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EDITORIAL

A quantum future awaits

century ago, the quantum revolution quietly be-
gan to change our lives. A deeper understanding
of the behavior of matter and light at atomic and
subatomic scales sparked a new field of science
that would vastly change the world’s technol-
ogy landscape. Today, we rely upon the science of
quantum mechanics for applications ranging from
the Global Positioning System to magnetic resonance im-
aging to the transistor. The advent of quantum comput-
ers presages yet another new
chapter in this story that will
enable us to not only predict
and improve chemical reac-
tions and new materials and
their properties, for example,
but also to provide insights into
the emergence of spacetime
and our universe. Remarkably,
these advances may begin to be
realized in a few years.

From initial steps in the
1980s to today, science and
defense agencies around the
world have supported the ba-
sic research in quantum infor-
mation science that enables
advanced sensing, communi-
cation, and computational sys-
tems. Recent improvements in
device performance and quan-
tum bit (“qubit”) approaches
show the possibility of moder-
ate-scale quantum computers
in the near future. This prog-
ress has focused the scientific
community on, and engendered substantial new indus-
trial investment for, developing machines that produce
answers we cannot simulate even with the world’s fastest
supercomputer (currently the Summit supercomputer
at the U.S. Department of Energy’s Oak Ridge National
Laboratory in Tennessee).

Achieving such quantum computational supremacy is
a natural first goal. It turns out, however, that devising
a classical computer to approximate quantum systems is
sometimes good enough for the purposes of solving cer-
tain problems. Furthermore, most quantum devices have
errors and produce correct results with a decreasing
probability as problems become more complicated. Only
with substantial math from quantum complexity theory
can we actually separate “stupendously hard” problems
to solve from just “really hard” ones. This separation of

“Achieving such quantum
computational supremacy is
a natural first goal.”

classical and quantum computation is typically described
as approaching quantum supremacy. A device that dem-
onstrates a separation may rightly deserve to be called
the world’s first quantum computer and will represent a
leap forward for theoretical computer science and even
for our understanding of the universe.

Once a real quantum computer is realized, what’s
next? In the coming decade, we can expect that some
problem-solving will be optimized much more rapidly
using quantum devices. We
can also expect that efficient
sampling from a probability
distribution—the theoretical
version of a machine learning
algorithm—will become a place
where quantum computers can
shine. In the longer term, error
correction and factoring may
change the landscape further.

However, the lowest hang-
ing fruit will be improving
the ability to work with quan-
tum mechanics. In the past,
knowledge of quantum me-
chanics has been refined by
comparing classical compu-
tational techniques to what
has been observed by experi-
ments—from solving differen-
tial equations to brute force
simulation to new approxi-
mation methods in chemis-
try and materials science. If
quantum computational su-
premacy is achieved, we may
be able to test new techniques without requiring such
comparison. This will reduce the cycle of research and
transform how science is conducted.

Aiming toward these outcomes, the White House Office
of Science and Technology Policy has established a new
interagency group that is tasked with creating a national
strategy to nurture a full quantum ecosystem through co-
ordinated research between government, academia, and
industry. This will include engagement across community
boundaries and between disciplines to ensure a strong,
quantum-smart future workforce. Matching this with
similar efforts worldwide should allow us to catch glim-
mers of new scientific horizons and to develop the po-
tential industries and new technologies that may emerge
from investing in quantum information science.

-Jacob M. Taylor
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Portion of the world's oceans that remains as wilderness,
minimally affected by humans. Most is in polar regions
and around remote Pacific Island nations—and less than
5% is protected (Current Biology).

I N B Rl E F Edited by Jeffrey Brainard
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! Trump
to overhaul
species |
protections &

The Endangered Species Act covers the woodland caribou (Rangifer tarandus caribou).

resident Donald Trump’s administration announced last week it

plans major changes to how federal agencies interpret and apply

the Endangered Species Act. One change proposed on 25 July

by the U.S. Fish and Wildlife Service and the National Oceanic

and Atmospheric Administration would mean that, in the future,

species designated as threatened could receive less protection
than those listed as endangered. The agencies also want to reduce how
far into the future they must look when evaluating extinction risk and
to have the flexibility to shrink the area of so-called critical habitat a
species might need to survive. In addition, the agencies plan to begin
to describe the financial costs of protecting certain species, although
they will continue to base