returns a value greater than zero if the first argument is greater than the second

argument, zero if the arguments are equal, and a value less than zero if the first argument

is less than the second argument.

1
2
3
4
5
6
7
8
9

I I Fig . 1 8 . 3 7 : fig18_3 7 . cpp
I I Using memcmp .
#inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

#inc lude < iomanip>

us ing std : : setw;

#inc lude < c s t ring> I I memcmp prototype

int main ()
{

char s l []
char s 2 []

cout « " s l

" ABCDEFG " ;
" ABCDXYZ " ;

= n « s l
« II \ nmemcmp (s l ,

« " \ns2 = II «
s 2 , 4) = II «

s2 «
setw (3

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

« memcmp (s l , s 2 , 4) « .. \nmemcmp (s l ,
« setw (3) « memcmp (s l , s2 , 7)
« " \ nmemcmp (s2 , s l , 7) = n « setw (3
« memcmp (s 2 , s l , 7) « endl ;

Fig. 1 8.37 Memory-handl ing function memcmp . (Part 1 of 2 .)

endl

)
s 2 , 7)

)

1 040 Bits, Characters, Strings and Structures Chapter 1 8

25
26 return 0 ;
27
28 II end main

s l ABCDEFG
s 2 ABCDXYZ

memcmp (s l , s2 , 4) 0
memcmp (s l , s 2 , 7) - 1
memcmp (s 2 , s l , 7) 1

Fig. 18.37 Memory-handl ing function memcmp . (Part 2 of 2 .)

Function memcbr searches for the first occurrence of a byte, represented as

uns igned char, in the specified number of bytes of an object. If the byte is found in the

object, a pointer to the byte in the object is returned; otherwise, the function returns NULL.
Line 16 of Fig. 1 8.3 8 searches for the character (byte) ' r ' in the string " Thi s is a

s tring " .

Function memse t copies the value of the byte in it s second argument into a specified

number of bytes of the object pointed to by its first argument. Line 16 in Fig. 1 8.39 uses

rnernset to copy ' b ' into the first 7 bytes of stringl .

1 I I Fig . 1 8 . 3 8 : f i g 1 8_3 8 . cpp
2 II Using memchr .
3 # inc lude < iostream>
4
5 us ing s td : : cout ;
6 us ing std : : endl ;
7
8 # inc lude <cst ring> II memchr prototype
9

10 int main ()
11 {
12 char s [] = " This i s a string " ;
1 3
14 cout « " The remainder of s after character ' r ' "
15 « " i s found i s \ " "
16 « stat i c_cast < char * > (memchr (s , ' r ' , 1 6))

17 < < ' \ '" < < endl ;
1 8
19 return 0 ;
20
2 1 II end main

The remainder of s after character ' r ' i s found is " ring "

Fig. 18.38 Memory-handl ing function memchr .

Chapter 1 8 Bits, Characters, Strings and Structures

1
2
3
4
5
6
7
8
9

10
11
1 2
13
14
15
16
17
18
19
20
21

I I Fig . 1 8 . 3 9 : f ig 1 8_3 9 . cpp
I I Using memset .
#inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

#inc lude < c s t ring> I I memset prototype

int main ()
{

char s t ringl [1 5 " BBBBBBBBBBBBBB " ;

cout « " stringl " « stringl « endl ;
cout « " stringl after memset = "

« static_cast < char * > (memset (stringl ,

« endl ;

return 0 ;

I I end main

st ring l = BBBBBBBBBBBBBB
stringl after memset = bbbbbbbBBBBBBB

Fig. 1 8.39 Memory-handl ing function mems et .

SUMMARY

• Structures are col lections o f re lated variables (or aggregates) under o n e name.

• Structures can contain variab les of different data types .

' b ' , 7)

1 04 1

• Keyword s t ruct begins every structure defin i t ion . B etween the braces o f the structure defin i t ion

are the structure member dec larat ions .

• Members of the same structure must have unique names .

• A structure defi n i t ion creates a new data type that can be used to dec lare variab les .

• A structure can be i n it ia l ized with an i n i t ia l izer l i st by fol lowing the variable i n the declarat ion

with an equal s ign and a comma-separated l i st of i n i t ia l i zers enclosed i n braces . I f there are fewer

i n i t ia l izers i n the l i st than members in the structure, the remain ing members are in i t ia l i zed to zero

(or NULL for poi nter members) .

• Entire structure variables m a y b e assigned t o structure variab les o f t h e same type.

• A structure variable may be in i t ia l i zed with a structure variable of the same type.

• Structures variables and indiv idual structure members are passed to funct ions by value .

• To pass a structure by reference, pass the address of the structure variable . An array of structures

i s passed by reference. To pass an array by value, create a structure with the array as a member.

• Creating a new type name with typede f does not create a new type ; i t creates a name that i s syn

onymous to a type defi ned previous ly .

• The bi twise AND operator (&) takes two integral operands . A b i t i n the resu l t i s set to one if the

corresponding bits i n each of the operands are one.

• Masks are u sed to h ide some bits wh i l e preserv ing others .

1 042 Bits, Characters, Strings and Structures Chapter 1 8

o The bitwise inc lus ive OR operator (I) takes two operands. A bi t i n the resu l t i s set to one i f the

corresponding bi t in either operand i s set to one.

o Each of the bi twise operators (except complement) has a corresponding assignment operator.

o The bi twise exclus ive-OR operator (") takes two operands. A bi t i n the resu l t i s set to one if exactly

one of the corresponding bits i n the two operands i s set to I .
o The left-shift operator « <) shifts the bits of its left operand left by the number of bits specified by

its right operand. B its vacated to the right are replaced with O s .

o The right-shift operator (> » shifts t h e b i t s o f i t s left operand right b y t h e number of b i t s specified

i n i ts right operand. Performing a r ight shift on an unsigned i nteger causes bits vacated at the left

to be replaced by zeros. Vacated bits in s igned integers can be rep laced with zeros or ones-this

i s machine dependent.

o The bi twise complement operator (-) takes one operand and reverses i ts b its-thi s produces the

one's complement of the operand .

o Bi t fie lds reduce storage use by storing data in the min imum number of bits requ i red. B it-fie ld

members must be decl ared as int or uns igned.

o A bit fie ld is declared by fol lowing an uns igned or int member name with a colon and the

width of the bit fie ld .

o The bit fie ld width must be an integer constant between zero and the total number of bits used to

store an int variable on your system

o If a bi t fie ld i s specified w i thout a name, the field i s used as padding i n the structure.

o An unnamed bit fie ld w ith width 0 al igns the next bit fie ld on a new machine word boundary .

o Function i s lower determines whether i ts argument is a lowercase letter (a- z) . Function i sup

per determines whether i ts argument is an uppercase letter (A- Z) .

o Function i sdigit determines whether i t s argument is a digit (0 - 9) .

o Function i s alpha determines whether its argument i s a n uppercase (A- Z) o r lowercase letter

(a- z) .

o Function i salnum determines whether i t s argument i s a n uppercase letter (A-Z) , a l owercase let

ter (a- z) , or a digit (0 - 9) .

o Function i sxdigit determines whether i t s argument i s a hexadeci mal digi t (A-F, a - f , 0 - 9) .

o Function toupper converts a lowercase letter to an uppercase letter. Function tolower con

verts an uppercase l etter to a lowercase letter.

o Function i s space determines whether its argument is one of the fol lowing whitespace charac

ters : ' ' (space) , ' \ f ' , ' \n ' , ' \ r ' , ' \ t ' or ' \v ' .

o Function i scntrl determines whether its argument is one of the fol lowing control characters :
' \ t ' , ' \v ' , ' \ f ' , ' \ a ' , ' \b ' , ' \ r ' or ' \n ' .

o Function i spunct determines whether its argument is a print ing character other than a space, a

digit or a letter.

o Function i sprint determines whether i ts argument is any print ing character, inc luding space.

o Function i sgraph determines whether i ts argument is a printing character other than space.

o Funct ion atof converts i ts argument-a str ing beginning with a ser ies of digits that represents a

floating-point number-to a double value.

o Function atoi converts i ts argument-a string beginning with a series of digi ts that represents an

in teger-to an int value.

o Function atol converts i ts argument-a string beginning with a series of digi ts that represents a

long integer-to a long value.

Chapter 1 8 Bits, Characters, Strings and Structures 1 043

• Function s t rtod converts a sequence of characters representing a floati ng-point value to dou

ble. The function rece ives two arguments-a string (char *) and a pointer to char * . The

string conta ins the character sequence to be converted, and the pointer to char * is assigned the

remainder of the string after the convers ion .

• Function s t rtol converts a sequence of characters representing an i n teger to long. The func

tion receives three arguments-a string (char *) , a pointer to char * and an i nteger. The string

contain s the character sequence to be converted, the pointer to char * i s assigned the remai nder

of the string after the conversion and the integer specifies the base of the value being converted.

• Function strtoul converts a sequence of characters representing an integer to uns igned long.

The function receives three arguments-a string (char *) , a pointer to char * and an integer. The

string contains the character sequence to be converted, the poi nter to char * i s assigned the remain

der of the str ing after the conversion and the int eger specifies the base of the value being converted.

• Function st rchr searches for the first occurrence of a character i n a string . If the character is

found, strchr returns a pointer to the character in the stri ng; otherwi se, s t rchr returns NULL.

• Function s t rc spn determines the length of the in i t ia l part of the string in its first argument that

does not contain any characters from the string in its second argument . The funct ion returns the

length of the segment .

• Function s trpbrk searches for the first occurrence in its fi rst argument of any character that ap

pears in i ts second argument . If a character from the second argument is found, st rpbrk returns

a pointer to the character; otherwi se , st rpbrk returns NULL.

• Function st rrchr searches for the last occurrence of a character in a string . If the character i s

found, strrchr returns a poi nter t o the character i n t h e string; otherwise, i t returns NULL.

• Function strspn determines the length of the ini t ia l part of the string in its first argument that con

tains only characters from the string in its second argument and returns the length of the segment.

• Function strstr searches for the fi rst occurrence of its second string argument in i ts first string

argument . I f the second str ing i s found in the fi rst s tr ing, a pointer to the locat ion of the stri ng in

the fi rst argument i s returned.

• Function memcpy copies a specified number of characters from the object to which its second argu

ment points into the object to which its fi rst argument points. The function can receive a pointer to

any object. The pointers are received by memcpy as void poi nters and converted to char pointers

for use in the function. Function memcpy manipulates the bytes of its argument as characters.

• Function menunove copies a specified number of bytes from the object pointed to by its second

argument to the object poi nted to by its fi rst argument . Copy ing i s accomp l i shed as i f the bytes are

copied from the second argument to a temporary character array , and then copied from the tempo

rary array to the first argument .

• Funct ion memcmp compares the spec i fied number of characters of i ts first and second arguments .

• Funct ion memchr searches for the first occurrence of a byte , represented as uns i gned char,

i n the spec ified n umber of bytes of an object . If the byte is found, a pointer to the byte i s returned;

otherw i se , a NULL pointer i s returned.

• Function memset copies its second argument, treated as an uns igned char, to a speci fied

number of bytes of the object pointed to by the fi rst argument .

TERMINOLOGY

" bitwise exc l usive-OR operator

" = bitwise exc lus ive-OR assignment operator

I bitwise inc lus ive-OR operator

I = bitwise inc lusive-OR ass ignment operator

- one's-complement operator

& bitwise AND operator

1 044 Bits, Characters, Strings and Structures

&: = bi twise AND assignment operator

< < left-shift operator

« = l eft-sh ift assignment operator

> > right-shift operator

» = right-shift assignment operator

array of structures

A S C I I

atof

atoi

atol

bi t fie ld

bi twise operators

character code

character constant

character set

complementing

control character

<cctype >

< c stdlib>

< c s tring>

del im i ter

genera l -ut i l i t ies l ibrary

hexadeci mal digits

init ial jzation of structures

i salnwn

i salpha

i scntrl

i sdigit

i sgraph

i s l ower

i sprint

i spunct

i s space

i supper

i sxdigit

left shift

l i teral

mask

masking off bits

memchr

SELF-REVIEW EXERCISES

memcmp

memcpy

menunove

memset

one ' s complement

padding

pointer to a structure

printing character

record

right shift

search string

self-referential structure

shifting

space-time trade-offs

strchr

strc spn

string

string constant

string-convers ion functions

string l i teral

string processing

strpbrk

strrchr

strspn

strstr

strtod

strtol

strtoul

struct

structure assignment

structure in i t ia l ization

structure type

tolower

toupper

typede f

unnamed bit fie ld

whitespace characters

width of a bi t fie ld

word processing

zero-width bit fie ld

1 8. 1 F i l l i n the b lanks in each of the fol lowing:

a) A is a co l lection of related variables under one name.

Chapter 1 8

b) The bits in the resu l t of an expression us ing the operator are set to one if the

corresponding bits in each operand are set to one. Otherwise , the bits are set to zero.

c) The variables declared in a structure defin it ion are called i ts ____ _

d) The bits in the resu l t of an expression using the operator are set to one if at

least one of the corresponding bits in either operand is set to one. Otherw i se , the bi ts are

set to zero .

Chapter 1 8 Bits, Characters, Strings and Structures

e) Keyword introduces a structure declarat ion .

1 045

f) Keyword i s used to create a synonym for a previous ly defined data type .

g) The b i ts i n the resu l t of an expression us ing the operator are set to one if ex-

act l y one of the corresponding bits in either operand i s set to one. Otherwise, the b i ts are

set to zero.

h) The b i twise AND operator & i s often used to bi ts , (i . e . , to se lect certain bits

from a b i t string whi le zeroing others) .

i) The name o f the structure i s referred t o a s the structure ____ _

j) A structure member i s accessed with either operator or ____ _

k) The and operators are used to shift the bits of a value to the left

or to the right, respect ive ly .

1 8.2 State whether each of the fol lowing is true or false . If false, expla in why.

a) S tructures may contain only one data type.

b) Members of different structures must have u n ique names.

c) Keyword typede f i s used to defi ne new data types .

d) Structures are always passed to functions by reference.

1 8.3 Write a s i ngle statement or a set of statements to accomp l i sh each of the fol lowing :

a) Defi ne a structure ca l led Part conta in ing int variable partNumber and char array

partName, whose values may be as long as 2S characters .

b) Define Part Ptr to be a synonym for the type Part * .

c) Declare variab le a t o be of type Part , array b [1 0] to be of type Part and variable

ptr to be of type pointer to Part .

d) Read a part number and a part name from the keyboard into the members of variable a.

e) Ass ign the member va lues of variable a to e lement three of array b.

f) Assign the address of array b to the pointer variable ptr.

g) Print the member values of e lement three of array b, using the variable ptr and the struc

ture pointer operator to refer to the members.

1 8.4 Find the error i n each of the fol lowing:

a) Assume that s t ruct Card has been defi ned as conta in ing two pointers to type char

namely , face and sui t . A l so, the variable c has been dec lared to be of type Card, and

the variable cPtr has been dec lared to be of type pointer to Card. Variable cPtr has

been assigned the address of c.

cout « * cPtr . face « endl ;

b) Assume that struct Card has been defined as contain ing two poi nters to type char

namely, face and sui t . Also, the array heart s [1 3] has been declared to be of type

Card. The fol lowing statement should print the member face of element 1 0 of the array.

cout « heart s . face « endl ;

c) s t ruct Person {

char las tName [1 5] ;

char f i r stName [1 5] ;

int age ;

d) Assume that variable p has been declared as type Person and that variab le c has been

declared as type Card.

p = c ;

1 046 Bits, Characters, Strings and Structures Chapter 1 8

18.5 Write a s ingle statement to accompl ish each of the fol lowing. Assume that variables c (wh ich

stores a character), x, y and z are of type int ; variables d, e and f are of type double; variable

ptr i s of type char * and arrays sl [100] and s2 [1 0 0] are of type char.

a) Convert the character stored in variable c to an uppercase letter. Assign the result to vari

able c .

b) Determine i f the value o f variable c i s a digit . U s e the conditional operator a s shown i n

Fig. 1 8 . 1 7-Fig . 1 8 . 1 9 t o print " i s a " o r " i s not a " when the result i s displayed.

c) Convert the string " 12 3 4 5 6 7 " to long, and print the value.

d) Determine whether the value of variable c i s a control character. Use the conditional op-

erator to print " is a " or " i s not a " when the result i s displayed.

e) Assign to ptr the location of the last occurrence of c i n s l .

f) Convert the string " 8 . 6 3 5 8 2 " t o double, and print the value.

g) Determine whether the value of c i s a letter. Use the conditional operator to print " i s

a " o r " i s not a " when the result i s displayed.

h) Assign to ptr the location of the first occurrence of s2 i n s l .

i) Determine whether the value of variable c i s a printing character. Use the conditional op-

erator to print " is a " or " is not a " when the resul t i s displayed.

j) Assign to ptr the location of the first occurrence in sl of any character from s 2 .

k) Assign t o p t r the location o f the first occurrence o f c i n s l .

I) Convert the string " - 2 1 " to int , and print the value.

ANSWERS TO SELF-REVIEW EXERCISES

1 8.1 a) structure . b) bitwise AND (&:) . c) members . d) bitwise inclus ive-OR (I) . e) struct .

f) typede f . g) bitwise exclusi ve-OR ("') . h) mask. i) tag . j) structure member (.) , structure point

er (- » . k) left-shift operator (< <) , right-shift operator (») .

18.2 a) False. A structure can contain many data types.

b) False . The members of separate structures can have the same names, but the members of

the same structure must have unique names .

c) False . typede f i s used to define al iases for prev iously defined data types.

d) False. Structures are always passed to functions by value.

18.3 a) struct Part {

int partNumber ;

char partName [2 6] ;

} ;
b) typedef Part * Partpt r ;

c) Part a , b [1 0] , *pt r ;

d) c i n » a . partNumber » a . partName ;

e) b [3] = a ;

f) ptr = b ;

g) cout « (p t r + 3) - >partNumber « '

« (ptr + 3) - >partName « endl ;

18.4 a) Error: The parentheses that should enc lose *cPtr have been omitted, causing the order

of evaluation of the expression to be incorrect.

b) Error: The array subscript has been omitted. The expression should be

heart s [10] . face.

c) Error: A semicolon is required to end a structure definit ion.

d) Error: Variables of different structure types cannot be assigned to one another.

Chapter 1 8 Bits, Characters, Strings and Structures 1 047

1 8.5 a) c = toupper (c) ;

b) cout « • \ t 1 « c « 1 1 \ ' "

« (i sdigit (c) ? lI i s a " : n i s not a ")

« " digi t " « endl ;

c) cout « atol l " 1 2 3 4 5 6 7 ") « endl ;

d) cout « I \ I I « c « " \ ' "

« (i scntrl (c) ? " i s a " : lI i s not a ")

« " control charact e r " « endl ;

e) ptr = st rrchr (s l , c) ;

f) out « atof (" 8 . 6 3 5 8 2 ") « endl ;

g) cout « I \ I • « c « n \ ' "

« (i salpha (c) ? n i s a " : " i s not a ")

« " letter" « endl ;

h) ptr = strstr (s l , s2) ;

i) cout « ' \ "
« c « " \ ' "

« (i sprint (c) ? " i s a " : " i s not a ")

« " print ing character " « endl ;

j) ptr = s t rpbrk (s l , s2) ;

k) ptr = s trchr (s l , c) ;

I) cout « atoi (" - 2 1 ") « endl ;

EXERCISES

1 8.6 Provide the definit ion for each of the fol lowing structures and unions :

a) Structure Inventory, containing character array partName [30] , i nteger part

Number, floating-point price, integer stock and integer reorder.

b) A structure called Addre s s that contains character arrays streetAddres s [25] ,

c i ty [2 0 1 . state [3] and z ipCode [6] .

c) Structure Student, containing arrays firstName [1 5] and lastName [1 5] and

variable homeAddress of type struct Addre s s from part (b) .

d) Structure Te st, containing 16 b i t fields with widths of I b i t . The names of the bit fields

are the letters a to p.

1 8. 7 Consider the fol lowing structure definit ions and variable declarations:

struct Customer {
char lastName [1 5] ;
char f i rstName [1 5] ;
int customerNumbe r ;

s t ruct {
char phoneNumber [11] ;
char addre s s [5 0] ;
char c i ty [1 5] ;
char state [3] ;
char z ipCode [6] ;

} personal ;

customerRecord , * customerptr ;

customerptr = &customerRecord ;

1 048 Bits, Characters, Strings and Structures Chapter 1 8

Wri te a separate expression that accesses the structure members in each of the fol low ing part s :

a) Member las tName o f structure customerRecord.

b) Member lastName of the structure poi nted to by customerptr.

c) Member f i r stName of structure customerRecord.

d) Member firstName of the structure pointed to by customerptr.

e) Member customerNwnber of structure customerRecord.

f) Member cus tomerNwnber of the structure pointed to by customerptr.

g) Member phoneNwnber of member personal of structure customerRecord.

h) Member phoneNwnber of member personal of the structure poi nted to by cus

tomerPtr.

i) Member addre s s o f member personal of structure customerRecord.

j) Member addre s s of member personal of the structure pointed to by cus -

tomerPtr.

k) Member c i ty of member personal of structure customerRecord.

I) Member c i t y o f member personal o f the structure poi nted t o b y customerptr.

m) Member state of member personal of structure customerRecord .

n) Member state of member personal of the structure poi nted to by customerptr.

0) Member z ipCode of member personal of structure customerRecord.

p) Member z ipCode of member personal of the structure pointed to by cus -

tomerPtr.

1 8.8 Modify the program of Fig. 1 8 . 1 4 to shuffle the cards us ing a h igh-performance shuffle , as

shown in Fig. 1 8 . 2 . Print the resu l t ing deck in two-column format, as in Fig. 1 8 . 3 . Precede each card

with its color.

1 8.9 Write a program that right-shifts an integer variable 4 bi ts . The program should print the in

teger in bits before and after the shift operat ion. Does your system place zeros or ones in the vacated

b i ts?

1 8.1 0 I f your computer uses 4-byte integers, modify the program of Fig. 1 8 . 5 so that i t works with

4-byte integers.

1 8.1 1 Left-shift ing an uns igned in teger by I bit i s equi valent to m U l t ip ly ing the value by 2 . Write

function power2 that takes two integer arguments, nwnber and pow, and calcu lates

nwnber * 2 PoW

Use a shift operator to calculate the result . The program should print the values as integers and as bits .

1 8.1 2 The left-shift operator can be used to pack two character values into a 2-byte uns igned integer

variable . Write a program that inputs two characters from the keyboard and passes them to function

packCharacters. To pack two characters into an uns i gned i n teger variable , ass ign the fi rst

character to the uns igned variable, shift the uns igned variable left by 8 bit pos i t ions and com

bine the uns igned variable with the second character us ing the bi twise inc lus ive-OR operator. The

program should output the characters in the i r bit format before and after they are packed into the un

s i gned i nteger to prove that the characters are in fact packed correctly i n the uns i gned variab le .

1 8.1 3 Using the right-shift operator, the bi twise AND operator and a mask, wr i te function un

packCharacters that takes the unsigned integer from Exerc i se 1 8 . 1 2 and unpacks it i nto two

characters. To u npack two characters from an uns igned 2-byte in teger, combine the uns igned i n

teger w i t h t h e mask 6 5 2 8 0 (1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0) and right-shift t h e resu l t 8 b i t s . Ass ign t h e re

su l t ing value to a char variab le . Then, combine the uns igned i n teger with the mask 2 5 5

(0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1) . Assign the resul t to another char variable . The program should pri nt the

uns igned i nteger in bits before i t i s unpacked, then print the characters in b i ts to confirm that they

were unpacked correct ly .

Chapter 1 8 Bits, Characters, Strings and Structures 1 049

1 8. 1 4 If your system uses 4-byte integers, rewrite the program of Exercise 1 8 . 1 2 to pack 4 characters .

1 8 . 1 5 If your system uses 4-byte integers, rewrite the function unpackCharacters of Exerc i se

1 6 . 1 3 to unpack 4 characters . Create the masks you need to unpack the 4 characters by left-shift ing the

value 255 in the mask variable by 8 bits 0, 1 , 2 or 3 t i mes (depending on the byte you are unpacking) .

1 8. 1 6 Write a program that reverses the order of the bits in an uns i gned i n teger value . The pro

gram shou l d input the value from the user and call function reverseBi ts to print the bi ts in reverse

order. Print the value in bits both before and after the bits are reversed to confirm that the bits are

reversed properly .

1 8. 1 7 Write a program that demonstrates pass ing an array by value. (H int : Use a s t ruc t .) Prove

that a copy was passed by modifying the array copy in the cal led fu nction.

1 8. 1 8 Write a program that inputs a character from the keyboard and tests the character wi th each

function i n the character-handl ing l ibrary . Print the value returned by each funct ion .

1 8. 1 9 The fol lowing program uses function mul t iple to determine whether the integer entered

from the keyboard is a mul t iple of some i nteger X. Exam ine function mul t iple, then determine the

value of x.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35

I I Exerc i s e 1 8 . 1 9 : ex1 8_1 9 . cpp
I I Thi s program determines i f a value is a mul t ip l e of X .
inc lude < iostream>

us ing std : : cout ;
us ing std : : c i n ;
using std : : endl ;

bool mul t ipl e (int) ;

int main ()
{

int y ;

cout « " Enter a n integer between 1 and 3 2 0 0 0 : " ;
c in » y ;

i f (mul t iple (y))
cout « y « " i s a mul t iple of X " « endl ;

e l s e
cout « y « " i s not a mult iple of X " « endl ;

return 0 ;

} I I end main

II determine i f num is a mul t iple of X
bool mul t ip l e (int num
{

bool mul t true ;

for (int i 0 , mask = 1 ; i < 1 0 ; i + + , mask « = 1)

i f ((num & mask) ! = 0) {
mul t = false ;

1 050 Bits, Characters, Strings and Structures

36 break ;
37
38 } I I end i f
39
40 return mult ;
4 1
42 I I end function mult iple

1 8.20 What does the fol lowing program do?

1 I I Exerc ise 18 . 2 0 : ex18_2 0 . cpp
2 # inc lude < iostream>
3
4 us ing std : : cout ;
5 us ing std : : cin;
6 us ing std : : endl ;
7 us ing std : : boolalpha ;
8
9 bool mystery (uns igned) ;

1 0
1 1 int main ()
1 2 {
1 3 uns igned x ;
1 4
1 5 cout « " Enter an integer : " ;
1 6 c i n » x ;
1 7 cout « boolalpha
1 8 « " The result i s " « mystery (x) « endl ;
1 9
20 return 0 ;
2 1
22 } I I end main
23
24 I I What doe s thi s funct ion do?
25 bool mystery (uns igned bits)
26 {
27 const int SHIFT = 8 * s i zeof (uns igned) - 1 ;

28 const unsigned MASK 1 « SHIFT ;

29 uns igned total = 0 ;
30
3 1 f o r (int i = 0 ; i < SHIFT + 1 ; i + + , b i t s « = 1)

32
33 i f ((bits &: MASK) == MASK
34 + +total ;
35
36 return ! (total % 2) ;
37
38 } I I end funct ion mystery

Chapter 1 8

1 8. 2 1 Write a program that inputs a l ine of text with i stream member function get l ine (as i n

Chapter 1 2) i n to character array s [1 0 0 1 . Output t h e l i ne in uppercase letters a n d lowercase letters .

1 8.22 Write a program that inputs four strings that represent integers, converts the strings to inte

gers, sums the values and prints the total of the four values.

Chapter 1 8 Bits, Characters, Strings and Structures 1 05 1

1 8.23 Write a program that inputs four strings that represent float ing-point values , converts the

strings to double values, sums the values and prints the total of the four values .

1 8.24 Write a program that inputs a l ine of text and a search str ing from the keyboard. U s i ng func

t ion strstr, locate the first occurrence of the search string in the l i ne of text, and assign the location

to variable searchPtr of type char *. If the search string i s found, print the remainder of the l i ne

of text beginning wi th the search string. Then , use strstr again to locate the next occu rrence of the

search string in the l i ne of text. I f a second occurrence i s found, print the remainder of the l i ne of text

beg inn ing with the second occurrence. { H int : The second cal l to strstr should contain the expres

s ion searchPtr + 1 as its first argument .)

1 8.25 Write a program based on the program o f Exerc i se 1 6 .24 that i n puts several l i nes o f text and

a search string, then uses function strstr to determine the total number of occurrences of the string

i n the l i nes of text . Print the resu l t .

1 8.26 Write a program that i nputs several l i nes of text and a search character and uses function

strchr to determine the total n umber of occurrences of the character i n the l i nes of text .

1 8.27 Write a program based on the program of Exerc i se 1 6 .26 that inputs severa l l i nes of text and

uses function strchr to determine the total number of occurrences of each letter of the a lphabet in

the text . Uppercase and lowercase letters should be counted together. S tore the totals for each letter

in an array , and print the values i n tabu lar format after the totals have been determined.

1 8 .28 The chart i n Appendix B shows the numeric code representat ions for the characters i n the

ASCI I character set . Study th is chart , and then state whether each of the fol lowing i s true or false :

a) The letter "A" comes before the letter "B."

b) The digit "9" comes before the digit " 0 ."

c) The commonly u sed symbols for addit ion, subtract ion, mul t ip l ication and d iv i s ion a l l

come before any of the digi ts .

d) The digi ts come before the letters .

e) If a sort program sorts stri ngs i nto ascending sequence, then the program w i l l place the

symbol for a right parenthes is before the symbol for a left parenthes i s .

1 8.29 Write a program that reads a series of strings and prints only those stri ngs beginn ing with the

letter "b."

1 8.30 Write a program that reads a series of strings and prints only those strings that end with the

letters "ED."

1 8 .3 1 Write a program that inputs an ASCI I code and prints the corresponding character. Modify

th is program so that it generates a l l possible three-digit codes in the range 000-255 and attempts to

print the corresponding characters . What happens when this program is run?

1 8.32 Using the ASCII character chart in Appendix B as a gu ide, write your own vers ions of the

character-hand l i ng functions in Fig. 1 8 . 1 6 .

1 8.33 Write your own vers ions of the functions in Fig. 1 8 .20 for converting strings to n umbers .

1 8.34 Write your own vers ions of the functions i n Fig . 1 8 .27 for searching strings .

1 8.35 Write your own vers ions of the functions i n Fig. 1 8 .34 for manipu lat ing b locks of memory .

1 8.36 (Project: A Spelling Checker) M any popu lar word-processing software packages have bu i l t

i n spe l l checkers. We used spe l l -checking capab i l i t ies in preparing th is book and d i scovered that , no

matter how careful we thought we were in writ ing a chapter, the software was al ways able to find a

few more spe l l ing errors than we were able to catch manual ly .

I n this project, you are asked to develop your own spe l l -checker u t i l i ty. We make suggest ions to

help get you started . You shou ld then consider adding more capab i l i t ies . You might fi nd i t helpful to

use a computerized dict ionary as a source of words.

1 052 Bits, Characters, Strings and Structures Chapter 1 8

Why do we type so many words with incorrect spe l l i ngs? [n some cases, i t i s because we s i m

p ly do n o t know t h e correct spe l l i ng, s o w e make a "best guess ." I n s o m e cases, i t i s because w e

transpose t w o letters (e . g . , "defualt" instead o f "defau lt") . Sometimes w e double-type a letter acc i

dental ly (e .g . , "hanndy" instead of "handy") . Sometimes we type a nearby key instead of the one we

i n tended (e .g . , "biryhday" ins tead of "birthday") . And so on .

Des ign and i mplement a spe l l -checker program. Your program maintains an array wordLi s t

o f character strings. You can e i ther enter these stri ngs o r obtain them from a computerized dict ionary.

Your program asks a user to enter a word. The program then looks up that word in the

wordList array. I f the word i s present in the array, your program should pri nt "Word i s

spe l l ed correc t ly . "

I f the word i s not present i n the array, your program should print ''Word i s not spe l led

correc t ly . " Then your program should try to locate other words i n wordLi s t that m ight be

the word the user in tended to type. For example, you can try a l l possib le single transposi t ions of

adjacent letters to di scover that the word "default" i s a d i rect match to a word in wordL i s t . Of

course, this i mpl ies that your program will check a l l other single transposi t ions , such as "edfaul t ,"

"dfeault ," "deafu l t ," "defalut" and "defaut l ." When you find a new word that matches one i n

wordList, print that word i n a message such a s "Did you mean " defaul t ? " ."

I mplement other tests, such as the replacing of each double letter with a s ingle letter and any

other tests you can develop to i mprove the value of your spe l l checker.

19
Preprocessor

Objectives

• To use #include for developing large programs.

• To use #define to create macros and macros with

arguments.

• To understand conditional compilation.

• To display error messages during conditional

compilation.

• To use assertions to test if the values of expressions

are correct.

Hold thou the good; define it well.

Alfred, Lord Tennyson

I have found you an argument; but I am not obliged to find

you an understanding.

Samuel Johnson

A good symbol is the best argument, and is a missionary to

persuade thousands.

Ralph Waldo Emerson

Conditions are fundamentally sound.

Herbert Hoover [December 1929]

The partisan, when he is engaged in a dispute, cares nothing

about the rights of the question, but is anxious only to

convince his hearers of h is own assertions.

Plato

1 054 Preprocessor

Outline

1 9. 1 Introduction

1 9.2 The #include Preprocessor Directive

Chapter 19

1 9.3 The #define Preprocessor Directive: Symbolic Constants

1 9.4 The #define Preprocessor Directive: Macros

1 9.5 Conditional Compilation

1 9.6 The terror and #pragma Preprocessor Directives

1 9.7 The # and ## Operators

19.8 Une Numbers

1 9.9 Predefined Symbolic Constants

1 9. 1 0 Assertions

Summary • Terminology· Self-Review Exercises • Answers to Self-Review Exercises· Exercises

19.1 Introduction

This chapter in troduces the preprocessor. Preprocessing occurs before a program is com

piled. Some possible actions are inclusion of other fi les in the fi le being compiled, def

in i tion of symbolic constants and macros, conditional compilation of program code and

conditional execution of preprocessor directives. All preprocessor d irectives begin with #,

and only whitespace characters may appear before a preprocessor d irective on a l i ne . Pre

processor d irectives are not C++ statements, so they do not end in a semicolon (;) . Prepro

cessor d irectives are processed ful ly before compilation begins .

Common Prog ra mming Error 1 9. 1
Placing a semicolon at the end of a preprocessor d irective can lead to a variety of errors,

depending on the type of preprocessor directive.

Obser ation
Many preprocessor features (especially macros) are more appropriate for C progra mmers

thanfor C+ + programmers. C+ + programmers shouldfamil iarize themsel ves with the pre

processor, because they might need to work with C legacy cod e.

19.2 The #include Preprocessor Directive

The #include preprocessor directive has been used throughout thi s text. The # in

elude directive causes a copy of a specified fi le to be inc luded i n p lace of the d irect ive .

The two forms of the # ine lude directive are

inc lude < f i l ename >
#inc lude "f i lename"

The difference between these is the location the preprocessor searches for the fi l e to be

inc luded. I f the fi l e name i s enclosed in angle brackets « and>)-used for standard l i

brary header files-the preprocessor searches for the specified fi l e i n an imp lementat ion-

Chapter 1 9 Preprocessor 1 055

dependent manner, norma l l y through predesignated d irectories . If the fi l e name is en

c losed in quotes , the preprocessor searches first i n the same d i rectory as the fi l e be ing

compi led, then i n the same implementat ion-dependent manner as for a fi l e name enc losed

in angle brackets . This method is normal l y used to inc lude programmer-defi ned header

fi l es.

The # in c lude directive is used to inc lude standard header fi les such as

< iostr eam> and < ioman ip>. The # inc lude directive i s also used wi th programs

consist ing of several source fi les that are to be compi led together. A header file contai n ing

declarations and defi nit ions common to the separate program fi l es is often created and

included in the fi l e . Examples of such declarations and defin i tions are c lasses , structures,

un ions, enumerations and function prototypes, constants and stream objects (e .g . , c in).

19.3 The #define Preprocessor Directive: Symbolic
Constants

The #define preprocessor directive creates symbolic constants-constants represented

as symbols-and macros-operations defined as symbols . The # de f in e preprocessor d i

rect ive format i s

#de f ine identifier replacement-text

When th is l i ne appears in a fi le , al l subsequent occurrences (except those i nside a string) of

identifier i n that fi l e w i l l be replaced by replacement-text before the program i s compi led.

For example,

#de f ine P I 3 . 1 4 1 5 9

replaces a l l subsequent occurrences o f the symbol ic constant PI with the numeric constant

3.14159. Symbol i c constants enable the programmer to create a name for a constant and

use the name throughout the program. Later, i f the constant needs to be modifi ed through

out the program, i t can be modified once in the # def ine preprocessor d irective-and

when the program is recompiled, all occurrences of the constant in the program wi l l be

modified [Note: Everything to the right of the symbol ic constant name repl aces the sym

bol i c constant.] For example, # de f ine PI = 3.141 59 causes the preprocessor to repl ace

every occurrence of PI with = 3.14159. This i s the cause of many subtle l ogic and syntax

errors. Redefin ing a symbol ic constant with a new value is also an error. Note that const

variables i n C++ are preferred over symbol ic constants. Constant variables have a specific

data type and are visible by name to a debugger. Once a symbol ic constant is rep laced wi th

i ts replacement text, on ly the replacement text i s visible to a debugger. A disadvantage of

co nst variables is that they might require a memory location of the i r data type s ize-sym

bol ic constants do not requ i re any addit ional memory .

Common Prog ra m m i ng Error 19.2
Usi ng symbolic constants in afile other than thefile in which the symbolic constants are de

fined is a syntax error.

Good Progra m m i n g Practice 1 9. 1
Using meaningf ul names for symbolic constants helps make programs more self-docu

menting.

1 056 Preprocessor Chapter 1 9

19.4 The #define Preprocessor Directive: Macros

[Note: This sect ion is inc l uded for the benefi t of C++ programmers who w i l l need to work
w i th C legacy code. I n C++, macros can often be replaced by templates and i n l i ne func
tions.] A macro i s an operation defined in a #de f in e preprocessor directive . As with sym
bol ic constants, the macro-identifier is replaced with the replacement-text before the

program i s compi led . Macros may be defined with or wi thout arguments. A macro wi thout

arguments i s processed l i ke a symbol ic constant. I n a macro with arguments, the arguments

are substituted in the rep lacement-text, then the macro is expanded-i.e., the replacement

text repl aces the macro-identifier and argument l i st i n the program. [Note: There is no data

type checking for macro arguments . A macro is used simply for text substi tut ion.]

Consider the fol lowing macro definit ion with one argument for the area of a c irc le :

#de f ine CIRCLE_AREA (x) (P I * (x) * (x))

Wherever CI RCLE_A REA (x) appears in the fi le , the value of x is substi tuted for x i n

t he replacement text, t he symbol ic constant PI i s repl aced by i ts value (defined previously)

and the macro i s expanded in the program. For example, the statement

area = C I RCLE_AREA (4) ;

is expanded to

area = (3 . 1 4 1 5 9 * (4) * (4)) ;

B ecause the expression consists only of constants, at compi le time the value of the expres

sion can be evaluated, and the resul t i s assigned to area at run time. The parentheses

around each x in the repl acement text and around the entire expression force the proper or

der of evaluation when the macro argument is an express ion . For example , the statement

area = CIRCLE_AREA (c + 2) ;

i s expanded to

area = (3 . 1 4 1 5 9 * (c + 2) * (c + 2)) ;

which evaluates correct ly , because the parentheses force the proper order of evaluation . I f

t he parentheses are omitted, t he macro expansion i s

area = 3 . 14159 * c + 2 * c + 2 ;

which evaluates incorrect ly as

area = (3 . 1 4 1 5 9 * c) + (2 * c) + 2 ;

because of the rules of operator precedence .

Common Programming Error 19.3
Forgelting to enclose macro arguments in parenlheses in the replacement text is an error.

Macro CIRCLE_A REA could be defi ned as a funct ion. Function c irc l eA rea, as i n

doubl e c i rc 1 eArea (double x) { return 3 . 1 4 1 5 9 * x * x; }

Chapter 1 9 Preprocessor 1 057

performs the same calcu lat ion as CIRCLE_A REA , but the overhead of a function cal l i s as

soc iated wi th function c i rc l eA rea. The advantages of CIRCLE_A REA are that macros

insert code d irect ly in the program-avoiding function overhead-and the program re

mains readable because CI RCLE_A REA is defined separate ly and named mean ingfu l l y . A

disadvantage i s that i ts argument is evaluated twice. Al so, every t i me a macro appears i n a

program, the macro i s expanded. If the macro is large, this produces an i ncrease i n program

size . Thus, there is a trade-off between execution speed and program s ize (i f d isk space i s

low) . Note that in l in e functions (see Chapter 3) are preferred t o obtain t h e pelformance

of macros and the software engi neering benefi ts of functions .

Performance Tip 1 9. 1
Macros can sometimes be used to replace afunction ca ll with inline code prior to execu

tion time. This eliminates the overhead of afunction call. I nlinefimctions are preferable to

macros because they offer the type-checking services offunctions.

The fol lowing i s a macro defin i t ion with two arguments for the area of a rectangle:

#de f i ne RECTANGLE_AREA { x, y) « X) * (y))

Wherever RECTANGLE_A REA (x, y) appears in the program, the val ues of X and yare

subst i tuted in the macro replacement text , and the macro is expanded in p lace of the macro

name. For example, the statement

rectArea = RECTANGLE_AREA (a + 4 , b + 7) ;

i s expanded to

rec tArea = ((a + 4) * (b + 7)) ;

The value of the expression is eval uated and ass igned to variable rectA rea.

The replacement text for a macro or symbol ic constant i s normal ly any text on the l i ne

after the identifier i n the #de f in e directive . If the replacement text for a macro or sym

bol i c constant i s longer than the remainder of the l i ne, a backslash (\) must be p laced at the

end of each l i ne of the macro (except the last l i ne) , i ndicat ing that the replacement text con

t inues on the next l i ne .

Symbolic constants and macros can be discarded us ing the #undef preprocessor direc

tive. Directive #un de f "undefines" a symbol ic constant or macro name. The scope of a sym

bol ic constant or macro is from its definit ion unt i l i t i s either undefined with #un de f or the

end of the fi le i s reached. Once undefined, a name can be redefined wi th #de f in e.

Note that expressions with side effects (i .e . , variable values are modified) should not

be passed to a macro, because macro arguments may be evaluated more than once.

19.5 Conditional Compilation

Conditional compilation enables the programmer to control the execution of preprocessor
directives and the compilation of program code . Each of the condit ional preprocessor d i
rectives evaluates a constant integer expression that wi l l determine whether the code w i l l
be compiled. Cast expressions, s i zeof expressions and enumeration constants cannot be
eval uated in preprocessor d irect ives.

The condi t ional preprocessor construct i s much l ike the if selection structure . Con

sider the fol lowing preprocessor code :

1 058 Preprocessor

i f ndef NULL
#de f ine NULL 0

#endi f

Chapter 19

These directives determine if the symbol ic constant NULL i s already defined. The expres

sion de fine d (NULL) evaluates to 1 if NULL is defined, and 0 otherwise . If the resul t

i s 0, ! de fine d (NULL) evaluates t o 1, and NULL i s defi ned. Otherwise , the # de fine

direct ive i s skipped. Every # i f construct ends with #en di f . Directives #ifdef and

#ifndef are shorthand for #i f de fine d (name) and #i f ! de f ine d (name). A

multiple-part conditional preprocessor construct may be tested using the # eli f (the

equivalent of else i f i n an i f structure) and the #else (the equivalent of else in an

i f structure) directives .

During program deve lopment, programmers often find i t helpfu l to "comment out"

large portions of code to prevent i t from being compi l ed. If the code contains C-sty le com

ments, I * and * I cannot be used to accompl i sh this task, because the first * I encountered

would terminate the comment. Instead, the programmer can use the fol lowing preprocessor

construct:

i f 0
code prevented from compil ing

#end i f

To enable the code to be compi l ed, s imply rep lace the va lue 0 i n the preceding construct

with the value 1 .

Conditional compilation i s commonly used as a debugging aid. Output statements are

often used to print variable values and to confirm the flow of contro l . These output state

ments can be enclosed in conditional preprocessor directives so the statements are com

p i led onl y until the debugging process i s completed. For example,

i fde f DEBUG
cerr « " Variable x = " « x « endl ;

#end i f

causes the cerr statement to be compi led i n the program if the symbol ic constant DEBUG

has been defined (# de fine DEBUG) before directive # i fde f DEBUG. When debugging

i s completed, the # de fine direct ive i s removed from the source fi l e and the output state

ments i nserted for debugging purposes are ignored during compi lat ion . In l arger programs,

i t might be desirable to define several different symbolic constants that control the condi

t ional compi lation in separate sections of the source file .

Common Programming Error 19.4
Inserting cond itionally compiled output statements for debugging purposes in locations

where C+ + currently expects a single statemenl can lead to syntax errors and logic errors.

In th is case, the cond itionally compiled statement should be enc losed in a compound state

ment. Thus, when the program is compiled with debugging statements, the flow of con trol of

the program is no t al tered.

1 9.6 The #error and #pragma Preprocessor Directives

The #error directive

#error tokens

Chapter 1 9 Preprocessor 1 059

prints an implementation-dependent message including the tokens speci fied i n the di

rective. The tokens are sequences of characters separated by spaces . For example ,

#error 1 - OUt o f range error

contains s ix tokens . In one popul ar C++ compi ler, for example , when a #error direct ive

i s processed, the tokens i n the directive are displayed as an error message, preprocess ing

stops and the program does not compi le .

The #pragma directive

#pragma tokens

causes an implementation-defined action . A pragma not recognized by the implementation

is ignored . A part icu lar C++ compi ler, for example, might recogn i ze pragmas that enable

the programmer to take advantage of that compi ler' s specific capab i l i t ies . For more infor

mation on #error and # pragma , see the documentation for your C++ implementation .

1 9.7 The I and II Operators

The # and ## preprocessor operators are avai lable in C++ and ANSI C . The # operator

causes a replacement-text token to be converted to a string surrounded by quotes. Cons ider

the fol lowing macro defin i tion :

#de f ine HELLO (x) cout « " He l l o , " # x « end1 ;

When HELLO (Jo hn) appears in a program fi le , it i s expanded to

cout « " He l l o , " " John " « endl ;

The string " Jo hn " replaces #x in the replacement text. Strings separated by whitespace

are concatenated during preprocessing, so the above statement is equivalent to

cout « " He l l o , John " « endl ;

Note that the # operator must be used in a macro with arguments, because the operand of

refers to an argument of the macro .

The ## operator concatenates two tokens. Consider the fol l owing macro defi n i t ion :

#de f ine TOKENCONCAT (x , y) x ## y

When TOKENCONCAT appears i n the program, i ts arguments are concatenated and used to

repl ace the macro . For example, TOKENCONCAT (0, K) is rep laced by OK in the pro

gram. The ## operator must have two operands.

1 9.8 Line Numbers

The #line preprocessor directive causes the subsequent source code l i nes to be renum

bered start ing w i th the specified constant in teger value. The d irective

l ine 1 0 0

starts l i ne numbering from 1 0 0 , beginning with the next source code l i ne . A fi l e name can
be included i n the #l ine direct ive. The directive

#l ine 1 0 0 " f i l e 1 . cpp "

i ndicates that l i nes are numbered from 1 0 0 , beginning with the next source code l ine and
that the name of the fi l e for the purpose of any compi ler messages is " f ile1. c pp " . The

1 060 Preprocessor Chapter 1 9

directive could be used to help make the messages produced by syntax errors and compiler

warn ings more mean i ngfu l . The l ine numbers do not appear i n the source fi l e.

1 9.9 Predefined Symbolic Constants

There are six predefined symbolic constants (Fig. 19. 1) . The identifiers for each predefined

symbolic constant begin and end with two underscores. These identifiers and the def i ned

preprocessor operator (Section 19.5) cannot be used in #de f ine or #unde f directives.

1 9. 1 0 Assertions

The assert macro-defi ned in the <cas sert> header fi le-tests the value of an ex

pression . I f the val ue of the expression is 0 (fal se), then as sert pri nts an error message

and cal l s function abort (of the general uti l i t ies Iibrary-<cstdlib» to terminate pro

gram execut ion. This is a u sefu l debugging tool for test ing whether a variab le has a correct

val ue. For example, suppose variable x shou ld never be larger than 10 in a program. An

assert ion may be used to test the val ue of x and pri nt an error message if the value of x i s

i ncorrect . The statement would be

a s sert (x < = 10) ;

If x i s greater than 10 when the preceding statement i s encountered i n a program, an error

message contai n ing the l i ne number and fi le name is printed, and the program terminates .

The programmer may then concentrate on this area of the code to fi nd the error. I f the sym

bol ic constant NDEBUG i s defined, subsequent assert ions w i l l be ignored . Thus , when as

sert ions are no longer needed (i .e . , when debugging i s complete) , the l ine

#de f i ne NDEBUG

is i n serted in the program fi le rather than deleting each assert ion manual ly .

Mos t C++ compi lers now incl ude exception handl ing . C++ programmers prefer us ing

exceptions rather than assert ions . But assertions are sti l l val uable for C++ programmers

who work with C legacy code.

Symbolic constant

TIME

TIMESTAMP

Description

The l i ne number of the current source code l i ne (an in teger constant) .

The presumed name of the source fi l e (a stri ng) .

The date the source fi l e i s compiled (a stri ng of the form "Mmm dd

yyyy " such as " Aug 19 2 0 0 2 ") .

Indicates whether the program conforms to the ANSI C standard . Con

tains value I if there i s fu l l conformance and is undefined otherw i se .

The t ime the source fi l e i s compi led (a string li teral of the form

"bh ::rmn: s s It) .

The date and t ime of the last mod ification to the source fi l e (a str ing of

the form " Ddd Mmm Date hh : nun : s s yyyy ", such as "Mon Aug

1 9 12 : 0 1 : 5 5 2 0 0 2 ") .

Fig. 19.1 The predefined symbolic constants.

Chapter 1 9 Preprocessor 1 06 1

SUMMARY
• A l l preprocessor d i rectives beg in wi th # and are processed before the program is compi led.

• Only whi tespace characters may appear before a preprocessor d irect ive on a l i ne.

• The # i nclude directive inc ludes a copy of the specified f i le. If the fi l e name is enc losed i n

quotes, t h e preprocessor begins searching i n t h e same di rectory a s t h e fi le being compi led for the

fi l e to be inc l uded. If the file name is enclosed i n angle brackets « and» , the search i s performed

in an implementation-defi ned manner.

• The #de f ine preprocessor d irective is used to create symbol ic constants and macros.

• A symbol ic constant is a name for a constant.

• A macro i s an operation defi ned in a #de f ine preprocessor d irective. M acros m ay be defined

with or w i thout arguments.

• The repl acement text for a macro or symbol ic constant is any text remain ing on the l i ne after the

identifier in the #de f ine directive. If the rep lacement text for a macro or symbolic constant is

too long to f i t on one l i ne , a backslash (\) i s placed at the end of the l i ne, i ndicat ing that the re

p lacement text continues on the next l i ne.

• Symbol ic constants and macros can be di scarded us ing the #unde f preprocessor d irective. Di

rect ive #unde f "undefi nes" the symbolic constant or macro name.

• The scope of a symbol ic constant or macro i s from its defin i tion un t i l i t i s either undefined wi th

#unde f or the end of the fi le i s reached.

• Condit ional compi l at ion enables the programmer to control the execution of preprocessor d i rec

tives and the compi l ation of program code.

• The condit ional preprocessor directives evaluate constant integer expressions. Cast express ions ,

s i zeof express ions and enumeration constants cannot be evaluated i n preprocessor d i rectives.

• Every # i f construct ends with #endi f .

• Directives # i fde f a n d # i fnde f are prov ided a s shorthand for # i f de f i ned (name) and

i f ! de f ined(name) .

• A multiple-part conditional preprocessor construct is tested with directi ves #el i f and #else.

• The #error direct ive prints an implementation-dependent message that inc ludes the tokens spec

i fied in the d i rect ive and terminates preprocessing and comp i l ing.

• The #pragma directive causes an i mplementation-defi ned act ion. If the pragma is not recogn ized

by the implementation, the pragma i s ignored.

• The # operator causes a replacement text token to be converted to a stri ng surrounded by quotes.

The # operator must be used in a macro with arguments because the operand of # must be an ar

gument of the m acro.

• The ## operator concatenates two tokens. The ## operator must have two operands.

• The #l ine preprocessor d i rective causes the subsequent source code l i nes to be renumbered,

start ing with the specified constant integer val ue.

• There are s ix predefined symbol ic constants. Constant LINE_ is the l i ne number of the cur

ren t source code l i ne (an i nteger). Constant _FILE_ is the presumed name of the fi l e (a

string). Constant _DATE i s t h e date t h e source fi le i s compi led (a string). Constant

TIME i s the t ime the source fi le i s compiled (a stri ng). Note that each of the predefined sy m

bolic constants beg ins and ends with two underscores.

• The a s s ert macro---defi ned in the <ca s s ert > header f i l e-tests the va lue of an expression.

If the value of the expression i s 0 (fa lse) , then as sert pri nts an error message and cal l s funct ion

abort to terminate program execution.

1 062 Preprocessor

TERMINOLOGY
\ (backslash) continuation character

abort

argument

a s sert

<ca s sert >

concatenation preprocessor operator ##

conditional compilation

conditional execution of preprocessor

convert-to-string preprocessor directive

<c stdio>

<c stdlib>

DATE

debugger

#de fine

directives

#e lif

header file

#if

#ifdef

#ifnde f

#inc lude " filename "

#inc lude <filename >

LINE

#line

macro

macro with arguments

operator #

#pragma

predefined symbolic constants

preprocessing directive

preprocessor

replacement text

Chapter 1 9

#else

#endif

scope of a symbolic constant or macro

standard library header files

terror symbolic constant

expand a macro _TIME_

FILE #unde f

SELF-REVIEW EXERCISES
1 9. 1 Fill in the blanks in each of the following:

a) Every preprocessor directive must begin with ____ _
b) The conditional compilation construct may be extended to test for multiple cases by using

the and the directi ves.

c) The directive creates macros and symbolic constants.

d) Only characters may appear before a preprocessor directive on a line.

e) The directive discards symbolic constant and macro names.

f) The and directives are provided as shorthand notation for #if

g)

de fined (name) and #if ! defined (name).

_____ enables the programmer to control the execution of preprocessor directives

and the compilation of program code.

h) The macro prints a message and terminates program execution if the value

of the expression the macro evaluates is O.
i) The directive inserts a file in another file.

j) The _____ operator concatenates its two arguments.

k) The operator converts its operand to a string.

I) The character indicates that the replacement text for a symbolic constant or

macro continues on the next line.

m) The directive causes the source code lines to be numbered from the indicated

value, beginning with the next source code line.

1 9.2 Write a program to print the values of the predefined symbolic constants _LINE_,

FILE, _DATE_, _TIME_ and _TIMESTAMP_ listed in Fig. 19.1.

1 9.3 Write a preprocessor directive to accomplish each of the following:

a) Define symbolic constant YES to have the value 1 .

b) Define symbolic constant NO to have the value O.

Chapter 1 9 Preprocessor 1 063

c) Include the header file conunon . h . The header is found in the same directory as the file

being compiled.

d) Renumber the remaining lines in the file, beginning with line number 3 0 0 0 .

e) If symbolic constant TRUE is defined, undefine it, and redefine it as 1 . Do not use

i fde f .

f) I f symbolic constant TRUE is defined, undefine it, and redefine it as 1 . Use the # i fde f

preprocessor directive.

g) If symbolic constant ACTIVE is not equal to 0 , define symbolic constant INACTIVE as

O. Otherwise, define INACTIVE as 1 .

h) Define macro CUBE_VOLUME that computes the volume of a cube (takes one argument).

ANSWERS TO SELF-REVIEW EXERCISES
1 9. 1 a) # . b) #e 1 i f , #e1se . c) #de f ine. d) whitespace. e) #unde f . f) # i fde f , # i fndef .

g) Conditional compilation. h) as sert. i) #inc1ude. j) # # . k) # . I) \. m) # l ine.

1 9.2 (See below.)

II ex1 9 0 2 . cpp 1
2
3
4
5
6
7
8
9

II Sel f-review exerc i se 1 9 . 2 solut ion.
inc1ude < io s t ream>

using s td : : cout ;
us ing std : : end1 ;

int main ()
{

1 0
1 1
12
1 3
1 4
1 5
1 6
1 7
1 8

cout « II II < < _LINE_ < < end1 LINE - -

« II F I LE - - .. « _FI LE « end1
« II DATE - -

II « _DATE_ « end1
« II _TIME - .. « _TIME_ « end1
« " _TIMESTAMP_ " « _TIMESTAMP_ « end1;

return 0;

} II end main

LINE 9
FILE = c : \ cpp4e \ ch1 9 \ ex19_0 2 . CPP
DATE = Ju1 17 2 0 0 2
TIME = 0 9 : 5 5 : 58
_TIMESTAMP = Wed Ju1 17 0 9 : 5 5 : 58 2002

1 9 .3 a) #de f ine YES 1

b) #de f ine NO 0

c) # inc1ude " conunon.h "

d) # l ine 3 0 0 0

e) # i f def ined (TRUE)

#undef TRUE

#de f ine TRUE 1

#endi f

1 064 Preprocessor Chapter 1 9

t) # i fde f TRUE

#unde f TRUE

#de f i ne TRUE 1

#end i f

g) # i f ACTIVE

#de f ine INACTIVE 0

#else

#de f ine INACTIVE 1

#endif

h) #de f ine CUBE_VOLUME(x « x) * (x) * (x»

EXERCISES
1 9.4 Write a program that defi nes a macro with one argument to compute the volume of a sphere.

The program should compute the volume for spheres of rad i i from I to I 0 and pri nt the resu l ts i n tab

u lar format. The formula for the volume of a sphere is

(4 . 0 / 3) * n * r3

where n is 3 . 1 4 1 5 9 .

1 9.5 Write a program that produces the fol lowing output :

The sum of x and y i s 1 3

The program should defi ne macro S UM with two arguments, x and y, and use S UM t o produce the

output.

1 9.6 Write a program that uses macro MINIMUM2 to determi ne the smal ler of two nu meric va lues .

Input the values from the keyboard.

1 9. 7 Write a program that uses macro MINIMUM3 to determine the smal lest of three numeric val

ues . Macro M INIMUM3 shou ld use macro MINIMUM2 defined i n Exerc ise 1 9.6 to determine the

smal lest number. Input the val ues from the keyboard.

1 9.8 Write a program that uses macro PRINT to pr in t a stri ng va lue .

1 9.9 Write a program that uses macro PRINTARRAY to print an array of i ntegers . The macro

should recei ve the array and the number of elements in the array as arguments .

1 9. 1 0 Write a program that uses macro SUMARRAY to sum the val ues in a numeric array . The macro

should receive the array and the number of e lements in the array as arguments .

1 9. 1 1 Rewrite the solut ions to Exerc i se 19.4 to Exerc ise 1 9. 1 0 as inl ine funct ions .

1 9. 1 2 For each of the fol lowing macros, identify the poss ib le problems (if any) when the prepro-

cessor expands the macros:

a) #de f ine SQR (x x * x
b) #de f i ne SQR(x x * x)
c) #de f ine SQR(x x * (x
d) #de f ine SQR(x x * (x))

20
C Legacy Code Topics

Objectives

• To redirect keyboard input to come from a file and

redirect screen output to a file.

• To write functions that use variable-length argument

lists.

• To process command-line arguments.

• To process unexpected events within a program.

• To allocate memory dynamically for arrays, using

C-style dynamic memory allocation.

• To resize memory dynamically allocated, using

C-style dynamic memory allocation.

We'll use a signal! have tried andfound

far-reaching and easy to yell. Waa-hoo!

Zane Grey

It is quite a three-pipe problem.

S ir Arthur Conan Doyle

But yet an union in partition.

Wil l iam Shakespeare

1 066 C Legacy Code Topics

Outline

20. 1 IntroducHon

20.2 RedirecHng Input/Output on UNIX and DOS Systems

20.3 Variable-Length Argument Usts

20.4 Using Command-Une Arguments

20.5 Notes on Compiling MuIHple-Source-File Programs

20.6 Program TerminaHon with exit and atexit

20.7 The volatile Type Qualifier

20.8 Suffixes for Integer and FloaHng-Point Constants

20.9 Signal Handling

Chapter 20

20. 10 Dynamic Memory AliocaHon with calloc and realloc
20. 1 1 The UncondlHonal Branch: goto
20. 12 Unions

20. 13 Unkage SpecificaHons

Summary • Terminology· Self-Review Exercises· Answers to Self-Review Exercises· Exercises

20.1 Introduction

Thi s chapter presents several topics not ordinari ly covered i n i ntroductory courses. Many

of the capab i l i t ies discussed here are specific to part icular operating systems, especia l ly

UNIX and/or DOS . Much of the material i s for the benefi t of c++ programmers who w i l l

need to work wi th older C legacy code .

20.2 Redirecting Input/Output on U N IX and DOS Systems

Normal ly , the i nput to a program is from the keyboard (standard input) , and the output from

a program is displayed on the screen (standard output) . On most computer systems-UNIX

and DOS systems in part icular-it is possible to redirect i nputs to come from a fi le , and

redirect outputs to be p laced in a fi le . Both forms of redirection can be accompl i shed with

out using the fi le-processing capabi l i ties of the standard l ibrary .

There are several ways to redirect input and output from the UNIX command l ine .

Consider the executable fi le sum that inputs integers one at a time, keeps a running total of

the values unt i l the end-of-fi le indicator is set, then prints the resul t . Normal ly the user

inputs integers from the keyboard and enters the end-of-fi le key combination to indicate

that no further val ues wil l be input . With input redirection, the i nput can be stored in a fi le .

For example, if the data are stored in fi le in put , the command l ine

$ sum < input

causes program sum to be executed; the redirect input symbol «) indicates that the data in

fi le in put (instead of the keyboard) are to be used as input by the program. Redi rect ing

input on a DOS system is performed identical ly .

Chapter 20 C Legacy Code Topics 1 067

Note that $ i s the UNIX command- l ine prompt . (Some UNIX systems use a % prompt.)

Redirection i s a n operating-system function, not another C++ feature.

The second method of redirect ing i nput is piping. A pipe (/) causes the output of one

program to be redirected as the input to another program. Suppose program ran do m out

puts a series of random integers ; the output of ran do m can be "piped" directly to program

sum using the U NIX command l i ne

$ random I sum

This causes the sum of the integers produced by ran do m to be calcu lated. Piping can be

performed in U NIX and DOS .

Program output can be redirected to a fi le by using the redirect output symbol (». (The

same symbol i s used for U NIX and DOS .) For example, to redirect the output of program

ran do m to a new fi le cal led o ut , use

$ random > out

Final ly , program output can be appended to the end of an exis t ing fi le by us ing the

append output symbol (»). (The same symbol i s used for U NIX and DOS .) For example ,

to append the output from program ran do m to fi le o ut created i n the preceding command

l i ne , use the command l ine

$ random » out

20.3 Variable- Length Argument Lists 1
It i s possible to create functions that receive an unspecified number of arguments . An e l l ip

s i s (• • •) in a funct ion ' s prototype i ndicates that the function recei ves a variable number

of arguments of any type. Note that the e l l ipsis must always be p laced at the end of the pa
rameter l i st , and there must be at least one argument before the e l l ips i s . The macros and
defi ni t ions of the variable arguments header <cstdarg> (Fig . 20. 1) provide the capab i l
i t i e s necessary to bu i ld functions wi th variable- length argument l ists.

Identifier

va list

Description

A type suitable for holding information needed by macros va_start,

va_arg and va_end. To access the arguments in a variable-length

argument list, an object of type va_l ist must be declared.

A macro that is invoked before the arguments of a variable-length argu

ment list can be accessed. The macro initializes the object declared

with va_l i s t for use by the va_arg and va_end macros.

Fig. 20. 1 The type and the macros defined in header <cstdarg>. (Part 1 of 2.)

I. In C++, programmers use function overloading to accomplish much of what C programmers ac
complish with variable-length argument lists.

1 068 C Legacy Code Topics

Identifier Description

Chapter 20

va_arg A macro that expands to an expression of the value and type of the next

argument in the variable-length argument list. Each invocation of

va_arg modifies the object declared with va_l ist so that the object

points to the next argument in the list.

va_end A macro that performs termination housekeeping in a function whose

variable-length argument list was referred to by the va_start macro.

Fig. 20. 1 The type and the macros defined in header <cstdarg>. (Part 2 of 2 .)

Figure 20.2 demonstrates function a vera ge that receives a variable number of argu

ments. The first argument of a vera ge i s always the number of values to be averaged, and

the remai nder of the arguments must a l l be of type double.

Function a vera ge uses al l the defin i tions and macros of header < cs tda rg > . Object

l is t, of type va _l is t, is used by macros va _s ta rt, va _a rg and va _end to pro

cess the var iable- length argument l i s t of function a vera ge. The function invokes

va_s ta rt to in it ial ize object l is t for use i n va _a rg and va _end. The macro recei ves

two arguments-object l is t and the identifier of the rightmost argument i n the argument

l i s t before the e l l ips is-coun t in this case (va_s ta rt uses coun t here to determine

where the variable- length argument l ist begins) .

1 II Fig . 2 0 . 2 : f ig2 0_0 2 . cpp
2 II Using variab le-length argument l ists .
3 # inc lude < i ostream>
4
5 using std : : cout;
6 using std : : endl;
7 using std : : ios;
8
9 #inc lude < iomanip >

1 0
1 1 using std : : setw;
1 2 using std : : setprecision;
1 3 using std : : set i osf lags;
1 4 using std : : f ixed;
1 5
1 6 #inc lude <cstdarg>
1 7
1 8 doubl e average (int , . • .) ;
1 9
20
2 1
22
23
24
25
26

int main ()
{

doubl e
doubl e
doubl e
doubl e

doubl e 1 3 7 . 5;
double2 2 2 . 5;
double3 1 . 7 ;
doubl e 4 1 0 . 2;

Fig. 20.2 Using variable-length argument l ists. (Part 1 of 2.)

Chapter 20

doubl e 1 3 7 . 5
double2 2 2 . 5
double3 1 . 7
double4 = 1 0 . 2

C Legacy Code Topics

The average of doub l e 1 and double2 i s 3 0 . 0 0 0
The average o f double 1 , double2 , and double3 i s 2 0 . 5 6 7
The average o f doubl e 1 , double2 , double3 and doubl e 4 i s 1 7 . 9 7 5

Fig. 20.2 Using variable-length argument l ists. (Part 2 of 2.)

1 069

Next, function a vera ge repeatedly adds the arguments in the variable-length argu

ment l i st to the tota1 . The value to be added to tota l i s retrieved from the argument l i st

by invoking macro va _a rgo Macro va _a rg recei ves two arguments-object l is t and

the type of the value expected i n the argument l i st (double in this case)-and returns the

value of the argument . Function a vera ge i nvokes macro va _end wi th object l is t as

an argument before return ing . Final ly , the average is calcu lated and returned to ma in. Note

1 070 C Legacy Code Topics Chapter 20

that we used on ly doubl e arguments for the variable- length portion of the argument l i st .

Actual l y , any data type or a mixture of data types can be used as long as the proper type i s

specified each t ime va _a rg i s used.

Common Programming Error 20. 1
Placing an ellipsis in the middle of afunction parameter list is a syntax error. An ellipsis may

only be placed at the end of the parameter list.

20.4 Using Command - Line Arguments

On many systems-DOS and UNIX in part icular-it is poss ib le to pass arguments to ma in

from a command l i ne by i nc luding parameters int argc and cha r * argv [] i n the pa

rameter l i st of ma in. Parameter a rgc recei ves the number of command- l i ne arguments .

Parameter a rgv i s an array of cha r * ' s point ing to stri ngs i n which the actual command

l i ne arguments are stored. Common uses of command- l i ne arguments inc lude print ing the

arguments, passing options to a program and passing fi l enames to a program.

Figure 20.3 copies a fi l e i nto another fi le one character at a t ime. The executable fi l e

for the program i s cal led copyFile (i .e . , the executable name for the fi l e) . A typical com

mand l ine for the copyF i l e program on a UNIX system is

$ copyFi le input output

This command l ine indicates that fi le input is to be copied to fi l e output . When the pro

gram executes, if a rgc is not 3 (copyFile counts as one of the arguments) , the program

prints an error message and terminates (l i nes 1 7- 1 8) . Otherw i se , array a rgv contains the

strings " copyF i l e " , " input " and " output " . The second and third arguments on the

command l ine are used as fi le names by the program . The fi les are opened by creat ing i f

s t ream object inF i l e and o f s t ream object outF i l e (l i nes 2 1 and 30) . I f both fi les

are opened successfu l ly , characters are read from fi l e input with member function get

and written to fi le output with member function put unti l the end-of-fi l e indicator for

fi l e input i s set (l ines 40-46) . Then the program terminates . The resu l t i s an exact copy

of fi le input. Note that not al l computer systems support command- l ine arguments as eas

i l y as UNIX and DOS . Some Macintosh and VMS systems, for example , requ i re specia l

sett ings for processing command- l ine arguments. See the manuals for your system for more

information on command- l i ne arguments.

1 II F ig . 2 0 . 3 : f ig2 0_0 3 . cpp
2 I I Us ing command- l ine argument s
3 #inc lude < i ostream>

4
5 using std : : cout;

6 using std : : endl;

7 using std : : ios;

8
9 # inc lude < fstream>

1 0
1 1 using std : : i fstream;

1 2 using std : : o fstream;

Fig. 20.3 Using command-l ine arguments. (Part 1 of 2.)

Chapter 20

int main e int argc , char * argv [])
{

C Legacy Code Topics

I I check number o f command- line argument s
if (argc 1 = 3)

1 07 1

1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1

cout « " Usage : copyFi le infile_name out file_name " « endl;

else {
ifstream inFile (argv [1] , ios : : in) ;

I I input f i le could not be opened
if (! inFile) {

c out « argv [1] « " could not be opened " « endl;
return - 1 ;

} I I end if

o f stream outFile (argv [2] , ios : : out) ;

I I output file could not be opened
if (! outFile) {

c out « argv [2
inFile . c lo se () ;
return - 2 ;

} I I end i f

« " could not b e opened " « endl;

char c = inFile . get () ; I I read f ir s t charact e r

while (inFile) {
outFile . put (c) ;
c = inFile . get () ;

} I I end while
I I end el s e

return 0 ;

} / 1 end main

I I output character
I I read next character

Fig. 20.3 Using command-l ine arguments. (Part 2 of 2 .)

20.5 Notes on Compil ing Multiple-Sou rce- Fi le Programs

As stated earl ier i n the text, i t i s normal to bui ld programs that consist of mult iple source

fi les (see Chapter 6, Classes and Data Abstraction) . There are several considerations

when creat ing programs in mult iple fi les . For example, the defin i tion of a function must be

entirely contained in one fi l e-it cannot span two or more fi les .

I n Chapter 3 , we in troduced the concepts of storage c lass and scope . We learned that

variables declared outside any function defin i tion are of storage c lass s ta t i c by defaul t

and are referred to as g lobal variables. Global variables are accessible to any function

defined in the same fi le after the variable i s declared. Global variables also are accessible

to functions in other fi les ; however, the global variables must be declared i n each fi le in

1 072 C Legacy Code Topics Chapter 20

which they are used. For example, if we define global integer variable f la g in one fi le ,
and refer to i t in a second fi le , the second fi le must contain the declarat ion

extern int f lag ;

prior to the variab le ' s use i n that fi le . In the preceding declaration , the storage c lass spec i
fier extern indicates to the compiler that variable f la g i s defined e i ther l ater i n the same
fi le or i n a different fi le . The compiler informs the l inker that unresol ved references to vari
able f la g appear in the fi le . (The compi ler does not know where f la g i s defined, so it
lets the l inker attempt to find f la g.) If the l i nker cannot locate a defin i tion of f la g, a l ink
er error i s reported. I f a proper global defin ition i s located, the l i nker resolves the references

by i ndicating where f la g i s located .

Performance Tip 20. 1
� Global variables increase performance because they can be accessed directly by any func-

• • tion-the overhead of passing data to functions is eliminated.

n9 n n r ahon 0
Global variables should be avoided unless application performance is critical, because they

violate the principle of least privilege, and they make software difficult to maintain.

Just as extern declarat ions can be used to declare g lobal variables to other program

fi les , function prototypes can be used to dec lare functions in other program fi les . (The

extern specifier i s not required in a function prototype .) Thi s is accompl i shed by

inc luding the function prototype in each fi le i n which the function is i nvoked, then com

pi l ing the fi les together. Function prototypes i ndicate to the compi ler that the specified

function i s defined either l ater in the same fi le or in a different fi le . The compi ler does not

attempt to resolve references to such a function-that task i s left to the l i nker. I f the l i nker

cannot locate a function defin i tion, an error i s generated.

As an example of us ing function prototypes to extend the scope of a function, consider

any program contai n ing the preprocessor directive # inc lude < cs tring> . Thi s direc

t ive inc ludes i n a fi l e the function prototypes for functions such as s trcmp and s trca t .

Other functions i n the fi l e can use s t rcmp and s trca t to accompl i sh their tasks . The

s trcmp and s trca t functions are defined for us separately . We do not need to know

where they are defined. We are simply reusing the code in our programs. The l i nker

resolves our references to these functions . Thi s process enables us to use the functions in

the standard l ibrary .

a n

Creating programs in multiple source files facilitates software reusability and good software

engineering. Functions may be common to many applications. In such instances, thosefunc

tions should be stored in their own source files, and each source file should have a corre

sponding header file containing function prototypes. This enables programmers of different

applications to reuse the same code by including the proper header file and compiling their

application with the corresponding source file.

Portabi l ity Tip 20. 1
Some systems do not support global variable names or function names of more than 6 char

acters. This should be considered when writing programs that will be ported to multiple plat

forms.

Chapter 20 C Legacy Code Topics 1 073

I t i s poss ib le to restrict the scope of a g lobal variab le or funct ion to the fi l e in which

i t i s defined . The storage c l ass spec ifier stat i c , when app l ied to a fi le scope variab le

or a function , prevents i t from bei ng used by any funct ion that i s not defi ned i n the same

fi le . Th i s i s referred to as internal linkage . Global variab les (except those that are

con s t) and funct ions that are not preceded by stat i c i n their defi n i tions have

external linkage-they can be accessed in other fi les if those fi l e s contai n proper dec l a

rati ons and/or funct ion prototypes .

The global variable declarat ion

stat i c doubl e p i = 3 . 1 4 1 5 9 ;

creates variable pi of type double, i n i t ia l izes it to 3.1 41 5 9 and i ndicates that p i i s

known on ly to funct ions i n t he fi le i n which it i s defined.

The s t a t i c spec ifier i s common ly used with uti l i ty funct ions that are cal l ed only by

functions in a part icu lar fi le . If a function i s not required outside a part icu lar fi le , the pri n

c ip le of least priv i lege should be enforced by us ing stat i c . I f a function i s defi ned before

it is used in a fi le , stat i c should be appl ied to the function defin i t ion . Otherwise,

stat i c should be applied to the function prototype .

When bui ld ing l arge programs from mult ip le source fi les , compi l i ng the program

becomes tedious if making smal l changes to one fi le means that the ent ire program must be

recompiled. Many systems provide special ut i l i t ies that recompi le on ly the modified pro

gram fi le . On UNIX systems, the ut i l ity is cal led make. Uti l ity make reads a fi l e cal l ed

makefile that contai ns i nstructions for compi l ing and l i nk ing the program. Systems such

as Borland C++ and Microsoft Vi sual C++ for PCs provide make uti l i t ies and "projects ."

For more information on make uti l i t ies , see the manual for your part icu lar system.

20.6 Program Termination with exi t and atex i t

The general uti l i t ies l ibrary « c stdlib» provides methods of terminati ng program exe

cution other than a conventional return from function main . Function exi t forces a pro

gram to terminate as if i t executed normal ly . The function often is used to terminate a

program when an error i s detected i n the i nput or if a fi le to be processed by the program

cannot be opened. Function atexi t registers a function in the program to be cal l ed when

the program terminates by reaching the end of main or when exi t i s i nvoked.

Function atexit takes a poi nter to a function (i .e . , the function name) as an argu

ment. Functions cal led at program termination cannot have arguments and cannot return a

value.

Function exi t takes one argument . The argument i s normal l y the symbol ic constant

EXIT_SUCCESS or EXIT_FAILURE. If exi t i s called with EXIT_SUCCESS, the

implementation-defi ned value for successfu l termination i s returned to the cal l i ng environ

ment . I f exi t i s cal led with EXIT_FA I LURE, the implementation-defi ned value for

unsuccessfu l terminat ion is returned. When function exi t is i nvoked, any functions pre

viously regi stered with atexi t are invoked in the reverse order of their reg istration, a l l

streams associated with the program are fl ushed and c losed, and control returns to the host

environment . Figure 20.4 tests functions exit and atexi t . The program prompts the

user to determine whether the program should be termjnated with exit or by reaching the

end of main . Note that function prin t is executed at program termination in each case.

1074 C Legacy Code Topics Chapter 20

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43

I I Fig . 2 0 . 4 : f ig2 0 0 4 . cpp
I I Using the exit and atexit funct ions
#inc lude <iostream>

using s td : : cout;
using std : : endl;
using std : : cin;

inc lude < c s tdlib>

void print () ;

int main ()

{
atexit (print) ; I I register funct ion print

cout « " Enter 1 to terminate program with func t i on exi t "
« " \nEnter 2 to terminate program norma l ly \ n " ;

int answer;
cin » answer;

I I exit if answer is 1
i f (answer = = 1) {

cout « " \nTerminat ing program with func t i on exit \ n " ;
exit (EXIT_SUCCESS) ;

} / I end i f

cout « " \ nTerminat ing program by reaching the end of main "
« endl;

return 0 ;

I I end main

I I disp lay message before terminat ion
void print ()

{
cout « " Execut ing funct ion print at program t erminat ion \ n "

« " Program terminated" « endl;

} I I end func t i on print

Enter 1 to terminate program with funct ion exit

Enter 2 to terminate program normal ly

2

Terminating program by reaching the end of main
Executing function print at program termination
Program terminated

Fig. 20.4 Using functions exit and atexit. (Part 1 of 2 .)

Chapter 20 C Legacy Code Topics

Enter 1 to termdnate program with function exit
Enter 2 to t ermdnate program normal ly
1

Termdnating program with function exit
Executing function print at program te�ination
Program t ermdnated

Fig. 20.4 Using functions exit and atexit. (Part 2 of 2 .)

20.7 The vol at i le Type Qual ifier

1 075

The volatile type qual ifier i s appl ied to a defi nit ion of a variabl e that may be a ltered

from outside the program (i .e . , the variable i s not complete ly under the control of the pro

gram) . Thus , the compiler cannot perform optimizations (such as speeding program execu

tion or reducing memory consumption, for example) that depend on "knowing that a

variab le ' s behav ior i s influenced only by program activit ies the compi l er can observe ."

20.8 Suffixes for I nteger and Floating- Point Constants

c++ provides integer and floating-point suffi xes for specify ing the types of i nteger and

floating-point constants . The integer suffixes are : u or U for an uns igned i n teger, 1 or L

for a long i n teger, and ul or UL for an uns igned l ong in teger. The fol l owing con

stants are of type uns igned, long and uns igned long, respective ly :

1 7 4u
8 3 5 8L
2 8 3 7 3u l

I f an in teger constant i s no t suffi xed, i t s type i s int ; if t he constant cannot be stored i n an

int i t is stored in a long.

The floating-point suffixes are f or F for a f l oa t and 1 or L for a l ong double.

The fol lowing constants are of type long double and f l oa t, respect ively :

3 . 1 4 1 5 9 L
1 . 2 8 f

A float ing-point constant that i s not suffi xed i s of type double. A constant wi th a n im

proper suffix resul ts i n either a compiler warn ing or an error .

20.9 Signal Handl ing

An unexpected event, or signal, can terminate a program premature ly . Some unexpected
events inc lude interrupts (pressing Ctrl+C on a UNIX or DOS system) , illegal instructions,
segmentation violations, termination orders from the operating system and floating-point

exceptions (d iv i s ion by zero or mUl t ip ly ing large floati ng-poi nt values) . The signal-han
dling library provides function signal to trap unexpected even t s. Function s igna l re
ceives two arguments-an in teger signal number and a pointer to the s ignal -handl ing
function. S igna ls can be generated by function rai se, which takes an in teger s igna l num-

1 076 C Legacy Code Topics Chapter 20

ber as an argument . Figure 20.5 summarizes the standard signals defined in header fi l e

<csi gnal>. The next example demonstrates functions s igna l and ra is e .

Figure 20.6 traps an i nteracti ve signal (SIGINT) wi th function s igna l . The program

cal l s s igna l with SIGINT and a pointer to function s igna lHa ndler. (Remember that

the name of a function i s a pointer to the function .) Now, when a s ignal of type SIGINT

occurs, function s igna lHa ndler is cal led, a message i s printed and the user i s given the

option to continue normal execution of the program. If the user wishes to continue execu

t ion, the s ignal handler i s rein i t ia l ized by cal l ing s igna l again (some systems requ i re the

s ignal handler to be rein i t ial ized), and control returns to the poi nt in the program at which

the s ignal was detected. I n th is program, function ra is e i s used to s imulate an i nteract ive

s ignal . A random number between 1 and 50 i s chosen . I f the number i s 2 5, then ra is e i s

cal led to generate the signal . Normal ly, interactive signal s are i n i t iated outs ide the program .

For example, pressing Ctrl+C during program execution on a UNIX or DOS system gen

erates an in teractive signal that terminates program execution. S ignal handl ing can be used

to trap the i nteractive signal and prevent the program from terminat ing .

Signal Explanation

S I GABRT Abnormal termination of the program (such as a cal l to abort) .

S I GFPE An erroneous ari thmetic operation, such as a div ide by zero or an

operation resul t ing i n overflow.

S I GILL Detection of an i l legal i nstruct ion .

S IGINT Receipt of an i nteractive attent ion s ignal .

S I GSEGV An i nval id access to storage.

S I GTERM A termi nat ion request sent to the program.

Fig. 20.5 Signals defined in header <csignal>.

1 I I Fig . 2 0 . 6 : f ig2 0_0 6 . cpp
2 I I Using s i gnal handling
3 # inc lude < iostrearn>

4
5 us ing s td : : cout ;
6 u sing std : : c i n ;
7 us ing std : : endl ;
8
9 # inc lude < iomanip >

1 0
1 1 using s td : : setw;
1 2
1 3 # inc lude < c s igna l >
1 4 # inc lude < c stdlib>
1 5 # inc lude < c t ime >
1 6
1 7 void s i gnalHandler(int) ;

Fig. 20.6 Using signal handl ing . (Part 1 of 3.)

Chapter 20 C Legacy Code Topics

int main ()
(

s i gnal (S IGINT, s i gnalHandler) ;
srand (t ime (0)) ;

I I c reate and output random numbers
for (i nt i = 1; i <= 1 0 0; i + +) (

int x = 1 + rand () % 5 0 ;

I I rai se S IGINT when x i s 2 5
i f (x = = 2 5)

rai se (S IGINT) ;

cout « setw (4) « i ;

I I output endl when i i s a mUl t iple o f 1 0
i f (i % 1 0 = = 0)

cout « endl ;

I I end for

return 0;

I I end main

I I handles s i gnal
void s i gnalHandl er (int s i gnalValue)
{

cout « " \nInterrupt s i gnal (" « s i gnalValue
« ") received . \n "
« " Do you wi sh to cont inue (1 = yes or 2

int response ;

cin » respons e ;

I I check f o r invalid responses
whi l e (response ! = 1 && response ! = 2) {

c out « " (1 = yes or 2 = no) ? " ;
c in » re sponse ;

I I end whi le

I I determine if i t i s t ime to exit
if (re sponse ! = 1)

exit (EXIT_SUCCESS) ;

no) ? " ;

1 077

1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69

I I cal l s i gnal and pa s s it SIGINT and addre s s of s i gnalHandler
s i gnal (S IGINT, s i gnalHandler) ;

} I I end func t ion s ignalHandler

Fig. 20.6 Using signal handl ing . (Part 2 of 3 .)

1 078 C Legacy Code Topics

1 2 3 4 5 6 7 8 9
1 1 1 2 1 3 14 15 1 6 17 1 8 1 9
2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9
3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9
4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9
5 1 5 2 5 3 5 4 5 5 5 6 57 5 8 5 9
6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9
7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9
8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9
9 1 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9

Interrupt s i gnal (2) rece ived .
Do you wish to cont inue (1 = ye s or 2

1 0 0

1 2 3 4
Interrupt s i gnal (2) rece ived .
Do you wish to cont inue (1 = yes or 2

Fig. 20.6 Using signal hand l ing . (Part 3 of 3.)

10
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

= no) ? 1

no) ? 2

20.10 Dynamic Memory Allocation with ca l loc and
rea l loc

Chapter 20

In Chapter 7 , we di scussed C++-sty le dynamic memory a l location wi th new and de lete.

C++ programmers shou ld use new and de lete, rather than C ' s functions mal loe and

free (header < es tdl ib» . However, most C++ programmers w i l l fi nd themselves read

ing a great deal of C legacy code, and therefore we incl ude th is addit ional discussion on C

style dynamic memory a l location .

The general ut i l i t ies l ibrary « es tdlib» provides two other functions for dynamic

memory al location-eal loe and rea l loe . These functions can be used to create and

modify dynamic arrays. As shown in Chapter 5 , Pointers and Strings, a pointer to an array

can be subscripted l i ke an array . Thus, a poi nter to a contiguous port ion of memory created

by eal loe can be manipulated as an array . Function eal loe dynamical l y al l ocates

memory for an array and in i tia l izes the memory to zeroes. The prototype for eal loe is

void * cal loc (s i z e_t nmemb , s i z e_t s i z e) ;

I t receives two arguments-the number of elements (nmemb) and the s ize of each element

(s i z e)-and i n i t ia l izes the elements of the array to zero . The function returns a poin ter to

the al located memory or a nu l l pointer (0) if the memory i s not a l located .

Function rea l loe changes the s ize of an object a l located by a previous cal l to

mal loe, eal loe or real loe. The original object ' s contents are not modified, provided

that the memory a l located i s l arger than the amount a l located previous ly . Otherwise , the

contents are unchanged up to the s ize of the new object . The prototype for rea l loe i s

void * realloc (void *ptr , s i z e_t s i z e) ;

Function real loe takes two arguments-a pointer to the original object (ptr) and the

new size of the object (s i ze) . If ptr i s 0 , realloe works identical ly to mal l oe . If

Chapter 20 C Legacy Code Topics 1 079

s i ze is 0 and ptr is not 0 , the memory for the object is freed. Otherw i se , if ptr is not 0

and s ize i s greater than zero, rea l loc tries to a l locate a new b lock of memory . I f the new

space cannot be a l located, the object pointed to by ptr i s unchanged. Function rea l loc

returns ei ther a pointer to the real located memory or a nul l pointer.

20. 1 1 The Unconditional Branch: goto

Throughout the text we have stressed the importance of us ing structured programming

techniques to bui l d rel i able software that i s easy to debug, main tain and modify . I n some

cases, performance i s more important than strict adherence to structured-programming

techniques . I n these cases , some unstructured programming techniques may be used. For

example, we can use brea k to terminate execution of a repetit ion structure before the l oop

continuat ion condit ion becomes fal se. Thi s saves unnecessary repetit ions of the loop if the

task i s completed before loop term inat ion .

Another i nstance of unstructured programming i s the goto statemen t-an uncondi

t ional branch . The resu l t of the goto statement i s a change i n the flow of control of the

program to the first statement after the label specified i n the goto statement . A l abel i s an

identifier fol lowed by a colon. A label must appear i n the same function as the goto state

ment that refers to it. Figure 20.7 uses goto statements to loop 1 0 t imes and print the

counter value each t ime. After in i t ia l iz ing count to 1 , the program tests c ount to

determine whether i t i s greater than 1 0 . (The label s ta rt is skipped, because l abe l s do not

perform any act ion .) I f so, control i s transferred from the goto to the first statement after

the l abel end. Otherwise, count is printed and i ncremented, and control is transferred

from the goto to the first statement after the l abel s ta rt .

1 II Fig . 2 0 . 7 : f ig2 0_0 7 . cpp
2 II Using goto .
3 # inc 1ude < io stream>
4
5 u s ing std : : c out ;
6 us ing std : : end1 ;
7
8 #inc 1ude < i omanip >
9

1 0 us ing s td : : 1eft ;
1 1 us ing s td : : setw;
1 2
1 3 int main ()
1 4 {
1 5 int count = 1 ;
1 6
1 7 start : II labe l
1 8
1 9 II goto end when c ount exceeds 1 0
20 i f (c ount > 1 0)
2 1 goto end ;
22
23 c out « setw (2) « left « count ;

Fig. 20. 7 Using goto. (Part 1 of 2.)

1 080

24
25
26
27
28
29
30
3 1
32
33
34
35

\ ' 2

Fig. 20. 7

C Legacy Code Topics

+ +count ;

I I goto s tart on l ine 17
goto start ;

end : I I labe l

cout « endl ;

return 0 ;

I I end main

3 4 5 6 7 8 9 10

Using goto. (Part 2 of 2 .)

Chapter 20

I n Chapter 2, we stated that only three control structures are required to write any pro

gram-sequence, selection and repetit ion. When the ru les of structured programming are

fol lowed, it is possible to create deeply nested control structures from which it is difficu l t

to escape effic ient ly . Some programmers use goto statements in such situations as a quick

ex i t from a deeply nested structure . This e l iminates the need to test mul t ip le condit ions to

escape from a control structure .

Performance Tip 20.2
The goto statement can be used to exit deeply nested control structures efficiently.

The goto statement should be used only in pelformance-oriented applications. The goto

staternent i s unstructured and can lead to programs that are more difficult to debug, maintain

and modify.

20. 1 2 Unions

A union (defined with keyword un ion) i s a region of memory that , over t ime, can contain

objects of a variety of types . However, at any moment, a un ion can contain a max imum

of one object, because the members of a un ion share the same storage space . I t is the pro

grammer' s respons ib i l i ty to ensure that the data i n a un ion is referenced with a member

name of the proper data type .

Common Programming Error 20.2
The result of referencing a uni on member other than the last one stored is undefined. It

treats the stored data as a different type.

Portability Tip 20.2
If data are stored in a uni on as one type and referenced as another type, the results are

implementation-dependent.

At different t imes during a program ' s execution, some objects might not be re levant ,

whi le one other object i s-so a un ion shares the space i nstead of wast ing storage on

Chapter 20 C Legacy Code Topics 1 08 1

objects that are not being used. The number of bytes used to store a union must b e at least

enough to hold the largest member.

Performance Tip 20.3
� Using uni on� conserves storage.

Portability Tip 20.3
The amount of storage required to store a union is implementation-dependent.

A uni on is declared in the same format as a s truc t or a c lass . For example,

union Number
int x;
doubl e y;

} ;

indicates that Number is a union type with members int x and doubl e y. The union

defi n it ion must precede al l functions in which it w i l l be used.

r E o

As with a s truct or a class declaration, a union declaration simply creates a new type.

Placing a uni on or s truct declaration outside any function does not create a global vari

able.

The only val id bui l t - in operations that can be performed on a union are ass igning a

union to another union of the same type, taking the address (&) of a union and

accessing union members us ing the structure member operator (.) and the structure

pointer operator (- » . unions cannot be compared.

Common Prog ramming Error 20.3
Comparing uni oru is a syntax error, because the compiler does not know which member of

each is active and hence which member of one to compare to which member of the other.

A union i s s im i lar to a class i n that it can have a constructor to in i t ial i ze any of i t s

members. A union that has no constructor can be in i t ia l ized with another union of the

same type, with an expression of the type of the first member of the union or wi th an in i

t ia l izer (enclosed i n braces) of the type of the first member of the union. unions can have

other member functions, such as destructors, but a union ' s member functions cannot be

declared virtua l. The members of a union are publ ic by defaul t .

Common Programming Error 20.4
Initializing a union in a declaration with a value or an expression whose type is different

from the type of the uni on 's first member is a syntax error.

A union cannot be used as a base c lass in inheritance (i . e . , c lasses cannot be derived

from unions) . unions can have objects as members only if these obj ects do not have a

constructor, a destructor or an overloaded assignment operator. None of a union ' s data

members can be declared s ta t i c .

Figure 20.8 uses the variable va lue o f type union Number t o display the value stored

in the union as both an int and a double. The program output is i mplementation-depen-

1 082 C Legacy Code Topics

1 I I Fig . 2 0 . 8 : f ig2 0_0 8 . cpp
2 I I An examp le of a union .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 I I de f ine union Number
9 union NUmber {

1 0 int integerl ;
1 1 double double l ;
1 2
1 3 } ; I I end union Number
1 4
1 5 int main ()
1 6
1 7 NUmber value ; I I union variable
1 8

Chapter 20

1 9 value . integerl = 1 0 0 ; I I a s s i gn 1 0 0 t o member integer1
20
2 1 cout « " Put a value i n the integer membe r \ n "
2 2 « " and print both members . \ nint :
23 « value . integerl « " \ndouble : " « value . doublel
24 « endl ;
25
26 value . doublel = 1 0 0 . 0 ; I I a s s ign 1 0 0 . 0 to member double l
27
28 cout « " Put a value in the f loat ing membe r \ n "
29 « " and print both members . \ nint :
30 < < value . integerl < < " \ ndouble : " < < value . doublel
31 « endl ;
32
33 return 0 ;
34
35 I I end main

Put a value in the integer member
and print both members .
int : 1 0 0
double : - 9 . 2 5 5 9 6e + 0 6 1
Put a value in the f l oating member
and print both members .
int : °
double : 1 0 0

Fig. 20.8 Pr int ing the value of a union in both member data types.

dent. The program output shows that the internal representation of a double value can be

qui te different from the representation of an int o

An anonymous union i s a union without a type name that does not attempt to define

objects or poin ters before i ts terminating semicolon. Such a union does not create a type,

but does create an unnamed object. An anonymous union ' s members may be accessed

Chapter 20 C Legacy Code Topics 1 083

directly in the scope in which the anonymous union is declared j ust as are any other local

variable-there i s no need to use the dot (•) or arrow (- >) operators .

Anonymous un i ons have some restrict ions . Anonymous unions can contain only

data members. All members of an anonymous un ion must be pub l i c. And an anony

mous uni on declared global ly (i . e . , at fi le scope) must be expl ic i t ly dec lared s ta t i c .

Figure 20.9 i l l u strates the u se of an anonymous union.

1 I I Fig . 2 0 . 9 : f ig2 0_0 9 . cpp
2 II Us ing an anonymous union .
3 # inc lude < io st ream>
4
5 u s ing s td : : c out ;
6 u s ing std : : endl ;
7
8 int main ()
9 {

1 0 I I dec l are an anonymous union
1 1 I I member s integer1 , double1 and charptr share the s ame space
1 2 union {
1 3 int integer1 ;

1 4 double double 1 ;

1 5 char * charptr ;

1 6
1 7 } ; II end anonymous union
1 8
1 9 I I dec l are local variabl e s
20 int integer2 = 1 ;
2 1 doubl e double2 3 . 3 ;
22 char * char2ptr = " Anonymous " ;

23
24 I I a s s ign value to each union member
25 II succe s s ive ly and print each
26 cout « integer2 « ' ' ;

27 integer1 = 2 ;

28 cout « integer1 « endl ;
29

cout « double2 «
doub l e 1 = 4 . 4 ;
cout « doub l e 1 «

cout « char2 ptr «

30
3 1
32
33
34
35
36
37
38
39

charPtr = " union " ;
cout « charpt r

return 0 ;

40 I I end main

1
1 2
3 . 3 4 . 4
Anonymous union

«

, , . ,
endl ;

, , . ,
endl ;

Fig. 20.9 Using an anonymous union.

1 084 C Legacy Code Topics Chapter 20

20. 1 3 Lin kage Specifications

I t is possible from a C++ program to cal l functions written and compi led with a C compi ler.
As stated in Section 3 . 20, C++ special l y encodes function names for type-safe l i nkage. C,
however, does not encode its function names. Thus, a function compi led in C w i l l not be
recognized when an attempt i s made to l ink C code with C++ code, because the C++ code
expects a spec ia l ly encoded function name. C++ enables the programmer to provide link

age specifications to inform the compiler that a function was compiled on a C compi ler and
to prevent the name of the function from being encoded by the C++ compiler. Linkage
specifications are usefu l when large l ibraries of special i zed functions have been developed,

and the user e i ther does not have access to the source code for recompi lat ion into C++ or

does not have time to convert the l ibrary functions from C to C++.

To inform the compi ler that one or several functions have been compi led i n C, write

the function prototypes as fol lows:

extern " C " junction prototype / / s ingle func t i on

extern " C " 1 / mUl t ipl e func t i ons
{

junction prototypes

These declarat ions inform the compi ler that the specified functions are not compi led i n

C++, so name encoding should no t be performed on the functions l i sted in the l i nkage spec

ificat ion. These functions can then be l i nked properly with the program . C++ environments

normal l y inc l ude the standard C l ibraries and do not require the programmer to use l i nkage

specificat ions for those functions.

SUMMARY
• On many systems-UNIX and DOS systems i n particu lar-it i s poss ib le to red i rect i nput to a pro

gram and output from a program. I nput is redirected from the U N I X and DOS command l i nes us

ing the redi rect input symbol «) or by us ing a pipe (I) . Output i s red i rected from the U N I X and

DOS command l i nes u s i ng the redi rect output symbol (» or the append output symbol (») . The

redi rect output symbol s imply stores the program output i n a fi le , and the append output symbol

appends the output to the end of a fi le .

• The macros and defi n i t ions of the variable arguments header < c s tdarg> provide the capabi l i t ies

necessary to bui ld functions w i th variable-length argument l i sts .

• An e l l ips i s (• • •) i n a function prototype indicates that the function receives a variab le number of

arguments .

• Type va_l i s t i s su i table for holding i nformation needed by macros va_s tart , va_arg and

va_end. To access the arguments i n a variable- length argument l i s t , an object of type va_l i st

must be declared.

• M acro va_start is i nvoked before the arguments of a variable- length argument l i st can be ac

cessed. The macro i n i tia l izes the object declared with va_l i s t for use by macros va_arg and

va_end.

• M acro va_arg expands to an expression of the value and type of the next argument in the vari

able- length argument l i s t . Each i nvocation of va_arg modifies the va_l i s t object so that the

object points to the next argument i n the l i st .

Chapter 20 C Legacy Code Topics 1 085

• Macro va_end faci l i tates a normal return from a function whose variable argument l i st was re

ferred to by the va_start macro.

• On many systems-DOS and UNIX in part icu lar-it is possib le to pass command- l i ne arguments

to main by inc lud ing i n main' s parameter l i st the parameters int argc and char *argv [] .

Parameter argc i s the n umber of command- l i ne arguments . Parameter argv i s an array of

char * ' s conta in ing the command- l i ne arguments .

• The defi n i t ion of a funct ion must be ent ire ly contained in one fi l e-it cannot span two or more

fi les .

• G lobal variables must be declared i n each fi le i n which they are used .

• Funct ion prototypes can be used to declare functions i n other program fi les . (The extern speci

fier i s not requ ired i n a funct ion prototype .) This i s accompl i shed by inc lud ing the function proto

type in each fi l e in which the function i s i nvoked, then comp i l i ng the fi les together.

• The storage c lass specifier s t at i c , when appl ied to a fi l e scope variable or a funct ion, prevents

i t from being used by any funct ion that i s not defi ned in the same fi le . Thi s is referred to as i nternal

l i nkage. G lobal variables and funct ions that are not preceded by s t a t i c i n the i r defi n i t ions have

external l i nkage-they can be accessed i n other fi les i f those fi les contain proper dec larations and!

or funct ion prototypes .

• The s t at i c speci fier i s commonly used w i th ut i l i ty funct ions that are ca l led on ly by functions

i n a part icu lar fi l e . If a function i s not requ i red outside a part icu lar fi le , the princ ip le of l east priv

i lege shou ld be enforced by us i ng stat i c .

• When bu i ld ing l arge programs from mUl t ip le source fi les , comp i l i ng t h e program becomes tedious

i f making smal l changes to one fi l e means that the ent ire program m ust be recomp i led . Many sys

tems provide specia l u t i l i t ies that recompi le only the modified program fi l e . On U N I X systems,

the u t i l i ty i s ca l led make . Uti l i ty make reads a fi le cal led make f i l e that conta ins i nstruct ions

for comp i l i ng and l i nk ing the program.

• Funct ion exi t forces a program to terminate as i f i t had executed normal ly .

• Function atexit reg isters a function i n a program to be cal led upon normal termjnat ion of the

program-i . e . , e i ther when the program termi nates by reaching the end of main, or when exit

i s i n voked.

• Function atexi t takes a pointer to a function (i .e . , a funct ion name) as an argument . Funct ions

cal led at program terminat ion cannot have arguments and cannot return a value.

• Function exit takes one argument-normal ly the symbol ic constant EXI T_SUCCESS or the

symbol ic constant EXIT_FAILURE. If exi t i s cal led w i th EXIT_SUCCESS, the i mp lementa

t ion-defi ned value for successfu l termi nation is returned to the cal l i ng env i ronment . If exi t is

cal led wi th EXIT_FAI LURE, the implementation-defi ned value for unsuccessfu l termi nation i s

returned.

• When funct ion exit i s i nvoked, any functions regi stered wi th atexit are i nvoked in the reverse

order of the i r regi strat ion, all streams associated with the program are flushed and c losed and con

trol returns to the host env i ronment .

• The volat i l e qua l ifier is used to prevent opt imizations of a variab le , because i t can be modified

from outs ide the program ' s scope.

• C++ provides i nteger and floati ng-point suffixes for spec ify ing the types of i n teger and f1oat ing

point constants . The i nteger suffixes are u or U for an uns igned i nteger, 1 or L for a long i n

teger and ul or U L for an uns igned long i n teger. If an i nteger constant i s no t suffixed, i t s type

i s determi ned by the first type capable of storing a value of that s i ze (fi rst int, then long int) .

The float ing-po int suffixes are f o r F for a f loat a n d 1 o r L for a long double. A f1oati ng

poin t constant that is not suffixed i s of type double.

1 086 C Legacy Code Topics Chapter 20

• The signal-handling l ibrary provides the capabi l ity to register a function to trap unexpected events

with function s i gnal . Funct ion signal receives two arguments-an in teger s ignal number and

a pointer to the signal handling function.

• S ignal s can also be generated with function rai s e and an i nteger argument .

• The general-ut i l i t ies l ibrary (c stdl ib) provides functions cal loc and rea l loc for dynamic

memory al locat ion. These functions can be used to create dynamic arrays .

• Function cal loc receives two arguments-the number of e lements (nmemb) and the s ize of each

element (s i ze)-and i n i tia l izes the elements of the array to zero. The function returns a pointer

to the allocated memory or i f the memory i s not al located, the function returns a null pointer.

• Function rea l loc changes the s ize of an object allocated by a previous cal l to mal loc, c a l

loc or rea l loc. The original object ' s contents are not modified, provided that the amount of

memory al located is larger than the amount allocated previously .

• Funct ion real loc takes two arguments-a pointer to the original object (ptr) and the new size

of the object (s i ze) . I f pt r i s nUl l , real loc works identical ly to mal loc. I f s i z e i s 0 and

the pointer received i s not nu l l , the memory for the object i s freed. Otherwise, i f pt r i s not nu l l

and size i s greater than zero, real loc tries to allocate a new block of memory for the object .

I f the new space cannot be al located, the object poin ted to by pt r i s u nchanged. Funct ion rea l

loc returns e i ther a poin ter t o the reallocated memory o r a n u l l pointer.

• The resu l t of the goto statement i s a change i n the program' s flow of contro l . Program execution

continues at the first s tatement after the label i n the goto statement .

• A label i s an identifier fol lowed by a colon . A label must appear i n the same function as the goto

statement that refers to i t .

• A union i s a data type whose members share the same storage space. The members can be almost

any type. The storage reserved for a union i s large enough to store i ts l argest member. In most

cases , unions contain two or more data types . Only one member, and thus one data type, can be

referenced at a t ime.

• A union i s declared i n the same format as a structure .

• A union can be i ni t ia l ized only wi th a va lue of the type of i ts first member.

• C++ enables the programmer to prov ide l inkage specifications to inform the compiler that a func

t ion was compiled on a C compiler and to prevent the name of the function from being encoded

by the C++ compi ler.

• To inform the compiler that one or several functions have been compi led i n C, write the function

prototypes as fol lows:

extern " c " function prototype I I s ingle func t i on

extern .. c .. I I mul t iple functions

{
function prototypes

These declarations inform the compiler that the specified functions are not compiled in C++, so

name encoding should not be performed on the functions l i sted i n the l i nkage specification . These

functions can then be l i n ked properly with the program.

• C++ env ironments normally include the standard C l ibraries and do not require the programmer to

use l i nkage specifications for those functions.

Chapter 20

TERMINOLOG Y
append output symbol »

argv

atexit

cal loc

command- l i ne arguments

const

< c s igna l >

< c stdarg>

dynamic arrays

event

exi t

EXIT_FAILURE

EXIT_SUCCES S

extern " C "

extern storage class specifier

external l inkage

f loat suffi x (f or F)

floating-point exception

free

goto statement

lIO redirection

i l l egal instruction

internal l inkage

i nterrupt

long doubl e suffi x (l or L)

SELF-REVIEW EXERCISES

C Legacy Code Topics

l ong integer suffi x (l or L)

make

make f i le

mal loc

pipe I
piping

rai s e

real loc

redirect input symbol <

redi rect output symbol >

segmentation vio lat ion

s i gnal

signal-hand l ing l ibrary

stat i c storage class specifier

trap

union

uns igned i nteger suffix (u or U)

uns igned long i n teger suffix (ul or UL)

va_arg

va_end

va_ l i s t

va_start

variable- length argument l i s t

volat i l e

20. 1 Fi l l in the blanks in each of the fol lowing:

a) Symbol redirects input data from the keyboard to come from a fi le .

b) The symbol i s used to redirect the screen output to be p laced in a fi le .

1 087

c) The symbol i s used to append the output of a program to the end of a fi le .

d) A is used to direct the output of a program as the i nput of another program.

e) A n i n the parameter l i st o f a function indicates that the function c a n receive

a variable number of arguments.

f) Macro must be invoked before the arguments in a variable- length argument

l i st can be accessed.

g) Macro _____ is used to access the individual arguments of a variable- length ar-

gument l i st .

h) Macro performs termination housekeeping in a function whose variable ar-

gument l i st was referred to by macro va_start .

i) Argument of main receives the number of arguments i n a command l i ne .

j) Argument of main stores command- l i ne arguments as character strings .

k) The UNIX ut i l i ty reads a fi le cal led that contain s i nstructions

for compi l i ng and l i nking a program consist ing of mul t ip le source fi les . The uti l i ty re

compi les a fi le on ly if the fi le has been modified s ince it was last compiled.

I) Function _____ forces a program to terminate execut ion .

1 088 C Legacy Code Topics Chapter 20

m) Funct ion _____ regi sters a function to be ca l led upon normal termi nation of the

program .

n) An i n teger or float ing-point can be appended to an integer or float ing-point

constant to specify the exact type of the constant.

0) Function _____ can be used to register a function to trap unexpected events .

p) Function generates a s ignal from within a program.

q) Funct ion dynamical ly a l locates memory for an array and in i t i a l izes the e l -

ements to zero.

r) Function changes the size of a block of dynamical ly a l located memory.

s) A is an ent i ty contain ing a col lection of variables that occupy the same mem-

ory, but at d ifferen t t imes .

t) The keyword i s used to introduce a union defin i t ion .

ANSWERS TO SELF-REVIEW EXERCISES
20. 1 a) redirect input «) . b) redi rect output (» . c) append output (») . d) pipe (I) .
e) e l l ips is (• • •). f) va_start . g) va_argo h) va_end. i) argc . j) argv. k) make, make

f i l e . I) exi t . m) atexi t . n) suffi x . 0) s igna l . p) rai s e . q) cal loc. r) real loc.

s) u n ion . t) union.

EXERCISES
20.2 Write a program that calcu lates the product of a series of in tegers that are passed to funct ion

product using a variable- length argument l i st . Test your function with several cal l s , each wi th a

d ifferent number of arguments .

20.3 Write a program that prints the command- l i ne arguments of the program.

20.4 Write a program that sorts an in teger array i nto ascending order or descending order. The pro-

gram should use command- l ine arguments to pass e i ther argument -a for ascending order or -d for

descending order. [Note : This is the standard format for pass ing options to a program in U N I X .]

20.5 Read the manuals for your system to determine what s ignals are supported by the signal-han

d l i ng l ibrary « c s igna l » . Write a program with signal handlers for the s ignals SIGABRT and

S IGINT. The program should test the trapping of these signals by cal l i ng function abort to gener

ate a signal of type SIGABRT and by pressing Ctrl+C to generate a s ignal of type S IGINT.

20.6 Write a program that dynamical ly a l locates an array of i ntegers. The s ize of the array should

be i nput from the keyboard. The e lements of the array should be ass igned val ues input from the key

board . Pri nt the values of the array . Next, real locate the memory for the array to half of the current

number of e lements . Prin t the values remai n ing in the array to confirm that they match the fi rst ha lf

of the values i n the original array .

20. 7 Write a program that takes two fi le names as command- l ine arguments , reads the characters

from the first fi le one at a t i me and writes the characters in reverse order to the second fi le .

20.8 Write a program that uses goto statements to s imulate a nested looping structure that prin ts

a square of aster isks as shown i n Fig. 20. 1 0. The program shou ld use only the fol lowing three output

statements :

cout «
cout « I I ;

cout « endl ;

Chapter 20

* * * * *
* *
* *
* *
* * * * *

Fig. 20. 1 0 Sample output for Exerc ise 20 ,8 ,

C Legacy Code Topics 1 089

20.9 Prov ide the defi n i t ion for union Data conta in ing char charct e r 1 , short short 1,

long l ong1, f l oat f loat 1 and double doublel .

20. 1 0 Create union Integer with members char charcter1, short short 1, int

integer1 and long long 1 , Write a program that i nputs va lues of type char, short, int and

long and stores the values in union variables of type union Integer. Each union variable

should be pri n ted as a char, a short, an int and a long, Do the values always pr int correct ly?

20. 1 1 Create union F loat ingPoint with members f l oat f loat 1 , doubl e doub l e 1 and

long double longDouble, Write a program that i nputs values of type f loat, double and

l ong doubl e and stores the values i n union variables of type union F l oat ingPoint, Each

union variable should be pri nted as a f loat , a doubl e and a long doub l e . Do the values al

ways print correct ly?

20. 1 2 G i ven the union

union A {
doubl e Y i
char * z Ptr i

} i

which of the fol lowi ng are correct statements for i n i t ia l i z ing the union?

a) A p B i I I B i s of same type as A

b) A q X i I I X i s a double

c) A r 3 . 1 4 1 5 9 i

� A s { 7 9 . 6 3 } i

e) A t { " H i There ! " } i

f) A u { 3 . 1 4 1 5 9 , " pi " } i

g) A v { Y = - 7 . 8 4 3 , zptr &X } i

2 1
Standard Template

Library (STL)

Objectives

• To be able to use the template STL containers,

container adapters and "near containers ."

• To be able to program with the dozens of STL

algorithms.

• To understand how algorithms use iterators to access

the elements of STL containers .

• To become familiar with the STL resources available

on the Internet and the World Wide Web.

The shapes a bright container can contain!

Theodore Roethke

Journey over all the un iverse in a map.

Miguel de Cervantes

O! thou hast damnable iteration, and art indeed able to

corrupt a saint.

Wil l iam Shakespeare

That great dust heap called "history. "

Augustine B irre l l

The historian is a prophet in reverse.

Friedrich von Schlegel

Attempt the end, and never stand to doubt;

Nothing 's so hard but sear ch will find it out.

Robert Herrick

Push on - keep moving.

Thomas Morton

Chapter 2 1

Outline

Standard Template Library (STL) 1 09 1

2 1. 1 Introduction to the Standard Template Library (STL)

2 1. 1. 1 Introduction to Containers

2 1. 1 .2 I ntroduction to Iterators

2 1. 1.3 I ntroduction to Algorithms

2 1.2 Sequence Containers

2 1.2. 1 vector Sequence Container

2 1.2.2 l i s t Sequence Container

2 1.2.3 deque Sequence Container

2 1.3 Associative Containers

2 1.3. 1 mu l t i s e t Associative Container

2 1.3.2 set Associative Container

2 1.3.3 mu l t imap Associative Container

2 1.3.4 map Associative Container

2 1.4 Container Adapters

2 1.4. 1 s t ack Adapter

2 1.4.2 queue Adapter

2 1 .4.3 prior i ty_queue Adapter

2 1.5 Algorithms

2 1.5. 1 f i l l , f i l l_n, generat e and generat e_n

2 1.5.2 equa l , mi smatch and

l exicographical_campare

2 1.5.3 remove , remove_i f , remove_copy and

remove_copy_i f

2 1.5.4 rep l ac e , rep l ace_i f , rep l ac e_copy and

rep l ac e_c opy_i f

2 1.5.5 Mathematical Algorithms

2 1.5.6 Basic Searching and Sorting Algorithms

2 1.5.7 swap , i t e r_swap and swap_range s

2 1.5.8 copy_backward, me rge , unique and reve r s e

2 1 .5.9 inp l ac e_merge , uni que_copy and

reve r s e_copy

2 1.5. 10 Set Operations

2 1.5. 1 1 l ower_bound, upper_bound and equal_range

1 092 Standard Template Library (STL) Chapter 2 1

Outline

2 1 .5. 12 Heapsort

2 1.5. 13 min and max

2 1.5. 14 Algorithms Not Covered in This Chapter

2 1 .6 Class bit set
2 1. 7 FuncHon Objects

2 1.8 STL Internet and Web Resources

Summary • Terminology· Self-Review Exercises· Answers to Self-Review Exercises· Exercises·

Recommended Reading

2 1 . 1 Introduction to the Standard Template Library (STL)

Throughout this book, we have discussed the importance of software reuse. Recognizing

that many data structures and algorithms commonly were used by C++ programmers, the

C++ standard committee added the Standard Template Library (STL) to the C++ Standard

Library . The STL defines powerfu l , template-based, reusable components that implement

many common data structures and algorithms used to process those data structures . The

STL offers proof of concept for generic programming with templates-in troduced i n

Chapter 1 1 , Templates and demonstrated in detai l in Chapter 1 7 , Data S tructures .

The STL was developed by Alexander Stepanov and Meng Lee at Hewlett-Packard

and is based on their research in the field of generic programming, with significant contri

butions from David Musser. As you wi l l see, STL is c leverly conceived and is designed for

performance and flexibi l i ty .

Thi s chapter in troduces the STL and discusses its three key components- containers

(popular templatized data structures) , iterators and algorithms. The STL containers are

data structures capable of storing objects of any data type . We w i l l see that there are three

container categories-first- class containers, adapters and near containers.

Performance Tip 2 1 . 1
For any particular application, several different STL containers might be appropriate. Select

the most appropriate container that achieves the best performance (i. e. , balance of speed and

size) for that application. Efficiency was a crucial consideration in STL 's design.

Performance Tip 2 1 .2
Standard Library capabilities are implemented to operate efficiently across many applica

tions. For some applications with unique performance requirements, it might be necessary

to write your own customized implementations.

Each STL container has associated member functions . A subset of these member func

t ions is defined i n a l l STL containers. We i l l ustrate most of this common functionality in

our examples of STL containers vector (a dynamical ly resizable array) , list (a l inked

l i st) and deque (a double-ended queue) . We introduce container-specific functiona l i ty in

examples for each of the other STL containers.

Chapter 2 1 Standard Template Library (STL) 1 093

STL i terators, which have propert ies s im i lar to those of pointers, are used by programs

to man ipulate the STL-container e lements . I n fact , standard arrays can be man ipu lated as

STL contai ners, using standard pointers as i terators . We w i l l see that manipulat ing con

tai ners with i terators i s convenient and provides tremendous express ive power when com

bined with STL algorithms-i n some cases, reducing many l i nes of code to a s ing le

statement. There are five categories of i terators that we d i scuss i n Section 2 1 . 1 .2 and use

throughout thi s chapter.

STL algori thms are functions that perform such common data manipu lat ions as

searchi ng, sort ing and compari ng elements (or ent ire data structures) . There are approxi

matel y 70 algorithms implemented i n the STL. Most of these algori thms use i terators to

access container e lements . Each algorithm has min imum requirements for the types of i ter

ators that can be used wi th the algorithm. We w i l l see that each first-c lass container sup

ports spec ific i terator types , some of which are more powerfu l than others . A contai ner' s

supported i terator type determines whether the contai ner can be used w i th a speci fic algo

rithm . l terators encapsulate the mechan ism used to access container e lements . Thi s encap

su lat ion enables many of the STL algori thms to be appl ied to several containers wi thout

regard for the underly ing container i mplementat ion . As long as a container' s i terators sup

port the m in imum requirements of the algorithm, then the algori thm can process that con

tainer' s e lements . Th i s also enables programmers to create new algorithm s that can process

the e lements of mUl t iple d ifferent container types .

The STL approach allows general programs to be written so that the code does not depend

on the underlying container. Such a programming style is called generic programm i ng.

I n Chapter 1 7 , we studied data structures . We bui l t l i nked l i sts , queues, stacks and

trees . We carefu l l y wove l i nk objects together wi th poi nters . Poin ter-based code i s com

plex, and the s l i ghest omiss ion or overs ight can lead to serious memory-access v io lat ions

and memory- leak enors wi th no compi ler complai nts . I mplementi ng addi t ional data struc

tures, such as deques, priority queues, sets and maps . requ ires substant ia l addi t ional work .

I n addit ion, if many programmers on a large project i mplement s im i l ar containers and algo

rithms for different tasks, the code becomes difficu l t to modify , mai ntain and debug. An

advantage of the STL i s that programmers can reuse the STL contai ners, i terators and algo

rithms to implement common data representat ions and man ipu lat ions . Th i s reuse resul ts i n

substantial development-ti me and resource sav i ngs.

A void reinventing the wheel; program with the reusable components of the C+ + Standard

Library. STL includes many of the most popular data structures as containers and provides

various popular algorithms programs use to process data in these containers.

When programming pointer-based data structures and algorithms, we must do our own de

bugging and testing to be sure our data structures, classes and algorithmsfunction properly.

It is easy to make errors when manipulating pointers at this low a level. Memory leaks and

memory-access violations are common in such custom code. For most programmers, andfor

most of the applications they will need to write, the prepackaged, templatized data structures

of the STL are sufficient. Using the STL helps programmers reduce testing and debugging

time. One caution is that, for large projects, template compile time can be significant.

1 094 Standard Template L ibrary (STL) Chapter 2 1

Thi s chapter i s meant to be an introduction to the STL. I t i s by no means complete or
comprehensive . However, i t i s a friendly, accessible chapter that should convi nce you of
the value of the STL and encourage further study . We use the same " l ive-code approach"
that we have used throughout the book . Thi s might be one of the most important chapters

in the book for you in terms of your appreciation of software reuse.

2 1 . 1 . 1 Introduction to Containers
The STL container types are shown in Fig. 2 1 . 1 . The contai ners are d iv ided into three ma

jor categories-sequence containers, associative containers and container adapters.

The sequence contai ners (sometimes are referred to as sequential containers) represent

l i near data structures, such as vectors and l inked l i sts. Associat ive contai ners are non- l i near

contai ners that typical ly can locate e lements stored in the containers quick ly . Such con

tainers can store sets of values or key/value pairs . The sequence containers and assoc iat ive

containers are col lectively referred to as the first-class containers . As we saw in Chapter 1 7,

stacks and queues actual l y are constrai ned versions of sequential containers. For this reason,

STL implements stacks and queues as container adapters that enable a program to view a

sequential container i n a constrained manner. There are four other container types that are

considered "near-contai ners"-C-l ike arrays (discussed in Chapter 4) , strings (discussed

in Chapter I S) , bitsets for maintain ing sets of flag values and val arrays for per

forming high-speed mathematical vector operations (this l ast c lass is opt imized for compu

tation performance and i s not as flexible as the fi rst-class contai ners) . These four types are

Standard Library

container class

Sequence Containers

vector

de que

l i st

Associative Containers

set

mul t i set

map

mul t imap

Container Adapters

stack

queue

priori ty_queue

Description

rapid insert ions and delet ions at back

di rect access to any element

rapid insert ions and delet ions at front or back

d i rect access to any e lement

doubl y l i nked l i st , rapid insertion and delet ion anywhere

rapid lookup, no dupl icates a l lowed

rapid lookup, dupl icates a l lowed

one-to-one mapping, no dupl icates a l lowed, rapid key-based lookup

one-to-many mapping, dupl icates a l lowed, rapid key-based lookup

last- in -first-out (L I FO)

fi rst- in -first-out (F I FO)

h ighest priority e lement i s always the fi rst e lement out

Fig. 2 1 . 1 Standard Library container c lasses .

Chapter 2 1 Standard Template Library (STL) 1 095

considered "near contai ners" because they exhibit capabi l i t ies s imi lar to those of the first

c lass containers, but do not support al l the fi rst-c lass-contai ner capabi l i t ies .

STL was carefu l l y designed so that the containers provide s imi lar functional i ty . There

are many generic operat ions, such as member-function s i ze , that apply to a l l contai ners,

and other operat ions that apply to subsets of s imi lar conta iners . Th i s encourages extensi

bi l ity of the STL with new c lasses . Figure 2 1 . 2 describes the funct ions common to a l l Stan

dard Library contai ners . [Note: Overloaded operators operator < , operator< = ,

operator > , operator > = , operator= = and operator ! = are not provided for

priori ty _queues .]

Common member

functions for all STL

containers

defau l t constructor

copy constructor

destructor

empty

operator=

operator<

operator < =

operator>

operator > =

operator==

operator ! =

swap

Description

A constructor to prov ide a defau l t i n i t i a l izat ion of the contai ner. Normal ly,

each container has several constructors that provide d i fferent i n i t ia l izat ion

methods for the container.

A constructor that i n i t i a l i zes the container to be a copy of an ex is t ing con

tainer of the same type.

Destructor function for cleanup after a container i s no longer needed.

Returns true i f there are no elements i n the container; otherw i se , returns

false .

Returns the max imum number of elements for a contai ner.

Returns the n umber of elements current ly in the contai ner.

Ass igns one container to another.

Returns t rue if the fi rst container is less than the second conta iner; oth

erw i se , returns false .

Returns true i f t he fi rst con tai ner i s l e s s than or equa l to the second con

tainer; otherwise , returns false .

Returns true if the fi rst container is greater than the second container;

otherw i se , returns false .

Returns t rue if the fi rst container i s greater than or equa l to the second

container; otherwise , returns false .

R eturns t rue if the fi rst container i s equa l to the second container; other

w i ,e . ret u rn s false .

Returns t rue i f the first cont a i ner i s no t eq ua l to the second container;

otherw i se , returns false .

S waps the e lements of two contai ners .

Functions that are onlyfound in {irst-c/ass containers

begin The two vers ions of th i s function return e i ther an it erator or a

const i terator that refers to the fi rst e lement of the contai ner.

Fig. 2 1 .2 STL container common functions . (Part 1 of 2 .)

1 096 Standard Template Library (STL)

Common member

functions for all STL

containers Description

Chapter 2 1

end The two versions of th i s function return e i ther an iterator or a

const_iterator that refers to the next posi t ion after the end of the

contai ner.

rbegin The two versions of th is function return e i ther a reverse_i terator

or a const reverse i terator that refers to the last e lement of the

container.

rend The two versions of th is function return e i ther a reverse_i terator

or a const_reverse_i terator that refers to the pos i t ion before the

fi rst e lement of the container.

erase Erases one or more elements from the contai ner.

c l ear Erases all elements from the container.

Fig. 2 1 .2 STL container common functions . (Part 2 of 2 .)

The header fi les for each of the Standard Library contai ners are shown i n Fig. 2 1 . 3 .

The contents o f these header fi les are al l i n namespace std. 1
Figure 2 1 .4 shows the common typede fs (to create synonyms or a l iases for lengthy

type names) found i n fi rst-class contai ners. These typede f s are used i n generic dec lara

t ions of variables, parameters to functions and return values from funct ions . For example,

value_type i n each container i s always a typede f that represents the type of value

stored i n the container.

Standard Library container header files

<vector>

< l i s t >

<deque >

<queue >

< stack>

<map >

< set>

<bi t s e t >

Contains both queue and priority_queue.

Conta ins both map and mult imap.

Conta ins both set and mul t i set.

Fig. 2 1 .3 Standard Library container header f i les.

I. Some older C++ compi lers do not support the new-style header files. Many of these compi lers pro
v ide their own vers ions of the header-fi le names. See your compi ler docu mentation for more in
formation on the STL support your compi ler prov ides.

Chapter 2 1

typedef

va lue_type

re ference

const_re ference

po inter

iterator

const i terator

reverse_i t erator

Standard Template Library (STL) 1 097

Description

The type of element stored in the contai ner.

A reference to the type of e lement stored i n the contai ner.

A constant reference to the type of e lement stored in the con

tainer. S uch a reference can only be used for reading ele

ments i n the container and for perform ing const

operat ions .

A pointer to the type of e lement stored i n the contai ner.

An i terator that points to the type of e lement stored in the

container.

A constant i terator that points to the type of e lement stored i n

the container and can b e used o n l y t o read elements .

A reverse iterator that points to the type of e lement stored i n

t h e container. T h i s type o f i terator i s for i terating through a

container in reverse .

const_reverse_it erator A constant reverse iterator that points to the type of e lement

stored i n the container and can be used on ly to read elements .

This type of i terator i s for i terat ing through a container in

di f ference_type

reverse.

The type of the resu l t of subtract ing two iterators that refer to

the same container (operator- i s not defined for i tera

tors of l i sts and assoc iative containers) .

The type used t o count i tems i n a contai ner a n d i ndex through

a sequence container (cannot i ndex through a l i st) .

Fig. 2 1 .4 typede fs found in fi rst-c lass containers .

Performance Tip 2 1 .3
STL generally avoids inheritance and vi rtual functions i n favor of using generic pro

gramming with templates to achieve better execution-time pelformance.

Porfability Tip 2 1 . 1
Programming with STL will enhance the portability of your code.

When preparing to use an STL contai ner, it is important to ensure that the type of e le

ment being stored i n the container supports a min imum set of functional i ty . When an e le

ment i s in serted in to a contai ner, a copy of that element is made . For th is reason, the

element type should provide i ts own copy constructor and assignment operator. [Note: Thi s

i s required on ly if defaul t memberwise copy and defaul t memberwise assignment do not

perform a proper copy and assignment operations for the e lement type .] A l so, the assoc ia

t ive containers and many algorithms require e lements to be compared. For th i s reason, the

element type should provide an equality operator (= =) and a less-than operator «) .

1 098 Standard Template Library (STL) Chapter 2 1

Software Engineering Observation 2 1 3
The equality and /ess-Ihan operalors are lechnically nOI required for Ihe elemenlS slored in a
conlainer unless Ihe elemenls need 10 be compared. However, when crealing code li'om a lem

plale, some pre-standard compilers require all parIs oflhe lemplale 10 be defined, whereas olh

er compilers require only Ihe parIs of Ihe lemplale Ihm are aClUally used in Ihe program.

2 1 . 1 . 2 I ntroduction to Iterators
[terators have many features i n common with poin ters and are used to poi nt to the elements
of fi rst-c lass contai ners (and for a few other purposes , as we w i l l see) , [terators hold state
information sens i t ive to the part icu lar contai ners on which they operate; thus , iterators are
implemented appropriate ly for each type of container. Nevertheless , certai n i terator opera
t ions are un iform across contai ners. For example, the dereferencing operator (*) derefer
ences an i terator so that you can use the element to which it poi nts . The + + operation on an

i terator moves the i terator to the next element of the container (much as i ncrement ing a

poin ter i nto an array a ims the poi nter at the next element of the array) .

STL fi rst-c lass contai ners provide member funct ions begin () and end () . Funct ion

begin () returns an i terator point ing to the fi rst element of the container . Function end ()
returns an i terator poi nt ing to the fi rst element past the end of the container (an element that

doesn ' t ex i st) . if i terator i points to a part icu lar element, then + + i points to the "next" e le

ment and * i refers to the element pointed to by i . The iterator resu l t i ng from end () can

be u sed only in an equal i ty or i nequal i ty compari son to determ i ne whether the "moving i ter

ator" (i i n th i s case) has reached the end of the container.

We use an object of type i tera tor to refer to a contai ner element that can be mod

ified. We use an object of type const_iterator to refer to a container element that

cannot be modified .

We use i terators with sequences (a l so cal led ranges) . These sequences can be i n con

tai ners, or they can be input sequences or output sequences. The program of Fig . 2 1 . 5 dem

onstrates i nput from the standard input (a sequence of data for i nput i n to a program) , us ing

an i s t ream_iterator, and output to the standard output (a sequence of data for output

from a program) , us ing an ost ream_iterator. The program i nputs two i n tegers from

the user at the keyboard and d i splays the sum of the i ntegers . 2

1 I I Fig . 2 1 . 5 : f i g2 1 0 5 cpp
2 I I Demon s t ra t i ng input and output wi t h i t erators .
3 # inc lude < iostream>
4
5 using s td : : cout ;
6 us ing s t d : : c i n ;
7 us ing std : : endl ;

Fig. 2 1 .5 I nput and output stream iterators . (Part 1 of 2 .)

2 . The examples in th i s chapter precede each use of an STL function and each defi n i t ion of an STL
container object wi th the "std : : " prefix rather than plac ing the us ing statements a t the begi n
n i ng of the program, as was shown in most priOl' examples . Differences i n compi lers and the com
plex code generated when us ing STL, make it d ifficul t to construct a proper set of u s i ng
statements that enable the programs to compi Ie without errors. To a l low these programs to compi Ie
on the widest variety of platforms. we chose the "std : : " prefi x approach.

Chapter 2 1 Standard Template Library (STL) 1 099

8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1

inc lude < iterator> I I ostrearn it erator and i st rearn i terator

int main ()
{

cout « " Enter two integers : " ;

I I create i strearn iterator for reading int values from c in
std : : i s t rearn_iterator< int > input lnt (c in) ;

int number 1
+ + input lnt ;
int number2

* input lnt ; I I read int f rom s tandard i nput
I I move i terator to next input value

* input lnt ; I I read int f rom s tandard input

I I create ostrearn i terator for writing int values t o c out
s td : : ostrearn_iterator< int > output lnt (cout) ;

cout « " The sum i s : " ;
* output lnt = number 1 + number2 ; I I output re sult t o cout
cout « endl ;

return 0 ;

I I end main

I
.ntor two int ••• r s ,
The sum i s : 3 7

1 2 2 5

Fig. 2 1 .5 I nput and output stream Iterators . (Part 2 of 2 .)

Li ne 1 6 creates an i stream_i terator that i s capab le of extract ing (i nputt i ng)

int values i n a type-safe manner from the standard i npu t object c in. Line 1 8 dereferences

i terator input Int to read the fi rst i nteger from c in and ass igns that i nteger to number ! .

Note that t h e dereferenc ing operator * appl ied t o inputInt gets t h e val ue from the

stream assoc iated with input Int ; this is s imi lar to dereferenc ing a poi nter. Line 1 9 pos i

t ions iterator input Int to the nex t value i n the i nput stream. L ine 20 i nputs the next

i n teger from input Int and ass igns i t to number2 .

Line 23 creates an ostream_it erator that i s capable of i n sert ing (outputt i ng)

int values i n the standard output object couto Line 26 outputs an i n teger to cout by

ass ign ing to * output Int t he sum of number! and number2 . Notice the use of the

dereferenc ing operator * to use * output Int as an Ivalue i n the assignment statement . If

you want to output another value us ing output Int, the iterator must be i ncremented with

++ (both pre i ncrement and posti ncrement can be used) .

T hng a
The * (dereferencing) operator of any const ilerator relUrns a const reference 10 Ihe con

tainer element, thus disallowing the use of non-const member fimctions.

Common Programming E rror 2 1 . 1
A llempting to dereference an ileralOr posilioned oUlside ils container is a runlime logic er

ror. In parlicular. Ihe ileralor relUrned by end () cannol be dereferenced or incremented.

1 1 00 Standard Template Library (STL) Chapter 2 1

Common Prog ramming Error 2 1 . 2
Attempting to create a non-const iterator for a const container results i n a compilation

error.

Figure 2 1 .6 shows the categories of iterators used by the STL. Each category provides

a spec ific set of functional i ty .

Figure 2 1 . 7 i l l u strates the hierarchy of i terator categories . As you fol l ow the hierarchy

from top to bottom, each i terator category supports a l l the functional i ty of the categories

above it in the figure . Thus the "weakest" i terator types are at the top and the most powerfu l

iterator type is at the bottom. Note that this is not an i nheritance hierarchy.

Category

input

output

forward

bidirectional

random access

Description

Used to read an element from a contai ner. An i nput i terator can move on ly in

the forward d irection (i .e . , from the beg inn ing of the contai ner to the end of

the container) one element a t a t ime . [nput i terators support on ly one-pass

algori thms-the same input i terator cannot be used to pass through a

sequence twice.

Used to write an element to a container. An output i terator can move on ly in

the forward d irection one element at a t ime. Output i terators support only

one-pass a lgori thms-the same output i terator cannot be used to pass

through a sequence twice.

Combines the capabi l i t ies of i nput and output i terators and reta ins their posi

t ion in the container (as state information) .

Combines the capab i l i t ies of a forward iterator w i th the abi l i ty t o move i n the

backward d i rection (i .e . , from the end of the container toward the beg inn ing

of the contai ner) . B id i rectional iterators support mul t i -pass a lgori thms .

Combines the capab i l i t ies of a b id irectional i terator w i th the abi l i ty to

di rect ly access any e lement of the contai ner, i .e . , to jump forward or back

ward by an arbitrary number of elements .

Fig. 2 1 .6 Iterator categories .

input output

�
forward

I
bidirect i onal

I
random access

Fig. 2 1 . 7 Iterator category h ierarchy .

Chapter 2 1 Standard Template Library (STL) 1 1 0 1

The i terator category that each container supports determines whether that container

can be used with specific algorithms i n the STL. Contai ners that support random-access

i terators can be used with all algorithms i n the STL. As we w i l l see, poin ters i nto arrays can

be used in p lace of i terators in most STL algorithms, i nc luding those that requ ire random

access i terators . F igure 2 1 . 8 shows the i terator category supported by each of the STL con

tainers. Note that on ly vectors, deques, l i s ts , sets, mul t i sets , maps and mul

t imaps (i . e . , the first-cl ass containers) are traversable with iterators .

Softw
Using the " weakest itemtor" that yields acceptable peiformance helps produce maximally

reusable components.

Figure 2 1 .9 shows the predefined i terator typede f s that are found in the c lass defi

n i t ions of the STL containers. Not every typede f is defi ned for every container . We use

const vers ions of the iterators for traversing read-on ly containers. We use reverse i tera

tors to traverse containers i n the reverse direct ion .

Container

Sequence containers

vec tor

deque

l i st

Associative containers

set

mul t i set

map

mul t imap

Container adapters

stack

queue

priority_queue

Type of iterator supported

random access

random access

b id irectional

b id i rectional

b id irectional

b id i rectional

b id irectional

no i terators supported

no i terators supported

no iterators supported

Fig. 2 1 .8 Iterator types supported by each Standard Library conta iner .

Predefined typede fs for iterator types

iterator

const i terator

reverse i terator

const reverse_iterator

Fig. 2 1 .9 Iterator typede f s.

Direction of + +

forward

forward

backward

backward

Capabil ity

read/write

read

read/write

read

1 1 02 Standard Template Library (STL) Chapter 2 1

Testing and Debugging Tip 2 1 3
Operations perform.ed on a const_ i t era tor return const references to prevent modifi

cation to elements of the container being manipulated. Use const_i t era tOr.5 in preference

to i tera tor.5 where appropriate. This is another example of the principle of least privilege.

Figure 2 1 . 1 0 shows some operations that can be performed on each i terator type . Note
that the operations for each i terator type inc l ude a l l operations preceding that type in the
figure . Note a lso that, for input i terators and output i terators, i t i s not possible to save the

i terator, then use the saved value later.

Iterator operation

All iterators

+ +p

p + +

Input iterators

*p

p

p

p I

p I

P ! = p I

Output iterators

*p

p = p I

Forward iterators

Bidirectional iterators

- -p

p - -

Random-access iterators

P + = i

p i

p + i

p - i

p [i]

p < p I

P < = p I

Description

pre increment an i terator

postincrement an iterator

dereference an i terator (for use as an rvalue)

assign one i terator to another

compare i terators for equa l i ty

compare iterators for inequal i ty

dereference an iterator (for use as an Ivalue)

assign one i terator to another

Forward i terators provide all the functional ity of both input i terators

and output i terators.

predecrement an i terator

postdecrement an i terator

I ncrement the iterator p by i posi t ions .

Decrement the iterator p by i pos i t ions .

Resu l ts i n an i terator pos it ioned at p incremented by i pos i t ions .

Results i n an iterator pos it ioned at p decremented by i posi t ions .

Return a reference to the e lement offset from p by i posi t ions

Return t rue if i terator p i s less than i terator pI (i .e . , i terator p i s

before iterator pI i n the contai ner) ; otherw i se , return f a l s e .

Return t rue if i terator p i s less than or equal to i terator p I (i .e . , i tera

tor p is before iterator pI or at the same location as i terator p I in the

container) ; otherwise, return false .

Fig. 2 1 . 1 0 Iterator operations for each type of iterator . (Part 1 of 2 .)

Chapter 2 1 Standard Template l ibrary (STL) 1 1 03

Iterator operation Description

p > pI Return true if iterator p is greater than iterator pI (i.e., iterator p is

after iterator pI in the container); otherwise, return false.

p >= pI Return true if iterator p is greater than or equal to iterator pI (i.e.,

iterator p is after iterator pI or at the same location as iterator pI in the

container); otherwise, return false.

Fig. 2 1.1 0 Iterator operations for each type of iterator . (Part 2 of 2.)

21.1.3 Introduction to Algorithms

A crucial aspect of the STL is that it provides algorithms that can be used generically across

a variety of containers. STL provides many algorithms you will use frequently to manipu

late containers. Inserting, deleting, searching, sorting and others are appropriate for some

or all of the STL containers.

STL includes approximately 70 standard algorithms. We provide live-code examples

of most of these and summarize the others in tables. The algorithms operate on container

elements only indirectly through iterators. Many algorithms operate on sequences of ele

ments defined by pairs of iterators-a first iterator pointing to the first element of the

sequence and a second iterator pointing to one element past the last element of the

sequence. Also, it is possible to create your own new algorithms that operate in a similar

fashion so they can be used with the STL containers and iterators.

Algorithms often return iterators that indicate the results of the algorithms. Algorithm

f ind (), for example, locates an element and returns an iterator to that element. If the ele

ment is not found, f ind () returns the end () iterator, which can be tested to determine

whether an element was not found (the return of end () assumes a search of the entire con

tainer). The f ind () algorithm can be used with any STL container. STL algorithms create

yet another opportunity for reuse. Using the rich collection of popular algorithms can save

programmers much time and effort.

If an algorithm uses less powerful iterators, the algorithm can also be used with con

tainers that support more powerful iterators. Some algorithms demand powerful iterators;

e.g., sort demands random-access iterators.

SoftwarE:; Eng," lJ " on 5

STL is implernented concisely. Until now, class designers would have associated the algo

rithms with the containers by Inaking the algorithms member Junctions of the containers. STL

takes a dilferertl approach. The algorithms are separatedfrom the containers and operate on

elem.ents o/the cOl1lainers ollly indireClly through iteralOrs. This separation m.akes it easier

fO wrife generic algorithms applicable 10 lIlany container classes.

Software Engineering Observation 21 6

STL is extensible. It is sfraightforward to add new algorithms and to do so withoUl changes

to STL containers.

Software Engineen gO serv ti 21 1

STL algorithms call operate on STL cOlltainers and on poil/./er-based, C-like arrays.

1 1 04 Standard Template Library (STL) Chapter 2 1

Portability Tip 21.2

Because STL algorithms process containers only indirectly through iterators. one algorithm

can often be used with many different containers.

Figure 2 1 . 1 1 shows many of the mutating-sequence algorithms-i.e., the algorithms

that result in modifications of the containers to which the algorithms are applied.

Figure 21.12 shows many of the non-mutating-sequence algorithms-i.e., the algo

rithms that do not result in modifications of the containers to which the algorithms are

applied.

Figure 2 1 .13 shows the numerical algorithms of the header file < numeri c >.

Mutating-sequence algorithms

copy

copy_backward

fil1

fil1_n

generate

generate_n

iter_swap

partition

random_shuffle

remove

remove_copy

remove_copy_if

remove if

replace

replace_copy

replace_copy_if

replace_if

reverse

Fig.21.11 Mutating-sequence a lgorithms.

Non-mutating-sequence algorithms

adjacent_find

count

count if

equal

find

find_each

find_end

find_first_of

Fig. 21.12 Non-mutating sequence algorithms.

Numerical algorithms from header file <numeric >

reverse_copy

rotate

rotate_copy

stable-partition

swap

swap_ranges

transform

unique

unique_copy

find_if

mismatch

search

accumulate

inner-product

partial_sum

adjacent_difference

Fig . 21 .13 Numerical algorithms from header fi le < nume ric> .

Chapter 2 1 Standard Template Library (STL) 1 1 05

21.2 Sequence Containers

The C++ Standard Template Library provides three sequence containers-vector, list
and deque. Class vector and class deque both are based on arrays. Class l i st imple

ments a linked-list data structure similar to our L i s t class presented in Chapter L 7, but

more robust.

One of the most popular containers in the STL is vector. Class vector is a refine

ment of the kind of "smart" Array class we created in Chapter 8 . A vector can change

size dynamically. Unlike C and C++ "raw" arrays (see Chapter 4) , vectors can be

assigned to one another. This is not possible with pointer-based, C-like arrays, because

those array names are constant pointers and cannot be the targets of assignments. Just as

with C arrays, vector subscripting does not perform automatic range checking, but class

vector does provide this capability via member function at .

Performance Tip 21.4

Insertion at the back of a vector is efficient. The vector simply grows, if necessary, to

accommodate the new item .. It is expensive to insert (or delete) an element in the middle ofa

vector-the entire portion of the vector after the insertion (or deletion) point nntS! be

m.oved, because vector elements occupy contiguous cells in memory just as do C or C++

"raw " arrays.

Figure 21.2 presented the operations common to all the STL containers. Beyond these

operations, each container typically provides a variety of other capabilities. Many of these

capabilities are common to several containers. However, these operations are not always

equally efficient for each container. The programmer must choose the container most

appropriate for the application.

Performance Tip 21.5

Applications that require frequent insertions and deletions at both ends of a container flor·

mally use a deque rather than a vector. A lthough we can insert and delete elements at
the front and back of both a vector and a deque, class deque is more ejjiciel1l than

vector for doing insertions alld deletions at the Font.

Performa nce Tip 21.6

Applications with frequent insertions and deletions in the middle and/or at the extremes of a

container norm.aliy use a li st, due to its efficient implementation of insertion and deletion

anywhere in the data structure.

In addition to the common operations described in Fig. 21. 2 , the sequence containers

have several other common operations-front to return a reference to the first element

in the container, back to return a reference to the last element in the container,

push_back to insert a new element at the end of the container and pop_back to remove

the last element of the container.

21.2.1 vector Sequence Container

Class vector provides a data structure with contiguous memory locations.3 This enables

efficient, direct access to any element of a vector via the subscript operator [], exactly as

with a C or C++ "raw" array. Class vector is most commonly used when the data in the

container must be sorted and easily accessible via a subscript. When a vector's memory

1 1 06 Standard Template Library (STL) Chapter 2 1

is exhausted, the vector allocates a larger contiguous area of memory, copies the original

elements into the new memory and deallocates the old memory.

Performance Tip 2 1 .7

Choose the vector container Jor the best random-access performance.

Performance Tip 2 1 .8

Objects oj class vector provide rapid indexed access with the overloaded subscript oper

ator [} because they are stored in contiguoLis storage like a C or C+ + raw array.

Performance Tip 2 1 .9

It is Jaster to insert many eiem,ents at once than one at a time

An important part of every container is the type of iterator it supports. This determines

which algorithms can be applied to the container. A vector supports random-access iter

ators-i.e. , all iterator operations shown in Fig. 2 1 . 1 0 can be applied to a vector iterator.

All STL algorithms can operate on a vector. The iterators for a vector are normally

implemented as pointers to elements of the vector. Each of the STL algorithms that take

iterator arguments requires those iterators to provide a minimum level of functionality. If

an algorithm requires a forward iterator, for example, that algorithm can operate on any

container that provides forward iterators, bidirectional iterators or random-access iterators.

As long as the container supports the algorithm's minimum iterator functionality, the algo

rithm can operate on the container.

Figure 2 1 . 1 4 illustrates several functions of the vector class template. Many of these

functions are available in every Standard Library first-class container. YOLI must include

header file <vector> to lise class vector.

1 II Fig. 21.14: fig21 14.cpp

2 II Demonstrating standard library vector class template.

3 #inc1ude <iostream>

4
5 using std::cout;

6 using std::cin;

7 using std::endl;

8
9 #include <vector> II vector class-template definition

10
11 II prototype for function template printVector

12 template < class T >

13 void printVector(const std::vector< T > &integers2);
14
15 int main()

16 {
17 const int SIZE = 6 ;

Fig.21 .14 Standard Library vec t or class template . (Part 1 of 3.)

3. Contiguous memory is not actually guaranteed by the C++ standard. However, the C++ standard
committee is leaning toward making contiguous memory a requirement for class vector.

Chapter 2 1 Standard Template Library (STL)

1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

int array [S I ZE] = { I, 2, 3, 4, 5, 6 } ;

std : : vector< int > integers ;

cout « " The i n i t i a l s i z e of intege r s i s : .,
« integers . s i z e ()
« " \ nThe ini t ial capac ity of integers i s : .,
« integers . capac ity () ;

II function push back is in eveLY s�qu�nce collection
integers . push_back (2);
integers . push_back (3);
int egers . push_back (4);

cout « " \ nThe Sl.z e of integers i s: ., « integers . s i z e ()
« " \ nThe capac ity of integers i s.
« integers . capac ity () ;

cout « I \ n \ nOutput ar:tay us ing pointer notation.

for (int *ptr = array; ptr ! = array + SIZE; ++ptr
cout « *ptr « I

cout « " \ nOutput vector us ing i terator notation : " ;
printVector (integers) ;

cout « " \ nRever sed contents of vector intege:ts.

std : : vector< int > : : reverse_iterator reve r s e I t erator ;

for (reverseIt erator = integers . rbegin () ;
reverseIt erator ! = integers . rend () ;
++reverseIt erator)

cout « * reverseIt erator «

cout « endl ;

return 0;

II end main

II functi on t emp late for outputting vector elements
t emplate < c la s s T >
void printVector (const std : : vector< T > & intege r s 2
{

std : : vector< T > : : const_iterator cons t I terator ;

for (con s t I t erator = integers2 . begin () ;
cons t I t erator ! = integers2 . end () ;
cons t Iterator++)

cout « * c ons t I t erator « I

} II end functl.on prl.utVe(;tor

I .
,

Fig. 21. 1 4 Standard Library vec t or closs template. (Part 2 of 3)

1 1 07

1 1 08 Standard Template Library (STL)

The i n i t i a l s i z e o f v i s : 0
The ini t ial capac i ty o f v i s : 0
The s i z e o f v i s : 3
The capac i ty o f v i s : 4

Cont ent s of array a us ing pointer notat ion : 1 2 3 4 5 6
Cont ent s of vector v using iterator notat ion : 2 3 4
Reversed content s of vector v : 4 3 2

Fig. 21.14 Standard Library vec t or class template. (Part 3 of 3.)

Chapter 2 1

Line 20 defines an i nstance called integers of c lass vector that stores int

values. When this object i s i nstantiated, an empty vec tor i s created wi th size 0 (i . e . , the

number of elements stored in the vector) and capacity 0 (i . e . , the number of elements that

can be stored without a l locating more memory to the vector) .

Lines 23 and 25 demonstrate the size and capac ity functions ; each in i t ia l ly
returns 0 for vector v i n this example. Function size-avai l able i n every contai ner
returns the number of elements currently stored in the container. Function capac ity

returns the number of e lements that can be stored i n the vector before the vec tor

dynamical ly resizes i tself to accommodate more elements .

Lines 28-30 use function push_back-avai lable in a l l sequence containers-to add

an e lement to the end of the vector. If an element is added to a fu l l vector, the vector

i ncreases its size-some STL implementat ions have the vector double its size .

Performance Tip 21.10

It can be wasteful to double the size of a vector when more space is needed. For example,

a full vector of 1,000,000 elements resizes to accommodate 2,000,000 elements when a

new element is added. This leaves 999,999 elem.ents unused. Programmers can use re

size () to control space usage better.

Lines 32 and 34 use s i z e and capac ity to i l lustrate the new s ize and capac ity of

the vector after the push_back operations. Function s i z e returns 3-the number of

elements added to the vector. Function capaci ty returns 4, i ndicat ing that we can add

one more element without a l locati ng more memory for the vector. When we added the

first element, the size of integers became 1 and the capaci ty of integers became l .

When we added the second element, the size of integers became 2 and the capacity of

integers became 2. When we added the third e lement, the s ize of integers became

3 and the capac i ty of integers became 4 . If we add two more elements, the size of

integers would be 5 and the capacity would be 8 . The capac ity doubles each time the

total space a l located to the vector i s fu l l and another element is added.

L ines 3 8-39 demonstrate how to output the contents of an array using pointers and

pointer arithmetic . Line 42 cal l s function printvector (defi ned at l i nes 60-70) to

output the contents of a vector using iterators. Function template printvector

receives a const reference to a vector (integers 2) as its argument . Line 63 defi nes

a const_iterator called constlterator that iterates through the vector and

outputs its contents. A const_iterator enables the program to read the elements of

the vector, but does not allow the program to modify the elements . The for structure at

l i nes 65-68 in i t ia l izes constlterator using vec tor member function begin, which

Chapter 2 1 Standard Template Library (STL) 1 1 09

returns a const_i terator to the first element i n the vector-there is another version

of begin that returns an i terator that can be used for non-const containers. Note that

a const_i terator is returned because the identifier integers2 was dec lared

const in the parameter l i st of function printVector. The loop continues as long as

constlterator has not reached the end of the vector. Thi s is determined by com

paring constlterator to the result of integers2 . end () , which returns an i terator

i ndicating the locat ion after the last element of the vector. If constlterator is equal

to this value, the end of the vector has been reached. Functions begin and end are

avai lable for a l l first-c lass containers. The body of the loop dereferences i terator constI

terator to get the value in the current element of the vector. Remember that the iter

ator acts l i ke a poin ter to the element and that operator * is overloaded to return the value

of the element . The expression constIterator++ (l i ne 67) positions the iterator to the

next e lement of the vector.

Only random-access iterators support < . It is better to use ! = and end () to test for end of

container.

Line 46 declares a reverse_it erator that can be used to iterate through a

vector backwards . A l l first-class containers support th i s type of i terator.

L ines 48-5 1 use a for structure s imi lar to that in function printVector to i terate

through the vector. In this loop, functions rbegin (i . e . , the iterator for the start ing point

for i terat ing i n reverse through the container) and rend (i . e . , the iterator for the ending

poi nt for i terat ing i n reverse through the container) del i neate the range of elements to output

in reverse . As w ith functions begin and end, rbegin and rend can return a

const_reverse_iterator or a reverse iterator based on whether or not the

container is constant.

Figure 2 1 . 1 5 i l l ustrates functions that enable retrieval and manipu lation of the ele

ments of a vector. Line 17 uses an overloaded vector constructor that takes two i tera

tors as arguments to in it ial ize integers. Remember that poi nters i nto an array can be

used as iterators . L ine 1 7 i n itial izes integers with the contents of i nteger array a from

location a up to-but not including-location a + SIZE.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4

II Fig . 2 1 . 1 5 : f ig2 1 1 5.cpp
II Te s t i ng St andard L ibrary vector c l a s s t emplate
II e l ement-manipulat ion func t i ons .
inc lude < iostream>

us ing s td::cout ;
u s ing std: :end l ;

inc lude <vector>
#inc lude < a l gorithm>

int ma in ()
{

const int S I ZE = 6 ;

II vec t or c l a s s template de f in i t ion
II copy algorithm

Fig. 2 1 .1 5 Standard Library vec t or class template element-man ipulat ion functions.
(Part 1 of 3.)

1 1 1 0

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Standard Template Library (STL)

int array [SIZE] = { 1, 2 , 3 , 4 , 5 , 6 };

std : : vector< int > integers (array , array + SIZE) ;
s td : : os tream_i t e rator< int > output (cout , .. ") ;

cout « "Vector integers contains : " ;

Chapter 2 1

s td : : copy (integers . begin () , integers . end () , output) ;

cout « "\nF i r s t element of integers: " « integers . f ront ()
« U\nLast element of integers: " « integers . back () ;

integers [0] = , ;
integers . at (2) = 10;

I I set. fil.st. e lement. t.o 1
II set elemeut. at position 2 to 10

II insext 2� as 2nd element
integers . insert (integers . begin () + 1, 22) ;

cout « " \ n\nCont ent s of vector integers a f t er change s : n;
std : : copy (integers . begin () , integers . end () , output) ;

II access out of range element
t ry {

integers . at (10 0) = 777;

} II end try

II catch out of range except ion
catch (s td : : out_of_range outOfRange) {

cout « n\nExcept1on. « outOfRange . what () ;

II end catch

II erase first element
integers . erase (integers . begin ()) ;
cout « " \ n \ nVec t or integers after era s i ng f i rst e l ement: " ;
std : : copy (integers . begin () , integers . end () , output) ;

I I "1. cl '" I 1. Ily 1 1\ nt.
integers . erase (int egers . begin () , integers . end ()) ;
cout « "\nAfter erasing all elements , vector integers "

« (integers . empty () ? "i s" : "i s not") « " empty" ;

II in s ert element s from array
integers . insert (integers . begin () , array , array + SIZE) ;

cout « '\n\nContents of vector integers before cleax .
s td : : copy (integers . begin () , integers . end () , output) ;

II empt.y 1ntegexsi clear calls exase to empty a collect.ion

integers . c lear () ;
cout « " \ nAfter cl ear , vector integers "

« (integers . empty () ? "i s" : "i s not ") « " empty" ;

Fig.21.15 Standard Library vector class template element-manipulation functions .
(Part 2 of 3.)

Chapter 2 1

67 cout « endl ;
68
69 return 0 ;
70
71 II eud ma�ll

Standard Template Library (STL)

Vector integers contains : I 2 3 4 5 6
First el ement of integers : 1
Last e l ement of integers : 6

Cont ent s of vector integers after change s : 7 22 2 1 0 4 5 6

Exc ept ion : inva l i d vector<T > subscript

Vector integers after eras ing f i rst e l ement : 22 2 10 4 5 6
After era s i ng a l l e l ement s , vector integers i s empty

Cont ent s of vector integers be fore c l ear : 1 2 3 4 5 6
After c lear , vector integers i s empty

1 1 1 1

Fig.21.15 Standard Library vec tor class template element-manipulation functions .
(Part 3 of 3 .)

Line 1 8 defines an ost ream_iterator called output that can be used to output

in tegers separated by single spaces v ia couto An ostream_i terator< int > i s a

type-safe output mechan ism that outputs only values of type int or a compatible type . The

fi rst argument to the constructor spec ifies the output stream, and the second argument i s a

stri ng specify ing separator characters for the values output-in thi s case, a space character.

We use the ost ream_iterator to output the contents of the vector i n this example.

L ine 2 r uses algorithm copy from the Standard Library to output the ent ire contents

of vector integers to the standard output. A lgorithm copy copies each element i n

the container start ing with the location spec ified by the i terator i n i t s first argument and up

to-but not inc luding-the location specified by the i terator i n i ts second argument . The

fi rst and second arguments must sati sfy input i terator requ i rements-they must be i terators

through which values can be read from a container. A l so, apply ing ++ to the first i terator

must eventual ly cause the fi rst i terator to reach the second i terator argument in the con

tainer. The elements are copied to the location spec ified by the output i terator (i . e . , an i ter

ator through which a value can be stored or output) spec ified as the last argument . 1n th i s

case , the output i terator i s a n ost ream_iterator (output) that i s attached t o cout ,

so the elements are copied to the standard output . To use the algori thms of the Standard

Library , you must i nclude the header fi le <algoritiun>.
Lines 23-24 use functions front and back (avai lable for a l l sequence containers) to

determine the first and last element of the vector, respecti ve ly .

Common Programming E rror 2 1 .3

� The vector must not be empty; otherwise, results of the front and back functions are

� undefined.

Lines 26-27 i l l ustrate two ways to subscript through a vector (that also can be used

with the deque contai ners) . L ine 26 uses the subscript operator that is overloaded to return

1 1 1 2 Standard Template Library (STL) Chapter 2 1

either a reference to the value at the spec ified location or a constant reference to that value,
depending on whether the container i s constant. Function at (l i ne 27)performs the same
operation wi th one additional feature-bounds checking . Function at fi rst checks the
value supplied as an argument and determines whether it is in the bounds of the vector.

If not , function at throws an out_of_bounds exception (as demonstrated i n l i nes 3 6-
45) . Figure 2 1 . 1 6 shows some of the STL exception types. (The Standard L ibrary exception
types are d iscussed i n Chapter 1 3 , Exception Handl ing .)

L i n e 30 uses one o f the three insert functions provided b y each sequence container.

Line 30 i nserts the value 22 before the e lement at the location spec ified by the iterator i n the

fi rst argument. In thi s example, the iteratOl· i s poi nti ng to the second element of the vector,

so 22 is i nserted as the second element and the original second element becomes the th i rd

element of the vector. Other versions of insert allow inserting multiple copies of the

same value start ing at a particular position in the container, or inserting a range of values

from another container (or array) , starting at a particular position in the orig inal container.

Lines 48 and 53 use the two erase functions that are avai lable in al l fi rst-class con

tainers. L i ne 48 i ndicates that the element at the location spec ified by the i terator argument

should be removed from the contai ner (i n th i s example, the e lement at the beg inn ing of the

vector) . Line 53 specifies that al l e lements in the range start ing w ith the location of the

fi rst argument up to-but not i ncl uding-the location of the second argument should be

erased from the container. In th i s example, al l the elements are erased from the vector.

Line 55 uses function empty (avai lable for al l contai ners and adapters) to confirm that the

vector is empty .

Common Programming Error 2 1 .4

Erasing an eLement that contains a pointer to a dynamically allocated object does no/ de

lete the object; it simpLy removes the pointer frol11 the container.

Line 5 8 demonstrates the version of function insert that uses the second and th i rd

arguments to spec ify the starti ng location and ending location i n a sequence of values (pos

s ibly from another container; in th is case, from array of integers array) that should be

inserted i nto the vector. Remember that the ending location spec ifies the position in the

sequence after the last e lement to be inserted; copy ing is performed up to-but not

i nc luding-thi s location .

Final ly, l i ne 63 uses function clear (found in a l l fi rst-class containers) to empty the

vector. This function cal l s the version of erase used in l i ne 53 to empty the vector.

STL exception types

invalid_argument

l ength_error

bad_al loc

Description

Indicates when subscript is out of range---e.g., when an invalid

subscript is specified to vector member function at.

Indicates an invalid argument was passed to a function.

Indicates an attempt to create too long a container, string, etc.

Indicates that an attempt to allocate memory with new (or with an

allocator) failed because not enough memory was available.

Fig. 2 1.16 STL exception types .

Chapter 2 1 Standard Template Libra ry (STL) 1 1 1 3

[Note: There are other funct ions that are common to al l containers and common to al l

sequence contai ners that have not yet been covered . We wil l cover most of these i n the next

few sect ions . We w i l l also cover many functions that are specific to each container.]

2 1 .2 .2 list Sequence Container

The l i st sequence container prov ides an effic ient implementation for i nsert ion and dele

tion operat ions at any location in the container. If most of the insert ions and deletions occur

at the ends of the container, the deque data structure (Section 2 1 . 2 . 3) provides a more ef

ficient i mplementat ion. C lass l i st i s implemented as a doubly l i nked Ii st--every node i n

the l i st contains a poi nter t o the previous node in the l i s t a n d t o the next node i n the

l i s t . Thi s enables c lass l i s t to support bidirectional i terators that al low the container

to be traversed both forwards and backwards . Any algori thm that requires input, output,

forward or bidirectional i terators can operate on a l i st . Many of the l i st member func

t ions manipulate the elements of the container as an ordered set of elements .

In addit ion to the member functions of al l STL containers i n F ig . 2 1 . 2 and the common

member functions of al l sequence contai ners di scussed in Section 2 1 . 5 , c lass l i st pro

v ides e ight other member funct ions-spl ice, push_front , pop_front , remove,

unique, merge, reverse and sort . Several of these member functions are l i st

opt imized i mplementations of STL algorithms presented in Section 2 1 . 5 . Figure 2 1 . 1 7
demonstrates several features of class l i st. Remember that many of the functions pre
sented in Fig . 2 1 . 1 4-Fig . 2 1 . 1 5 can be used with class l i st . Header fi le < l i s t > must be
inc luded to use class l i s t .

1 1 / Fig . 2 1 . 1 7 : f ig2 1 1 7 . cpp
2 II Standard l ibrary l i st c l a s s template test program .
3 # inc lude < iostream>
4
5 us ing s t d::cout ;
6 us ing s t d::endl ;
7
8 # inc lude < l i s t > I I l i st c l a s s - t emplate de f in i t i on
9 # inc lude < a lgorithm> II copy algorithm

1 0
1 1 II prototype for func t ion t emplate print L i s t
12 t emplate < c l a s s T >
1 3 vo id print L i s t (const std::l i s t < T > & l i stRef) ;
1 4
1 5 int ma in ()
1 6 {
1 7 const int S I ZE = 4 ;
1 8 int array [S I ZE 1 = { 2, 6 , 4 , 8 } ;
1 9
20 std : :l i s t < int > value s ;
2' std : : l i s t < int . > otherVa lue s ;
22
23 II insert i t ems in value s
24 value s . push_f ront (1) ;

F ig. 2 1 . 1 7 Standard Library lis t class template, (Part 1 of 4.)

1 1 1 4

25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

Standard Template Library (STL)

value s . push_f ront (2) i
value s . push_back (4) ;
value s . push_back (3);

cout « "values contains: "i
printLi st (value s) i

values . sort () i II s ort values

cout « "\nvalues after sort ing cont ai ns: "i
printLi st (va lues) i

II in&ert elemelts of ar r ay 1.tO otherValues
otherValues . insert (otherValues . begin () ,

array , array + SIZE) i

cout « "\nAfter insert , otherValues contains: "i
printLi st (otherVa lues) i

Chapter 2 1

I I reI< ov", uth r \lalu 1 llC. cU d 111 .. ", C. at aud vf vdlut:!s
value s . spl i c e (value s . end () , otherValue s) i

cout « " \nAfter spl ice , value s conta ins: " i
printLi st (values) i

values . sort () i II sort values

cout « "\nAfter sort, values contains. "i
printLi st (value s) i

I I insert elements of array into otherValues
otherValues . insert (otherValues . begin () ,

array , array + SIZE) i
otherValues . sort () i

cout « "\nAf t er insert , otherVa lues contains: "i
print L i s t (otherValues) i

II remove otherValues elemenc.s aud inl>e:z: t Ulto values
I I in sorted order
value s . merge (otherValues) i

cout « "\nAfter merge:\n values contains: "i
print L i st (va lues) i
cout « " \n otherValues contains: "i
printLi st (otherValue s) i

value s . pop_f ront () i
va lue s . pop_back () ;

/ I Lt:!move elC!jnt:!nt £:z:uu, fLUUL
II remove e l ement from back

cout « "\nAfter pop front and pop back: "
« " \n values contains: "i

printLi st (va lues) i

F ig . 21. 1 7 Standard Library l ist class template (Part 2 of 4.)

Chapter 2 1 Standard Template Library (STL)

78
79 value s . unique () ; I I remove dupl icate e l ements
80
8 1 cout « "\nAfter unique , values contains : " ;
82 printLi s t (value s) ;
83
84 II swap e l ement s of values and otherValues
85 value s . swap (otherValues) ;
86
87 cout « II \ nAfter swap : \n values contains : " ;
88 printLi s t (value s) ;
89 cout « " \ n otherValues contains : " ;
90 printLi s t (otherValues) ;
9 1

1 1 1 5

92 II replace content s of value s with e l ement s of otherValues
93 value s . a s s i gn (otherValue s . begin () , otherValue s . end ()) ;
94
95 cout « "\nAfter a s s i gn , values cont ains : " ;
96 printLi s t (values) ;
97
98 I I remove otherValues elements and insert into value s
99 II in sorted order
1 00 value s . merge (otherValues) ;
1 0 1
1 02 cout « "\nAfter merge , values contains : " ;
1 03 print L i s t (values) ;
1 04
1 05 value s . remove ('); I I remove a l l 4s
1 06
1 07 cout « "\nAfter remove (4) , values contains: " ;
1 08 printLi st (va lues) ;
1 09
1 1 0 cout « endl ;
1 1 1
1 1 2 return 0 ;
1 1 3
1 1 4 } I I end main
1 1 5
1 1 6 II printL i s t function template de finition ; uses
1 1 7 II o s t ream iterator and copy algorithm to output list e l ements
1 1 8 template < class T >
1 1 9 void print L i st (const std : : 1ist < T > & l i stRe f)
1 20 {
1 21 i f (li stRe f . empty())
1 22 cout « "List i s empty" ;
123
1 24 e l s e {
1 25 std : : os t ream_iterator< T > output (cout , " ") ;
1 26 std : : copy (1 i s tRe f . begin () , l i stRe f . end () , output) ;
1 27
128 } I I end e l se
1 29
1 30 II end function printLi st

Fig. 2 1 . 1 7 Standard Library lis t class template, (Part 3 of 4,)

1 1 1 6 Standard Template Library (STL)

values contains : 2 1 , 3
values after sort ing contains : 1 2 3 ,
After insert , otherValues contains : 2 6 , 8
A f t e r spl i c e , value s contains : 1 2 3 , 2 6 , 8
After sort , values contains : 1 2 2 3 , , 6 8
After insert , otherValues contains : 2 , 6 8
After merge :

values contains : 1 2 2 2 3 , , , 6 6 8 8
otherValues contains : List i s empty

After pop_f ront and pop_back :
value s contains : 2 2 2 3 , , , 6 6 8

After unique , values contains : 2 3 , 6 8
After swap :

values contains : L i s t i s empty
otherValues contains : 2 3 , 6 8

After a s s i gn , values contains : 2 3 , 6 8
After merge , values contains : 2 2 3 3 , , 6 6 8 8
After remove (,) , va lues contains : 2 2 3 3 6 6 8 8

Fig. 2 1 . 1 7 Standard Library l i s t class template . (Part 4 of 4.)

Chapter 2 1

Li nes 20-2 1 i nstantiate two l i st objects capable of storing integers . L i nes 24-25 use

function push_front to insert integers at the beg inn ing of value s . Function

push_front i s specific to c lasses l i st and de que (not to vector). Lines 26-27 use

function push_back to insert i ntegers at the end of value s . Remember that function

push_back i s common to al l sequence contai ners.

Line 32 uses l i s t member function sort to arrange the elements i n the l i st in

ascending order. [Note: This i s different from the sort in the STL algorithms .] There i s a

second version of function sort that al lows the programmer to supply a binary predicate

function that takes two arguments (values in the l i st) , performs a compari son and returns a

bool value i ndicati ng the result . This function determines the order in wh ich the elements

of the l i st are sorted. Thi s version could be part icu larl y usefu l for a l i st that stores

pointers rather than values. [Note: We demonstrate a unary predicate function in Fig . 2 1 . 28 .

A unary predicate function takes a s ingle argument, performs a comparison us ing that argu

ment and returns a bool value indicating the result .]

Line 45 uses l i st function spl ice to remove the elements in otherValue s and

insert them into value s before the iterator position spec ified as the fi rst argument. There

are two other versions of th i s function. Function spl ice with three arguments a l lows one

element to be removed from the contai ner specified as the second argument from the loca

tion spec ified by the iterator in the th i rd argument. Function spl ice with four arguments

uses the last two arguments to specify a range of locations that should be removed from the

container in the second argument and p laced at the location specified in the first argu ment.

After the insert ing of more elements in l i st otherValue s and the sorting of both

values and otherValues , l i ne 65 uses l i st member function merge to remove al l

e lements of otherValues and insert them in sorted order i nto value s . Both l i st s

must b e sorted in the same order before thi s operation i s performed. A second vers ion of

merge enables the programmer to supply a predicate function that takes two arguments

(values in the l i st) and returns a bool value. The predicate function specifies the sorti ng

order used by merge .

Chapter 2 1 Standard Template Library (STL) 1 1 1 7

Line 72 uses l i st function pop_front to remove the first e lement i n the l i s t .

Line 7 3 uses function pop_back (avai lable for a l l sequence containers) t o remove the last

element in the l i s t .

Line 7 9 uses l i st function unique to remove dupl icate elements i n the l i st . The

l i st should be in sorted order (so that all dupl icates are side by s ide) before th i s operation

i s performed, to guarantee that al l duplicates are e l imi nated. A second version of unique

enables the programmer to supply a predicate function that takes two arguments (values in

the l i st) and returns a bool value specify ing whether two elements are equal .

L ine 8S uses function swap (avai lab le to al l containers) to exchange the contents of

values with the contents of otherValue s .

Line 93 uses l i st function ass ign to rep lace the contents of values with the con

tents of otherValue s i n the range spec ified by the two iterator arguments. A second ver

sion of a s s ign replaces the orig ina l contents with copies of the value spec i fied in the

second argument. The fi rst argument of the function specifies the number of copies . L ine

l OS uses l i st function remove to delete al l copies of the va lue 4 from the l i s t .

2 1 .2 .3 deque Sequence Container

Class deque provides many of the benefits of a vector and a l i s t i n one container .

The term deque (pronounced "deek") i s short for "double-ended queue ." Class deque is

implemented to provide efficient i ndexed access (us ing subscripti ng) for reading and mod

ify ing its e lements, much l ike a vector. Class deque i s also i mplemented for efficient

i n sertion and delet ion operations at its front and back, much l i ke a l i st (although a l i st

i s a l so capable of effic ient i n sertions and deletions i n the middle of the l i st) . Class de

que provides support for random-access iterators, so deques can be used with al l STL al

gorithms. One of the most common uses of a deque i s to mai ntain a first- i n -fi rst-out queue

of elements . T n fact, a deque i s the default underly ing i mplementation for the queue adap

tor (Section 2 1 .4 .2) .

Additional storage for a deque can be al located at either end of the deque i n blocks

of memory that are typical ly maintai ned as an array of poi nters to those blocks .4 Due to the

non-contiguous memory layout of a deque, a deque i terator must be more i nte l l i gent

than the pointers that are used to iterate through vectors or poi nter-based arrays.

Performa n ce Tip 2 1 . 1 1

In several implementations, once a storage block is allocated for a deque, the block is not

deallocated until the deque is destroyed. This makes the operation of a deque more effi

cient than if memory were repeatedly allocated, deallocated and reallocated. But this means

that the deque is more likely to use memory inefficiently (than a vector, for example).

Performance Tip 2 1 . 1 2

Insertions and deletions in the middle of a deque are optimized to minimize the number of

elements copied, to maintain the illusion that the elements of the deque are contiguous.

Class deque provides the same bas ic operations as class vec tor, but adds member

functions push_front and pop_front to al low insertion and deletion at the beg inn ing

o f the deque, respecti ve l y .

4. This is an implementation -specific detail, not a requirement o f the C++ standard.

1 1 1 8 Standard Template library (STL) Chapter 2 1

Figure 2 1 . I 8 demonstrates features of class deque. Remember that many of the func

tions presented in Fig. 2 1 . 1 4, Fig . 2 1 . 1 5 and Fig. 2 1 . 1 7 also can be used with c lass deque.

Header fi l e <deque > must be included to use class deque.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42

I I F i g . 2 1 . 1 8 : f i g 2 1 1 8 . cpp
I I Standard l ibrary c l a s s de que test program .
inc lude < iostream>

us ing s td : : cout ;
us ing s td : : endl ;

inc lude <deque >
inc lude < a lgori thm>

int main ()
{

I I deque c l a s s - t emp l a t e de f in i t ion
I I copy algor ithm

std : : deque < double > value s ;
s td : : ostream_i t erator< double > output (cout , " ") ;

I I insert e l ement s in values
value s . push_f ront (2 . 2) ;
value s . push_f ront (3 . 5) ;
value s . push_back (1 . 1) ;

cout « " values contains : " ;

I I use subscript operator to obta in e l ement s of va lues
for (int i = 0; i < values . s i ze () ; ++i)

cout « value s [i] « ' ' ;

value s . pop_f ront () ; I I remove f i r s t e l ement

cout « " \ nAf t e r pop_front , va lues contains : u ;
std : : copy (va lue s . begin () , values . end () , output) ;

I I u e subscript operator t o modi fy e l ement at locat ion 1
va lue s [1] = 5 . 4 ;

cout « " \ nAfter va lues [1] = 5 . 4 , values contains : " ;
s td : : copy (value s . begin () , value s . end () , output) ;

cout « endl ;

return 0;

I I end ma in

values contains : 3 . 5 2 . 2 1 . 1
After pop_front , va lue s contains : 2 . 2 1 . 1
After value s [1] = 5 . 4 , va lues contains : 2 . 2 5 . 4

Fig. 2 1 . 1 8 Standard Library deque class template .

Chapter 2 1 Standard Template Library (STL) 1 1 1 9

Line J 3 i n stantiates a deque that can store double values . Lines 1 7- 1 9 use func

t ions push_f ront and push_back to insert elements at the beginn ing and end of the

deque. Remember that push_back i s avai lable for al l sequence containers, but

push_front i s avai lable only for class l i st and class deque.

The for structure at l i nes 24-25 uses the subscript operator to retrieve the value in

each e lement of the deque for output . Note that the condit ion uses funct ion s i z e to

ensure that we do not attempt to access an element outside the bounds of the deque.

Line 27 uses function pop_front to demonstrate removing the fi rst element of the

deque. Remember that pop_front i s available only for class l i st and c lass deque

(not for class vector) .

Line 3 3 uses the subscript operator to create an lvalue. Thi s enables va lues to be

assigned d irectly to any e lement of the deque.

21 . 3 Associative Containers

The STL ' s associat ive contai ners provide d irect access to store and retrieve elements v ia

keys (often cal led search keys) . The four associat ive containers are mul t i set , set,

mul t imap and map. Each assoc iat ive container maintains i ts keys in sorted order. I terat

ing through an assoc iat ive container traverses i t in the sort order for that container. C lasses

mul t i set and set prov ide operations for man ipulat ing sets of values where the values

are the keys-there i s not a separate value associated with each key. The pri mary d ifference

between a mul t i set and a set is that a mul t i set al lows dupl icate keys and a set

does not . C lasses mult imap and map provide operations for manipulat ing values assoc i

ated wi th keys (these values are somet imes referred to as mapped values) . The pri mary d if

ference between a mult imap and a map is that a mult imap al lows dupl icate keys with

associated values to be stored and a map al lows only unique keys with associ ated values .

Tn addi t ion to the common member functions of al l containers presented in Fig . 2 1 . 2 , a l l

assoc iat ive contai ners also support several other member functions, i nc luding f i nd,

lower_bound, upper_bound and count . Examples of each of the assoc iat ive con

tai ners and the common associative container member functions are presented i n the next

several subsect ions .

2 1 .3 . 1 mu ltiset Associative Container

The mul t i set associat ive container provides fast storage and retrieval of keys and al lows

dupl icate keys . The ordering of the elements i s determi ned by a comparator function ob
ject . For example, in an in teger mu l t i set , e lements can be sorted in ascending order by

orderi ng the keys with comparator fu nct ion object l e s s < int > . The data type of the keys

in a l l associative containers must support compari son properly based on the comparator

function object specified-keys sorted with l e s s < T > must support compari son with

T : : operator< . I f the keys used in the associat ive containers are of programmer-defined

data types, those types must supply the appropriate compari son operators . A mul t i set

supports bidi rectional i terators (but not random-access i terators) .

Performance Tip 2 1 . 1 3

For performance reasons, mul ti sets and sets a re typically implemen red as so-called

red-black binary search trees. Wirh rhis inrernal represenlariol1, rhe bin a ry search rree rends

ro be balanced, rhus min irnizing a verage sea rch rimes.

1 1 20 Standard Template Library (STL) Chapter 2 1

Figure 2 1 . 1 9 demonstrates the mul t i set assoc iat ive container for a mul t i set of

in tegers sorted in ascending order. Header fi le < set > must be i ncl uded to use c lass mul

t i se t . Contai ners mul t i set and set provide the same member functions.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47

I I Fig . 2 1 . 1 9 : f ig2 1_1 9 . cpp
I I Te s t ing Standard Library c l a s s mul t i set
inc lude < iostream>

u s i ng std : : cout ;
us ing s td : : endl ;

inc lude < s e t > II mu l t i set c l a s s - t emplate de f i n i t ion

I I de f i ne short name for mul t i set type u s ed in thi s program
typede f s td : : mul t i se t < int , std : : le s s < int > > ims ;

inc lude < algor i thm> I I copy algorithm

int main ()
{

const int S I ZE = 1 0 ;
int a [S IZE] = { 7 , 2 2 , 9 , 1 , 1 8 , 3 0 , 1 0 0 , 2 2 , 8 5 , 1 3 };

ims intMul t i set ; I I ims i s typede f for " integer mul t i set "
s td : : o s t ream_i t e rator< int > output (cout , " ") ;

cout « " There are current ly " « intMul t i se t . count (1 5)
« " values of 1 5 in the mul t i set \ n " ;

intMult i set . insert (1 5) ;
intMu l t i set . insert (1 5) ;

I I insert 1 5 in intMu l t i set
I I insert 1 5 i n intMu l t i set

cout « "After insert s , there are "
« intMul t i set . count (1 5
« " values of 15 in the mul t i set \ n \ n " ;

I I i t erator that cannot be used to change e lement value s
ims : : const_iterator result ;

I I f ind 1 5 in intMult i set ; f ind returns i terator
result = intMul t i set . f ind (15) ;

i f (result ! = intMu l t i set . end ()
cout « " Found value 1 5 \ n " ;

I I i f i t e rator not at end
I I found s earch value 1 5

I I f i nd 2 0 i n intMu l t i set ; f ind returns i t erator
result = intMult i set . find (20) ;

i f (result = = intMu l t i set . end () I I wi l l be t rue hence
cout « " Di d not find value 2 0 \ n " ; I I did not f ind 2 0

Fig. 2 1 . 1 9 Standard Library mu l tiset class template . (Part 1 of 2 .)

Chapter 2 1 Standard Template Library (STL)

48 I I insert e l ement s of array a into intMu l t i set
49 intMu l t i se t . ins ert (a , a + S I ZE) ;
50
5 1 cout « " \ nAfter insert , intMul t i set contains : \ n " ;

1 1 2 1

52 std : : copy (intMu l t i set . begin () , intMu l t i set . end () , output) ;
53
54
55
56
57
58
59

/ I determine l ower and upper bound of
cout « " \ n \ nLower bound o f 2 2 : "

« * (intMu l t i set . lower_bound (2 2
cout « " \nUpper bound o f 2 2 : "

« * (intMu l t i set . upper_bound (2 2

2 2

60 I I p represent s pair of const i terators

in intMu l t i s e t

) ;

) ;

6 1 s td : : pa i r < ims : : const_it erator , ims : : const i t erator > p ;
62
63 I I u s e equal range to determine lower and upper bound
64 I I of 2 2 in intMu l t i set
65 p = intMu l t i set . equal_range (2 2) ;
66
67 cout « " \n \nequal range of 2 2 : "
68 « " \n Lower bound : " « * (p . f i rst)
69 < < " \n Upper bound : " < < * (p . second) ;
70
7 1 cout « endl ;
72
73 return 0 ;
74
75 I I end main

There are current ly 0 va lue s of 1 5 in the mu l t i set
After insert s , there are 2 va lues of 1 5 in the mu l t i s e t

Found value 1 5
Did not f ind va lue 2 0

After insert , intMu l t i set contains :
1 7 9 13 1 5 1 5 1 8 2 2 2 2 3 0 8 5 1 0 0

Lower bound o f 2 2 : 2 2
Upper bound o f 2 2 : 3 0

equal_range of 2 2 :
Lower bound : 2 2
Upper bound : 3 0

Fig. 2 1 . 1 9 Standard Library mu l t i s e t class template. (Part 2 of 2 .)

Line I I uses a typede f to create a new type name (al i as) for a rnul t i set of i nte

gers ordered in ascending order, us ing the function object l e s s < int >. Thi s new type

(irns) i s then u sed to i nstant iate an in teger rnul t i set object , intMu l t i set (l ine 20) .

Good Programming Practice 2 1 . 1

Use typedefs 10 make code wilh long type names (such as mul ti sets) easier to read.

1 1 22 Standard Template Library (STL) Chapter 2 1

The output statement at l i ne 2 3 uses function count (avai lable to al l assoc iat ive con
tainers) to count the number of occurrences of the value 15 currently in the mul t i s e t .

Li nes 26-27 use one o f the three versions o f function insert t o add the value 1 5 to
the mul t i set twice . A second version of insert takes an iterator and a value as argu
ments and begins the search for the insertion point from the iterator position spec ified . A
th i rd version of insert takes two iterators as arguments that spec ify a range of val ues to
add to the mul t i set from another contai ner.

Line 37 uses function f ind (avai lable to al l assoc iative contai ners) to locate the va lue
1 5 in the mul t i set . Function find returns an iterator or a const_iterator

point ing to the earl iest location at which the value is found. I f the value i s not found, f i nd

returns an i terator or a const_i terator equal to the value returned by a cal l to
end. Line 43 demonstrates th i s case.

Line 49 uses function insert to insert the elements of array a i nto the mul t i se t .

A t l i ne 52 , the copy algorithm copies the e lements o f the mul t i set t o the standard

output. Note that the elements are displayed in ascending order.

Lines 56 and 58 use functions l ower_bound and upper_bound (avai l ab le i n al l

associative containers) to locate the earl iest occurrence of the value 2 2 in the mul t i set

and the element after the last occurrence of the value 22 in the mul t i se t . B oth functions

return iterators or const_iterators poi nti ng to the appropriate location or the iter

ator returned by end if the value is not in the mul t i set.

Line 6 L i nstantiates an instance of c lass pair cal led p. Objects of class pair are used

to assoc iate pairs of values. I n th i s example, the contents of a pair are two

const_it erators for our integer-based mu l t i s et . The purpose of p is to store the

return value of mul t i set function equal_range that returns a pair contai n ing the

resu lts of both a lower_bound and an upper_bound operation . Type pair contains

two public data members cal led first and second.
Line 65 uses function equal_range to determine the lower_bound and

upper_bound of 22 in the mul t i set. Lines 68-69 use p . f i r s t and p . second,

respectively , to access the lower_bound and upper_bound. We dereferenced the iter

ators to output the values at the locati ons returned from equa l_range .

2 1 .3 .2 set Associative Container

The set associative container i s used for fast storage and retrieval of un ique keys. The i m

plementation of a set i s identical to that of a mul t i set , except that a set must have
unique keys . Therefore , i f an attempt i s made to i nsert a dupl icate key i nto a set, the du

pl icate is ignored ; because th i s i s the intended mathemati ca l behav ior of a set, we do not

identify it as a common program ming error . A set supports bi d i rect i ona l iterators (but not

random-access iterators) . Figure 2 1 . 20 demon strates a set of doubles . Header fi le

< set > must be inc luded to use c lass set .

Line I I uses typede f to create a new type name (double_set) for a set of

double values ordered in ascending order, us ing the function object l e s s < doubl e > .

Line 20 uses the new type double_set to instantiate object doubleSet . The con

structor cal l takes the elements in array a between a and a + S I ZE (i .e . , the enti re array)

and inserts them into the set . Line 24 uses algori thm copy to output the contents of the

set . Notice that the value 2 • 1-which appeared twice in array a-appears only once i n

doubleSet . Th is i s because container set does not a l low dupl icates .

Chapter 2 1 Standard Template L ibra ry (STL) 1 1 23

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53

I I Fig 2 1 . 2 0 : f ig2 1 2 0 . cpp
I I Standa rd l ibrary c l a s s set t e s t program .
inc lude < io s t ream>

u s i ng s td : : cout ;
u s i ng std : : endl ;

i nc lude < se t >

I I de f i n e short name f o r s e t type u s ed i n thi s program
typede f s td : : s et < double , std : : l e s s < doubl e > > doubl e_s e t ;

i nc lude < a l gorithm>

int ma in ()
{

con s t int S I ZE
doubl e a [S I ZE

5 ;
= { 2 . 1 , 4 . 2 , 9 . 5 , 2 . 1 , 3 . 7 };

doubl e set doubleSet (a , a + S I ZE) ;
std : : o s t ream_i t erator< doubl e > output (cout , " ") ;

cout « " doubleSet contains : " ;
std : : copy (doubleSet . beg in () , doubleSet . end () , output) ;

/ 1 p repre sp.nt s pa i r cont ain i.ng �ons t i t e r<t tor and bool
std : : pa i r < double_set : : const_i t erator , bool > p ;

I I i n s ert 1 3 . 8 i n douhl eSet ; i n sert return s pa i r i n wh i r.h
/I p f i r s t repr e s ent s l ocat i on of 1 3 . 8 in dOllble S et ann
/ 1 p . second repre sent s whether 1 3 . 8 wa s i n serted
p = doubleSet . insert (13 8) ; / / va lue not i n s e t

cout « " \ n \ n " « * (p . f i r s t)
« (p . second ? " wa s " : .. was not ") « .. i n s e rt ed " ;

cout « " ndoubleSet contains ' ' ;
std : : copy (doubleSet . begin () , doubleSet . end () , output) ;

I I ins ert 9 5 in doub l eSet
p = doubleSet . insert (9 . 5) ; I I va lue a l ready i n s e t

cout « " \ n \ n " « * (p . f i r s t
« (p . second ? " wa s " : " was not ") « " i n sert e d " ;

cout « ' \ ndouhleSet r.nn ta i n s ·
std : : copy (doub l e Set . begin () , doubleSet . end () , output) ;

cout « endl ;

return 0 ;

/ 1 end ma in

Fig. 2 1 .20 Standard Library s et class template . (Part 1 of 2 .)

1 1 24 Standard Template library (STL) Chapter 2 1

doubleSet contains : 2 . 1 3 . 7 4 . 2 9 . 5

1 3 . 8 was inserted
doubleSet contains : 2 . 1 3 . 7 4 . 2 9 . 5 1 3 . 8

9 . 5 was not inserted
doubleSet contains : 2 . 1 3 . 7 4 . 2 9 . 5 1 3 . 8

Fig. 2 1 .20 Standard Library s e t class template, (Part 2 of 2 ,)

Line 27 defi nes a pair cons isti ng of a const_iterator for a double_set and

a bool value. Thi s object stores the result of a call to set function insert .

Line 32 uses function insert to place the value 1 3 . 8 in the set . The returned

pair, p, contains an iterator p . f i rst poi nting to the value 13 • 8 in the set and a bool

value that is t rue i f the value was i nserted and fal se if the value was not i n serted

(because it was already in the set) . In th i s case, 13 • 8 was not in the set, so i t was i nserted.

L ine 41 attempts to i nsert 9 • 5, which is already in the set . The output of l i nes 43-44 shows

that 9 • 5 was not i nserted .

2 1 .3 .3 mu l timap Associative Container

The mul t imap associative container i s used for fast storage and retrieval of keys and as

soc iated values (often cal led key/value pairs). Many of the methods used wi th mul t i sets

and sets are also used with mult imaps and maps. The elements of mul t imaps and

maps are pairs of keys and values instead of individual values . When i n serting i nto a

mult imap or map, a pair object that contains the key and the value i s used. The ordering

of the keys i s determi ned by a comparator function object. For example, i n a mul t imap

that uses i ntegers as the key type, keys can be sorted in ascending order by ordering the keys

w ith comparator function object les s < int >. Dupl icate keys are a l lowed in a mul t i

map, s o mult iple values can be associated with a s ingle key . Thi s i s often cal led a one-to

many relationship . For example, in a credit-card transaction-processing system, one credit

card account can have many associated transactions ; i n a un iversity , one student can take

many courses, and one professor can teach many students ; in the m i l i tary , one rank (l i ke

"private") has many people . A mult imap supports b id irectional iterators (but not ran

dom-access iterators) . As with mul t i sets and sets, mul t imaps are typical l y i mple

mented as a red-black binary search tree i n which the nodes of the tree are key/value

pairs. Figure 2 1 .2 1 demonstrates the mult imap associative container. Header fi le

<map> must be i nc luded to use c lass mult imap.

1 / 1 Fig . 2 1 . 2 1 : f ig2 1 2 1 . cpp
2 1 / S tandard l ibrary c l a s s mult imap test program .
3 #inc lude < iostream>
4
5 us ing std : : cout ;
6 u s i ng std : : endl ;
7

Fig. 2 1 . 2 1 Standard Library mu l t imap class template, (Part 1 of 2 ,)

Chapter 2 1 Standard Template L ibrary (STL)

8 # inc lude <map> I I map c l as s - t empi t e de n i t ion

9
1 0 I I def ne short n u .m; p ype u d in thi s program

1 1 typede f s td : : mult imap< int , double , std : : l e s s < int > > mmid ;

1 2
1 3 int main ()
1 4 {
1 5 mmid pai r s ;
1 6
1 7 cout « " There are current ly " « pai r s . count (1 5

1 8 « " pairs with key 1 5 in the mul t imap \ n " ;
1 9
20 I I ins x t t 0 valu cyp ob ect .n pai r s
21 pai r s . insert (mmid : : value_type (1 5 , 2 . 7)) ;
22 pai r s . insert (mmid : : value_type (1 5 , 9 9 . 3)) ;
23
24 cout « "After insert s , there are "
25 « pai r s . count (1 5)
26 « " pairs with key 1 5 \ n \ n " ;
27

I I t f ve v u type ob ec in
pairs . insert (mmid : : value _type (3 0 ,

pairs
1 1 1 . 1 1)) ;

28
29
30
3 1
32
33
34

pai r s . insert (mmid : : value _type (1 0 , 2 2 . 2 2)) ;
pairs . insert (mmid : : value _type (2 5 , 3 3 . 3 3 3)) ;
pai r s . insert (mmid : : value _type (2 0 , 9 . 3 4 5)) ;
pai r s . insert (mmid : : value _type (5 , 7 7 . 54)) ;

35 cout « " Mult imap pairs contains : \ nKey\ tValue \ n " ;
36
37 I I use cons i tera 0 to �. 1 through e l ement s o f pai r s
38 for (mmid : : const_iterator iter = pairs . begi n () ;
39 i t e r 1 = pairs . end () ; + + iter)
40 cout « i t er - > f i rst « , \ t '
4 1 « i t e r - > second « ' \ n ' ;
42
43 cout « endl ;
44
45 return 0 ;
46
47 I I end main

There are current ly 0 pairs wi th key 1 5 in the mu l t �p
After insert s , there are 2 pairs with key 1 5

MUlt imap pairs contains :
Key Value
5 7 7 . 5 4
1 0 2 2 . 2 2
1 5 2 . 7
1 5 9 9 . 3
2 0 9 . 3 4 5
2 5 3 3 . 3 3 3
3 0 1 1 1 . 1 1

Fig. 2 1 . 2 1 Standard Library mu l t imap class template . (Part 2 o f 2 .)

1 1 25

1 1 26 Standard Template Library (STL) Chapter 2 1

Performance Tip 2 1 . 1 4

A mul t imap is implemented to efficiently locate all values paired with a given key.

Line I I uses typede f to define al ias mmid for a mul t imap type i n which the key

type i s int, the type of a key ' s associated value is double and the e lements are ordered

in ascending order. Line 1 5 uses the new type to i nstantiate a mult imap called pair s .

Line 1 7 uses function count t o determine the number o f key/value pairs w ith a key o f 1 5 .

Line 2 1 uses function insert t o add a n e w key/value pair t o the mul t imap. The

expression mmid : : value_type (1 5 , 2 . 7) creates a pai r object in which f irst

i s the key (1 5) of type int and second i s the value (2 . 7) of type double. The type

mmid : : value_type i s defined in l ine 1 1 as part of the typede f for the mult imap.

Line 22 i nserts another pair object, i n which the key is 1 5 and the value i s 9 9 . 3 . Then

lines 24-26 output the number of pairs with key 1 5 .

Lines 29-33 i nsert five additional pairs i nto the mult imap. The f o r structure at

l i nes 38-4 1 outputs the contents of the mult imap, including both keys and values. Lines

4 1 -42 use the const_i terator cal led iter to access the members of the pair i n each

element of the mul t imap. Notice in the output that the keys appear in ascending order.

2 1 .3.4 map Associative Container

The map associative container i s used for fast storage and retrieval of unique keys and as

sociated values. Duplicate keys are not a l lowed i n a map, so only a s ingle value can be as

soc iated with each key . This i s cal led a one-to-one mapping. For example, a company that

uses unique employee numbers, such as 1 00, 200 and 300, might have a map that associates

employee numbers with their telephone extensions-432 1 , 4 1 1 5 and 52 1 7 , respectively.

With a map you speci fy the key and get back the associated data quickly . A map i s com

monly called an associative array. Providing the key i n a map ' s subscript operator [] lo

cates the value associated with that key i n the map. Insertions and deletions can be made

anywhere in a map.

Figure 2 1 .22 demonstrates the map associative container. F igure 2 1 .22 uses the same

features as Fig. 2 1 .2 1 and demonstrates the subscript operator. Header file <map> must be

inc luded to use c lass map. Lines 36 and 39 use the subscript operator of c lass map. When

the subscript is a key that i s already i n the map (line 36) , the operator returns a reference to

the associated value. When the subscript i s a key that i s not in the map (l ine 39), the oper

ator i nserts the key in the map and returns a reference that can be used to associate a value

with that key . Line 36 repl aces the value for the key 2 5 (previously 3 3 . 3 3 3 as specified

in l i ne 22) with a new value, 9 9 9 9 . 9 9 . Line 39 inserts a new key/value pair (called cre

ating an association) in the map.

1 I I F i g . 2 1 . 2 2 : f ig2 1_2 2 . cpp
2 I I St andard l ibrary c lass map test program .
3 # inc lude < iostream>
4
5 us ing s td : : cout ;
6 u s i ng s td : : endl ;

Fig. 2 1 .22 Standard Library map class template. (Part 1 of 3.)

Chapter 2 1 Standard Template library (STL)

7
8 #include <map > I I map c l a s s - t emplate de f i ni t i on
9

1 0 I I de f ine short name for map type used in thi s program
1 1 typede f s td : : map < int , doubl e , std : : l e s s < int > > mid ;
1 2
1 3 int main ()
1 4 {
1 5 mid pai r s ;
1 6
1 7 I I insert e i ght value type obj ect s i n pai r s
1 8 pai r s . insert (mid : : value_type (1 5 , 2 . 7)) ;
1 9 pai r s . insert (mid : : value_type (3 0 , 1 1 1 . 1 1)) ;
20 pa i r s . insert (mid : : value_type (5 , 1 0 1 0 . 1)) ;
2 1 pai r s . insert (mid : : value_type (1 0 , 2 2 . 2 2)) ;
22 pa i r s . insert (mid : : value_type (2 5 , 3 3 . 3 3 3)) ;

1 1 27

23 pai r s . insert (mid : : value_type (5 , 7 7 . 54)) ; I I dupe i gnored
24 pai r s . insert (mid : : value_type (2 0 , 9 . 3 4 5)) ;
25 pa i r s . insert (mid : : value_type (1 5 , 9 9 . 3)) ; I I dupe ignored
26
27 cout « "pairs contains : \ nKey\ tValue \ n " ;
28
29 I I u s e const it erator to walk through e l ements of pairs
30 for (mid : : const_i t erator iter = pairs . begin () ;
3 1 i t e r 1 = pairs . end () ; + + iter)
32 cout « iter - > f i rst « ' \ t '
33 « i t er - > second « ' \ n ' ;
34
35 I I use subscript operator to change va lue for key 2 5
36 pai r s [2 5] = 9 9 9 9 . 9 9 ;
37
38 I I u s e subscript operator insert value for key 4 0
39 pai r s [4 0] = 8 7 6 5 . 4 3 ;
40
4 1 cout « " \nAfter subscript operat ions , pai r s contains : "
42 « " \ nKey\ tValue \ n " ;
43
44 for (mid : : const_it erator iter2 = pairs . begin () ;
45 i t er2 ! = pa i r s . end () ; + + i ter2
46 cout « iter2 - > f i rst « ' \ t '
47 « iter2 - > second « ' \ n ' ;
48
49 cout « endl ;
50
5 1 return 0 ;
52
53 } I I end mai n

pai r s
Key
5
1 0

contains :
Value
1 0 1 0 . 1
2 2 . 2 2

Fig. 2 1 .22 Standard library map class template . (Part 2 of 3 .)

(continued next page)

1 1 28 Standard Template Library (STL)

1 5 2 . 7
2 0 9 . 3 4 5
2 5 3 3 . 3 3 3
3 0 1 1 1 . 1 1

After subscript
Key Value
5 1 0 1 0 . 1
1 0 2 2 . 2 2
1 5 2 . 7
2 0 9 . 3 4 5
2 5 9 9 9 9 . 9 9
3 0 1 1 1 . 1 1
4 0 8 7 6 5 . 4 3

operat ions , pairs contains :

Fig. 2 1 .22 Standard Library map class template . (Part 3 of 3 .)

21 .4 Container Adapters

Chapter 2 1

The STL provides three container adapters-stack, queue and priority_queue.

Adapters are not first-class containers, because they do not provide the actual data-structure

i mplementat ion i n which elements can be stored and because adapters do not support i ter

ators . The benefit of an adapter c lass is that the programmer can choose an appropri ate un

derlying data structure . A l l three adapter c lasses provide member functions p ush and pop
that properly insert an element into each adapter data structure and properly remove an e l

ement from each adapter data structure . The next several subsect ions provide examples of

the adapter c lasses.

2 1 .4. 1 st ack Adapter

Class stack enables i nsert ions i nto and deletions from the underly ing data structure at one

end (commonly referred to as a last- in-first-out data structure) . A s tack can be i mple

mented wi th any of the sequence containers : vector, l i st and deque. Thi s example

creates three i nteger stacks, us ing each of the sequence containers of the Standard Library

as the underlying data structure to represent the stack. By default , a stack is implement

ed with a deque. The stack operations are push to insert an element at the top of the

stack (implemented by cal l i ng function push_back of the underly ing container), pop

to remove the top element of the stack (implemented by cal l i ng function pop_back of

the u nderly ing contai ner), top to get a reference to the top element of the stack (i mple

mented by cal l i ng function back of the underly ing container), empty to determine wheth

er the stack i s empty (implemented by cal l i ng function empty of the underly ing

container) and s i z e to get the number of elements in the stack (implemented by cal l i ng

function s i z e of the u nderly ing container) .

Performance Tip 2 1 . 1 5
Each of the common operations of a stack is implemented as an inline function that

calls the appropriate function of the underlying container. This avoids the overhead ofa sec

ond function call.

Chapter 2 1 Standard Template L ibra ry (STL) 1 1 29

Performance Tip 2 1 . 1 6
For the best performance, use class deque or vector as the underlying container for a

stack

Figure 2 1 .23 demonstrates the stack adapter class. Header fi l e < stack> must be

included to use c lass stack.

Lines 1 9, 22 and 25 i nstantiate three integer stacks. Line 1 9 specifies a stack of in te

gers that uses the defaul t de que container as i ts underly ing data structure . Line 22 speci

fies a stack of integers that uses a vector of in tegers as its underly ing data structure .

Line 25 specifies a stack of in tegers that uses a l i st of integers as its underly ing data

structure .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39

I I Fig . 2 1 . 2 3 : f ig2 1_2 3 . cpp
I I Standard l ibrary adapter stack test program .
i nc lude < io s t ream>

u s i ng s td : : cout ;
us ing std : : endl ;

inc lude < s tack>
inc lude <vector>
i nc lude < l i st >

I I stack adapter de f i n i t i on
I I vector c las s - template de f init ion
I I l i st c l as s - templat e de f i n i t i on

I I popEl ement s func t i on- t emplate prototype
template < c l a s s T >
void popE lement s (T & s tackRe f) ;

int main ()
{

I I stack with de f ault underlying deque
std : : stack< i nt > intDequeStack;

II stack with underlying vector
std : : stack< int , std : : vector< int > > intVectorStack ;

I I stack with underlying l i s t
std : : stack< int , std : : l i s t < int > > intLi s t Stac k ;

I I push the values 0 - 9 onto each stack
for (int i = 0 ; i < 1 0 ; ++i) (

intDequeStack . push (i) ;
i ntVectorStack . push (i) ;
i nt L i s t Stack . push (i) ;

} I I end for

I I d i sp l ay and remove e l ement s from each stack
cout « " Popping f rom intDequeStack : " ;
popE lement s (intDequeStack) ;
cout « " \ nPopping f rom intVectorStack : " ;
popElement s (intVectorStack) ;

Fig. 2 1 .23 Standard Library s t ack adapter class . (Part 1 of 2 .)

1 1 30 Standard Template Library (STL)

cout « " \ nPoppi ng from intL i s tStack : " ;
popElement s { int L i s t Stack) ;

cout « endl ;

return 0 ;

I I end main

Chapter 2 1

40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59

I I pop e l ement s f rom s tack obj ect to whi ch s t ackRe f re fers
template < class T >
void popEl ement s { T & stackRe f)
{

whi l e (I stackRe f . empty {)) {
cout « s tackRe f . top {) « ' ' ;
s tackRe f . pop {) ;

I I end whi l e

} I I end funct ion popE lement s

I I view top e l ement
I I remove top e l ement

Popping f rom intDequeStack : 9 8 7 6 5 4 3 2 1 0
Popping f rom intVectorStack : 9 8 7 6 5 4 3 2 1 0
Popping f rom intL i s t S t ack : 9 8 7 6 5 4 3 2 1 0

Fig. 2 1 .23 Standard Library s t ack adapter class. (Part 2 of 2 .)

Lines 29-3 l each use function push (available i n each adapter c lass) to p lace an

in teger on top of each stack.

Function popElement s (l i nes SO-59) pops the e lements off each stack. Line 54
uses stack function top to retrieve the top element of the stack for output . Function

top does not remove the top element. Line 5 5 uses function pop (available in each adapter

c lass) to remove the top element of the stack. Function pop does not return a value.

2 1 .4.2 queue Adapter

Class queue enables i nsertions at the back of the underly ing data structure and deletions

from the front of the underly ing data structure (commonl y referred to as ajirst-in-jirst-out
data structure) . A queue can be implemented with STL data structure l i st or deque.

By default , a queue i s implemented with a deque. The common queue operations are

push to i nsert an element at the back of the queue (implemented by cal l i ng function

push_back of the underlying container), pop to remove the element at the front of the

queue (implemented by cal l i ng function pop_front of the underly ing container),

front to get a reference to the first element i n the queue (implemented by cal l ing func

t ion front of the underly ing container), back to get a reference to the last element i n the

queue (implemented by call ing function back of the underly ing container), empty to de

termine whether the queue i s empty (implemented by cal ling function empty of the un

derlying container) and size to get the number of elements i n the queue (implemented

by cal l i ng function s i z e of the underlying container) .

Chapter 2 1 Standard Template Library (STL) 1 1 3 1

Performance Tip 2 1 . 1 7

Each of the common operations of a queue is implemented as an inline function that

calls the appropriate function of the underlying container. This avoids the overhead of a sec

ond function call.

Performance Tip 2 1 . 1 8

For the best performance, use class deque as the underlying container for a queue.

Figure 2 1 .24 demonstrates the queue adapter c lass . Header fi le < queue > must be

inc luded to use a queue.

Line 1 2 i nstantiates a queue that stores double values. Lines 1 5- 1 7 use function

push to add e lements to the queue. The whi l e structure at l ines 2 1 -25 uses function

empty (available in al l containers) to determine whether the queue i s e mpty (line 2 1) .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1

I I F i g . 2 1 . 2 4 : f ig2 1_2 4 . cpp
I I Standard l ibrary adapter queue t e s t program .
i nc lude < io s t ream>

u s i ng std : : cout ;
us i ng s td : : endl ;

i nc lude < queue > I I queue adapter de f i n i t i on

int mai n ()
{

std : : queue < doub l e > value s ;

/ I push e l ement s onto queue value s
value s . push (3 . 2) ;
value s . push (9 . 8) ;
value s . push (5 . 4) ;

cout « " Poppi ng f rom value s : " .
,

whi l e (I value s . empty ()) {
cout « value s . front () « ' ' ;
value s . pop () ;

I I end whi l e

cout « endl ;

return 0 ;

} I I end mai n

I I view f ront e l ement
I I remove e l ement

I from value . , 3 . 2 ' . 8 5 . 4

Fig. 2 1 .24 Standard Library queue adapter c lass templates .

1 1 32 Standard Template library (STL) Chapter 2 1

While there are more elements i n the queue, l ine 22 uses queue function f ront to

read (but not remove) the first e lement in the queue for output. Line 23 removes the first

e lement in the queue with function pop (avai lable in all adapter c lasses) .

2 1 .4.3 priori ty _queue Adapter

C lass priori ty _queue provides functionality that enables insert ions in sorted order

i nto the underly ing data structure and deletions from the front of the underlying data struc

ture . A priority_queue can be implemented with STL data structures vector or

deque. By default, a priority_queue is implemented with a vector as the under

ly ing data structure . When adding elements to a priori ty _queue, the e lements are in

serted i n priority order such that the highest-priority element (i . e . , the largest value) wi l l be

the first element removed from the priori ty _queue. This is usual ly accompli shed by

using a sort ing techn ique called heapsort that always maintains the largest value (i . e . , h igh

est priority) at the front of the data structure-such a data structure is cal led a heap. The

comparison of e lements i s performed with comparator function object l e s s < T > by de

fault , but the programmer can supply a different comparator.

The common priority_queue operations are push to i nsert an element at the

appropriate location based on priority order of the priori ty _queue (implemented by

cal l i ng function push_back of the underlying container, then reordering the elements

us ing heapsort) , pop to remove the highest-priority element of the priori ty _queue

(implemented by cal l i ng function pop_back of the underly ing container after removing

the top element of the heap) , top to get a reference to the top e lement of the

priority_queue (i mplemented by cal l i ng function front of the underlying con

tainer) , empty to determine whether the priori ty _queue i s empty (i mplemented by

cal l i ng function empty of the underlying container) and s i z e to get the number of ele

ments i n the priority_queue (i mplemented by cal l ing function s i z e of the under

ly ing container) .

Performance Tip 2 1 . 1 9

Each of the common operations of a priority_queue is implemented as an i nline

jimction that calls the appropriate function of the underlying container. This a voids the over

head of a second function call.

Performance Tip 2 1 .20

For the best performance, use class vector as the underlying container for a prior

ity_queue.

Figure 2 1 .25 demonstrates the priority_queue adapter class . Header fi le

< queue > must be inc luded to use c lass priori ty _queue .

1 II F i g . 2 1 . 2 5 : f ig2 1_2 5 . cpp
2 II Standard l ibrary adapter priority queue t e st program .

3 #inc lude < iostream>
4
5 us ing s td : : cout ;
6 us ing s td : : endl ;

Fig. 2 1 .25 Standard Library priori ty _queue adapter c lass. (Part 1 of 2.)

Chapter 2 1 Standard Template Library (STL)

7
8
9

inc lude <queue> I I priority_queue adapter de f in i t i on

int mai n ()
{

std : : priority_queue< double > priori t i e s ;

I I push e l ement s onto prior i t i e s
priori t i e s . push (3 . 2) ;
priori t i e s . push (9 . 8) ;
priori t i e s . push (5 . 4) ;

cout « " Poppi ng f rom priori t i e s : " ;

1 1 33

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1

whi l e (! priori t i e s . empty ()) {
cout « prior i t i e s . top () « ' ' ;
priori t i e s . pop () ;

I I view t op e l ement
I I remove top e l ement

I I end whi l e

cout « endl ;

return 0 ;

} I I end mai n

I Popping f rom prior i t i •• , ' . 8 S . ' 3 . 2

Fig. 2 1 .25 Standard Library priori ty _queue adapter class. (Part 2 of 2 .)

Line 1 2 i nstantiates a priori ty_queue that stores double values and uses a

vector as the underly ing data structure . Lines 1 5- 1 7 use function push to add elements

to the priority_queue. The whi l e structure at l i nes 2 1 -25 uses function empty

(avai lable i n al l containers) to determine whether the priori ty _queue i s empty (l i ne

2 \) . Whi le there are more elements, l i ne 22 uses priori ty_queue function top to

retrieve the h ighest-priority element i n the priority_queue for output. L ine 23

removes the h ighest-priority e lement in the priori ty _queue with funct ion pop (avai l

able i n a l l adapter c lasses) .

21.5 Algorithms

Unti l STL, c lass l ibraries of containers and algorithms were essentia l ly i ncompatib le
among vendors . Early container l ibraries general ly used i nheritance and polymorphi sm,
wi th the assoc iated overhead of virtual function cal l s . Early l ibraries bu i l t the algo
rithms i nto the container c lasses as c lass behaviors . STL separates the algori thms from the
containers. Thi s makes i t much easier to add new algorithms. STL i s i mplemented for effi
ciency . I t avoids the overhead of vi rtual function call s . With STL, the e lements of con
tainers are accessed through i terators. The next several subsections demonstrate many of
the STL algorithms.

1 1 34 Standard Template Library (STL) Chapter 2 1

Software Engineering Observation 2 1 .8

STL algorithms do not depend on the implementation details of the containers on which they

operate. As long as the container's (or array 's) iterators satisfy the requirements of the al

gorithm, STL algorithms can work on C-style, pointer-based arrays, on STL containers and

on user-defined data structures.

Software Engineering Observation 2 1 .9

Algorithms can be added easily to the STL without modifying the container classes.

2 1 .5. 1 f i l l , f i l l_n, generate and generat e_n

Figure 2 l .26 demonstrates algorithms f i l l , f i l l_n, generate and generate_no

Functions f i l l and f i l l_n set every element in a range of container e lements to a specific

value. Functions generate and generate_n use a generator function to create values

for every element i n a range of container elements. The generator function takes no arguments

and returns a value that can be placed in an element of the container.

1 II Fig . 2 1 . 2 6 : f ig2 1_2 6 . cpp
2 II St andard l i brary algorithms f i l l , f i l l_n , generate
3 I I and generate_n o
4 # i nc 1ude < iostream>
5
6 u s i ng s td : : cout ;
7 us ing std : : endl ;
8
9 #inc lude <algorithm> II algorithm de f init i ons

1 0 # inc lude <vector> II vector c l as s - t emplate de f in i t ion
1 1
1 2 char next Letter () ; II prototype
1 3
1 4 int main ()
1 5 (
1 6 s td : : vector< char > chars (1 0) ;
1 7 std : : ost ream_i t erator< char > output (cout ,) ;
1 8
1 9 II f i l l chars with 5 s
20 std : : f i l l (chars . begin () , chars . end () , ' 5 ') ;
2 1
22 cout « "vector chars after f i l l ing with 5 s : \ n " ;
23 std : : copy (chars . begin () , chars . end () , output) ;
24
25 II f i l l f i r s t f ive e l ement s of chars with As
26 s td : : f i l l_n (chars . begin () , 5 , ' A ') ;
27
28 cout « " \ n \ nVector chars after f i l l ing f ive e l ement s "
29 « .. with As : \ n " ;
30 s td : : copy (chars . begin () , chars . end () , output) ;
3 1
32 II generate values for a l l element s o f chars with nextLet t e r

33 std : : generat e (chars . begin () , chars . end () , nextLett e r) ;

Fig. 2 1 .26 Algorithms f i l l, f i l l_n, generate and generat e_no (Part 1 of 2 .)

Chapter 2 1 Standard Template library (STL) 1 1 35

34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58

cout « " \ n \ nVector chars after generat ing l e t t e r s A - J : \n " ;
std : : c opy (chars . begin () , chars . end () , output) ;

I I generate value s for f i rst f ive e l ement s o f chars
II with nextLetter
s td : : generat e_n (chars . begin () , 5 , nextLet t e r) ;

cout « " \ n \ nVector chars after generat i ng K-O for the "
« " f i r s t f ive e l ement s : \ n " ;

std : : c opy (chars . begin () , chars . end () , output) ;

cout « endl ;

return 0 ;

} I I end mai n

I I returns next letter in the alphabet (start s w i t h A)
char nextLetter ()
{

stat i c char letter ' A ' ;
return letter+ + ;

1 / end func t ion next Letter

Vector chars after f i l l i ng with 5 s :
5 5 5 5 5 5 5 5 5 5

Vector chars a f t e r f i l l ing f ive e l ement s with As :
A A A A A S S 5 5 5

Vector chars after generating letters A- J :
A B C D E F G H X J

Vector chars after generat ing K-O for the first five e l ement s :
K L M N 0 F G H X J

Fig. 2 1 .26 Algorithms f i l l, f i l l_n, generate and generat e_n, (Part 2 of 2 ,)

Line 20 uses function f i l l to place the character ' 5 ' i n every element of vector

chars from chars . begin () up to , but not i nc luding, chars . end () , Note that the

i terators supp l ied as the fi rst and second argument must be at l east forward iterators (i , e "

they can be used for both i nput from a container and output to a container i n the forward

direction) ,

L ine 26 uses function f i l l_n to p lace the character ' A ' i n the first five elements of

vector chars , The iterator suppl ied as the first argument must be at least an output i ter

ator (i ,e " i t can be used for output to a container in the forward d irect ion) . The second argu

ment spec ifies the number of e lements to fi l l . The third argument spec ifies the value to

place i n each element .

1 1 36 Standard Template Library (STL) Chapter 2 1

Line 3 3 uses function generate to place the result of a cal l t o generator function

nextLet ter i n every element of vector chars from chars . begin () up to, but

not including, chars . end () . The i terators suppl ied as the first and second arguments

must be at least forward i terators . Function nextLetter (defi ned at l i nes 5 3-5 8) begins

w ith the character ' A ' maintained in a stat ic local variab le . The statement a t l ine 56

i ncrements the value of letter and returns the old value of letter each t ime next

Letter i s called.

Line 40 uses function generate_n to place the resul t of a cal l to generator function

nextLetter i n five e lements of vector chars, start ing from chars . begin () . The

i terator suppl ied as the first argument must be at least an output i terator.

2 1 .5.2 equa l , mi smat ch and lexicograph i c a l_c ompare

Figure 2 l .27 demonstrates comparing sequences of values for equality using algori thms

equal, mi smatch and lexicographical_compare.

1 I I F i g . 2 1 . 2 7 : f i g2 1 2 7 . cpp
2 I I Standard l ibrary func t i ons equal ,
3 I I mi smatch and lexicographical compare .
4 # inc lude < iostrearn>
5
6 u s i ng std : : cout ;
7 u s i ng std : : endl ;
8
9 # inc lude < a lgori thm> I I algorithm de f init ions

1 0 # inc lude <vector> I I vector c lass - t emplate de f init i on
1 1
1 2
1 3
1 4
1 5
1 6
1 7

int main ()
{

const int S I ZE
int a 1 [S I ZE
int a2 [S I ZE

1 0 ;
{ 1 , 2 , 3 , 4 , 5 , 6 , 7 ,
{ 1 , 2 , 3 , 4 , 1 0 0 0 , 6 ,

1 8 s td : : vector< int > vl (aI , al + S I ZE) ;
1 9 s td : : vector< int > v2 (a1 , a1 + S I ZE) ;
20 s td : : vector< int > v3 (a2 , a2 + S I ZE) ;
2 1

8 , 9 , 1 0

7 , 8 , 9 ,

22 s td : : ostrearn_i t erator< int > output (cout , " ") ;
23
24 cout « " Vector v1 contains : " ;
25 s td : : copy (v1 . begin () , v1 . end () , output) ;
26 cout « .. \ nVector v2 contains : " ;
27 s td : : copy (v2 . begin () , v2 . end () , output) ;
28 cout < < .. \ nVector v3 contains : " ;
29 s td : : copy (v3 . begin () , v3 . end () , output) ;
30
3 1 I I compare vectors v 1 and v2 for equa l ity
32 bool result =

} ;
1 0

33 s td : : equal (v1 . begin () , v1 . end () , v2 . begin ()) ;

} ;

Fig. 2 1 .27 Algorithms equa l , mi smatch and lexicograph i c a l_c ompare .
(Part 1 of 2 .)

Chapter 2 1 Standard Template Libra ry (STL)

cout « " \ n \ nVector v1 " « (result ? " i s "
« " equal to vector v2 . \ n " ;

/ / compare vectors v1 and v3 for equa l i ty

" i s not ")

re sul t = std : : equal (v1 . begin () , v1 . end () , v3 . begin ()) ;
cout « " Vector v1 " « (result ? " i s " : " i s not ")

« " equal to vector v3 . \ n " ;

I I locat ion repre s ent s pair of vector iterator s
std : : pa i r < std : : vector< int > : : i t erator ,

std : : vector< int > : : i t erator > locat i on ;

/ / check for mi smatch between v 1 and v3
locat ion

s td : : mi smatch (v1 . begin () , v1 . end () , v3 . begin ()) ;

cout « " \ nThere i s a mi smatch between v1 and v3 at "
« " locat i on " « (locat ion . f i rst - v 1 . begin ())
« " \ nwhere v1 contains " « * locat i on . f i r s t
« " and v3 contains " « * locat i on . second
« " \ n \ n " ;

char c 1 [S I ZE
char c 2 [S I ZE

" HELLO " ;
" BYE BYE " ;

/ 1 perform lexicographical compari son of c 1 and c 2
result = std : : l exicographical_compare (

c 1 , c 1 + S I ZE , c 2 , c2 + S I Z E) ;

cout « c 1
« (result ? " i s l e s s than " :

" i s greater than or equal to ")
« c 2 « endl ;

return 0 ;

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1 1 / end main

Vector v1 contains : 1 2 3 4 5 6 7 8 9 1 0
Vector v2 contains : 1 2 3 4 5 6 7 8 9 1 0
Vector v3 contains : 1 2 3 4 1 0 0 0 6 7 8 9 1 0

Vector v1 i s equal to vec tor v2 .
Vector v1 i s not equal to vector v3 .

There i s a mi smatch between v1 and v3 at locat ion 4
where v1 contains 5 and v3 contains 1 0 0 0

HELLO i s greater than o r equal to BYE BYE

1 1 37

Flg. 2 1 .27 Algorithms e qu a l , mi smatch and lexicograph i c a l_c ompare .
(Part 2 of 2 .)

1 1 38 Standard Template Library (STL) Chapter 2 1

Lines 32-33 use function equal to compare two sequences of values for equal i ty .

Each sequence need not necessari ly contain the same number of elements-equal returns

false if the sequences are not of the same length. Function operator= = performs the

comparison of the elements . In thi s example, the elements i n vec tor v1 from

v1 . begin () up to, but not including, v1 . end () are compared to the elements in

vector v2 start ing from v2 • begin () . I n th i s example, v1 and v2 are equal . The three

i terator arguments must be at least input i terators (i . e . , they can be used for input from a

sequence i n the forward direct ion) . Line 39 uses function equal to compare vectors v1

and v3, which are not equal .

There is another version of function equal that takes a binary predicate function as a

fourth parameter. The binary predicate function receives the two elements being compared

and returns a bool value i ndicating whether the elements are equal . This can be useful in

sequences that store objects or pointers to values rather than actual values, because you can

defi ne one or more compari sons. For example, you can compare Employee objects for

age, Social Security number, or location rather than compari ng enti re objects . You can

compare what pointers refer to rather than comparing the pointer contents (i . e . , the

addresses stored in the poin ters) .

Lines 44-49 begin by i nstantiating a pair of iterators ca l led locat ion for a

vector of in tegers . This object stores the result of the cal l to mi smatch (l ine 49) . Func

t ion mi smatch compares two sequences of values and returns a pair of i terators indi

cating the location i n each sequence of the mismatched elements. I f a l l the elements match,

the two iterators in the pai r are equal to the last i terator for each sequence. The three i ter

ator arguments must be at least input i terators . Line 52 determi nes the actual location of the

mismatch in the vectors with the expression locat ion . f i rst - v1 . begin () . The

resul t of this calculation i s the number of elements between the iterators (th is i s analogous

to pointer ari thmetic that we studied in Chapter 5) . Th is corresponds to the element number

in this example, because the comparison i s performed from the beginning of each vector.

As with function equal, there is another version of function mi smatch that takes a

b inary predicate function as a fourth parameter.

Lines 6 1 -62 use function lexicographical_compare to compare the contents of

two character arrays . Thi s function ' s four i terator arguments must be at least input iterators .

As you know, pointers into arrays are random-access i terators . The first two i terator argu

ments specify the range of locations in the fi rst sequence . The last two iterator arguments

specify the range of locations in the second sequence. While iterating through the sequences,

if the element in the first sequence is less than the corresponding element in the second

sequence, the function returns true. I f the element in the first sequence i s greater than or

equal to the element in the second sequence, the function returns false. This function can

be used to arrange sequences lexicographical ly . Typical ly , such sequences contain strings .

2 1 .5 .3 remove, remove_i f , remove_copy and
remove_copy_i f

Figure 2 1 .28 demonstrates removing values from a sequence with algori thms remove,

remove_i f , remove_copy and remove_copy_i f .

Line 28 uses function remove to e l imi nate al l elements with the value 1 0 i n the range

from v . begin () up to, but not including, v . end () from v. The first two iterator argu

ments must be forward iterators so that the algori thm can modify the elements i n the

Chapter 2 1 Standard Template Library (STL) 1 1 39

sequence. Thi s function does not modify the number of elements in the vector or destroy

the e l iminated elements, but it does move all elements that are not e l iminated toward the

beginning of the vector. The function returns an iterator positioned after the last

vector element that was not deleted. Elements from the i terator position to the end of the

vector have undefined values (in this example, each "undefined" posit ion has value 0) .

L ine 4 1 uses function remove_copy to copy a l l elements that do not have the value

10 in the range from v2 • begin () up to, but not including, v2 • end () from v2 . The

elements are placed in c , starting at posit ion c . begin () . The i terators supplied as the

first two arguments must be i nput i terators. The i terator supplied as the third argument must

be an output i terator so that the element being copied can be i nserted into the copy location .

This function returns an iterator positioned after the last element copied in to vector c.

Note, on l ine 34, the use of the vector constructor that receives the number of elements in

the vector and the i nit ial values of those elements.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35

I I Fig . 2 1 . 2 8 : f i g2 1 2 8 . cpp
/ 1 Standard l ibrary func t i ons remove , remove i f ,
I I remove copy and remove copy i f .
i nc lude < io s t ream>

u s ing std : : cout ;
u s i ng std : : endl ;

i nc lude < a l gori thm> I I algorithm de f init ions
i nc lude <vector> / / vector c las s - t emplate de f in i t ion

bool greater 9 (int) ; I I prototype

int main ()
{

const int S I ZE = 1 0 ;
int a [S I ZE] = { 1 0 , 2 , 1 0 , 4 , 1 6 , 6 , 1 4 , 8 , 1 2 , 1 0 } ;

std : : o s t ream_iterator< int > output (cout , " ") ;

std : : vector< int > v (a , a + S I ZE) ;
std : : vector< int > : : i t erator newLa stElement ;

cout « " Vector v be fore removing a l l 1 0 s : \ n
std : : copy (v . begin () , v . end () , output) ;

I I remove 1 0 from v

" . ,

newLastEl ement = s td : : remove (v . begin () , v . end () , 1 0) ;

cout « " \ nVector v after removing a l l 1 0 s : \ n
std : : copy (v . begin () , newLastElement , output) ;

std : : vector< int > v2 (a , a + S I ZE) ;
std : : vector< int > c (SIZE , 0) ;

" . ,

Fig. 2 1 .28 Algorithms remove, remove_i f , remove_copy and
remove_copy_i f . (Part 1 of 3 .)

1 1 40 Standard Template Library (STL) Chapter 2 1

cout « " \ n \ nVector v2 before removing a l l l O s "
« " and copying : \n " ;

s td : : copy (v2 . begin () , v2 . end () , output) ;

I I copy f rom v2 . 0 c , e nO 1 g 1 0 n .he proc
std : : remove_copy (v2 . begin () , v2 . end () , c . begin () , 1 0) ;

cout « " \ nVector c after removing a l l l O s f rom v2 : \ n
s td : : copy (c . begin () , c . end () , output) ;

s td : : vector< int > v3 (a , a + S I ZE) ;

cout « " \ n \ nVector v3 be fore removing a l l e l ement s "
« " \ngreater than 9 : \ n " ;

std : : copy (v3 . begin () , v3 . end () , output) ;

I I remove el� nts areater than 9 r rom v3
newLastElement

s td : : remove_if (v3 . begin () , v3 . end () , greater9) ;

cout « " \ nVector v3 after removing a l l e l ement s "
« " \ ngreater than 9 : \ n " ;

std : : copy (v3 . begin () , newLastElement , output) ;

s td : : vector< int > v4 (a , a + S I ZE) ;
std : : vector< int > c 2 (S I ZE , 0) ;

cout « " \ n \ nVector v4 before removing a l l e l ement s "
< < " \ ngreater than 9 and copying : \ n " ;

std : : copy (v4 . begin () , v4 . end () , output) ;

II .
,

36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74
75
76
77
78
79
80
8 1
82
83
84
85
86
87

I I copy e l emen f rom v4 co c � , remov�ng e l ement s greater
I I th�n 9 in the p c
std : : remove_copy_i f (

v4 . begin () , v4 . end () , c 2 . begin () , greater9) ;

cout « " \ nVector c2 after removing a l l e l ement s "
< < " \ ngreater than 9 from v4 : \ n " ;

std : : copy (c 2 . begin () , c 2 . end () , output) ;

cout « endl ;

return 0 ;

I I end main

I I determine whether argument i s great er than 9
boo l greater9 (int x)
{

return x > 9 ;

} I I end great er9

Fig. 2 1 .28 Algorithms remove, remove_i f, remove_c opy and
remove_copy_i f . (Part 2 of 3 .)

Chapter 2 1

vector v be f ore removing a l l l O s :
1 0 2 1 0 4 1 6 6 14 8 1 2 1 0

vector v after removing a l l l O s :
2 4 1 6 6 14 8 1 2

Standard Template Library (STL)

Vector v2 be fore removing all l O s and copying :
1 0 2 1 0 4 1 6 6 14 8 1 2 1 0

Vector c after removing a l l l O s f rom v2 :
2 4 1 6 6 1 4 8 12 0 0 0

Vector v3 before removing all element s
greater than 9 :

1 0 2 1 0 4 1 6 6 1 4 8 1 2 1 0
Vector v 3 after removing a l l element s
greater than 9 :

2 4 6 8

Vector v4 before removing all element s
greater than 9 and copying :

1 0 2 1 0 4 1 6 6 14 8 12 1 0
Vector c 2 after removing a l l element s
great er than 9 f rom v4 :

2 4 6 8 0 0 0 0 0 0

Fig. 2 1 .28 Algorithms remove, remove_i f, remove_copy and
remove_copy_i f . (Part 3 of 3 .)

1 1 4 1

Lines 5 3-54 use function remove_i f t o delete a l l those elements i n the range from

v3 . begin () up to, but not inc luding, v3 • end () from v3 for which our user-defi ned

unary predicate function greater9 returns true. Function greater9 (defi ned at l i nes

83-87) returns t rue if the value passed to i t i s greater than 9 ; otherwise, i t returns f a l s e .

The iterators suppl ied a s t he first two arguments must be forward i terators so that t he algo

ri thm can modify the elements in the sequence. Th i s function does not modify the number

of elements in the vector, but i t does move to the beg inn ing of the vec t or all e lements

that are not e l im inated . This function returns an i terator pos i tioned after the last e lement in

the vector that was not deleted. Al l elements from the i terator pos i t ion to the end of the

vector have undefi ned values.

L ines 69-70 use function remove_copy_i f to copy al l those e lements in the range

from v4 . begin () up to, but not including, v4 • end () from v4 for which the unary

predicate funct ion greater9 returns true. The elements are placed in c 2 , start ing at

posi t ion c 2 . begin () . The iterators suppl ied as the fi rst two arguments must be i nput

i terators . The i terator supplied as the th ird argument must be an output i terator so that the

element bei ng copied can be i n serted i nto the copy locat ion . Th i s funct ion returns an i ter

ator posit ioned after the last e lement copied i nto c 2 .

2 1 .5.4 replac e , rep lace_i f , rep lac e_c opy and
replac e_copy_if

Figure 2 1 .29 demonstrates replac ing values from a sequence us ing algorithms replace,

replace_i f , replace_copy and replace_copy_i f .

1 1 42 Standard Template Library (STL) Chapter 2 1

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52

/ / F i g . 2 1 . 2 9 : f i g2 1_2 9 . cpp
/ / Standard l ibrary func t i ons replace , replace_i f ,
1 / replace_copy and replace. copy_i f .
inc lude < iostream>

us ing std : : cout ;
us ing std : : endl ;

inc lude < a l gori thm>
inc lude <vector>

bool greater9 (int) ;

int ma in ()
{

const int S I Z E = 1 0 ;
int a [S I ZE] = { 1 0 , 2 , 1 0 , 4 , 1 6 , 6 , 1 4 , 8 , 1 2 , 1 0 } ;

std : : ost ream_it erator< int > output (cout , n n) ;

std : : vector< int > v1 (a , a + S I Z E) ;
cout « " Vector v1 before replac ing a l l 1 0 s : \ n
std : : copy (v1 . begin () , v1 . end () , output) ;

1 / replace l O s in v1 with 1 0 0
s td : : replace (v1 . begin () , v1 . end () , 1 0 , 1 0 0) ;

" . ,

cout « " \ nVector v1 after replac ing l O s with 1 0 0 s : \ n
s td : : copy (v1 . begin () , v1 . end () , output) ;

std : : vector< int > v2 (a , a + S I ZE) ;
s td : : vector< int > c 1 (S I ZE) ;

cout « " \ n \ nVector v2 before replac i ng a l l l O s "
« " and copying : \ n n;

std : : copy (v2 . begin () , v2 . end () , output) ;

/ / copy f rom v2 to c 1 , replac ing l O s with 1 0 0 s
std : : replace_copy (

v2 . begin () , v2 . end () , c 1 . begin () , 1 0 , 1 0 0) ;

cout « " \ nVector c l after replac ing a l l l O s in v2 : \ n
std : : copy (c l . begin () , c l . end () , output) ;

std : : vector< int > v3 (a , a + S I ZE) ;

cout « " \ n \ nVector v3 be fore replac ing value s great e r "
« " than 9 : \ n " ;

std : : copy (v3 . begin () , v3 . end () , output) ;

/ / replace values greater than 9 in v3 with 1 0 0
std : : replace_i f (v3 . begin () , v3 . end () , greater9 , 1 0 0) ;

Fig. 2 1 .29 Algorithms rep l ac e, rep l ace_i f, replace_copy and
rep l a ce_copy _i f . (Part 1 of 2 .)

" . ,

If ;

Chapter 2 1 Standard Template Library (STl)

53
54 cout « " \nVector v3 after replac ing a l l value s greate r "
55 « " \ nthan 9 with 1 0 0 s : \ n " ;
56 std : : copy (v3 . begin () , v3 . end () , output) ;
57
58 std : : vector< i nt > v4 (a, a + S I ZE) ;
59 std : : vector< int > c 2 (S I ZE) ;
60

1 1 43

6 1 cout « " \ n \nVector v4 before replac i ng a l l values greate r "
62 < < " than 9 and copying : \ n " ;
63 std : : copy (v4 . begin () , v4 . end () , output) ;
64
65 I I copy v4 to c 2 , replac i ng e l ement s great er than 9 with 1 0 0
66 std : : replace_copy_i f (
67 v4 . begin () , v4 . end () , c 2 . begin () , greater9 , 1 0 0) ;
68
69 cout « " \ nVector c 2 after replac ing a l l value s great e r "
70 « " than 9 in v4 : \ n " ;
7 1 std : : copy (c 2 . begin () , c 2 . end () , output) ;
72
73 cout « endl ;
74
75 return 0 ;
76
77 } I I end main
78
79 I I det e rmine whether argument i s greater than 9
80 boo l greater 9 (int x)
8 1 {
82 return x > 9 ;
83
84 I I end func t ion great er9

Vector vl before repl ac ing all l O s :
1 0 2 1 0 4 1 6 6 14 8 1 2 1 0

Vector vl after replacing l O s with 1 0 0 s :
1 0 0 2 1 0 0 4 1 6 6 14 8 12 1 0 0

Vector v 2 be fore replacing a l l l O s and copying :
1 0 2 1 0 4 1 6 6 14 8 1 2 1 0

Vector cl after replac ing al l lO s in v2 :
1 0 0 2 1 0 0 4 16 6 1 4 8 1 2 1 0 0

Vector v 3 before replac ing value s greater than 9 :
1 0 2 1 0 4 1 6 6 1 4 8 1 2 1 0

Vector v 3 a f t e r replac i ng a l l value s great er
than 9 with 1 0 0 s :

1 0 0 2 1 0 0 4 1 0 0 6 1 0 0 8 1 0 0 1 0 0

Vector v 4 be f ore replacing a l l va lues greater than 9 and copying :
1 0 2 1 0 4 1 6 6 14 8 1 2 1 0

Vector c 2 a f t e r replac ing a l l values greater than 9 i n v4 :
1 0 0 2 1 0 0 4 1 0 0 6 1 0 0 8 1 0 0 1 0 0

Fig. 2 1 .29 Algorithms rep l ace, replace_i f , rep l ac e_c opy and
rep l ac e_copy _i f . (Part 2 of 2 .)

1 1 44 Standard Template Library (STL) Chapter 2 1

Line 2 6 uses function replace to replace al l elements wi th the value 1 0 i n the range

from vl . begin () up to, but not including, vl . end () in v1 with the new value 1 0 0 .

The i terators supp l ied as the fi rst two arguments must be forward i terators s o that the algo

rithm can modify the e lements i n the sequence.

Lines 39-40 use function replace_copy to copy all elements in the range from

v2 • begin () up to, but not inc luding, v2 . end () from v2 , replacing a l l e lements wi th

the value 1 0 with the new value 1 0 0 . The elements are copied i nto c 1 , start ing at posit ion

c 1 . begin () . The i terators suppl ied as the first two arguments must be i nput i terators .

The i terator suppl ied as the th ird argument must be an output i terator so that the element

being copied can be i nserted i nto the copy location . Thi s function returns an i terator posi

t ioned after the l ast element copied into c 1 .

L ine 5 2 uses function replace_i f t o replace a l l those elements i n the range from

v3 • begin () up to, but not inc luding, v3 • end () in v3 for which the unary predicate

function greater9 returns true. Function greater9 (defined at l i nes 90-84) returns

t rue i f the value passed to i t i s greater than 9 ; otherwi se, i t returns false . The value 1 0 0

replaces each value greater than 9 . The i terators supp l ied as the fi rst two arguments must

be forward i terators so that the algorithm can modify the elements in the sequence.

Lines 66-67 use function replace_copy _i f to copy aJ i elements i n the range from

v4 . begin () up to, but not inc luding, v4 . end () from v4 . Elements for which the

unary predicate function greater9 returns true are rep laced with the value 1 0 0 . The

elements are p laced i n c 2 , start ing at position c2 • begin () . The i terators suppl ied as the

fi rst two arguments must be input i terators . The iterator suppl ied as the th ird argument must

be an output i terator so that the e lement being copied can be i nserted i nto the copy location .

Thi s function returns an iterator positioned after the l ast element copied i nto c 2 .

21 .5 .5 Mathematical Algorithms

Figure 2 1 .30 demonstrates several common mathematical algorithms from the STL, i n

c luding random_shu f f l e, count , count_i f , min_e l ement, max_el ement,

accumulate, for_each and trans form.

Line 28 uses function random_shu f f l e to reorder randomly the e lements in the

range from v . begin () up to, but not inc luding, v . end () in v. Thi s function takes two

random-access iterator arguments .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3

I I Fig . 2 1 . 3 0 : f ig2 1. 3 0 . cpp
I I Mathemat ical algorithms of the standard l ibrary .
inc lude < iostream>

us ing s td : : cout ;
us ing s td : : endl ;

inc lude <algori thm>
#inc lude <nume r i c >
#inc lude <vector>

I I algorithm de finit ions
I I accumulate i s def ined here

bool great er9 (int } ;
void output Square (int } ;

Flg. 2 1 .30 Mathematical algorithms of the Standard Library. (Part 1 of 3 .)

Chapter 2 1

1 4 int calculat eCube (int) ;
1 5
1 6 int mai n ()
1 7 {
1 8 const int S I ZE = 1 0 ;

Standard Template Library (STL)

1 9 int a l [] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 } ;
20
2 1 std : : vector< int > v (a1 , a 1 + S I ZE) ;
22 std : : os t ream_iterator< int > output (cout , " ") ;
23
24 cout « " Vector v before random. shu f f l e : " ;
25 s td : : copy (v . begin () , v . end () , output) ;
26
27 I I shu f f l e e l ement s of v
28 std : : random_shu f f l e (v . begin () , v . end ()) ;
29
30 cout « " \ nVector v after random_shu f f l e : " ;
3 1 std : : copy (v . begin () , v . end () , output) ;
32
33 int a2 [] = 1 0 0 , 2 , 8 , 1 , 5 0 , 3 , 8 , 8 , 9 , 1 0 } ;
34 std : : vector< int > v2 (a2 , a2 + S I Z E) ;
35
36 cout < < " \n \ nVector v2 contains : " ;
37 s td : : copy (v2 . begin () , v2 . end () , output) ;
38
39 I I c ount number of e l ement s in v2 with value 8
40 int result = std : : count (v2 . begin () , v2 . end () , 8) ;
4 1

1 1 45

42 std : : cout « " \ nNumber of element s matching 8 : " « re su l t ;
43
44 I I count number of e l ement s in v2 that are greater than 9
45 result = s td : : count_i f (v2 . begin () , v2 . end () , great er9) ;
46
47 cout « " \ nNumber of e l ement s greater than 9 : " « resu l t ;
48
49 I I locat e minimum element in v2
50 cout « " \ n \ nMinimum el ement in Vector v2 i s : "

5 1 « * (s td : : min_element (v2 . begin () , v2 . end ())) ;
52
53 I I locate maximum e l ement in v2
54 cout « " \ nMaximum e l ement in Vector v2 i s : "
55 « * (s td : : max_element (v2 . begin () , v2 . end ())) ;
56
57 I I cal culate sum o f e l ement s in v
58 cout « " \ n \ nThe total of the e l ement s in Vector v i s : "
59 « s td : : accumulate (v . begin () , v . end () , 0) ;
60
6 1 cout « " \ n \ nThe square o f every integer i n Vector v i s : \ n " ;
62
63 I I output square of every e l ement in v
64 s td : : for_each (v . begin () , v . end () , output Square) ;
65
66 std : : vector< int > cube s (S I Z E) ;

Flg. 2 1 .30 Mathematical algorithms of the Standard Library. (Part 2 of 3 .)

1 1 46 Standard Template Library (STL)

67
68 I I c a l culate cube of each e lement in v;
69 I I p l ac e resu l t s in cube s
70 s td : : trans form (

Chapter 2 1

7 1 v . begin () , v . end () , cube s . begin () , calculateCube) ;
72
73 cout < < I I \ n \ nThe cube of every integer in Vector v i s : \ n II ;
74 s td : : copy (cube s . begin () , cube s . end () , output) ;
75
76 cout « endl ;
77
78 return 0 ;
79
80 } I I end main
8 1
82 I I determine whether argument is greater than 9
83 bool greater 9 (int value)
84 {
85 return va lue > 9 ;
86
87 I I end funct ion greater9
88
89 I I output square of argument
90 voi d output Square (int value
9 1 {
92 cout « value * value « ' ' ;
93
94 } I I end funct ion output Square
95
96 I I return cube of argument
97 int calculat eCube (int va lue
98 {
99 return va lue * va lue * va lue ;
1 00
1 0 1 I I end func t ion calculateCube

Vector v before random_shu f f l e : 1 2 3 4 5 6 7 8 9 1 0
Vector v after random_shu f f l e : 5 4 1 3 7 8 9 1 0 6 2

Vector v2 contains : 1 0 0 2 8 1 5 0 3 8 8 9 1 0
Number o f e l ement s matching 8 : 3
Number of e l ement s great er than 9 : 3

Minimum e l ement in Vector v2 i s : 1
Maximum e lement in Vector v2 i s : 1 0 0

The total o f the e l ement s i n Vector v i s : 5 5

The square of every integer i n Vector v i s :
2 5 1 6 1 9 4 9 6 4 8 1 1 0 0 3 6 4

The cube of every integer in Vector v i s :
1 2 5 64 1 2 7 3 4 3 5 1 2 7 2 9 1 0 0 0 2 1 6 8

Fig. 2 1 .30 Mathematical a lgorithms of the Standard Library. (Part 3 of 3 .)

Chapter 2 1 Standard Template Libra ry (STL) 1 1 47

Line 40 uses function count to count the e lements with the value 8 in the range from

v2 • begin () up to, but not inc luding, v2 • end () i n v2 . Thi s function requ i res its two

iterator arguments to be at l east i nput iterators .

Line 4S uses function count_i f to count those e lements i n the range from

v2 • begin () up to, but not including, v2 • end () in v2 for which the predicate function

greater9 returns t rue. Function count_i f requires i ts two iterator arguments to be at

least i nput iterators .

L ine S 1 uses function min_e lement to locate the smallest e lement i n the range from

v2 • begin () up to, but not inc luding, v2 • end () in v2 . The function returns an input

i terator located at the smallest e lement or, if the range i s empty, returns the i terator i tself.

The function requ i res its two iterator arguments to be at least i nput i terators. A second ver

sion of this function takes as its third argument a binary function that compares the ele

ments i n the sequence. The binary function takes two arguments and returns a bool value .

� Good Progra m ming Practice 2 1 .2

It i s a good practice t o check that the range specified i n a call t o min_ el emen t i s n o t empty

and to check that the return value is not the "past the end " iterator.

Line SS uses function max_e lement to locate the largest element in the range from

v2 . begin () up to, but not inc luding, v2 . end () i n v2 . The function returns an input

i terator located at the largest e lement. The function requ i res its two iterator arguments to

be at l east input iterators . A second vers ion of this function takes as i ts th i rd argument a

b inary predicate function that compares the e lements in the sequence. The b inary function

takes two arguments and returns a bool value.

Line S9 uses function accumulate (the template of which i s i n header fi le

<numeri c » to sum the values in the range from v. begin () up to, but not including,

v . end () i n v. The function ' s two iterator arguments must be at least input i terators . A

second version of this function takes as its third argument a general function that determi nes

how elements are accumulated. The general function must take two arguments and return a

resul t . The first argument to this function i s the current value of the accumulat ion. The

second argument is the value of the current element in the sequence being accumulated. For

example, to accumulate the sum of the squares of every e lement, you could use the function

int sumO f Square s (int accumulator , int currentValue)
{

return accumulator + currentValue * currentValue ;

that receives the previous total as its fi rst argument (accumulator) and the new value to

square and add to the total as its second argument (currentvalue) . When the function

i s cal l ed, i t squares currentValue, adds currentValue to accumulator and re

turns the new total .

L i ne 64 uses function for_each to apply a general function to every element i n the
range from v . begin () up to, but not inc luding, v . end () i n v. The general function
should take the current e lement as an argument and should not modify that e lement . Func
t ion for_each requ i res its two iterator arguments to be at least input i terators.

L i nes 70-7 1 use function t rans form to apply a general function to every element in

the range from v . begin () up to , but not including, v. end () i n v. The general function

(the fourth argument) should take the current e lement as an argument, should not modify

1 1 48 Standard Template Library (STL) Chapter 2 1

the element and should return the trans formed value. Function t rans form requ i res

i ts fi rst two i terator arguments to be at least input i terators and its th ird argument to be at

l east an output i terator. The third argument specifies where the t ransformed values

shoul d be placed. Note that the th ird argument can equal the first.

2 1 . 5 . 6 Basic Searching and Sorting Algorithms

Figure 2 1 . 3 1 demonstrates some basic searching and sort ing capab i l i ties of the Standard

Library , inc luding find, f ind_i f, sort and binary_search.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42

I I Fig . 2 1 . 3 1 : f i g2 1_3 1 . cpp
I I Standard l ibrary search and sort algor i thms .
inc lude < iostream>

us ing s td : : cout ;
using s td : : endl ;

inc lude < a l gori thm>
inc lude <vector>

I I algorithm de f ini t ions
I I vector c las s - temp lat e de f ini t ion

bool greater 1 0 (int value) ; I I prototype

int main ()
{

const int S I ZE = 1 0 ;
int a [S I ZE] = { 1 0 , 2 , 1 7 , 5 , 1 6 , 8 , 1 3 , 1 1 , 2 0 , 7 } ;

s td : : vector< int > v (a , a + S I ZE) ;
s td : : ostream_i t erator< int > output (cout , " ") ;

cout « " Vector v contains : " ;
s td : : copy (v . begin () , v . end () , output) ;

I I locate f i r s t occurrence of 1 6 in v
s td : : vector< int > : : iterator locat ion;
locat ion = s td : : f ind (v . begin () , v . end () , 16) ;

i f (locat ion ! = v . end ())
cout « " \ n \ nFound 1 6 at locat ion "

« (locat ion - v . begin ()) ;
e l s e

cout « " \ n \ n 1 6 not found " ;

I I locate f i r s t occurrence of 1 0 0 in v
locat ion = s td : : f ind (v . begin () , v . end () , 1 0 0) ;

i f (locat ion ! = v . end ())
cout « " \ nFound 1 0 0 at locat ion "

« (location - v . begin ()) ;
e l s e

cout « " \ n 1 0 0 not found " ;

Fig. 2 1 .3 1 Basic searching and sorting algorithms of the Standard Library . (Part 1 of 2 .)

Chapter 2 1 Standard Template Libra ry (STL)

43 I I locate f i r s t occurrence of value great er than 10 in v
44 locat ion = s td : : f ind_i f (v . begin () , v . end () , great e r 1 0) ;
45
46 if (locat ion ! = v . end ()
47 cout « " \n \ nThe f i rst value greater than 10 is "
48 « * l ocat ion « " \ nfound at locat ion "
49 « (locat ion - v . begin ()) ;
50 e l s e
5 1 cout « " \ n \ nNo values greater than 1 0 were f ound " ;
52
53 I I sort e lement s o f v
54 s td : : sort (v . begin () , v . end ()) ;
55
56 cout « " \n \ nVector v after sort : " ;
57 std : : copy (v . begin () , v . end () , output) ;
58
59 I I use binary s earch to locat e 13 in v
60 i f (s td : : binary_search (v . begin () , v . end () , 1 3))
6 1 cout « " \ n \ n 1 3 was found i n v " ;
62 e l s e
63 cout « " \n \ n 1 3 was not found in v " ;
64
65 I I use binary_s earch to locate 1 0 0 in v
66 if (s td : : binary_search (v . begin () , v . end () , 1 0 0))
67 cout « " \ n 1 0 0 was found in v " ;
68 e l s e
69 cout « " \ n 1 0 0 was not found in v " ;
70
7 1 cout « endl ;
72
73 return 0 ;
74
75 I I end main
76
77 I I det ermine whether argument i s greater than 1 0
78 bool great er 1 0 (int value)
79 {
80 return value > 1 0 ;
8 1
8 2 } I I end funct ion great e r 1 0

Vector v contains : 1 0 2 1 7 5 1 6 8 1 3 1 1 2 0 7

Found 1 6 at locat ion 4
1 0 0 not f ound

The f i rs t value greater than 10 i s 1 7
found a t l ocat ion 2

Vector v a f t e r sort : 2 5 7 8 1 0 1 1 1 3 1 6 17 2 0

1 3 was found i n v
1 0 0 was not f ound in v

1 1 49

Fig. 2 1 .3 1 Basic search ing and sorting algorithms of the Standard Library. (Port 2 of 2 .)

1 1 50 Standard Template Library (STL) Chapter 2 1

Line 26 uses function f ind to locate the value 1 6 i n the range from v . begin () u p to,

but not i nc luding, v . end () in v. The function requires its two iterator arguments to be at

least i nput i terators . The function returns an i nput i terator that e i ther is positioned at the first

e lement contain ing the value or indicates the end of the sequence (as is the case in l i ne 35) .

L ine 44 uses function f ind_i f to locate the first va lue i n the range from

v . begin () up to, but not inc luding, v . end () i n v for which the unary predicate func

t ion greater 1 0 returns true. Function greater 1 0 (defi ned at l i nes 78-82) takes an

integer and returns a bool value i ndicat ing whether the i nteger argument is greater than

1 0 . Function f ind_i f requ i res its two iterator arguments to be at least input i terators . The

function returns an i nput iterator that e i ther i s posit ioned at the first element contain i ng a

val ue for which the predicate function returns true or i ndicates the end of the sequence .

Line 54 uses function sort to arrange the e lements i n the range from v . begin ()
up to, but not inc luding, v . end () i n v in ascending order. The function requi res i ts two

i terator arguments to be random-access i terators. A second vers ion of this function takes a

th ird argument that is a b inary predicate function taking two arguments that are values i n

the sequence and return ing a bool i ndicating the sort ing order-if the return value i s

true, the t w o elements being compared are i n sorted order.

Common Progra m ming E rror 2 1 .5

A ttempting to sort a container by using an iterator other than a random-access iterator is

a syntax error. Function sort requires a random-access iterator.

Line 60 uses function binary_search to determi ne whether the value 1 3 is in the

range from v . begin () up to, but not i nc luding, v . end () in v. The sequence of values

must be sorted i n ascending order first. Function binary_search requires i ts two i ter

ator arguments to be at least forward i terators . The function returns a bool i ndicating

whether the value was found in the sequence. Line 66 demonstrates a cal l to function

binary_search i n which the value i s not found. A second version of th is function takes

a fourth argument that i s a b inary predicate function tak ing two arguments that are values

in the sequence and returning a bool. The predicate function returns true i f the two ele

ments being compared are in sorted order.

2 1 .5 .7 swap, iter_swap and swap_ranges

Figure 2 1 . 32 demonstrates algorithms swap, iter_swap and swap_ranges for swap

ping elements .

1 I I Fig . 2 1 . 3 2 : f i g 2 1_3 2 . cpp
2 I I St andard l i brary algorithms i ter_swap , swap and swap_range s .
3 # inc lude < io s tream>
4
5 us ing std : : cout ;
6 u s ing s td : : endl ;
7
8 # inc lude < a l gorithm> I I algorithm de f ini t ions
9

1 0 int ma in ()
1 1 {

F ig. 2 1 .32 Demonstrating swap, i t e r_swap and swap_range s . (Part 1 of 2 .)

Chapter 2 1

1 2 const int S I ZE = 1 0 ;

Standard Template Library (STL)

1 3 int a [S I ZE] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 } ;
1 4 std : : o s t ream_i t erator< int > output { cout , " ") ;
1 5
1 6 cout « " Array a c ontains : \ n " ;
1 7 std : : copy { a , a + S I ZE , output) ;
1 8
1 9 I I swap e l ement s at locat ions 0 and 1 o f array a
20 s td : : swap { a [0] , a [1]) ;
2 1
22 cout « " \nArray a after swapping a [O] and a [l] "
23 « " u s ing swap : \n " ;
24 std : : copy { a , a + S I Z E , output) ;
25
26 I I use i terators to swap e l ement s at locat ions
27 I I 0 and 1 of array a
28 s td : : i t e r_swap { &:a [0] , &:a [1]) ;
29 cout « " \ nArray a after swapping a [O] and a [l] "
30 « " u s ing i t e r_swap : \n " ;
3 1 std : : copy { a , a + S I ZE , output) ;
32
33 I I swap e l ement s in f i rst f ive e l ement s o f array a with
34 I I e l ement s in last f ive e l ement s o f array a
35 std : : swap_range s { a, a + 5 , a + 5) ;
36

1 1 5 1

3 7 cout « " \nArray a after swapping the f i r s t f ive e l ement s \ n "
38 « "with the last f ive e lement s : \n " ;
39 std : : copy { a , a + S I ZE , output) ;
40
4 1 cout « endl ;
42
43 return 0 ;
44
45 I I end ma in

Array a contains :
1 2 3 4 5 6 7 8 9 1 0

Array a after swapping a [O] and a [l] us ing swap :
2 1 3 4 5 6 7 8 9 1 0

Array a after swapp ing a [O] and a [l] us ing i t e r_swap :
1 2 3 4 5 6 7 8 9 1 0

Array a after swapp ing the f i rst f ive e l ement s
with the last five e l ement s :

6 7 8 9 1 0 1 2 3 4 5

Fig. 2 1 .32 Demonstrating swap, i t e r_swap and swap_range s . (Part 2 of 2 .)

Line 20 uses function swap to exchange two val ues. I n th i s example , the fi rst and

second e lements of alTay a are exchanged. The function takes as arguments references to

the two values bei ng exchanged.

Line 28 uses function i t er_swap to exchange the two e lements . The function takes

two forward-i terator arguments (i n this case, poi nters to e lements of an alTay) and

exchanges the values in the e lements to which the iterators refer .

1 1 52 Standard Template Library (STL) Chapter 2 1

Line 3 5 uses function swap_ranges to exchange the e lements i n the range from a

up to, but not i nc luding, a + 5 with the elements beginning at posit ion a + 5 . The funct ion
requ i res three forward i terator arguments. The first two arguments speci fy the range of ele
ments in the first sequence that wi l l be exchanged with the elements i n the second sequence
start ing from the i terator in the third argument. In this example, the two sequences of values
are i n the same array , but the sequences can be from different arrays or containers.

2 1 .5 .8 copy_backward, merge, uni que and rever s e

Figure 2 1 . 33 demonstrates STL algorithms copy_backward, merge, unique and

reverse.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37

1 / F i g . 2 1 . 3 3 : f ig2 1 3 3 . cpp
I I Standard l ibrary funct ions copy backward , merge ,
/ 1 unique and reverse .
inc lude < iostream>

us ing std : : cout ;
u s i ng s td : : endl ;

inc lude < algorithm>
inc lude <vector>

I I algorithm de f init ions
/ / vector c l as s - t emplate de f in i t i on

int ma in ()
{

const int S I ZE 5 ;
int a l [S I ZE { 1 , 3 , 5 , 7 , 9 } ;
int a 2 [SIZE { 2 , 4 , 5 , 7 , 9 } ;

s td : : vector< int > v1 (a1 , a1 + S I ZE) ;
std : : vector< int > v2 (a2 , a2 + S I ZE) ;

s td : : ostream_i t erator< int > output (cout , n n) ;

cout « n Vector v1 contains : n ;
s td : : copy (v1 . begin () , v1 . end () , output) ;
cout « n \nVector v2 contains : n ;
std : : copy (v2 . begin () , v2 . end () , output) ;

std : : vector< int > resu l t s (v1 . s i z e ()) ;

I I place e l ement s o f v1 into resu l t s in reverse order
s td : : copy_backward (v1 . begin () , v1 . end () , resu l t s . end ()) ;

cout « n \n \ nAfter copy_backward , resu l t s contains : n ;
s td : : copy (resul t s . begin () , result s . end () , output) ;

s td : : vector< int > resul t s 2 (v1 . s i z e () + v2 . s i z e ()) ;

Flg. 2 1 .33 Demonstrating copy_backward, merge, unique and reverse .
(Part 1 of 2 .)

Chapter 21 Standard Template Library (STL) 1153

38 II merge elements of vl and v2 into results2 in sorted order
39 std::merge(vl.begin(), vl.end(), v2.begin(), v2.end(),
40 results2.begin());
41
42 cout « "\n\nAfter merge of vl and v2 results2 contains:\n";
43 std::copy(results2.begin(), results2.end(), output);
44
45 II eliminate duplicate values from results2
46 std::vector< int > ::iterator endLocation;
47 endLocation =

48 std::unique(results2.begin(), results2.end());
49
50 cout « "\n\nAfter unique results2 contains:\n";
51 std::copy(results2.begin(), endLocation, output);
52
53 cout « "\n\nVector vl after reverse: ";
54
55 II reverse elements of vl
56 std: : reverse (vl.begin(), vl.end());
57
58 std::copy(vl.begin(), vl.end(), output);
59
60 cout « endl;
61
62 return 0;
63
64 II end main

Vector vl contains: 1 3 5 7 9
Vector v2 contains: 2 4 5 7 9

After copy_backward, results contains: 1 3 5 7 9

After merge of vl and v2 results2 contains:
1 2 3 4 5 5 7 7 9 9

After unique results2 contains:
1 2 3 4 5 7 9

Vector vl after reverse: 9 7 5 3 1

Flg.21.33 Demonstrating copy_backward, merge, unique and reverse.
(Part 2 of 2.)

Line 31 uses function copy_backward to copy elements in the range from
vi. begin () up to, but not including, vi. end () in vi, placing the elements in
results by starting from the element before results. end () and working toward the
beginning of the vector. The function returns an iterator positioned at the last element
copied into the resul ts (i.e., the beginning of resul ts, because we are going back
wards). The elements are placed in results in the same order as vl. This function
requires three bidirectional iterator arguments (iterators that can be incremented and decre
mented to iterate forwards and backwards through a sequence, respectively). The main dif-

1154 Standard Template library (STL) Chapter 21

ference between copy and copy_backward is that the iterator returned from copy is

positioned after the last element copied and the iterator returned from copy_backward

is positioned at the last element copied (which is really the first element in the sequence).

Also, copy requires two input iterators and an output iterator as argument.

Lines 39-40 use function merge to combine two sorted ascending sequences of values

into a third sorted ascending sequence. The function requires five iterator arguments. The

fLrst four arguments must be at least input iterators and the last argument must be at least an

output iterator. The first two arguments specify the range of elements in the first sorted

sequence (vl), the second two arguments specify the range of elements in the second sorted

sequence (v2) and the last argument specifies the starting location in the third sequence

(resul ts2) where the elements will be merged. A second version of this function takes as

its sixth argument a binary predicate function that specifies the sOlting order.

Note that line 36 creates vector resul ts2 with the number of elements vl. size ()

+ v2. size () . Using the merge function as shown here requires that the sequence where

the results are stored be at least the size of the two sequences being merged. If you do not

want to allocate the number of elements for the resulting sequence before the merge oper

ation, you can use the following statements:

std::vector < int > results2{);
std::merge (vl.begin{), vl.end{), v2.begin{), v2.end{),

std::back_inserter{ results2));

The argument std:: back_inserter (resul ts2) uses function template

back_inserter (header file <iterator» for the container results2. A

back_inserter calls the container's default push_back function to insert an element

at the end of the container. More importantly, if an element is inserted into a container that

has no more elements available, the container grows in size. Thus, the number of elements

in the container does not have to be known in advance. There are two other inserters

front_inserter (to insert an element at the beginning of a container specified as its

argument) and inserter (to insert an element before the iterator supplied as its second

argument in the container supplied as its first argument).

Lines 47-48 use function unique on the sorted sequence of elements in the range

from results2. begin() up to, but not including, results2. end() in

results2. After this function is applied to a sorted sequence with duplicate values, only

a single copy of each value remains in the sequence. The function takes two arguments that

must be at least forward iterators. The function returns an iterator positioned after the last

element in the sequence of unique values. The values of all elements in the container after

the last unique value are undefined. A second version of this function takes as a third argu

ment a binary predicate function specifying how to compare two elements for equality.

Line 56 uses function reverse to reverse all the elements in the range from

vl. begin () up to, but not including, vl. end () in vl. The function takes two argu

ments that must be at least bidirectional iterators.

21.5.9 inplace_merge, unique_copy and
reverse_copy

Figure 21.34 demonstrates STL algorithms inplace_merge, unique_copy and

reverse_copy.

Chapter 21 Standard Template Library (STL) 1155

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

II Fig. 21.34: fig21 34.cpp

II Standard library algorithms inplace merge,

II reverse_copy and unique copy.
#include <iostream>

using std:: cout;
using std: : endl;

#include <algorithm>
#include <vector>
#include <iterator>

int main ()
{

II algorithm definitions
II vector class-template definition
II back inserter definition

const int SIZE = 10;
int a1 [SIZE] = { 1, 3, 5, 7, 9, 1, 3, 5, 7, 9 };
std: :vector< int > v1(a1, a1 + SIZE);

std: :ostream_iterator< int > output(cout, " ");

cout « "Vector v1 contains: ";
std: :copy(v1.begin(), v1.end(), output);

II merge first half of v1 with second half of v1 such that
II v1 contains sorted set of elements after merge
std: : inplace_merge(v1.begin(), v1.begin() + 5, v1.end());

cout « "\nAfter inplace_merge, v1 contains: ";
std: :copy(v1.begin(), v1.end(), output);

std::vector< int > results1;

II copy only unique elements of v1 into results1
std: :unique_copy(

v1.begin(), v1.end(), std::back_inserter(results1));

cout « "\nAfter unique_copy results1 contains: ";
std: :copy(results1.begin(), results1.end(), output);

std: :vector< int > results2;

cout « "\nAfter reverse_copy, results2 contains: ";

II copy elements of v1 into results2 in reverse order
std: :reverse_copy(

v1.begin(), v1.end(), std::back_inserter(results2);

std: :copy(results2.begin(), results2.end(), output);

cout « endl;

return 0;

Fig.21.34 Demonstrating inplace_merge, unique_copy and
reverse_copy. (Part 1 of 2.)

1156 Standard Template Library (STL)

53
54 } II end main

Vector vl contains: 1 3 5 7 9 1 3 5 7 9
After inplace_merge, vl contains: 1 1 3 3 5 5 7 7 9 9
After unique_copy resultsl contains: 1 3 5 7 9
After reverse_copy, results2 contains: 9 9 7 7 5 5 3 3 1 1

Fig. 21.34 Demonstrating inplace_merge, unique_copy and
reverse_copy. (Part 2 of 2.)

Chapter 21

Line 26 uses function inplace_merge to merge two sorted sequences of elements

in the same container. In this example, the elements from vl. begin () up to, but not

including, vl. begin () + 5 are merged with the elements from vl. begin () + 5 up

to, but not including, vl. end () . This function requires its three iterator arguments to be

at least bidirectional iterators. A second version of this function takes as a fourth argument

a binary predicate function for comparing elements in the two sequences.

Lines 34-35 use function unique_copy to make a copy of all the unique elements in

the sorted sequence of values from vl • begin () up to, but not including, vl. end () . The

copied elements are placed into vector resultsl. The first two arguments must be at least

input iterators and the last argument must be at least an output iterator. In this example, we

did not preallocate enough elements in resultsl to store all the elements copied from vl.

Instead, we use function back_inserter (defined in header file <iterator» to add

elements to the end ofvl. The back_inserter uses class vector's capability to insert

elements at the end of the vector. Because the back_inserter inserts an element rather

than replacing an existing element's value, the vector is able to grow to accommodate addi

tional elements. A second version of the unique_copy function takes as a fourth argument

a binary predicate function for comparing elements for equality.

Lines 45-46 use function reverse_copy to make a reversed copy of the elements

in the range from vl. begin () up to, but not including, vl. end () . The copied ele

ments are inserted into results2 using a back_inserter object to ensure that the

vector can grow to accommodate the appropriate number of elements copied. Function

reverse_copy requires its first two iterator arguments to be at least bidirectional itera

tors and its third iterator argument to be at least an output iterator.

21 .5.10 Set Operations

Figure 21.35 demonstrates Standard Library functions includes, set_difference,

set_intersection, set_symmetric_difference and set_union for ma

nipulating sets of sorted values. To demonstrate that Standard Library functions can be ap

plied to arrays and containers, this example uses only arrays (remember, a pointer into an

array is a random-access iterator).

Lines 27 and 33 call function includes in the conditions of if structures. Function

includes compares two sets of sorted values to determine whether every element of the

second set is in the first set. If so, includes returns true; otherwise, includes returns

false. The first two iterator arguments must be at least input iterators and must describe

the first set of values. In line 27, the first set consists of the elements from al up to, but not

Chapter 21 Standard Template Library (STL)

1 II Fig. 21.35: fig21_35.cpp
2 II Standard library algorithms includes, set_difference,
3 II set_intersection, set symmetric_difference and set_union.
4 #include <iostream>

5
6 using std: : cout;
7 using std: : endl;
8
9 #include <algorithm> II algorithm definitions

10
11 int main ()
12 {
13 const int SIZE1 10, SIZE2 = 5, SIZE3 = 20;
14 int a1[SIZE1 { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
15 int a2[SIZE2] { 4, 5, 6, 7, 8 };
16 int a3[SIZE2] { 4, 5, 6, 11, 15 };
17 std: : ostream_iterator< int > output(cout, II ") ;
18
19 cout « "a1 contains: ";
20 std: : copy(a1, a1 + SIZE1, output);
21 cout « II \na2 contains: ";
22 std: : copy(a2, a2 + SIZE2, output);
23 cout < < II \na3 contains: ";
24 std: : copy(a3, a3 + SIZE2, output);
25
26 II determine whether set a2 is completely contained in a1
27 if (std: : includes(a1, a1 + SIZE1, a2, a2 + SIZE2))
28 cout « "\n\na1 includes a2";
29 else
30 cout « "\n\na1 does not include a2";
31
32 II determine whether set a3 is completely contained in al
33 if (std: : includes(a1, a1 + SIZE1, a3, a3 + SIZE2))
34 cout < < "\na1 includes a3";
35 else
36 cout « "\na1 does not include a3";
37
38 int difference[SIZEl];
39
40 II determine elements of a1 not in a2
41 int *ptr = std: : set_difference(a1, a1 + SIZE1,
42 a2, a2 + SIZE2, difference);
43
44 cout « "\n\nset_difference of a1 and a2 is: ";
45 std: : copy(difference, ptr, output);
46
47 int intersection[SIZE1];
48
49 II determine elements in both a1 and a2
50 ptr = std: : set_intersection(a1, a1 + SIZE1,
51 a2, a2 + SIZE2, intersection);
52

Fig.21.35 set operations of the Standard Library. (Part 1 of 2.)

1157

1158 Standard Template Library (STL)

53 cout < < n \n \nset intersection of al and a2 is: n;

54 std: : copy(intersection, ptr, output);
55
56 int symmetric_difference[SIZEI 1;
57
58 II determine elements of al that are not in a2 and
59 II elements of a2 that are not in al
60 ptr = std: : set_symmetric_difference(aI, al + SIZEl,
61 a2, a2 + SIZE2, symmetric_difference);
62

Chapter 21

63 cout « n\n\nset_symmetric_difference of al and a2 is: n;
64 std: : copy(symmetric_difference, ptr, output);
65
66 int unionSet[SIZE3 1;
67
68 II determine elements that are in either or both sets
69 ptr = std: : set_union(aI, al + SIZEl,
70 a3, a3 + SIZE2, unionSet);
71
72 cout « n\n\nset_union of al and a3 is: n;

73 std: : copy(unionSet, ptr, output);
74
75 cout « endl;
76
77 return 0;
78
79 II end main

al contains: 1 2
a2 contains: 4 5

3 4
6 7

5
8

a3 contains: 4 5 6 11

al includes a2
al does not include a3

6

15

set_difference of al and

7 8 9 10

a2 is: 1

set intersection of al and a2 is:

2 3 9 10

4 5 6 7 8

set_symmetric_difference of al and a2 is: 1 2 3 9 10

set_union of al and a3 is: 1 2 3 4 5 6 7 8 9 10 11 15

Fig.21.35 set operations of the Standard Library. (Part 2 of 2.)

including, a1 + SIZE1. The last two iterator arguments must be at least input iterators and

must describe the second set of values. In this example, the second set consists of the ele

ments from a2 up to, but not including, a2 + SIZE2. A second version of function

includes takes a fifth argument that is a binary predicate function for comparing elements

for equality.

Lines 41-42 use function set_difference to find the elements from the first set

of sorted values that are not in the second set of sorted values (both sets of values must be

Chapter 21 Standard Template Library (STL) 1159

in ascending order). The elements that are different are copied into the fifth argument (in

this case, the array difference). The first two iterator arguments must be at least input

iterators for the first set of values. The next two iterator arguments must be at least input

iterators for the second set of values. The fifth argument must be at least an output iterator

indicating where to store a copy of the values that are different. The function returns an

output iterator positioned immediately after the last value copied into the set to which the

fifth argument points. A second version of function set_difference takes a sixth argu

ment that is a binary predicate function indicating the order in which the elements were

originally sorted. The two sequences must be sorted using the same comparison function.

Lines 50-51 use function set intersection to determine the elements from the

first set of sorted values that are in the second set of sorted values (both sets of values must

be in ascending order). The elements common to both sets are copied into the fifth argu

ment (in this case, array intersection). The first two iterator arguments must be at

least input iterators for the first set of values. The next two iterator arguments must be at

least input iterators for the second set of values. The fifth argument must be at least an

output iterator indicating where to store a copy of the values that are the same. The function

returns an output iterator positioned immediately after the last value copied into the set to

which the fifth argument points. A second version of function set_intersection

takes a sixth argument that is a binary predicate function indicating the order in which the

elements were originally sorted. The two sequences must be sorted using the same compar

ison function.

Lines 60-61 use function set_symmetric_difference to determine the ele

ments in the first set that are not in the second set and the elements in the second set that

are not in the first set (both sets of values must be in ascending order). The elements that

are different are copied from both sets into the fifth argument (in this case, the array

symmetric_difference). The first two iterator arguments must be at least input iter

ators for the first set of values. The next two iterator arguments must be at least input iter

ators for the second set of values. The fifth argument must be at least an output iterator

indicating where to store a copy of the values that are different. The function returns an

output iterator positioned immediately after the last value copied into the set to which the

fifth argument points. A second version of function set_symmetric_difference

takes a sixth argument that is a binary predicate function indicating the order in which the

elements were originally sorted. The two sequences must be sorted using the same compar

ison function.

Lines 69-70 use function set_union to create a set of all the elements that are in

either or both of the two sorted sets (both sets of values must be in ascending order). The

elements are copied from both sets into the fifth argument (in this case the array

unionSet). Elements that appear in both sets are only copied from the first set. The first

two iterator arguments must be at least input iterators for the first set of values. The next

two iterator arguments must be at least input iterators for the second set of values. The fifth

argument must be at least an output iterator indicating where to store the copied elements.

The function returns an output iterator positioned immediately after the last value copied

into the set to which the fifth argument points. A second version of function set_union

takes a sixth argument that is a binary predicate function indicating the order in which the

elements were originally sorted. The two sequences must be sorted using the same compar

ison function.

1160 Standard Template library (STL) Chapter 21

21.5.11 lower_bound, upper_bound and equal_range

Figure 21.36 demonstrates Standard Library functions lower_bound, upper_bound

and equal_range.

Line 24 uses function lower_bound to find the first location in a sorted sequence of

values at which the third argument could be inserted in the sequence such that the sequence

would still be sorted in ascending order. The first two iterator arguments must be at least

forward iterators. The third argument is the value for which to determine the lower bound.

The function returns a forward iterator pointing to the position at which the insert can occur.

A second version of function lower_bound takes as a fourth argument a binary predicate

function indicating the order in which the elements were originally sorted.

Line 31 uses function upper_bound to find the last location in a sorted sequence of

values at which the third argument could be inserted in the sequence such that the sequence

would still be sorted in ascending order. The first two iterator arguments must be at least

forward iterators. The third argument is the value for which to determine the upper bound.

The function returns a forward iterator pointing to the position at which the insert can occur.

A second version of function upper_bound takes as a fourth argument a binary predicate

function indicating the order in which the elements were originally sorted.

Line 40 uses function equal_range to return a pair of forward iterators containing

the combined results of performing both a lower_bound and an upper_bound opera

tion. The first two iterator arguments must be at least forward iterators. The third argument

is the value for which to locate the equal range. The function returns a pair of forward iter

ators for the lower bound (eq. first) and upper bound (eq. second), respectively.

Functions lower_bound, upper_bound and equal_range are often used to

locate insertion points in sorted sequences. Line 52 uses lower_bound to locate the first

point at which 5 can be inserted in order in v. Line 61 uses upper_bound to locate the

last point at which 7 can be inserted in order in v. Line 71 uses equal_range to locate

the first and last points at which 5 can be inserted in order in v.

1 II Fig. 21.36: fig21_36.cpp
2 II Standard library functions lower_bound, upper_bound and
3 II equal_range for a sorted sequence of values.
4 #include < iostream>
5
6 using std::cout;
7 using std::endl;
8
9 #include < algorithm> II algorithm definitions

10 #include < vector> II vector class-template definition
11
12 int main ()
13 {
14 const int SIZE = 10;
15 int a1 [] = { 2, 2, 4, 4, 4, 6 , 6, 6 , 6 , 8 };
16 std::vector< int > v(a1, a1 + SIZE);
17 std: :ostream_iterator< int > output (cout, II II) ;

18

Fig. 21.36 Algorithms lower_bound, upper_bound and equal_range. (Part 1
of 3.)

Chapter 21 Standard Template Library (STL)

19 cout « "Vector v contains: \n";
20 std::copy(v.begin(), v.end(), output);
21
22 II determine lower-bound insertion point for 6 in v
23 std: : vector< int > ::iterator lower;
24 lower = std: : lower_bound(v.begin(), v.end(), 6);
25
26 cout « "\n\nLower bound of 6 is element "
27 « (lower - v.begin()) « " of vector v";
28
29 II determine upper-bound insertion point for 6 in v
30 std:: vector< int > ::iterator upper;
31 upper = std: :upper_bound(v.begin(), v.end(), 6);
32
33 cout « "\nUpper bound of 6 is element "
34 « (upper - v.begin()) « " of vector v";
35
36 II use equal_range to determine both the lower- and
37 II upper-bound insertion points for 6
38 std: :pair< std: : vector< int > ::iterator,
39 std: :vector< int > ::iterator > eq;
40 eq = std: :equal_range(v.begin(), v.end(), 6);
41
42 cout « "\nUsing equal_range: \n"
43 « " Lower bound of 6 is element "
44 « (eq.first - v.begin()) « " of vector v";
45 cout « "\n Upper bound of 6 is element "
46 « (eq. second - v.begin()) « " of vector v";
47
48 cout « "\n\nUse lower_bound to locate the first point\n"
49 « "at which 5 can be inserted in order";
50
51 II determine lower-bound insertion point for 5 in v
52 lower = std::lower_bound(v.begin(), v.end(), 5);
53
54 cout « "\n Lower bound of 5 is element "
55 « (lower - v.begin()) « " of vector v";
56
57 cout « "\n\nUse upper_bound to locate the last point\n"
58 « "at which 7 can be inserted in order";
59
60 II determine upper-bound insertion point for 7 in v
61 upper = std::upper_bound(v.begin(), v.end(), 7);
62
63 cout « "\n Upper bound of 7 is element "
64 « (upper - v.begin()) « " of vector v";
65
66 cout « "\n\nUse equal_range to locate the first and\n"
67 « "last point at which 5 can be inserted in order";
68
69 II use equal_range to determine both the lower- and
70 II upper-bound insertion points for 5

1161

Fig. 21.36 Algorithms lower_bound, upper_bound and equal_range. (Part 2
of 3.)

1162 Standard Template library (STL)

71 eq = std: : equal_range (v.begin(), v.end(), 5);
72

cout « "\n Lower bound of 5 is element "

« (eq.first - v.begin()) « " of vector
cout « "\n Upper bound of 5 is element "

VII ;

73
74
75
76
77
78

« (eq.second - v.begin()) « " of vector v "

« endl;

79 return 0;
80
81 } II end main

Vector v contains:
2 2 4 4 4 6 6 6 6 8

Lower bound of 6 is
Upper bound of 6 is
Using equal_range:

Lower bound of 6
Upper bound of 6

element 5 of vector v
element 9 of vector v

is element 5 of vector
is element 9 of vector

Use lower_bound to locate the first point
at which 5 can be inserted in order

v
v

Lower bound of 5 is element 5 of vector v

Use upper_bound to locate the last point
at which 7 can be inserted in order

Upper bound of 7 is element 9 of vector v

Use equal_range to locate the first and
last point at which 5 can be inserted in order

Lower bound of 5 is element 5 of vector v
Upper bound of 5 is element 5 of vector v

Chapter 21

Fig. 21.36 Algorithms lower_bound, upper_bound and equal_range. (Part 3
of 3.)

21 . 5. 12 Heapsort

Figure 2 1 .37 demonstrates the Standard Library functions for performing the heapsort sort

ing algorithm. Heapsort is a sorting algorithm in which an array of elements is arranged into

a special binary tree called a heap. The key features of a heap are that the largest element

is always at the top of the heap and the values of the children of any node in the binary tree

are always less than or equal to that node's value. A heap arranged in this manner is often

called a maxheap. Heapsort is generally discussed in computer science courses called "Data

Structures" and "Algorithms."

Line 24 uses function make_heap to take a sequence of values in the range from

v. begin () up to, but not including, v. end () and create a heap that can be used to pro

duce a sorted sequence. The two iterator arguments must be random-access iterators, so this

function will work only with arrays, vectors and deques. A second version of this func

tion takes as a third argument a binary predicate function for comparing values.

Chapter 21 Standard Template library (STL)

1 II Fig . 2 1.37 : f ig2 1 37.cpp
2 II Standard l ibrary algorithm s push heap , pop heap ,
3 II make heap and sort heap .

4 #inc lude < iostream>
5
6 using s td : : cout;
7 u s ing s td : : endl;
8
9 # inc lude < algorithm >

1 0 # inc lude <vector>
1 1
1 2 int main ()
1 3 {
1 4 const int S I ZE = 1 0 ;

1 1 63

1 5 int a [S I ZE] = { 3 , 1 0 0 , 5 2 , 77 , 2 2 , 3 1 , 1 , 9 8 , 1 3 , 4 0 };
1 6 std : : vector< int > v (a , a + S I ZE) , v2;
1 7 std : : o s t ream_iterator< int > output (cout , " ") ;
1 8
1 9 cout « "Vector v before make_heap : \ n ";
20 std : : copy (v . begin () , v . end () , output) ;
2 1
22 II create heap from vector v
23 s td : : make_heap (v . begin () , v . end ()) ;
24
25 cout « " \nVector v after make_heap : \ n ";
26 std : : copy (v . begin () , v . end () , output) ;
27
28 II sort e l ement s of v with sort .heap
29 std : : sort_heap (v.begin () , v.end ()) ;
30
3 1 cout « " \nVector v after sort_heap : \ n ";
32 std : : copy (v . begin () , v . end () , output) ;
33
34 II perform the heapsort wi th push heap and pop.heap
35 cout « " \n \nArray a contains : ";
36 std : : copy (a , a + S I ZE , output) ;
37
38 cout « endl;
39
40 II p lace e l ement s of array a into v2 and
41 II maintain e l ement s of v2 in heap

42 for (int i = 0 ; i < S I ZE ; + + i) {
43 v2 . pu sh_back (a [i]);
44 s td : : push_heap (v2 . begin () , v2 . end ()) ;
45 cout « " \nv2 after push_heap (a [" « i « "]) : " ;
46 std : : copy (v2 . begin () , v2 . end () , output) ;
47
48 } II end for
49
50 cout « endl;
5 1
52 II remove e l ement s from heap in sorted order

53 for (int j = 0 ; j < v2 . s ize () ; + + j) {

Fig. 2 1 .37 Using Standard Library functions to perform a heapsort. (Part 1 of 2.)

1 1 64 Standard Template Library (STL) Chapter 21

54 c out « " \nv2 after II « v2 [0) « II popped from heap \ n ";

55 s t d : : pop_heap (v2 . begin () , v2 . end () - j);
56 s td : : copy (v2 . begin () , v2 . end () , output) ;
57
58 II end for
59
60 cout « endl;
6 1
62 return 0;
63
64 II end main

Vec tor v be fore make_heap :
3 1 0 0 5 2 7 7 2 2 3 1 1 9 8 1 3 4 0
Vector v after make_heap :
1 0 0 9 8 5 2 7 7 4 0 3 1 1 3 1 3 2 2
Vector v after sort_heap :
1 3 13 2 2 3 1 4 0 5 2 7 7 9 8 1 0 0

Array a contains : 3 1 0 0 5 2 7 7

v2 after push_heap (a [O) : 3
v2 after push_heap (a [l) : 1 0 0
v2 after push_heap (a [2) : 1 0 0
v2 after push_heap (a [3) : 1 0 0
v2 after push_heap (a [4) : 1 0 0
v2 after push_heap (a [5) : 1 0 0
v2 after push_heap (a [6) : 1 0 0
v2 after push_heap (a [7) : 1 0 0
v2 after push_heap (a [8) : 1 0 0
v2 after push_heap (a [9) : 1 0 0

v2 after 1 00 popped from heap
9 8 7 7 5 2 2 2 4 0 3 1 1 3 1 3 1 0 0
v2 after 9 8 popped f rom heap
7 7 4 0 5 2 2 2 1 3 3 1 1 3 9 8 1 0 0
v2 after 7 7 popped f rom heap

5 2 4 0 3 1 2 2 1 3 3 1 7 7 9 8 1 0 0

v2 after 5 2 popped f rom heap

4 0 2 2 3 1 1 1 3 3 5 2 7 7 9 8 1 0 0
v2 after 4 0 popped f rom heap
3 1 2 2 3 1 1 3 4 0 5 2 7 7 9 8 1 0 0

v2 after 3 1 popped f rom heap
2 2 1 3 3 1 3 1 4 0 5 2 7 7 9 8 1 0 0
v2 after 2 2 popped f rom heap
1 3 1 3 2 2 3 1 4 0 5 2 7 7 9 8 1 0 0
v 2 after 1 3 popped f rom heap
3 1 13 2 2 3 1 4 0 5 2 7 7 9 8 1 0 0
v 2 after 3 popped f rom heap
1 3 13 2 2 3 1 4 0 52 77 9 8 1 0 0
v 2 after 1 popped f rom heap
1 3 13 2 2 3 1 4 0 52 77 9 8 1 0 0

2 2 3 1 1 9 8 1 3 4 0

3
3 5 2
7 7 5 2 3
7 7 5 2 3 2 2
7 7 5 2 3 2 2 3 1
7 7 5 2 3 2 2 3 1 1

9 8 5 2 7 7 2 2 3 1 1 3
9 8 5 2 7 7 2 2 3 1 1 3 1 3
9 8 5 2 7 7 4 0 3 1 1 3 1 3 2 2

Fig. 2 1 .37 Using Standard Library functions to perform a heapsort. (Part 2 of 2.)

Chapter 21 Standard Template Library (STL) 1 1 65

Line 30 uses function sort_heap to sort a sequence of values in the range from

v . begin () up to, but not inc luding, v . end () that are already alTanged in a heap. The

two iterator arguments must be random-access iterators . A second version of th i s function

takes as a third argument a binary predicate function for compari ng values .

Line 45 uses function push_heap to add a new value into a heap. We take one ele

ment of array a at a time, append that element to the end of vector v2 and perform the

push_heap operat ion. I f the appended element i s the only e lement i n the vec tor, the

vector i s already a heap . Otherwise, function push_heap rearranges the e lements of

the vector i n to a heap. Each t ime push_heap i s cal led, i t assumes that the l ast e lement

currently in the vector (i . e . , the one that is appended before the push_heap function

cal l) is the element being added to the heap and that al l other e lements in the vector are

already arranged as a heap . The two iterator arguments to push_heap must be random

access i terators . A second version of thi s function takes as a th ird argument a binary pred

icate function for comparing values .

Line 56 uses pop_heap to remove the top heap element . This function assumes that

the elements in the range specified by its two random-access i terator arguments are al ready

a heap. Repeatedly removing the top heap e lement resu lts in a sorted sequence of values .

Function pop_heap swaps the first heap element (v2 . begin () , in th is example) wi th

the last heap element (the element before v2 . end () - i , in this example) , then ensures

that the elements up to, but not inc luding, the last element sti l l form a heap. Notice in the

output that, after the pop_heap operations, the vector i s sorted in ascending order. A

second version of this function takes as a third argument a binary predicate function for

comparing values .

21.5.13 min and max

Algorithms min and max determine the minimum of two elements and the maximum of two

elements, respectively. Figure 2 1 . 38 demonstrates min and max for int and char values.S

1 1/ Fig . 2 1 . 3 8 : f ig2 1 3 8 . cpp
2 II Standard l ibrary algorithms min and max .
3 #inc lude < iostream>
4
5 u s ing std : : cout ;
6 us ing std : : endl ;
7
8 # inc lude < a l gori thm>
9

10 int main ()
1 1 (
1 2 cout « " The minimum of 1 2 and 7 i s : "
1 3 « std : : min (1 2 , 7) ;

Fig. 2 1 .38 Algorithms min and max. (Part 1 of 2.)

5. Microsoft ' s Visual C++ 6 compi ler does not support the STL min and max algorithms, because
they conflict with functions by the same name i n the Microsoft Foundation C lasses (MFC)-Mi
crosoft's reusable c lasses for creati ng Wi ndows applications. Figure 2 1 . 38 was compi l ed with
Borland C++.

1 166 Standard Template Library (STl) Chapter 2 1

cout « " \nThe maximum of 12 and 7 i s : " 1 4
1 5
1 6
1 7
1 8
1 9
20

« std : : max (1 2 , 7) ;
cout « " \nThe minimum of 'G' and 'Z' i s : "

« std : : min (IGI I 'Z') ;
cout « " \nThe maximum of 'G' and 'Z' i s : "

« std : : max ('Gi, 'Z') « endl ;

2 1 return 0 ;
22
23 II end main

The minimum of 12
The maximum of 12
The minimum of 'G'
The maximum of 'G'

and 7 i s : 7

and 7 i s : 12
and 'Z' i s : G
and 'Z' i s : Z

Fig. 2 1 .38 Algorithms min and max. (Part 2 of 2.)

21.5.14 Algorithms Not Covered in This Chapter

Figure 21.39 d iscusses the algorithms that are not covered in th is chapter.

Algorithm

inner-product

adj acent_di f ference

Description

Calculate the sum of the products of two sequences by taking corre

sponding elements in each sequence, multip ly ing those e lements and

adding the resu lt to a total .

Beginn ing with the second element i n a sequence, calculate the d if

ference (us ing operator -) between the current and previous e le

ments, and store the result. The first two i nput i terator arguments

indicate the range of e lements in the container and the third output

iterator argument indicates where the resu lts should be stored. A sec

ond version of th i s algorithm takes as a fourth argument a b inary

function to perform a calculation between the current e lement and

the previous element.

Calculate a running total (using operator +) of the val ues in a

sequence. The first two input iterator arguments indicate the range of

elements in the container and the th i rd output i terator argument i nd i

cates where the results shou ld be stored. A second version of th is

algorithm takes as a fourth argument a b inary function that performs

a calculation between the current value in the sequence and the run

ning total.

Fig. 21 .39 Algorithms not covered in this chapter. (Part 1 of 3.)

Chapter 21

Algorithm

partition

stable-partition

next-permutation

prev-permutation

rotate

Standard Template Library (STL) 1 1 67

Description

Use three random-access iterators to partit ion a range of e lements.

The first and last arguments represent the range of elements. The

second argument is the partit ioning e lement's location. After thi s

algorithm executes, all elements t o the left o f the part itioning ele

ment are less than that element and all elements to the right of the

partition ing element are greater than or equal to that element. A sec

ond version of th i s algorithm takes as a fourth argument a bi nary

compari son function.

Th is algorithm i s s imilar to nth_element, but i t requi res less

powerful bidirectional iterators, making i t more flexible than

nth_element. Algorithm partition requ i res two bidirectional

i terators i ndicating the range of elements to part it ion. The th ird ele

ment i s a unary predicate function that helps partit ion the e lements

so that all elements in the sequence for which the predicate i s true

are to the left (toward the beginn ing of the sequence) of all e lements

for which the predicate i s false. A bidirectional iterator i s returned

i ndicat ing the first element in the sequence for which the predicate

returns false.

This algorithm is s imi lar to parti tion except that e lements for

which the predicate function returns true are maintained i n their

original order and elements for which the predicate function returns

false are maintained in their orig inal order.

Next lexicographical permutation of a sequence .

Previous lexicographical permutation of a sequence.

Use three forward iterator arguments to rotate the sequence i ndi

cated by the first and last argument by the number of positions i ndi

cated by subtracting the first argument from the second argument.

For example, the sequence I, 2 , 3 , 4, 5 rotated by two posit ions

would be 4, 5, 1, 2 , 3.

This algorithm is identical to rotate except that the results are

stored in a separate sequence indicated by the fourth argument-an

output iterator. The two sequences must have the same number of

elements.

Fig. 2 1 .39 Algorithms not covered in this chapter. (Part 2 of 3.)

1 1 68 Standard Template Library (STL) Chapter 21

Algorithm Description

adjacent_find

stable sort

This algorithm returns an input iterator i ndicating the first of two

identical adjacent elements in a sequence. If there are no identical

adjacent elements, the iterator is positioned at the end of the

sequence.

Use three random-access iterators to sort part of a sequence. The

first and last arguments indicate the sequence of elements. The sec

ond argument indicates the ending location for the sorted part of the

sequence. By default, elements are ordered us ing operator < (a

binary predicate function can also b e supplied) . The e lements from

the second argument iterator to the end of the sequence are in an

undefined order.

Use two input iterators and two random-access iterators to sort part

of the sequence indicated by the two i nput iterator arguments . The

results are stored in the sequence i ndicated by the two random

access iterator arguments. By default, elements are ordered us ing

operator < (a bi nary predicate function can also be supplied) . The

number of elements sorted is the smaller of the number of elements

i n the result and the number of elements i n the original sequence .

The algorithm is s imilar to sort except that a l l equal e lements are

maintained in their original order.

Fig . 21 .39 Algorithms not covered in this chapter. (Part 3 of 3.)

21 .6 Class bit s et

Class bitset makes it easy to create and manipulate bit sets. B it sets are usefu l for rep

resenti ng a set of bit flags . bit sets are fixed in size at compi le time. The declaration

bitset< size > b;

creates bit set b, i n which every bit is init ial l y o. The statement

b.set(bitNumber);

sets bit bi tNumber of bit set b "on." The expression b . set () sets a l l bits i n b "on ."

The statement

b.reset(bitNumber);

sets bit bi tNumber of bi t set b "off." The expression b . reset () sets a l l bits i n b

"off." The statement

b.flip(bitNumber);

Chapter 21 Standard Template Library (STL) 11 69

"fl ips" bit bi tNumber of bi tset b (e .g . , if the bit is on, f l ip sets it off) . The expres

sion b. f l ip () fl ips all bits in b. The statement

b [bi tNumber] ;

returns a reference to the bit bitNumber of bit set b. Similar ly ,

b.at(bitNumber);

performs range checking on bi tNumber first. Then, if bi tNumber is in range, at re

turns a reference to the bit. Otherwi se, at throws an out_of_range exception. The

statement

b.test(bitNumber);

performs range checking on bitNumber fi rst. Then, if bi tNumber i s in range, test

returns true if the b i t i s on, false if the b i t is off. Otherwise, t e s t throws an

out_of_range exception. The express ion

b.size()

returns the number of bits in bit set b. The express ion

b.count ()

returns the number of bits that are set in bi tset b. The expression

b.any()

returns true if any bit is set in bi t set b. The expression

b.none ()

returns true if none of the bits i s set in bit set b. The expressions

b == bi

b != bi

compare the two bit sets for equal ity and inequality, respect ive ly .

Each of the bitwise assignment operators &=, I = and A = can be used to combine bi t

sets . For example ,

b &: = bi;

performs a bit-by-bit logical AND between bi tsets band bl. The resul t is stored in b.

Bitwi se logical OR and bitwise logical XOR are performed by

b 1= bi;

b A= b2;

The expression

b » = n;

shifts the bits in bit set b right by n positions. The expression

b « = n;

shifts the bits in bit set b left by n positions. The expressions

1170 Standard Template Library (STL) Chapter 21

b . to_string ()
b . to_ulong ()

convert bit set b to a string and an uns igned long, respective ly .

Figure 2 1 .40 revisits the S ieve of Eratosthenes for finding prime numbers that we dis

cussed i n Exerc ise 4.29. A bit set is used instead of an array to implement the algori thm.

The program displays a l l the prime numbers from 2 to 1 023 , then al lows the user to enter

a number to determine whether that number is prime.

Line 20 creates a bit set of size bits (s ize i s 1 024 in this example) . We ignore the

bits at positions 0 and 1 in this program. By default, all the bits in the bit set are set "off."

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40

1/ Fig. 2 1 . 4 0 : f ig2 1 4 0 . cpp
II Us ing a bitset to demonstrate the Sieve of Eratosthene s .
inc lude < iostream>

u s ing s td : : c i n ;

us ing s td : : cout ;
us ing std : : endl ;

inc lude < iomanip>

us ing s td : : setw;

inc lude <bit set > II bitset c l a s s de f init ion
inc lude < cmath> II sqrt prototype

int main ()
{

const int s i z e = 1 0 2 4 ;
int value ;
std : : bi t s e t < s i z e > sieve ;

s i eve . f l ip () ;

II perform S i eve of Eratosthenes
int f inalBit = sqrt (sieve . s i ze ()) + 1 ;

for int i = 2 ; i < finalBit ; ++i)

i f (s i eve . te s t (i

for (int j = 2 * i ; j < s i z e ; j += i
s i eve . reset (j) ;

cout « " The prime numbers in the range 2 to 1 0 2 3 are : \n " ;

II display prime numbers in range 2- 1 0 2 3
for (int k = 2 , counter = 0 ; k < s ize ; ++k

i f (s i eve . te s t (k
cout « setw (5

) {
« k ;

Fig. 21 .40 Class bi t s et and the Sieve of Eratosthenes. (Part 1 o f 2.)

Chapter 21 Standard Template Library (STL) 1 1 71

i f (+ + count er % 12 0)

cout « ' \n ' ;

II end outer i f

cout « endl ;

II get value from user to determine whether value i s prime
cout « "\nEnter a value from 1 to 1 0 2 3 (- 1 to end) : " ;
cin » value ;

whi l e value != - 1) {

i f s i eve [value]

cout « value « II i s a prime nUlllber\n " ;
e l s e

cout « value « I I i s not a prime nUlllber\n " ;

cout « "\nEnter a value from 2 to 1 0 2 3 (- 1 to end) : " ;
c in » value ;

} II end whi l e

return 0 ;

4 1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67 } II end main

The prime nUlllbers in the range 2 to 1 0 2 3 are :
2 3 5 7 1 1 1 3 17 1 9 2 3 2 9 3 1 3 7

4 1 43 47 53 59 6 1 67 71 7 3 7 9 8 3 8 9
9 7 1 0 1 1 0 3 1 0 7 1 0 9 1 1 3 1 2 7 1 3 1 1 3 7 1 3 9 149 1 5 1

1 5 7 1 6 3 1 6 7 1 7 3 1 7 9 1 8 1 1 9 1 1 9 3 1 9 7 1 9 9 2 1 1 2 2 3
2 2 7 2 2 9 2 3 3 2 3 9 241 2 5 1 2 5 7 2 6 3 2 6 9 2 7 1 277 2 8 1
2 8 3 2 9 3 3 0 7 3 1 1 3 1 3 3 17 3 3 1 3 3 7 347 349 3 5 3 3 5 9
3 6 7 3 7 3 3 7 9 3 8 3 3 8 9 3 9 7 4 0 1 4 0 9 4 1 9 4 2 1 43 1 4 3 3
43 9 443 449 4 5 7 4 6 1 4 6 3 4 6 7 47 9 4 8 7 4 9 1 4 9 9 5 0 3
5 0 9 5 2 1 5 2 3 54 1 547 5 5 7 5 6 3 5 6 9 5 7 1 5 7 7 5 8 7 5 9 3
5 9 9 6 0 1 6 0 7 6 1 3 6 1 7 6 1 9 6 3 1 64 1 643 647 6 5 3 6 5 9
6 6 1 6 7 3 6 7 7 6 8 3 6 9 1 7 0 1 7 0 9 7 1 9 7 2 7 7 3 3 7 3 9 743
7 5 1 7 5 7 7 6 1 7 6 9 7 7 3 7 8 7 7 9 7 8 0 9 8 1 1 8 2 1 8 2 3 8 2 7
8 2 9 8 3 9 8 5 3 8 5 7 8 5 9 8 6 3 877 8 8 1 8 8 3 8 8 7 9 0 7 9 1 1
9 1 9 9 2 9 9 3 7 941 947 9 5 3 9 6 7 9 7 1 977 9 8 3 9 9 1 9 9 7

1 0 0 9 1 0 1 3 1 0 1 9 1 0 2 1

Enter a value from 1 to 1 0 2 3 (- 1 t o end) : 3 8 9
3 8 9 i s a prime nUlllber

Enter a value from 2 to 1 0 2 3 (- 1 to end) : 8 8
8 8 i s not a prime nUlllber

Enter a value f rom 2 to 102 3 (- 1 t o end) : - 1

Fig. 21.40 Class bi t s e t and the Sieve of Eratosthenes. (Part 2 of 2.)

1172 Standard Template Library (STL) Chapter 21

Lines 25-32 determine a l l the prime numbers from 2 to 1 023 . The in teger f inalBit i s

used to determine when the algorithm is complete. The basic algorithm is that a number i s

prime if i t has no divisors other than 1 and itself. Starting wi th the number 2 , once we know

a n umber is prime, we can el iminate all multiples of that number. The number 2 is d iv isible

only by 1 and itself, so i t i s prime. Therefore, we can el iminate 4, 6, 8 and so on. The number

3 i s divisible only by 1 and itself. Therefore, we can el iminate all multiples of 3 (keep i n

mind that a l l even numbers have already been el iminated) .

21 . 7 Function Objects

Function objects and function adapters are provided to make STL more flexible . Afunction

object contains a function that can be treated syntactically and semantically as a function

using operator () . STL ' s function objects and function adapters are defined i n header

< funct ional > . A function object can also encapsulate data with the enclosed function .

The standard function objects are inl ined for performance. STL function objects are

shown i n Fig. 2 1 .41.

Figure 2 1 .42 demonstrates the accumulate numeric algorithm (discussed in Fig.

20.30) to calculate the sum of the squares of the elements in a vector. The fourth argu

ment to accumulate i s a binary function object or a function poin ter to a binary funct ion

that takes two arguments and returns a result . Function accumulate i s demonstrated

twice-once with a function pointer to a binary function, and once wi th a function object .

STL function objects

divides < T >

equal_to< T >

greater< T >

greater_equal < T >

l e s s < T >

les s_equal < T >

logic al_and< T >

logical_not < T >

logical_or< T >

minu s < T >

modulus < T >

negate< T >

not_equal_to< T >

plus < T >

mult ip l i e s < T >

Type

arithmetic

re lational

relational

relational

relational

rel ational

logical

logical

logical

arithmetic

arithmetic

arithmetic

relational

arithmetic

arithmetic

Fig. 2 1 .4 1 Function objects in the Standard Library.

Chapter 21 Standard Template Library (STL) 11 73

1
2
3
4
5
6
7
8
9

10
1 1
1 2
13
1 4
15
1 6
1 7
18
1 9
20
2 1
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

II Fig. 2 1.4 2 : fig2 1_4 2 . cpp
II Demonstrat ing func t ion obj ects .
inc lude < io s t ream>

us ing std : : cout ;
u s ing std : : endl ;

#inc lude <vector>
inc lude < algorithm>
inc lude <numeri c >
inc lude < funct iona l >

II vec tor c l a s s - t emplate de f init ion

II copy algorithm
II accumulate algorithm
II binary_funct i on de f init ion

II binary funct ion adds square o f i t s second argument and
II running total in i t s f irst argument , then returns sum
int sumSquares (int total , int value)

{
return total + value * value ;

} II end func t ion sumSquares

II binary funct ion c l a s s template de f ines overloaded operator ()
II that adds suare o f i t s second argument and running total in
II i t s f ir s t argument , then returns sum

t emplate < class T >
c la s s SumSquare sCl a s s : public std : : binary_funct ion< T , T , T > {

pub l i c :

II add square of value to total and return result
const T operator () (const T &total , const T &value

{
return total + value * value ;

II end funct ion operator ()

}; II end c l a s s SumSquare sClass

int main ()

{
const int SIZE = 1 0 ;

int array [] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 };

s td : : vector< int > integers (array , array + SIZE) ;

std : : ostream_i terator< int > output (cout , .. ") ;

int resu l t = 0 ;

cout « " vector v contains : \n " ;
s td : : copy (integers.begin () , integers.end () , output) ;

II calculate sum of squares of e l ement s o f vector integers
II us ing binary funct ion sumSquare s

Fig.21 .42 Binary function object. (part 1 of 2.)

1 1 74 Standard Template Library (STL) Chapter 2 1

54 result = std : : accumulate (integers . begin () , integer s . end () ,

55 0 , sumSquare s) ;
56
57 cout « "\n\nSum of squares of e l ement s in integers u s ing I I

58 « "binary\nfunct ion sumSquares : I I « resul t ;
59
60 II calculate sum of squares of e l ement s of vector integers

6 1 II us ing binary- funct ion obj ect
62 result = std : : accumulate (integers . begin () , integers . end () ,
63 0 , SumSquare sClas s < int > ()) ;

64
65 cout « "\n\nSum of square s of e l ement s in integers using I I

66 « "binary\nfunction obj ect of type II

67 « " SumSquaresClas s < int > : II « result « endl ;

68
69 return 0 ;
70
7 1 II end main

vector v contains :
1 2 3 4 5 6 7 8 9 1 0

S um of square s of e l ement s i n integers us ing binary
funct ion sumSquares : 3 8 5

S um o f squares o f e l ement s i n integers us ing binary

funct ion obj ect of type SumSquaresClas s < int > : 3 8 5

Fig. 2 1 .42 Binary function object. (Part 2 of 2,)

Lines 1 5- 1 9 define a function sumSquares that squares its second argument value,

adds that square and its first argument total and returns the sum. Function accumulate

wil l pass each of the elements of the sequence over which i t iterates as the second argument

to sumSquare s in the example. On the first cal l to sumSquares, the first argument wi l l

be the i nit ial value of the total (which is supplied as the third argument to accumulate;

o in this program) . All subsequent cal l s to sumSquare s receive as the first argument the

running sum returned by the previous call to sumSquares . When accumulate com

pletes, i t returns the sum of the squares of all the elements in the sequence.

Lines 24-36 define a c lass SumSquare sClass that inherits from class

binary_funct ion (in header fi le <functional» . Classes that inherit from

binary_funct ion defi ne the overloaded operator () function with two arguments .

C lass SumSquaresCl a s s i s used to define function objects for which the overloaded

operator () functions perform the same task as function sumSquare s . The three type

parameters (T) to the template binary_funct ion are the type of the first argument to

operator () , the type of the second argument to operator () and the return type of

operator () , respective ly . Function accumulate wi l l pass the elements of the

sequence over which it i terates as the second argument to function operator () of the

object of class SumSquare sClass that is passed to the accumulate algorithm. On the

first cal l to operator () , the first argument wil l be the in itial value of the total (which

i s supplied as the third argument to accumulate: 0 in this program) . A l l subsequent cal l s

Chapter 21 Standard Template Library (STL) 1 175

to operator () receive as the first argument the result returned by the previous cal l to

operator () . When accumulate completes, it returns the sum of the squares of al l the

e lements in the sequence .

Lines 54-55 ca l l function accumulate with a pointer to function sumSquares as

its last argument .

The statement at l ines 62-63 cal l function accumulate with an object of c l ass Sum

SquaresClass as the l ast argument . The expression SumSquaresClas s < int > ()

creates an instance of c lass SumSquaresClass that is passed to accumulate, which

sends the object the message (invokes the function) operator () . The statement cou ld

be written as two separate statements, as fol lows:

SumSquare sClas s < int > sumSquaresObj ect ;
re sul t = accumulate (

v . begin () , v . end () , 0 , sumSquaresObj ect) ;

The first l ine defines an object of c lass SumSquare sClas s . That object i s then passed

to function accumulate and is sent the message operator () .

Unlike function pointers, afunction objeci can also encapsulate data.

21 .8 STL Internet and Web Resources

The fol lowing is a col lection of Internet and World Wide Web STL resources . These sites

inc lude tutoria ls , references, FAQs, articles, books, interviews and software .

Tutorials
www . c s . brown . edu / people / j ak/programm ing / s t l - tutorial / tutorial . html

This STL tutorial is organized by examples, phi losophy, components and extending STL. You w i l l

find code examples us ing the STL components, usefu l explanations and he lpful diagrams.

web . ft ech . ne t / -honeyg / art i c l e s / e f f_st l . htm

This STL tutorial prov ides information on the STL components, containers, stream and iterator adap

tors, transforming and selecting values, filtering and transforming val ues and obj ects .

www . xraylith . wi s c . edu / -khan/ software / st l /os_example s / example s . html

This s ite is helpfu l for people j ust learn ing about the STL. You w i l l find an i ntroduction to the STL

and ObjectS pace STL Tool Kit examples .

References
www . sgi.com / t e ch / st l

The Si l icon Graphics Standard Template Library Programmer's Gu ide i s a usefu l resource for STL
information. You can download the STL from th is s ite and find the latest information, des ign docu

mentation and l inks to other STL resources.

www . c s . rpi . edu / proj ect s / STL / st l / st l . html

This is the Standard Template Library On l ine Reference Home Page from Rensse l aer Polytechnic In

stitute. You wi l l find deta i led explanations of the STL, as we l l as l i nks to other usefu l resources for

information about the STL.

www . dinkumware.com/ refcpp.html

This s ite contains usefu l information about the ANSIIISO Standard C++ Library; it i nc ludes extensive

information about the Standard Template Library.

1 176 Standard Template Library (STL)

Articles, Books and Interviews
www . byte . com/art / 9 5 1 0 / sec12 / art3 . htm

Chapter 21

The Byte Magazine s i te has a copy of an art ic le on the STL written by Alexander Stepanov. Stepanov,

one of the creators of the S tandard Template Library, provides information on the use of the STL in

generic programming.

ANSl/lSO C++ Standard
www . ans i . org

You can purchase a copy of the C++ standard document from this s i te .

Software
www . c s . rpi . edu / -mu s s er / s t l -book

The RPI STL s i te inc ludes information on how STL differs from other C++ l ibraries and on how to

compi le programs that use STL. The s i te l i sts the STL files and prov ides example programs that use

STL, STL Container Classes and STL Iterator Categories. It also provides an STL-compat ib le com

pi ler l i st, FTP s i tes for STL source code and re lated material s .

www . c s . rpi . edu / -wi seb / s t l -borland . html

"Using the Standard Template Library with Borland C++." This s i te is a usefu l reference for people

using the Borland C++ compi ler. The author has sections on warnings and i ncompat ib i l i t ies .

msdn . microsoft . com/vi sualc

Thi s is the M icrosoft Visual C++ home page. Here you can find the latest Visual C++ news, updates,

technical resources, samples and downloads.

www . borland . com/ cbui lder

This i s the Borland C++Bui lder home page. Here you can find a variety of C++ resources, inc lud ing

several C++ newsgroups, information on the latest product enhancements, FAQs and many other re

sources for programmers using C++Bui lder.

SUMMARY

• Using STL can save considerab le t ime and effort and resul t in h igher-qual i ty programs.

• The choice of what Standard Library container to use in a part icu lar appl ication is based on per

formance considerat ions .

• STL containers are a l l templates so that you can tai lor them to hold the type of data re levant to

your part icu lar app l ications .

• STL inc ludes many popular data structures as containers and provides many algori thms that pro

grams use to process data in these containers .

• STL containers are in three major categories-sequence containers, associative containers and

container adapters. The sequence containers and assoc iat ive containers are col lect ively referred

to as the first-class containers.

• Four other types are considered "near contai ners" because they exhibi t capab i l i t ies s im i lar to those

of the first-class containers, but do not support a l l the capab i l i t ies of first-class containers-array,

string, bit set and valarray.

• A vector provides rapid i nsertion and deletion at the back of the vector and d i rect access to

any element . vectors support random-access iterators .

• A deque provides rapid insert ion and deletion at the front or back of the deque and direct access

to any element . deques support random-access iterators.

• A l i s t provides rapid insertion and deletion anywhere in the l i st and supports bidirectional

i terators.

Chapter 21 Standard Template Library (STL) 1177

• sets provide rapid key lookup. No duplicate keys are al lowed. sets support bidirectional i terators .

• A mul t i set provides rapid lookup of a key. Dupl icate keys are a l lowed. mul t i sets support

bidirectional i terators .

• A map provides rapid lookup of a key and its corresponding "mapped" value . No dupl icate keys

are al lowed (i .e . , a one-to-one mapping is specified) . maps support b id irectional i terators .

• A mul t imap provides rapi d lookup of a key and i ts corresponding "mapped" values . Dupl icate

keys are a l lowed (i . e . , a one-to-many mapping) . mul t imaps support b id irect ional i terators .

• A stack provides a l ast- i n-first-out (LIFO) data structure .

• A queue provides a first- in-fi rst-out (FIFO) data structure .

• A priority_queue provides a fi rst- in-first-out (FIFO) data structure w i th the h ighest-priority

i tem always at the front of the priori ty _queue.

• STL has been carefu l l y designed so that the containers provide simi lar funct ional i ty . There are

many generic operations that apply to al l containers and other operations that apply to subsets of

s imi lar containers . This contributes to the extens ib i l i ty of the STL.

• STL avoids virtual functions i n favor of us ing generic programming with templates, to achieve

better execut ion-t ime performance.

• It i s important to ensure that the type of element being stored i n an STL container meets the con

straints of the template, which normal ly require that the type provide a copy constructor, an as

signment operator and-for assoc iat ive containers-a less-than operator «).
• lterators are used with sequences that might be in contai ners or might be i nput sequences or output

sequences .

• Input i terators are used to read an element from a container. An i nput iterator can move only i n the

forward d irection (i . e . , from the beginn ing of the container to the end of the container), one ele

ment at a t ime . Input iterators support only one-pass algorithms.

• Output i terators are used to write an element to a container. An output i terator can move only i n

the forward d irect ion, one e lement a t a t ime. Output iterators support only one-pass a lgorithms.

• Forward iterators combine the capab i l i t ies of input and output i terators . Forward iterators support

mult i -pass algorithms .

• Bidirectional i terators combine the capabi l i t ies of a forward iterator with the abi l i ty to move in the

backward direct ion .

• Random-access i terators have the capabi l i t ies of bidirectional i terators and the abi l i ty to access any

e lement of the container d i rect ly .

• The category of i terator supported by each container determ i nes whether that container can be

used with specific algorithms i n the STL. Containers that support random-access i terators can be

used with a l l a lgorithms i n the STL.

• Pointers i nto arrays can be used in place of i terators i n a l l STL algorithms.

• STL has approximate ly 70 standard algorithms. Mutat ing-sequence algorithms resu l t i n modifi ca

t ions to container e lements . Non-mutati ng-sequence algorithms do not modify container e lements .

• Funct ions f i l l and f il l_n set every element in a range of container e lements to a specific value.

• Functions generate and generate_n use a generator function to create values for every e le

ment i n a range of container e lements .

• Funct ion equal compares two sequences of values for equal i ty .

• Function mi smatch compares two sequences of values and returns a pair of i terators i ndicating

the location i n each sequence of the mismatched e lements . If a l l the e lements match , the pair

contains the resu l t of function end for each sequence .

1 178 Standard Template Library (STL) Chapter 21

• Function l exicographical_compare compares the contents o f two sequences to determine

whether one sequence is less than another sequence (simi lar to a str ing comparison) .

• Functions remove and remove_copy delete al l e lements in a sequence that match a spec ified

value. Functions remove_i f and remove_copy_i f delete al l e lements in a sequence for

which the unary predicate function passed to the functions returns t rue.

• Functions replace and replace_copy replace all e lements in a sequence that match a spec

ified value. Functions replace_i f and replace_copy_if replace with a new val ue all e l

ements i n a sequence for which the unary predicate function passed to the functions returns t rue.

• Function random_shu f f l e reorders the elements in a sequence randomly.

• Funct ion count counts the elements with the specified value in a sequence. Funct ion count_i f

counts the e lements i n a sequence for which the suppl ied unary predicate function returns t rue.

• Function min_e l ement locates the smallest element in a sequence. Funct ion max_e l ement

locates the largest element in a sequence.

• Function accumulate sums the values in a sequence . A second version of this function receives

a pointer to a general function that takes two arguments and returns a resu l t . The general function

determi nes how the elements in a sequence are accumulated.

• Function for_each applies a general function to every element in a sequence . The general func

tion takes one argument (that it should not modify) and returns void.

• Function t rans form appl ies a general function to every element in a sequence. The general

function takes one argument (that i t can modify) and returns the t rans formed resu lt .

• Funct ion f ind locates an element in a sequence and, if the e lement is found, returns an i terator to

the element; otherwise, f ind returns an i terator i ndicat ing the end of the sequence. Funct ion

f ind_i f locates the first e lement for whjch the suppl ied unary predicate function returns t rue.

• Function sort arranges the e lements in a sequence in sorted order (ascending order by defau l t,

or in the order i ndicated by a suppl ied binary predicate function).

• Function binary_search determines whether an element is in a sorted sequence.

• Function swap exchanges two values.

• Function iter_swap exchanges two values referred to by i terators.

• Function swap_range s exchanges the e lements in two sequences of e lements.

• Function copy_backward copies e lements in a sequence and places the e lements in another se

quence, start ing from the last e lement in the second sequence and working toward the beginn ing

of the second sequence.

• Function merge combi nes two sorted ascending sequences into a th ird sorted sequence. Note that

merge also works on u nsorted sequences, but would not produce a sorted sequence.

• A back_inserter uses the container' s default capab i l ity for i nsert ing an e lement at the end of

the container. When an e lement is inserted into a container that has no more e lements avai lable,

the container grows in size . There are two other inserters- front_inserter and inserter.

A front_inserter inserts an e lement at the beginning of a contai ner (specified as its argu

ment), and an inserter inserts an element before the iterator suppl ied as its second argument

i n the container suppl ied as its first argument.

• Function unique removes a l l dupl icates from a sorted sequence.

• Function reverse reverses a l l the e lements in a sequence .

• Function inplace_merge merges two sorted sequences of elements in the same container.

• Function unique_copy makes a copy of al l the un ique elements in a sorted sequence. Function

reverse_copy makes a reversed copy of the elements in a sequence .

Chapter 21 Standard Template library (STl) 1 1 79

• Function inc lude s compares two sorted sets of values to try to find if every e lement of the sec

ond set i s in the first set. If so, inc lude s returns true; otherwi se , inc lude s returns false .

• Function set_di f ference fi nds the e lements from the first se t of sorted values that are not in

the second se t of sorted values (both sets of val ues must be in ascendi ng order us ing the same com

parison function) .

• Function s e t intersect ion finds the elements from the first set o f sorted values that are i n

the second set o f sorted values (both sets of values must b e in ascending order us ing the same com

parison function) .

• Function set_synunetric_di f ference determines the elements i n the first set that are not

in the second set and the elements in the second set that are not in the first set (both sets of val ues

must be in ascending order using the same compari son function) .

• Function set_union creates a set o f a l l the elements that are in e i ther o r both o f t h e t w o sorted

sets (both sets of values must be in ascending order us ing the same comparison function) .

• Function l ower_bound finds the first location in a sorted sequence a t which the th ird argument

can be inserted i n the sequence, yet leave the sequence st i l l sorted in ascending order.

• Function upper_bound finds the last location in a sorted sequence at which the third argument

could be inserted i n the sequence, yet leave the sequence sti l l be sorted in ascending order.

• Function equal_range returns a pair of forward iterators contai n i ng the combi ned resul ts of

performing both a lower_bound and an upper_bound operat ion .

• Heapsort i s a sort ing algorithm in which an array of elements i s arranged i nto a special b inary tree

called a heap. The key features of a heap are that the largest e lement is always at the top of the

heap and that the values of the ch i ldren of any node in the binary tree are always less than or equal

to that node ' s value . A heap arranged in this manner i s often called a max heap .

• Function make_heap takes a sequence of val ues and creates a heap that can be used to produce

a sorted sequence.

• Function sort_heap sorts a sequence of values that are already arranged in a heap.

• Function push_heap adds a new value into a heap. push_heap assumes that the last element

currently in the container i s the e lement being added to the heap and that al l other e lements in the

container are already arranged as a heap. Function pop_heap removes the top e lement of the

heap. This function assumes that the e lements are already arranged as a heap.

• Function min finds the minimum of two values. Function max finds the maximum of two val ues .

• Class bi t set makes i t easy to create and manipulate b i t sets . Bit sets are useful for representing

a set of boolean flags . bit sets are fi xed in s ize at compi le t ime .

TERMINOLOGY
accumulate ()

adapter

adj acent_d i f ference ()

adj acent_f ind ()

<algorithm>

a s s i gn ()

assignment

associative array

associative container

back ()

begin ()

bidirectional i terator

binary_search ()

const_i terator

const reverse_i terator

container

container adapter c lasses

copy ()

copy_backward ()

count ()

count_i f ()

creat ing an assoc iation

1 1 80 Standard Template Library (STL)

<deque>

deque sequence container

deque < T >

deque <T> : : i terator

empty ()

end ()

equal ()

equal_range ()

erase ()

f i l l ()

f i 1 l_n ()

find ()

first-class containers

first-in-first-out (FIFO)

for_each ()

forward i terator

f ront ()

< func t iona l >

function object

generate ()

generate_n ()

generic programming

inplace_merge ()

input i terator

insert ()

i s tream_iterator

iterator

< iterator>

i ter_swap ()

last-in-first-out (LIFO)

lexicographical_compare ()

< l i s t >

l i st sequence container

lower_bound ()

make_heap ()

<map>

map associative container

max ()

max_el ement ()

max_s i z e ()

merge ()

min ()

min_e lement ()

mi smatch ()

mul t imap associative container

mul t i set associative container

mutating-sequence algorithm

name space std

non-mutat ing-sequence algori thm

nth_e l ement

<numeric>

one-to-one mapping

operator ! = ()

operator«)

operator< = ()

operator= = ()

operator> ()

operator > = ()

ostream_iterator

output iterator

part ial_sort ()

part ial_sort_copy ()

part ial_sum ()

part it ion ()

platform- independent class l ibraries

platform-specific class l ibraries

pop ()

pop_back ()

pop_front ()

pop_heap ()

Chapter 21

priori t y _queue container adapter class

push ()

push_back ()

push_front

push_heap ()

queue container adapter class

random-access i terator

random_shu f f l e ()

range

rbegin ()

remove ()

remove_copy ()

remove_copy_ i f ()

remove_i f ()

rend ()

replace ()

replace_copy ()

replace_copy_i f ()

replace_i f ()

reverse iterator

reverse the contents of a contai ner

reverse ()

reverse_copy ()

reverse_iterator

rotate ()

rotate_copy ()

sequence

sequence container

sequential container

< set>

Chapter 21

set associative container

set_di f ferenc e ()

set_interse c t i on ()

set_symmetric_d i f ference ()

set_union ()

s i z e ()

s i z e_type

sort ()

sort ing algori thm

sort_heap ()

< stack>

stack container adapter class

Standard Template Library (STL)

SELF-REVIEW EXERCISES

Standard Template Library (STL)

string

string ()

struct l e s s < T >

swap ()

swap_range ()

top ()

transform ()

unique ()

upper_bound ()

value_type

valarray

<vector>

vector sequence container

2 1 . 1 (T/F) The STL makes abundant use of inheritance and virtual funct ions .

2 1 .2 The two types of STL containers are sequence containers and ____ containers .

1 1 81

2 1 .3 The five main iterator types are ____ ___ _ ____ ____ and

2 1 .4 (T/F) A pointer i s a general ized form of i terator.

2 1 .5 (T/F) STL algorithms can operate on C- l ike pointer-based arrays .

2 1 .6 (T/F) STL algorithms are encapsulated as member functions within each container c lass .

2 1 . 7 (T/F) The remove algorithm does not decrease the s ize o f the vector from which e lements

are being removed.

2 1 .8 The three STL container adapters are ____ ____ and ___ _

2 1 .9 (T/F) Container member function end () yields the position of the l ast e lement of the con-

tainer.

2 1 . 1 0 STL algorithms operate on container e lements indirectly, using ___ _

2 1 . 1 1 The sort algorithm requires a ____ iterator.

ANSWERS TO SELF-REVIEW EXERCISES

2 1 . 1 False. These were avoided for performance reasons .

2 1 .2 Assoc iat ive .

2 1 .3 I nput, output, forward, bidirectional , random access.

2 1 .4 False. It is actual ly vice versa.

2 1 .5 True.

2 1 .6 False. STL algorithms are not member functions. They operate indirectly on containers,

through i terators.

2 1 . 7 True.

2 1 .8 stack, queue, priority_queue.

2 1 .9 False. It actua l ly yie lds the posit ion j ust after the end of the container.

21 . 1 0 I terators .

2 1 . 1 1 Random-access .

1 1 82 Standard Template library (STL) Chapter 2 1

EXERCISES

2 1 . 1 2 Write a function template pal indrome that takes vector parameter and returns t rue or

f a l s e according to whether the vector does or does not read the same forwards as backwards

(e .g . , a vector contai n ing 1 , 2 , 3 , 2 , I i s a pal indrome, but a vec t or contai n ing 1 , 2 , 3 , 4 i s not) .

2 1 . 1 3 Modify F ig . 2 1 .29, the S ieve of Eratosthenes, so that, i f the number the user i nputs i nto the

program i s not prime, the program displays the pri me factors of the number. Remember that a pri me

number' s factors are only I and the prime number itself. Every non-prime number has a un ique prime

factorizat ion . For example, the factors of 54 are 2, 3 , 3 and 3 . When these values are mul t ip l ied to

gether, the resu l t i s 54. For the number 54, the pri me factors output should be 2 and 3.

2 1 . 1 4 Modify Exerc i se 2 1 . 1 3 so that, if the number the user inputs into the program i s not pri me,

the program di splays the prime factors of the number and the number of t imes that prime factor ap

pears in the un ique prime factorization. For example, the output for the number 54 should be

The unique prime factorizat ion of 54 i s : 2 * 3 * 3 * 3

RECOMMENDED READING
Ammeraal , L. STLfor c+ + Programmers. New York, NY: John Wi ley, 1 997.

G lass, G . and B. Schuchert. The STL < Primer> . Upper Saddle River, NJ : Prentice Hal l PTR, 1 995 .

Henricson, M . and E. Nyqu is t . Industrial Strength C+ + : Rules and Recommendations. Upper Sad-

dle River, NJ : Prentice Hal l , 1 997.

Josutt i s , N . The C+ + Standard Library: A Tutorial and Handbook. Reading, M A : Addison-Wesley,

1 999.

Koenig, A . and B. Moo. Ruminations on C+ +. Reading, MA: Addison-Wesley, 1 997.

Musser, D . R. and A . A . S tepanov. "Algori thm-Oriented Generic L ibraries ," Software Practice and

Experience Vol . 24, No. 7 , July 1 994.

Musser, D . R. and A. Sai n i . STL Tutorial and Reference Guide: C+ + Programming with the Stan

dard Template Library. Reading, MA: Addison-Wesley, 1 996.

Meyers, S. Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library.

Reading, M A : Addison-Wes ley, 200 1 .

Nelson, M . C+ + Programm.er 's Guide to the Standard Template Library. Foster Ci ty, CA: Program

mer's Press, 1 995 .

Pohl , I . C+ + Distilled: A Concise ANSI/ISO Reference and Style Guide. Reading, MA: Addison

Wesley, 1 997.

Pohl , T . Object-Oriented Programming Using C+ +, Second Edition. Reading, MA: Addison-Wesley,

1 997.
Robson, R. Using the STL: The C+ + Standard Template Library. New York, NY: Springer Verlag,

2000.

Schi ldt , H. STL Programming from the Ground Up. Osborne McGraw-Hi l i , 1 999.

Stroustrup, B. "Making a vector Fit for a Standard," The C+ + Report October 1 994.
Stroustrup, B. The Design and Evolution of c+ + . Reading, M A : Addison-Wesley, 1 994.
Stroustrup, B. The C+ + Programming Language, Third Edition. Reading, M A : Addison-Wesley,

1 997.

Stepanov, A . and M . Lee. "The Standard Template Library," Internet Distribution 3 1 October 1 995
<www . c s . rpi . edu / -musser/doc . ps>.

Vilot , M . J. "An Introduction to the Standard Template Library," The C+ + Report Vol . 6, No. 8 ,

October 1 994.

22
Other Topics

Objectives

• To use const_c a s t and reint e rpret_ca s t .

• To understand the concept o f name spac es .

• To understand operator keywords.
• To understand exp l i c i t constructors .
• To use mut ab l e members in cons t objects .
• To understand and use c lass-member pointer

operators • * and - > * .

• To use multiple inheritance .
• To understand the role of virtual base classes in

multiple inheritance.
What 's in a name ? that which we call a rose

By any other name wo uld smell as sweet.

Wil l iam Shakespeare

o Diamond! Diamond! tho u little knowest the mischief done!

Sir Isaac Newton

The die is cast.

Ju l ius Caesar

1 1 84 Other Topics

Outline

22. 1 Introduction

22.2 const_cast Operator

22.3 re interpret_cast Operator

22.4 namespaces

22.5 Operator Keywords

22.6 expl i c i t Constructors

22.7 mutable Class Members

22.8 Pointers to Class Members (. * and - > *)

22.9 Multiple Inheritance

22. 1 0 Multiple Inheritance and virtual Base Classes

22. 1 1 Closing Remarks

Chapter 22

Summary • Terminology · Self-Review Exercises · Answers to Self-Review Exercises · Exercises

22. 1 Introduction

We now consider some additional C++ features including, cast operators, name spaces,

operator keywords and mUltiple inheritance. We also discuss pointer-to-class-member op

erators and virtual base c lasses.

22.2 const_cast Operator

C++ provides the cons t_ca s t operator for casting away const or volat i l e qual ifi

cation . Figure 22. 1 demonstrates the use of const_cast.

1 II Fig . 2 2 . 1 : f ig2 2_0 1 . cpp
2 II Demonstrat ing operator const_cast .
3 #inc lude < iostream>
4
5 us ing s td : : cout ;
6 us ing s td : : endl ;
7
8 II c l a s s ConstCastTest def inition
9 c l a s s ConstCastTe s t {

1 0 pub l i c :
1 1 void setNumber (int) ;
1 2 int getNumber () const ;
1 3 void printNumber () const ;
1 4 private :
1 5 int number ;
1 6 } ; II end c la s s ConstCastTest
1 7

Fig. 22. 1 Demonstrating operator const_ca s t . (Part 1 of 2.)

Chapter 22 Other Topics

1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47

II set number

void ConstCastTest : : setNumber (int num) { numbe r num; }

II return numbe r

int ConstCastTe st : : getNumber () const { return number ; }

II output number
void ConstCastTe st : : printNwnber () const

{
cout « " \nNwnber after modi f icat ion : " ;

II cast away cons t -ne s s to al low modi f icat ion

const_cast < ConstCastTest * > (thi s) - >number - - ;

cout « number « endl ;

II end printNumber

int main ()

{
ConstCastTest t e s t ; II create ConstCastTest instance

t e s t . s etNumber (8) ; II set private data number t o 8

cout « " Initial value of number : " « test . getNwnber () ;

test . printNumber () ;
return 0 ;

} II end main

Init ial value o f number : 8
Number after modi f i cation : 7

Fig. 22. 1 Demonstrating operator const_c a s t . (Part 2 of 2.)

1 1 85

Lines 9- 1 6 define c lass ConstCastTest , which contains three member functions

and private variable number. Two of the member functions are declared const .

Function setNumber sets number' s value . Function getNumber returns number' s

value .

The const member function printNumber modifies number' s value i n l i ne 30.
In const member function printNumber, the data type of the this pointer i s const

Cons tCastTe s t * . The precedi ng statement casts away the "const-ness" of the thi s

pointer with operator const_cast . The type of the thi s poi nter for the remainder of

that statement is now Cons tCastTest * . This a l lows number to be modified. Operator

const_cast cannot be used to directly cast away a constant variable ' s "const-ness ."

22.3 re int erpret_cast Operator

c++ provides the reint erpre t_ ca s t operator for nonstandard casts (e . g . , casting

from one pointer type to a different pointer type, etc .) . Operator reinterpret_cast

1186 Other Topics Chapter 22

cannot be used for standard casts (i . e . , double to int , etc .) . Figure 22 .2 demonstrates the

use of the reinterpret_cast operator.

The program declares an integer and a poi nter. Pointer ptr is in i t ia l ized to the address

of x. Line 1 4 uses operator reinterpret_cast to cast ptr (of type int *) to char * .

The address returned i s dereferenced.

It is easy to use rein t erpre t_cast to peljorm dangerous manipulations that could lead

to serious execution-time errors.

Portabil ity Tip 22. 1

Using reint erpre t_cas t can cause programs to behave differently on different plat

forms.

22.4 name spaces

A program includes many identifiers defined in different scopes . Sometimes a variable of

one scope wi l l "overlap" (i . e . , col l ide) with a variable of the same name in a different scope,

potential ly creating a problem. Such overlapping can occur at many level s . Identifier over

l apping occurs frequently in third-party l ibraries that happen to use the same names for glo

bal identifiers (such as functions) . When this occurs , compiler errors usua l ly are generated.

Good Progra m m i ng Practice 22. 1

A void beginning identifiers with the underscore character, which can lead to linker errors.

1 II Fig . 2 2 . 2 : fig22_0 2 . cpp
2 II Demonstrating operator reinterpret cast .
3 # inc lude < iostream>

4
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 int main ()
9 {

1 0 int x = 1 2 0 ;
1 1 int *ptr = &x ;

1 2
1 3 II use reinterpret cast to cast f rom int * t o char *
1 4 cout « * reinterpret_cast < char * > (ptr « endl ;
1 5
1 6 return 0 ;
1 7
1 8 II end main

x

Fig. 22.2 Demonstrating operator reint erpret_c a s t .

Chapter 22 Other Topics 1 1 87

The C++ standard attempts to solve this problem wi th namespaces . Each

namespace defines a scope where identifiers and variables are p laced. To use a

name space member, either the member' s name must be qual i fied with the name space

name and the b inary scope resolution operator (: :) , as in

namespace_name : : member

or e l se a us ing statement must occur before the name i s used ; typical ly , us ing state

ments are p laced at the beginning of the fi le in which members of the name space are

used . For example, the statement

us ing name space namespace_name ;

at the begi nn ing of a source code fi le spec ifies that members of name space

namespace_name can be used in the fi le wi thout preceding each member wi th the

namespace_name and the scope resolution operator (: :) .

Precede a member with ilS namespace name and the scope resolution operator (: :) if the

possibility exists of a scoping conflict.

Not al l namespaces are guaranteed to be unique. Two third-party vendors might inad

vertently use the same name space. Figure 22.3 demonstrates the use of name spaces.

1 II Fig . 2 2 . 3 : f ig22_0 3 . cpp
2 II Demonstrat ing namespace s .
3 # inc lude < iostream>

4
5 us ing name space s t d ; I I u s e std namespace
6
7 int integer1 = 9 8 ; II global variable
8
9 II create name space Example

10 namespace Example {
1 1
1 2 I I dec lare two constant s and one vari able
1 3 const doubl e P I = 3 . 1 4 1 5 9 ;
1 4 const doubl e E = 2 . 7 1 8 2 8 ;
1 5 int integer1 = 8 ;
1 6
1 7 void printValues () ; II prototype
1 8
1 9 II ne s t ed name space
20 name space Inner {
2 1
22 I I de f ine enumerat ion
23 enum Years { FISCAL1 = 1 9 9 0 , FISCAL2 , F ISCAL3 } ;
24
25 } I I end Inner
26
27 } II end Example

Fig. 22.3 Demonstrating the use of name spac es. (Part 1 of 2,)

1 1 88 Other Topics

28
29 I I create unnamed name space
30 name space {
3 1 doubl e doubleInUnnamed = 8 8 . 2 2 ; I I dec lare variable
32
33 I I end unnamed namespace
34
35 int main ()
36 (
37 II output value doubleInUnnamed of unnamed name space
38 cout « " doubleInUnnamed = " « doubleInUnnamed ;
39
40 II output global variable
4 1 cout « " \n (gl obal) integerl = " « integerl ;
42
43 I I output values of Example namespace
44 cout « " \nPI = " « Example : : PI « " \nE = "
45 < < Example : : E < < " \nintegerl = "
46 « Example : : integerl « " \nFISCAL3 = "
47 « Example : : Inner : : FISCAL3 « endl ;
48

Chapter 22

49 Example : : printValues () ; I I invoke printValue s funct ion
50
5 1 return 0 ;
52
53 II end main
54
55 I I display variable and constant values

56 void Examp le : : printValue s ()
57 (
58 cout « " \nIn printValue s : \ninteger l =
59 « integerl « " \nPI = " « PI « " \nE - "
60 « E « " \ndoubleInUnnamed = " « doubleInUnnamed
6 1 < < " \n (gl obal) integerl = " < < : : integerl
62 « " \ nF I SCAL3 = n « Inner : : F ISCAL3 « endl ;
63
64 II end printValues

doubleInUnnamed = 8 8 . 2 2
(global) integerl = 9 8

P I = 3 . 1 4 1 5 9
E = 2 . 7 1 8 2 8
integer1 = 8
F I SCAL3 = 1 9 9 2

I n printValues :
integer1 = 8
PI = 3 . 14 1 5 9
E = 2 . 7 1 8 2 8
doubleInUnnamed 8 8 . 2 2
(globa l) integer1 = 9 8
FISCAL3 = 1 9 9 2

F ig . 22.3 Demonstrating the use of name spaces. (Part 2 of 2 .)

Chapter 22 Other Topics 1 1 89

Line 5 i nforms the compiler that namespace std i s being used. The contents of

header file < iostream> are a l l defined as part of name space s td. [Note: Most C+ +
programmers consider it poor practice to write a using statement s uch as line 5 beca use

the entire contents of the namespace are incl uded.]

The using namespace statement specifies that members of a namespace wi l l be

used frequently throughout a program. This allows the programmer access to a l l the mem

bers of the namespace and to write more concise statements such as

cout « " double l = " « doubl e l ;

rather than

std : : cout « " doublel = " « double l ;

Without l i ne 5 , every cout and endl i n Fig. 2 2 . 3 would have t o b e quali fied with std : : .

The us ing name space statement can be used for predefined name spaces (e .g . , std)

or programmer-defined name spaces .

Lines 1 0-27 use the keyword namespace to define name space Example . The

body of a name space i s del i mited by braces ({ }) . Unl ike c lass bodies, name space

bodies do not end in semicolons . Example' s members consist of two constants (PI and

E), an int (integerl) , a function (printValue s) and a nested namespace
(Inner) . Note that member integerl has the same name as global variable integerl

(l i ne 7) . Variables that have the same name must have different scopes-otherwise syntax

errors occur. A namespace can contain constants, data, c lasses, nested name spaces,

functions, etc . Defin i tions of name spaces must occupy the g lobal scope or be nested

within other name spaces.

Lines 30-33 create an unnamed name space contain ing the member doublelnUn

named. Unnamed namespace members occupy the global namespace, are accessible

directly and do not have to be qual ified with a namespace name. Global variables are

also part of the global namespace and are accessible in a l l scopes fol lowing the declara

tion in the fi le .

Each separate compilation unit has its own unique unnamed namespace, i. e . , the unnamed

. namespace replaces the s t a t i c linkage specifier.

Line 38 outputs the value of doublelnUnnamed. Member doublelnUnnamed i s

directly accessible as part of the unnamed name space. Line 4 1 outputs the va lue of g lobal

variable integer1 . Lines 44-47 output the values of P I , E, integerl and FI SCAL3 .

P I , E and integerl are Example members and are therefore qual ified with

Exampl e : : . Member integerl must be qualified because a g lobal variable has the

same name. Otherwise, the g lobal variable ' s value i s output . FISCAL3 i s a member of

nested name space Inner and is qualified with Example : : Inner : : .

Function printValue s i s a member of Example and can access other members of

the same namespace directly without using a name space qual ifier. The cout on l i nes

58-62 outputs integerl, P I , E , doublelnUnnamed, global variable integerl and

FI SCAL3 . Notice that PI and E are not qual ified with Example, doublelnUnnamed

is st i l l accessible, the global version of integerl has been qual ified with the unary scope

resol ution operator (: :) and FI SCAL3 has been qualified with Inner : : . When

1 1 90 Other Topics Chapter 22

access ing members of a nested namespace, the members must be qual ified w i th the

namespace name (un less the member is being used inside the nested name space) .

Keyword us ing also can be used to al low an individual name space member to be

used. For example, the l i ne

u s ing Example : : Pl i

would al low PI to be used without namespace qual ification . This is done typical l y when

only one namespace member i s frequently used. Namespaces can be al iased . For exam

ple the statement

name space CPPHTP4E = CPlusPlusHowToProgram4 E i

creates the al ias CPPHTP4E for CPlusPlusHowToProgram4E.

Common Programming Error 22. 1

Placing main in a namespace is a syntax error.

o a e n n g
Ideally, in large programs, every entity should be declared in a class, junction, block or

name spa ce. This helps clarify every entity 's role.

22.5 Operator Keywords

The C++ standard provides operator keywords (Fig. 22 .4) that can be used in place of sev

eral C++ operators . Operator keywords can be useful for keyboards that do not support cer

tain characters such as ! , &: , A , -, I , etc .

Operator Operator keyword

Logical operator keywords

&:&: and

I I or

not

Inequality operator keyword

! =

Bitwise operator keywords

&: bitand

bitor

xor

compl

Bitwise assignment operator keywords

&: =

Description

logical A N D

logical OR

logical NOT

i nequality

bitwise A N D

bitwise inc lus ive O R

bitwise exclusive O R

bitwise complement

bitwise AND assignment

Fig. 22.4 Operator keywords as alternatives to operator symbols. (Part 1 of 2.)

Chapter 22

Operator Operator keyword

1 =

Other Topics

Description

bitwise inc lus ive OR assignment

b i twise exclus ive OR assignment

1 1 9 1

Fig. 22.4 Operator keywords as alternatives to operator symbols . (Part 2 of 2.)

Figure 22 .5 demonstrates the use of the operator keywords . This program was com

piled with Microsoft Vi sual C++, which requires the header fi le < i so 6 4 6 . h> to use the

operator keywords . Other compi lers might differ, so check documentation for your com

pi ler to determine which header fi le to include . (It is possible that the compi ler w i l l not

require any header fi le to use these keywords .)

The program dec lares and ini t ial izes two integers, a and b. Logical and bitwise oper

ations are performed with a and b using the various operator keywords . The result of each

operation is output.

1 II Fig . 2 2 . 5 : f ig22_0 5 . cpp
2 II Demonstrat ing operator keywords .

3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 u s ing std : : endl ;
7 us ing std : : boolalpha ;
8
9 # inc lude < i so 6 4 6 . h >

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1

int main ()
{

int a
int b

cout «

«

«

«

«

«

«

«

«

«

«

«

return

1/ end

2 ;
3 ;

bool alpha
a and

U \n a or

' \n not

\ na not _eq

\ na bitand
\ na bit -or
\n a xor
\n compl
\ na and_eq
\ n a or_eq
\ na xor_eq

0 ;

main

b : « a and b)
b : « a or b)
a : « not a)
b : « a not _eq b

b : « a bitand b
b : « a bitor b
b : « a xor b)
a : « compl a)
b : « a and_eq b
b : « a or_eq b
b : « a xor_eq b

)
)

)

)
)

Fig. 22.5 Demonstrating the operator keywords . (Part 1 of 2.)

« endl ;

/
1 1 92 Other Topics

a and b : t rue

a or b : t rue
not a : false

a not _eq b : f a l s e

a bitand b : 3
a bit or b : 3 -

a xor b : 0

campi a : - 4

a and_eq b : 3
a or _eq b : 3

a xor_eq b : 1

F ig. 22.5 Demonstrating the operator keywords. (Part 2 of 2.)

22.6 exp l i c i t Constructors

Chapter 22

In Chapter 8, Operator Overloading, we discussed that any constructor that is called with one

argument can be used by the compiler to perform an implicit conversion in which the type

received by the constructor is convelted to an object of the c lass in which the constructor is

defined. The conversion is automatic and the programmer need not use a cast operator. In

some situations, implicit conversions are undesirable or en'or-prone. For example, our Ar

ray c lass in Fig. 22.6 defines a constructor that takes a single int argument. The intent of

thi s constructor is to create an Array object containing the number of elements specified by

the int argument. However, this constructor can be misused by the compiler to perform an

implicit conversion. The program (Fig, 22.6, Fig. 22.7 and Fig. 22 .8) uses a class simi lar to

that of c lass Array in Chapter 8 to demonstrate an improper implicit conversion.

1 II Fig 2 2 . 6 : array . h
2 II S imp l e c l a s s Array (for integers) .
3 # i fndef ARRAY_H
4 #de f ine ARRAY_H
5
6 # inc lude < iostream>
7
8 using std : : ostream;
9

1 0 II c l a s s Array def init ion
1 1 c l a s s Array {

1 2 friend ostream &operator« (ostream & , const Array &) ;
1 3 pub l i c :
1 4 Array (int = 1 0) ; II de fau l t l convers ion const ructor
1 5 -Array () ; / 1 destructor
1 6 private :
1 7 int s i z e ; II s i ze of the array
1 8 int *pt r ; II pointer to first e lement o f array
1 9
20 } ; II end c l a s s Array
2 1
2 2 #endi f II ARRAY_H

Fig. 22.6 Single-argument constructors and implicit conversions-array . h,

Chapter 22

1
2
3
4
5
6
7
8
9

II Fig 2 2 . 7 : array . cpp
II Member funct ion def initions for c la s s Array .

#inc lude < io s t ream>

us ing std : : cout ;
us ing std : : ostream;

#inc lude <new>

inc lude " array . h"

Other Topics 1 1 93

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39

II de f ault c onstructor for c l a s s Array (de faul t s i z e 1 0)
Array : : Array (int arrayS i z e

{
s i z e = (arrayS i z e < ° ? 1 0 : arrayS i z e) ;
cout « " Array constructor called for "

« s i ze « " e lement s \n " ;

II create space for array
ptr = new int [s i z e] ;

II ini t i a l i z e array e l ement s t o zeroes

for (int i 0 ; i < s i z e ; i + +)

ptr [i] = 0 ;

} II end constructor

II de s t ructor for c la s s Array

Array : : -Array () { delete [] ptr ; }

II overloaded s t ream insert ion operator for c l a s s Array

ostream &operator« (ostream &output , const Array &arrayRef
{

for (int i = 0 ; i < arrayRe f . s i z e ; i + +
output « arrayRe f . ptr [i] « ' ,

return output ; II enables cout « x « y ;

} II end operator«

Fig. 22.7 Single-argument constructors and implicit conversions-array . cpp .

1 II F i g 2 2 . 8 : f ig22_0 8 . cpp
2 II Driver for s impl e c l a s s Array .

3 # inc lude < iostream>
4
5 us ing s td : : cout ;
6
7 # inc lude " array . h "
8
9 void outputArray (const Array &) ;

Fig. 22.8 Single-argument constructors and implicit conversions- f ig2 2_ 0 8 • cpp .
(Part 1 of 2.)

1 1 94 Other Topics

int main ()

{
Array integers 1 (7) ;

Chapter 22

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29

outputArray (integers1) ; II output Array integers 1

outputArray (1 5) ; II convert 1 5 to an Array and output

return 0 ;

II end main

II print array content s

void outputArray (const Array &arrayToOUtput

{
cout « " The array received contains : \n "

« arrayToOUtput « " \n\n" ;

II end outputArray

Array constructor cal led for 7 element s
The array rece ived contains :
o 0 0 0 0 0 0

Array constructor cal led for 15 element s
The array rece ived contains :
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 22.8 Single-argument constructors and implicit conversions-f i g 2 2 _ 0 8 • cpp .
(Part 2 of 2.)

Line l 3 in main instantiates Array object integers 1 and cal l s the s ingle argument

constructor with the int value 7 to specify the number of elements in the Array. The

Array constructor outputs a l ine of text indicating that the Array constructor was called

and the number of elements that were al located in the Array. Line 1 5 cal l s function outp

utArray (defined in l ines 24-29) to output the contents of the Array. Function outpu

tArray receives as its argument a const Array & to the Array, then outputs the Array

using the overloaded stream insertion operator < <. Line 1 7 cal l s function outputArray

with the int value 1 5 as an argument. There is no function outputArray that takes an

int argument, so the compiler checks c lass Array to determine whether there is a conver

sion constructor that can convert an int into an Array. Because c lass Array provides a

conversion constructor, the compi ler uses that constructor to create a temporary Array

object containing 15 elements and passes the temporary Array object to function outpu

tArray to output the Array. The output shows that the Array conversion constructor was

cal led for a 1 5 -element Array and the contents of the Array were output.

C++ provides the keyword expl i ci t to suppress impl ic i t conversions via conver

sion constructors . A constructor that is dec lared exp l i c i t cannot be used i n an impl ic i t

conversion. The next program (Fig. 22 .9 , Fig . 22. 1 0 and Fig. 22 . 1 1) demonstrates an

exp l i c i t constructor.

Chapter 22

1
2
3
4
5
6
7
8
9

II Fig . 2 2 . 9 : array . h
/ / S imp le c l a s s Array (for integers) .
i fndef ARRAY_H
#def ine ARRAY_H

inc lude < io s t ream>

u s ing s td : : o s t ream;

/ / c la s s Array def init ion
c l a s s Array {

Other Topics

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22

friend o s t ream &operator« (
publ i c :

ostream & , const Array &) ;

expl i c i t Array (int = 1 0) ;
-Array () ;

private :

/ / defau l t constructor
/ / de structor

int s i z e ; / 1 s i ze of the array
int *pt r ; II pointer to f irst e l ement of array

} ; / / end c l a s s Array

#endif / 1 ARRAY .H

Fig. 22.9 Demonstrating an exp l i c i t constructor-array . h.

1 / / Fig . 2 2 . 1 0 : array . cpp
2 / 1 Member funct ion de f init ions for c las s Array .
3 # inc lude < io s t ream>
4
5 using s td : : cout ;
6 u s ing s td : : o s t ream;
7
8 # inc lude < new>
9

1 0 #inc lude " array . h "
1 1
1 2 / 1 defau lt constructor for c l a s s Array (de faul t s i z e 1 0)
1 3 Array : : Array (int arrayS i z e)
1 4 {
1 5 s i z e = (arrayS i z e < 0 ? 1 0 : arrayS i z e) ;
1 6 cout « " Array constructor c a l l ed for "
1 7 « s i ze « n e l ement s \ n " ;
1 8
1 9 1 / create space for array
20 ptr = new int [s i ze] ;
2 1
22 / / ini t i a l i ze array element s to zeroe s
23 for (int i 0 ; i < s i z e ; i + +)
24 ptr [i] = 0 ;
25
26 1 / end constructor
27

1195

Fig. 22. 1 0 Demonstrating an exp l i c i t constructor-array . cpp . (Part 1 of 2.)

1 1 96 Other Topics Chapter 22

28
29
30
3 1
32
33
34
35
36
37
38
39

/ / des t ructor for c la s s Array
Array : : -Array () { delete [] ptr ;

/ / overloaded insert ion operator for c l a s s Array
ostream &operator« (ostream &output , const Array &arrayRef)
{

for (int i = 0 ; i < arrayRe f . s i z e ; i + +
output « arrayRef . ptr [i] « • •

return output ;

} 1 / end operator«

// enables cout « x « y;

Fig. 22. 1 0 Demonstrating an expl i c i t constructor-array . cpp . (Part 2 of 2.)

The only modification to the program composed of Fig. 22.6, Fig. 22 .7 and Fig. 22 .8

was the addition of the keyword expl ici t to the declaration of the single-argument con

structor at l i ne 1 4 . When the program is compi led, the compiler produces an error message

indicating that the integer value passed to outputArray at l ine 1 8 cannot be converted

to a const Array &. The compiler error message is shown in the output window. Line

20 i l lustrates how to create an Array of 15 elements and pass i t to outputArray using

the expl i c i t constructor.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25

/ / Fig . 2 2 . 1 1 : f ig2 2_1 1 . cpp

/ / Driver for s impl e class Array .
inc lude < iostream>

us ing std : : cout ;

#include " array . h "

void outputArray (const Array &) ;

int main ()

{
Array integer s 1 (7) ;

outputArray (integers 1) ; / / output Array intege r s 1

/ / ERROR : const ruct ion not allowed
outputArray (1 5) ; / / convert 1 5 to an Array and output

outputArray (Array (15)) ; / / mus t use constructor

return 0 ;

/ / end main

Fig. 22. 1 1 Demonstrating an exp l i c i t constructor- f i g 2 2 _1 1 . cpp .
(Part 1 of 2.)

Chapter 22

26 / / display array content s
27 void outputArray (const Array &arrayToOUtput

28 {
29 cout « " The array received contains : \n "

30 « arrayToOUtput « " \n\n" ;

3 1
3 2 } / 1 end outputArray

Other Topics

c : \cpp4e \ ch2 2 \FXG2 2_09_l 0_l l \ Fig2 2_l l . cpp (l 8) error C 2 6 6 4 :
' outputArray ' : cannot convert parameter 1 from ' const int ' to
' const c l a s s Array & '

Reason : cannot convert from ' const int ' to ' const c lass Array '

1 1 97

No constructor could t ake the source type , or constructor over load
resolut ion was ambiguous

Error execut ing c l . exe .

test . exe - 1 error (s) , ° warning (s)

Fig. 22. 1 1 Demonstrating an exp l i c i t constructor- f ig2 2_1 1 . cpp .
(Part 2 of 2.)

Common Prog ramming E rror 22.2
Attempting to invoke an expl i ci t constructor for an implicit conversion i s a syntax error.

Common Programming Error 22.3
Using the expl i ci t keyword on data members or member functions other than a single

argument constructor is a syntax error.

Use the expl i ci t keyword on single-argument constructors that should not be used by the

� compiler to perform implicit conversions.

22. 7 mut ab l e Class Members

In Section 22.2 , we introduced the const_cast operator, which allowed "const-ness"

to be cast away. C++ provides the storage-class specifier mu t abl e as an alternative to

const_cast . A mutable data member i s always modifiable, even in a const member

function or const object. Thi s reduces the need to cast away "const-ness ."

Portabil ity Tip 22.2
The effect of attempting to modify a n object that was defined as constant, regardless of

whether that modification was made possible by a const_ca s t or C-style cast, varies

among compilers.

Both mutable and const_cast allow a data member to be modified; they are used

in different contexts. For a const object with no mutable data members, operator

const_cast must be used every time a member is to be modified. This greatly reduces the

chance of a member being accidentally modified because the member is not permanently

modifiable. Operations involving const_cast are typically hidden in a member function' s

implementation. The user o f a class might not b e aware that a member i s being modified.

1198 Other Topics Chapter 22

a Ob 1"0

mu t abl e members are useful in classes that have "secret " implementation details that do

not contribute to the logical value of an object.

Figure 22 . 1 2 demonstrates using a mutable member. The program defines class

TestMutable (l i nes 9- 1 7) , which contains a constructor, two functions and private

mutable data member value. Line 1 2 defines function modi fyValue as a const

member function that increments mutable data member value. Normally , a const

member function cannot modify data members unless the object on which the function

operates-i .e . , to one to which thi s points-is cast (using const_cast) to a non

const type. Because value i s mutable, this const function i s able to modify the data.

Member function getValue (l ine 1 3) i s a const function that returns value. Note that

getValue can change value because value i s mutable .

Line 2 1 declares const TestMutable object test and in i tial izes i t to 9 9 . Line 23

outputs the contents of val ue. Line 25 cal ls the const member function modi fyVal ue

to add one to value. Note that both test and modi fyValue are const . Line 26 out

puts the contents of value (1 0 0) to prove that the mutable data member was i ndeed

modified.

1 II Fig . 2 1 . 1 2 : f ig2 1 1 2 . cpp
2 I I Demonstrat ing storage c lass spec i f ier mut able .
3 # inc lude < iostream>
4
5 us ing std : : cout ;
6 using std : : endl ;
7
8 I I c la s s TestMutabl e def init ion
9 c l a s s TestMutable (

1 0 publ i c :
1 1 TestMutable (int v = 0) { value = v ; }
1 2 void modi fyvalue () const { value + + ; }
1 3 int getValue () const { return value ; }
1 4 private :
1 5 mutable int value ; II mutabl e member

1 6
1 7 } ; II end c la s s Te stMutable
1 8
1 9 int main ()
20
2 1 const TestMutable test (9 9) ;
22
23 cout « " Init ia l value : " « test . getValue () ;

24
25 t e s t . modi fyvalue () ; II modi fies mutabl e member
26 cout « " \nModi f ied value : " « test . getValue () « endl ;
27
28 return 0 ;
29
30 II end ma in

Fig. 22. 1 2 Demonstrating a mut able data member. (Part 1 of 2.)

Chapter 22

Init ial value : 9 9
Modi fied value : 1 0 0

Other Topics

Fig. 22. 1 2 Demonstrating a mutable data member. (Part 2 of 2.)

22.8 Pointers to Class Members (• * and - > *)

1 1 99

c++ provides the . * and - > * operators for accessing c lass members . Pointers to c l ass

members are not the same kind of poi nters we have discussed previous ly . Attempting to use

the - > or * operator with a pointer to a class member generates syntax errors. Figure 22 . 1 3

demonstrates the pointer-to-c1ass-member operators .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35

Common Programming Error 22.4

Attempting to use the - > or .. operator with a pointer to a class member is a syntax error.

/ / Fig . 2 2 . 1 3 : f ig2 2_1 3 . cpp
/ / Demonstrating operators .. and - > * .
inc lude < iostream>

u s ing std : : cout ;
using std : : endl ;

/ / c l a s s Tes t de f init ion
c l a s s Te st {

public :
void funct ion () { cout « " funct ion\n" ;
int value ; // public data member

} ; // end c l a s s Tes t

void arrowStar (T e s t *) ;
void dot Star (Te s t *) ;

int main ()

{
Test t e s t ;

test . value = 8 ;
arrowStar (&test) ;
dot Star (&test) ;

return 0;

} / 1 end main

// a s s ign value 8
// pas s addre s s to arrowStar
// pas s addre s s to dot Star

II acc e s s member funct ion of Test obj ect u s ing - > *
void arrowStar (Te st * t e stPtr)
{

II dec lare funct ion pointer
void (Te s t : : *memPtr) () = &Test : : funct ion ;

Fig. 22. 1 3 Demonstrating the • * and - > * operators. (Part 1 of 2.)

1 200 Other Topics Chapter 22

36
37
38
39
40
4 1
42
43
44
45
46
47
48

II invoke funct ion indirect ly
(testPtr - > *memPtr) () ;

} II end arrowStar

II acces s members o f Test obj ect data member us ing *
void dotStar (Test * t e stPtr2)
{

int Test : : *vPtr = &Test : : value ; II dec lare pointer

c out « (*testptr2) . *vPtr « endl ; II acces s value

II end dotStar

I
:unction

Fig. 22. 1 3 Demonstrating the . * and - > * operators . (Part 2 of 2.)

Common Programming Error 22.5
Declaring a member function pointer without enclosing the pointer name in parentheses i s a

syntax error.

Common Programming Error 22.6

Declaring a member function pointer without preceding the pointer name with a class name

followed by the scope resolution operator (: :) is a syntax error.

The program declares class Te st, which provides pub l i c member function func

t i on and public data member value. Function func t i on outputs " func t i on " .

Lines 1 5- 1 6 prototype functions arrowStar and dot Star. I n l i nes 20 and 22, object

test i s ins tantiated, and data member value of test i s set to 8. Lines 23-24 call func

tions arrowStar and dot Star; each call passes the address of t e s t .

Line 3 4 in function arrowStar declares and initializes rnemPtr a s a pointer t o a

member of class Test that is a function with a void return type and no parameters . We start

by examining the left side of the assignment. First, void is the member function ' s return

type. The empty parentheses indicate that this member function takes no arguments. The

other set of parentheses specify a pointer rnemPtr, which points to a member of class Tes t .

The parentheses around Test : : *rnernPtr are required. [Note: rnernPtr is a standard func

tion pointer if Test : : i s not specified.] Next we examine the side value of the assignment.

The right side of the assignment uses the address operator (&) to get the address of the

member function called function (which must return void and take no arguments) .

Pointer rnemPtr is in i tial ized to this offset. Note that both the left side and the right side of

the assignment in line 34 do not refer to any specific object . Only the class name i s used

wi th the b inary scope resolution operator (: :) . Without the &Test : : , the right side of the

assignment in l ine 34 is a function pointer. Line 37 invokes the member function stored in

rnemPt r (i .e . , funct i on), using the - > * operator. Line 44 declares and i ni t ial izes vPt r

a s a pointer t o a n int data member o f class Test . The right side o f the assignment spec

ifies the name of the data member value. Note that, without the Tes t : : , vPtr becomes

an int * pointer to the address of int value.

Chapter 22 Other Topics 1 20 1

Line 46 uses the . * operator to access the member named i n vPtr. Note that, i n c l ient

code, we can use only pointer-to-member operators for accessible members . In this

example, both value and funct ion are public .

C o m m o n Programming Error 22.7
Placing spacers) between the two characters of . * or - > * i s a syntax error.

Common Progra m m i ng Error 22.8
Reversing the order of the symbols in . * or - > * i s a syntax error.

22.9 Multiple I nheritance

So far in this book, we have d iscussed single inheritance, in which each c lass i s derived

from exactly one base class. A c lass may be derived from more than one base c lass ; such

derivation i s cal led multiple inheritance. Mult iple inheritance means that a derived c lass in

herits the members of several base c lasses. Th i s powerful capabil ity encourages i nteresti ng

forms of software reuse, but can cause a variety of ambiguity problems .

Good Progra m m i n g Practice 22.2

Multiple inheritance is a powerful capability when used properly. Multiple inheritance

should be used when an "is a " relationship exists between a new type and two or more ex

isting types (Le. , type A "is a " type B and type A "is a " type C).

Consider the mult iple- inheri tance example (Fig. 22 . 1 4, Fig. 22 . 1 5 , Fig. 22 . 1 6 ,

Fig. 22 . 1 7 , Fig. 22 . 1 8) . C lass Basel contains one protected data member-int

value. Base l contai ns a constructor that sets value and pub l i c member function

getData that returns value.

Class Base2 i s s imi lar to c lass Basel , except that i ts protected data i s char

letter. Base2 also has a public member function getData, but this function returns

the value of char let ter.

Class Derived i s i nherited from both c lass Base l and c lass Base2 through mul

t ip le inheritance . Derived has private data member doubl e real and has pub l i c

member function getReal that reads the value o f double rea l .

Note how straightforward i t i s t o indicate multiple inheritance b y fol lowing the colon

(:) after c l a s s Deri ved with a comma-separated l i st of base c lasses. Note also that con

structor Derived expl ic i t ly cal l s base-c lass constructors for each of its base c lasses,

Bas e l and Base 2 , through the member- in i tial izer syntax . Again , base-class constructors

are cal led in the order that the inheritance i s specified, not in the order in which their con
structors are mentioned. And if the base-c lass constructors are not expl ic i t ly cal led i n the
member in i t ial i zer l i st , their default constructors w i l l be cal led impl ic i t ly .

1 II Fig . 2 2 . 14 : bas e l . h
2 I I De f init ion of c l a s s Basel
3 # i fnde f BASE1_H
4 #def ine BASE1_H
5

Fig. 22. 1 4 Demonstrating multiple inheritance-bas e l . h. (Part 1 of 2.)

1 202 Other Topics

/ / c l a s s Basel de f init ion
c l a s s Bas e l {
pub l i c :

Chapter 22

6
7
8
9 Bas e l (int parameterValue) { value

int getData () const { return value ;
parameterValue ; }

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7

protected :
int value ;

/ / acce s s ible to derived c la s s e s
/ / inherited by derived c l a s s

} ; 1 / end c l a s s Basel

#endi f / / BASE1 H

Fig. 22. 1 4 Demonstrating multiple inheritance-bas e l . h. (Part 2 of 2.)

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7

/ / Fig . 2 2 . 1 5 : base2 . h
/ / Def init ion o f c l a s s Base2
i fnde f BASE2_H
#def i ne BASE2_H

/ / c l a s s Base2 def init ion
c la s s Base2 {
pub l i c :

Base2 (char characterData) { letter = characterData ;

char getData () const { return letter ; }

protected :
char letter ;

/ / acce s s ible to derived c la s s e s
/ / inherited by derived c l a s s

} ; / / end c l a s s Base2

#endif / / BASE2_H

Fig. 22. 1 5 Demonstrating multiple inheritance-base2 • h.

1 / / Fig . 2 2 . 1 6 : derived . h
2 / / De f init ion of c l a s s Derived which inherits

3 // mul t iple base c lasses (Basel and Base2) .
4 # i fndef DERIVED_H
5 #define DERIVED_H

6
7 # inc lude < iostream>
8
9 using s td : : ostream;

1 0
1 1 # inc lude " base1 . h "
1 2 # inc lude " base2 . h "
1 3
1 4 / 1 c l a s s Derived def init ion
1 5 c l a s s Derived : public Base l , public Base2 {
1 6 friend ostream &operator« (ostream & , const Derived &) ;

F ig. 22. 1 6 Demonstrating multiple inheritance-derived . h. (Part 1 of 2.)

Chapter 22 Other Topics 1 203

1 7
1 8
1 9
20
2 1
22
23
24
25
26
27

publ ic :
Derived (int , char , doubl e) ;
doubl e getReal () const ;

private :

doubl e rea l ; II derived c l a s s ' s private data

} ; II end c la s s Derived

#endi f II DERIVED_H

Fig. 22. 1 6 Demonstrating multiple inheritance-derived . h . (Part 2 of 2.)

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23

II Fig . 2 2 . 17 : derived . cpp
II Member funct ion de f init ions for c l a s s Derived

#inc lude " derived . h "

II constructor for Derived cal l s const ructors for
II c l a s s Bas e l and c l a s s Base2 .
II use member ini t i a l i zers to call bas e - c l a s s constructors
Derived : : Derived (int intege r , char charact e r , doubl e doub l e 1

: Bas e l (integer) , Base2 (character) , r e a l (doub l e 1) { }

II return real
doubl e Derived : : getReal () const { return real ; }

II di splay a l l data members of Derived
ostream &operator« (ostream &output , const Derived &derived)

{
output « " Integer : " « derived . value

« " \ n Character : " « derived . letter
« " \nReal number : " « derived . real ;

return output ; II enables cascaded cal l s

II end operator«

Fig. 22. 1 7 Demonstrating multiple inheritance-derived . cpp .

The overloaded stream-insertion operator for Deri ved uses dot notation off the derived

object derived to print value, letter and real. This operator function is a friend

of Derived, so operator« can directly access private data member real of

Deri ved. Also, because this operator is a friend of a derived c lass, i t can access the pro

tected members value and letter of Basel and Base2 , respect ive ly .

Now let us examine the driver program in main. We create object bas e l of class
Basel and in i tia l ize it to int value 1 0 . We create object base2 of c lass Base2 and
in i t ial i ze i t to char value ' Z ' . Then, we create object derived of c lass Derived and
in i t ia l ize i t to contain int value 7 , char value ' A ' and doubl e v a l u e 3 . 5 .

The contents of each of the base-c lass objects is pri n ted by c a l l i n g t h e getData

member function for each object . Even though there are two getData fu nct ions , the cal l s

1 204 Other Topics Chapter 22

are not ambiguous, because they refer directly to the object bi version of getData and

the object b2 version of getData.

Next, we print the contents of Derived object derived with static binding. But

here we do have an ambiguity problem, because th i s object contains two getData func

tions, one i nherited from Basel and one inherited from Base2 . This problem i s easy to

solve by us ing the binary scope resolution operator as in derived . Basel : : get

Data () to print the int i n value and derived . Base2 : : getData () to print the

char i n letter. The double value in real i s printed wi thout ambiguity wi th the cal l

deri ved . getReal () . Next, we demonstrate that the is a relationships of single i nher

i tance also apply to mUlt iple i nheritance. We assign the address of derived object

derived to base-class pointer base lPtr, and we print int value by i nvoking

Basel member function getData off baselPtr. We then assign the address of derived

object derived to base-class pointer base2 Ptr, and we prin t char letter by

i nvoking Base2 member function getData off base2 Ptr.

1 II Fig . 2 2 . 1 8 : f ig2 2_1 8 . cpp
2 I I Driver for mul t iple inheritance example .
3 # include < iostream>
4
5 us ing s td : : cout ;

6 using s td : : endl ;
7
8 # incl ude " base 1 . h "
9 # inc l ude " base2 . h "

1 0 #inc lude " derived . h "
1 1
1 2 int main ()
1 3 {
1 4 Bas e l base 1 (1 0) , *base1ptr = 0 ; I I create Bas e l obj ec t
1 5 Base2 base2 (' Z ') , *base2ptr = 0 ; I I create Base2 obj ect

1 6 Derived derived (7 , ' A ' , 3 . 5) ; I I create Derived obj ect

1 7
1 8 I I print dat a members of bas e - c lass obj e c t s

1 9 cout « " Obj ect basel contains integer II

20 « base 1 . getData ()
2 1 « " \nObj ect base2 contains character "
22 « base2 . getData ()
23 « " \nObj ect derived contains : \n" « derived « " \ n \ n " ;

24
25 I I print data members of derived- c l a s s obj ect
26 I I scope resolut ion operator resolves getData ambigu i ty

27 cout « " Data members of Derived can be "

28 « " acces sed individua l ly : "
29 « " \n Integer : " « derived . Ba s e 1 : : getData ()

30 < < " \n Character : " < < derived . Base2 : : getData ()
3 1 « " \nRea l number : II « derived . getReal () « " \n \ n " ;

32
33 cout « " Derived can be t reated as an "
34 « " obj ect o f either base c l a s s : \n " ;

35

Fig. 22. 1 8 Demonstrating multiple inheritance-fig2 2_1 8 . cpp. (Part 1 of 2.)

Chapter 22

36 II t reat Derived as a Bas e l obj ect

37 base1ptr = &derived ;

38 cout « " base1Pt r - > getDat a () yields II

39 « base1Ptr- >getData () « ' \n ' ;

40
4 1 I I treat Derived as a Base2 obj ect

42 base2Ptr = &derived ;

43 cout < < " base2ptr- > getData () yields "
44 « base2 Ptr - > getData () « endl ;

45
46 return 0 ;
47
48 } II end main

Obj ect bas e l c ontains integer 10
Obj ect base2 contains character Z
Obj ect derived contains :

Integer : 7
Character : A

Real number : 3 . 5

Other Topics

Data member s o f Derived can be acces sed individual ly :

Integer : 7
Character : A

Real number : 3 . 5

Derived can be t reated as an obj ect of either bas e c l a s s :
base1Pt r - > getData () yields 7
base2 Ptr - > getData () yields A

Fig. 22. 1 8 Demonstrating multiple inheritance-f ig2 2_1 8 . cpp. (Part 2 of 2.)

1 205

This example showed the mechanics of mult iple i nheritance in a s imple example and

in troduced a simple ambiguity problem. Mult iple i nheritance i s a complex topic dealt with

in more detail i n advanced C++ texts .

Multiple inheritance is a powerful feature, but it can introduce complexity into a system.

Great care is required in the design of a system to use multiple inheritance properly; it

should not be used when single inheritance will do the job.

22. 1 0 Multiple Inherita nce and virtual Base Classes

In Section 22 .9 , we di scussed multiple i nheritance, the process by which one class inherits

from two or more c lasses. Multiple inheritance i s used, for example, in the C++ standard

l ibrary to form c lass iostream (Fig. 22 . 1 9) .

C lass ios is the base c lass for both ostream and i s t ream, each of which i s formed

with single inheritance. Class iostream i nherits from both ostream and i s t ream.

This enables objects of class iostream to provide the functionali ty of both i streams

and ostreams. I n mult iple-inheritance hierarchies, the situation described in Fig. 22. 1 9 is

referred to as diamond i nheritance .

1 206 Other Topics Chapter 22

_ostream

Fig. 22. 1 9 Multiple inheritance to form class i o s t ream.

Because c lasses ostream and i stream each inherit from ios, a potential problem

exists for iostream. Class iostream could contain dupl icate base-class objects (e .g . ,

ios is inheri ted into both ostream and istream) . A problem cou ld ari se when an

iostream pointer is upcast to an ios pointer. Two ios subobjects could exist . Which

would then be used? Such a si tuation would be ambiguous and would resu l t in a syntax

error. Figure 22 .20 demonstrates this kind of ambiguity, but through impl ic i t conversion

rather than upcasting; of course, iostream does not rea l ly suffer from the problem we

mentioned . I n this section, we will explain how using vi rtual base c lasses solves the

problem of dupl icate subobjects .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
19
20
2 1
22
23
24
25
26
27
28

I I Fig . 2 2 . 2 0 : f ig 2 2 _2 0 . cpp
I I Attempting to polymorphically call a function that i s
I I mul t iply inherited from two base c l a s s e s .
inc lude < iostream>

us ing std : : cout ;
using std : : endl ;

I I c l a s s Base def init ion
c l a s s Base {
pub l i c :

vi rtual void print () const

} ; I I end c l a s s Base

/ / c l a s s DerivedOne de f init ion

c l a s s DerivedOne : public Base
pub l i c :

I I override print funct ion

0 ; I I pure virtual

void print () const { cout « " DerivedOne \ n " ; }

} ; / 1 end c l a s s DerivedOne

I I c l a s s DerivedTwo def inition
c l a s s DerivedTwo : public Base
pub l i c :

Fig. 22.20 Attempting to call a multiply inherited function polymorphically. (Part 1 of
2.)

Chapter 22 Other Topics

29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62

I I override print funct ion
void print () const { cout « " DerivedTwo \ n " ; }

} ; I I end c l a s s DerivedTwo

I I c l a s s Mul t iple de f init ion
c l a s s Mul t ip l e : pub l i c DerivedOne , pub l i c DerivedTwo {
pub l i c :

II qual i fy whi ch vers ion of funct ion print
void print () const { DerivedTwo : : print () ; }

} ; I I end c l a s s Mul t iple

int main ()

Mul t iple both ;

DerivedOne one ;

Der ivedTwo two ;

II instant iate Mul t iple obj ect
II instant iate DerivedOne obj ect

II instant iate DerivedTwo obj ect

II create array of base - c la s s pointers
Base * array [3] ;

array [0
array [1
array [2

&both ;
&one ;
&two ;

I I ERROR- - ambiguous

I I polymorphic a l ly invoke print
for (int i 0 ; i < 3 ; i + +)

array [i] - > print () ;

return 0 ;

} II end main

c : \ cpp4 e \ ch2 2 \ f ig2 2_2 0_2 1 \ f ig2 2_2 0 . cpp (5 2) : error C 2 5 9 4 : ' . ' :
ambiguous convers ions from ' c lass Mul t iple * ' to ' c l a s s Base * ,
Error execut ing c l . exe .

test . exe - 1 error (s) , 0 warning (s)

1 207

Fig. 22.20 Attempting to call a multiply inherited function polymorphically. (Part 2 of
2.)

The program defines class Base, which contains pure vi rtual function print .

Classes Deri vedOne and Deri vedTwo publicly inherit from Base and override

print . Class DerivedOne and c lass DerivedTwo each contain a Base "subobject ."

Class Mul t iple mult iply inherits from Deri vedOne and Deri vedTwo. Function

print i s overridden to cal l DerivedTwo ' s print . Note the qual ification to speci fy

which subobject vers ion to cal l .

In main, a n object o f each c lass in the hierarchy i s created . An array o f Base *

pointers also i s declared . Each array element i s in i t ial i zed to the address of an object. An

1 208 Other Topics Chapter 22

enor occurs when the address of both (of multiply inherited type Mul t iple) is implic

i t ly converted to Base * . Object both contains dupl icate subobjects i nherited from Base

and this, of course, makes cal l s to function print ambiguous. A for loop i s written to

cal l print for each of the objects pointed to by array, polymorphical ly .

The problem of dupl icate subobjects i s resolved w ith vi rtual i nheritance. When a

base c lass is inherited as vi rtual, only one subobject wi l l appear in the derived c1ass

a process called vi rtual base class i nheritance. Figure 22 .2 1 rev i ses the program of

Fig . 22.20 to use a virtual base class.

Class Base i s defined and contains pure virtual function print . Class Deri ve

dOne i nherits from Base with the l ine

c l a s s DerivedOne : virtual public Base

and class Deri vedTwo inherits from Base with the l ine

class DerivedTwo : virtual publ ic Base {

1 I I Fig . 2 2 . 2 1 : f ig2 2_2 1 . cpp
2 I I Us ing virtual base classes .
3 # inc lude < iostream>

4
5 u s ing s td : : cout ;
6 u s ing std : : endl ;
7
8 I I c l a s s Base def init ion
9 c l a s s Base {

1 0 pub l i c :
1 1
1 2 I I imp l i c i t def au l t const ructor
1 3
1 4 virtual void print {) const = 0 ; I I pure virtual
1 5
1 6 } ; I I end Base c l a s s

1 7
1 8 I I c l a s s DerivedOne de f init ion
1 9 c l a s s DerivedOne : virtual public Base {

20 pub l i c :
2 1
22 I I imp l i c i t de fau l t const ructor cal l s
23 I I Base defau l t constructor
24
25 I I override print funct ion
26 voi d print () const { cout « n DerivedOne \ n " ; }
27
28 } ; I I end DerivedOne c l a s s
29
30 I I c l a s s DerivedTwo de f init ion
3 1 c l a s s DerivedTwo : virtual public Base {
32 pub l i c :
33

Fig. 22.21 Using vi rtual base classes. (Part 1 of 2.)

Chapter 22 Other Topics

34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67
68
69
70
7 1
72
73
74

I I imp l i c i t de fau l t constructor cal l s
I I Base de fau l t constructor

II override print funct ion

void print () const { cout « " DerivedTwo \ n n ; }

} ; I I end DerivedTwo c l a s s

II c l a s s Mul t iple def init ion
c l a s s Mu l t ip l e : pub l i c DerivedOne , pub l i c DerivedTwo {
public :

I I imp l i c i t def au l t const ructor cal l s

I I DerivedOne and DerivedTwo de fault constructors

// qual i fy which vers ion of func t ion print
void print () const { DerivedTwo : : print () ; }

} ; I I end Mul t ip l e c l a s s

i n t main ()
{

Mul t iple both;
DerivedOne one ;
DerivedTwo two ;

/ 1 instant iate Mul t iple obj ect

/1 instant iate DerivedOne obj ect

/ / instant iate DerivedTwo obj ect

II dec lare array of base - c la s s pointers and ini t i a l i z e
II each e lement to a derived - c l a s s type
Bas e * array [3] ;

array [0
array [1
array [2

&:both;
&:one ;
&:two ;

/ / polymo rphical ly invoke funct ion print
for (int i = 0 ; i < 3 ; i + +)

array [i] - >print () ;

return 0 ;

} / 1 end main

DerivedTwo
DerivedOne
DerivedTwo

F ig. 22.21 Using vi rtual base classes. (Part 2 of 2.)

1 209

B oth classes i nherit from Base-each contains one subobject from Base . Class Mul t i

p l e inherits from both DerivedOne and DerivedTwo. Only one subobj ect o f Base i s

inherited into class Mul t iple. The compiler now allows conversion t o occur (Mult i

ple * to Base *) . I n main, an object i s created for each c lass i n the h ierarchy. A n array

of Base pointers is also declared . Each array element is i nitial i zed to the address of an

1 21 O Other Topics Chapter 22

object . Note that the upcast from both' s address to Base * is now permitted . A for loop

walks along array and polymorphical ly cal ls print for each object .

Designing hierarchies wi th virtual base classes i s straightforward if defau l t con

structors are used for base classes. The previous two examples use compiler-generated

defaul t constructors . If a virtual base class provides a constructor, the design becomes

more complicated because the most derived class must in i t ial ize the virtual base c lass .

I n our two examples, Base, Deri vedOne, Deri vedTwo and Mul t iple are each

the most derived class . If creating a Base object, Base i s the most derived c lass . If cre

ating a Deri vedOne (or Deri vedTwo) object, Deri vedOne (or Deri vedTwo) i s the

most derived c lass . If creat ing a Mul t iple object, Mul t iple i s the most derived c lass .

No matter how far down the hierarchy a c lass i s , i t i s therefore the most derived c lass and

responsible for in i tia l iz ing the vi rtual base c lass .

g Obs

Providing a default constructor for vi rtual base classes simplifies hierarchy design.

22. 1 1 Closing Remarks

We sincere ly hope you have enjoyed learn ing C++ and object-oriented programming from

our book. The future seems clear. We wish you success in pursu ing i t !

W e would greatly appreciate your comments, cri t ic isms, corrections and suggest ions

for improving the text . P lease address all correspondence to our e-mai l address :

de itel@deitel . com

Good luck !

SUMMARY

• The const_cast operator casts away the const-ness of objects .

• The reinterpret_cast operator i s provided for nonstandard casts between unrelated types .

• Each name space defines a scope where identifiers and variables are p laced. To use a

name space member, e i ther the member' s name must be qual i fied wi th the name space name

and the binary scope resol ution operator (: :) or a us ing statement must occur before the name

i s used.

• A name space can contain constants, data, c lasses, nested name spaces, functions, etc . Defi n i -

t ions of name spaces must occupy the global scope or be nested with in other name spaces.

• Unnamed name space members occupy the global namespace.

• The C++ standard provides operator keywords that can be used i n place of several C++ operators .

• C++ provides the keyword exp l i c i t to suppress impl ic i t conversions v ia conversion construc-

tors . A constructor that is declared exp l i c i t cannot be used in an impl ic i t convers ion .

• A mutable data member i s modifiable in a const member function or const object .

• C++ provides the . * and - > * operators to access c lass members v ia pointers to those members .

• Mult ip le i nheritance i s the process of deriv ing a c lass from two or more c lasses .

• Mult iple inheritance can create dupl icate subobjects that can be resolved w i th virtual i nherit

ance. When a base class i s i nherited as virtual, only one subobject w i l l appear i n the derived

c1ass-a process cal led virtual base-class inheritance.

Chapter 22

TERMINOLOGY

. * operator

- > * operator

and operator keyword

and_eq operator keyword

anonymous name space

bi tand operator keyword

bi tor operator keyword

compl operator keyword

const_cast operator

diamond i nheritance

exp l i c i t keyword

expl ic i t conversion

global name space

global variables

impl ic i t conversion

most derived c lass

mult iple i nheritance

SELF-REVIEW EXERCISES

mutable keyword

name space keyword

nested name space

not operator keyword

Other Topics

not_eq operator keyword

operator keywords

or operator keyword

or_eq operator keyword

pointer to class member operator

pointer to data member

pointer to member function

reinterpret_cast operator

subobject

us ing a namespace

vi rtual base class

xor operator keyword

xor_eq operator keyword

22. 1 Fi l l i n the blanks for each of the fol lowing:

a) The operator qual ifies a member with its namespace .

b) The operator allows an object ' s "const-ness" to be cast away.

c) The operator al lows conversions between nonstandard types .

1 21 1

22.2 State which of the fol lowing are true and which arefalse. I f a statement i s false , expla in why.

a) name spaces are guaranteed to be unique.

b) name spaces cannot have namespaces as members.

c) Keyword exp l i c i t can be appl ied only to member funct ions .

ANSWERS TO SELF-REVIEW EXERCISES

22. 1 a) b inary scope resolut ion (: :) . b) const_cast. c) reinterpret_c a s t .

22 .2 a) False . Programmers migh t inadvertent ly choose the name space already i n use .

b) Fal se. namespaces can be nested.

c) False. Keyword exp l i c i t may be appl ied to s ingle-argument constructors only .

EXERCISES

22.3 Fi l l in the blanks for each of the fol lowing:

a) Keyword specifies that a name space or name space member is being

used.

b) Operator _____ is the operator keyword for logical OR.

c) S torage specifier al lows a member of a const object to be modified.

22.4 Write a name space, Currency, that defines constant members ONE, TWO, FIVE, TEN,

TWENTY, FIFTY and HUNDRED. Write two short programs that use Currency. One program

should make all constants avai lable and the other program should only make FIVE avai lable.

22.5 Write a program that uses the reinterpret_cast operator to cast d ifferent pointer types

to int o Do any conversions resu l t i n syntax errors?

1 2 1 2 Other Topics Chapter 22

22.6 Write a program that demonstrates upcasting from a derived class to a base class . Use the

s t at ic_cast operator to perform the upcast. How does this compare to your results in

Exercise 2 2 . S ?

22.7 Write a program that creates an exp l i c i t constructor that takes two arguments. Does the

compi ler permit th i s? Remove explicit and attempt an impl ic i t conversion. Does the compiler

permi t th i s ?

22.8 What i s the benefit of an exp l i c i t constructor?

22.9 Write a program that creates a c lass containing two constructors . One constructor should take

a single int argument. The second constructor should take one char * argument. Write a driver

program that constructs several different objects, each obj ect having a different type passed into the

constructor. Do not use exp l i c i t . What happens? Now use exp l i c i t only for the constructor

that takes one int o What happens?

22. 1 0 Given the name spaces i n Fig. 22.22, determine whether each statement i s true orfalse . Ex

p la in any false answers.

a) Variable kilometers i s accessible within name space Data.

b) Object string! i s accessible within namespace Data.

c) Constant POLAND is not accessible within name space Data.

d) Constant GERMANY i s accessible within namespace Data.

e) Function funct i on i s accessible to namespace Data.

f) Namespace Data i s accessible to name space CountryInformation.

g) Object map is access ible to name space CountryInformation.

h) Object string! i s accessible within namespace Regional Informat ion.

22. 1 1 Compare and contrast mutable and const_cast. Give at least one example of when one

might be preferred over the other. [Note: This exercise does not require any code to be written .]

22. 1 2 Write a program that uses const_cast to modify a const variab le . [Hint: Use a pointer

in your solution to point to the const identifier.]

22. 1 3 What problem do virtual base c lasses solve?

1 name space Count ryInformat ion {
2 using namespace std;
3 enum Countries { POLAND , SWITZERLAND , GERMANY ,

4 AUSTRIA , CZECH_REPUBLIC } ;
5 int kilometers ;
6 string string ! ;

7
8 namespace RegionalInformation

9 short get Populat ion () ; I I as sume de f init ion exi s t s

1 0 MapData map ; I I as sume de f init ion exi s t s

1 1 } I I end Regional Informat ion
1 2 } I I end CountryInformat ion

1 3
1 4 namespace Data {
1 5 u s ing namespace CountryInformation : : Regional Informat ion ;

1 6 void * funct ion (void * , int) ;

1 7 } I I end Data

Fig. 22.22 name spac es for Exercise 22. 1 0 .

Chapter 22 Other Topics 1 2 1 3

22. 1 4 Write a program that uses virtual base classes. The class at the top of the h ierarchy should

provide a constructor that takes at least one argument (i .e . , do not provide a default constructor). What

challenges does this present for the inheritance h ierarchy?

22. 1 5 Find the error(s) in each of the following. When possible, explain how to correct each error.

a) namespace Name {
int x;

} ;

int y;
mutable int z;

b) int integer = const_cast< int > (double);

c) namespace PCM(111, " hello "); II construct namespace

d) explicit int x = 99;

Operator Precedence
Chart

Operators are shown in decreasing order of precedence from top to bottom.

Operator

()

[]

- >

++

typeid

dynamic_cast < rype >

static_cast < rype >

reinterpret_cast < rype >

const_cast < rype >

++

+

type)

sizeof

&

Type

binary scope resolution

unary scope resolution

parentheses

array subscript

member selection v ia object

member selection via pointer

unary postincrement

unary postdecrement

run-time type information

run-time type-checked cast

compile-time type-checked cast

cast for non-standard conversions

cast away const-ness

unary pre increment

unary predecrement

unary plus

unary minus

unary logical negation

unary bitwise complement

C-style unary cast

determine size in bytes

address

Fig. A.l Operator precedence chart. (Part 1 of 2.)

Associativity

left to right

left to right

r ight to left

(this level of

precedence

continued on

next page)

Appendix A

Operator

*

new

new []

de lete

del ete []

*

- > *

*

/
%
+

«
»

<
<=
>

> =

!=
&

"

&&

II
? :

+=

*=

/=
%=
&=
"=
1=
« =
» =

Operator Precedence Chart 1 2 1 5

Type

dereference

dynamic memory allocation

dynamic array al location

dynamic memory deallocation

dynamic array deallocation

pointer to member via object

pointer to member via pointer

multi pI ication

division

modulus

addition

subtraction

bitwise left shift

bitwise right shift

relational less than

relational less than or equal to

relational greater than

relational greater than or equal to

relational is equal to

relational is not equal to

bitwise AND

bitwise exclusive OR

bitwise i nclusive OR

logical AND

logical OR

ternary conditional

assignment

addition assignment

subtraction assignment

mul tiplication assignment

division assignment

modulus assignment

bitwise AND assignment

bitwise exclusive OR assignment

bitwise inclusive OR assignment

bitwise left-shift assignment

bitwise right-sh ift assignment

comma

Associativity

(this level of

precedence

continued from

previous page)

left to r ight

left to right

left to r ight

left to r ight

left to right

left to r ight

left to right

left to right

left to right

left to right

left to r ight

right to left

right to left

left to r ight

Fig. A.l Operator precedence chart. (Part 2 of 2.)

ASCII Character Set

ASCII character set

o

1

2

3

4

5

6

7

8

9

10
11

12

o

nul

nl

de4

rs

(
2

<

F

p

Z

d

n

x

1

soh

vt

nak

us

)
3

=

G

Q
[

e

0

y

2 3

stx etx

f f er

syn etb

sp !

* +

4 5

> ?

H I

R S

\]

f g

p q

z {

Fig. B.1 ASCII character set.

4 5 6 7 8
eot enq aek bel bs

so si dIe del de2

can em sub esc fs

" # $ % &:

, - / 0

6 7 8 9 :

@ A B C D

J K L M N

T U V W X

A , a b -

h i j k 1
r s t u v

I } - de l

9

ht

de3

gs

,

1

;

E

0

Y

e

m

w

The digits at the left of the table are the left digits of the decimal equivalent (0- 1 27) of the

character code, and the digits at the top of the table are the right digits of the character code.

For example, the character code for "F" i s 70, and the character code for "&;" i s 3 8 .

Number Systems

Objectives
• To understand basic number systems concepts such as

base, positional value and symbol value.

• To understand how to work with numbers represented

in the binary, octal and hexadecimal number systems

• To be able to abbreviate binary numbers as octal

numbers or hexadecimal numbers.

• To be able to convert octal numbers and hexadecimal

numbers to binary numbers.

• To be able to convert back and forth between decimal

numbers and their binary, octal and hexadecimal

equivalents.

• To understand binary arithmetic and how negative

binary numbers are represented using two's

complement notation.

Here are only numbers ratified.

Will iam Shakespeare

Nature has some sort of arithmetic-geometrical coordinate

system, because nature has all kinds of models. What we

experience of nature is in models, and all of nature's models

are so beautiful.

It struck me that nature's system must be a real beauty,

because in chemistry we find that the associations are always

in beautiful whole numbers-there are no fractions.

Richard Buckmjnster Fuller

1 2 1 8 Number Systems

Outline

C.l Introduction

Appendix C

C.2 Abbreviating Binary Numbers as Octal Numbers and Hexadecimal
Numbers

C.3 Converting Octal Numbers and Hexadecimal Numbers to Binary
Numbers

C.4 Converting from Binary, Octal or Hexadecimal to Decimal

C.S Converting from Decimal to Binary, Octal or Hexadecimal

C.6 Negative Binary Numbers: Two's Complement Notation

Summary· Terminology· Self-Review Exercises· Answers to Self-Review Exercises· Exercises

C. l Introduction

In this appendix, we introduce the key number systems that programmers use, especial ly

when they are working on software projects that require c lose interaction with "machine

level" hardware . Projects l ike this include operating systems, computer networking soft

ware, compi lers, database systems and applications requiring high performance.

When we write an i nteger such as 227 or -63 in a program, the number is assumed to

be in the decimal (base 10) number system. The digits in the dec imal number system are 0,

1 , 2 , 3 , 4, 5 , 6, 7 , 8 and 9 . The lowest digit is 0 and the highest digit i s 9-one less than the

base, 1 0. Internal ly, computers use the binary (base 2) number system. The binary number

system has only two digits, namely 0 and I. Its lowest digit i s 0 and its highest digit i s l

one less than the base, 2. Fig. C . l summarizes the digits used in the binary, octal , decimal

and hexadeci mal number systems.

As we wil l see, binary numbers tend to be much longer than their decimal equivalents .

Programmers who work in assembly languages and in high- level l anguages that enable pro

grammers to reach down to the "machine level" find it cU'!1bersome to work with binary

numbers . So two other number systems-the octal number system (base 8) and the hexa

decimal number system (base 16)-are popular, primari ly because they make it convenient

to abbreviate binary numbers .

I n the octal number system, the digits range from 0 to 7 . Because both the binary

number system and the octal number system have fewer digits than the decimal number
system, their digits are the same as the corresponding digits i n decimal.

The hexadecimal number system poses a problem because it requires sixteen digits-a

lowest digit of 0 and a highest digit with a value equivalent to decimal 15 (one less than the

base, 1 6) . By convention, we use the letters A through F to represent the hexadecimal digits

corresponding to decimal values 1 0 through 1 5 . Thus, in hexadecimal , we can have numbers

l ike 876 consisting solely of decimal-l ike digits, numbers l ike 8A55F consisting of digits and

letters and numbers l ike FFE consisting solely of letters . Occasional ly, a hexadecimal number

spel ls a common word such as FACE or FEED-this can appear strange to programmers

accustomed to working with numbers . Fig. C.2 summarizes each of the number systems.

Each of these number systems uses positional notation--each position i n which a digit

i s written has a different positional value. For example, in the decimal number 937 (the 9 ,

the 3 and the 7 are referred to as symbol values), we say that the 7 i s written i n the ones

Appendix C Number Systems 1 2 1 9

position, the 3 i s written i n the tens position and the 9 i s written i n the hundreds position.

Notice that each of these positions is a power of the base (base 1 0) and that these powers

begin at 0 and increase by 1 as we move left in the number (Fig. C .3) .

Binary digit

o

1

Octal digit

o

1

2

3

4

5

6

7

Decimal digit

0

1

2

3

4

5

6

7

8

9

Hexadecimal digit

0

1

2

3

4

5

6

7

8

9

A (decimal value of LO)
B (deci mal value of I I)

C (decimal value of 12)

D (decimal value of 13)

E (decimal value of 14)

F (decimal value of 15)

Fig. C.l Digits of the b inary, octal, decimal and hexadecimal number systems.

AHribute

Base

Lowest dig i t

Highest d ig i t

Binary

2

o

1

Octal

8

o

7

Decimal

10

o

9

Hexadecimal

16

o

F

Fig. C.2 Comparison of the b inary, octal, decimal and hexadecimal number
systems .

Positional values i n the decimal number system

Deci mal d ig i t 9 3

Pos i t ion name Hundreds Tens

Posit ional value 100 10

Posi tional value as a 102 101

power of the base (I 0)

Fig. C.3 Posit ional values in the decimal number system .

7

Ones

1

10°

1 220 Number Systems Appendix C

For longer decimal numbers, the next positions to the left would be the thousands posi

tion (10 to the 3rd power) , the ten-thousands position (10 to the 4th power), the hundred

thousands position (10 to the 5th power), the millions position (10 to the 6th power), the

ten-millions position (10 to the 7th power) and so on.

In the binary number 10 1 , we say that the rightmost 1 i s written i n the ones position,

the 0 is written i n the twos position, and the leftmost 1 is written i n the fours position.

Notice that each of these positions is a power of the base (base 2) and that these powers

begin at 0 and increase by 1 as we move left in the number (Fig. CA) .

For longer binary numbers, the next positions t o the left would b e the eights position

(2 to the 3rd power) , the sixteens position (2 to the 4th power) , the thirty-twos position (2

to the 5th power), the sixty-fours position (2 to the 6th power) and so on.

In the octal number 425 , we say that the 5 is written i n the ones position, the 2 i s written

in the eights position, and the 4 is written in the sixty-fours position. Notice that each of

these positions is a power of the base (base 8) and that these powers begin at 0 and i ncrease

by 1 as we move left in the number (Fig. C .5) .

For longer octal numbers , the next positions to the left would be thefive-hundred-and

twelves position (8 to the 3rd power), thefour-thousand-and-ninety-sixes position (8 to the

4th power), the thirty-two-thousand-seven-hundred-and-sixty eights position (8 to the 5th

power) and so on.

In the hexadecimal number 3DA, we say that the A i s written i n the ones position, the

D is written in the sixteens position, and the 3 is written in the two-hundred-and-fifty-sixes

position. Notice that each of these positions is a power of the base (base 16) and that these

powers begin at 0 and i ncrease by 1 as we move left in the number (Fig. C .6) .

PoSitional values I n the binary number system

Binary digit 1

Position name Fours

Positional value 4

Positional value as a 22

power of the base (2)

o

Twos

2

Fig.C.4 Positional values in the binary number system.

Positional values in the octal number system

Decimal digit 4

Position name S ixty-fours

Positional value 64

Positional value as a 82

power of the base (8)

2

Eights

8

81

Fig. C.S Positional values in the octal number system.

1

Ones

5

Ones

1

8°

Appendix C

Positional values in the hexadecimal number system

Decimal digit 3 D

Position name Two-hundred-and- Sixteens

fifty-sixes

Positional value 2 5 6 1 6

Positional value as a 1 62 1 61

power of the base (16)

Number Systems

A

Ones

Fig. C.6 Positional values in the hexadecimal number system.

1 22 1

For longer hexadecimal numbers, the next positions to the left would be thefour-thou

sand-and-ninety-sixes position (16 to the 3rd power), the sixty-five-thousand-five-hundred

and-thirty-sixes position (16 to the 4th power) and so on.

C.2 Abbreviating Binary Numbers as Octal Numbers and
Hexadecimal Numbers

The main use of octal and hexadecimal numbers in computing is for abbreviating lengthy bi

nary representations. Fig. C.7 demonstrates that lengthy binary numbers can be expressed

more concisely in number systems with hjgher bases than in the binary number system.

Decimal Binary Octal Hexadecimal
number representation representation representation

0 0 0 0

1 1 1 1

2 1 0 2 2

3 1 1 3 3

4 1 0 0 4 4

5 1 0 1 5 5

6 1 1 0 6 6

7 1 1 1 7 7

8 1 0 0 0 1 0 8

9 1 0 0 1 1 1 9

1 0 1 0 1 0 1 2 A

1 1 1 0 1 1 1 3 B

1 2 1 1 0 0 1 4 C

1 3 1 1 0 1 1 5 D

1 4 1 1 1 0 1 6 E

1 5 1 1 1 1 1 7 F

1 6 1 0 0 0 0 2 0 1 0

Fig. C.7 Decimal. binary. octal and hexadecimal equivalents.

1 22 2 Number Systems Appendix C

A part icularly important re lationship that both the octal number system and the hexa

deci mal number system have to the binary system i s that the bases of octal and hexadeci mal

(8 and 1 6 respectively) are powers of the base of the binary number system (base 2) . Con

s ider the fol lowing] 2-digit binary number and its octal and hexadecimal equ ivalents . See

whether you can determine how this relationship makes it convenient to abbrev iate binary

numbers i n octal or hexadecimal . The answer fol lows the numbers.

B inary Number Octal equivalent
100011010001 4321

Hexadeci mal equivalent
8D1

To see how the binary number converts eas i ly to octal , s imply break the 1 2-digit binary

number i nto groups of three consecutive bits each, and write those groups over the corre

sponding digits of the octal number as fol lows:

100

4

011

3

010

2

001

1

Notice that the octal digit you have written under each group of thee bits corresponds

prec i sely to the octal equ ivalent of that 3-digit binary number shown in Fig . C .7 .

The same kind of relationship can be observed in convert ing numbers from bi nary to

hexadeci mal . In part icular, break the] 2-digit binary number i nto groups of four consecu

t ive bits each, and write those groups over the corresponding digits of the hexadeci mal

number as fol lows:

1000

8

1101

D

0001

1

Notice that the hexadec imal digit you wrote under each group of four bits corresponds

prec isely to the hexadecimal equ ivalent of that 4-digit binary number shown in Fig . C .7 .

C.3 Converting Octal Numbers and Hexadecimal Numbers to
Binary N umbers

I n the previous section, we saw how to convert binary numbers to their octal and hexadec

imal equivalents by forming groups of binary digits and s imply rewri t ing these groups as

their equivalent octal digit values or hexadeci mal digit values. This process may be used in

reverse to produce the binary equ ivalent of a given octal or hexadec imal number.

For example, the octal number 65 3 i s converted to binary s i mply by writ ing the 6 as i ts

3-digit b inary equ ivalent I 10, the 5 as its 3-digit binary equ ivalent 101 and the 3 as its 3 -

digit binary equivalent 01 1 to form the 9-digit binary number 1 1010 I 0 II.
The hexadec imal number FAD5 is converted to binary si mply by writ ing the F as its

4-digit b inary equivalent 1 1 1 1 , the A as its 4-digit binary equ i valent 1 0 1 0, the D as its 4-

digi t b inary equ ivalent 1 1 0 I and the 5 as its 4-digit binary equivalent 0 I 0 I to form the 1 6-

digi t 1 1 1 1 1 0 1 0110 1 0 1 0 1 .

C.4 Converting from Binary, Octal or Hexadecimal to Decimal

Because we are accustomed to working i n decimal , it i s often convenient to convert a b ina

ry , octal , or hexadecimal number to dec imal to get a sense of what the number i s "real ly"

worth . Our d iagrams i n Section C. l express the pos itional values in dec imal . To convert a

number to deci mal from another base, mult iply the dec imal equ ivalent of each digi t by its

AppendixC N umber Systems 1 223

positional value, and sum these products. For example, the b inary n umber 1 1 0 1 0 I i s con

verted to deci mal 53 as shown in Fig. e .8 .

To convert octal 76 1 4 to decimal 3980, we use the same technique, thi s t ime us ing

appropriate octal positional values as shown in Fig. e.9 .

To convert hexadecimal AD3B to dec imal 44347, we use the same technique, thi s t ime

using appropriate hexadecimal positional values as shown i n Fig . e . 1O.

C.S Converting from Decimal to Binary, Octal or Hexadecimal

The conversions of the last section follow natural ly from the positional-notation conventions.

Converting from deci mal to binary, octal or hexadecimal also fol lows these conventions.

S uppose we wish to convert deci mal 57 to binary . We begin by writ ing the posit ional

values of the columns right to left unti l we reach a column whose posit ional value is greater

than the deci mal number. We do not need that column, so we discard it. Thus, we first write

Positional val ues: 64 32 16 8

Converting a binary number to decimal

Positional values:

Symbol val ues:

Products:

32

1

16

1

8

o

1 * 32=32 1 * 16=16 0 * 8=0

4 2

4

1

1*4=4

Sum: = 32 + 16 + 0 + 4 + 0 + 1 = 53

Fig. C.8 Converting a binary number to decimal.

Converting an octal number to decimal

Positional values:

Symbol values:

512

7

7*512=3584

64

6

6*64=384

8

1

1*8=8 Products

S um: = 3584 + 384 + 8 + 4 = 3980

Fig. C.9 Converting an octal number to decimal.

Converting a hexadecimal number to decimal

Positional values: 4096

Symbol values: A

256

D

Products A*4096=40960 D*256=3328

16

3

3*16=48

Sum: = 40960 + 3328 + 48 + 11 = 44347

Fig. C. 1 0 Converting a hexadecimal number to decimal.

1

2 1

o

0*2=0

1

1*1=1

1

4

4*1=4

1

B

B*l=ll

1 224 Number Systems Appendix C

Then we di scard the column with pos itional value 64, leaving

Posi t ional values: 32 16 8 4 2 1

Next, we work from the leftmost column to the right. We div ide 32 into 57 and observe

that there i s one 32 in 57 with a remai nder of 25, so we write I in the 32' s column. We

d iv ide 1 6 into 25 and observe that there i s one 1 6 in 25 with a remai nder of 9 and write 1

i n the 1 6 ' s column. We div ide 8 into 9 and observe that there i s one 8 in 9 with a remai nder

of l . The next two columns both produce the quotient zero when the ir posit ional values are

div ided i nto 1 , so we write Os in the 4 and 2 columns. Final ly , I i nto I is I , so we write I

in the l ' s column. Thi s y ie lds

Posi t ional values:
Symbol values:

32

1

16

1

8

1

and thus deci mal 57 is equivalent to binary 1 1 1 00 I .

4

o

2

o

1

1

To convert dec imal 1 03 to octal , we begin by wri t ing the positional values of the col

umns unti l we reach a column whose positional value i s greater than the decimal number.

We do not need that column, so we discard it . Thus, we first write

Posit ional values: 512 64 8 1

Then we di scard the column with pos itional value 5 12, y ie ld ing

Posi t ional values: 64 8 1

Next we work from the leftmost column to the right. We div ide 64 i nto 1 03 and

observe that there i s one 64 in 1 03 with a remainder of39, so we write 1 i n the 64' s co lumn.

We divide 8 i nto 39 and observe that there are four 8 s in 39 with a remainder of 7 and write

4 in the 8 ' s column. Final ly , we div ide 1 into 7 and observe that there are seven I s in 7 with

no remainder, so we write 7 in the l ' s column. This yields

Posi t ional values:
Symbol values:

64

1

8

4

1

7

and thus dec i mal 1 03 is equivalent to octal 1 47 .

To convert dec imal 375 to hexadecimal , we begin by writ ing the positional values of

the columns unt i l we reach a column whose positional val ue is greater than the deci mal

number. We do not need that column, so we di scard it . Thus, we first write

Posi t ional values: 4096 256 16 1

Then we discard the column with positional value 4096, yie lding

Posit ional values: 256 16 1

Next we work from the leftmost column to the right. We divide 256 i nto 375 and

observe that there i s one 256 in 375 with a remainder of 1 1 9 , so we write 1 i n the 256

column. We divide 1 6 into 1 1 9 and observe that there are seven 1 6s in 1 1 9 with a remainder

of 7 and write 7 in the 1 6 ' s column. Final ly , we divide 1 into 7 and observe that there are

seven I s in 7 with no remainder, so we write 7 in the l ' s col umn . Th is y ie lds

Posi t ional values:
Symbol values:

256 16

1 7

1

7

and thus dec imal 375 i s equivalent to hexadeci mal 1 77 .

Appendix C Number Systems 1 225

C.6 Negative Binary Numbers: Two's Complement Notation

The discussion in this appendix has been focussed on positive numbers . In this section, we

explain how computers represent negative numbers using two's complement notation. First

we explain how the two ' s complement of a binary number is formed, then we show why it

represents the negative value of the given binary number.

Consider a machine with 32-bit integers . Suppose

int value = 13;

The 32-bit representation of value is

00000000 00000000 00000000 00001101

To form the negative of value we first form its one's complement by applying C++ ' s bit

wise complement operator (-), which is al so called the bitwise NOT operator:

one sComp lementOfValue = -value ;

Internal ly, -value is now value with each of its bits reversed-ones become zeros and

zeros become ones, as fol l ows:

value :

00000000 00000000 00000000 00001101

-value (i.e., value's one's complement):
11111111 11111111 11111111 11110010

To form the two ' s complement of value, we simply add one to value's one ' s comple

ment. Thus,

Two's complement of value:

11111111 11111111 11111111 11110011

Now if this is in fact equal to - 13, we should be able to add it to binary 1 3 and obtain the

result O . Let us try this :

00000000 00000000 00000000 00001101

+11111111 11111111 11111111 11110011

00000000 00000000 00000000 00000000

The carry bit coming out of the leftmost column is discarded, and we indeed get zero as the

result . I f we add the one ' s complement of a number to the number, the resul t would be al l

I s . The key to getting a result of a l l zeros is that the two' s complement i s 1 more than the

one ' s complement. The addition of 1 causes each column to add to 0 with the carry 1 . The

carry keeps moving leftward unti l it is discarded from the leftmost bit, and hence the result

ing number is al l zeros .

Computers actual ly perform a subtraction such as

x = a - value ;

by adding the two ' s complement of value to a, as fol lows:

x = a + (-value + 1);

1 226 Number Systems Appendix C

S uppose a is 27 and value is 1 3 as before . If the two ' s complement of value is actual l y
the negative of value, then adding the two ' s complement of value to a should produce
the result 1 4 . Let us try this :

a (i .e . , 27)
+(-va1ue + 1)

which i s indeed equal to 1 4 .

SUMMARY

00000000 00000000 00000000 00011011

+11111111 11111111 11111111 11110011

00000000 00000000 00000000 00001110

o When we write an integer such as 19 or 227 or -63 in a program, the number is automatically as

sumed to be in the decimal (base 10) number system. The digits in the deci mal number system are 0,

1, 2, 3, 4, 5, 6, 7, 8 and 9. The lowest digit is 0 and the h ighest digit is 9-one less than the base, 10.

o Internally, computers use the binary (base 2) number system. The binary number system has on ly

two digi ts, namely, 0 and I . Its lowest digit is 0 and its highest digit is l -one less than the base, 2.

o The octal number system (base 8) and the hexadecimal number system (base 16) are popular pri

mari l y because they make it convenient to abbreviate binary numbers.

o The digits of the octal number system range from 0 to 7.

o The hexadecimal number system poses a problem because it requi res sixteen d ig i ts-a lowest d ig i t

of 0 and a h ighest digi t wi th a value equivalent to decimal 15 (one less than the base, 16). B y con

vention, we use the letters A through F to represent the hexadecimal dig i ts corresponding to dec

i mal values 10 through 15.

o Each number system uses posit ional notation--each posi t ion in which a digi t is written has a d if

ferent posi t ional value.

o A part icu larly i mportant relat ionship that both the octal number system and the hexadecimal num

ber system have to the b inary system is that the bases of octal and hexadecimal (8 and 16 re

spect ively) are powers of the base of the binary number system (base 2).

o To convert an octal number to a binary number, simply replace each octal digit wi th its three-digit

b inary equi valent.

o To convert a hexadeci mal number to a binary number, simply replace each hexadeci mal digit with

i ts four-digi t b inary equ ivalent.

o Because we are accustomed to working in decimal, i t is convenient to convert a b inary, octal or

hexadecimal number to decimal to get a sense of the number's "real" worth.

o To convert a number to decimal from another base, multiply the decimal equ ivalent of each digit

by its posit ional value, and sum these products.

o Computers represent negative numbers using two's complement notation.

o To form the negative of a value in binary, first form its one's complement by applying C++'s bit

wise complement operator (-). This reverses the bits of the value. To form the two's complement

of a value, si mply add one to the value's one's complement.

TERMINOLOGY
base

base 2 number system

base 8 number system

base 10 number system

base 16 number system

binary number system

bitwise complement operator (-)

conversion

Appendix C

decimal number system

digit

hexadecimal number system

negative value

octal number system

SELF-REVIEW EXERCISES

Number Systems

one's complement notat ion

posi t ional notation

posit ional value

symbol value

two's complement notation

1 227

C . l The bases of the decimal, b inary, octal and hexadecimal number systems are ____ _

_____ _____ and respectively .

C.2 In general, the deci mal, octal and hexadeci mal representations of a g iven b inary number con-

tain (more/fewer) d ig i ts than the b inary number contains.

C.3 (TruelFalse) A popular reason for using the decimal number system is that i t forms a con ve

nient notat ion for abbreviating b inary numbers si mply by substituting one deci mal digit per group of

four binary bits.

C.4 The (octallhexadecimalldeci mal) representation of a large b inary value is the most concise

(of the given alternat ives).

C.S (True/False) The highest d igit in any base is one more than the base .

C.6 (TruelFalse) The lowest digit i n any base is one less than the base .

C.7 The positional value of the rightmost digit of any number in e i ther b inary, octal, deci mal or

hexadecimal is always ____ _

C.8 The posit ional value of the digi t to the left of the rightmost digit of any number in b inary,

octal, decimal, or hexadecimal i s always equal to ____ _

C.9 Fill in the missing values in this chart of positional values for the rightmost four posit ions i n

each o f the indicated number systems:

decimal
hexadecimal
b inary
octal

1000

512

100

256

64

10 1

8 1

C.lO Convert binary 110101011000 to octal and to hexadecimal.

C.ll Convert hexadecimal FACE to binary.

C.l2 Convert octal 7316 to b inary .

C.l3 Convert hexadeci mal 4FEC to octal. [Hint: First convert 4FEC to b inary then convert that

b inary number to octaL]

C.l4 Convert binary 1101110 to deci mal.

C.lS Convert octal 317 to decimal.

C.l6 Convert hexadecimal EFD4 to deci mal.

C.l7 Convert decimal 177 to b inary, to octal and to hexadecimal.

C.l8 Show the b inary representation of deci mal 417. Then show the one's complement of 417,

and the two's complement of 417.

C.l9 What is the result when the one's complement of a number is added to itself?

1 228 Number Systems

SELF-REVIEW ANSWERS
C.l 10, 2, 8, 16.

C.2 Fewer.

C.3 False.

C.4 Hexadeci mal.

C.S False. The h ighest digit in any base is one less than the base.

C.6 False. The lowest digit in any base is zero.

C.7 1 (the base rai sed to the zero power).

C.B The base of the nu mber system.

Appendix C

C.9 Fill in the miss ing values in th i s chart of positional values for the rightmost four positions in

each of the ind icated number systems:

deci mal
hexadeci mal
binary
octal

1000

4096

8

512

100

256

4

64

C.lO Octal 6530; Hexadecimal D58.

C. 1 1 B inary 1111 1010 1100 1110.

C. 1 2 B inary 111 011 001 110.

10

16

2

8

1

1

1

1

C. 1 3 B inary 0 100 111 111 101 100; Octal 47754.

C. 1 4 Deci mal 2+4+8+32+64=110.

C. 1 S Deci mal 7+1*8+3*64=7+8+192=207.

C. 1 6 Deci mal 4+13*16+15*256+14*4096=61396.

C. 1 7 Deci mal 177

to b inary:

to octal:

256 128 64 32 16 8 4 2 1

128 64 32 16 8 4 2 1

(1*128)+(0*64)+(1*32)+(1*16)+(0*8)+(0*4)+(0*2)+(1*1)

10110001

512 64 8 1

64 8 1

(2*64)+(6*8)+(1*1)

261

to hexadeci mal:

256 16 1

16 1

(11*16)+(1*1)

(B*16)+(1*1)

B1

Appendix C Number Systems

C. 1 8 Binary :

512 256 128 6 4 3 2 1 6 8 4 2 1

256 128 64 32 16 8 4 2 1

(1*256)+(1*128)+(0*64)+(1*32)+(0*16)+(0*8)+(0*4)+(0*2)+

(1*1)

110100001

One's complement: 001011110

Two's complement: 001011111

Check: Original binary number + its two's complement

110100001

001011111

000000000

C. 1 9 Zero.

EXERCISES

1 229

C.20 Some people argue that many of our calculations would be easier in the base 12 number sys

tem because 12 is divisible by so many more numbers than 10 (for base 10). What is the lowest digit

in base 12? What might the highest symbol for a digit in base 12 be? What are the positional values

of the rightmost four positions of any number in the base 12 number system?

C.2 l How is the h ighest symbol value in the number systems we discussed related to the positional

value of the first digit to the left of the rightmost digit of any number in these number systems?

C.22 Complete the following chart of positional values for the rightmost four positions in each of

the indicated number systems:

decimal

base 6

base 13

base 3

1000

27

100

169

10

6

1

C.23 Convert binary 100101111010 to octal and to hexadecimal.

C.24 Convert hexadecimal 3A7D to binary .

C.2S Convert hexadecimal 7 65F to octal. [Hint: First convert 7 65F to binary, then convert that

binary number to octaL]

C.26 Convert binary 1011110 to decimal.

C.27 Convert octal 426 to decimal.

C.28 Convert hexadecimal FFFF to decimal.

C.29 Convert decimal 299 to binary, to octal and to hexadecimal.

C.30 Show the binary representation of decimal 779. Then show the one's complement of 779

and the two's complement of779.

C.31 What is the result when the two's complement of a number is added to itself?

C.32 Show the two's complement of integer value -1 on a machine with 32-bit integers.

c++ Internet and Web
Resources

This appendix contains a l is t of C++ resources that are avai lable on the Internet and the

World Wide Web. These resources include FAQs (Frequently Asked Questions), tutorials,

l inks to the ANSI/ISO C++ standard, information about popular C++ compilers and access

to free compilers, demos, books, tutorials, software tool s, art ic les, i nterviews, conferences,

journals and magazi nes, onl ine courses, newsgroups and career resources. For addit ional

i nformation about the American National Standards Insti tute (ANSI) and its activit ies re

lated to C++, v is i t www. ansi . erg.

D.l Resources

www.cplusplus.com

This site contai ns i nformation about the history and development of C++ as well as tutorials, docu

mentation, reference material, source code and forums.

www.possibility.com/Cpp/CppCodingStandard.htrnl

The C+ + Coding Standard site examines the C++ standard and the standardizing process. The site

includes such topics as standards enforcement, formatting, portab i lity and documentation and offers

links to addit ional C++ Web resources.

help -site.com/cpp.htrnl

Help-site. com provides l i nks to C++ resources on the Web, including tutorials and a C++ FAQ.

www.glenrnccl.com/tutor.htrn

This reference site discusses topics such as object-oriented design and writ ing robust code. The site

provides i ntroductions to C++ language topics, including keyword static, data type bool,

namespaces, the Standard Template Library and memory allocation .

www.prograrnrnersheaven.com/zone3/cat353

This s i te offers an extensive collection of free C++ libraries.

www.prograrnrnersheaven.com/zone3

This site provides links to art icles, tutorials, development tools and source code.

Appendix 0 c++ Internet and Web Resources 1 23 1

www.ha19k.com/cug

The C/C+ + Users Group (CUG) site contains C++ resources, journals, shareware and freeware.

www.devx.com

DevX is a comprehensive resource for programmers that provides the latest news, tools and techn iques

for various programming languages. The C++ Zone offers tips, d iscussion forums, techn ical help and

on l ine newsletters.

www.cprogramming.com

This site contai ns i nteractive tutorials, quizzes, art icles, journals, compiler downloads, book recom

mendations and free source code.

www.eecs.utoledo.edu/-cwinner/c.html

This site provides links to tutorials, compi lers, FAQs, source code, C++ reference mater ial and career

re l ated sites for C++ programmers.

www.acm.org/crossroads/xrds3 -2/ovp32.html

The Association for Computing Machinery's (ACM) site offers a comprehensive list ing of C++ re

sources, including recommended texts, journals and magazines, pub l i shed standards, newsletters,

FAQs and newsgroups.

www.vb-bookmark.com/vbCpp.html

The C++ Bookmark site contains links to class libraries, development environments, source code, tu

torials, compilers, seminars, magazines and user groups.

www.comeaucomputing.com/resources

Comeau Computing's site links to techn ical d iscussions, FAQs (including one devoted to templates),

user groups, newsgroups and an online C++ compiler.

www.exciton.cs.rice.edu/CppResources

The site provides a document that summarizes the techn ical aspects of C++. The site also discusses

the differences between Java and C++.

www.accu.informika.ru/resources/public/terse/cpp.htm

The Association of C & c+ + Users (ACCU) s i te contains l i nks to C++ tutorials, articles, developer

information, d iscussions and book rev iews.

noyce.ucdavis.edu/CDFgroup/CPPPAGE.htm

This site l inks to tutorials, i nformation about C++ libraries and information about the GNU Compiler

Collection.

www.cuj.com

The C/C++ User's lournal is an online magazi ne that contains articles, tutorials and downloads. The

site features news about C++, forums and l i nks to information about development tools.

directory.google.com/Top/Computers/Programming/Languages/C++/

Resources/Directories

Google's C++ resources directory ranks the most useful C++ sites.

www.compinfo-center.com/c++.htm

This site prov ides links to C++ FAQs, newsgroups and magazines.

www.apl.jhu.edu/-paulmac/c++ -references.html

This site contai ns book rev iews and recommendations for i ntroductory, i ntermediate and advanced

C++ programmers and links to onli ne C++ resources, including books, magazines and tutorials.

www.enteract.com/-bradapp/links/cplusplus-links.html

This site divides links i nto categories, including Resources and Directories, Projects and Working

Groups, Libraries, Trai n ing, Tutorials, Publicat ions and Coding Conventions.

1232 c++ Internet and Web Resources Appendix D

www.codeproject.com

Articles, code sn ippets, user discuss ions, books and news about C++, C# and .NET programming are

avai lable at th is site.

www.austinlinks.com/CPlusPlus

Quadralay Corporation's s i te links to numerous C++ resources, i ncluding Visual C++/MFC Li

braries, C++ programming information, C++ career resources and a list of tutorials and other online

tool s for learning C++.

www.csci.csusb.edu/dick/c++std

Links to the ANSIIISO C++ Standard and the comp. std. c++ Usenet group are available at this site.

www.research.att.com/-bs/homepage.html

This is the home page for B jarne Stroustrup, designer of the C++ programming language. This site

provides a list of C++ resources, FAQs and other useful C++ information.

0.2 Tutorials

www.rdw.tec.mn.us/msc/index.shtml

Minnesota State College-Southeast Technical offers online C++ courses for credit.

library.advanced.org/3074

This tutorial is designed for Pascal programmers who want to learn C++.

ftp://rtfm.mit.edu/pub/usenet/news.answers/C-faq/learn-c-cpp-today

This site prov ides detailed descriptions of several C++ tutorials that are available on the Web. The site

also contain s i nformation about various C++ compilers.

www.cprogramming.com/tutorial.html

This si te offers a step-by-step tutorial, with sample code, that covers file 110, recursion, b inary trees,

template classes and more.

www.programmersheaven.com/zone3/cat34

Free tutorials that are appropriate for many skill levels are available at this s i te.

www.eecs.utoledo.edu/-cwinner/c.html

This s i te offers li nks to tutorials, compilers, FAQs, source code, C++ reference material and career

related Web sites for C++ programmers.

www.programmershelp.co.uk/c++.php

This site contains free online courses and a comprehensive list of C++ tutorials. This site also provi des

FAQs, downloads and other resources.

www.codeproject.com/script/articles/beginners.asp

This s i te lists tutorials and arti cles available for C++ beginners.

development.freeservers.com/c_cpp

This site contains C++ tutorials, articles, games, sample programs, development tools and links to

other C++ resources.

www.eng.hawaii.edu/Tutor/Make

This s i te prov ides a tutorial that describes how to create makefiles.

www.cpp-home.com

Free tutorials, discussions, chat rooms, articles, compilers, forums and online quizzes related to C++ are

available at this site. The C++ tutorials overview such topics as ActiveXiCOM, MFC and graphics.

www.codebeach.com

Code Beach contains source code, tutorials, books and l i nks to major programming languages, i nclud

ing C++, Java, ASP, Visual Basic, XML, Python, Perl and C#.

Appendix D c++ Internet and Web Resources

www.kegel.com/academy/tutorials.html

This site provides links to tutorials on C, C++ and assembly languages.

www.intelinfo.com/newly_researched_free_training/C++.htm1

This site has a comprehensive list of free tutorials on the Web, wi th brief descriptions.

0.3 FAQs

www.faqs.org/faqs/by-newsgroup/comp/comp.lang.c++.html

1 233

This site consists of l inks to FAQs and tutorials gathered from the Comp. Lang. C++ newsgroup.

www.eskimo.com/-scs/C-faq/top.html

This C FAQ list contai ns topics such as pointers, memory al locat ion and stri ngs.

www.technion.ac.il/technion/tcc/usg/Ref/C_Programming.html

This site contai ns C/C++ programmi ng references, including FAQs and tutori als.

www.faqs.org/faqs/by-newsgroup/comp/comp.compilers.html

This site contains a l ist of FAQs generated in the comp. compilers newsgroup.

0.4 Visual C++

msdn.microsoft.com/visualc

Microsoft's Visual C++ page prov ides informat ion about the latest release of Visual C++ .NET.

www.aul.fiu.edu/tech/visualc.html

This site contains articles, tutorials, FAQs and newsgroups on Visual C++ and information on C/C++.

www.vb -bookmark.com/visualCPP.html

The Visual BasicNisual C+ + Bookmark site contai ns source code, usergroups, t ips and Visual C++

programming informat ion.

www.programmershelp.co.uk/c++visc.php

This site contains links to various resources on Visual C++, i ncluding source code, development tools

and articles.

www.freeprogrammingresources.com/visualcpp.html

This site contai ns free programming resources for Visual C++ programmers, i ncluding tutorials and

sample programming applicat ions .

www.mvps.org/vcfaq

The Mosr Valuable Professional (MVP) site contains a Visual C++ FAQ.

www.onesmartclick.com/programming/visual -cpp.html

This site contai ns Visual C++ tutoria ls, on l i ne books, t ips, tricks, FAQs and debuggi ng.

0.5 Newsgroups

www.phoaks.com/comp/lang/c++/index.html

This site is a resource for information re lated to the comp . lang . c++ newsgroup.

kom.net/-dbrick/newspage/comp.lang.c++.html

Visi t this site to connect to newsgroups re lated to the comp . lang . c++ hierarchy.

ai.kaist.ac.kr/-ymkim/Program/c++.html

This site offers tutorials, libraries, popular compilers, FAQs and newsgroups, i ncluding

comp • lang . c++.

pent21.infosys.tuwien.ac.at/cetus/

oo_c-plus-plus.html #oo_c-plus-plus_general_newsgroups

This site features a list of general C++ newsgroups.

1 234 c++ Internet and Web Resources Appendix 0

0.6 Compilers and Development Tools

msdn . microsoft . com/visualc

The Microsoft Visual C+ + site provides product information, overviews, supplemental materials and

ordering information for the Visual C++ compiler.

www . borland . com/bcppbuilder

This is a l ink to the Borland C+ + Builder 6. A free command-line version is available for down load.

www . thefreecountry . com/developercity/ccompilers . shtml

This site lists free C and C++ compilers for a variety of operat ing systems.

www . faqs . org/faqs/by-newsgroup/comp/comp . compilers . html

This site lists FAQs generated with in the comp . compilers newsgroup.

www . ncf . carleton . ca/%7Ebg283

The Miracle C compiler, a DOS-based C++ compiler, is available at th is site. The compiler is free for

download, and the source code is available for a registration fee .

www . compilers . net

Compilers. net is designed to help users locate compilers.

sunset . backbone . olemiss . edu/%7Ebobcook/eC

This C++ compiler is designed for Pascal programmers who want to transit ion to C++.

developer . intel . com/software/products/compilers/c60

The Intel C+ + compiler is available at this site.

www . kai . com/C-plus-plus

This site offers the Kai C+ + compiler for a 30-day free trial.

www . symbian . com/developer/development/cppdev . html

Symbian provides a C++ Developer's Pack and links to various resources, including code and develop

ment tools for C++ programmers (particularly those working with the Symbian operat ing system).

www . winwarelinks.com/apps/development/cplusplus . htm

This site contains resources for C++ development tools and software applications.

D.7 Standard Template Library

Tutorials
www . cs . brown . edu/people/j ak/programming/stl -tutorial/tutorial . html

This STL tutorial is organized by examples, phi losophy, components and extending STL. You wi ll

find code examples using the STL components, useful explanat ions and helpful diagrams.

web . ftech . net/-honeyg/articles/eff_stl . htm

A n STL tutorial available at this site provides information on the STL components, containers, stream

and iterator adaptors, transforming and select ing values, filtering and transforming values and objects.

www . xraylith . wisc . edu/-khan/software/stl/os_examples/examples . html

This site is helpful for people j ust learning about the STL. You will find an introduct ion to the STL

and ObjectS pace STL Tool Kit examples.

References
www . sgi . com/tech/stl

The S ilicon Graphics Standard Template Library Programmer's Guide is a useful resource for STL

information. You can download STL source code from this site, and find the latest i n formation, design

documentat ion and links to other STL resources.

Appendix D c++ Internet and Web Resources 1 235

www.cs.rpi.edu/projects/STL/stl/stl.html

This is the Standard Templale Library Online Reference home page from Rensselaer Polytechn ic In

st itute. You wi l l fi nd detai led explanations of the STL as we l l as l i nks to other u sefu l resources for

information about the STL.

www.dinkumware.com/refcpp.html

This s i te contain s useful i nformation about the ANSlI ISO Standard C++ Library and contains infor

mation about the Standard Template Library.

Articles, Books and Interviews
www.byte.com/art/9510/sec12/art3.htm

The Byte Magazine s i te has a copy of an art ic le written by one of the creators of the Standard Template

Library, Alexander Stepanov, that provides information on the use of the STL in generic programming.

ANSI/ISO C++ Standard
www.ansi.org

You can purchase a copy of the C++ Standard from this s i te .

Software
www.cs.rpi.edu/-musser/stl -book

The RPI STL s i te i nc l udes information on how STL differs from other C++ l ibraries and on how to

compi l e programs that use STL. A l i st of STL inc l ude fi les, example programs that use STL, STL

Contai ner C l asses, and STL lterator Categories are avai lab le . The s i te a l so prov ides an STL-com

pat ib le compi ler l i st, FIP s i tes for STL source code and related materia l s .

www.cs.rpi.edu/-wiseb/stl -borland.html

This s i te is a reference for Borland C++ compi ler lIsers. The s i te inc l udes sections on warni ngs and

i ncompatibi l i t ies .

Introduction to XHTML

Objectives
• To understand important components of XHTML

documents.

• To use XHTML to create World Wide Web pages.

• To add images to Web pages.

• To understand how to create and use hyperlinks to

navigate Web pages.

• To mark up lists of information.

• To create forms.

To read between the lines was easier than to follow the text.

Aristophanes

Yea, from the table of my memory

I 'll wipe away all trivialfond records.

William Shakespeare

Appendix E Introduction to XHTML 1 237

Outline

E.l Introduction

E.2 Editing XHTML
E.3 First XHTML Example

E.4 Headers

E.S Unking

E.6 Images

E.7 Special Characters and More Une Breaks

E.8 Unordered Usts

E.9 Nested and Ordered Usts

E.l 0 Basic XHTML Tables

E.l l Intermediate XHTML Tables and Formatting

E. 1 2 Basic XHTML Forms

E. 1 3 More Complex XHTML Forms

E. 1 4 Intemet and World Wide Web Resources

Summary· Terminology

E .l I ntroduction

In this appendix, we introduce XHTML I -the Extensible HyperText Markup Language for

creating Web content. Unlike procedural programming l anguages such as C, Fortran, Co

bol and Visual B asic, XHTML is a markup language that specifies the format of text that

i s displayed in a Web browser, such as Microsoft' s Internet Explorer or Netscape' s Com

municator.

One key issue when using XHTML is the separation of the presentation of a document

(i . e . , the document' s appearance when rendered by a browser) from the structure of the

document 's information. Throughout this appendix, we wi l l discuss thi s issue in depth.

In this appendix, we bui ld several complete Web pages featuring text, hyperl inks,

images, horizontal rules and l ine breaks. We also discuss more substantial XHTML fea

tures, including presentation of information in tables and incorporating forms for col

lecting information from a Web-page visitor. By the end of this appendix, you wil l be

famil iar with the most commonly used XHTML features and will be able to create more

complex Web documents. In this appendix, we do not present any C++ programming.

E.2 Editing XHTM L

In this appendix, we write XHTML in its source-code form. We create XHTML documents

by typing them in with a text editor (e .g . , Notepad, Wordpad, vi or emacs), saving the doc

uments with either an . h tml or • h tm file-name extension.

I . XHTML has replaced the HyperText Markup Language (HTML) as the primary means of describ
ing Web content. XHTML provides more robust, richer and more extensib le features than HTML.
For more on XHTMLlHTML, v isi t www.w3 • org /markup.

1 238 Introduction to XHTML Appendix E

Good Programming Practice E. l
Assign documents file names that describe their functionality. This practice can help you

identify documents faster. It also helps people who want to link to a page, by giving them an

easy-to-remember name. For example, if you are writing an XHTML document that contains

product information, you might want to call it produc t s . h tml.

Machines running specialized software cal led a Web server store XHTML documents.

Clients (e .g . , Web browsers) request specific resources, such as XHTML documents, from

the Web server. For example, typing www . deitel . com/books / downloads . htm

into a Web browser' s address field requests downloads . htm from the Web server run

ning at www . deitel . com. This document is located in a directory named books.

E.3 F irst XHTML Example

In this appendix, we present XHTML markup and provide screen captures that show how

Internet Explorer renders (i . e . , displays) the XHTML. Every XHTML document we show

has l ine numbers for the reader' s convenience. These l ine numbers are not part of the

XHTML documents .

Our first example (Fig . E. 1) is an XHTML document named main . html that dis

plays the message Welcome to XHTML ! in the browser. The key l ine in the program is

l ine 14, which tel l s the browser to display Welcome to XHTML ! Now let us consider each

l ine of the program.

1 < ?xml vers ion = " 1 . 0 " ? >

2 < ! DOCTYPE html PUBLIC " - I /W3 C / / DTD XHTML 1 . 0 Strict I /EN "

3 '' http : / /www . w3 . org/TR/xhtml l / DTD/xhtml l - stric t . dtd '' >

4
5 < ! - - Fig . E . l : main . html - - >

6 < ! - - OUr first Web page . - - >

7
8 <html xmlns = '' http : / /www . w3 . org/ 1 9 9 9 / xhtml '' >

9 <head>

1 0 < t i t le >OUr first Web page< / t i t l e >

1 1 < / head>

1 2
1 3 <body>

1 4 <p>We lcome t o XHTML ! < /p>
1 5 < /body>

1 6 < /html >

Fig. E . 1 First XHTML example.

� My Computer

Appendix E Introduction to XHTMl 1239

Lines 1 -3 are required in XHTML documents to conform with proper XHTML syntax.

Lines 5-6 are XHTML comments. XHTML document creators i nsert comments to i mprove

markup readabi l ity and to describe the content of a document. Comments also help other

people read and understand an XHTML document ' s markup and content. Comments do not

cause the browser to perform any action when the user loads the XHTML document i nto

the Web browser to v iew the document. XHTML comments always start with < ! - - and

end with - - > . Each of our XHTML examples inc ludes comments that speci fy the figure

number and fi le name and provide a brief description of the example ' s purpose. S ubsequent

examples i nc lude comments in the markup, especia l ly to highl ight new features .

Good Programming Practice E.2
Place comments throughout your markup. Comments help other programmers understand

the markup, assist in debugging and list useful information that you do not want the browser

to render. Comments also help you understand your own markup when you revisit a docu

ment for modifications or updates in the future.

XHTML markup contains text that represents the content of a document and elements

that specify a document ' s structure . Some important e lements of an XHTML document

inc lude the h tml element, the head element and the body element. The html element

encloses the head section (represented by the head element) and the body section (repre

sented by the body element) . The head section contains information about the X HTML

document, such as the title of the document. The head section also can contain special doc

ument-formatting i nstructions cal led style sheets and c l ient-side programs called scripts for

creating dynamic Web pages . The body section contains the page ' s content that the browser

displays when the user vi sits the Web page .

XHTML documents de l imit an element with start and end tags . A start tag consists of

the element name in angle brackets (e .g ., <html » . An end tag consists of the e lement name

preceded by a / i n angle brackets (e.g., < /html » . In this example, l i nes 8 and 1 6 define the

start and end of the html element. Note that the end tag on line 1 6 has the same name as the

start tag, but is preceded by a / inside the angle brackets. Many start tags define attributes

that provide additional information about an element. Browsers can use this additional infor

mation to determine how to process the element. Each attribute has a name and a value, sep

arated by an equal sign (=) . Line 8 specifies a required attribute (xmlns) and value (http : /

/www . w3 . org/ 1 9 9 9 /xhtml) for the html element in an XHTML document.

Com m o n Progra mmi ng Error E . l

Not enclosing altribute values in either single or double quotes is a syntax error.

Common Program m i ng Error E . 2

Using uppercase leiters in an XHTM L element or attribute name is a syntax error.

An XHTML document div ides the html element into two sections-head and body .

Lines 9- 1 1 define the Web page ' s head section with a head e lement. L ine 1 0 speci fies a

t i t l e element. This is cal led a nested element, because it i s enc losed i n the head ele

ment ' s start and end tags. The head element also i s a nested element, because i t i s enclosed

in the html element ' s start and end tags . The t i t l e element describes the Web page.

Titles usual l y appear in the title bar at the top of the browser window and also as the text

1 240 Introduction to XHTML Appendix E

identifying a page when users add the page to their l i st of Favorites or Bookmarks,

which enable users to return to their favorite sites. Search engines (i . e . , s i tes that allow users

to search the Web) also use the t i t l e for cataloging purposes .

Good Programming Practice E.3

Indenting nested elements emphasizes a document 's structure and promotes readability.

Common Prog ramming Error E . 3

XHTML does not permit tags t o overlap-a nested element's e n d tag must appear in the doc

ument before the enclosing element's end tag. For example, the nested XHTML tags

<head> < t i t l e >hel l o < /head> </t i t l e> cause a syntax error, because the enclos

ing head element's ending </head> tag appears before the nested t i t l e element's end

ing < / t i t l e > tag.

Good Programming Practice E .4

Use a consistent t i t I e naming convention for all pages on a site. For example, if a site is

named "Bailey's Web Site, " then the t i t l e ofthe main page might be "Bailey's Web Site

Links. " This practice can help users better understand the Web site's structure.

Line 1 3 opens the document' s body element. The body section of an XHTML docu

ment specifies the document ' s content, which may include text and tags .

Some tags, such as the paragraph tags « p> and </p» in l ine 1 4, mark up text for dis

play in a browser. All text placed between the <p> and < /p> tags form one paragraph. When

the browser renders a paragraph, a blank l ine usual ly precedes and follows paragraph text.

This document ends with two closing tags (lines 1 5- 1 6) . These tags close the body

and html elements, respectively. The ending < /html > tag in an XHTML document

informs the browser that the XHTML markup is complete.

To view this example in I nternet Explorer, perform the fol lowing steps :

1. Copy the Appendix E examples onto your machine (these examples are avai lable

on the CD-ROM that accompanjes thi s book) .

2 . Launch Internet Explorer, and select Open . . . from the Fi le Menu . Th i s displays

the Open dialog.

3. Click the Open dialog ' s B rowse . . . button to di splay the Microsoft I nternet

Explorer fi le dialog.

4 . Navigate to the directory containing the Appendix E examples, and select the fi le

main . htmI ; then c l ick Open.

5. Cl ick O K to have Internet Explorer (or any other browser) render the document.

Other examples are opened i n a s imi lar manner.

At this point, your browser window should appear s imi lar to the sample screen capture

shown in Fig . E . l .

E .4 Headers

Some text i n an XHTML document might be more i mportant than other text. For example,

the text in this section is considered more important than a footnote . XHTML provides s ix

headers, called header elements, for specifying the relat ive importance of information .

Figure E .2 demonstrates these elements (hI through h6) .

Appendix E

1 < ?xml ver s i on = " 1 . 0 " ? >

Introduction to XHTM L

2 < ! DOCTYPE html PUBLIC " - I /W3 C I / r:YrD XHTML 1 . 0 Strict I / EN "

3 '' http : / /www . w3 . org/TR/xhtml l / r:YrD/xhtml l - st r i c t . dtd '' >

4
5 < 1 - - Fig . E . 2 : header . html - - >

6 < 1 - - XHTML headers . - - >

7
8 <html xmlns = ''http : / /www . w3 . org/ 1 9 9 9 / xhtml '' >

9 <head>

1 0 < t i t l e >XHTML headers < / t it l e >

1 1 < / head>

1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1

<body>

<hl>Leve l

<h2 >Leve l

<h3 >Leve l

<h4 >Level

<h5 >Level

< h 6 >Leve l

22 < /body>

23 < /html >

1 Header < /h l >

2 header < /h2 >

3 header < /h3 >

4 header < /h4 >

5 header < /h 5 >

6 header < /h6 >

,] XHTl\lL headers - r-licrosoft

Level l Header
Level 2 heade.·

Le, el l header

L-e vel " he:lde.·

Lenl 5 header

Fig. E . 2 Header elements hl through h6.

1 24 1

Header element hl (l ine 1 5) i s considered the most s ignificant header and is rendered

in a larger font than the other five headers (l ines 16-20). Each successive header element

(i .e . , h2 , h3 , etc .) is rendered in a smaller font.

J:.M'Dl Portabil ity Tip E . l

� The text size used to display each header elemel1l can vary significantly between browsers.

1 242 Introduction to XHTML Appendix E

Look-and-Feel Observation E . l
Placing a header at the top of every XHTML page helps viewers understand the pUfpose of

each page.

Look-and-Feel Observation E . 2

Use larger headers t o emphasize more important sections of a Web page.

E.S Linking
One of the most i mportant XHTML features is the hyperlink, which references (or links

to) other resources, such as XHTML documents and images . In XHTML, both text and

images can act as hyperl inks . Web browsers typical ly underl ine text hyperl i nks and color

their text blue by default , so that users can distinguish hyperl inks from plain text. I n

Fig . E . 3 , w e create text hyperl inks t o four different Web sites . Line 1 7 in troduces the

< s t rong> tag . Browsers typical ly display text marked up with < s t rong> in a bold

font .

Links are created using the a (anchor) element. Line 2 1 defines a hyperl ink that l inks

the text Dei t e l to the URL assigned to attribute href, which specifies the location of a

l inked resource, such as a Web page, a fi le or an e-mail address . This particular anchor ele

ment l inks to a Web page located at http : / /www . de i t e l . com. When a URL does not

indicate a specific document on the Web site, the Web server returns a defaul t Web page.

This page often is called index . html ; however, most Web servers can be configured to

to use any fi le as the default Web page for the site. (Open http : / /www . de i t e l . com

in one browser window and ht tp : / /www . deitel . com/ index . html in a second

browser window to confirm that they are identical .) If the Web server cannot locate a

requested document, the server returns an error indication to the Web browser, and the

browser displays an error message to the user.

1 < ?xml version = " 1 . 0 " ? >

2 < ! DOCTYPE html. PUBLIC " -/ /W3C / / DTD XHTML 1 . 0 Strict / / EN "

3 '' http: / /www . w3 . org / TR / xhtml l / DTD/ xhtmll- strict . dtd '' >

4
5 < 1 - - Fig. E . 3 : l inks . html - - >

6 < 1 - - Introduction to hyperlinks . - - >

7
8 <html xmlns = '' http : / /www . w3 . org/19 9 9 / xhtml '' >

9 <head>

1 0 <title> Introduction to hyperlinks< / titl e>

1 J < / head>

1 2
1 3 <body>

1 4
1 5 <h1> Here are my favorite sites< /hl>

1 6
1 7 <p> < strong> Click a name to go to that page . < / strong> < /p>

1 8

Fig. E .3 Unking to other Web pages. (Part 1 of 2.)

Appendix E I ntroduction to XHTML

< ! - - create four text hyperlinks - - >

<p>

 Deite l< /a>

< /p >

< p >

1 243

1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37

<a bre f

< /p >

I http: / /www.prenhall.com " > Prentice Hal l< /a >

< p >

 Yahoo ! < l a >

< /p>

<p>

<a bre f

< /p >

" http: / /www.usatoday.com " > USA Today< / a>

< / body>

< / html >

'1 Introduction to hyperlinks _]DI�
fie Edt � Favorites Tools H " •

11 SI .. lH<.s ..

Here are my
•

fayorite sites

, ;.l D E I T E l - H Ollie Page - M,c,oson Inlemel ExplOle, _____ __ _ iIIII�D
Prentice Hall

lTSA Today

Regi ster

Register ow !
for the

DEITELTM Buzz
o UNE

ay 2, 20 2

Sign up for the OErrEL Buzz ONUNE e-mail Ney

Announcements

Fig. E .3 Unking to other Web pages. (Part 2 of 2.)

1 244 Introduction to XHTML Appendix E

Anchors can l ink to e-mail addresses through a mai 1 to : URL. When someone clicks

this type of anchored link, most browsers launch the default e-mail program (e .g . , Outlook

Express) to enable the user to write an e-mail message to the linked address . Figure E.4

demonstrates thi s type of anchor.

1 < ? xml vers i on = " 1 . 0 " ? >

2 < ! DOCTYPE html PUBLIC " - / /W3C I ! DTD XHTML 1 . 0 Strict I / EN "

3 '' ht tp : / /www . w3 . org / TR/xhtml 1 / DTD/xhtml 1 - strict . dt d '' >

4
5 < 1 - - Fig . E . 4 : contac t . html - - >

6 < 1 - - Adding ema i l hyperl inks . - - >

7
8 <html xmlns = " ht tp : / /www . w3 . org/ 1 9 9 9 / xhtml '' >

9 <head>

1 0 < t i t l e >Adding e -mail hyperl inks < / t i t l e >

1 1 < /head>

1 2
1 3 <body>

1 4
1 5 <p>My emai l address i s

1 6 < a href = "mailto : deitel@de it e l . com" >

1 7 deite l@deitel . com

1 8 < f a >

1 9 • Click the addres s and your browser wi l l

2 0 open a n e -mail message and addres s i t t o me .

2 1 < /p >

2 2 < /body>

23 < /html >

>l Adding e-mail hyperlinks - �licrosoft I nternet Ex.

� untitled - r-lessage (Plain Text) _ Iolx/
[Ie felt � tJsert Fg'mat 10015 ActIOnS �
�send ' iii a ! :

To.. . I jdeiiIeiDdI!W.com

Q:. . . I I
Slb)!ct: r-I =1 --------

Fig. E .4 Linking to an e-mail address .

Appendix E Introduction to XHTML 1 245

Lines 17-19 contain an e-mail link. The form of an e-mail anchor i s < a href =

"ma i l to : emailaddress n > . . . < / a > . In this case, we l ink to the e-mail address

deitel@de i t e l . com.

E .6 I mages

The examples discussed so far demonstrated how to mark up documents that contain only

text. However, most Web pages contain both text and images . In fact, images are an equal

and essential part of Web-page design . The two most popular i mage formats u sed by Web

developers are Graphics Interchange Format (GIF) and Joint Photographic Experts Group

(JPEG) images . U sers can create images, using specialized pieces of software, such as Ado

be PhotoS hop Elements and Jasc Paint Shop Pro (www . j asc . com). Images may also be

acquired from various Web sites, such as gal lery . yahoo . com. Figure E.5 demon

strates how to incorporate images into Web pages .

Good Progra m ming Practice E.5
Always include the width and the height of a n image inside the tag. When the

browser loads the XHTML jile, it will know immediately from these attributes how much

screen space to provide for the image and will lay out the page proper/y, even before it down

loads the image.

Performance Tip E . l
Including the width and height attributes i n a n tag will help the browser load

and render pages faster.

1 < ? xml vers i on = " 1 . 0 " ? >

2 < ! DOCTYPE htm1 PUBLIC " - / /W3C / / DTD XHTML 1 . 0 S t r i c t / l EN "

3 '' http : / /www . w3 . org / TR/xhtml 1 / DTD/ xhtml 1 - s t r i c t . dtd '' >

4
5 < 1 - - Fig . E . 5 : picture . html - - >

6 < 1 - - Adding image s with XHTML . - - >

7
8 <html xmlns = '' http : / /www . w3 . org/ 1 9 9 9 / xhtml '' >

9 <head>

1 0 < t i t l e > Adding images in XHTML< / t i t l e >

1 1 < /head>

1 2
1 3 <body>

1 4
1 5 <p>

1 6 < img src = " coo1 8 se . j pg " height = " 2 3 8 " width " 1 8 1 "

1 7 alt = "An imaginary landscape . " / >

1 8
1 9 < img src = " f i sh . j pg " height = " 2 3 8 " width " 1 8 1 "

20 alt = "A p i c ture of a f i sh swimming . " / >
2 1 < /p >

22
23 < /body>

24 < /html >

Fig. E .5 Placing images i n XHTM L f i les . (Part 1 of 2 .)

1 246

Fig. E.S

Introduction to XHTMl Appendix E

Done

Placing images in XHTMl files. (Part 2 of 2 .)

Common Programming E rror E . 4

Entering new dimensions for an image that change its inherent width-to-height ratio might

distort the appearance of the image. For example, if your image is 200 pixels wide and 1 00
pixels high, you should ensure that any new dimensions have a 2 : 1 width-to-height ratio.

Lines 1 6- 1 7 use an img element to insert an image in the document. The i mage fi le ' s

location i s specified with the img element ' s sra attribute. I n this case, the image i s located

in the same directory as thi s XHTML document, so only the i mage ' s fi l e name is required.

Optional attributes wi dth and heigh t specify the image ' s width and height, respec

t ive ly . The document author can scale an image by increasing or decreasing the values of

the image width and he ight attributes . If these attributes are omitted, the browser uses

the image ' s actual width and height. Images are measured in pixels ("picture elements"),

which represent dots of color on the screen. The image in Fig. E .5 i s 1 8 1 pixe l s wide and

2 3 8 pixels high.
Every img element i n an XHTML document has an al t attribute. I f a browser cannot

render an image, the browser displays the alt attribute ' s value. A browser might not be

able to render an image for several reasons . I t might not support images-as is the case wi th

a text-based browser (i . e . , a browser that can display only text)-or the c l ient may have dis

abled i mage viewing to reduce download t ime. Figure E.5 shows In ternet Explorer ren

dering the alt attribute ' s value when a document references a nonexistent i mage fi l e

(f i sh . j pg) .

The a l t attribute i s i mportant for creating accessible Web pages for u sers w ith dis

abi l i ties , especial ly those with v ision impairments and text-based browsers. Specia l ized

software called a speech synthesizer often i s used by people with di sabi l i t ies . Such software

appl ications "speak" the alt attribute ' s value so that the user knows what the browser i s

displaying .

Appendix E Introduction to XHTMl 1 247

Some XHTML elements (called empty elements) contain only attributes and do not

mark up text (i . e . , text i s not placed between the start and end tags) . Empty elements (e .g . ,

irng) must be terminated, either by us ing the forward slash character (I) inside the closing

right angle bracket (» of the start tag or by explicitly including the end tag. When using

the forward s lash character, we add a space before the forward s lash to i mprove readabi l i ty

(as shown at the ends of l ines 1 7 and 20). Rather than using the forward s lash character,

lines 1 9-20 could be written with a closing < I irng> tag as fol lows:

< i.mg src = " coo1 8 se . jpg" height = " 2 3 8 " width

alt = "An imaginary landscape . " > < / i.mg>

" 1 8 1 "

B y using images as hyperl inks, Web developers can create graphical Web pages that

l ink to other resources . In Fig. E .6 , we create six different image hyperl inks .

Lines 1 6- 1 9 create an image hyperlink by nesting an irng element within an anchor

(a) element. The value of the irng element ' s src attribute value specifies that this image

(l inks . j pg) res ides in a directory named but tons . The buttons directory and the

XHTML document are in the same directory . Images from other Web documents also can

be referenced (after obtaining permission from the document ' s owner) by setting the s rc

attribute to the name and location of the image .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30

< ?xm1 ver s i on = " 1 . 0 " ? >

< ! DOC'l'YPE html PUBLIC " - / /W3C / / rYrD XHTML 1 . 0 Strict / l EN "

'' http : / /www . w3 . org / TR/xhtml 1 / rYrD/xhtml 1 - strict . dt d " >

< 1 - - Fig . E . 6 : nav . html - - >

< 1 - - U s i ng images as l i nk anchors . - - >

<html xm1ns = " ht tp : / /www . w3 . org/ 1 9 9 9 /xhtml " >

<head>

< t i t l e >Us ing image s as l ink anchors < / t i t le >

< /head>

<body>

<p>

< img src = " buttons / l inks . j pg " width = " 6 5 "

height = " 5 0 " alt = A Links Page " / >

< / a > <br / >

< a bref = " l i st . html A >

< img src = " buttons / l i st . j pg " width = " 65 "

height = " 5 0 " alt = A Li s t Examp l e Page " / >

< / a > <br / >

< a bref = " c ontact . html " >

< img src = A buttons / contact . j pg " width = " 65 ft

height = " 5 0 " alt = " Contact Page n / >

< /a > <br / >

Fig. E .6 Using images as l ink anchors. (Part 1 of 2.)

1 248 Introduction to XHTM L

3 1 < a hre f = " header . html " >

Appendix E

32 < img src = "buttons /header . j pg " width = " 65 "

33 height = " 5 0 " alt = " Header Page " / >

34 < / a > <br / >

35
36

37 < img src = " buttons / t abl e . j p g " width = " 6 5 "

38 height = " 5 0 " alt = " Table Page " / >

39 < / a > <br / >

40
4 1 <a hre f = " form . html " >

42 < img src = n buttons / form. j p g " width = " 65 "

43 hei ght = " 5 0 " alt = " Feedback Form" / >

44 < / a> <br / >

45 < /p>

46
47 < /body>

48 < /html >

.. Bir..k lH<.s .. --- -------' ':

,] A simple XHTI\ 1. ..
fie Edt View
.? Back ".

Plice of Fnot

jPlice
r-----:---1$0. 2 5

1$0. 50
i-IB-an-an-a-I$l·oo
ineapplelLOO

I Total [$3.75

My Compurer �

Fig. E.6 Using images as l ink anchors. (Part 2 of 2 .)

On line 19, we introduce the br element, which most browsers render as a line break.

Any markup or text fol lowing a br element is rendered on the next l ine . Like the img ele

ment, br i s an example of an empty element terminated with a forward slash. We add a

space before the forward s lash to enhance readability.

Appendix E Introduction to XHTM L 1 249

E . 7 Special Characters and More Line Breaks

When marking up text, certain characters or symbols (e .g . , <) might be difficult to embed

directly into an XHTML document. Some keyboards do not provide these symbols, or the

presence of these symbols could cause syntax errors . For example, the markup

<p> i f x < 10 then increment x by l < /p >

results i n a syntax error, because i t uses the less-than character «) , which i s reserved for

start tags and end tags such as <p> and < /p> . XHTML provides special characters or en

tity references (in the form &code i) for representing these characters. We could correct the

previous l ine by writing

<p> i f x & I t ; 1 0 then increment x by l < / p >

which uses the speci al character &1 t ; for the less-than symbol .

Figure E .7 demonstrates how to use special characters in an XHTML document. For a

l i st of special characters, see Appendix F. Lines 26-27 contain other special characters,

which are expressed e i ther as word abbreviations (e .g . , & for ampersand and ©

for copyright) or as hexadecimal (hex) values (e .g . , 8 i is the hexadecimal representa

tion of & i) . Hexadeci mal numbers are base- 1 6 numbers--digits i n a hexadecimal

number have values from 0 to I S (a total of 1 6 different values) . The letters A-F represent

the hexadecimal digits corresponding to deci mal values 1 0- 1 5 . Thus, in hexadeci mal nota

tion, we can have numbers l ike 876 consisting solely of dec imal- l ike digits, n umbers l ike

DA I 9F consisting of digits and letters, and numbers l ike DCB cons ist ing solely of letters.

We discuss hexadeci mal numbers in detai l i n Appendix C.

In l i nes 33-35 , we i ntroduce three new elements. Most browsers render the del ele

ment as strike-through text. With thi s format, users can eas i ly indicate document revis ions .

To superscript text (i .e . , raise text on a l i ne with a decreased font s ize) or subscript text (i . e . ,

lower text on a l i ne with a decreased font size), u se the sup and s u b elements, respec

t ively . We also use specia l characters < i for a less-than sign and &fra c1 4 ; for the

fraction 1 /4 (l i ne 37) .

1 < ?xml ver s i on = " 1 . 0 " ? >

2 < ! DOCTYPE html PUBLIC " - / /W3C / / DTD XHTML 1 . 0 Stric t i / EN "

3 '' http : / /www . w3 . org / TR/xhtml 1 / DTD/xhtml 1 - s t r i c t . dtd '' >

4
5 < ! - - Fig . E . 7 : contac t 2 . html - - >

6 < ! - - Insert ing spe c i a l characters . - - >

7
8 <html xmlns = '' http : / /www . w3 . org/ 1 9 9 9 /xhtml '' >

9 <head>

1 0 < t i t l e > Insert ing spec ial characters < / t i t l e >

1 1 < /head>

1 2
1 3 <body>

1 4

Fig. E . 7 I nsert ing special characters into XHTM L. (Part 1 of 2 .)

1 250 Introduction to XHTMl

1 5 < ! - - spec ial characters are - - >
1 6 < ! - - entered us ing form &code ; - - >

1 7 <p>

1 8 C l ick

1 9 < a bref = "ma i l t o : dei t el@deite1 . com" >here

20 < fa > to open an e -ma i l me ssage addressed to

2 1 dei t e l @de i t e l . com .

22 < /p>

23
24 <br / > < ! - - insert s a hor i z ontal rul e - - >
25

Appendix E

26 <p>All informat ion on thi s s i t e i s < st rong>© ; < / strong>

2 7 De i t e l < strong>& ; < / strong> As soc iat e s , Inc . 2 0 0 3 . < /p >
28
29 < ! - - to str ike through text use <de l > tags - - >

30 < ! - - to subscript text use < sub> tags - - >

3 1 < ! - - t o superscript text use < sup > tags - - >

32 < ! - - thes e tags are nested ins ide other tags - - >

33 <p> < de l >you may download 3 . 1 4 x l O < sup> 2 < / sup>

34 charac ters worth of information f rom this s i t e . < / de l >

35 Only < sub>one < / sub> download per hour i s permi t t ed . < /p >

36
37 <p>Note : < st rong>& l t ; & frac 1 4 ; < / strong> of the informat ion

38 presented here is updated dai ly . < /p >

39
40 < /body>

41 < /html. >

Fig. E . 7

� I nserting special characters - Microsoft Internet Explorer ..JgJ� ---- �----
Fie Edt VIeW Favorites Tools � •

��--B-�-'-·--�--·---=���--I -a��---�--�--F-av-or-ites--�------�--------�---»�I-�' j
Click here to open an e-mail message addressed to deitel a deite L c om.

All infoJ1nation on this �ite is © Deitel & Assoc iates , Inc , 2003 .

YB\l IllII�' d81111IBII.ti 6.1 1 x Hjr ibllf8ib J "'BI�h BfinHlllilitiBU li·BIll thi] "ib.
Only one dowliload per hom' is penllitted,

Note : < y.. of the information presented here is updated daily,

Done

Inserting special characters into XHTML. (Part 2 of 2,)

In addition to special characters, thi s document i ntroduces a horizontal rule, indicated

by the <hr /> tag in l ine 24, Most browsers render a horizontal rule as a horizontal l i ne ,

The < h r I > tag also i nserts a l i ne break above and below the horizontal l i ne .

Appendix E Introduction to XHTML 1 25 1

E . 8 Unordered lists

Up to this point, we have presented basic XHTML elements and attributes for l inking to re

sources, creating headers, using special characters and incorporating images . In this section,

we discuss how to organize information on a Web page using l ists . Later in the appendix, we

introduce another feature for organizing information, called a table. Figure E .8 displays text

in an unordered list (i .e . , a l i st that does not order its items by letter or number) . The unor

dered list element ul creates a l i st in which each item begins with a bul let (cal led a disc).

Each entry in an unordered l ist (element ul in l ine 20) is an I i (list item) element

(l ines 23, 25, 27 and 29) . Most Web browsers render these elements with a line break and

a bul let symbol indented from the beginning of the new line.

E.9 Nested and Ordered lists

Lists may be nested to represent hierarchical relationships, as in an outline format. Figure E.9

demonstrates nested l i sts and ordered lists (i .e . , l i st that order their i tems by letter or number) .

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34

< ?xml vers ion = " 1 . 0 " ? >

< ! DOCTYPE html PUBLIC " - / /W3C / / DTD XHTML 1 . 0 Strict I / EN "

'' http : / /www . w3 . org/ TR/xhtml 1 / DTD/xhtml 1 - s t r i c t . dtd '' >

< ! - - Fig . E . 8 : l i nks2 . html - - >

< ! - - Unordered l i s t containing hyperl inks . - - >

<html xmlns = '' http : / /www . w3 . org/ 1 9 9 9 /xhtml '' >

<head>

< t i t l e >Unordered l i s t containing hyper l i nks < / t i t l e >

< / head>

<body>

<h1 >Here are my favorite s i t e s < /h 1 >

<p> < s trong>C l ick o n a name to g o to that page . < / st rong> < /p >

< ! - - create a n unordered l i s t - - >

< 1 - - add four l i s t items - - >

< l i > De i t e l < / a> < / l i >

< l i > <a hre f

< l i > < a hre f

< l i > <a href

< lu I >

< / body>

< / html >

'' http : / /www . w3 . org '' >W3 C < / a> < / l i >

.. http : / /www . yahoo . com .. >Yahoo ! < / a > < / l i >

.. http : / /www . cnn . com" >CNN< / a> < / l i >

Fig. E.8 Unordered l i sts in XHTML . (Part 1 of 2.)

1 252 Introduction to XHTM L Appendix E

Here are my favorite sites
Click 011 a illUDe t.o go to that page.

• Deite l
• W3C'
• Yahoo'
• C'NN

Done

Fig. E .8 Unordered l ists in XHTM L. (Part 2 of 2 .)

The first ordered L i s t begins in line 33 . Attribute type specifies the sequence type (i .e . ,

the set of numbers or letters used in the ordered l ist). In this case, setting type to " I " spec

ifies upper-case roman numerals . Line 47 begins the second ordered list and sets attribute

type to " a " , specifying lowercase letters for the list items. The last ordered list (lines 7 1-

75) does not use attribute type. By default, the list' s items are enumerated from one to three.

A Web browser indents each nested l ist to indicate a hierarchal relationship. B y

default, the items in the outermost unordered list (line 1 8) are preceded b y discs. List items

nested inside the unordered list of line 1 8 are preceded by circles. Although not demon

strated in this example, subsequent nested l i st items are preceded by squares. Unordered

list items can be explicitly set to discs, circles or squares by setting the ul element ' s type

attribute to "di s c ", "circl e " or "square ", respectively .

E . 1 0 Basic XHTM L Tables

This section presents the XHTML table-a frequently used feature that organizes data into

rows and columns. Our first example (Fig. E . l O) uses a table with six rows and two col

umns to display price information for fruit.

1
2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4

< ?xml version = " 1 . 0 " ? >

< ! DOCTYPE html PUBLIC " - / /W3C / / DTD XHTML 1 . 0 Trans i t i onal / / EN "

'' http : / /www . w3 . org / TR/xhtml 1 / DTD/ xhtml 1 - t rans i t i onal . dtd '' >

< ! - - F i g . E . 9 : l i s t . html - - >

< ! - - Advanced L i st s : nested and ordered . - - >

<html xmlns = '' http : / /www . w3 . org/ 1 9 9 9 / xhtml '' >

<head>

< t i t le >Advanced l i s t s < / t it l e >

< /head>

<body>

Fig. E.9 Nested and ordered l ists in XHTM L. (Part 1 of 3 .)

Appendix E Introduction to XHTM L 1 253

1 5
1 6
1 7
1 8
1 9
20
2 1
22
23
24
25
26
27
28
29
30
3 1
32
33
34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62
63
64
65
66
67

Fig. E.9

<h1 > The Best Features of the Internet < /h 1 >

< ! - - create a n unordered l i st - - >

< l i >you can meet new people from countr i e s around

the world . < / l i >

< l i >

You have acce s s t o new media a s i t become s publ ic :

< ! - - start ne sted l i s t , use modi f i ed bul le t s - - >

< ! - - l i s t ends with c los ing < /u l > t ag - - >

< l i >New games < / l i >

< l i >

New app l i cat ions

< ! - - ordered ne sted l i s t - - >

< 0 1 type = " I " >

< l i > For bu s ines s < / l i >

< l i > For pleasure< / l i >

< / 0 1 >

< / l i >

< l i >Around the c lock news < / l i >

< l i > Search engines < / l i >

< l i > Shopping< / l i >

< l i >

Programming

< ! - - another nested ordered l i st - - >

<01 type = " a " >

< l i >XML< / l i >

< l i > Java< / l i >

< l i >XHTML< / l i >

< l i > Script s< / l i >

< l i >New languages < / l i >

< / 0 1 >

< / l i >

< /u l > < ! - - ends nested l i st started i n l ine 2 7 - - >

< / l i >

< l i > Links < / l i >

< l i > Keeping i n touch with old friends< / l i >

< l i > I t i s the technology o f the future l < / l i >

< /u l > < ! - - ends unordered l i st started in l i ne 1 8 - - >

<h1 >My 3 Favorite < em>CEOs < / em> < /h 1 >

Nested and ordered l i sts in XHTM L. (Part 2 of 3 .)

1 254 Introduction to XHTM L

68
69 < ! - - 01 e l ement s without type attribute have - - >
70 < ! - - numeric sequence type (i . e . , 1 , 2 , • • •) - - >
7 1 <01 >

72 < l i >Lawrence J. E l l i son < / l i >

73 < l i >Steve Jobs < / l i >

74 < l i >Michae l De ll < / l i >

75 < / 01 >

76
77 < / body>
78 < / html >

� �

Fig. E . 9

fie Edt VIew F8\IOrItes Tools Hef> -

The Best Features of the
Internet

• You crul meet new people fj·OIn cOIUltries ru'OIUld the world
• You ha -e access t.O new media as it becomes public :

o New gruues
o New applicatio1L�

L For business
II. FOI- plea;au-e

o A.rOlUld the clock news
o Seru'ch engines
o Shopping
o Prognullming

3_ XML
b. Ja -a
c. XIITML
d. Scripts
e . Ne\v langnages

• Li.nks
• Keeping in I.ouch wilh old fj-iend�
• It is the tec1U1ology of the fithu-e !

My 3 Favorite CEOs
1. Lm"1'ence J. Ellison
2. St.eve Jobs
3 . Michael Dell

il r f �My Computfr

Nested and ordered l i sts in XHTM L. (part 3 of 3 ,)

Appendix E

Tables are defined with the table element. Lines 1 6- 1 8 specify the start tag for a

table element that has severa] attributes, The border attribute specifies the table ' s border

width in pixels . To create a table without a border, set border to " 0 " . This example

assigns attribute width " 4 0% " , to set the table ' s width to 40 percent of the browser' s

width. A developer can also set attribute width to a specified number of pixels .

Appendix E Introduction to XHTM L 1 255

As its name impl ies, attribute swmnary (l ine 1 7) describes the tab le ' s contents.

Speech devices use this attribute to make the table more accessible to users with visual

impairments. The cap t i on e lement (l i ne 22) describes the tab le ' s content and helps text

based browsers interpret the table data. Text inside the <capt ion> tag is rendered above

the table by most browsers . Attribute swmnary and element capt ion are two of many

XHTML features that make Web pages more accessible to users with di sabi l i t ies .

1 < ?xm.l vers ion = " 1 . 0 " ? >

2 < ! DOCTYPE html PUBLIC " - I /W3C / / DTD XHTML 1 . 0 Strict I / EN "

3 '' http : / /www . w3 . org / TR / xhtml l / DTD/ xhtml l - stric t . dt d '' >

4
5 < ! - - Fig . E . I 0 : table l . html - - >

6 < 1 - - Creat ing a bas i c table . - - >

7
8 <html xm.lns = '' http : / /www . w3 . org/ 1 9 9 9 /xhtml '' >

9 <head>

1 0 < t i t l e >Creat ing a bas ic table < / t i t l e >

1 1 < / head>

1 2
1 3 <body>

1 4
1 5 < ! - - the <table> tag begins table - - >

1 6 < tabl e border = " 1 " width = " 4 0% "
1 7 swmnary = " Thi s table provides informat ion about

1 8 the price o f fru i t " >

1 9
20 < ! - - <capt ion> tag swmnar i z e s table ' s - - >

2 1 < ! - - cont ent s t o he lp vi sual ly impai red - - >

22 < c apt ion> < s t rong>Price of Fruit < / strong> < / c ap t i on>
23
24 < ! - - <thead> is f i rst sect ion of table - - >
25 < ! - - it format s table header area - - >

26 < thead>

27 < t r > < ! - - <tr> insert s one table row - - >

28 < th> Fru i t < / th> < 1 - - insert heading c e l l - - >

29 <th>Price < / th>

30 < / tr>

3 1 < / thead>

32
33 < ! - - a l l table content is enc l osed within < tbody> - - >
34 <tbody>
35 < t r >
36 < td>App le < / td> < ! - - insert data c e l l - - >
37 < td> $ 0 . 2 5 < / td>

38 < / t r>
39
40 < t r >

4 1 < td>Orange < / td>

42 <td> $ 0 . 5 0 < / td>
43 < / t r>
44

Fig. E . 1 0 XHTM L toble . (Port 1 of 2 .)

1 256 Introduction to XHTM L

45 < t r >

46 < td>Banana< / td>
47 < td> $ l . O O < / td>

48 < / tr >

49
50 < t r >

5 1 < td>Pineapple < / td>
52 <td> $ 2 . 0 0 < / td>
53 < / t r >
54 < / tbody>

55
56 < ! - - < t foot > is last sect ion of table - - >
57 < 1 - - i t format s table footer - - >
58 < t foot >

59 < t r >

60 < th>Total < / th>

6 1 <th> $ 3 . 7 S < / th>

62 < / tr>

63 < / t foot >

64
65 < / table>

66
67 < /body>

68 < / html >

border l-l� My Computer

Fig. E . 1 0 XHTM L table . (Part 2 of 2 .)

Appendix E

Try resizing the browser window to see how the width of the window affects the width of the

table.

A table has three distinct sections-head, body and foot. The head section (or header

cell) is defined with a thead element (l ines 26-3 1) , which contains header information ,

such as column names. Each tr element (l ines 27-30) defines an individual table row. The

columns in the head section are defined with th elements . Most browsers center text for-

Appendix E Introduction to XHTM L 1 257

matted by th (table header column) e lements and display it in bold. Table header elements

are nested inside table row elements.

The body section, or table body, contains the table ' s primary data. The table body

(l ines 34--54) is defined in a tbody element. Data cells contain individual pieces of data

and are defined with td (table data) elements.

The foot section (l ines 5 8-63) i s defined with a t foot (table foot) element and rep

resents a footer. Text commonly placed in the footer inc ludes calculation results and foot

notes . Like other sections, the foot section can contain table rows and each row can

contain columns .

E . l l I ntermediate XHTM L Tables and Formatting

In the previous section, we explored the structure of a basic table. In Fig. E . l l , we enhance

our discussion of tables by introducing elements and attributes that allow the document au

thor to build more complex tables .

Common Prog ramming Error E .S

When using col span and rowspan to adjust the size of table data cells, keep in mind that

the modified cells will occupy more than one column or row; other rows or columns of the

table must compensate for the extra rows or columns spanned by individual cells. If you do

not, the formatting of your table will be distorted, and you could inadvertently create more

columns and rows than you originally intended.

The table begins on l ine 1 7 . Element col group (lines 22-27) groups and formats

columns. The col element (l ine 26) specifies two attributes in thi s example. The a l i gn
attribute determines the alignment of text in the column. The span attribute determines

how many columns the col e lement formats . In this case, we set al ign' s value to

" right " and span' s value to " 1 " to right-align text in the first column (the column con

taining the picture of the camel in the sample screen capture) .

Table cells are sized to fit the data they contain. Document authors can create larger data

cells by using attributes rowspan and col span. The values assigned to these attributes

specify the number of rows or columns occupied by a cell . The th element at lines 36-39

uses the attribute rowspan = " 2 " to allow the cell containing the picture of the camel to use

two vertically adjacent cells (thus the cell spans two rows). The th element at lines 42-45

uses the attribute col span = " 4 " to widen the header cell (containing Camelid compar

ison and Approximate as of 9 / 2002) to span four cells.

Line 42 introduces attribute val i gn, which aligns data vertically and may be

assigned one of four values- " top " aligns data with the top of the cell, "middle " ver

tically centers data (the default for all data and header cells) , " bottom" aligns data with

the bottom of the cell and " basel ine " ignores the fonts used for the row data and sets

the bottom of all text in the row on a common baseline (i . e . , the horizontal line to which

each character in a word is aligned) .

1 < ? xml ver s i on = " l . O " ? >

2 < ! DOCTYPE html PUBLIC " - 1 IW3 C I I OTD XHTML 1 . 0 Stric t I lEN"
3 '' http : / /www . w3 . org/ TR/xhtml l / OTD/xhtml l - s t ric t . dtd '' >
4

Fig. E . l l Complex XHTM L table. (Part 1 of 3 .)

1 258 Introduction to XHTMl

5 < ! - - F i g . E . 1 1 : table2 . html - - >

6 < ! - - Intermediate table des i gn . - - >

7
8 <html xmlns = '' http : / /www . w3 . org/ 1 9 9 9 / xhtml '' >

9 <head>

1 0 < t i t l e > Intermediate table de sign< / t i t l e >

1 1 < /head>

1 2
1 3 <body>

1 4
1 5 <hl> Table Example Page< / h1>

1 6
1 7 < t ab l e border = " 1 " >

Appendix E

1 8 <capt ion>Here i s a more complex samp l e table . < / capt ion>

1 9
20 < ! - - <colgroup> and <col > tags are - - >

2 1 < ! - - used t o format ent i re columns - - >

22 <colgroup >

23
24 < ! - - span attribute determines how - - >
25 < ! - - many columns <col > tag a f f e c t s - - >

26 <col a l i gn = " right " span = " 1 " / >

27 < / colgroup >

28
29 < thead>

30
3 1 < ! - - rowspans and col spans merge spe c i f i ed - - >

32 < ! - - number of c e l l s vert ica l ly or hor i z ontally - - >

33 < t r >

34
35 < ! - - merge two rows - - >

36 <th rowspan = " 2 " >

37 < img src = " camel . gi f " width = " 2 0 5 "

38 height = " 1 67 " alt = " P icture of a came l " / >

39 < / th>

40
4 1 < ! - - merge four columns - - >

42 < th col span = " 4 " val i gn = " top " >

43 <h1 > Came l i d compari son< /h1 > <br / >

44 <p>Approximate as of 9 / 2 0 0 2 < /p >

45 < / th>

46 < / tr>

47
48 <tr va l i gn = " bottom" >

49 <th> # of Hurnps < / th>

50 <th> Indigenous region< / th>

5 1 < th> Sp i t s ? < / th>
52 < th> Produces Wool ? < / th>
53 < / tr>

54
55 < / thead>

56

Fig. E . 1 1 Complex XHTM L table . (Part 2 of 3 .)

Appendix E

57 < tbody>

58
59 < t r >

Introduction t o XHTM L

60 < th> Came l s (bactrian) < / th>

6 1 <td> 2 < / td>

62 <td>Africa /As ia< / td>

63 <td rowspan " 2 " > Llama< / td>

64 <td rowspan = " 2 " > Llama< / td>

65 < / t r>

66
67 < t r >

68 <th> Llamas < / th>

69 <td> l< / td>

70 <td>Ande s Mount ains < / td>

7 1 < / tr>

72
73 < / tbody>

74
75 < / tab l e >

7 6
77 < /body>

78 < / html >

'J Intermediate tabl�<!:sign
�

- M�.I:osoft I nternet Explorer

T�lble EX�lmple Page

Here is a more complex sample table.

Camelid comparison

Ai)I)roximat(> as of 91200 2

1# of Hmnps IhuUg(>llous regioll SI)itS? IProdur es Wool?

Camels (bar trilUa) 12 IAJiic , Asia FI ;----------r:---- . Llama Llama
Llamas 1 1 lAude:;: MOIUltmus

Done

Fig. E . 1 1 Complex XHTM L table . (Part 3 of 3 .)

E . 1 2 Basic XHTM L Forms

1 259

When browsing Web sites, users often need to provide information such as e-mail address

es, search keywords and zip codes . XHTML provides a mechanism, cal led aform, for col

lecting such user information .

1 260 Introduction to XHTML Appendix E

Data that u sers enter on a Web page normally i s sent to a Web server that provides

access to a s i te ' s resources (e .g . , XHTML documents or images) . These resources are

located e ither on the same machine as the Web server or on a machine that the Web server

can access through the network. When a browser requests a Web page or file that i s

located on a server, the server processes the request and returns the requested resource .

A request contains the name and path of the desired resource and the method of commu

nication (called a protocol) . XHTML documents use the Hypertext Transfer Protocol

(HTTP) .

Figure E. 1 2 sends the form data to the Web server, which passes the form data to a

CGI (Common Gateway Interface) script (i . e . , a program) written in C++, C , Perl or some

other language. The script processes the data received from the Web server and typically

returns information to the Web server. The Web server then sends the information in the

form of an XHTML document to the Web browser. [Note : This example demonstrates

c lient-side functionality . If the form i s submitted (by cl icking Submit Your Entries),

an error occurs .]

1 < ?xm1 version = " 1 . 0 " ? >

2 < ! DOCTYPE htm1 PUBLIC " - / /W3C / /DTD XHTML 1 . 0 Strict / / EN "

3 " ht tp : / /www . w3 . org/TR/xhtm1 1 / DTD/xhtm1 1 - strict . dt d '' >

4
5 < 1 - - Fig . E . 1 2 : form . htm1 - - >

6 < 1 - - Form des i gn example 1 . - - >

7
8 <htm1 xm1ns = '' http : / /www . w3 . org/ 1 9 9 9 / xhtm1 '' >

9 <head>

1 0 < t i t 1 e >Form des i gn example 1 < / t i t 1 e >

1 1 < /head>

1 2
1 3 <body>

1 4
1 5 <hl >Feedback Form< /hl>

1 6
1 7 <p>P1ease f i l l out this form to help

1 8 u s improve our s i t e . < /p>

1 9
20 < 1 - - < form> tag begins form , give s - - >

2 1 < 1 - - method of sending inf ormat ion - - >

22 < 1 - - and loc at ion of form script s - - >

23 < form method = "post " ac tion = " / cgi -bin/ f onnmai 1 " >

24
25 <p>

26
27 < 1 - - hidden input s contain non -vi sual - - >

28 < 1 - - informat ion - - >

29 < i nput type = " hidden" name = " recipient "

30 value = n deite1@deite1 . com" / >

3 1
32 < input type = " hidden " name = " subj ect "

33 value = " Feedback Form" I >

Fig. E . 1 2 Simple form with hidden fields and a text box . (Part 1 of 2 .)

Appendix E Introduction to XHTM L

34
35
36
37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
6 1
62

< input type = " hidden " name

value = " main . html " / >

" redirec t "

< /p >

< 1 - - < input type

<p>

" text " > insert s t ext box - - >

< l abe l > Name :

< input name = " name " type

maxlength = " 3 0 " / >

< / labe l >

" t ext " s i z e

< /p >

< p >

< ! - - input types " submit " and " reset " - - >

< 1 - - insert buttons for submi t t ing - - >

< 1 - - and c learing form ' s cont ent s - - >

< input type = " submit " value

" Submi t Your Entries " / >

< input type = " reset " value

" C l ear Your Entrie s " / >

< /p >

< / form>

< /body>

< /html >

Feedbacli Form
Please fill Ollt this f0I111 to helt> lL� Wq)1'O 'e 0111' site.

Name: I

Submit Your Entries Clear Your Entries

Done
- - [@ My COmPJter

Fig. E . 1 2 S imple form with h idden fields and a text box . (Part 2 of 2 .)

1 26 1

" 25 "

Forms can contain v isual and non-visual components. Visual components include

clickable buttons and other graphical user interface components with which u sers interact .

Non-visual components, called hidden inputs, store any data that the docu ment author spec

ifies, such as e-mail addresses and XHTML document file names that act as l inks. The form

begins on line 23 with the form element. Attribute method specifies how the form' s data

is sent to the Web server.

1 262 Introduction to XHTM L Appendix E

Using method = "pos t " appends form data to the browser request, which contains

the protocol (i .e . , HTTP) and the requested resource ' s URL. Scripts located on the Web

server ' s computer (or on a computer accessible through the network) can access the form

data sent as part of the request. For example, a script may take the form i nformation and

update an electronic mai l i ng l i st . The other possible value, me thod = "ge t " , appends the

form data d irectly to the end of the URL. For example, the URL I cgi -bin / formma i l

might have the form information name = bob appended t o i t .

The a c t i on attribute in the < form> tag specifies the URL of a script on the Web

server; i n thi s case, it specifies a script that e-mai l s form data to an address . M ost Internet

Service Providers (ISPs) have a script l ike this on thei r site ; ask the Web-s i te system admin

i strator how to se t up an XHTML document to use the script correctly .

Lines 29-36 define three inpu t elements that specify data to provide to the script that

processes the form (al so called theform handler) . These three input elements have type

attribute " hidden " , which allows the document author to send form data that is not

entered by a user to a script.

The three hidden inputs are an e-mail address to which the data w i l l be sent, the e

mail ' s subject l ine and a URL where the browser wil l be redirected after submitt ing the

form. Two other input attributes are name, which identifies the input element, and

val ue, which provides the value that will be sent (or posted) to the Web server. � Good Progra m m i ng Practice E .6

Place hidden inpu t elements at the beginning of a form, immediately after the opening

<form> tag. This placement allows document authors to locate hidden i nput elements

quickly.

We introduce another type of input in l i nes 38-39 . The " t ext " input i nserts a

text box i nto the form. Users can type data i n text boxes . The l abel element (l i nes 37-40)

provides users with information about the input element ' s purpose.

Common Programming Error E.6

Forgetting to include a l abel element for each form element is a design error. Without

these labels, users cannot determine the purpose of individual form elements.

The input element ' s si ze attribute specifies the number of characters v is ib le i n the

text box . Optional attribute maxl ength l imits the number of characters i nput i nto the text

box. I n th i s case, the user i s not permitted to type more than 3 0 characters i nto the text box .

There are two types of input elements in l i nes 5 2-56. The "submi t " input ele

ment i s a button . When the user presses a " submi t " button, the browser sends the data in

the form to the Web server for processing. The val u e attribute sets the text displayed on

the button (the defaul t value i s Submit) . The "rese t " input element al lows a user to

reset al l form elements to their default values. The value attribute of the " reset "

input element sets the text displayed on the button (the default value i s Reset).

E . 1 3 More Complex XHTML Forms

I n the previous section, we introduced basic forms. I n thi s section, we in troduce e lements

and attributes for creating more complex forms . Figure E . 1 3 contain s a form that sol ic i ts

user feedback about a Web site.

Appendix E Introduction to XHTML 1 263

The textarea element (lines 42-44) inserts a multiline text box, called a textarea,
into the form. The number of rows is specified with the rows attribute and the number of

columns (i.e., characters) is specified with the cols attribute. In this example, the tex

tarea is four rows high and 36 characters wide. To display default text in the text area,

place the text between the <textarea> and < /textarea> tags. Default text can be

specified in other input types, such as textboxes, by using the value attribute.

The "password" input in lines 52-53 inserts a password box with the specified

size. A password box allows users to enter sensitive information, such as credit card num

bers and passwords, by "masking" the information input with asterisks. The actual value

input is sent to the Web server, not the asterisks that mask the input.

Lines 60-78 introduce the checkbox form element. Checkboxes enable users to select

from a set of options. When a user selects a checkbox, a check mark appears in the check

box. Otherwise, the checkbox remains empty. Each "checkbox" input creates a new

checkbox. Checkboxes can be used individually or in groups. Checkboxes that belong to a

group are assigned the same name (in this case, "thingsliked").

We continue our discussion of forms by presenting a third example that introduces sev

eral more form elements from which users can make selections (Fig. E.14). In this example,

we introduce two new input types. The first type is the radio button (lines 90-1(3), speci

fied with type "radio". Radio buttons are similar to checkboxes, except that only one radio

button in a group of radio buttons may be selected at any time. All radio buttons in a group

have the same name attribute; they are distinguished by their different value attributes. The

attribute-value pair checked = "checked" (line 92) indicates which radio button, if any,

is selected initially. The checked attribute also applies to checkboxes.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<?xml version = "1.0"?>

<! DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

''http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'' >

<! -- Fig. E.13: form2.html -->

<!-- Form design example 2. -->

<html xmlns = ''http://www.w3.org/1999/xhtml''>

<head>

<title> Form design example 2</title>

</head>

<body>

<h1> Feedback Form</h1>

<p> Please fill out this form to help

us improve our site.</p>

<form method = "post" action "/cgi-bin/formrnail">

<p>

<input type = "hidden" name = "recipient"

value = "deitel@deitel.com" />

Fig. E.13 Form with textareas, password boxes and checkboxes, (Part 1 of 3,)

1264

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Introduction to XHTML Appendix E

<input type = "hidden" name = "subject"
value = "Feedback Form" />

<input type = "hidden" name

value = "main.html" />

"redirect"

</p>

<p>

<label> Name:

<input name

</label>

"name" type "text" size

</p>

<1-- <textarea> creates multiline textbox -->

<p>

<label> Comments:

<textarea name = "connnents" rows = "4"
cols = "36"> Enter your comments here.

</textarea>

</label> </p>

<1-- <input type "password"> inserts -->

<1-- textbox whose display is masked -->

<1-- with asterisk characters

<p>

<label> E-mail Address:

<input name = "email" type

size = "25" />

</label>

</p>

<p>

-->

"password"

 Things you liked:

<label> Site design

<input name = "thingsliked" type

value = "Design" /> </label>

<label> Links

<input name = "thingsliked" type

value = "Links" /> </label>

<label> Ease of use

<input name = "thingsliked" type

value = "Ease" /> </label>

<label> Images

<input name = "thingsliked" type

value = "Images" /> </label>

<label> Source code

"checkbox"

"checkbox"

"checkbox"

"checkbox"

"25" />

Fig. E.13 Form with textareas, password boxes and checkboxes. (Part 2 of 3.)

Appendix E Introduction to XHTML

77 <input name = "thingsliked" type = "checkbox"
78 value = "Code" /></label>
79 </p>
80
81 <p>
82 <input type = "submit" value
83 "Submit Your Entries" />
84
85 <input type = "reset" value
86 "Clear Your Entries" />
87 </p>
88
89 </form>
90
91 </body>
92 </html>

'li Form design example 2 - �1J(rosoft Internet E

Feedbacl{ Form

1 265

Please fill Ollt this £ol1n to help liS improve OIU'
site.

Please fill Ollt this fOl1n to help liS improve 01U'

site.

Name: I

Conunents:

EnteL YOUL comments heLe.

E-mail Ad<b-ess: I

Things yonlike!l:
Site design r Links r Ease of lise r linages
r SOllrce code r

Submit Your Entries

Clear Your Entries

Computer

Nfllne: lioe bob

Comments:

YOUL site is gLeat! I would like to •
see mOLe XHTML Web LeSOULces.

Things yon liked:
Site design r Links r Ease of lise P linages
[�] So\U'c� code r

-

Submit Your Entries

Fig. E.13 Form with textareas, password boxes and checkboxes. (Part 3 of 3.)

Common Programming Error E.7

When your form has several checkboxes with the same name, you must make sure that they

have different values, or the scripts running on the Web server will not be able to distin

guish between them.

1266 Introduction to XHTML Appendix E

Common Programming Error E.8

When using a group of radio buttons in a form, forgetting to set the name attributes to the

same name is a logic error that lets the user select all of the radio buttons at the same time.

The select element (lines 123-136) provides a drop-down list from which the user

can select an item. The name attribute identifies the drop-down list. The option ele

ment (lines 124-135) adds items to the drop-down list. The option element's

selected attribute specifies which item initially is displayed as the selected item in

the select element.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

<?lIltIl version = "1.0"?>
<IDOCTYPE html PUBLIC "-I/W3C//DTD XHTML 1.0 StrictI/EN"

''http: //www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd ''>

<!-- Fig. E.14: form3.html -->
<1-- Form design example 3. -->

<html lIltIlns = ''http: //www.w3.org/1999/xhtml ''>
<head>

<title>Form design example 3</title>
</head>

<body>

<h1>Feedback Form</h1>

<p>Please fill out this form to help
us improve our site.</p>

<form method = "post" action "/cgi-bin/formmail">

<p>
<input type = "hidden" name = "recipient"

value = "deitel@deitel.com" />

<input type = "hidden" name = "subject"
value = "Feedback Form" />

<input type = "hidden" name
value = "main.html" />

"redirect"

</p>

<p>
<label>Name:

<input name
</label>

"name" type

</p>

<p>
<label>Comments:

"text" size

Fig. E.14 Form including radio buttons and drop-down lists. (Part 1 of 4.)

"25" />

Appendix E

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Introduction to XHTML

<textarea name = "conunents " rows "4"
cols "36 "></textarea>

</label>

1 267

</p>

<p>
<label>E-mail Address:

<input name = "email " type
size = "25" />

</label>

"password "

</p>

<p>
Things you liked:

<label>Site design
<input name = "thingsliked " type

value = "Design " />
</label>

<label>Links
<input name = "thingsliked " type

value = "Links " />
</label>

<label> Ease of use
<input name = "thingsliked " type

value = "Ease " />
</label>

<label> Images
<input name = "thingsliked " type

value = "Images " />
</label>

<label>Source code

"checkbox "

"checkbox "

"checkbox "

"checkbox "

<input name = "thingsliked " type = "checkbox "
value = "Code " />

</label>

</p>

<!-- <input type = "radio " /> creates one radio -->
<!-- button. The difference between radio buttons -->

<!-- and checkboxes is that only one radio button -->
<!-- in a group can be selected. -->
<p>

How did you get to our site?:

<label>Search engine
<input name = "howtosite " type = "radio "

value = "search engine " checked = "checked " />
</label>

Fig. E.14 Form including radio buttons and drop-down lists. (Part 2 of 4.)

1268

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

Fig. E.14

Introduction to XHTML Appendix E

<label>Links from another site
<input name = "howtosite " type

value = "link " />
</label>

<label>Deitel.com Web site

"radio "

<input name = "howtosite " type = "radio "
value = "deitel.com " />

</label>

<label>Reference in a book
<input name = "howtosite " type = "radio "

value = "book " />
</label>

<label>Other
<input name = "howtosite " type = "radio "

value = "other " />
</label>

</p>

<p>
<label>Rate our site:

<!-- <select> tag presents a drop-down -->

<1-- list with choices indicated by -->

<! -- <option> tags -->

<select name = "rating ">
<option selected = "selected ">Amazing</option>
<option>10</option>
<option>9</option>
<option>8</option>
<option>7</option>
<option>6</option>
<option>S</option>
<option>4</option>
<option>3</option>
<option>2</option>
<option>l</option>
<option>Awful</option>

</select>

</label>
</p>

<p>
<input type = "submit " value =

"Submit Your Entries " />

<input type = "reset " value = "Clear Your Entries " />

</p>

Form including radio buttons and drop-down lists. (Part 3 of 4.)

Appendix E

147
148 </form>
149
150 </body>
151 </htm1>

Feedb�lck Form

Introduction to XHTMl

Please fiJI Ollt this form to belp us Uup.'o 'e 0111' site.

Name: J

COIWlleuts:

E-mail Address: J

ThiDg,� �'oa Iikt'd:
Site design r Links r Ease of use r Images r Smu'ce code r

Ho,,' ltid "on 2t't to ow' �itt'?:
Search e�gine - .. Link;; ii'Qm another site (" Deite\.com Web site ("
Refen!lIce in a book (" Otbe.' ("

Rate 0111' site: JAmazing iJ

Submit Your Entries Clear Your Enlries

Fig. E.14 Form including radio buttons and drop-down lists. (Part 4 of 4.)

E.14 Internet and World Wide Web Resources

www.w3.org/TR/xhtmll

1 269

The XHTML J.O Recommendation contains general information, information on compatibility issues,

document type definition information, definitions, terminology and much more relating to XHTML.

www.xhtml.org

XHTML.org provides XHTML development news and links to other XHTML resources, which in

clude books and articles.

www.w3schools.com/xhtml/default.asp

The XHTML School provides XHTML quizzes and references. This page also contains links to X

HTML syntax, validation and document type definitions.

hotwired.lycos.com/webmonkey/OO/SO/index2a.html

This site provides an article about XHTML. Key sections of the article overview XHTML and discuss

tags, attributes and anchors.

1 270 Introduction to XHTML Appendix E

wdvl.com/Authoring/Languages/XML/XHTML

The Web Developers' Virtual Library provides an introduction to X HTML. This site also contains ar

ticles, examples and links to other technologies.

SUMMARY

o X HTML (Extensible Hypertext Markup Language) is a markup language for creating Web pages.

o A key issue when using X HTML is the separation of the presentation of a document (i.e., the

document's appearance when rendered by a browser) from the structure of the information in

the document.

o In X HTML, text is marked up with elements, delimited by tags that are names contained in pairs

of angle brackets. Some elements may contain additional markup called attributes, which provide

additional information about the element.

o A machine that runs specialized piece of software called a Web server stores X HTML documents.

o X HTML documents that are syntactically correct are guaranteed to render properly. X HTML doc

uments that contain syntax errors might not display properly.

o Every X HTML document contains a start <html> tag and an end </html> tag.

o Comments in X HTML always begin with <! -- and end with -->. The browser ignores all text

inside a comment.

o Every X HTML document contains a head element, which generally contains information, such

as a title, and a body element, which contains the page content. Information in the head element

generally is not rendered in the display window but could be made available to the user through

other means.

o The title element names a Web page. The title usually appears in the colored bar (called the

title bar) at the top of the browser window and also appears as the text identifying a page when

users add your page to their list of Favorites or Bookmarks.

o The body of an X HTML document is the area in which the document's content is placed. The con

tent may include text and tags.

o All text placed between the <p> and < /p> tags form one paragraph.

o X HTML provides six headers (hi through h6) for specifying the relative importance of informa

tion. Header element hi is considered the most significant header and is rendered in a larger font

than the other five headers. Each successive header element (i.e., h2, h3, etc.) is rendered in a

smaller font.

o Web browsers typically underline text hyperlinks and color them blue by default.

o The tag usually causes a browser to render text in a bold font.

o Users can insert links with the a (anchor) element. The most important attribute for the a element

is href, which specifies the resource (e.g., page, file, e-mail address) being linked.

o Anchors can link to an e-mail address using a mailto URL. When someone clicks this type of

anchored link, most browsers launch the default e-mail program (e.g., Outlook Express) to initiate

e-mail messages to the linked addresses.

o The img element's src attribute specifies an image's location. Optional attributes width and

height specify the image width and height, respectively. Images are measured in pixels ("picture

elements "), which represent dots of color on the screen.

o The alt attribute makes Web pages more accessible to users with disabilities, especially those

with vision impairments.

Appendix E Introduction to XHTML 1 27 1

o Some X HTML elements are empty elements, contain only attributes and do not mark up text.

Empty elements (e.g., img) must be terminated, either by using the forward slash character (I) or

by explicitly writing an end tag.

o The br element causes most browsers to render a line break. Any markup or text following a br

element is rendered on the next line.

o X HTML provides special characters or entity references (in the form &code;) for representing

characters that cannot be marked up.

o Most browsers render a horizontal rule, indicated by the <hr / > tag, as a horizontal line. The hr

element also inserts a line break above and below the horizontal line.

o The unordered list element ul creates a list in which each item in the list begins with a bullet sym

bol (called a disc). Each entry in an unordered list is an Ii (list item) element. Most W eb browsers

render these elements with a line break and a bullet symbol at the beginning of the line.

o Lists may be nested to represent hierarchical data relationships.

o Attribute type specifies the sequence type (i.e., the set of numbers or letters used in the ordered list).

o X HTML tables mark up tabular data and are one of the most frequently used features in X HTML.

o The table element defines an X HTML table. Attribute border specifies the table's border

width, in pixels. Tables without borders set this attribute to "0".

o Element swmnary summarizes the table's contents and is used by speech devices to make the ta

ble more accessible to users with visual impairments.

o Element caption describe's the table's content. The text inside the <caption> tag is rendered

above the table in most browsers.

o A table can be split into three distinct sections: head (thead), body (tbody) and foot (tfoot).

The head section contains information such as table titles and column headers. The table body con

tains the primary table data. The table foot contains information such as footnotes.

o Element tr, or table row, defines individual table rows. Element th defines a header cell. Text in

th elements usually is centered and displayed in bold by most browsers. This element can be

present in any section of the table.

o Data within a row are defined with td, or table data, elements.

o Element colgroup groups and formats columns. Each col element can format any number of

columns (specified with the span attribute).

o The document author has the ability to merge data cells with the rowspan and col span at

tributes. The values assigned to these attributes specify the number of rows or columns occupied

by the cell. These attributes can be placed inside any data-cell tag.

o X HTML provides forms for collecting information from users. Forms contain visual components,

such as buttons that users click. Forms may also contain non-visual components, called hidden in

puts, which are used to store any data, such as e-mail addresses and X HTML document file names

used for linking.

o A form begins with the form element. Attribute method specifies how the form's data is sent to

the Web server.

o The "text" input inserts a text box into the form. Text boxes allow the user to input data.

o The input element's size attribute specifies the number of characters visible in the input el

ement. Optional attribute maxlength limits the number of characters input into a text box.

o The" submi t" input submits the data entered in the form to the Web server for processing. Most

Web browsers create a button that submits the form data when clicked. The "reset" input al

lows a user to reset all form elements to their default values.

1272 Introduction to XHTML Appendix E

• The textarea element inserts a multiline text box, called a text area, into a form. The number

of rows in the text area is specified with the rows attribute and the number of columns (i.e., char

acters) is specified with the cols attribute.

• The "password" input inserts a password box into a form. A password box allows users to enter

sensitive information, such as credit-card numbers and passwords, by "masking " the information

input with another character. Asterisks are the masking character used for password boxes. The

actual value input is sent to the Web server, not the asterisks that mask the input.

• The checkbox input allows the user to make a selection. When the checkbox is selected, a check

mark appears in the checkbox. Otherwise, the checkbox is empty. Checkboxes can be used indi

vidually and in groups. Checkboxes that are part of the same group have the same name.

• A radio button is similar in function and use to a checkbox, except that only one radio button in a

group can be selected at any time. All radio buttons in a group have the same name attribute value

and have different attribute values.

• The select input provides a drop-down list of items. The name attribute identifies the drop-down

list. The option element adds items to the drop-down list. The selected attribute, like the

checked attribute for radio buttons and checkboxes, specifies which list item is displayed initially.

TERMINOLOGY
<! --... --> (X HTML comment)

a element «a> ... </a»

action attribute

alt attribute

& (& special character)

anchor

angle brackets « »

attribute

body element

border attribute

br (line break) element

browser request

<caption> tag

checkbox

checked attribute

col element

colgroup element

cols attribute

col span attribute

comments in X HTML

© (© special character)

disc

element

e-mail anchor

empty tag

form

form element

head element

header

header cell

header elements (hl through h6)

height attribute

hexadecimal code

hidden input element

<hr / > tag (horizontal rule)

href attribute

• htm (XHTML file-name extension)

.html (XHTML file-name extension)

<html> tag

hyperlink

image hyperlink

img element

input element

level of nesting

 (list item) tag

linked document

mailto: URL

markup language

maxlength attribute

method attribute

name attribute

nested list

nested tag

01 (ordered list) element

p (paragraph) element

password box

"radio" (attribute value)

rows attribute (textarea)

rowspan attribute (tr)

selected attribute

size attribute (input)

special character

Appendix E

src attribute (img)

 tag

sub element

subscript

superscript

syntax

table element

tag

tbody element

tdelement

text editor

textarea

textarea element

tfoot (table foot) element

<thead> • • • </thead>

title element

tr (table row) element

Introduction to XHTML

type attribute

unordered-list element (ul)

valign attribute (th)

value attribute

Web page

Web server

width attribute

World Wide Web (WWW)

X HTML (Extensible Hypertext Markup

Language)

X HTML comment

X HTML form

X HTML markup

X HTML tag

XML declaration

xmlns attribute

1273

XHTML
Special Characters

The table of Fig. F. I shows many commonly used XHTML special characters-called

character entity references by the World Wide Web Consortium. For a complete list of

character entity references, see the site

www.w3.org/TR/REC-htm140/sgml/entities.html

Character XHTML encoding

non-breaking space

§
©

®

a

11

a

a

Fig. F.l

§

©

®

¼

½

¾

à

á

â

ã

å

ç

è

é

XHTML special characters.

Character

fi

b

6

{)

6

u

U

Q

TM

XHTML encoding

ê

ì

í

î

ñ

ò

ó

ô

õ

÷

ù

ú

û

•

™

Bibliography

Alhir, S. UML in a Nutshell. Cambridge, MA: O'Reilly & Associates, Inc., 1998.

Allison, C. "Text Processing I." The C Users lournal Vol. 10, No. 10, October 1992, 23-28.

Allison, C. "Text Processing n." The C Users lournal Vol. 10, No. 12, December 1992, 73-77.

Allison, C. "Code Capsules: A C++ Date Class, Part I, " The C Users lournal Vol. I I, No. 2, Febru-

ary 1993, 123-131.

Allison, C. "Conversions and Casts." The C/C++ Users lournal Vol. 12, No. 9, September 1994,

67-85.

Almarode, J. "Object Security." Smalltalk Report Vol. 5, No.3 NovemberlDecember 1995, 15-17.

American National Standard, Programming Language C++. (ANSI Document ISO/IEC 14882),

New York, NY: American National Standards Institute, 1998.

Anderson, A. E. and W. J. Heinze. C++ Programming and Fundamental Concepts. Englewood

Cliffs, NJ: Prentice Hall, 1992.

Baker, L. C Mathematical Function Handbook. New York, NY: McGraw Hill, 1992.

Bar-David, T. Object-Oriented Design for C++. Englewood Cliffs, NJ: Prentice Hall, 1993.

Beck, K. "Birds, Bees, and Browsers-Obvious Sources of Objects. " The Smalltalk Repor/ Vol. 3,

No.8, June 1994,13.

Becker, P. "Shrinking the Big Switch Statement. " Windows Tech lournal Vol. 2, No. 5, May 1993,

26-33.

Becker, P. "Conversion Confusion." C++ Report October 1993, 26-28.

Berard, E. V. Essays on Object-Oriented Software Engineering: Volume I. Englewood Cliffs, NJ:

Prentice Hall, 1992.

Binder, R. V. "State-Based Testing. " Object Magazine Vol. 5, No. 4, August 1995, 75-78.

Binder, R. V. "State-Based Testing: Sneak Paths and Conditional Transitions. " Object Magazine Vol.

5, No. 6, October 1995, 87-89.

Blum, A. Neural Networks in C++: An Object-Oriented Framework for Building Connectionist Sys

tems. New York, NY: John Wiley & Sons, 1992.

1276 Bibliography

Booch, G. Object-Oriented Analysis and Design, Second Edition. Reading, MA: Addison-Wesley,

1994.

Booch, G. Object Solutions: Managing the Object-Oriented Project. Reading, MA: Addison-Wes

ley, 1996.

Booch, G. Object-Oriented Design with Applications, Third Edition. Reading: MA: Addison-Wes

ley, 2003.

Booch, G., Rumbaugh, J. and I. Jacobson. The Unified Modeling Language User Guide. Reading,

MA: Addison-Wesley, 1999.

Cargill, T. Programming Style. Reading, MA: Addison-Wesley, 1992.

Carroll, M. D. and M. A. Ellis. Designing and Coding Reusable C++ . Reading, MA: Addison-Wes

ley, 1995.

Coplien, J. O. and D. C. Schmidt. Pattern Languages of Program Design. Reading, MA: Addison

Wesley, 1995.

Deitel, H. M. Operating Systems, Second Edition. Reading, MA: Addison-Wesley, 1990.

Deitel, H. M. and P. J. Deitel. Java How to Program, Fourth Edition. Upper Saddle River, NJ: Pren

tice Hall, 2002.

Deitel, H. M. and P. 1. Deitel. C How to Program, Third Edition. Upper Saddle River, NJ: Prentice

Hall, 2000.

Deitel, H. M. and P. J. Deitel. The Java Multimedia Cyber Classroom, Fourth Edition. Upper Saddle

River, NJ: Prentice Hall, 2002.

Duncan, R. "Inside C++: Friend and Virtual Functions, and Multiple Inheritance." PC Magazine 15

October J 991, 417-420.

Ellis, M. A. and B. Stroustrup. The Annotated C++ Reference Manual. Reading, MA: Addison

Wesley, 1990.

Embley, D. w., B. D. Kurtz and S. N. Woodfield. Object-Oriented Systems Analysis: A Model

Driven Approach. Englewood Cliffs, NJ: Yourdon Press, 1992.

Entsminger, G. and B. Eckel. The Tao of Objects: A Beginner's Guide to Object-Oriented Program

ming. New York, NY: Wiley Publishing, 1990.

Firesmith, D.G. and B. Henderson-Sellers. "Clarifying Specialized Forms of Association in UML

and OML." Journal of Object-Oriented Programming May 1998: 47-50.

Flamig, B. Practical Data Structures in C++. New York, NY: John Wiley & Sons, 1993.

Fowler, M. and K. Scott. UML Distilled: Applying the Standard Object Modeling Language. Read

ing, MA: Addison-Wesley, 1997.

Gamma, E., R. Helm, R. Johnson and J. V lissides, Design Patterns: Elements of Reusable Object

Oriented Software. Reading, MA: Addison-Wesley, 1995.

Gehani, N. and W. D. Roome. The Concurrent C Programming Language. Summit, NJ: Silicon

Press, 1989.

Giancola, A. and L. Baker. "Bit Arrays with C++." The C Users Journal Vol. 10, No.7, July 1992,

2 1-26.

Glass, G. and B. Schuchert. The STL <Primer>. Upper Saddle River, NJ: Prentice Hall PTR, 1995.

Gooch, T. "Obscure C++." Inside Microsoft Visual C++ Vol. 6, No. I I, November 1995, 13-15.

Hansen, T. L. The C++ Answer Book. Reading, MA: Addison-Wesley, 1990.

Henricson, M. and E. Nyquist. Industrial Strength C++: Rules and Recommendations. Upper Sad

dle River, NJ: Prentice Hall, 1997.

Bibliography 1 277

International Standard: Programming Languages-C++. ISO/IEC 14882: 1998. New York, NY:

American National Standards Institute, 1998.

Jacobson, I. "Is Object Technology Software's Industrial Platform?" IEEE Software Magazine Vol.

10, No. I, January 1993, 24-30.

Jaeschke, R. Portability and the C Language. Indianapolis, IN: Sams Publishing, 1989.

Johnson, L.J. "Model Behavior." Enterprise Development May 2000: 20-28.

Josuttis, N. The C++ Standard Library: A Tutorial and Reference. Boston, MA: Addison-Wesley,

1999.

Kernighan, B. W. and D. M. Ritchie. The C Programming La.nguage, Second Edition. Englewood

Cliffs, NJ: Prentice Hall, 1988.

Knight, A. "Encapsulation and Information Hiding." The Smalltalk Report Vol. I, No.8 June 1992,

19-20.

Koenig, A. "What is C++ Anyway?" lournal of Object-Oriented Programming April/May 1991,

48-52.

Koenig, A. "Implicit Base Class Conversions." The C++ Report Vol. 6, No.5, June 1994, 18-19.

Koenig, A. and B. Stroustrup. "Exception Handling for C++ (Revised), " Proceedings of the USENIX

C++ Conference, San Francisco, CA, April 1990.

Koenig, A. and B. Moo. Ruminations on C++: A Decade of Programming Insight and Experience.

Reading, MA: Addison-Wesley, 1997.

Kruse, R. L., B. P. Leung and C. L. Tondo. Data Structures and Program Design in C. Englewood

Cliffs, NJ: Prentice Hall, 1991.

Langer, A. and K. Kreft. Standard C++ IOStreams and Locales: Advanced Programmer's Guide

and Reference. Reading, MA: Addison-Wesley, 2000.

Lejter, M., S. Meyers and S. P. Reiss. "Support for Maintaining Object-Oriented Programs, " IEEE

Transactions on Software Engineering Vol. 18, No. 12, December 1992, 1045-1052.

Lippman, S. B. C++ Primer, Third Edition, Reading, MA: Addison-Wesley, 1998.

Lorenz, M. Object-Oriented Software Development: A Practical Guide. Englewood Cliffs, NJ: Pren

tice Hall, 1993.

Lorenz, M. "A Brief Look at Inheritance Metrics." The Smalltalk Report Vol. 3, No.8 June 1994, I,

4-5.

Martin, J. Principles of Object-Oriented Analysis and Design. Englewood Cliffs, NJ: Prentice Hall,

1993.

Martin, R. C. Designing Object-Oriented C++ Applications Using the Booch Method. Englewood

Cliffs, NJ: Prentice Hall, 1995.

Matsche, J. J. "Object-Oriented Programming in Standard c." Object Magazine Vol. 2, No.5, Janu

ary /February 1993, 7 1-74.

McCabe, T. J. and A. H. Watson. "Combining Comprehension and Testing in Object-Oriented

Development." Object Magazine Vol. 4, No. I, March/April 1994, 63-66.

McLaughlin, M. and A. Moore. "Real-Time Extensions to the UML." DI: Dobb's lournal December

1998: 82-93.

Melewski, D. "UML Gains Ground." Application Development Trends October 1998: 34--44.

Melewski, D. "UML: Ready for Prime Time?" Application Development Trends November 1997:
30-44.

1278 Bibliography

Melewski, D. "Wherefore and What Now, UML?" Application Development Trends December

1999: 61-68.

Meyer, B. Object-Oriented Software Construction, Second Edition. Englewood Cliffs, NJ: Prentice

Hall, 1997.

Meyer, B. Eiffel: The Language. Englewood Cliffs, NJ: Prentice Hall, 1992.

Meyer, B. and D. Mandrioli. Advances in Object-Oriented Software Engineering. Englewood Cliffs,

NJ: Prentice Hall, 1992.

Meyers, S. "Mastering User-Defined Conversion Functions." The C/C++ Users lournal Vol. 13, No.

8, August 1995, 57-63.

Meyers, S. More Effective C++: 35 New Ways to Improve Your Programs and Designs. Reading,

MA: Addison-Wesley, 1996.

Meyers, S. Effective C++: 50 Specific Ways to Improve Your Programs and Designs, Second Edi

tion. Reading, MA: Addison-Wesley, 1998.

Meyers, S. Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library.

Reading, MA: Addison-Wesley, 200 I.

Muller, P.lnstant UML. Birmingham, UK: Wrox Press Ltd, 1997.

Murray, R. C++ Strategies and Tactics. Reading, MA: Addison-Wesley, 1993.

Musser, D. R. and A. A. Stepanov. "Algorithm-Oriented Generic Libraries." Software Practice and

Experience Vol. 24, No.7, July 1994.

Musser, D. R., G. J. Derge and A. Saini. STL Tutorial and Reference Guide: C++ Programming with

the Standard Template Library, Second Edition. Reading, MA: Addison-Wesley, 2001.

Nelson, M. C++ Programmer's Guide to the Standard Template Library. New York, NY: Wiley

Publishing, 1995.

Nerson, 1. M. "Applying Object-Oriented Analysis and Design." Communications of the ACM, Vol.

35, No.9, September 1992, 63-74.

Nierstrasz, 0., S. Gibbs and D. Tsichritzis. "Component-Oriented Software Development." Commu

nications of the ACM Vol. 35, No.9, September 1992, 160-165.

Perry, P. "UML Steps to the Plate." Application Developm.ent Trends May 1999: 33-36.

Pinson, L. 1. and R. S. Wiener. Applications of Object-Oriented Programming. Reading, MA: Addi

son-Wesley, 1990.

Pittman, M. "Lessons Learned in Managing Object-Oriented Development." IEEE Software Maga

zine Vol. 10, No.1, January 1993, 43-53.

Plauger, P. J. The Standard C Library. Englewood Cliffs, NJ: Prentice Hall, 1992.

Plauger, D. "Making C++ Safe for Threads." The C Users lournal Vol. I I, No. 2, February 1993,

58-62.

Pohl, 1. C++ Distilled: A Concise ANSI/ISO Reference and Style Guide. Reading, MA: Addison

Wesley, 1997.

Pohl, T. Object-Oriented Programming Using C++, Second Edition. Reading, MA: Addison-Wesley,

1997.

Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. Flannery. Numerical Recipes in C, Second

Edition. Cambridge, MA: Cambridge University Press, 1992.

Prieto-Diaz, R. "Status Report: Software Reusability." IEEE Software Vol. 10, No.3, May 1993, 61-

66.

Prince, T. 'Tuning Up Math Functions." The C Users Journal Vol. 10, No. 12, December 1992.

Bibliography 1279

Prosise, J. "Wake Up and Smell the MFC: Using the Visual C++ Classes and Applications Frame

work." Microsoft Systems Journal Vol. 10, No.6, June 1995, 17-34.

Rabinowitz, H. and C. Schaap. Portable C. Englewood Cliffs, NJ: Prentice Hall, 1990.

Reed, D. R. "Moving from C to C++." Object Magazine Vol. I, No.3, September/October 1991, 46-

60.

Ritchie, D. M. "The UNiX System: The Evolution of the UNIX Time-Sharing System." AT&T Bell

Laboratories Technical Journal Vol. 63, No.8, Part 2, October 1984, 1577-1593.

Ritchie, D. M., S. C. Johnson, M. E. Lesk and B. W. Kernighan. "UNiX Time-Sharing System: The

C Programming Language." The Bell System Technical Journal Vol. 57, No. 6, Part 2, July/

August 1978, 1991-2019.

Rosier, L. "The UNIX System: The Evolution of C-Past and Future." AT&T Laboratories Techni

cal Journal Vol. 63, No.8, Part 2, October 1984, 1685-1699.

Robson, R. Using the STL: The C++ Standard Template Library. New York, NY: Springer Verlag,

2000.

Rubin, K. S. and A. Goldberg. "Object Behavior Analysis." Communications of the ACM Vol. 35,

No.9, September 1992, 48-62.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-Oriented Modeling and

Design. Englewood Cliffs, NJ: Prentice Hall, 1991.

Rumbaugh, J., Jacobson, I. and G. Booch. The Unified Modeling Language Reference Manual.

Reading, MA: Addison-Wesley, 1999.

Saks, D. "Inheritance." The C Users Journal May 1993, 81-89.

Schildt, H. STL Programming from the Ground Up. Berkeley, CA: Osborne McGraw-Hili, 1999.

Schlaer, S. and S. J. Mellor. Object Lifecycles: Modeling the World in States. Englewood Cliffs, NJ:

Prentice Hall, 1992.

Schmuller, J. Sam's Teach Yourself UML in 24 Hours. Indianapolis: Macmillan Computer Publish

ing, 1999.

Sedgwick, R. Algorithms in C++. Reading, MA: Addison-Wesley, 1992.

Sessions, R. Class Construction in C and C++: Object-Oriented Programming. Englewood Cliffs,

NJ: Prentice Hall, 1992.

Skelly, C. "Pointer Power in C and C++." The C Users Journal Vol. I I, No.2, February 1993, 93-

98.

Smith, J. D. Reusability & Software Construction in C & C++. New York, NY: John Wiley & Sons,

1990.

Snyder, A. "The Essence of Objects: Concepts and Terms." 1£££ Software Magazine Vol. 10, No.1,

January 1993, 31-42.

Stepanov, A. and M. Lee. "The Standard Template Library." 31 October 1995

<www.cs.rpi.edu/-musser/doc.ps>.

Stroustrup, B. "The UNIX System: Data Abstraction in c." AT&T Bell Laboratories Technical Jour

nal Vol. 63, No.8, Part 2, October 1984, 1701-1732.

Stroustrup, B. "What is Object-Oriented Programming? " 1£££ Software Vol. 5, No. 3, May 1988,

10-20.

Stroustrup, B. "Parameterized Types for C++." Proceedings of the US£NIX C++ Conference Den

ver, CO, October 1988.

1280 Bibliography

Stroustrup, B. "Why Consider Language Extensions?: Maintaining a Delicate Balance." The C++

Report September 1993, 44-5 I.

Stroustrup, B. "Making a vector Fit for a Standard." The C++ Report October 1994.

Stroustrup, B. The Design and Evolution of c++. Reading, MA: Addison-Wesley, 1994.

Stroustrup, B. The C++ Programming Language, Special Third Edition. Reading, MA: Addison

Wesley, 2000.

Taligent's Guide to Designing Programs: Well-Mannered Object-Oriented Design in C++. Reading,

MA: Addison-Wesley, 1994.

Taylor, D. Object-Oriented Information Systems: Planning and Implementation. New York, NY:

John Wiley & Sons, 1992.

Tondo, C. L. and S. E. Gimpel. The C Answer Book. Englewood Cliffs, NJ: Prentice Hall, 1989.

Unified Modeling Language Specification: Version 1. 4. Framingham, MA: Object Management

Goup (OM G), 2001.

Urlocker, Z. "Polymorphism Unbounded." Windows Tech lournal Vol. 1, No. 1, January 1992, 11-

16.

Van Camp, K. E. "Dynamic Inheritance Using Filter Classes." The C/C++ Users lournal Vol. 13,

No. 6, June 1995,69-78.

Vi lot, M. J. "An Introduction to the Standard Template Library." The C++ Report Vol. 6, No. 8,

October 1994.

Voss, G. Object-Oriented Programming: An Introduction. Berkeley, CA: Osborne McGraw-Hili,

1991.

Voss, G. "Objects and Messages." Windows Tech lournal February 1993, 15-16.

Wang, B. L. and J. Wang. "Is a Deep Class Hierarchy Considered Harmful?" Object Magazine Vol.

4, No. 7, NovemberlDecember 1994,35-36.

Weisfeld, M. "An Alternative to Large Switch Statements." The C Users lournal Vol. 12, No. 4,

April 1994,67-76.

Weiskamp, K. and B. Flamig. The Complete C++ Primer, Second Edition. Orlando, FL: Academic

Press, 1993.

Wiebel, M., and S. Halladay. "Using OOP Techniques Instead of switch in C++." The C Users lour

nal Vol. 10, No. 10, October 1993, 105-1 12.

Wiener, R. S. and L. 1. Pinson. An Introduction to Object-Oriented Programming and C++. Read

ing, MA: Addison-Wesley, 1988.

Wilde, N. and R. Huitt. "Maintenance Support for Object-Oriented Programs." IEEE Transactions

on Software Engineering Vol. 18, No. 12, December 1992, 1038-1044.

Wilde, N., P. Matthews and R. Huitt. "Maintaining Object-Oriented Software." IEEE Software Mag-

azine Vol. 10, No. I, January 1993, 75-80.

Wilson, G. V. and P. Lu. Parallel Programming Using C++. Cambridge, MA: MIT Press, 1996.

Wilt, N. "Templates in C++." The C Users lournal May 1993,33-5 I.

Wirfs-Brock, R., B. Wilkerson and L. Wiener. Designing Object-Oriented Software. Englewood

Cliffs, NJ: Prentice Hall PTR, 1990.

Wyatt, B. B., K. Kavi and S. Hufnagel. "Parallelism in Object-Oriented Languages: A Survey."

IEEE Software Vol. 9, No. 7, November 1992, 56-66.

Yamazaki, S., K. Kajihara, M. Ito and R. Yasuhara. "Object-Oriented Design of Telecommunication

Software." IEEE Software Magazine Vol. 10, No. 1, January 1993,81-87.

Symbols
- - unary operator 99

! (l ogical NOT) 1 24, 1 26, I 1 90

! = (i nequal i ty operator) 35 , 36,

550, 1 1 90

preprocessor operator 22, 1 054,

1 059

preprocessor operator 1 059

$ U n i x command l i ne prompt

1 067

% modulus operator 3 1

% prompt 1 067

& (address operator) 322, 323,

1 1 90

& and * operators as i nverses 324

& character 907

& in a parameter l i st 2 1 3

& to decl are reference 2 1 I

&& (l ogical AND operator) 1 24,

1 25 , 205 , 1 1 90

&= (b i tw i se AND assignment

operator) 1 1 69, 1 1 90

& frac 1 4 ; enti ty reference 1 249

&It ; enti ty reference 1 249

() funct ion ca l l operator 1 75

* (pointer dereference operator)

323

* operator 3 I

+ operator 29, 3 1

+ + operator 99

++ operator on an i terator 1 098

+ = operator 98, 550, 854

• * operator I 1 99, 1 20 I

Index

. h header fi le 1 80. 1 8 1

/ operator 3 1

/ / s ingle- l i ne comment 22

: : (b inary scope reso lut ion

operator) 497

: : (unary scope resolut ion

operator) 2 1 7 , 1 1 89 , 1 200

< (less-than operator) 35

« left sh ift 29

< < operator 23

< = (Iess-than-or-equal-to

operator) 35

< c s t ring> 362

< l i s t > 1 1 1 3

< s tring> 588

< typeinfo> header fi le 7 1 4

<vector> 592

= operator 29, 3 1 , 1 26

== (equal i ty operator) 35 , 1 26,

550

> (greater-than operator) 35

- > (member selection v ia pointer)

1 1 99

- > * operator I 1 99

> = (greater-than-or-equal- to

operator) 35

» right sh ift 30

? : (ternary condit ional operator)

78 , 205

\ backs lash-character escape

sequence 24

\ " double-quote-character escape

sequence 24

\a alert 24

\n (ne w l i ne) escape sequence 24

\ r carriage-return 24

\ t tab 24, 1 59

A (b i tw ise exc lus ive OR operator)

1 1 90

A = (b i tw ise exc lus ive OR

ass ignment operator) I 1 69,

1 1 9 1

1 1 90

I = (b i tw ise inc lus ive OR

ass ignment operator) I 1 69,

1 1 9 1

I I (l ogical O R operator) 1 24, 1 25 ,

205 , 1 1 90

I I (l ogical O R) operator truth

tab le 1 25

"object speak" xxxv i i

"object t h i nk" xxxv i i

' \ 0 ' 360

' \ n ' 360

Numerics
o poi nter 959

ox 755

Ox 755

1 2-hour c lock format 408

24-hour c lock format 408

A
a element 1 242, 1 247

1282

abbrev iated assignment operator

99

abbrev iat ing assignment

expressions 98

abort 790, 796, 1 060, 1 076

abort a program 784

absolute value 1 73

abstract c lass 663, 680, 68 1 , 682,

696

abstract data type (ADT) 4 1 1 , 4 1 3 ,

502, 504

abstraction 40, 6 1 1

access a g lobal variable 2 1 7

access c lass member 4 1 8

access function 426, 427

access member off handle 4 1 8

access non- s t a t i c c lass data

members and mem ber

functions 500

access private member of a

c lass 424

access priv i l ege 3 3 1 , 335

access structure member 4 1 8,

1 002

access the cal ler ' s data 2 1 1

access v io lation 54, 362, 1 093

Accessing an object ' s members

through each type of object

handle 4 1 9

access ing union members 1 08 1

accessor member function 426

accounts recei vable fi l e 8 1 1

accounts recei vable program 847

accounts recei vable system 8 1 2

accumulate 1 1 04, 1 1 72, 1 1 74

accumulated output 29

accumulator 387 , 388

action 3 , 77 , 79, 82 , 227, 502

action attribute 1 262

act ion attr ibute (form) 897,

898

act ion expression 74, 77, 78 , 83,

1 08, 1 1 7 , 1 2 1

act ion- label 228

action-oriented 4 1

action state 74, 1 30

action state symbol 74

act ion/dec is ion model of

programming 77 , 78

activation 30 I

act ivation bar 303

act iv i ty 74, 30 I

act iv i ty diagram 7 3 , 74, 76, 78 , 82,

1 08 , 1 30, 229, 230, 296, 374

do/wh i l e structure 1 2 1

for structure 1 08

i f structure 77

i f/e l s e structure 78

sequence structure 73

swi tch structure I 1 8

whi l e structure 82

act i v ity diagram that mode ls the

elevator ' s logic for

responding to button presses

230

actor 1 39

Ada 1 3

adapter I 1 28

add a new account to a fi le 835

add an in teger to a poi nter 34 1

addition 5, 30, 3 1 , 32

addi t ion assignment operator (+ =)

98

Addit ion program 26

address (&:) of a structure 1 002

address of a bit fie ld 1 020

address operator (&:) 322, 325,

336, 548, 1 200

addressable storage un i t 1 020

adj acent_d i f f erence

1 1 04, 1 1 66

adj acent_f ind 1 1 04, I 1 68

"admin istrative" section of the

computer 6

aggregate data type 406

A iming a derived-class poi n ter at a

base-class object 67 1

air l i ne reservation system 3 1 1 ,

824

alert escape sequence (. a •) 24

alert escape seq uence (• a .) 1 024

algebraic expression 32

<algoritlun> 1 82, 1 1 1 1

algorithm 54, 72, 77 , 78 , 83, 89,

943, 1 092, 1 1 03, 1 1 33

algori thms copy_backward,

merge, unique and

reverse I 1 52

algori thms equal, mi smatch

and

lexi cographical_com

pare 1 1 36

algori thms f i l l , f i l l_n,

generate and

gene rate_n 1 1 34

algorithms inplac e_merge,

unique_copy and

revers e_copy 1 1 55

algori thms lower_bound,

upper_bound and

equal_range 1 1 60

algori thms min and max I 1 65

Index

algori thms of the STL 7 1 9

algori thms remove,

remove_i f ,

remove_copy and

remove_copy_i f 1 1 39

algori thms replace,

replace_i f ,

replace_copy and

replace_copy_i f 1 1 42

algorithm s separated from

container 1 1 03

algori thms swap, i t e r_swap

and swap_range s I 1 50

a l ias 2 1 3 , 323 , 325 , 870

a l ias for a type 1 096

a l ias for the name of an object 445

a l ignment 1 003

a l locate dynamic memory 797

a l locate memory 1 82, 495

a l locator I I 1 2

alphabet iz ing strings 367

alt attribute 1 246

alter the flow of control 1 22

ALU 5

ambiguity problem 1 20 I , 1 204

American National Standards

Committee on Computers

and I nformation Processing

(X3) 9

American National Standards

Ins t i tute (ANS I) 3 , 504

A merican Standard Code for

I nformation I nterchange

(A SC I I) 367

analysi s 42

analysis phase 374

Analyt ical Engine 1 3

and operator keyword I 1 90

and_eq operator keyword 1 1 90

"ANDed" 1 0 1 0

angle brackets (< and » 222, 720,

1 0 54

anonymous uni on 1 082

A N S I 3 , 9

A N S I C 9, 20

ANS III S O 9899: 1 990 9

ANSII lSO C++ Standard 2 1 ,

1 1 75 , 1 1 76, 1 232 , 1 235

any 1 1 69

Apache HTIP server 882, 884,

886

Apache Software Foundation 884

append 855

append data to a fi l e 8 1 4

append output symbol (») 1 067

Apple Computer 7

Index

approxi mation of float ing-point

numbers 93

arbi trary range of subscripts 504

argc 1 070

argument 1 7 1

argument coercion 1 79

argument for a macro 1 056

arguments i n correct order 1 75

arguments passed to member-

object constructors 479

argv [] 1 070

ari thmet ic 1 7

ari thmet ic and logic un i t (A L U) 5

ari thmet ic ass ignment operator 98,

99

ari thmet ic average 278

ari thmet ic calculat ion 3 1

ari thmet ic mean 32

ari thmetic operator 3 1

ari thmet ic overflow 7 8 1

ari thmet ic overflow error 800

ari thmet ic underflow error 800

"ari ty" of an operator 549

ARPA 1 8

ARPAnet 1 8 , 1 9

array 253, 254, 334, 504, 505, 946

array ass ignment 504

array bounds 266, 267

array bounds check ing 266

Array c lass 557

Array c l ass defi n i t ion wi th

overloaded operators 557

Array c lass member-funct ion

and f r i end funct ion

defi n i t ions 558

Array c l ass test program 56 1

array comparison 504

array i n i t ia l izer l i st 258

array i nput/output 504

array name 344, 345

array name as a constant pointer to

begi n n i ng of array 3 34, 344,

345

array notation 345

array of pointers to funct ions 358,

395

array of s tr ings 349

array s ize 272

array-sort funct ion 7 1 9

array-subscri pt operator ([]) 564

array subscript i ng 3 34, 345

arrays and funct ions 273

arrays as fu l l -fledged objects 256

arrays passed by reference 276

arrays that know the ir s i ze 504

arrow 67, 74

arrow member selection operator

(- >) 407, 408, 4 1 8

arrow operator (- >) 49 1

arrowhead 30 I

ASC I I (American Standard Code

for Informat ion I n terchange)

1 1 6, 360, 367, 744

ASC I I character set 68

ASC I I dec imal equivalent of a

character 998

asct ime function 888, 890

assembler 8

assembly language 7

a s s ert 1 060

< a s s ert . h> header fi le 1 8 1

a s s i gn 1 1 1 7

assign one i terator to another I 1 02

assigned the value of 36

ass ign ing a structure to a structure

of the same type 1 002

ass ign ing a union to another

union of the same type

1 08 1

Ass igning addresses of base-c lass

and deri ved-c l ass objects to

base-c lass and deri ved-c lass

poin ters 669

ass ign i ng character stri ngs to

st ring objects 578

ass ign ing c lass objects 426, 449

assignment operator (=) 29, 39,

1 02, 448, 547, 548, 1 097

ass ignment operator (ari thmet ic)

98

ass ignment statement 29, 1 0 1

assignment-operator function 566

assoc iate from left-to-right 1 02

assoc iate from right-to-Ieft 39,

1 02, 1 1 6

assoc iat ion 42, 1 42, 1 43 , 1 1 26

assoc iat ion between c lasses 1 42

associat ions between c l asses in a

class d iagram 1 42

assoc iat ive array 1 1 26

associat ive container 1 094, 1 097,

1 1 0 1 , 1 1 1 9, 1 1 22

associat iv i ty 39, 1 26, 1 27

associat iv i ty not changed by

overload ing 549

associat iv i ty of operators 32

asteri sk (*) 3 1 , 1 65

asynchronous event 78 1

at 854, 870, 1 1 05, 1 1 1 2 , 1 1 69

at member function of c lass

s t ring 854

AT&T 1 4

1 283

atexit fu nct ion 1 073 , 1 074

atof fu nct ion 1 026

atoi funct ion 9 1 2, 993, 996,

1 026, 1 027

atol funct ion 1 026

Attempt ing to call a m u l t ip ly

i n herited funct ion

polymorph ical l y 1 206

Attempt ing to modify a constant

pointer to constant data 335

Attempt ing to mod i fy a constant

poi nter to nonconstant data

334

Attempt ing to modify data through

a nonconstant pointer to

constant data 3 3 3

attribute 4 0 , 4 1 , 1 42, 225, 296,

374, 405 , 4 1 1

attribute name 226

attribute of an element 1 239

attr ibute type 226

attributes of a variable 1 92

auto 1 92, 1 93

autoJ)tr 797, 798, 799

aut oJ)tr object goes out of

scope 798

autoJ)t r object manages

dynamical ly a l located

memory 798

autoJ)tr overloaded * operator

799

aut oJ)t r overloaded - >

operator 799

automated tel ler m ach ine 824

automatic array 258

automatic array i n i t ia l izat ion 270

automatic local array 270

automatic local object 436

automatic local variable 1 93 , 1 96,

2 1 4

automatic object 7 84, 792

automatic storage c l ass 1 93 , 253,

272

automatic variable 960

automat ica l ly destroyed 1 96

automobi le 1 68

average 32, 92, 278

average ca lcu lat ion 83

average of several i ntegers 1 64

averaging ca lcu lat ion 89

avoid repeat i n g code 433

aware of 648

B
8 8

1 284

B abbage, Charles 1 3

back 1 1 05, 1 1 1 1 , 1 1 30

back_inserter I 1 54, I 1 56

backslash (\) 23, 1 05 7

backslash (\ \) escape sequence

24

backslash zero 267

backward pointer 960

backwards traversal 869

bad_except i on 800

bad member function 766

bad_alloc exception 793, 794,

796, 800, 945, 1 1 1 2

bad_cast exception 800

bad_except i on 800

bad_type i d exception 800

badbit 744, 766, 8 1 5

balanced tree 977

Bank account program 835

banking system 824

bar chart 1 65 , 262

base-2 number system 1 008

base-8 number system 755

base- I O number system 1 73, 755

base- 1 6 number system 755

base case(s) 1 99, 204, 206

base class 6 1 0, 6 1 1 , 6 1 3, 650, 654,

7 1 3

base-class catch 800

base-class constructor 629, 642

base-class default constructor 629

base class Employee 700

base-c lass exception 800

base-class member accessibil ity in

derived class 649

base-class pointer (or reference

type) 695, 700, 945

base-c lass pointer to a derived-

c lass object 699

base-c lass private member 6 1 4

base-class reference 678, 695 , 945

base e 1 7 3

base specified for a stream 760

base-c lass member function

redefined in a derived class

636

base l i ne 1 25 7

BasePlusCommi s s i on

Employee class header fi le

709

BasePlu sCommi s s i on

Employee class

implementation fi le 7 1 0

BASIC (Beginner ' s Al l -Purpose

Symbolic Instruction Code)

1 1 , 943, 987, 999

basic searching and sorting

algorithms of the Standard

Library 1 1 48

bas ic_f stream template 742,

8 1 2

bas ic_i f s t ream template

742, 8 1 2

bas ic_ios template 74 1

bas i c_iostream template

74 1 , 8 1 2

bas ic_i stream template 74 1 ,

8 1 2

bas ic_i st ringstream class

870, 87 1

bas i c_of stream template

742, 8 1 2

bas i c_ostream template 8 1 2

bas ic_ost ringst ream class

870, 87 1

bas ic_s tring 85 1

basics of computers 4

batch 6

batch processing 6

BCPL 8

begin 1 095, 1 098, 1 1 08, 1 1 09

begin iterator 869

Begi nner' s All-Purpose Symbolic

Instruction Code (BASIC)

1 1 , 943, 987, 999

beginning of a fi le 8 1 8

beginning of a stream 8 1 9

behavior 40, 4 1 , 1 39, 405, 4 1 1 ,

503

bell 24

Bell class header fi le 453, 5 1 9

Be l l class implementation file

5 1 9

Bel l Laboratories 9

bibliography 2 1

bidirectional iterator 1 1 00, 1 1 0 I ,
1 1 06, 1 1 1 3 , 1 1 1 9, 1 1 22,

1 1 24, 1 1 5 3 , 1 1 54, 1 1 56,

1 1 67

bidirectional- iterator operation

1 1 02

binary 1 62

binary arithmetic operator 93

binary comparison function I 1 67

binary digit 809

binary function 1 1 66, l I n

binary function object I I n, 1 1 73

binary integer 1 62

binary number 1 020

binary number system 1 029

bi nary operator 29, 3 I , 1 26

binary operator + 3 1

Index

binary predicate function I I 1 6,

1 1 3 8, 1 1 47 , 1 1 50, 1 1 54,

1 1 5 8 , 1 1 59, 1 1 62, 1 1 68

binary scope resolution operator

(: :) 2 1 7, 4 1 6, 497, 1 1 8 7,

1 200, 1 204

binary search 283, 285 , 286

binary search of a sorted array 286

binary search tree 969, 976, 977,

984

binary tree 943, 969, 970, 1 1 62

binary tree delete 984

binary tree search 985

bi nary tree sort 977, 999

binary tree with dupl icates 984

binary_search I 1 48, I 1 50

bit 809, 1 00 1

bit tield 1 007, 1 0 1 7, 1 0 1 9

bit-field manipulation 1 020

bit field member of structure 1 0 1 7

bit tields save space 1 020

bi t fields used to store a deck of

cards 1 0 1 7

bit manipulation 809, 1 007

bi t and operator keyword I 1 90

bi tor operator keyword I 1 90

"bits-and-bytes" level 1 007

<bi t s e t > 1 82, 1 096

b i t s e t 1 094, 1 1 68, 1 1 69, 1 1 70

bitwise AND (ae) 1 008

bitwise AND assignment operator

(ae=) 1 0 1 6, 1 1 90

bitwise AND operator (ae) 1 008,

1 0 1 0, l O l l , 1 0 1 2, 1 048

B itwise AND, bitwise inclusi ve

OR, bitwise exclusive-OR

and bitwise complement

operators 10 I I
bitwise assignment operator 1 0 1 6,

1 1 69, 1 1 90

bitwise complement operator (-)

1 0 1 1 , 1 0 1 4, 1 0 1 6, 1 1 90

bitwise exclusive OR assignment

operator (A =) 1 0 1 6

bitwise exclusive O R operator (A)

1 008, l O l l , 1 0 1 3, 1 0 1 4,

1 1 90, 1 1 9 1

bitwise inclusive O R assignment

operator (I =) 1 0 1 6

bitwise inclusive O R operator (I)
1 008, l O l l , 1 0 1 2, 1 0 1 3 ,

1 1 90, 1 1 9 1

bitwise left-shift operator « <)

547, 1 0 1 4

bitwise operator 1 007, 1 008, 1 0 1 6

bitwise operator keyword I 1 90

Index

bi twise OR 1 1 69

bi twise right-shift operator (»)
547

b i twise shift operator 1 0 1 4

blank 76, 1 65

blank l ine 28, 88

block 80 , 8 1 , 92, 1 76, 1 93 , 1 95 ,

1 96

block is act ive 1 93

block is ex i ted 1 93

block of data 1 036

block of memory 1 036, 1 079,

1 1 1 7

block scope 1 95

b luepri n t 406

body element 1 239, 1 240

body of a c lass defi n i t ion 4 1 I

body of a funct ion 23, 24

body of a loop 8 1 , 82, 1 03 , 1 08,

1 67

body sect ion 1 239

Bohm, C . 73 , 1 32

"bombi ng" 88

Booch, Grady 43

bool data type 76

bool value false 76

bool value t rue 76

boolalpha stream manipulator

763

Bool ean U M L type 226

border attri bute 1 254

Bor land C++ 1 5 , 220, 1 073 , 1 1 76

boss 1 7 1

bottom of a stack 960

bottom t ier 882

boundary of a storage un i t 1 0 1 9

bounds check ing 266

box 67

br (l i ne break) e lement 1 248

braces ({ }) 24, 38, 80, 8 1 , 92, I 1 7

braces i n a do/while structure

1 20

bracket ([1) 255

branch negat i ve 99 1

branch zero i n struction 99 1 , 994

break statement 1 1 7 , 1 1 9 , 1 22,

1 67 , 1 079

break statemen t ex i t i ng a for

structure 1 22

browser 909, 9 1 0

browser request 1 260

"brute force" comput ing 1 66

bubble sort 277, 309, 3 36, 355

bubble sort us ing funct ion poi n ters

355

bubble sort wi th cal l -by-reference

336

bubbleSort function 336, 338

bucket sort 3 1 7

buffer fi l l s 768

buffer i s fi l led 742

buffer i s fl ushed 742

buffered output 742

buffered standard error stream 740

buffering 768

bu i ld ing a compiler 989

bui ld i ng-block appearance 1 30

bu i ld i ng-block approach 1 0

"bu i ld i ng blocks" 4 1

Bui lding c lass header fi le 456,

5 1 1

Bui lding class implementation

fi le 5 1 2

bu i ld ing your own compiler 943,

986

bu i l t - i n data type 503, 504

"bu l l ' s-eye" 229

business logic 883

business rule 883

business software 1 3

button attribute value (type)

898

Button class header fi le 653

Button class i mplementation fi le

653

Byron, Lord 1 3

byte 1 007

byte offset 825

C
C 8

• C extension 1 5

C legacy code 469, 1 054, 1 056,

1 060, 1 066, 1 078

C - l i ke array 1 094

C programming language 1 237

C-sty le char * strings 867

C-style dynamic memory

a l locat ion 1 078

C-style poi nter-based array 1 1 34

C-style str ing 867

C# programm i ng language 1 2

C++ 7 , 8 , 20, 886, 888

C++ career resource 1 232

C++ compi ler 1 5 , 1 232

C++ development env ironment 1 6

C++ enhancements to C 4

C++ env i ronment 1 6

C++ executable 890

C+ + How TO Program 4

C++ language 20

C+ + Multimedia Cyber

Classroom

Fourth Edit ion 3, 4

C++ preprocessor 1 5 , 2 2

1285

C++ programming e n v i ronment

1 70

C++ programming language 1 4

C++ resource 2 1 , 1 232

C++ resources on the Web 1 230

C++ standard l i brary 1 0, 1 70

C++ standard l i brary header fi le

1 80

c s t r member funct ton of c lass

string 868

cache 882

calculate a salesperso n ' s earni ngs

1 58

calcul ate the value of 1t 1 66

calculation 6, 3 1 , 7 3

calendar l ime 1 87

cal l stack 334

cal l ed funct ion 1 70

cal l i n g env i ronment 8 1 5

cal l i n g funct ion (ca l ler) 1 7 1 , 1 75

cal l i ng funct ions by reference 325

cal loc funct ion 1 07 8

cannot return a v a l u e from a

constructor 4 1 2

capac ity 1 1 08

capaci ty of a s t ring 859

capt ion element 1 255

card deal i n g algori thm 355

card game 350

card shuffl i n g and deal i ng

s imu lat ion 350 , 352 , 1 00 I ,
1 005

career resource 1 23 2

carriage return (. \ r ') 2 4 , 1 02 1 ,

1 024

CART cookie 929

cascaded assignment 579

cascad ing + = operators 579

cascad ing member funct ion ca l l

49 1 , 492

Cascading member funct ion cal l s

494

Cascad ing Sty le Sheets (C S S) 20

case l abel 1 1 3 , 1 1 7 , 1 1 8 , 1 95

case sensi t i ve 2 7

case study: D a t e c l ass 582

case study: String c lass 569

casino 1 82, 1 88

< c a s s ert > header fi l e 1 8 1 ,

1 060

cast 343

1286

cast away " const - ness " 1 1 85

cast expression 1 05 7

cast operator 8 9 , 9 2 , 1 80, 343,

568, 1 1 84, 1 1 92

cast variable v is ib le in debugger

1 05 5

cast ing 344

cast-operator function 568

cata loging 450

catch a base c l ass object 800

catch all exceptions 80 1

catch block (or handler) 7 8 3 ,

7 8 7 , 792, 793

catch re lated errors 793

catch (_ _ _) 80 1

catch (exception e) 80 1

< cctype> header fi le 1 8 1 , 33 1 ,

1 020

CD-ROM 4

c e i l 1 72

central processing un i t (CPU) 6

central i zed control 1 9

CERN 1 9

cerr (standard error unbuffered)

1 7 , 740, 74 1 , 8 1 1

< c f loat > header fi le 1 8 1

. cgi 889

CGI (Common Gateway

I nterface) 885, 1 260

• cgi fi le extension 890

CG I protocol 886

CGI script 885, 889, 890, 895,

906, 1 262

cgi -bin directory 889, 890, 9 1 6

chain i ng 29

char 27, 1 \ 6, 1 80, 867, 1 007

char * 36 1

char * returned by data 895

char * * 1 029

character 360, 809, 1 00 I

character array 267, 347, 36 1 , 554,

867

character array as a string 268

character code 367

character constant 360

character ent i ty reference 56

character hand l i ng l i brary function

1 020

character man ipu lat ion 1 7 1

character presentat ion 1 82

character sequence 823

character set 68, 1 1 9, 367, 809

character stri ng 256, 267

character-stri ng manipu lat ion

1 020

character 's numerical

representat ion I 1 6

character-hand l i ng functions

i sdigit, i salpha,

i salnum and i sxdigi t

1 02 1

character-hand l ing functions

i s lower, i supper,

tolower and toupper

1 023

character-hand l ing functions

i s space, i scntrl,

i spunct, i sprint and

i sgraph 1 025

character-hand l ing l ibrary

function 1 02 1

characters represented as numeric

codes 367

checkbox 1 263

checkbox attribute value

(type) 898

checked access 854

checked attribute 1 263

checkerboard pattern 67, 1 62

checkout l i ne in a supermarket 983

child 969

child node 984

Chinese 503

cin (s tandard i nput stream) 1 7 ,

28, 740, 74 1 , 8 1 1 , 8 1 5 , 890

c in . c l ear 766

c i n . eof 745, 766

c i n . get 1 1 6, 746

c i n . get l ine 362

c in . tie 768

c ircle 1 252

Circle c lass conta ins an x-y
coordinate and a rad ius 6 1 9

Circle c lass test program 62 1

Circle c lass that i nherits from

c lass Point 667, 688

Circle3 c lass that i nherits from

c lass Point 2 627

Circle4 c lass that i nherits from

c lass Point 3 but does not

use protected data 634

CircleS c lass i nherits from

c lass Point4 645

CircleTest demonstrates c lass

Circle functional i ty 62 1

Circ leTest4 demonstrates

class Circle4

functiona l i ty 636

c ircular inc lude 457

c ircular inc l ude problem 522

c ircular, doubly l i nked l i st 960

Index

c i rcu lar, s ing ly- l i nked l i st 959

c larity 3 , 20, 28, 265

c l ass 4, 1 0, 4 1 , 1 3 3 , 253, 1 05 5

c l a s s 1 70, 222, 405 , 4 1 I , 720,

8 1 0

c l ass Array 5 5 7

c l ass average on a qu iz 83

c lass-average problem 8 3 , 89

c lass-average problem with

sent ine l-control led

repet i t ion 89

c lass-average program wi th

counter-control led repet i t ion

84

c lass bit set and the Sieve of

Eratosthenes I 1 70

c lass Comp l ex 60 I
c l ass defin i t ion 4 1 I
c l ass development 556

c l ass d iagram xxxv i i i , 47, 1 4 1 ,

225, 226, 296, 374, 45 I , 45 3 ,

4 5 7

c l ass d iagram showing attri butes

226

c lass d iagram that i nc l udes

attributes and operat ions

298, 452

c lass Employee 700

c l ass h ierarchy 68 1 , 699, 996

c lass HugeInt 604

c l ass l ibraries I S , I 1 3 , 1 7 1 , 420,

450

c lass l ibrary 649

c l ass members defaul t to pri -

vate access 1 00 I
c l a s s Node 944

c l ass polynomial 608

c lass Rat ionalNumber 607

c lass scope 1 95 , 4 1 6, 4 1 8

c lass-scope variable i s h idden 4 1 8

c lass s tring 569

c lass template 7 1 9, 723, 947, 975

c lass-template auto...l)t r 798

c lass-template defin i t ion 724

c lass template scope 726

c l ass-template spec ia l izat ion 7 1 9,

723

c l ass template Stack 724, 726

C l ass Time defi n i t ion 4 1 1

c l ass ' s data members 4 1 6

c lass ' s i m p lementation 4 1 6

c l ass ' s i nterface 4 1 6

c lass ' s member funct ions 4 1 6

c lass ' s object code 420

c l ass ' s source code 420

c lassic C 9

Index

clear member funct ion 766,

1 096

c l �nt 507, 9 1 3 , 9 1 6

c l ient code 680

c l ient computer 7 , 909

cI ient object 296

c l ient of a c lass 4 1 2 , 4 1 7 , 420, 440

c l ient of a queue 505

c l ient tier 883, 938

c l i ent/server comput ing 7

c l ient s . txt 9 1 6

< c l imi t s > header fi l e 1 8 1

Clock c lass header fi I e 454, 5 1 4

Clock c lass i mplementat ion fi le

5 1 4

clog (standard error buffered)

740, 74 1 , 8 1 1

close 8 1 6

c lose a stream 1 073

< cmath> header ti le 1 72, 1 79,

1 8 1

COBOL (COmmon Bus i ness

Oriented Language) 1 3 ,

1 237

code walkthrough xxxv i i i , 48, 509

coeffic ient 608

coin toss i ng 1 83 , 245

col element 1 25 7

colgroup element 1 25 7

col laborat ion 2 2 5 , 372

col laboration d iagram 372

col laboration d iagram for loadi ng

and un loading passengers

373

col lection c lasses 505

colon (:) 1 95 , 297, 479, 1 079,

1 20 1

cols attr ibute 1 263

col span attri bute 1 25 7

c o l u m n 289

column head ing 256

column subscript 289

com (top level domai n) 884

combi n ing control structures in

two ways 1 27

comma operator (,) 1 06, 205

comma-separated l i st 27, 39, 1 06,

1 7 1 , 1 75 , 32 1

comma-separated I i s t of base

c lasses 1 20 I

comma-separated l i st of

arguments 1 7 1

command-and-control software

systems 1 3

command l i ne 1 066

command- l i ne argument 349,

1 070

command- l i ne prompt 1 067

comment (I I) 22, 28, 1 239

commercia l appl ication 1 3

commercia l data process ing 847

comm i ssion worker 1 66

Conuni s s ionEmployee class

header fi le 707

Conuni s s ionEmployee c lass

i mplementat ion fi le 708

Common Gateway I nterface

(CG I) 885, 1 260

Common Programming Error 1 0

commonal i ty among c lasses 374

commutative 55 1

commutative operat ion 55 1

comp , lang,c 1 233

comparator funct ion object I I 1 9 ,

1 1 24

comparator function object l e s s

1 1 1 9 , 1 1 32

compare 855

compare iterators I 1 02

comparing blocks of memory

1 036

compari ng strings 362, 365

comparing st rings 855

comparing unions 1 08 1

comparisons i n a bubble sort 278

compi lat ion error 24

compi lat ion of i f / goto

statement i n compi ler

s imu lator 99 1

compi lat ion phase 24

compi lat ion process for a S imple

program 993

compi lat ion unit 1 1 89

compi le 1 5 , 420

compi le error 24

compi le-t ime error 24

compi ler 8, 1 6, 24, 92, 960, 998

compi ler generates S M L

i nstruct ion 99 1

compi ler opti m i zation 1 075

compiler option 2 1

compi l i ng 8, 943, 1 072

compi l i ng a mul t ip le-source-fi le

program 1 07 I

compl operator keyword I 1 90

complement operator (-) 1 008

complete elevator-s imulator c lass

diagram that i ncorporates

i nheritance 652

Complex c lass 465 , 60 I

1 287

Comp l ex c lass member-funct ion

defin i t ions 602

complex condit ion 1 24

complex n u m ber 465 , 60 I

component 4 1 , 42, 1 70, 450

component member of a c lass 460

component object 456

component-oriented software

deve lopment 504

composi t ion 1 43 , 4 1 7 , 478, 509,

5 1 1 , 6 1 0, 6 1 1 , 6 1 3 , 648, 964

composi t ion symbol 1 43

compound i n terest I 1 0, 1 65 , 1 66,

1 68

compound- in terest ca lcu lat ion

wi th for I 1 0, I I I

compound statement 80, 1 76

computat ion 4

computer 4

computer-assi sted i nstruction

(CA l) 245

Computer name: fie ld 884

computer network 7 , 965

computer network ing 7

computer program 5

computer program mer 5

computer s imu lator 390

computerized dict ionary 849

computing the sum of the e lements

of an array 26 1

concatenate 854

concatenate two l i nked l ist objects

98 1

concatenated stri ng 579

concatenat ing s t r ings 365

concatenation 29

concept 503

concrete c l ass 68 1

condi t ion 34, 76, 7 8 , 1 2 1 , 1 23 , 228

condi t iona l compi l at ion 1 054,

1 057

condit ional execut ion of acti v i t ies

301

condi t ional execut ion of

preprocessor d i rect ive 1 054

condit ional express ion 78, 79, 787

condit ional operator (? :) 78 , 79

condi t iona l preprocessor d i rect ive

1 057

cond i tiona l ly compi led output

statement 1 05 8

confus ing equal i ty (= =) and

assignment (=) operators 36

confus ing equal i ty (= =) and

ass ignment (=) operators

1 27

1288

conserv ing memory 1 93

consi stent state 4 1 5 , 430, 43 1 , 440

const 2 1 0, 2 1 3 , 273, 275, 470,

554, 1 055

const char * 332

const c l ass member 509

const int * const 335

const m ember function 469

const member function on a

const obj ect 473

const member funct ion on a

non-const object 473

const object 260, 469, 473

const obj ect must be i n i t i a l i zed

260

const obj ects and const

member functions 473

const pointer 556

const qua l i fier 329, 1 1 84

const reference 4 1 0

const type qua l i fier app l ied to an

array parameter 275

const variable 478

const variables must be

in i t i a l ized 260

const version of operator [1

567

const with function parameters

330

const_cast operator 1 1 84,

1 1 97

const_iterator 869, 1 095,

1 096, 1 097, 1 098, 1 1 0 1 ,

1 1 02 , 1 1 08 , 1 1 22 , 1 1 24,

1 1 26

const reference 1 097

const_reverse iterator

870, 1 096, 1 097, 1 1 0 1 , 1 1 09

constant 1 72, 989

constant i n tegral expression 1 1 9

constant pointer 344, 489

constant pointer to an i n teger

constant 335

constant pointer to constant data

33 1 , 335

constant po in ter to nonconstant

data 33 1 , 334

constant reference 2 1 3 , 566

constant variable 259, 26 1

"const-ness" 1 1 97

constra in t 1 44, 1 45

constructed i n s ide out 484

constructor 4 1 2, 430, 453

Constructor and destructor ca l l

order 647

constructor cal l 430

constructor cal led recursively 565

constructor i n a union 1 08 1

Constructor wi th defaul t

arguments 433

constructors and destructors cal led

automatical ly 435

constructors cannot be virtual

699

contact . html 1 244, 1 249

container 54, 1 82, 869, 943 , 1 092,

1 0 94, 1 1 33

container adapter 1 094, I 1 0 1 ,

1 1 28

container class 427, 485, 505, 564,

7 1 9, 730, 1 094

Content - type header 893, 905

CONTENT_LENGTH environment

var iable 904

cont inue statement 1 22, 1 67 ,

1 68

cont inue statement term inat ing

a s ingle i teration of a for

structure 1 23

control character 1 024

control structure 72, 73 , 75, 77, 78 ,

429, 1 080

control-structure nesting 75

control-structure stacking 75, 1 29

control variable 1 05

control-variable name 1 06

control ler 1 38, 1 43

contro l l i ng expression 1 1 7

control l i ng the prin t ing of trai l i n g

zeros a n d deci mal points for

doubles 756

converge on the base case 206

conversational comput ing 29

conversion between a bu i l t - in type

and a c lass 579

conversion constructor 568, 577,

579, 1 1 94

conversion operator 568

conversions among bu i l t - i n types

568

conversions among bu i l t - in types

by cast 568

convert among user-defined types

and bu i l t - in types 568

convert between types 568

convert lowercase let ters 1 8 1

Convert ing a string to uppercase

33 1

convert ing between c lasses and

bu i l t - in types 426

convert ing from a h igher data type

to a lower data type 1 80

Index

Convert ing strings to C-sty le

s tr ings and character arrays

867

convertToUppercase 3 3 1

cookie 52, 909, 9 1 0, 92 1

cookie form . html 9 1 0

copy 868, 1 1 04, 1 1 1 1

copy a str ing us ing array notat ion

347

copy a s t r ing us ing pointer

notation 347

copy constructor 450, 564, 565,

567, 1 095, 1 097

copy constructors in pass-by-val ue

parameter pass ing 579

copy of the argument 330

copy_backward I 1 04, I 1 52

copying overhead 408

copying stri ngs 347, 363

correct in a mathematical sense

1 28

correct number of arguments 1 75

correct ion 1 7

correct ly i n i ti a l i z i ng and us ing a

constant variable 260

corrupted stack 790

cos 1 72

cosine 1 72

count 1 1 04, 1 1 1 9, 1 1 22 , 1 1 44,

1 1 69

count_i f 1 1 04, 1 1 44, 1 1 47

counter 83, 88, 95, 1 59, 1 93

counter-contro l led repeti t ion 83,

84, 86, 94, 95, 1 02 , 1 03 , 206

counter-contro l led repeti t ion w i th

the for structure 1 04

counter variable 85

count ing loop 1 04

count ing up by one 86

cout « <) (the standard output

stream) 1 7 , 23, 26, 29, 740,

74 1 , 8 1 1 , 889

cout . put 744

cout . write 748

• cpp extension 1 5

CPU 6, 1 6, 1 7

"craft valuab le c lasses" 42

craft ing valuable c lasses 4 1 7

Craps s imulat ion 1 88 , 1 92 , 250

"crash i ng" 88

create new data type 503, 504

create object dynamical l y 455

create your own data type 30

CreateAndDe s t roy c lass

defi n i t ion 436

I ndex

CreateAndDe s t roy c lass

member function defin i t ions

437

creat ing a random access fi le 824

Creat ing a sequent ia l fi le 8 1 3

Creat ing a structure, sell i ng i ts

members and prin t ing the

structure 408

creat ing an assoc iat ion 1 1 26

creat ing and destroying objects

dynamica l ly 303

Creat ing and travers ing a b inary

tree 974

Cred i t i nqu i ry program 8 1 9

credi t l i m i t on a c harge account

1 57

credi t processing program 825

crossword puzzle generator 402

cryptogram 878

< c sdt l ib> header fi l e 796

< c s e t j mp> 784

< c s igna l > header fi le 1 076

CSS (Cascad ing Sty le Sheets) 20

< c s tdio> header fi l e 1 8 1

< c stdl ib> header fi le 1 8 1 , 1 82,

895, 904, 1 026, 1 07 3 , 1 07 8

< c s t ring> header fi l e 1 8 1 , 580

< c t ime > header fi le 1 8 1 , 1 88,

889

<clrl>-d 1 1 6, 8 1 5

ctrl key 1 1 6

<clr/>-z 1 1 6, 754, 8 1 5

Crrl+C 1 075

< c stdl ib> header fi l e 1 83

<ctype . h> header fi le 1 8 1

cubeByRe f erence 326, 327

cubeByValue 325

current pos i t ion i n a stream 8 1 9

cursor 24

custom ized code 1 73

custom ized funct ion 1 74

. cxx extension I S

cy I i nder 689

Cyl inder c lass header fi le 690

Cyl inder c lass imp lementat ion

fi le 69 1

Cyl inder c l ass i n heri ts from

c lass Circle4 and

redefi nes member function

getArea 639

o
dangerous poi nter manipu lat ion

695

dang l ing else problem 1 6 1

dang l ing pointer 566, 578 , 579

dang l ing reference 2 1 4

data 5

data abstraction 4, 469, 502, 556

data-anal ysi s program 279, 282

data hierarchy 809, 8 1 0

data member 4 1 , 406, 4 1 I , 4 1 6

data member function of class

string 895

data members nonnal ly private

4 1 2

data persistence 809

data representation 503

data structures 54, 253, 943, 1 092

data t ier 882

data type 502

data type bool 76

data type int 27

data typing 9

data val idat ion 426

database 8 I I

database management system

(DB M S) 8 1 1

Date c lass 466, 479, 582

Date c lass defin i t ion wi th

overloaded i ncrement

operators 582

Date c lass member fu nction

defin i t ions 480

Date c lass member-function and

fri end-function

defin i t ions 583

Date c lass tes t program 586

DATE predefi ned symbol ic

constant 1 060

STDC predefined symbol ic

constant 1 060

date source fi Ie is com pi led 1 060

D B M S (database management

system) 8 1 1

deal locate memory 495, 797

deal locates memory a l located with

new 945

debug 1 3 , 20
debugger l OSS

debugging 1 86, 1 239

debugging aid 1 0 5 8

debugging tool 1 060

DEC PDP- I I 9

DEC PDP-7 computer 9

dec stream manipu lator 750, 755 ,

760

dec i mal (base 1 0) number system

755, 1 029, 1 030

decimal d ig i t 809

dec imal number 1 66, 760, 1 020

1 289

decimal poi n t 89, 93 , 1 1 2 , 743,

756

dec ima l poi n t in a float i ng-poin t

number 1 72

dec i s ion 3, 76, 77 , 1 33

dec is ion path 229

dec is ion symbol 76

deck of cards 349, 350

declaration 27, 72

declarat ions of parameters 1 75

dec l are a reference 459

dec lar ing a static member

funct ion const 502

decrement a contro l variable 1 02

decrement a pointer 34 1

decrement operator 99, 5 8 1

decrypter 877

dedicated comm u nications l i ne 1 8

deeply nested structure 1 32

defaul t access for s t ruct

members i s pub l i c 426

defau l t access mode for c lass i s

private 424

defau l t argument 2 1 5 , 2 1 6, 2 1 7 ,

430

Defaul t arguments to a funct ion

2 1 6

defau l t arguments wi th

constructors 430

default case 1 1 3 , 1 1 7 , 1 1 8 ,

1 1 9 , 1 85

defau l t constructor 43 1 , 484, 563,

565, 585 , 629, 728 , 1 095

defau l t de l i m i ter 748

defau l t funct ion argument 433

defaul t memberwi se ass ignment

449, 548, 1 097

defau l t memberwise copy 565,

1 097

defau l t prec i s ion 93

defau l t to dec ima l 760

defau l t 10 pub l i c access 1 00 I

defens ive programm i n g 1 06

#de f i ne 1 05 7 , 1 060

#de f ine NDEBUG 1 060

#de f ine PI 3 . 1 4 1 5 9 l OSS

#de f ine preprocessor d i rective

424, l OSS

! de f ined 1 05 8

de f ined 1 05 8

defi n ite repet i t ion 83

defi n i t ion 1 02

de i t e l@de i t e l . com 4

del element 1 249

delay l oop 1 07

1 290

de lete 495, 509, 566, 798, 800,

1 078

de lete [l (dynamic array

deaJ locat ion) 497

delete a record from a fi le 835

delete operator 699, 945

delet ing an item from a bi nary tree

977

de let ing dynamical ly a l located

memory 502

de l i m i ter 895

del i m i ter (w i t h defau l t value

° \ n o) 746

del i m i ter character 362, 368

Demonstrati n g a mutable data

member 1 1 98

Demonstrat i ng an explicit

constructor 1 1 95

demonstrat ing c l ass template

Stack 724, 726

Demonstrat ing function substr

858

Demonstrat ing functions erase

and replace 865

Demonstrat ing i nput from an i s

tringstream object 873

Demonstrating mul t ip le

i nheritance 1 20 I

Demonstrating operator

const_cast I 1 84

Demonstrat ing operator

reinterpret_cast

1 1 86

Demonstrat ing

set new_handler 797

Demonstrat ing string

ass ignment and

concatenation 853

Demonstrat ing the . * and - > *

operators I 1 99

Demonstrat i ng the operator

keywords I 1 9 1

Demonstrat ing the string f ind

member functions 862

Demonstrat ing the st ring in

sert funct ions 866

Demonstrat ing the use of

name spaces I 1 87

DeMorgan ' s Laws 1 66

< deque> header fi le 1 82, 1 096,

1 1 1 8

de que sequence container 1 092,

1 1 0 1 , 1 1 05 , 1 1 1 1 , 1 1 1 3 ,

1 1 1 6, 1 1 1 7 , 1 1 28, 1 1 29

dequeue 965

dequeue operat ion 505

dereference a 0 poi n ter 323

dereference a const i terator 1 099

dereference a pointer 323, 326,

33 1

dereference an i terator 1 098, 1 099,

1 1 02

dereference an iterator posi t ioned

outside i ts container 1 099

dereferencing operator (*) 323

derive one c lass from another 4 1 7

deri ved c lass 6 1 0, 6 1 1 , 6 1 3 , 648,

65 1 , 700

derived-c lass catch 800

deri ved-c l ass destructor 699

descri ptive words and phrases i n

problem statement 225

design 42

design process 374

destroy object 509

destroy ing objects dynamical ly

303

destructor 4 1 6, 435, 453, 1 095

destructor cal l s in reverse order of

constructor cal l s 435

destructor overloading 435

destructor recei ves no parameters

and returns no value 4 1 6,

435

destructors cannot be overloaded

4 1 6

dethread a node from a l i st 958

diagnostics that aid program

debugging 1 8 1

dia logue 29

diameter 76, 77

diamond 67, 74, 76, 1 43, 1 67

diamond i nheritance 1 205

diamond symbol 229

dice game 1 88

dictionary 849

Die-rol l i ng program using an array

i n stead of swi tch 263

di f f erence_type 1 097

digi t 27, 360

direct access 946

direct base c lass 6 1 0

directly reference a value 32 1

disc 1 25 1 , 1 252

disk 5, 6, 1 5 , 1 7 , 989

disk drive 739

disk fi le 996

disk [fa completion 78 1

disk space 794, 796, 8 1 5

display screen 739, 742

di stributed c l ient/server

app l ications 7

Index

d istributed comput ing 7

div ide and conquer 1 70, 1 73

di vide by zero 1 7 , 88 , 1 075

DivideByZeroExcept ion

787

divide s < T > 1 1 72

d iv is ion 5, 3 1 , 32 , 93

div i s ion by zero i s undefi ned 503

DNS (domai n name server) 884

DNS lookup 884

do act ion- label 229

do/wh i l e repet i t ion structure

1 20, 1 2 1 , 1 33

document a program 22

dol l ar amount 1 1 2

domain name 884

domai n name server (D N S) 884

Door c lass header fi Ie 455, 522

Door c l ass i mplementation fi le

522

DOS 1 066, 1 075

dot operator (.) 407, 408, 4 1 8 ,

49 1 , 674, 799

dotted l i ne 74

double I I I , 1 72 , 1 79, 1 075

double-array subscript ing 60 I
double-ended queue 1 1 1 7

double quote 23, 24

double selection 1 32

double-selection structure 74, 95,

1 1 3

double-subscripted array

representation of a deck of

cards 350

double-subscripted array 289, 290,

292, 293, 295, 3 1 2 , 349, 943

double-subscri pted array

manipulat ions 293

double-subscrip ted array

representat ion of a deck of

cards 350

double-word boundary 1 003

"doubly in i t i a l i zing" member

objects 485

doubly l i nked l i st 1 094, 1 1 1 3

doubly- l i n ked l i st 960

downcast ing 67 1

drawing a shape 673

dummy value 86

dupl icate base-c l ass object 1 206

dupl icate e l i m i nation 943 , 977,

984

dupl icate key I I 1 9 , I 1 24

dupl icate node value 969

dynamic array 1 078

Index

dynamic binding 663, 674, 695 ,

698

dynamic content I I
dynamic creat ion of objects 46 1

dynamic data structure 253, 320.

943

dynamic memory 797

dynamic memory a l locat ion 945 ,

946, 1 078

dynamic memory management

495

dynamic object management 509

dynamic vs. static Web content

885 , 888

dynamic Web content 885 , 888

dynamic_cast 800

dynamic_cast operator 7 1 3

dynam ical ly a l locate and

deal locate storage 435

dynam ical ly a l locate array of

i n tegers 564, 1 088

dynamical ly a l located memory

502, 699, 798

dynamical ly a l located memory for

an array 1 078

dynamical ly a l located storage 449.

450, 565, 569, 578

dynamica l ly creates exact amount

of space 485

E
EBCDIC (Extended B i nary Coded

Decimal I nterchange Code)

367

ed i t 1 5

edit phase 1 7

edi t i ng a fi le 1 5

editor 1 5 , 1 6

Eight Queens 3 1 6

Eight Queens : brute-force

approaches 3 1 6

e lement of an array 253

e lement of chance 1 82

Elevator c l ass header Fi le 46 1 ,

528

El evator c lass implementat ion

fi le 530

Elevator s imu lat ion 405 , 5 1 I

ElevatorButton class header

fi Ie 457, 524, 654

ElevatorButton c lass

i mplementation fi le 525

El evatorButton c lass

member-funct ion defi n i t ions

655

#el i f 1 058

e l l ips is (. . •) i n a funct ion

prototype 1 067, 1 068

e l s e 77 . 8 1

emacs 1 5

emacs text edi tor 1 237

e-mai l (e lectronic mai l) 1 8 , 1 245

e-mai l anchor 1 245

embedded parentheses 32

Employee c lass 479, 485

Emp loyee class defi n i t ion

showing composit ion 48 1

Employee class defi n i t ion with a

static data member to track

the number of Employee

objects in memory 498

Employee c lass header Fi le 70 1

Employee c lass h ierarchy driver

program 7 1 1

Employee class i mplementation

fi le 70 1

Employee c lass member

function denni t ions ,

inc luding constructor wi th a

member- i n i t ia l izer l i st 482

Employee c lass member-

function defin i t ions 499

empty 1 095. 1 1 30, 1 1 3 1 , 1 1 32

empty e lement 1 247, 1 248

empty except ion spec i fication 790

empty function parameter l i st 209

empty member function of

st ring 59 1

empty quotation marks 825

empty space 825

empty statement 8 1

empty string 855, 86 1

encapsulate 4 1

encapsu lation 4 1 7 , 448, 485

encrypted i nteger 1 63

encrypter 877

encryption 1 63 . 877, 879

end 1 096, 1 098, 1 099, 1 1 09, 1 1 68

end i terator I 1 03
end l i ne 29

end of a sequence I 1 50

end of a stream 8 1 9

end of a string 944

"end of data en try" 86

end-of-Fi le 1 1 6, 1 1 7 , 36 1 , 766, 8 1 6

end-of-fi le i ndicator 8 1 5 , 8 1 6,

1 070

end-of-fi le key combinat ion 8 1 6.

1 066

end of main 24

end Simple command 987, 990

129 1

end tag 1 239

#endi f preprocessor d i rective

1 05 8 , 424

endl 29, 93

end-of-fi le marker 8 1 I

Eng l i sh- l ike abbreviat ions 8

enqueue 965

enqueue operat ion 505

El1Ier key 28, I 1 7 , I 1 9

ent i ty reFerence 1 249

en try poi n t 1 28

enwn keyword 1 90

enumerat ion 1 90, 1 055

enumerat ion constant 1 9 1 , 1 057

env i ronment 1 7 1

environment . cpp 893

EOF 745, 748, 1 020

eof member funct ion 745, 766,

767

eofbit 766

equal 1 1 04, 1 1 36, 1 1 3 8

equal t o 35

equal_to 1 1 72

equal_range I 1 22 , I 1 60

Equal i ty and re l at ional operators

36

equal i ty operator (= =) 34, 35 , 36,

556, 1 097

equal i ty operators (== and ! =) 76,

1 24

equation of straight l i n e 33

erase 1 096, 1 1 1 2

erase member funct ion of c l ass

string 865

Erroneous attempt to i n i t i a l i ze a

constant of a bu i l t - i n data

type by ass ignment 476

#error preprocessor d i rective

1 05 8

error 1 7

error b i t 748

error check ing 1 7 1

error detected i n a constructor 792

error message I 7

error-process ing code 782

error state of a stream 744, 766,

767

escape character 23

escape early from a loop 1 22

escape sequence 23 , 25 , 1 59

evaluat ing a postfi x expression

983

eval uat i ng express ions 960, 98 1

evaluat ion algori thm 996

even in teger 1 64

event 227

1 292

examination-results problem 96

Examples

Access ing an object ' s

members through each type

of object handle 4 1 9

Activ i ty d iagram that model s

the e levator ' s logic for

responding to button presses

230

Addit ion program 26

A i m i n g a deri ved-c l ass pointer

at a base-cl ass object 67 1

A lgori thms copy_backward,

merge, u nique and reverse

1 1 52

A lgori thms equa l , mismatch

and lex icographical_compare

1 1 36

Algori thms min and max

1 1 65

A lgorithms swap,

iter_swap and

swap_range s 1 1 50

Array c l ass defin i t ion with

overloaded operators 557

Array c l ass member

function and friend-function

defi n i t ions 558

Array c l ass test program 56 1

Array of poi nters to funct ions

358

assoc iat ions between c lasses

in a c lass d iagram 1 42

Attempting to ca l l a mul t ip ly

i nherited function

polymorphical l y 1 206

Attempting to modify a

constant poi n ter to constant

data 335

Attempting to modify a

constant pointer to

nonconstant data 334

Attempting to modify data

through a nonconstant

poi n ter to constant data 333

auto---.pt r object manages

dynamical l y a l located

memory 798

Bank account program 835

BasePlusCommi s s ion

Employee c lass header fi le

709

BasePlusCommi s s ion-

Employee c lass

imp lementation ti le 7 1 0

Examples (con t .)

Basic searching and sort ing

algori thms of the Standard

Library 1 1 48

Bel l c lass header fi le 453,

5 1 9

Bel l class implementation

fi le 5 1 9

B inary function object I 1 73

B inary search of a sorted array

286

B i t fie lds used to store a deck

of cards 1 0 1 7

B i twise AND, bi twise

inc lus ive-OR, bitwise

exclusi ve-OR and bitwise

complement operators 1 0 1 I

B itwise shift operators 1 0 1 4

break statement ex i t ing a

for structure 1 22

B ubble sort wi th cal l-by

reference 336

Bui lding c lass header fi le

456, 5 1 1

Bui l ding class

implementation fi le 5 1 2

Button c lass header fi le 653

But ton c lass i mplementation

fi le 653

Cascading member function

cal l s 49 1 , 494

CGI script that a l lows users to

buy a book 929

CGI script that a l lows users to

view the contents of the ir

shopping carts 93 1

Character arrays processed as

strings 268

Character-hand l i ng functions

i sdigit, isalpha,

isalnum and i sxdigit

1 02 1

Character-hand l ing functions

i s lower, i supper,

tolower and toupper

1 023

Character-hand l ing functions

i s space, i scntrl,

i spunct , i sprint and

i sgraph 1 025

Circle c lass contains an x-y
coord inate and a radius 6 1 9

Circ l e class test program

62 1

Circle c lass that inherits

from c lass Point 667, 688

Index

Examples (con L)

Circle3 c l ass that i nheri ts

from c l ass Point2 627

Circle4 c l ass that i n herits

from c lass Point 3 but does

not use protected data

634

CircleS c l ass i nherits from

c l ass Point4 645

CircleTe s t 4 demonstrates

c lass Circle4 functional i ty

636

C l ass bit set and the S i eve

of Eratosthenes I 1 70

C l ass d iagram showing

attributes 226

C l ass d iagram that i nc ludes

attributes and operations 298,

452

C l ass Time defi n i t ionTime

4 1 1

C lass-average problem with

sent inel -contro l l ed repet i t ion

89

C lass-average program with

counter-contro l led repet i t ion

84

C l ock c l ass header fi l e 454,

5 1 4

Clock class i mplementation

fi l e 5 1 4

Col laboration d iagram for

loading and u n load ing

passengers 373

Commi s s ionEmployee

c l ass header fi Ie 707

Commi s s i OnEmployee

c lass imp lementation fi l e 708

Comparing s t rings 855

complete e levator-si m u l ator

c lass d iagram that

i ncorporates i nheritance 652

Complex c l ass defi n i t ion 60 I

Complex c lass member-

function defi n i t ions 602

Complex numbers 603

Complex X H T M L tab le 1 257

Compound i n terest

calculat ions with for I I I

Computi n g the sum of the

e lements of an array 26 1

const objects and const

member funct ions 473

const type qua l i fier appl ied

to an array parameter 275

Index

Examples (con t .)

const variables must be

in i t ia l ized 260

Constructor and destructor ca l l

order 647

Constructor wi th defau l t

arguments 433

contac t . html 1 244, 1 249

cont inue statement

term i nat ing a s ing le i teration

of a for structure 1 23

Control l i ng the prin t i ng of

trai l i ng zeros and decimal

points for doubles 756

Convert i ng a str ing to

uppercase 33 1

Convert i ng s t rings to C

style stri ngs and character

arrays 867

Correct ly i n i t i a l i z ing and

us ing a constant variable 260

Counter-contro l led repet i t ion

wi th the for structure 1 04

Craps s imu lat ion 1 88

CreateAndDe st roy class

defi n i t ion 436

CreateAndDe s t roy c lass

member funct ion defi n i tions

437

Creat ing a sequent ia l fi l e 8 1 3

Creat ing a server-side fi le to

store user data 9 1 7

Creating a structure, sett.i ng i ts

members and pri n t i ng the

structure 408

Creati ng and traversi n g a

b inary tree 974

Credi t i nqu i ry program 8 1 9

Cyl inder class header fi le

690

Cyl inder c l ass

i mplementat ion fi le 69 1

Cyl inder c l ass i nherits from

c lass Circle4 and

redefi nes member function

getArea 639

Dat e c lass defi n i t ion 479

Dat e c lass defi n i t ion with

overloaded i ncrement

operators 582

Dat e c lass member function

defi n i t ions 480

Date class mem ber-function

and friend-funct ion

deti n i t ions 583

Date class tes t program 586

Examples (con t .)

Defau l t arguments to a

function 2 1 6

Defau l t memberwise

assignment 449

Demonstrat ing a mutable

data member I 1 98

Demonstrat ing an exp l i c i t

constructor I 1 95

Demonstrat ing c lass template

Stack 724, 726

Demonstrat ing function

subst r 858

Demonstrat ing funct ions

erase and replace 865

Demonstrat ing

inplace_merge,

unique_copy and

reverse_copy 1 1 55

Demonstrat i ng i nput from an

i s t ringstream object

873

Demonstrat ing

lower_bound,

upper_bound and

equal_range I 1 60

Demonstrat ing mul t ip le

i nheritance 1 20 I

Demonstrat ing operator

const_cast 1 1 84

Demonstrat ing operator

reinterpret_cast

1 1 86

Demonstrat ing

set_new_handler 797

Demonstrat ing Standard

Library funct ions f i l l ,

f i l l_n, generate and

generate_n I 1 34

Demonstrat ing Standard

Library funct ions remove,

remove_i f,

remove_copy and

remove_copy_i f 1 1 39

Demonstrat ing Standard

L ibrary funct ions replace,

replace_i f ,

replace_copy and

replace_copy_i f 1 1 42

Demonstrat ing string

assignment and

concatenation 853

Demonstrat ing the . * and -
> * operators I 1 99

Demonstrat ing the operator

keywords I 1 9 1

1293

Examples (con t .)

Demonstrat i ng t h e s t ring

f ind member funct ions 862

Demonstrat ing the string

insert fu nct ions 866

Demonstrat i ng the use of

name spaces 1 1 87

Die-ro l l i n g program us ing an

array i n s tead of swi tch 263

do/wh i l e structure 1 2 1

Door class header fi le 455,

522

Door c l ass i mplementat ion

fi le 522

Double-subscripted array

man i pu lat ions 293

Elevator class header fi l e

46 1 , 528

Elevator c lass

implementat ion fi le 530

Elevator s i m u l at ion 5 1 I

E l evatorButton c lass

header fi l e 457, 524, 654

El evatorButton c lass

implementat ion fi le 525

E l evatorButton c lass

member-funct ion defi n i tions

655

Employee c l ass defin i t ion

show i n g composit ion 48 1

Employee c l ass defin i t ion

wi th a static da ta member to

track the number of Em

ployee objects i n memory

498

Employee c l ass header fi le

70 1

Employee c lass h ierarchy

driver program 7 1 I

Employee c l ass

i mplementat ion fi le 70 I

Empl oyee c lass member

funct ion defi n i t ions ,

inc luding constructor wi th a

member- i n i t i a l i zer l i st 482

Employee c lass member

funct ion defi n i t ions 499

Equal i ty and relat ional

operators 36

Erroneous attempt to i n i t i al i ze

a constant of a bu i l t - i n data

type by ass ignment 476

Exception-handl i n g example

that throws exceptions on

attempts to d i v ide by zero

785

1294

Examples (con t .)

Factorial calculat ions w i t h a

recursive funct ion 200

Fi bonacci numbers generated

with a recursive function 202

fig2 0_0 2 . cpp 1 068

fig2 0_0 3 . cpp 1 070

fig2 0_0 4 . cpp 1 074

fig2 0_0 6 . cpp 1 076

f ig2 0_0 7 . cpp 1 079

f i g 2 0_0 8 . cpp 1 082

f ig2 0_0 9 . cpp 1 083

Fi rst CGI script 889

f lags member function of

ios_base 765

Floati ng-point values

displ ayed i n defaul t ,

sc ient ific and fi xed format

762

Floor class header fi le 459,

535

Floor class i mplementat ion

fi le 536

FloorButton class header

fi le 458, 526, 656

FloorButton c lass

i mplementat ion fi l e 526

FloorButton class

member-funct ion defin i t ions

656

Form inc lud ing rad io buttons

and drop-down l i sts 1 266

form . html l 260

form2 • html 1 263

form3 • html 1 266

Friends can access private

members of class 486

fu l l class d iagram for elevator

s i mulat ion 1 44

Functions that take no

arguments 208

Generat ing values to be placed

i n to elements of an array 259

get, put and eof member

funct ions 745

Header e lements hI through

h6 1 24 1

header . html 1 24 1

High-performance card

shuffl i n g and deal ing

s imu lat ion 1 005

H i stogram pri n t ing program

262

HourlyEmployee class

header fi Ie 705

Examples (con t .)

HourlyEmployee c lass

implementation fi le 705

HTM LlX HTM L special

characters 1 274

Huge i ntegers 607

Implementat ion class

defi n i t ion 506

I mplementing a proxy c lass

508

I nheritance examples 6 1 2 , 6 1 3

I n heritance h ierarchy for

university Communi

tyMembers 6 1 3

I n i t ia l iz ing a reference 2 1 3

I n i t ia l iz ing an array ' s elements

to zeros and prin t i ng the array

256

I n i t ia l iz ing mul t id imensional

arrays 290

I n i t ia l iz ing the elements of an

array with a dec larat ion 257

inl ine fu nction to calcu late

the volume of a cube 2 1 0

I nput and output stream

i terators 1 098

I nput of a stri ng us ing cin

wi th stream extraction

contrasted with i nput using

cin . get 746

I nputt ing character data us ing

cin member fu nction

get l ine 747

I nsert ing special characters

into XHTML 1 249

I n teract ive portal handler 907

I n teractive portal to create a

password-protected Web

page 906

Interface class defin i t ion

507

Interface class member

function defi n i t ions 507

Left just ification and right

just i fication with stream

manipul ators left and

right 757

Light class header fi Ie 456,

520

Light c lass i mplementation

fi le 520

Li near search of an array 284

Link ing to an e-mai l address

1 244

Link ing to other Web pages

1 242

Examples (con t .)

l i nks . html 1 242

L i s t c l ass-template

defi n i t ion 948

Index

l i s t of nouns in problem

statement 1 40

l i st . html l 252

ListNode c lass-templ ate

defi n i t ion 947

Logout program for the

shopping cart example 935

main . html 1 238

Manipulat ing a l i n ked l i st 952

Mathematical algori thms of

the Standard Library I 1 44

Member i n i t ia l i zer used to

i n i t i a l i ze a constant of a bu i l t

i n data type 475

Member-object i n i t i a l i zers

483

Memory-handl i ng funct ion

memchr 1 040

Memory-hand l ing funct ion

memcmp 1 039

Memory-hand l i ng funct ion

memcpy 1 038

Memory-hand l i n g funct ion

memmove 1 03 8

Memory-hand l i ng function

memset 1 04 1

Mod i fied l i st of verb phrases

for cl asses i n the system 37 1

mul t ip l ic i ty values 1 43

MUl t ipurpose sort ing program

us ing funct ion pointers 355

Name mang l ing to enable

type-safe l i nkage 22 1

nav . html l 247

Nested and ordered l i sts in

X H T M L 1 252

Nested contro l structures :

Exami nat ion-resu l ts problem

96

new return i n g ° on fai l ure 793

new throwi n g bad_al loc

on fai l u re 795

Non- friendlnon-member

funct ions cannot access

private mem bers 488

object d iagram of empty

bu i ld ing 1 45

Overloaded funct ion

defi n i t ions 2 1 9

Overloaded stream- insert ion

and stream-extract ion

operators 552

Index

Examples (cont .)

Pass-by-reference w i t h a

pointer argument used to

cube a variable ' s value 327

Pass-by-value used to cube a

variable ' s value 326

Pass ing arguments by value

and by reference 2 1 2

Passing arrays and ind i vidual

array elements to funct ions

273

Person class header fi le 454,

538

Person c lass implementation

fi le 539

picture . html 1 245

Plac ing images i n X HTML

fi les 1 245

Point c lass i m plementation

fi le 686

Point c l ass represents an x-y
coord i nate pai r 6 1 6, 665

Point c lass test program 6 1 7

Point/Circl e/Cyl inder

h ierarchy test program 640

Point2 c lass represents an x
y coord inate pair as

protected data 625

Point 3 c lass uses member

funct ions to manipu late i ts

private data 632

Point4 base c lass contai ns a

constructor and a destructor

643

Pointer operators & and * 323

Preci s ion of float ing-poi nt

values 75 1

Prei ncrement ing and

post increment ing 1 00

Pri n t ing a str ing one character

at a time us ing a nonconstant

pointer to constant data 332

Pri n t ing an i nteger wi th

i nternal spac ing and p lus sign

758

Pri n t ing an unsigned in teger i n

b i t s 1 009

Pri nt ing on mUl t ip le l i nes wi th

a si ngle statement us ing

cout 25

Pri nt ing on one l i ne with

separate statements using

cout 25

Pri nt ing st ring

characteri st ics 859

Examples (cont .)

Pri n t ing the address stored i n a

char * variable 743

Pri nt ing the value of a union

i n both member data types

1 082

Pri vate base-c lass data cannot

be accessed from deri ved

cl ass 623

pri vate members of a c lass

are not accessible outside the

c lass 425

Program that outputs a logi n

page 922

programmer-defi ned function

square 1 74

Programmer-defi ned maxi

mum function 1 77

Protected base-c lass data can

be accessed from deri ved

c lass 629

Queue c lass-template

defin i t ion 966

Queue-processing program

967

Randomiz ing the die-ro l l i ng

program 1 86

Reading a random-access fi le

sequent ia l ly 832

Reading and prin t ing a

sequential fi le 8 1 7

Reading cook ies from the

c l ient ' s computer 9 I 4

Read ing i nput from

QUERY_STRING 896

Referencing array elements

with the array name and with

poi nters 345

represent ing a c lass i n the

UML 1 42

Rethrowing an except ion 788

Retrieving environment

variables v ia funct ion

getenv 893

Return i ng a reference to a

private data member 446

Rol l i ng a s ix-s ided die 6000

t i mes 1 84

Salari edEmployee c lass

header fi Ie 703

Salari edEmployee c lass

implementation fi le 704

SalesPerson c lass

defin i t ion 427

Sales Person class member

function defi n i t ions 428

1 295

Examples (cont .)

Scheduler c lass header fi le

458, 5 1 5

Scheduler c lass

i m plementat ion fi le 5 1 6

Scopi ng example 1 96

Sequence d iagram for

schedu I i ng process 302

Sequence d i agram that mode l s

the steps the bu i ld ing repeats

duri ng the s imu lat ion 300

Set and get funct ions

man ipu la t ing an object ' s

private data 443

Set of recursi ve cal l s to

method Fibonacc i 205

set operat ions of the

Standard L ibrary I 1 57

Sh ifted, scaled i ntegers

produced by 1 + rand () %
6 1 83

Signa ls defi ned in header

< c s igna l > 1 076

S i mple form with h idden fie lds

and a text box 1 260

S i ng le-argument constructors

and imp l i c i t conversions

1 1 92

s i zeof operator used to

determine standard data type

sizes 340

s i zeof operator when

appl ied to an array name

returns the number of bytes in

the array 339

Sort ing an array wi th bubble

sort 277

Stack c l ass-template

defi n i t ion 96 1

Stack cl ass-template

defi n i t ion with a composed

L i s t object 964

Stack test program 962

Stack unwind ing 79 1

Standard l i brary c l ass

st ring 588

Standard l i brary c lass vec

tor 592

Standard L i brary deque class

template I I 1 8

Standard L ibrary l i s t c lass

template I I 1 3

Standard Li brary map c lass

template I 1 26

Standard Library mUl t imap

c lass templ ate I 1 24

1296

Examples (cont .)

Standard L ibrary mul t i set

c lass template I 1 20

S tandard L i brary

priori ty _queue adapter

c lass 1 1 32

Standard L ibrary queue

adapter c lass templates I 1 3 1

Standard Library set c lass

template 1 1 23

Standard L ibrary stack

adapter c l ass 1 1 29

Standard L ibrary vector

class template I 1 06

Standard L ibrary vector

class template element

manipu lat ion funct ions 1 1 09

statechart d iagram for class

Elevator 228

statechart d iagram for c lasses

FloorButton and

ElevatorButton 228

static array i n i tia l izat ion

and automatic array

i n it ia l izat ion 270

stat i c data member

track ing the number of

objects of a c lass 498, 50 I

strcat and strncat 365

s t rcmp and st rncmp 366

s trcpy and s trncpy 364

Stream manipu lator

showbase 76 1

Stream manipu lators

bool alpha and

nobool alpha 764

Stream manipu lators hex,

oct, dec and s etbase 750

String c lass defi n i t ion wi th

operator overloading 569

String c lass member

function and friend-funct ion

defi n it ions 5 7 1

String c lass test program

574

Str ing copy ing us ing array

notation and pointer notation

347

String-search funct ion

s t rc spn 1 033

s t rlen 370

s t rtok 368

Student-po l l -analysis program

265

Summat ion wi th for 1 09

Examples (cont .)

Survey-data analysis program

279

swi tch structure test ing

mul t ip le letter grade values

1 1 4

table l . html 1 255

tabl e2 _ html 1 258

Test ing error states 767

Text prin t ing program 22

thi s poi n ter used impl ic i t ly

and expl ic i t ly to access an

object ' s members 490

Time abstract data type

implementation as a c lass 4 1 3

Time class contai n ing a

constructor with defaul t

arguments 43 1

Time c lass defin i t ion 42 1

Time c lass defin i tion

modi fied to enable cascaded

member-funct ion cal l s 49 1

Time class defi n i t ion with set

and gel funct ions 440

Time c lass member function

defi n i t ions 42 1

Time class member function

defi n i t ions i nc luding a

constructor that takes

arguments 43 1

Time class member function

defin i t ions, i nc luding const

member functions 47 1

Time c lass member function

defin i t ions, inc luding sel and

gel functions 44 1

Time c lass wi th const

member functions 47 1

Tree class-template

defin i t ion 97 1

TreeNode class-templ ate

defin i t ion 970

Unary scope resolut ion

operator 2 1 7

Unformatted [fa using the

read, gcount and wri te

member functions 749

Uni n i t ia l ized local reference

causes a syntax error 2 1 4

Unordered l i sts i n XHTML

1 25 1

use-case d iagram for elevator

system 1 39

User-defi ned,

non parameterized stream

man ipulators 754

Index

Examples (con t .)

U s i n g a dynamical ly a l l ocated

ostring s t ream object

87 1

Usi ng a fu nction templ ate 223

Using an anonymous union

1 0 8 3

U s i n g an i terator to output a

s t ring 869

Using command- l i ne

arguments 1 070

Using funct ion swap to swap

two strings 858

Using funct ions exi t and

atexit 1 074

Using GET with an X H T M L

form 899

Using goto 1 079

Using i mages as l i nk anchors

1 247

Using member function f i l l

and stream manipulator

set f i l l to change the

padding character for fie lds

l arger than the values be ing

prin ted 759

Using member funct ions get ,

put and e o f 745

Using POST with an X H T M L

form 90 1

Using s ignal hand l i n g 1 076

Using Standard Li brary

funct ions to perform a

heapsort I 1 63

Using stream manipulator

uppercase 763

Using templ ate fu nct ions 72 1

Using variab le- length

argument l i sts 1 068

Using vi rtual base c lasses

1 208

Uti l i ty funct ion demontration

429

verb phrases for each c l ass i n

s imu lator 297

width member function of

c l ass ios_base 753

Writ ing a cook ie 9 1 1

X H T M L document contai n i ng

a form to post data to the

server 9 1 0

X H T M L document t o read

user ' s contact i nformation

9 1 6

X H T M L table 1 255

Index

<except ion> 1 82, 787, 790,

800

except ion 780

exception 800

except ion c lass 800

except ion c lasses derived from

common base c lass 793

exception handler 780, 782

except ion hand l i ng 1 82

Except ion-handl i ng example that

throws exceptions on

attempts to d iv ide by zero

785

except ion not l i sted i n exception

speci fication 790

exception object 787

exception spec ification 789

except ion standard base class

787

except ional condi t ion I 1 8

. exe 889, 890, 892

executable i mage 1 7

executable statement 28, 72

execute a program 1 5 , 1 6, 1 7

execut ion-t ime error 1 7

execut ion-t ime overhead 696

exhaust memory 202

exit 228

exi t 784, 796

exit a deeply-nested structure 1 080

ex i t a funct ion 24

exit a loop 1 67

exi t a program 790

exit act ion 229

exit function 436, 8 1 5 . 1 073,

1 074

exit poi n t 1 28

EXIT_FAILURE constant 1 073

EXIT_SUCCESS constant 1 073

exp 1 73

expand a macro 1 056

expires attribute 9 1 0

exp l i c i t constructor 1 1 94,

1 1 95

expl ic i t conversion 92

exp l i c i t keyword I 1 94, 1 1 96

expl ic i t use of the this pointer

489

exponent 608

exponential "explosion" of cal l s

205

exponential complexi ty 205

exponential funct ion 1 73

exponentiat ion 34, I 1 0

expression 76, 78, 92, 1 06, 1 72

extend the base programming

l anguage 504

Extended B i n ary Coded Decimal

I n terchange Code

(EBCDIC) 367

extensib i l i ty 680, 1 1 03

extensi b i l i ty of C++ 555

extens ib i l i ty of STL 1 095

Extensible HyperText M arkup

Language (X HTML) 20, 52,

88 1 , 886, 1 237

extensible language 202, 267, 4 1 2 ,

504

Extensible Markup Language

(X M L) 20

ext ern " C " 1 084

extern keyword 1 92, 1 94, 1 072

external dec l arat ion 1 004

external l i nkage 1 073

extract commonal i ty 650

F
F float i ng-point suffix 1 075

f float i ng-po in t suffix 1 075

fabs 1 73

face val ues of cards 350

factorial 1 63 , 1 65 , 1 99, 200, 202

Factorial calculat ions with a

recursi ve funct ion 200

f a i l member funct ion 766

fai lbit 744, 748, 766, 8 1 5

false 34, 74, 76, 77 , 78 , 8 1 , 206,

763

FAQs 1 232

fatal error 1 7 , 88, 323, 392

fatal logic error 88

Fibonacci numbers generated wi th

a recursive function 202

Fibonacci series 202, 205

fie ld 8 1 0

fie ld width I 1 3 , 256, 749, 752

fie lds l arger than val ues being

printed 759

FIFO 505, 965, 1 094, 1 1 1 7 , 1 1 30

fig2 0_0 2 . cpp 1 068

f ig2 0_0 3 . cpp 1 070

f i g2 0_0 4 . cpp 1 074

fig2 0_0 6 . cpp 1 076

f i g 2 0_0 7 . cpp 1 079

fig2 0_0 B . cpp 1 082

f ig2 0_0 9 . cpp 1 083

fi le 809, 8 1 1 , 8 1 8

fi le as a col lect ion of bytes 8 1 I
f i l e attribute value (type) 898

fi Ie of n bytes 8 1 I

1 297

fi l e open mode 8 1 4, 8 1 6

FILE predefined symbol ic

constant 1 060

fi l e process ing 740, 742, 847

fi l e scope 1 95 , 4 1 8 , 497, 732, 1 083

ti le server 7

fi Ie system di rectory 943

fi lename 8 1 4, 8 1 6, 1 059

fi lename extens ion 1 5

fi le-pos i t ion poi n ter 8 1 8, 829, 834

fi le-process i ng c lass 743

f i l l 1 1 04, 1 1 34

fi l l character 408, 749, 752, 758,

759

f i l l member funct ion 757, 759

f i l l_n 1 1 04, 1 1 34

fi nal state 74, 1 29

final value of a contro l variable

1 02 , 1 08

f i nd 1 1 03 , 1 1 04, 1 1 1 9, 1 1 22 ,

1 1 48

f ind member fu nct ion of c lass

s t ring 862, 863, 864

find_each 1 1 04

f i nd_end 1 1 04

f i nd_f i r s t_not_of member

funct ion of c lass string

864

f i nd_f i r st_of 1 1 04

f i nd_f i r s t_of member

funct ion of c lass s tring

864, 90 1

f i nd_i f 1 1 04, 1 1 48

f i nd_la st_of member

funct ion of class s t ring

864

find ing stri ngs and characters in a

st ring 862

f i r s t 1 1 22 , 1 1 24

first-class container 1 096, 1 098,

1 1 0 1 , 1 1 09 , 1 1 1 2

fi rst - in fi rst-out (F I FO) 505, 965,

1 094, 1 1 1 7 , 1 1 30

fi rst pass of S i mple compi ler 990,

99 1 , 993, 996

fi rst refinement 87, 95, 35 I

f ixed 93

fi xed format 762

fixed notat ion 743

fixed-poin t format 93

fixed-po in t notat ion 756

fixed-poi n t value I 1 3

f ixed stream manipu lator 756,

76 1

fixed word s i ze 503

flag 86, 990

1298

f l ags member funct ion 764, 765

f lags member function of

ios_base 765

fl ight s imu lator 7 1 7

f l oat 27, 92, 1 80, 1 075

< f l oat . h> header fi le 1 8 1

float ing point 75 1 , 756, 762

float i ng-po in t arithmetic 547

float i ng-point constant not

suffi xed 1 075

float i ng-point d iv i s ion 92

float i n g-poin t exception 1 075

float ing-point number 86, 89, 92,

93

float ing-point number i n scient ific

format 76 1

floati ng-poin t size l i m i t 1 8 1

float i ng-poi nt values d isp layed i n

default , scient ific and fixed

format 762

f l oor 1 73 , 242

Floor c lass header fi le 459, 535

Floor c l ass i mplementation fi le

536

FloorButton c l ass header fi l e

458, 5 26, 656

FloorButton c lass

implementation fi le 526

F loorButton c lass member

function defi n i t ions 656

flow of contro l 39, 82

flow of control i n the i f/e l s e

structure 78

f low of control of a vi rtual

function call 697

fl ush a stream 1 07 3

fl ush buffer 768

flush output buffer 29

fl ush ing stream 749

fmod function 1 73

fmt f lags data type 764

for map 1 1 26

for repet i t ion structure 1 04, l OS ,
1 06, 1 08 , 1 33

for repet i t ion structure example

1 08

for structure act iv i ty diagram

1 08

for_each 1 1 44, 1 1 47

force a dec imal point 93, 743

forc ing a plus sign 758

form 897, 1 237 , 1 259

form element 1 26 1

form feed (• \ f .) 1 02 I , 1 024

form XHTM L element

« form> . . . < / form» 897

formal type parameter 222, 224,

728

formal type parameter in a

fu nction template defi n it ion

72 1

formal type parameters of a

template defin i t ion 720

format error 766

format of float ing-poi nt numbers

in scientific format 762

format state 749, 765

format-state stream manipulators

755

formatted data fi le process ing 809

formatted i nput/output 740, 823

formatted text 823

formatt ing 749

formulat ing algori thms 83, 86

FORTRAN (FORmula

TRANslator) 1 3 , 1 237

Fortran (FORmula TRANslator)

progamming language 1 3 ,

1 237

forward dec larat ion 457, 459, 507,

522

forward iterator I 1 00, I 1 06, I 1 44,

I 1 50, I 1 5 1 , I 1 52, I 1 54,

1 1 67

forward i terator operation I 1 02

forward pointer 960

forward reference 990

forward sl ash (I) 227, 1 247

fraction 607

fractional part 92

free fucntion 1 078

free memory 945

friend function 4 1 2, 4 1 5 , 424,

426, 430, 439, 443 , 485, 549,

550, 557, 568, 6 1 3 , 649, 7 1 9 ,

73 1

friend functions to enhance

performance 485

friend of a derived c lass 1 203

friends are not member

functions 486

Friends can access private

members of class 486

friendship granted, not taken 486

friendship not sym metric 486

friendsh ip not transi t ive 486

front 1 1 05, 1 1 1 1 , 1 1 30

front of a queue 505

front_inserter 1 1 54

< f stream> header fi le 1 8 1 , 742,

8 1 2, 8 1 4, 834, 835

< f stream . h> header fi le 1 8 1

Index

fu l l class d iagram for e levator

s imu lat ion 1 44

Ful l Computer Name: fie ld 884

fu l l y qua l ified host name 884

function 1 0, 1 7 , 23 , 4 1 , 1 33 , 1 7 1 ,

1 73 , 1 78, 406

funct ion adapter 1 1 72

function argument 1 72

function body 1 76

function cal l 1 7 1 , 1 76

function-cal l operator () 5 8 1

function cal l operator () 698

funct ion-cal l overhead 209, 579

funct ion call stack 334

function-cal l stack 790

funct ion defi n i t ion 1 74, 1 76, 1 95

fu nction defin i t ion as a funct ion

prototype I 75

funct ion header 1 90, 338

function name 1 7 1 , 1 74, 1 94, 355 ,

1 072, 1 073

funct ion object I I 1 9 , 1 1 24, I 1 72,

1 1 75

function object can encapsu late

data 1 1 75

funct ion object l e s s < int >

1 1 1 9 , 1 1 2 1

funct ion object l e s s < T > 1 1 24,

1 1 32

funct ion overhead 1 057

funct ion overload ing 2 1 9, 4 1 2 ,

739, 1 067

function parameter as a local

variable 1 76

function pointer 355, 696, 698,

1 1 72, 1 1 75 , 1 200

function prototype I I I , 1 75 , 1 76,

1 78 , 1 79, 1 95 , 208, 2 1 1 , 327,

420, 485, 1 055 , 1 067, 1 072 ,

1 084

function prototype for rand in

< c s tdlib> 1 83

function prototype for s rand i n

< c stdlib> 1 86

function prototype for t ime i n

< c t ime > 1 88

function prototype scope 1 95

function-prototype scope 1 95

fu nction prototypes are mandatory

1 78

function rai s e 1 075

function scope 1 95 , 4 1 8

function-scope variable 4 1 8

function s ignature 1 79

function templ ate 222, 223 , 7 1 9

function template max 250

Index

function template min 250

function-templ ate specia l izat ion

7 1 9

function template (s) 7 1 9, 720, 723

function that cal l s i t se lf 1 98

function that takes no arguments

208

< funct iona l > header fi le 1 82,

1 1 72 , 1 1 74

funct ional structure of a program

24

funct iona l izat ion 5

funct iona l iz ing a program 1 73 ,

207

funct ions as bu i ld ing b locks 1 73

funct ions for manipu lat ing data i n

t h e standard l i brary

contai ners 1 82

funct ions should be smal l 1 76

funct ions wi th empty parameter

l i sts 208

G
gal l ery . yahoo . com 1 245

gambl ing casino 1 82

game of "guess the number" 246

game of chance 1 88

game of craps 1 88 , 1 92

game play ing 1 82

"garbage" value 85

Gates, B i l l I I

gcd 248

gcount 749

general c l ass average problem 86

general u t i l i t ies l i brary

< c stdlib> 1 026, 1 060,

1 073, 1 078

genera l i t ies 680

generate I 1 04, I 1 34, I 1 36

generate_n 1 1 04, 1 1 34, 1 1 36

Generat ing values to be p laced

i nto e lements of an array 259

generator function I 1 34

generic a lgori thm I 1 03

generic class 723

generic programming 723, 1 092,

1 093, 1 097, 1 1 76, 1 235

get member funct ion 745, 746

get member funct ion 426, 439,

440, 445

get poi n ter 8 1 8

get request type 882, 887, 1 262

get the value of private data

member 426

get , put and eof member

functions 745

get env function 894, 895, 896,

905

get l ine function 362, 747, 852

getquery . cgi 898

getquery . cpp 899

gets the value of 36

G LF(Graphics I nterchange

Format) 1 245

global function 425, 73 1

g lobal ident i fier I 1 86

global name space I 1 89

global object con structor 436

global scope 437, 1 1 89

global variable 1 94, 1 95 , 1 96, 1 98,

2 1 7 , 272, 1 07 1 , 1 072, 1 1 89

golden mean 202

golden rat io 202

good member function 766

Good Programming Practice 1 0,

20

goodbit 766

go sub 998

goto e l im i nation 73

goto statement 73, 1 95 , 1 079

goto statement i n S imple 987,

988, 990

goto-Iess programming 73

grade point average 1 65

graph 1 65

graph i nformation 262

graphical representation of a

b inary tree 969

Graphics I n terchange Format

(G L F) 1 245

graphics package 7 1 7

greater than 35

greater than or equal to 35

great er<T> I 1 72

greater_equal I 1 72

greatest common d iv i sor (GCD)

245, 248

gross pay 1 58

group of re lated fie lds 8 1 I

guard condi t ion 76, 77, 78 , 83,

1 08, 1 1 7 , 1 2 1 , 227, 229

H
hl header e lement 1 240

h6 header e lement 1 240

half word 998, 1 003

hah in S M L 996

handle 535

1 299

handle on an object 4 1 8 , 45 1 , 452,

455

hangman 877

hardcopy pri nter 1 7

hardware 3 , 5

hardware platform 9

"has-a" re lat ionship (compos i t ion)

6 1 1

head 1 239

head element 1 239

head of a queue 943, 965

head sect ion 1 239

header 9 1 3 , 1 240

header cell 1 256

header e lement 1 240

header fi le 47, 1 80, 1 8 1 , 420, 424,

45 1 , 649, 699, 1 054, 1 072,

1 1 04, 1 1 06, 1 1 1 1 , 1 1 1 3 ,

1 1 1 8 , 1 1 20, 1 1 22 , 1 1 26,

1 1 29 , 1 1 3 1 , 1 1 32 , 1 1 47 ,

1 1 54, 1 1 56

header fi le < c s igna l > 1 076

header fi le <memory> 798

header fi le < new> 793, 795

header fi l e < stdexcept > 800

header fi le name enclosed i n angle

brackets 423

header fi le name enclosed in

quotes 423

header fi les xxxv i i i

header . html 1 24 1

heap 1 1 32 , 1 1 62 , 1 1 65

heapsorl I 1 32 , I 1 62

height attribute 1 246

Hej l s berg, Anders 1 2

he lper funct ion 427

he lp - s i t e . com I 230

Hewlett-Packard 1 092

hex stream man ipu lator 750, 755 ,

760

hexadecimal 1 66, 743, 760, 762,

1 030

hexadecimal (base- I 6) number

743, 750, 755 , 760, 1 029

hexadec imal i nteger 323

hexadec imal notat ion 743

hexadec i mal number system 1 020

hexadecimal va lue 1 249

hidden attribute value (type)

898

hide an i nternal data

representat ion 505

hide i m p lementat ion 502, 507

hid in lpkl l ll' l l t a t i oll detail 1 7 1 ,

502

hide names i n o u ter scope 1 96

1300

h i de private data from c l ients

420

h i d i n g 485

h i d i n g implementation 4 1 7

h ierarchical boss function/worker

function relationsh ip 1 72

h ierarchical form of management

1 7 1

h ierarchy o f exception c lasses 800

h ierarchy of shapes 680

h i gh- leve l language 8 , 9

highest level of precedence 32

"highest" type 1 80

h igh- leve l I/O 739

h i gh-performance card-shuffl i n g

a n d deal ing s imu lation 1 005

h i stogram 1 65 , 262, 282

h istogram-pri n t ing program 262

horizontal ru le 56, 1 250

horizontal tab (, \ t ') 24 , 1 02 1 ,

1 024

host 886

host environment 1 073

host object 479

hostname 886

hotwi red . lycos . com/

webmonkey/ O O / 5 0 /

index2 a . html 1 269

HourlyEmployee c lass header

fi le 705

HourlyEmployee c lass

implementation fi l e 705

how the system should be

constructed 1 39

hr element 1 250

hre f attri bute 1 242

htdoc s directory 885

. html (X HT M L fi le name

extens ion) 1 237

HTML (HyperText M arkup

Language) 88 1 , 1 237

html element 1 239

HTTP (Hypertext Transfer

Protocol) 88 1 , 882, 886

HTTP (version 1 . 1) 887

HTTP header 888

HTTP method 887

HTTP transaction 892

Huge 607

H uge i nteger 607

Huge Int c lass 604

Huge Integer c lass 467

hybrid language 9, 443

hyperl i nk 928, 1 242

HyperText Markup Language

(H T M L) 88 1 . 1 237

Hypertext Transfer Protocol

(HTTP) 88 1 , 886

hypotenuse 1 66

hypotenuse 237, 243

I B M 7, 1 3

I B M PC compat ib le systems 754

I B M Personal Computer 7 , 754

I DE (i n tegrated development

environment) 1 2

Identification tab i n the

Network dialog 884

identifier 27, 74, 1 95

identifiers for variable names 1 92

identify the c lasses 1 40

IE (Internet Explorer) 1 237, 1 246

i f 1 058

i f si ngle-selection structure 74,

76, 77, 1 32, 1 33

i f structure 34, 38

i f structure act iv i ty d iagram 77

i f/el s e double-selection

structure 74, 77, 78, 1 32

i f/e lse structure act i v ity

diagram 78

i f/goto statement i n S imple

987, 988, 99 1 , 994

i fdef preprocessor directive

1 058

i f ndef preprocessor directive

1 058 , 424

i f stream 742, 8 1 2, 8 1 4, 8 1 6,

8 1 8 , 83 1 , 1 070

i f stream constructor function

8 1 6

ignore 554, 748

ignore the return character 5 1 0

i l legal i n struction 1 075

image attribute value (type)

898

i mage hyperl i nk 1 247

image / g i f M I M E type 888

images i n Web pages 1 245

img element 1 246, 1 247

implementation 299

Implementation class

defi n i t ion 506

implementation detai l s , h idden

406

i mplementation fi le 507

i mplementation i nheritance 683

implementation of a class 420

implementation of a funct ion 700

Index

i mplementation of a member

function changes 433

I mplement ing a proxy c lass 508

impl ic i t compi ler-defi ned

conversion between bu i l t - i n

types 579

i mpl ic i t conversion 92, 578 , I 1 92 ,

1 1 94, 1 1 97 , 1 206

i m pl ic i t convers ions v ia

conversion constructors

1 1 94

imp l ic i t convers ions with s ingle-

argument constructors I 1 92

imp l ic i t first argu ment 489

imp l ic i t handle 4 1 8

impl ic i t poi n ter 485

imp l ic i t , user-detl ned convers ions

578

imp l ic i t ly virtual 674

i m precis ion of float ing-point

numbers 1 1 2

i mproper impl ic i t conversion I 1 92

i n -memory formatt ing 87 1

i n -memory 110 870

inc lude 1 054

i nc l ude a header fi l e 420, 424

inc lude < c s t ring> 1 072

inc lude 1 054

i nc lude " f i l ename " 1 054

#inc lude < i omanip> 93

#inc lude < iostream> 22

i nc lude preprocessor

d irective 1 7 8 , 1 8 1 , 420, 1 054

inc lude s I 1 56, I 1 58

i ncrement a contro l variable 1 02 ,

1 07 , 1 08

i ncrement a pointer 34 1

i ncrement an i terator 1 1 02

i ncrement and decrement

operators 1 00

increment operator 99, 58 1

i ncrement the i nstruction counter

993

i ndefi n i te postponement 35 1

i ndefi n ite repeti t ion 86

i ndentation 38 , 39, 76, 77 , 80, 1 04

i ndependent software vender

(I S V) 699

i ndependent software vendor

(I S V) 1 0, 420, 649, 699

i ndex 254

i ndexed access I I 1 7

i ndexed l i st 999

i ndirect base class 6 1 2

i nd i rect ion 32 1

i n di rection operator (*) 323 , 325

Index

i nd i rect ly reference a value 32 1

i neqal i ty operator (! =) 556

i nequal i ty 1 1 90

i nequal i ty operator keyword I 1 90

i n fi n ite loop 82, 92, 1 07 , 1 63 , 202

i nfin i te recursion 565

i nfix ari thmet ic expression 982

i nfi x notation 98 1

i nfix-to-postfi x convers ion

algori thm 982, 99 1 , 996

i nfi x-to-postfi x converter 999

i n formation h id ing 4 1 , 1 95 , 336,

406, 4 1 5 , 502

i nformat ion t ier 882, 937

i n heri t implementat ion 7 1 7

i n herit i n terface 68 1 , 7 1 7

i nheri tance 4 1 , 1 43 , 4 1 2, 4 1 7 , 4 1 8 ,

46 1 , 469, 6 1 0, 6 1 3 , 648, 649,

650, 663, 699, 7 1 9, 996,

1 1 33

i n heri tance example 6 1 2

i nheri tance h ierarchy 674, 682

I nheri tance h ierarchy for

un iversity Conununi

tyMembers 6 1 3

i nheritance re lat ionships of

I/O-re lated c lasses 742

i nheritance re l at ionsh ips of the [J
O-related c lasses 8 1 2

I nheritance to explo i t

commonal i ty among c lasses

374

i n heri t i ng i nterface versus

i n heri t i ng i mplementation

7 1 7

i n i t ia l state 74, 1 29, 227

i n i t ia l value for an attribute 227

i n i t ia l value of a control variable

1 02 , 1 05

i n i t i a l i zat ion phase 87

i n i t i a l i ze a constant of a bu i l t - i n

data type 475

i n i t i a l i ze a poi n ter 322

i n i t i a l i ze pointer to 0 (n u l l) 947

i n i t ia l i ze to a cons istent slate 43 1

i n i t i a l i ze to zero 84

i n i t ia l ize wi th an ass ignment

statement 476

i n i t i a l i zer 257, 430

i n i t ia l i zer l i st 257, 258, 36 1

i n i t i a l i zer of = 0 for pure

virtual funct ion 68 1

i n i t ia l iz ing a pointer declared

const 335

I n i t ia l iz ing a reference 2 1 3

i n i t i a l i zing an array ' s elements to

zeros and prin t ing the array

256

i n i t ia l iz ing c lass objects 426, 430

i n i t i al i zing mul t id i mensional

arrays 290

i n i t ia l iz ing the elements of an

array with a decl aration 257

inl ine function 209, 2 1 0, 4 1 6,

55 1 , 567, 580, 999, 1 056,

1 057, 1 1 28, 1 1 3 1 , 1 1 32,

1 1 72

inl ine funct ion defi n i t ion 420

inl ine funct ion to calcu late the

volume of a cube 2 1 0

i n ner block 1 95

inner--'product I 1 04, I 1 66

i nnermost pair of parentheses 32

i norder traversal 969, 986

inOrderTraversal 976

inplace_merge I 1 54, I 1 55

input 990

i nput a l i ne of text 747

I nput and output stream i terators

1 098

input data 1 7

input device 5

input element 1 262

i nput from stri ng in memory 1 82

i nput i terator I 1 00, I 1 02 , I 1 3 8 ,

1 1 39, 1 1 44, 1 1 47 , 1 1 54,

1 1 5 8, 1 1 59, 1 1 68

i n put l i ne of text i nto an array 362

i nput of a string using cin with

stream extract ion contrasted

with i nput using cin . get

746

i nput/output (I/O) 1 7 1 , 739

i nput/output l ibrary funct ions 1 8 1

input/output of objects 84 1

i nput/output operat ions 74

i nput/output stream header fi le

< iostream> 22

i nput sequence 1 098

input S i mple command 987

i nput stream 744, 746

input stream i terator 1 098

i n put-stream i terator 1 098

i nput stream object (c in) 26, 28

input XHTML element 898

i nputt ing character data us ing cin

member-funct ion get l ine

747

i nputt ing from strings i n

memory 870

1 30 1

I N R I A (l ns t i tu t Nat ional de

Recherche en I n formatique

et Automatique) 20

insert 1 1 1 2 , 1 1 22 , 1 1 26

insert member funct ion of c lass

string 866, 867

inserter I 1 54

i n sertion 505, 943

i n sert ion at back of vector 1 1 05

i nstant-access appl icat ion 824

i nstant access process ing 834

i nstantiate 4 1 , 406

I nst i tut Nat ional de Recherche en

I n formatique et

Automatique (lN R I A) 20

i n struct ion 1 6, 1 7

i nstruct ion counter 993

i nstruction execut ion cycle 390

int 23 , 28 , 1 79

int & 2 1 1

int * 327

int * const 329

int operands promoted to

f loat 92

i n teger 23 , 27 , 1 62

i n teger ari thmet ic 547

i n teger d i v i s ion 3 1 , 92

i n teger promotion 92

int egerPower 243

i n tegers prefi xed with 0 (octa l)

760

i n tegers prefi xed wi th Ox or ox
(hex adec ima l) 760

IntegerSet c l ass 545

i n tegral size l i m i t 1 8 1

i n tegrated development

env i ronment (IDE) 1 2

i n tegrity of an i n ternal data

structure 505

i n teract ion 370, 37 1 , 374, 45 1

i n teract ion among obj ects 372

i n teract ive attent ion s ignal 1 076

i n teract ive comput ing 29

i n teract ive s ignal 1 076

i n terchangeabi l i ty of arrays and

poin ters 347

i n terest on deposi t 1 68

i nterest rate I 1 0, 1 65

i n terface 4 1 , 663

Interface c lass defi n i t ion 507

Interface c l ass member-

funct ion defi n i tions 507

i nterface i nheritance 683

i n terface of a c l ass 406, 4 1 2, 420

i nterface rema ins the same 445

i n ternal c haracter str in g 578

1302

i n ternal l i n kage 1 073

i n ternal representat ion of a

s t ring 569

i n ternal spac ing 758

internal stream man ipu lator

39 1 , 755 , 758

I n ternational Organ ization for

Standard ization (I SO) 3, 9,

504

I n ternet 1 8 , 2 1

I n ternet Explorer (I E) 1 237 , 1 246

I n ternet Protocol (l P) 1 9

I n ternet Service Provider (lSP)

1 262

I n ternet STL resources I 1 75

i n terpreter program 8

i nterrupt 1 075

i nterrupt handler 362

I ntranet 1 0, I I , 1 4, 1 8 , 1 9

intToFloat 237

inval id access to storage 1 076

invalid_argument 800

inval id_argument except ion

1 1 1 2

i n voke a funct ion 1 7 1 , 1 75

i n voking a non-const member

function on a const object

470

< i omanip . h> header fi le 93,

1 8 1

< i omanip> header fi le 1 8 1 , 740,

750, 1 055

ios : : app 8 1 4

ios : : ate 8 1 4

ios : : beg 8 1 9

ios : : binary 8 1 4, 829

ios c lass 1 205

ios : : cur 8 1 9

ios : : end 8 1 9

ios : : in 8 1 4, 8 1 8 , 835

ios : : out 8 1 4, 835

ios : : trunc 8 1 4

ios_base base c l ass 766

< iostream> header fi le 22, 1 8 1 ,

740, 74 1 , 1 055 , 1 1 89

iostream c lass 742, 1 205, 1 206

< iostream . h> header fi l e 1 8 1

< iostream> header fi le 8 1 2

< iostream . h> header fi le 1 1 6

I P 1 9

I P address 889

" is a" 1 20 1 , 1 203

"is a" rel at ionsh ip (i nheritance)

6 1 1 , 648

is-a relat ionsh ip 679

i salnum 1 020, 1 02 1

isalpha 1 020, 102 1

i scntrl 1 02 1 , 1 024

i sdigit 1 020, 1 02 1 . 1 023

i SEmpty pred icate fu nct ion 427

i sFul l predicate function 427

i sgraph function 1 02 1 , 1 024

i s lower function 33 1 , 1 020,

1 023

ISP (I nternet Service Provider)

1 262

i sprint function 1 02 1 , 1 024

i spunct function 1 02 1 , 1 024

i s space function 1 02 1 , 1 024

i s t ream c lass 74 1 , 742, 8 1 8 ,

824, 83 1 , 834, 84 1 , 87 1 ,

1 205, 1 206

i s t ream member function

ignore 554

i s t ream_iterator 1 098,

1 099

i s t ringstream class 870,

872, 873

i supper function 1 020, 1 023

ISV (i ndependent software

vender) 699

i sxdigit function 1 020, 1 02 1

iter_swap 1 1 04, 1 1 50

i terat ion 83, 206

i terat ive solut ion 1 99 , 206

< i t erator> 1 1 54, 1 1 56

< i terator> header fi le 1 82

i terator 505, 682, 7 1 9, 869, 870

iterator 54, 1 092, 1 095, 1 096,

1 097, 1 098, 1 1 0 1 , 1 1 22

i terator-category hierarchy 1 1 00

i terator c lass 485, 682

i terator object 505

i terator operation I 1 02

i terator poi nt ing to fi rst element

past the end of container

1 098

i terator to the next element of a

contai ner 1 098

i terator typede f I 1 0 1

J
J acobson, I var 43

J acopin i , G. 73, 1 32

J apanese 503

J ava I I , 1 4

Java How 10 Program: Fijih

Edition I I

job 6

Jo in t Photographic Experts Group

(J PEG) 1 245

jus t i fied fie ld 759

K
Keio U n i versity 20

Kemeny, John I I

Kernighan and Ri tch ie C 9

key 877, 1 1 1 9

Index

key/value pair I 1 24, 1 1 26

keyboard 5 , 6, 1 7 , 28 , 1 1 6, 1 1 9 ,

388 , 739, 742, 8 1 1 , 1 066

keyboard i nput 9 1

keyword 74. 75

keyword template 720

KIS ("keep i t s imple") 20

Knight ' s Tour 3 1 3

Knight ' s Tour: brute-force

approaches 3 1 5

Knight ' s Tour: c losed-tour test

3 1 6

"knows a" re lat ionship 648

Koen ig , Andrew 780

Kurtz, Thomas I I

L
L float ing-poin t suffi x 1 075

1 float i ng-poin t suffi x 1 075

L i n teger suffi x 1 075

1 i n teger suffi x 1 075

l abel 1 95

l abel speci fied in a goto

statement 1 079

l abels i n a swi tch structure 1 95

Laboratory for Computer Science

1 8

l anguage i nteroperab i l i ty 1 3

l arge object 2 1 3

l arge programs 1 70

l argest e lement of a col lect ion 60 I

l ast- i n fi rst-out (L I FO) data

structure 502, 723, 728, 960,

1 094, 1 1 28

l ast- i n-fi rst-out order 723, 728

late b ind ing 695

leading 0 76 1

leading Ox and lead ing OX 76 1

leaf node 984

Lee, Meng 1 092

left brace (() 23 , 26

left chi Id 969

left just ificat ion 77, 1 1 3 , 352 , 7 5 7 ,

7 5 8

Index

left just ification and right

just ification with stream

man ipulators l e f t and

right 757

left node 976

left-shift ass ignment operator

1 0 1 6

left-sh ift operator (< <) 74 1 , 1 008,

1 0 1 4, 1 0 1 5 , 1 048, 547

left side of an ass ignment 1 28,

254, 445 , 564

left stream manipu lator I 1 3 ,

755, 757

left subtree 969, 975, 976, 977,

984

left-to-right pass of an expression

982

left to right evaluation 32, 33

left value 1 28

legacy C code 1 056

legacy code 4, 330, 1 060, 1 066,

1 078

length member funct ion of c lass

st ring 852

length of a str ing 267, 36 1 , 857

length of a substring 5 8 1

length_error 800

length_error exception 859,

1 1 1 2

les s_equa l < T> 1 1 72

less than 35

less than or equal to 35

le s s < doubl e > 1 1 22

les s < int > 1 1 1 9 , 1 1 2 1 , 1 1 24

l e s s <T> 1 1 72

less-than operator «) 1 097

let statement i n S imple 987, 99 1 ,

999

letter 809

level of indentation 78

level -order traversal of a b inary

tree 977, 985

lexicographical permutator I 1 67

lexicographical_compare

1 1 36, 1 1 38

< l i > (l i s t i t em) tag 1 25 1

l i braries 1 6

l icensing c lass 450

l i fe l i ne 300, 30 1

L I FO 502, 723, 728, 960, 1 094,

1 1 28

Light c lass header f i Ie 456, 520

Light cl ass implementat ion fi le

520

l i merick 398

< l imi t s > header fi le 1 82

< l imi t s . h> header fi le 1 8 1

l i ne 33

l i ne number 987, 989, 990, 1 060

l i ne of commun ication with a fi le

8 1 4, 8 1 6

l i ne of text 747

LlNE predefi ned symbol ic

constant 1 060

l ine preprocessor d i rective

1 059

l i ne with an arrowhead 30 1

l i near data structure 946, 969

l i near search of an array 283, 284,

285

l ink 1 5 , 1 6, 944, 969

l i nk to a class ' s object code 420

l i n kage 1 92, I 1 89

l i n kage spec i ficat ion 1 084

l i nked data structure 407

l i n ked l i st 505, 943, 945 , 946, 947,

952, 959

l i nked l i st c lass template 999

l i n ker 1 6, 1 072

l i n ker error I 1 86

l i n ker l i nk 1 7

l i n k ing 1 6, 1 073

l i nks 1 45

l inks . html l 242

l inks 2 • html 1 25 1

Linux 884

< l i st > 1 096

< l i s t > header fi le 1 82

l i s t 944, 1 1 28

l i s t 1 092, 1 097, 1 1 0 1 , 1 1 05

L i s t c lass template 947, 96 1 ,

964, 965

L i s t c lass-template defin i t ion

948

l i st of nouns i n problem statement

1 40

l i st processing 947

l i s t search ing performance 999

l i st sequence container I I 1 3

l i s t . html l 252

List < STACKTYPE > 964

L i stNode c lass-templ ate

defin i t ion 947

l i teral 28

l i ve-code approach 3, 1 094

load 1 5

loader 1 6

loading 1 7

local area network (LAN) 7

local automatic object 437

local variable 85, 1 73 , 1 93 , 1 94,

1 96, 334, 1 083

1303

< locale> header fi le 1 82

localhos t 884, 889

localt ime funct ion 888, 890

local t ime . cgi 890, 892

localt ime . cpp 889

Location header 905

location in memory 30

l og 1 73

l og l O 1 73

l og211 levels in a b inary search t ree

with n elements 977

l ogari thm 1 73

logic error 36, 85

logic_error 800

logical AND (& &) 1 24, 1 66, 1 0 I I ,
1 1 90

logical dec is ion 4

logical NOT (!) 1 24, 1 26, 1 66,

1 1 90

logical operator 1 24

logical operator keyword 1 1 90

logical OR (I i) 1 24, 1 66, 1 0 1 3 ,

1 1 90

logical unit 5

logical_and I 1 72

logical_not I 1 72

l og ical_or I 1 72

login . cgi 92 1

login . cpp 922

Logo language 3 1 2

logout . cpp 935

long 1 1 9 , 1 79 , 1 075

long doubl e 1 80, 1 075

long int 1 1 9 , 1 80, 20 1

loop 8 1 , 83 , 88

l oop-con t inuat ion cond i t ion 1 03 ,

1 05 , 1 08 , 1 20, 1 2 1

loop-con t inuat ion condit ion fai l s

206

loop-cont in uat ion test 1 67

loop counter 1 02

loop i terat ion 83

loop nested wi th in a loop 95

loop ing structure 74, 8 1

loss of data 766

Lovelace, Lady Ada 1 3

lower_bound I I 1 9 , 1 1 22, I 1 60

lowercase letter 1 020, 1 023

lowercase letters 27, 68, 75, 1 8 1 ,

33 1

"lowest type" 1 80

low-level 1/0 capab i l i tY 739

Ivalue (" left val ue") 1 28 , 2 1 3 , 254,

322, 323 , 445 , 564, 568, 5 80,

1 1 02 , 1 1 1 9

Ivailles as rvalues 1 28

1304 Index

/

M mathematical algori thms of the memberwise ass ignment 448, 548

m-by-n array 289
Standard Library 1 1 44 memberwise copy 565

mach i ne-dependen t 7 , 323, 342,
mathematical calculat ion 1 7 1 memchr 1 040

503
mathematical c lass 547 memchr funct ion 1 037 , 1 040

m achine l anguage 7 , 8 , 1 93 , 99 1
mathematical computation 1 3 memcmp funct ion 1 037 , 1 039

machine- language code 1 1 3 , 960
max function I 1 65 memcpy 1 038

m ach ine- language programming
max_element function 1 1 44, memcpy function 1 037

387
1 1 47 memmove funct ion 1 037, 1 038

Macintosh 754 , 8 1 6
max_s i z e function 1 095 <memory> header fi le 1 82

macro 1 80, 720, 1 067, 1 068
max heap I 1 62 memory 5, 1 6, 1 7 , 27, 30, 1 93 ,

macro argument 1 056
maximum 1 77 794, 796, 798

macro defi n i t ion 1 059
maximum length of a string 86 1 memory access v io lat ion 54

macro expansion 1 057
max length attribute 1 262 memory-access v io lat ion 1 093

macros defi ned i n header < c s t -
mean 32, 278 memory address 320, 743

darg> 1 067
mean ingfu l name 1 76 memory consumption 696

mechanics of mul t ip le inheritance memory funct ions of the str ing
magic number 26 1

1 205 hand l i ng l ibrary 1 03 7
magnetic d isk 809

median 278, 282 memory leak 54, 798, 800, 869,
magni tude 758

member 407 945, 1 093
magni tude right-j ust ified 755

member access operator (.) 407 memory locat ion 30, 84
mai l -order house 1 65

member-access spec ifier 4 1 1 , 486 memory not a l located 1 078
mai lto : U R L 1 244 member access spec ifier publ i c memory un i t 5
main 23, 24, 26, 30, 1 74, 1 073

4 1 1 <memory> 798
main . html 1 238 member function 4 1 , 406, 4 1 I , memory-han d l i ng function
maintenance of software 1 5

4 1 2, 4 1 6 memchr 1 040
make ut i l i ty 1 073 member function cal l 547 memory-hand l i ng function
"make your point" 1 88 member function cal l s for const memcmp 1 03 9
make_heap I 1 62 objects 470 memory-hand l i ng function
make f i l e 1 073 member function cal l s often memcpy 1 038
mal loc function 1 078 concise 4 1 7 memory-hand l ing function
mandatory function prototype 1 78 member function defi ned in a c lass memmove 1 038
mangled function name 220 defin i t ion 4 1 6 memory-hand l ing function
Manhattan 1 68 member function i n l i ned 4 1 6 memset 104 1
Manipulat ing a l i nked l i st 952 member functions normal ly pub- memset funct ion 1 03 7 , 1 040
manipulat ing i nd iv idual lie 4 1 2 menu driven system 358

characters 1 020 member functions that take no merge 1 1 1 3 , 1 1 1 6, 1 1 52, 1 1 54
manipulator I 1 3 , 8 1 2 arguments 4 1 7 merge symbol 82
"manufacturing" sect ion of the member- in i t ia l ization syntax 509, merge two ordered l i st objects 98 1

computer 5 529 mergi ng of dec is ion paths 229

map 1 094, 1 096, 1 1 0 1 , 1 1 1 9 , member i n i t ia l izer 474, 475 , 476, message 4 1 , 296, 30 I , 303 , 370,
1 1 24, 1 1 26 566, 578 547

<map > header fi le 1 82, 1 096, member i n i t ia l izer for a const message number 372

1 1 26 data member 478 message sent to an object 4 1 I

mapped value I 1 1 9 member- in i t ia l izer l i st 476, 479, method 4 1 , 406, 4 1 1

markup 886 482, 5 1 2 , 1 20 1 method = " get " 1 262

markup language 52, 55 , 1 237 member- in i t ia l izer syntax 475 method = " pos t " 1 262

mask 1 0 1 0 Member in i t ia l i zer used to method attribute 1 26 1

"masked off' 1 0 10 i n i t ia l ize a constant of a method attribute (f orm) 897

Massachusetts Ins t i tute of bu i l t - in data type 475 metric conversion program 402

Technology (M IT) 20 member-object i n i t ia l izer 483 M FC 1 4

math l ibrary 1 72, 1 8 1 Member-object i n i t ia l izers 483 microprocessor chip technology

math l ibrary function I I I , 1 7 1 , member object ' s defau l t 1 8

1 72, 236 constructor 484, 485 M icrosoft M FC (M icrosoft

math l i brary function sqrt 1 79 member selection operator (.) Fou ndation C l asse s) 1 4

<math . h> header fi le 1 8 1 407 , 4 1 8, 49 1 , 674, 799 M icrosoft V i sual C++ 1 5 , 1 07 3 ,

mathematical a lgori thm 1 1 44 members of a structure 407 1 1 76, 1 1 9 1

Index

M icrosoft V isual C++ home page

1 234

M icrosoft Wi ndows 1 1 6

M icrosoft ' s W indows-based

systems 7

m iddle t ier 883 , 938

m iddle va lue 282

mi leage obtai ned by automobi les

1 57

m i l i tary format 408

M I M E (M u l t ipurpose I n ternet

M a i l Extens ions) 888

M I M E type 888

M I M E type image / g i f 888

M I M E type t ext / html 888

M I M E type t ext /plain 888

min 1 1 65

min_e lement 1 1 44, 1 1 47

minus 1 1 72

minus s ign (-) i ndicat i ng private

v i s ibi l i ty 45 1

mi smatch 1 1 04, 1 1 36, 1 1 38

miss ion cri t ical 784

M I T (Massachusetts I n st i tute of

Technology) 20

M IT ' s Project M ac 1 8

mode 278, 282

model 1 4 1 , 390

model an i n teract ion 374

model of a s imu lat ion 1 38

mode l i n g 4 1

modifi ab i l i ty 4 1 5

modifications to the S i mple

compi ler 998

Modified l i s t of verb phrases for

c lasses in the system 37 1

modify a constant pointer 334

modify address stored in poi nter

variable 334

modularize a program 1 73

module in C++ 1 70

modu lus 3 1 , 32

modu lus operator (%) 3 1 , 67 , 1 62.

1 83 , 1 88

modulus<T> I 1 72

monetary calculat ion I 1 2

monetary format 1 82

most derived c l ass 1 2 1 0

mouse 5

mul t id imensional array 290

mul t imap associat ive container

1 094, 1 096, 1 1 0 1 , 1 1 1 9,

1 1 24, 1 1 26

mult iple 243

mUl t ip le i nheritance 4 1 , 6 1 0, 6 1 2,

74 1 , 1 20 1 . 1 202, 1 203, 1 204,

1 205

mUl t ip le i nheritance

demonstration 1 20 I

mul t ip le of another number 32

mul t ip le-select ion structure 74,

1 1 3

mult ip le source fi le 420

mul t ip le-source-fi le program

\ 07 1 , 1 072

mul t ip le-statement body 38

mul t ip le-subscripted array 289,

292

mul t ip l ication 5 , 3 1 , 32

mul t ip l icati ve operators * , / , % 93

mul t ip l ic i ty 1 42, 1 43

mul t ip l ic i ty values 1 43

multiplies<T> 1 1 72

mul t iprocessor 6

mul t i programming 6

Mul t i purpose I nternet Ma i l

Extensions (M I M E) 888

MUl t i purpose sort ing program

us ing funct ion poi nters 355

mul t i set 1 094, 1 096, 1 1 0 1 ,

1 1 1 9, 1 1 22, 1 1 24

mul t i task ing 1 3

mul t i- t ier appl ication 882, 938

mul t i user env i ronment 965

M usser, David 1 092

mutable data member 1 92,

1 1 97 , 1 1 98

mutable demonstrat ion 1 1 98

mutat ing-sequence algori thm

1 1 04

My Network Places 884

N
name attribute 1 262

name decorat ion 2 1 9

name function of c lass

type_info 7 1 4

name handle 4 1 8 , 500

name mang l i ng 2 1 9

Name mangl ing to enable type-

safe l i n kage 22 1

name of a control variable 1 02

name of a funct ion 1 7 1

name of a source fi I e 1 060

name of a variable 30, 1 92

name of an array 254, 325

name of an attr ibute 1 239

name of operat ion 297

name/value pair 9 1 3

1 305

named constant 259

name spaee keyword 1 1 87 , 1 1 89

name spaee member I 1 87

name spaee qual i fier 1 1 89

name spaees I 1 87

natural language of a computer 7

natural logari thm 1 73

nav . html l 247

NCSA (the Nat ional Center for

Supercomput ing

Appl icat ions) 886

NDEBUG 1 060

near container 1 094

negat e < T > 1 1 7 2

nested block 1 95

nested bu i ld ing block 1 33

nested control structure 94, 1 3 1 ,

1 080

Nested control structures:

Exam i nat ion-resu l t s

problem 96

nested e lement 1 239

nested for structure 292

nested funct ion cal l 784

nested i f/e l se structure 79, 80

nested l i st 1 25 1

nested name spaee I 1 89

nested parentheses 32, 34

nest i ng 77 , 78 , 1 04 , 1 3 3

nest i ng ru le 1 3 1

. N ET pl atform 1 2

Netscape 1 23 7

Network a n d Dia lup
Connections explorer 884

ne t work connect ion 739

Network dia log 884

Network Identification 884

network message arri val 78 1

Network Neighborhood 884

network node 965

network of networks 1 9

new 495 , 509, 566, 945 , 1 078 ,

1 1 1 2

< new> 793, 795

new block of memory 1 079

new cal l s the constructor 496

new fai l s 784, 792

new fai l ure handler 795, 796

<new . h> 795

new return i n g 0 on fai l u re 793,

796

new stream manipu lator 754

new throwing bad_al loe on

fai lure 794, 795

new_handler 784

1306

n ew l i ne (, \ n ') 23, 24, 29, 38 ,

360, 744, 1 024

new l i ne character 1 1 9

n ick name 323 , 325

noboolalpha stream

manipu lator 763

node 945

non-member function to overload

an operator 55 1

non-member, friend function

554, 556

non-member, non- fri end

funct ion 549

non- stat i c member function

568

non-const member function 474

non-const member funct ion

ca l led on a const object

473

non-const member function on a

non-const object 473

nonconstant poi nter to constant

data 330, 332, 333

nonconstant pointer to

nonconstant data 330

non-contiguous memory l ayout of

a deque 1 1 1 7

nondestruct ive read 30

nonfatal error 1 7 , 1 78 , 784

Non- friendlnon-member

funct ions cannot access

private members 488

non l i near, two-di mensional data

structure 969

nonmodifiable function code 4 1 8

nonm utat ing sequence a lgori thm

1 1 04

nonparameterized stream

man ipu lator 93

nonrecoverable fai l u re 766

nonstandard cast I 1 85

non- stat i c member function

489, 500

non-type parameter 730

non-type templ ate s ize parameter

730

nonzero treated as t rue 1 27

noshowbase stream

man ipu lator 755, 76 1

noshowpoint stream

man ipu lator 756

noshowpo s stream manipulator

39 1 , 756, 758

noskipws stream manipulator

755

not equal 35

not operator keyword I 1 90

not_eq operator keyword 1 1 90

not_equal_to<T> I 1 72

note 74

Notepad text editor 1 237

nothrow 796

nothrow_t 796

noun 1 4, 1 40, 1 4 1 , 225

nouns i n a system spec ificat ion 4 1

nouns i n problem statement 1 68

nouns in the problem statement

225, 374

nouppercase stream

manipulator 756, 763

nth_el ement 1 1 67

n-t ier appl ication 882, 938

NULL 32 1 , 1 029, 1 03 1 , 1 032

n u l l (0) 363, 944

n u l l character (, \ 0 ') 267, 332,

348, 360, 36 1 , 363, 369, 749,

944, 983

nul l poi nter (0) 8 1 5 , 944, 985,

1 078

nul l statement 8 1

n u l l stri ng 825

n u l l -termi nated string 268, 349,

743, 867

number of arguments 1 75

number of elements in an array

339

<numeric> 1 1 04, 1 1 47

numerical al gori thm I 1 04, 1 1 72

nu merical data type l im i t 1 82

o
object 4, 9, 1 4, 40, 4 1 , 1 33 , 406

object "speak" 405

object "th ink" 405

object-based programming (O B P)

469

object code 1 5 , 1 6, 420

Object Constraint Language

(OC L) 1 45

object creat ion 303

object diagram 1 45 , 300

object diagram of empty bu i ld ing

1 45

object fi le 699

object handle 4 1 9, 500

object i nteract 405

object leaves scope 435

Object Management Group

(OMG) 43

object module 420

object of a derived c lass 664, 668

object of a derived c l ass i s

i nstant iated 642

object orientation 40

object-orientat ion 405

object oriented 4 1

Index

object oriented analys is and design

(OOAD) 42, 43

object-orien ted analys is and

design (OOA D) process 42

object-oriented analysis phase 1 3 8

object-oriented design (000) 40,

1 33 , 1 3 8 , 1 68 , 370, 486

object-oriented l anguage 1 4

object-oriented programming

(OOP) 4, 5 , 9 , 2 1 , 4 1 , 43 ,

1 33 , 1 73 , 370, 4 1 2, 469, 6 1 0,

663 , 673

"object speak" 40, 63

"object th ink" 40

object ' s VIable poi nter 698

object-oriented design (000)
x x x v i i , 296, 405 , 45 1

objects contai n on ly data 4 1 8

ObjectS pace STL Tool K i t

example I 1 75 , 1 234

oct stream manipu lator 750, 755 ,

760

octal (base 8) number system 1 66,

760, 1 029

octal (base-8) number system 750,

755

octal number 743, 760, 1 020, 1 03 0

odd i nteger 1 64

odd number 1 67

off-by-one error 86, 1 05 , 1 06 , 255

offset 698, 825

offset from the beg inn ing of a ti le

8 1 9

offset to a poi nter 344

of stream 742, 8 1 2 , 8 1 4, 8 1 5 ,

8 1 6, 8 1 8 , 828 , 829, 832 ,

1 070

"old-style" header fi les 1 8 1

OMG (Object M anagement

Group) 43

one-pass algori thm I 1 00

one-to-many mapping 1 094

one-lo-many relat ionship I 1 24

one-to-one mapping 1 094, I 1 26

one-to-one re lat ionship 1 42

one-to-two re lat ionship 1 42 , 1 43

one ' s complement 1 008, 1 0 1 4

on l i ne C++ courses for credi t 1 23 2

O O A D (object oriented anal ys i s

and desi gn) 42, 43

Index

OOD (object-oriented design)

296. 405 . 45 1

OOP (object oriented

programming) 4, 5 , 9, 2 1 . 4 1 ,

43, 1 33 , 1 73 , 370, 4 1 2 , 469,

6 1 0, 663 , 673

open a fi le for i n put 8 1 4

open a fi I e for output 8 1 4

open a nonexistent fi le 8 1 5

open source 884

opened 8 1 1

operand 29, 3 1 , 78 , 387 , 990

operat ing system 6, 7 , 9 . 362, 8 1 5

operat ion 40, 1 42 , 296. 300, 374

operat ion code 387, 990

operat ion implemented as funct ion

225

operat ions a l lowed on data 503

operator 98

operator- 1 097

operator + I 1 66

operator + = 854

operator < I 1 68

operator < < 763

operator assoc ia t iv i ty 1 27

operator function 550

operator keyword I 1 84, I 1 90,

1 1 9 1

operator keyword 548

operator keywords demon strat ion

1 1 9 1

operator overload ing 30, 222, 4 1 O.
547 , 739, 1 008

operator precedence 32, 1 02 , 1 27 ,

1 0 1 6

operator precedence chart 39,

1 2 1 4

operator void * 768, 8 1 5 , 8 1 8

operator ! member fu nction

555 , 768, 8 1 5

operator ! = member function

567. 1 095

operator () member function

60 1 . 1 1 72 , 1 1 74, 1 1 75

operator+ member fu nction

548

operator++ member fu nct ion

58 1 , 582, 587

operator++ (int) member

fu nction 582

operator< 580, 1 095

operator« 554, 564. 577, 608

operator < = 1 095

operator= member fu nction

566, 1 095

operator = = member function

567. 580. 1 095. 1 1 38

operator> member function

1 095

operator > = member fu nction

580. 1 095

operator» member fu nction

553, 554. 564, 577

operator []

const version 567

operators

ari thmetic 99

decrement 1 00

i ncrement 1 00

operators • * and - > * I 1 99

operators that can be overloaded

549

operators that must be non-

members 554

opinion po l l 278

optical disk 809

opt im ization 1 075

opt im izations on constants 470

opt im ized code 997

opt imiz ing compiler 1 1 3 , 1 94, 470

opt im izi ng the simple compi ler

996

or operator keyword I 1 90

or_eq operator keyword I 1 9 1

order i n which act ions should

execute 72, 83

order i n which constructors and

destructors are called 438,

453

order i n which destructors are

cal led 436

order in which operators are

applied to their operands 204

order of evaluation 205

order of evaluation of operators

32, 66

ordered l i st 1 25 1 . 1 252

org (top leve l domai n) 884

original format set t ing 765

ostream c lass 74 1 , 742, 749,

8 1 9, 824. 829. 832, 84 1

ost ream_i terator 1 098,

1 099

ostringstream c lass 870, 87 1

other character sets 85 1

out-of-range array subscript 78 1

out-of-range element 564. 580

out of scope 1 98

out_of_bounds exception

1 1 1 2

1 307

out_of_range exception 800,

854, 1 1 1 2 , 1 1 69

outCredit 829

outer block 1 95

outer for structure 292

output a float i ng-poi n t va lue 756

output bufferi ng 768

output data 1 7

output data i tems of bu i l t - in type

742

output device 5

output format of float i ng-point

n u m ber 76 1

output i terator I 1 00, I 1 02 . I 1 35 ,

1 1 44, 1 1 56, 1 1 59, 1 1 66,

1 1 67

output of char * variables 743

output of character 743

output of float i ng-poi nt value 743

output of i n teger 743

output of standard data type 743

output of uppercase letter 743

output sequence 1 098

output stream I I I I

output stream i terator 1 098

output-stream iterator 1 098

output to string i n memory 1 82

output un i t 5

outpUll ing to strings in memory

870

oval 67

overflow 78 1 , 1 076

overflow error 503

overflow_error 800

overhead of a funct ion call 567.

1 05 7

overhead of ca l l -by-val ue 4 1 0

overhead o f virtual funct ion

1 1 3 3

overload a c o n s t member

funct ion with a non-const

vers ion 470

overload a member function 4 1 8

overload an operator as a non

member, non- fri end

funct ion 55 1

overload equal i ty operator 4 1 0

overload the < < operator 4 1 0

overload the add i t ion operator (+)

548

overload u nary operator ! 555

overloaded += concatenation

operator 579

overloaded < < operator 55 I , 580

overloaded [] operator 564

1 308

overloaded add i t ion-assignment

operator (+ =) 586

overloaded ass ignment (=)

operator 564, 566, 577, 578

overloaded bi nary operator 549

overloaded cast-operator funct ion

568

overloaded concatenat ion operator

579

overloaded constructor 430

overloaded equal i ty operator (= =)

564, 567, 580

overloaded funct ion 2 1 9, 720, 722

overloaded funct ion defi n i t ion 2 1 9

overloaded funct ion-cal l operator

() 58 1

overloaded i ncrement operator

582

overloaded i nequal i ty operator

563, 567

overloaded less-than operator 580

overloaded negat ion operator 580

overloaded operator += 586

overloaded operator [1
member funct ion 567

overl oaded output operator 842

overloaded posti ncrement

operator 586

overloaded pre i ncrement operator

586

overloaded stream- insertion and

stream-extract ion operator

552

overloaded stream- insert ion

operator 84 1 , 1 203

overloaded stri ng-concatenat ion

operator 579

overloaded subscript operator 564,

567, 580, 60 1

overloaded unary operator 549

overload ing 30, 2 1 9, 4 1 2 , 7 1 9

overload ing + 550

overload ing += 550

overload ing < < and > > 222

overload ing an assignment

operator 550

overload ing b inary operator +=

555

overload ing bi nary operators 555

overload ing funct ion cal l operator

() 58 1

overload ing function-ca l l operator

() 60 1

overload ing operators 222

overload ing postincrement

operator 587

overloading posti ncrement ing

operator 582

overloading predecrement and

postdecrement operators 582

overloading prei ncrement and

post i ncrement operators 582

overloading resolut ion 723

overloading stream-insert ion and

stream-extraction operators

552, 563, 564, 577, 585, 586

overloading template funct ions

723

overloading the stream-i nsert ion

operator < < 84 1

oxymoron 259

p
It 1 66

p (paragraph) e lement 1 240

packaging code as a function 1 73

packet 1 8 , 965

packet switching 1 8

pad with spec ified character 743

padding 1 0 1 9

paddi ng character 752, 755, 757,

759

padding i n a structure 1 0 1 9

page layout software 360

Pai nt Shop Pro 1 245

pair 1 1 22, 1 1 38

pair of braces { } 38

pair of i terators I 1 03

pal i ndrome 98 1

palindrome function 1 1 82

paper 5

paral le logram 6 1 I

parameter 1 73 , 1 75 , 1 93 , 9 1 6

parameter dec larat ion 1 75

parameter- l i st 1 75

parameter names in function

prototypes for

documentation 1 79

parameterized stream manipu lator

93, 1 1 3 , 740, 750, 754, 8 1 8

parameterized type 735

parameters i n functions 1 76

parent node 969, 984

parentheses operator (()) 32, 93

parentheses to force order of

evaluation 39

part ial_sort I 1 68

part ial_sort_copy 1 1 68

part ial_sum I 1 04, I 1 66

part it ion 1 1 04, 1 1 67

part i t ion ing element 1 1 67

part i t ion ing step 394

Pascal 1 3 , 1 232

Pascal , B la i se 1 3

pass a structure 1 004

I ndex

pass a structure cal l -by-reference

1 004

pass-by-reference 2 1 I , 272, 273 ,

320, 326, 327, 329, 3 3 6

pass-by-reference wi th a poin ter

argument used to cube a

variab l e ' s value 327

pass-by-reference wi th poi n ters

2 1 3 , 325

pass-by-reference with references

325

pass-by-value 21 1 , 272, 325 , 326,

327, 328 , 336

pass-by-value used to cube a

vari abl e ' s value 326

pass l arge-s ize arguments as

const references 4 1 0

pass s ize of an array 272, 338

pass ing a fi lename to a program

1 070

pass ing an array element 273

pass ing an ent i re array 273

pass ing an object by value 450

Pass ing arguments by value and

by reference 2 1 2

pass ing arrays and ind iv idual array

e lements to funct ions 273

pass ing arrays to funct ions 272,

282

passi ng l arge objects 2 1 3

pass ing opt ions to a program 350,

1 070

pas sword attri bute value

(type) 898

password box 1 263

password-protected database 9 1 7

"past the end" i terator I 1 47

path attribute in cookies 9 1 3

path to a resource 886

pattern of Is and O s 8 1 0

payro l l fi l e 8 1 I

payro l l program 8

payro l l system 8 1 0

peek member fu nction 748

percent sign (%) (modulus

operator) 3 1

perfect number 244

performance 1 0

performance of b inary tree sort i n g

a n d search ing 999

Performance Tips 1 0

permutat ion I 1 67

I ndex

Person class header fi I e 454, 538

Person c lass imp lementat ion fi l e

5 3 9

personal computer 4

personal computi n g 7

Peter M i nu i t problem I 1 3 , 1 68

phase 87

PhoneNumber c l ass 608

PhotoS hop Elements 1 245

P I 1 055 , 1 056

Pi 67

picture . html 1 245

pieceworker 1 66

pig Lat i n 398

pipe 890

pipe (I) 1 067

pip ing 1 067

pixe l 1 246

Plauger, P J . 1 0

playing card 350

plus s ign 758

plus s ign (+) i ndicat ing publ ic

v i s ib i l i ty 45 1

plus <T> 1 1 72

Point c lass imp lementat ion fi l e

686

Point c lass represents an x-y
coord inate pair 6 1 6, 665

Point c lass test program 6 1 7

point-of-sale system 824

point/Circl e/Cyl inder

hierarchy test program 640

Point 2 c lass represents an x-y
coordinate pair as pro

tected data 625

Point 3 class uses member

funct ions to manipu late i ts

private data 632, 643

poi n ter 320, 34 1

point er 1 097

pointer arithmetic 33 1 , 34 1 , 342,

343, 345 , 1 1 08

pointer ari thmetic i s m ach ine

dependent 342

pointer ari thmetic on a character

array 342

poi n ter assignment 343

pointer-based stri ngs 360

poi n ter comparison 344

pointer dereferencing operator (*)
408

pointer exercise 393

pointer expression 34 1 , 344

pointer handle 4 1 8

pointer l i n k 945

pointer manipu l at ion 695, 943

pointer notat ion 345

pointer operators &. and * 323

poin ter subtract ion 34 1

pointer to a function 355, 357,

1 073

pointer to a structure 334

pointer to an object 4 1 6

pointer-to-c l ass-member operators

1 1 84

pointer to void (void *) 343

pointer values as hexadec i mal

i ntegers 323

pointer variable 798

pointer/offset notat ion 344

poin ter/subscript notation 345

pointers and array subscript ing

344, 345

pointers and arrays 344

poi nters declared const 334

pointers to dynamical ly a l located

storage 49 1 . 567

Point Test c lass demonstrates

c lass Point functional i ty

6 1 7

poker p laying program 385

polymorphic exception processing

793

polymorphic programming 680,

682, 698

polymorphic screen manager 679

polymorphical ly i nvoking

functions i n a derived c lass

1 206

polymorph ism I 1 9 , 469, 650, 663,

676, 679, 996, I 1 33

polymorph ism and references 696

polymorphism as an al ternative to

swi tch logic 7 1 7

polynomial 35

Polynomial c lass 608

pop 728, 960, I 1 28, I 1 30, I 1 32 ,

1 1 33

pop_back 1 1 05 , 1 1 1 7 , 1 1 28,

1 1 32

pop_front 1 1 1 3 , 1 1 1 7 , 1 1 1 9 ,

1 1 30

pop_heap I 1 65

portabi l i ty 20

Portability Tips 1 0, 20

portable 9

portable code 1 0

portable language 20

portal . cgi 906

portal . cpp 907

pos i t ion number 253

posi t ional value 1 62

1 309

pos i t ion ing re lat ive to the current

pos i t ion in a stream 73 1

post request type 882, 90 I , 1 262

post . cpp 90 1

postdecrement 1 0 1 , 58 I

postdecrement operator 99

postfix evaluat ion algori thm 99 1 ,

996

postfix eval uator 995, 999

postfi x expression 983, 996

postfi x express ion eval uation

algori thm 982

postfi x notat ion 98 1

post increment 1 00, 1 0 1 , 58 1 , 586

posti ncrement an i terator 1 1 02

post increment operator 99

postorder traversal 969, 984, 985

postOrderTraversal 977

pow funct ion 34, I 1 0 , I 1 3 , 1 73

power 1 73

power 1 5 1

precedence 32 , 34, 39, 1 0 1 , 1 07 ,

1 26, 204, 344

precedence chart 39

precedence not changed by

overload ing 549

precedence of the condit ional

operator 78

prec i sion 93, 743, 749, 75 1

prec i s ion 75 1

prec i s ion member function

76 1

precis ion of float i ng-po in t values

75 1

precis ion sett i n g 75 1

precompi led object fi l e 507

predecrement 1 0 1 , 5 8 1

predecrement operator 99

predefi ned name spaces I 1 89

predefi ned symbol ic constant

1 060

pred icate funct ion 427, 952, 1 1 1 6,

1 1 38 , 1 1 4 1 , 1 1 44, 1 1 47,

I 1 50, I 1 54, I 1 5 8 , I 1 59 ,

1 1 62, 1 1 67

prei ncrement 1 0 1 , 5 8 1 , 586

prei ncrement operator 99

pre increment ing and

posti ncrement ing 1 00

preorder traversal 969

preOrderTraversal 977

"pre-packaged" c lasses 1 7 1

prepackaged data structure 943

"pre-packaged" funct ions 1 70

preprocess I 5

preprocessor 1 5 , 1 6, 1 78 , 1 054

1 3 1 0

preprocessor d i rect ive #de f ine

720

preprocessor d i rectives 1 5 , 22, 26,

424

presentat ion logic 883

presentat ion of a document 1 23 7

prev-permutation 1 1 67

prevent c lass objects from being

copied 567

prevent header fi les from being

inc l uded more than once 424

prevent memory leak 800

prevent one c lass object from

bei ng assigned to another

567

pri mary memory 5 , 1 7

prime 244

prime factori zat ion 1 1 82

prime number 1 1 70

pri m i t ive data type promotion 92

principal I 1 0, 1 68

pri ncip le of least pri v i l ege 1 93 ,

276, 327, 330, 338, 349, 420,

469, 470, 8 1 8 , 1 072, 1 073 ,

1 1 02

print a l i ne of text 2 1

print a l i n ked l i st backwards 947

pri nt a l i s t backwards 984

print S i mple command 987,

990

print spool ing 965

printArray funct ion template

720

printer 1 7 , 739, 965

pri n t ing a b i nary t ree i n a two

dimensional tree format 977

Prin t ing a string one character at a

t ime us ing a nonconstant

poi n ter to constant data 332

prin t ing a tree 986

pri nt ing an i n teger wi th i nternal

spac ing and plus s ign 758

prin t ing an uns igned i n teger in bits

1 009

pri n t ing character other than a

space, d ig i t or letter 1 024

pri n t ing character other than space

1 02 1

pri nt ing character, i nc lud ing space

102 1

pri n t i ng dates 400

Prin t ing on mul t ip le l i nes wi th a

s ing le statement us ing cout

25

Pri n t ing on one l i ne wi th separate

statements us ing cout 25

Pri nt ing string characteri st ics

859

printing the address stored i n a

char * vari able 743

Pri nt ing the value of a union i n

both mem ber data types

1 082

priori ty _queue adapter class

1 094, 1 095, 1 096, 1 1 0 1 ,

I 1 28 , I 1 32, I 1 33

private 4 1 1 , 4 1 2, 424, 426

pri vate base c lass 648

Private base-c lass data cannot be

accessed from derived c lass

623

pri vate data member 439, 446

private function 297

privat e i nheri tance 6 1 0, 6 1 3 ,

648, 96 1

private i nheri tance as an

alternat ive to composi t ion

648

private l ibraries 1 6

private member function 4 1 2,

426

pri vate members of a base

c lass 6 1 3

pri vate members of a c lass are

not accessible outside the

class 425

private stat ic data member

498

probab i l i ty 1 83

procedural programming language

4 1 , 406

procedure 72

processing phase 87

process i ng un i t 5

product of odd i ntegers 1 65

producti vi ty 1 8

program 5

program control 72

program development

environment 1 5

program-development tool 76, 98

program i n the general 663 , 7 1 7

program i n the specific 663

program termi nation 437, 1 073

programmer 5

programmer-defi ned function 1 74,

1 77, 1 92

programmer-defined function

square 1 74

programmer-defined header fi l e

1 8 1 , 423

Index

Programmer-defi ned maximum

funct ion 1 77

program mer-defi ned termi nat ion

funct ion 790

programmer-defi ned type 406

program ming env ironment 1 7 1

programming language 7

project 1 073

Project M ac 1 8

promot ion 92

promotion h ierarchy for bu i l t - in

da ta types 1 80

promot ion rule 1 79

prompt 28, 9 1 , 1 067

prompt ing message 768

proprietary c lass 649

protected 4 1 2, 4 1 8, 424, 6 1 4,

653

protected base c lass 648

Protected base-class data can be

accessed from derived c lass

629

protected i nheri tance 6 1 0,

6 1 3 , 648

protect ion mechan ism 450

prototype 1 7 8

proxy c lass 420, 506, 508

pseudo-random number 1 86

pseudocode 42, 72, 76, 77 , 94

pseudocode algori t h m 89

pub l i c 4 1 1 , 424, 453

pub l i c base c lass 648

pub l i c behavior 4 1 2

pub l i c data 4 1 2

publ ic funct ion 297

pub l i c i nheri tance 6 1 0, 6 1 3

pub l i c i nterface 420, 425

pub l i c member funct ion 4 1 2,

439

public member of a deri ved

c lass 6 1 3

pub l i c s t a t i c c lass member

497

publ i c static member

function 498

punctuation mark 368

pure procedure 4 1 8

pure virtual fu nction 68 1 , 695,

700

purpose of the program 22

push 727, 728, 960, I 1 28 , I 1 30,

1 1 3 1 , 1 1 32

push memory location on the stack

99 1

Index

push_back I 1 05 , I 1 08 , I I 1 6,

1 1 1 9 , 1 1 28 , 1 1 30, 1 1 32 ,

1 1 54

push_front 1 1 1 3 , I I 1 6

push_heap I 1 65

put fi le posi t ion pointer 824, 829

put member funct ion 743, 744,

745

put pointer 8 1 9

putback member funct ion 748

Pythagorean tr ip le 1 66

Q
Quadral ay Corporat ion ' s Web site

1 232

qual i typoint s 245

query funct ion 439

query string 882, 896

QUERY_STRING env i ro n ment

variable 895, 90 I

querystring . cpp 896

queue 505, 943, 944, 946, 959,

965

queue 1 094, 1 096, 1 1 0 1 , 1 1 28 ,

1 1 30, 1 1 3 1 , 1 1 32

queue adapter c lass template

1 1 3 1

queue c lass 505

Queue c lass-template defi n i t ion

966

queue grows i nfi n i te ly 983

<queue > header fi le 1 82 , 1 096,

1 1 3 1 , 1 1 32

queue i n a computer network 965

queue object 983

Queue-processi ng program 967

quicksort 394

quotation mark 23

R
RAD (rapid app l icat ion

deve lopment) 1 2 , 450

radian 1 72

radio 1 263

radio attribute value (type)

898

rad ius of a c i rc le 1 63

raise to a power 1 5 1 , 1 73

rand function 1 82 , 1 83 , 3 1 0

RAND_MAX symbol ic constant

1 82, 1 88

random-access fi le 809, 824, 825,

83 1 , 834

random-access i terator I 1 00,

1 1 0 1 , 1 10 6 , 1 1 09, 1 1 1 7 ,

1 1 1 9, 1 1 38 , 1 1 44, 1 1 50,

I 1 56, I 1 62, 1 1 65 , I 1 67,

1 1 68

random-access i terator operat ions

1 1 02

random integers in range I to 6

1 83

random in terval 983

random number 1 86, 263

random-number generat ion 1 46,

263

random-number generator 5 1 6

random_shu f f l e 1 1 04, 1 1 44

random-access fi Ie 832

randomizing 1 86

Random izing the die-ro l l i ng

program 1 86

range I 1 47

range checking 426, 556, 854,

1 1 05

rapid application development

(RAD) 1 2 , 450

Rat ional 466

Rational Software Corporat ion 43,

1 3 8

Rational Un ified Process ™ 1 38

Rat ionalNumber class 607

raw array 504

raw data 823

raw data processing 809

rbegin 1 096, 1 1 09

rbegin member function of c lass

string 870

R D B M S (relat ional database

management system) 882

read 824, 83 1 , 834

read data sequent ia l ly from a fi le

8 1 6

read member function 748

readabi l ity 22, 76, 95, 1 76, 1 239

readcookie . cpp 9 1 4

Reading a random-access fi le

sequent ia l ly 832

Reading and pri n t ing a sequent ia l

fi le 8 1 7

real number 89

real loc 1 078

reassign a reference 2 1 4

rece iv ing object 296

"receiv ing" sect ion of the

computer 5

rec la im the dynamic storage 566

record 8 1 0, 8 1 2 , 834, 848

record format 825

record key 8 I I , 848

recover from errors 766

Rec t angle 467

rectangle symbol 30 I

recursion 1 98 , 206, 247

1 3 1 1

recursion examples and exerc ises

206

recursion step 1 99 , 204

recursi ve bi nary search 207, 283,

3 1 8

recursive bi nary tree i n sert 207

recursive ca l l 1 99 , 204

recursive Eight Queens 207, 3 1 8

recursive evaluat ion 200

recursive factorial funct ion 207

recursive Fi bonacci fu nction 207

recursive funct ion 1 98 , 947

recursive funct ion cal l 960

recursive greatest common d iv i sor

207

recursive i norder traversal of a

b inary t ree 207

recursive l i near search 207, 284,

3 1 8

recursive l i n ked l i st de lete 207

recurs ive l i n ked l i st i n sert 207

recursi ve maze traversal 207

recursive mu l t ip ly two i n tegers

207

recursive postorder traversal of a

b inary t ree 207

recursive preorder traversal of a

bi nary tree 207

recursi ve qu icksort 207

recursi ve select ion sort 207, 3 1 7

rec ursive solut ion 206

recursive step 394

recursive sum of two i ntegers 207

recursive Towers of H anoi 207

recursive u t i l i ty funct ion 976

recurs ive ly ca lcu late m i n i m u m

value i n an array 207

recurs ive ly check i f a string i s a

pal i ndrome 207

recurs ive ly determ ine whether a

str ing is a pal i ndrome 3 1 7

recurs ive ly print a l i n ked l i st

backwards 207

recurs ive ly pri n t a l i st backwards

984

recursively print a str ing

backwards 207, 3 1 8

recurs ive ly pri n t an array 207, 3 1 8

recurs ively pri n t an array

backwards 207

13 12

recurs ive ly pri n t backwards a

str ing i nput at the keyboard

207

recursively pri n t ing keyboard

i nputs in reverse 207

recursively rais ing an i nteger to an

i nteger power 207

recursively search a l i n ked l i s t 207

recurs ive ly search a l i st 984

recurs ive ly sum the elements of an

array 207

redi rect i nput symbol < 1 066

redi rect i nput/output on U n i x and

DOS systems 1 066

red i rect i nputs to come from a fi le

1 066

red i rect output of one program to

i nput of another program

1 067

red i rect output symbol > 1 067

red i rect output to a fi le 1 066

redi rect ing i nput on a DOS system

1 066

reduc ing program development

t ime 1 7 1

redundant parentheses 34, 1 24

reentrant code 4 1 8

reference 320, 739, 1 097

reference argument 325

reference handle 457

reference must be in i t ia l ized when

i t i s declared 457

reference parameter 2 1 I , 2 1 3

reference to a constant 2 1 3

reference to a private data

member 445

reference to an automatic variable

2 1 4

reference to an int 2 1 I

reference to an object 4 1 6

reference to constant data 334

references and polymorph ism 695

references must be in i t ia l i zed 2 1 4

references vs . pointers 45 1

referencing array elements 345

referencing array elements wi th

the array name and with

pointers 345

refi nement process 87

Re fresh header 905

reg i ster 1 92, 1 93 , 1 94

register a funct ion wi th atexi t

1 07 3

reinterpret_cast

demonstrat ion I 1 86

reinterpret_cas t operator

825, 828, 832, I 1 85, I 1 86

rei n vent ing the wheel 1 0, 1 7 1

re lational database management

system (R D B M S) 882

relational operator 34, 35, 36

relational operators >, < , >=, and

<= 1 05 , 1 24

rel i able software 1 079

rem statement i n S i mple 987, 990

remai nder after i n teger d iv is ion 3 1

remark 995

removal 943

remove 1 1 04, 1 1 1 3 , 1 1 1 7 , 1 1 38 ,

1 1 39

remove_copy 1 1 04, 1 1 38, 1 1 39

remove_copy_i f 1 1 04, 1 1 38,

1 1 39, 1 1 4 1

remove_i f 1 1 04, I 1 38, I 1 39

rend 1 096, I 1 09

rend member function of c lass

string 870

repeatabi I i ty of function rand

1 86

repeat ing code 1 73

repet i t ion 75, 1 32, 1 33

repeti t ion structure 73 , 8 1 , 88 , 988

do/while 1 20, 1 2 1 , 1 33

for 1 04, 1 05 , 1 06, 1 0 8 , 1 33

whi l e 8 1 , 82, 1 03 , 1 20, 1 33

repet i t ion terminates 8 1 , 82

replace 1 1 04, 1 1 4 1 , 1 1 42

repl ace = = operator with = 1 27

replace member function of

c lass st ring 865

replace_copy 1 1 04, 1 1 4 1 ,

1 1 42, 1 1 44

replace_copy_i f 1 1 04,

1 1 4 1 , 1 1 42, 1 1 44

replace_i f 1 10 4 , 1 1 4 1 , 1 1 42

replacement node 984, 985

replacement text 1 056, 1 059

repl acement text for a macro or

symbol ic constant 1 057

representation of data members

445

represent ing a c lass in the U M L

1 42

request 9 1 3

req uest method 882

requirement 20, 42, 1 38

reserved keyword 75

reset 1 1 68

reset attribute value (type)

898

resource leak 783, 793

Index

restore a stream ' s state to "good"

766

resul t of an u ncaught except ion

783

resumption model of except ion

handl ing 783

rethrow an exception 788, 806

Rethrowing an exception 788

return a resu l t 1 77

return a value 23

return an i n teger resu l t 1 75

Return key 28

return statement 24, 1 7 1 , 1 75 ,

1 77 , 1 99, 998

return type 1 75

return type defi ned void 1 75

return type in a funct ion header

1 78

return type of a function 1 79

return type of an operat ion 297

Return ing a reference to a

pri vate data member 446

reusab i l i ty 1 33 , 1 74, 338 , 722, 723

reusable componentry 1 4, 450

reusab l e software component 9

reuse 4 1 7

"reuse, reuse, reuse" 42

reused 42

reus ing components 1 5

reverse 1 1 04, 1 1 1 3 , 1 1 52, 1 1 54

reverse order of b i ts in

uns igned i nteger 1 049

reverse_copy 1 1 04, 1 1 54 ,

1 1 55 , 1 1 56

reverse_iterator 1 096,

1 097, 1 1 0 1 , 1 1 09

Richards, M art i n 8

right brace ()) 23 , 24, 30

r ight ch i ld 969

right j ust ificat ion I 1 3 , 352, 755 ,

757

right operand 23

r ight sh ift (») 1 008

right sh ift wi th sign extension

ass ignment operator 1 0 1 6

r ight-shift ing a s igned value i s

machine dependent 1 0 1 6

right stream manipu lator 755 ,

757

r igh t subtree 975, 976 , 977 , 984

right to left associat iv i ty 39

right tr iangle 1 63 , 1 66

right va lue 1 28

rightmost (trai l i ng) argument 2 1 5

rightmost node of a subtree 985

Index

right-shift operator (») 547, 74 1,

1008, 10 15, 1048

rise-and-shine algorithm 72

Ritchie, D. 9

robust application 780

Rogue Wave 14

roles 144

rollDice 190

rolling a die 184

Rolling a six-sided die 6000 times

184

rolling two dice 188, 190,3 1 1

root node 969, 976

root node of the left subtree 969

root node of the right subtree

969

rotate 1 104, 1 167

rotate_copy 1 104, 1 167

rounded rectangle 227

rounding 93

rounding numbers 173

row subscript 289

rows 289

rows attribute (textarea)

1263

rowspan attribute (tr) 1257

RTII (run-time type information)

664,7 14

RTII run-time type information

182,664,7 14

rule of thumb 124

rules for forming structured

programs 129

rules of operator precedence 32

Rumbaugh, James 43

run-time type information (RTI!)

182,664,7 14

running total 87

runtime error 17

runtime_error 800

rvalue ("right value") 128, I 102

2 13,564,568

5
SalariedEmployee class

header file 703

SalariedEmployee class

implementation file 704

SalesPerson class definition

427

SalesPerson class member

function definitions 428

savefile.cpp 9 17

savefile.htm19 16

savings account 1 10

SavingsAccount class 545

scalable 26 1

scalar 272, 336

scale 26 1

scaling 184

scaling factor 184, 188

scanning images 5

Scheduler class header file

458,5 15

Scheduler class

implementation file 5 16

scientific 762

scientific format 762

scientific notation 93, 743

scientific notation floating-point

value 762

scientific stream

manipulator 756, 76 1

scope 106, 4 16, 107 I, I 186

scope of a symbolic constant or

macro 1057

scope of an identifier 192, 194

scope resolution operator (: :)

408,497, 1 187, 1 189, 1200,

1204

scope-resolution operator (: :)

726,73 1

scoping conflict 1187

scoping example 196

screen 5, 6, 17, 22

screen cursor 24

screen-manager program 679

screen output 996

script 1239

scrutinize any attempt to modify

data 439

scrutinize data 4 15

search 1 104

search a linked list 947, 999

search engine 1240

search functions of the string

handling library 103 1

search key 284, 285, I I 19

search_n I 104

searching 50S, 943, 1148

searching algorithm 1 148

searching array 283

searching blocks of memory 1036

searching performance 999

searching strings 362, 1026

second 1 122

second-degree polynomial 34, 35

second pass of Simple compiler

996

second refinement 87, 88, 96, 35 1

secondary storage 17

1313

secondary storage device 15, 809

secondary storage unit 6

"secret" implementation details

1198

security 450, 9 14, 9 16

security hole 9 15

security issues involving the

Common Gateway Interface

937

seed 187

seed function rand 186

seek direction 8 19

seek get 8 18

seek put 8 18

seekg 8 18, 834

seekp 8 18, 829

segmentation violation 1075

select a substring 58 1

select XHTML element

(form) 898

selected attribute 1266

selection 75, 13 1, 132

selection structure 73, 76

self-assignment 49 1, 566, 578

self-documentation 27

sel f-referential class 944, 945

self-referential structure 407, 1002

semicolon (;) 23, 38, 8 1, 176,407,

430, 1054

semicolon at the end of a function

prototype 178

semicolon that terminates a

structure definition 1002

send message using a reference

457

sending object 296

sentinel-controlled loop 988

sentinel-controlled repetition 86,

88,89,9 1

sentinel value 86, 88, I 16

separate interface from

implementation 420

sequence 75, 130, 132, 1 150,

1 152, 1 154, 1 166, 1 167

sequence container 1094, I 10 1,

1 105, 1 1 12, 1 1 16

sequence diagram 300, 30 1,303,

372,374,45 1,459

sequence diagram for scheduling

process 302

sequence diagram that models the

steps the building repeats

during the simulation 300

sequence of integers 164

sequence of messages 372

sequence of random numbers 186

1314

sequence structure 73

sequence-structure activity

diagram 73

sequence type 1252

sequential-access file 809, 8 1 I,

812,8 16,823

sequential container 1094

sequential execution 73

sequential file 8 13, 8 17

server 9 17

server object 296

server-side file 9 15, 9 17, 92 1

server-side form handler 882

service 297

<set> 1096, 1 120, 1 122

<set> header file 182

set 1094, 1 10 1, 1 1 19, 1 122, 1 168

Set and get functions manipulating

an object's pri vate data

443

set associative container I 122

set_difference 1 156, 1 158

set function 426, 439, 440, 443,

445,485

set_intersection 1 156,

1 159

set_new_handler 784, 7 96

Set of recursive calls to method

Fibonacci 205

set operations of the Standard

Library I 157

set_symmetric_differen

ce 1 156, 1 159

set_terminate 790

set the value of a private data

member 426

set_unexpected 790, 800

set_new_handler796

set_union 1 156, 1 159

setbase stream manipulator

750

Set-Cookie: HlTP header

9 13

setfill parameterized stream

manipulator 39 1,408,757,

759

setprecision 93, 1 12,75 1

setw parameterized stream

manipulator I 13,256, 36 1,

554, 752, 753, 757

Shakespeare, William 399

shape class hierarchy 6 13, 6 14,

66 1

shape of a tree 999

share the resources of a computer

6

sheer brute force 166

shift a range of numbers 184

shifted, scaled integers 184

Shifted, scaled integers produced

by 1 + rand () % 6 183

shifting value 188

"shipping" section of the computer

5

shop. cgi 928

shop. cpp 929

shopping cart application 909, 92 1

short 1 19, 179

short-circuit evaluation 126

short int I 19

showbase stream manipulator

755,76 1

showpoint stream manipulator

93, 756

showpos stream manipulator

39 1,756,758

shrink-wrapped software 649

shuffle 350

shuffle cards 1048

shuffling algorithm 1006

side effect 720

side effect of an expression 194,

204,2 1 1

sides of a right triangle 163

sides of a square 166

sides of a triangle 163

Sieve of Eratosthenes 3 17, 1 170,

1 182

SIGABRT 1076

SIGFPE 1076

SIGILL 1076

SIGINT 1076

sign extension 1008

sign left justified 755

signal 1075

signal handler 1076

signal handling 1076

signal handling library 1075

signal number 1075

signal to trap unexpected

events 1075

signal value 86

signals defined in header <csig-

nal> 1076

signature 179, 2 19, 58 1,582

SIGSEGV 1076

SIGTERM 1076

silicon chip 3

Silicon Graphics Standard

Template Library

Programmer's Guide I 175,

1234

simple CGI script 888

Simple command 987

simple condition 124, 125

Simple interpreter 999

Simple language 987

Index

Simple Machine Language 387,

989

Simple statement 987

simplest activity diagram 130

Simpletron Machine Language

(SML) 396, 943,986, 989,

998

Simpletron memory location 998

Simpletron Simulator 397, 944,

989,996,998

Simula 14

simulated deck of cards 350

simulated pass-by-reference 273

simulation 372, 390, 510

Simulation: Tortoise and the Hare

386

simulator xxxvii, 45, 138, 225

sin 173

sine 173

single-argument constructor 568,

577, 1 192, 1 193, 1 196

Single-argument constructors and

implicit conversions I 192

single entry point 128

single-entry/single-exit control

structure 75, 77, 129

single exit point 128

single inheritance 6 10, 1204, 1205

single-line comment 22

single quote (') character 360

single selection 132

single-selection if structure 74,

76,80

single-selection structure I 13

single-subscripted array 329, 330,

338

singly-linked list 959

sinking sort 277

six-sided die 183

size 1095, 1 108, 1 130, 1 154,

1 169, 1 170

size attribute (input) 1262

size member function of class

string 852

size member function ofvec-

tor 595

size of a string 859

size of a structure 1003

size of a variable 30, 192

size of an array 268, 338

size_t 338, 825

Index

size_type 1097

sizeof 339, 340, 4 18, 489, 829,

945, 103 1, 1057

sizeof array name 338

sizeof operator 849, 1003

sizeof operator used to

determine standard data type

sizes 340

sizeof operator when applied to

an array name returns the

number of bytes in the array

339

sizes of the built-in data type 849

skip remainder of swi tch

structure 122

skip remaining code in loop 123

skipping whitespace 749, 755

skipws stream manipulator 755

small diamond symbol 229

smaller integer sizes 120

smallest 237

smallest of several integers 165

Smalltalk 9

"smart" Array I 105

"smart array" 267

SML 387, 989

SML branch zero instruction 993

SML operation code 387

"sneakernet" 7

software 3, 5

software asset 42, 4 17

Sofrware Engineering
Observation 10

software reuse 10, 24, 48, 133,

173,4 17, 6 10, 648, 7 19, 720,

722,723, 943, 120 I

software simulator 133

solid circle 74

solid circle with an attached

arrowhead 227

solid diamond 143

solid line with an arrowhead 229

sort 1 1 13, 1 1 16, 1 148, 1 168

sort function 7 19

sorting 505, 8 13, 943, I 148

sorting algorithm I 148

sorting an array with bubble sort

277

sorting arrays 276

sorting order 1 150, I 154

sorting strings 182

source code 420, 649

source-code file 420

source-code form 1237

source file 1072

space (. .) 27

space cannot be allocated 1079

space-time tradeoff 834

spaces for padding 759

span attribute 1257

speaking to a computer 5

special character 27, 360, 1249

Special Section: Building Your

Own Compiler 986

Special Section: Building Your

Own Computer 387

special symbol 809

speci fic 680

speech device 1255

speech synthesizer 1246

spelling checker 105 1

spiral 202

splice 1 1 13, 1 1 16

spool to disk 965

spooling 965

sqrt function 172, 173

square 162, 1252

square bracket 227

square function 180

square root 172, 173,75 1

squares of several integers 988

srand 186, 188

srand(time (0)) 187

src attribute (img) 1246, 1247

<sstream> header file 182,87 1

stableJ)artition 1 104,

1 167

stable_sort 1 168

Stack 724

<stack> 1096, 1 129

<stack> header file 182

stack 502, 505, 723, 726, 790, 943,

944, 946,959,962

stack adapter class 1094, 1 10 I,

1 128, 1 129

stack class 7 19

Stack class template 724, 730,

964

stack class template 960, 999

Stack class-template definition

96 1

Stack class-template definition

with a composed List

object 964

stack corrupted 790

stack-of- float class 7 19

stack-of-int class 7 19

stack-of- string class 7 19

Stack test program 962

Stack unwinding 79 1

stack unwinding 783, 784, 790,

792

1315

Stack< double > 726, 728, 96 1

stack<int> 728

Stack<T> 726,728

stacked building block 133

stacking 75, 77, 78, 133

stacks implemented with arrays

502

stacks used by compi lers 98 1

"standalone" unit 7

standard algorithm I 103

standard cast I 186

standard class libraries 504

standard data type size 340

standard error stream (cerr) 17

standard exception classes 800

standard exception hierarchy

80 1

standard format 408

standard input 28, 890, 1066

standard-input stream (cin) 740

standard input stream object 8 1 I

standard library 170

standard library algorithm 182

Standard library class string

485,588

Standard library class vector

592

Standard Library container class

1094

Standard Library container header

file 1096

Standard Library deque class

template I I 18

standard library exception

hierarchy 800

standard library header file 18 1,

1054

Standard Library list class

template I I 13

Standard Library map class

template I 126

Standard Library mul t imap

class template I 124

Standard Library multi set

class template I 120

Standard Library

priority_queue

adapter class I 132

Standard Library queue adapter

class template I 13 1

Standard Library set class

template I 123

Standard Library stack adapter

class 1 129

Standard Library vector class

template 1 106

1316

Standard Library vector class

template element

manipulation functions 1 109

standard output 889, 1066

standard output object (cout) 23,

8 1 1

standard-output object (cout)

740

standard signal 1076

standard stream library 740

Standard Template Library (STL)

54, 182, 503, 696, 7 19, 1092

Standard Template Library Online

Reference Home Page 1 175,

1235

Standard Template Library

Programmer's Guide 1 175,

1234

Standard Template Library with

Borland C++ 1 176

standardized function 173

"standardized, interchangeable

parts" 42

start tag 1239

state 40, 227

state bit 744

state diagram 227

state transition 228

statechart diagram 227, 229, 296,

374

statechart diagram for class

Elevator 228

statechart diagram for classes

FloorButton and

ElevatorButton228

statement 2 1, 23

statement spread over several lines

39

statement terminator (;) 23

statements in braces 176

states of class Elevator 296

static 192, 194, 2 14, 1073,

108 1, 1083

static array initialization 270

static array initialization and

automatic array initialization

270

static binding 674, 692, 1204

static_cast<int> 1 16

static class member 509

static class variable 497

static data member 498, 732

static data member tracking

the number of objects of a

class 50 1

static data members save

storage 497

static linkage specifier I 189

static local object 436, 437

static local variable 196, 198,

269, 1 136

static member 497, 500

static storage class 193, 195

static Web content 885

static_cast<rype> 102, 127,

255

status bit 766

Status header 905

std namespace 1 189

std: :cin 26, 28

std: :cout 23

std: :endl 29

<stdexcept> header file 182

<stdexcept> 800

<stdio.h> header file 18 1

<stdlib.h> header file 18 1

Stepanov, Alexander 1092, 1 176,

1235

stepwise refinement 35 1

STL (Standard Template Library)

54, 182, 503, 696, 7 19, 1092

STL container function 1096

STL exception type I I 12

STL in generic programming

1 176, 1235

STL Reference I 175, 1234

STL Software I 176, 1235

STL tutorial I 175, 1234

storage alignment 1003

storage class 192, 194, 107 1

storage class specifier 192

storage unit 1020

storage-unit boundary 10 19

str member function 87 1, 872

straight-line form 32, 33

straight-time 158

strcat and strncat functions

365

strcat function 363, 365, 1072

strcmp and strncmp functions

366

strcmp function 363, 365, 366,

367, 1072

strcpy and strncpy 364

strcpy function 363, 364

strcspn function 103 1, 1033

stream base 750

stream class 8 12

stream-extraction operator> >

("get from") 26, 28, 38, 222,

547, 552, 564, 742, 744, 84 1

Index

stream I/O class hierarchy 8 12

stream input 74 1, 744

stream input/output 22

stream-insertion operator« ("put

to") 23, 25, 29, 222, 547,

552, 564, 74 1, 743, 8 16,

1203

stream manipulator 29, 93, I 13,

749, 754, 758, 8 18

stream-manipulator showbase

76 1

stream manipulators boolalpha

and noboolalpha 764

stream of bytes 739

stream of characters 23

stream operation failed 766

stream output 74 1

string 347, 360

string 485, 588, 893, 9 10, 929,

1094

string array 349

string array suit 349

string assignment 852, 853

string being tokenized 369

string class 485, 504, 548, 59 1,

852

string class copy constructor

852

String class definition with

operator overloading 569

string class from the standard

library 182

String class member-function

and friend-function

definitions 57 1

String class test program 574

string comparison 855

string concatenation 852

string constant 360

string-conversion function 1026

String-conversion function atof

1027

String-conversion function atoi

1027

String-conversion function atol

1028

String-conversion function

strtod 1029

String-conversion function

strtoll030

String-conversion function

strtoul 1030

string copying 347

string copying using array notation

and pointer notation 347

stri ng data type 504

Index

string find member function

862

<string> header file 182

string input and output 998

string insert member

function 866

string is a constant pointer 361

string length 369

string literal 28, 267, 268, 360, 361

string manipulation 171, 993

string of characters 23

string processing 320

String-search function strchr

1032

strcspn 1033

String-search function strpbrk

1034

String-search function strrchr

1034

String-search function strspn

1035

String-search function strstr

1036

string stream processing 870

<string. h> header file 181

string::const_iterator

869

string: : npos 864

<string> header file 851

string-conversion function atof

1027

string-conversion function atoi

1027

string-conversion function atol

1028

string-conversion function

strtod 1029

string-conversion function

strtol 1030

string-conversion function

strtoul 1030

strings as full-fledged objects 256,

360

string-search function strchr

1032

string-search function strcspn

1033

string-search function strpbrk

1034

string-search function strrchr

1034

string-search function strspn

1035

string-search function strstr

1036

strlen function 363, 369, 370

strncat function 363, 365

strncmp function 363, 365, 366,

367

strncpy function 363, 364

strong element 1242

Stroustrup, Bjarne 9, 14, 719, 780,

1232

strpbrk function 1032, 1033

strrchr function 1031, 1034

strspn function 1032, 1035

strstr function 1032, 1035

strtod function 1026, 1029

strtok function 363, 368

strtol function 1027, 1029,

1030

strtoul function 1027, 1030

struct keyword 406, 407, 810,

825, 943, 1001, 1081

structure 253, 320, 334, 406, 100 I,
1055

structure definition 406, 407,

1001, 1002, 1017

structure member 100 I

structure member operator (.)

1081

structure members default to

private access 1001

structure name 100 I, 1002

structure tag 407

structure type 407, 100 I, 1003

structured program 129

structured programming 3, 4, 5, 9,

13,14, 21, 39, 40,71, 73,

123, 405, 503, 1079

structured-programming summary

128

structured systems analysis and

design 14

structures are ordinarily passed by

value 410

student-poll-analysis program 265

style sheet 1239

sub element 1249

submit attribute value (type)

898

subobject 1207

subproblem 199

subscript 254, 1249

subscript operator 1119

subscript operator [1 854

subscript operator [1 used with

strings 852

subscript operator of map 1126

subscript out of range 1112

subscript range checking 504

subscript through a vector I 112

1317

subscripted name of an array

element 272

subscripted name used as an

,-value 564

subscripting 1117

subscripting with a pointer and an

offset 345

substr member function of class

string 857, 858, 901

substr member function of

string 591

substring 581

substring length 581

substring of a string 857

subtract an integer from a pointer

341

subtract one pointer from another

341

subtraction 5, 31, 32

suit values of cards 349

sum of the elements of an array

261

swnmary attribute 1255

summation with for 109

sup element 1249

supercomputer 5

supermarket checkout line 965

supermarket simulation 983

superscript 1249

suppression of symbols in a

diagram 142

survey 264, 266, 278

survey-data analysis program 279,

282

swap 278

swap 336, 1095, 1104, 1117,

1150

swap member function of class

string 858

swap two strings 858

swap_ranges I 104, I 150

swapping strings 858

switch logic 119, 680, 714

swi tch multiple-selection

structure 113, 117, 132, 842

switch multiple-selection

structure activity diagram

with break statements I 18

swi tch structure testing multiple

letter grade values I 14

symbol 851

symbol table 989, 993, 994

symbolic constant 1054, 1055,

1056, 1057, 1060

symbolic constant NDEBUG 1060

symbolic constant PI 1056

1318

symmetric key encryption 877
synchronize operation of an

istreamand an ostream

768
synchronous error 781
synonym 323, 325
syntax checking 998
syntax error 24
system box 139
System Properties window

884
system requirement 138

T
tab 38
tab escape sequence \ t 76, 119,

159
Tab key 24
tab stop 24
table body 1257
table data 1257
table element 1254
table head element 1256
table of values 289
table row 1256
tabular format 256
tail of a list 999
tail of a queue 943, 965
tail pointer 999
tails 183
tan 173
tangent 173
task 6
tbody (table body) element 1257
TCP (Transmission Control

Protocol) 19
TCP/IP 19
td element 1257
telephone 163
telephone number word

generating program 849
tellg function 819
tellp function 819
template 719, 943, 947, 960, 1056
template 75
template auto-ptr 798
template class 851
template definition 223, 720
template function 223, 721
template keyword 222, 720
templates and friends 731
templates and inheritance 731
Temporary Internet Files

directory 913
temporary location 992, 995

temporary object 568
temporary String object 579
temporary value 92, 180
terminal 6
terminate 17
terminate 790
terminate a loop 88
terminate a program 796, 1073
terminate a repetition structure

1079
terminate normally 815
terminate successfully 24
terminating condition 200, 266
terminating execution 505
terminating null character, '\ 0 ' ,

of a string 267,269,361,
362,363,369,485,868

terminating right brace ()) of a

block 195
terminating right brace ()) of the

class definition 424
termination housekeeping 435
termination model of exception

handling 783
termination order from the

operating system 1075
termination phase 87
termination request sent to the

program 1076
termination test 206
ternary conditional operator (? :)

205,550
test 13,20
test 1169
test character 181
test state bits after an VO operation

744
testing an item for membership

505
Testing and Debugging Tip 10
Testing error states 767
text analysis 399
text attribute value (type) 898
text-based browser 1246
text box 1262
text editor 360,816,1237
text file 834
Text printing program 22
text substitution 1056
text/html MIME type 888
text/plain MIME type 888
text area XHTML element

898, 1263
tfoot (table foot) element 1257
th (table header column) element

1256

Index

The C Programming Language 9
thead (table head) tag 1256
Thinking About Objects 4, 21,405
third refinement 352
this pointer 485,489,491, 500,

550,566
this pointer used explicitly 489
this pointer used implicitly and

explicitly to access an

object's members 490
Thompson, Ken 8
throughput 6
throw 785
throw a conditional expression

787
throw an exception 782
throw an int 787
throw exceptions derived from

standard exceptions 80 I
throw exceptions not derived

from standard exceptions

801
throw list 789
throw point 783
throw standard exceptions 801
throw statement 788
throw () exception specification

790
thrown object's destructor 793
TicTacToe 467
tie 768
tilde character (-) 416, 435
Time 411
time 187
time-and-a-half 158, 166
Time class 413, 466
Time class containing a

constructor with default

arguments 431
Time class definition 421
Time class definition modified to

enable cascaded member

function calls 491
Time class definition with set and

get functions 440
Time class member function

definitions 421
Time class member function

definitions, including a

constructor that takes

arguments 431
Time class member function

definitions, including

const member functions

471

Index

Time class member function

definitions, including sel and

gel functions 441

Time class with const member

functions 471

TlME predefined symbolic

constant 1060

TlMESTAMP predefined

symbolic constant 1060

time source file is compiled 1060

<time. h> header file 181

time_t type 888, 889

timesharing 6, 14

title bar 1239

ti tIe element 1239

title of a document 1239

title XHTML element «ti-

tle>_</title» 886

TLD (top-level domain) 884

token 363, 368, 993, 995

tokenize a sentence into separate

words 984

tokenizing strings 362, 368

tolower function 1021, 1023

top 87

top 1128, 1130, 1133

top-down, stepwise refinement 5,

86,87,89,94,351

top-level domain (TLD) 884

top of a stack 943, 960

top tier 883

Tortoise and the Hare 386

total 83, 87, 193

toupper function 331, 1021,

1023

Towers of Hanoi 246, 247

tr (table row) element 1256

traditional C 9

trailing zero 93, 172,756

transaction 847

transaction file 847

transaction processing 1124

transaction processing program

834

transaction processing system 824

transaction record 848

transfer of control 73

transform 1104, 1144, 1147

transition 74, 227

transition arrow 74, 76, 78, 82, 83

translate 15

translation 7

translator program 8

Transmission Control Protocol

(TCP) 19

transmit securely 163

trapezoid 61 I
travel. html 906

traversal 869

traversals forwards and backwards

960

traverse a binary tree 969, 977

traverse the left subtree 976

traverse the right subtree 976

traversing a container 943

tree 505, 944, 969, 977

Tree class template 975

Tree class-template definition

971

tree sort 977

Tree<int> 970

TreeNode class-template

definition 970

trigonometric cosine 172

trigonometric sine 173

trigonometric tangent 173

tripleByReference 250

tripleCallByValue 250

true 34, 74, 76, 77, 78, 79, 80,

103

truncate 31,92,485,814

truncate fractional part of a

double 179

truth table 125

! (logical NOT) operator 126

&& (logical AND) operator

125

I I (logical OR) operator 125

try block 783, 788, 792

try block expires 783

Turing Machine 73

turtle graphics 312

12-hour clock format 408

24-hour clock format 408

two largest values 159

two levels of refinement 89

two-to-one relationship i 42

tying an output stream to an input

stream 768

type attribute 1252, 1262

type checking 720, 1056, 1057

type field 842

type information 841

type of a variable 30, 192

type of the this pointer 489

type parameter 222,223,224,720,

724, 730

type qualifier 275

type-safe 110 739

type-safe linkage 219, 1084

type_info class 714

1319

typedef 741, 851, 870,1004,

1096, I 121, 1126

typedefs in first-class

containers 1097

typeid 800

typeid operator 714

<type info> header file 182

typeless language 9

typename 222, 720

u
U integer suffix 1075

u integer suffix 1075

ul element 1251

UL integer suffix 1075

ul integer suffix 1075

ultimate operator overloading

exercise 600

UML

activity diagram 73, 74, 76, 78,

82, 108

arrow 74

diamond 76

dotted line 74

fi nal state 74

guard condition 76

merge symbol 82

note 74

solid circle 74

UML (Unified Modeling

Language) 40, 42, 43, 73

UML class diagram xxxviii, 47,

451

UML Partner 43

UML specification 143

UML specifications document 44

the UML 40, 43

unary decrement operator (--) 99

unary increment operator (++) 99

unary operator 93, 126, 322

unary operator overload 555

unary-operator overload 549

unary plus (+) and minus (-)

operators 93

unary predicate function I I 16,

1141,1144

unary scope resolution operator

(: :) 217

unbuffered output 742

unbuffered standard-error stream

740

unconditional branch 1079

unconditional branch goto 1079

unconditional branch instruction

995

1320

unconditional goto statement in

Simple 987

#undef preprocessor directive

1057, 1060

undefined area in memory 1003

undefined value 85

underflow_error 800

underlying container 1128

underlying data structure 1132

underscore (_) 27

unexpected 790, 800

unexpected event 1075

unformatted I/O 739, 740, 748

unformatted I/O using the read,

gcount and write

member functions 749

unformatted output 743, 744

Unicode 810, 851

Unified Modeling Language

(UML) 40, 42, 43, 73

The Unified Modeling Language

User Guide 44

Uniform Resource Locator (URL)

881

unincremented copy of an object

587

uninitialized data 410

Uninitialized local reference

causes a syntax error 214

uninitialized variable 85

union 1080, 1081

union constructor 1081

union functions cannot be

virtual 1081

union with no constructor 1081

unique 1104, 1113, 1152, 1154

unique_copy 1104, 1154, 1156

unique key 1119, 1122, 1126

unique_copy 1155

United States Department of

Defense (DOD) 13

University of Illinois at Urbana

Champaign 18

Unix 7, 8, 14, 116, 754, 815, 884,

1070, 1073, 1075

Unix command line 1066, 1067

unnamed bit field 1019

unnamed bit field with a zero

width 1019

unnamed object 1082

unoptimized code 997

unordered list element (ul) 1251

unresol ved reference 991, 1072

unsigned 180, 186, 1075

unsigned char 180

unsigned int 180, 186, 338

unsigned integer in bits 1009

unsigned long 180, 202, 1030,

1075

unsigned long int 180, 201

unsigned short 180

unsigned short int 180

unspecified number of arguments

1067

unsuccessful termination 1073

untie an input stream from an

output stream 768

unwinding the function call stack

791

upcast 1210

upcasting 1206

update a record 848

update records in place 823

upper_hound 1119, 1122, 1160

uppercase letter 27, 68, 181, 331,

1020

uppercase letter (A-Z) 1023

uppercase stream manipulator

756, 761, 762

URL (Uniform Resource Locator)

881, 886

URL (Universal Resource

Locator) 886

use case 139, 146, 374

use-case diagram 139

use-case diagram for elevator

system 139

USENIX C++ Conference 719

user -defi ned type 41, 191, 406,

568

user interface 883

userdata. txt 928

user-defined, nonparameterized

stream manipulator 754

"uses a" relationship 648

using 37, 59

Using a dynamically allocated

ostringstream object

871

Using a function template 223

Using a static data member to

maintain a count of the

number of objects of a class

498

Using an anonymous union 1083

Using an iterator to output a

string 869

using arrays instead of swi tch

263

Using command-line arguments

1070

Index

Using function swap to swap two

strings 858

Using functions exit and

atexit 1074

Using goto 1079

using member function fill and

stream manipulator set

fill to change the padding

character for fields larger

than the values being printed

759

using namespace I 189

Using signal handling 1076

using Standard Library functions

to perform a heapsort I 163

using statement 1187

using stream manipulator

uppercase 763

using template functions 721

Using variable-length argument

lists 1068

Using virtual base classes

1208

<utili ty> header tile 181

Utility function 429

utility function 426, 516, 518, 529

utility make 1073

v
va_arg macro 1067, 1068

va_end macro 1067, 1068

va_list macro 1067, 1068

va_start macro 1067, 1068

val array macro 1094

validate a function call 178

validation 871

validity checking 440, 445

valign attribute (th) 1257

value 29

value attribute 1262

value of a variable 30, 192

value of an attribute 1239

value_type 1096, 1097, 1126

variable 27, 41, 172, 406

variable-length argument list 1068

variable name 987

VAX VMS 816

vector 548, 588, 592, 1092,

1101, 1105, 1108, 1128,

1129, 1132

vector class template I 106

<vector> header file 182, 1096,

1106

verb 296, 374, 406

verb phrase 296, 299, 371, 374

Index

verb phrases for each class in

simulator 297

verbs in a problem statement 168

verbs in a system speci fication 41

vertical spacing 76, 104

vertical tab (• v·) 1021, 1024

vi 15

vi text editor 1237

video I/O 740

viewcart • cgi 929

viewcart • cpp 931

virtual base classes I 184,

1206, 1208

virtual base-class destructor

699

virtual destructor 699

virtual directory 886

virtual function 663

virtual function 674, 696, 698,

699,713, 1081, 1097, 1133,

1207

virtual function call 698

virtual function call illustrated

697

virtual function in a base class

713

virtual function table (viable)
696

virtual inheritance 1208

virtual memory 794, 796, 945

virtual memory operating systems

14

Visual C++ home page 1234

visualizing recursion 207

VMS 1070

void 208

void * 343, 1037

void parameter list 175

void return type 179

volatile qualifier 1075, 1184

volume of a cube 210

Viable 696, 698

\liable pointer 698

w
W3C (World Wide Web

Consortium) 20

W3C Candidate Recommendation

20

W3C host 20

W3C Proposed Recommendation

20

W3C Recommendation 20

W3C Working Draft 20

waiting line 505

walk a list 958

"walk off' either end of an array

556

"warehouse" section of the

computer 6

warning 24

wchar_t 740, 851

"weakest" iterator type 1100, 110 I

Web browser 913

Web server 881, 886, 909, 1238,

1260

Web site 3

what function of class

exception 787, 794

when interactions occur 372

which objects participate an

interactions 372

while repetition struc ture 81,

82, 103, 120, 133

while structure activity diagram

82

whitespace 744, 745, 746, 749,

1059

whitespace character 38, 76, I 19,

268, 1021, 1024, 1054

whole number 27

whole/part relationship 143

width 752, 753

width attribute 1246, 1254

width implicitly set to 0 752

width member function of class

ios_base 753

width of a bit field 1017

width of random number range

188

width setting 752

width-to-height ratio 1246

Wiltamuth, Scott 12

Win32 API (Windows 32-bit

Application Programming

Interface) 12

Windows 116

Windows 2000 884

Windows 32-bit Application

Programming Interface

(Win32 API) 12

Wirth, Nicklaus 13

word 387, 1003

word boundary 1003

word equivalent of a check

amount 401

word processing 360, 400

Wordpad 1237

worker 171

workflow 73

workstation 7

1321

World Wide Web 4, 19

World Wide Web Consortium

(W3C) 20

World Wide Web resources 1175

wraparound 587

write 743, 748, 749, 824, 829

writecookie. cgi 910

writecookie .cpp 911

writing data randomly to a random

access file 829

www. apache. org 890

www.deitel.com 3, 4, 884,

1242

www.jasc.com I245

www. omg • org 44

www. unicode. org 851

www.w3.org20

www.w3.org/markup 1237

www.w3.org/TR/xhtmll

1269

www.w3schools.com/

xhtml/default.asp

1269

www.xhtml.org 1269

x

X3J I I technical committee 9

Xerox's Palo Alto Research

Center (PARC) 9

XHTML (Extensible HyperText

Markup Language) 20, 52,

881 , 886, 1237

XHTML comment 1239

XHTML document 56

XHTML form 897, 1259

XHTML list 56

XHTML Recommendation 1269

XHTML special character 1274

XHTML table 56

XHTML tag 890

XML (Extensible Markup

Language) 20

xor 144

xor operator keyword 1190

xor_eq operator keyword 1191

z

zero-based counting 106

zeros and ones 809

zeroth element 253

End -User License
Agreement for

Microsoft Software

IMPORTANT-READ CAREFULLY: This Microsoft End-User License Agreement ("EU

LA") is a legal agreement between you (either an individual or a single entity) and Mi

crosoft Corporation for the Microsoft software products included in this package, which

includes computer software and may include associated media, printed materials , and "on

line" or electronic documentation ("SOFTWARE PRODUCT"). The SOFTW ARE PROD

UCT also includes any updates and supplements to the original SOFTWARE PRODUCT

provided to you by Microsoft. By installing, copying, downloading, accessing or otherwise

using the SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA. If

you do not agree to the terms of this EULA, do not install, copy, or otherwise use the SOFT

W ARE PRODUCT.

SOFTW ARE PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by copyright laws and international copyright

treaties, as well as other intellectual property laws and treaties. The SOFTWARE PROD

UCT is licensed, not sold.

1 . GRANT OF LICENSE. This EULA grants you the following rights:

1 .1 License Grant. Microsoft grants to you as an individual , a personal nonexclu

sive license to make and use copies of the SOFTWARE PRODUCT for the

sole purposes of evaluating and learning how to use the SOFTWARE PROD

UCT, as may be instructed in accompanying publications or documentation.

You may install the software on an unlimited number of computers provided

that you are the only individual using the SOFTWARE PRODUCT.

1.2 Academic Use. You must be a "Qualified Educational User" to use the SOFT

WARE PRODUCT in the manner described in this section. To determine

whether you are a Qualified Educational User, please contact the Microsoft

Sales Information Center/One Microsoft Way/Redmond, WA 98052-6399 or

the Microsoft subsidiary serving your country. If you are a Qualified Educa

tional User, you may either:

End-User license Agreement for Microsoft Software

(i) exercise the rights granted in Section 1 .1 , OR

(ii) if you intend to use the SOFf WARE PRODUCT solely for instructional

purposes in connection with a class or other educational program, this

EULA grants you the following alternative license models:

(A) Per Computer Model . For every valid license you have acquired for the SOFf

WARE PRODUCT, you may install a single copy of the SOFf WARE PROD

UCT on a single computer for access and use by an unlimited number of

student end users at your educational institution, provided that all such end

users comply with all other terms of this EULA, OR

(B) Per License Model . If you have multiple l icenses for the SOFf WARE PROD

UCT, then at any time you may have as many copies of the SOFf WARE

PRODUCT in use as you have licenses, provided that such use is l imited to

student or faculty end users at your educational institution and provided that

all such end users comply with all other terms of this EULA. For purposes of

this subsection, the SOFf WARE PRODUCT is "in use" on a computer when

it is loaded into the temporary memory (i .e. , RAM) or installed into the per

manent memory (e.g . , hard disk, CD ROM, or other storage device) of that

computer, except that a copy installed on a network server for the sole purpose

of distribution to other computers is not "in use" . If the anticipated number of

users of the SOFf WARE PRODUCT will exceed the number of applicable

l icenses , then you must have a reasonable mechanism or process in place to

ensure that the number of persons using the SOFf WARE PRODUCT concur

rently does not exceed the number of licenses.

2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.

Limitations on Reverse Engineering, Decompilation, and Disassembly. You

may not reverse engineer, decompile, or disassemble the SOFf WARE PROD

UCT, except and only to the extent that such activity is expressly permitted by

applicable law notwithstanding this l imitation.

Separation of Components. The SOFf WARE PRODUCT is licensed as a sin

gle product . Its component parts may not be separated for use on more than

one computer.

Rental . You may not rent, lease or lend the SOFf WARE PRODUCT.

Trademarks . This EULA does not grant you any rights in connection with any

trademarks or service marks of Microsoft .

Software Transfer. The initial user of the SOFf WARE PRODUCT may make

a one-time permanent transfer of this EULA and SOFf WARE PRODUCT

only directly to an end user. This transfer must include all of the SOFfWARE

PRODUCT (including all component parts, the media and printed materials,

any upgrades, this EULA, and, if applicable, the Certificate of Authenticity) .

Such transfer may not be by way of consignment or any other indirect transfer.
The transferee of such one-time transfer must agree to comply with the terms
of this EULA, including the obligation not to further transfer this EULA and

SOFf WARE PRODUCT.

End-User License Agreement for Microsoft Software

No Support . Microsoft shall have no obligation to provide any product support

for the SOFTWARE PRODUCT.

Termination. Without prejudice to any other rights, Microsoft may terminate

this EULA if you fail to comply with the terms and conditions of this EULA.

In such event, you must destroy all copies of the SOFTWARE PRODUCT

and all of its component parts.

3 . COPYRIGHT. All title and intellectual property rights in and t o the SOFTWARE

PRODUCT (including but not limited to any images, photographs, animations,

video, audio, music, text, and "applets" incorporated into the SOFTWARE PROD

UCT), the accompanying printed materials, and any copies of the SOFTWARE

PRODUCT are owned by Microsoft or its suppliers . All title and intellectual prop

erty rights in and to the content which may be accessed through use of the SOFT

WARE PRODUCT is the property of the respective content owner and may be

protected by applicable copyright or other intellectual property laws and treaties.

This EULA grants you no rights to use such content. All rights not expressly granted

are reserved by Microsoft.

4. BACKUP COPY. After installation of one copy of the SOFTWARE PROD

UCT pursuant to this EULA, you may keep the original media on which the

SOFTWARE PRODUCT was provided by Microsoft solely for backup or

archival purposes. If the original media is required to use the SOFTWARE

PRODUCT on the COMPUTER, you may make one copy of the SOFTWARE

PRODUCT solely for backup or archival purposes. Except as expressly pro

vided in this EULA, you may not otherwise make copies of the SOFTWARE

PRODUCT or the printed materials accompanying the SOFTWARE PROD

UCT.

5 . U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE PROD

UCT and documentation are provided with RESTRICTED RIGHTS. Use,

duplication, or disclosure by the Government is subject to restrictions as set

forth in subparagraph (c)(I)(ii) of the Rights in Technical Data and Computer

Software clause at DFARS 252.227-7013 or subparagraphs (c) (l) and (2) of

the Commercial Computer Software-Restricted Rights at 48 CFR 52.227-I 9,

as applicable. Manufacturer is Microsoft Corporation/One Microsoft Way/

Redmond, WA 98052-6399.

6 . EXPORT RESTRICTIONS. You agree that you will not export or re-export
the SOFTWARE PRODUCT, any part thereof, or any process or service that is

the direct product of the SOFTWARE PRODUCT (the foregoing collectively

referred to as the "Restricted Components"), to any country, person, entity or

end user subject to U.S. export restrictions . You specificaJly agree not to

export or re-export any of the Restricted Components (i) to any country to

which the U.S. has embargoed or restricted the export of goods or services,

which currently include, but are not necessarily limited to Cuba, Iran, Iraq,

Libya, North Korea, Sudan and Syria, or to any national of any such country,

wherever located, who intends to transmit or transport the Restricted Compo
nents back to such country; (ii) to any end-user who you know or have reason

to know will utilize the Restricted Components in the design, development or

End-User License Agreement for Microsoft Software

production of nuclear, chemical or biological weapons; or (iii) to any end-user

who has been prohibited from participating in U.S. export transactions by any

federal agency of the U.S. government. You warrant and represent that neither

the BXA nor any other U.S. federal agency has suspended, revoked, or denied

your export privileges.

7 . NOTE ON JAVA SUPPORT. THE SOFTWARE PRODUCT MAY CONTAIN

SUPPORT FOR PROGRAMS WRITTEN IN JAVA. JAVA TECHNOLOGY

IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFAC

TURED, OR INTENDED FOR USE OR RESALE AS ON-LINE CONTROL

EQUIPMENT IN HAZARDOUS ENVIRONMENTS REQUIRING FAIL

SAFE PERFORMANCE, SUCH AS IN THE OPERATION OF NUCLEAR

FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION SYS

TEMS, AIR TRAFFIC CONTROL, DIRECT LIFE SUPPORT MAC HINES,

OR WEAPONS SYSTEMS, IN WHICH THE FAILURE OF JAVA TECH

NOLOGY COULD LEAD DIRECTLY TO DEATH, PERSONAL INJURY,

OR SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE.

M ISCELLANEOUS

If you acquired this product in the United States, this EULA is governed by the laws of the

State of Washington.

If you acquired this product in Canada, this EULA is governed by the laws of the Prov

ince of Ontario, Canada. Each of the parties hereto irrevocably attorns to the jurisdiction of

the courts of the Province of Ontario and further agrees to commence any litigation which

may arise hereunder in the courts located in the Judicial District of York, Province of

Ontario.

If this product was acquired outside the United States, then local law may apply.

Should you have any questions concerning this EULA, or if you desire to contact

Microsoft for any reason, please contact

Microsoft, or write: Microsoft Sales Information Center/One Microsoft Way/Red

mond, WA 98052-6399.

LIMITED WARRANTY

LIMITED WARRANTY. Microsoft warrants that (a) the SOFTWARE PRODUCT will

perform substantially in accordance with the accompanying written materials for a period

of ninety (90) days from the date of receipt, and (b) any Support Services provided by Mi

crosoft shall be substantially as described in applicable written materials provided to you

by Microsoft, and Microsoft support engineers will make commercially reasonable efforts

to solve any problem. To the extent allowed by applicable law, implied warranties on the

SOFTWARE PRODUCT, if any, are limited to ninety (90) days. Some states/jurisdictions

do not allow limitations on duration of an implied warranty, so the above limitation may

not apply to you.

CUSTOMER REMEDIES. Microsoft's and its suppliers' entire liability and your

exclusive remedy shall be, at Microsoft's option, either (a) return of the price paid, if any ,
or (b) repair or replacement of the SOFTW ARE PRODUCT that does not meet Microsoft 's

Limited Warranty and that is returned to Microsoft with a copy of your receipt. This Lim

ited Warranty is void if failure of the SOFTWARE PRODUCT has resulted from accident,

abuse, or misapplication. Any replacement SOFTW ARE PRODUCT will be warranted for

the remainder of the original warranty period or thirty (30) days, whichever is longer. Out-

End-User License Agreement for Microsoft Software

side the United States , neither these remedies nor any product support services offered by

Microsoft are available without proof of purchase from an authorized international source.

NO OTHER WARRANTIES . TO THE MAXIMUM EXTENT PERMITTED BY

APPLICABLE LAW, MICROSOFT AND ITS SUPPLIERS DISCLAIM ALL OTHER

WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED, INCLUDING,

BUT NOT LIMITED TO, IMPLIED WARRANTIES OR CONDITIONS OF MER

CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON

INFRINGEMENT, WITH REGARD TO THE SOFTWARE PRODUCT, AND THE

PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES . THIS LIMITED

WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS . YOU MAY HAVE OTHERS,

WHICH VARY FROM STATE/JURISDICTION TO STATE/JURISDICTION.

LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY

APPLICABLE LAW, IN NO EVENT SHALL MICROSOFT OR ITS SUPPLIERS BE

LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL

DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES

FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSI

NESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF

THE USE OF OR INABILITY TO USE THE SOFTWARE PRODUCT OR THE
FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF MICROSOFT HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY CASE,

MICROSOFT'S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS EULA

SHALL BE LIMITED TO THE GREATER OF THE AMOUNT ACTUALLY PAID BY

YOU FOR THE SOFTWARE PRODUCT OR U.S .$5 .00; PROVIDED, HOWEVER, IF

YOU HAVE ENTERED INTO A MICROSOFT SUPPORT SERVICES AGREEMENT,

MICROSOFT'S ENTIRE LIABILITY REGARDING SUPPORT SERVICES SHALL BE

GOVERNED BY THE TERMS OF THAT AGREEMENT. BECAUSE SOME STATES/

JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIA

BILITY, THE ABOVE LIMIT A TION MA Y NOT APPLY TO YOU.

0495 Part No. 6435 8

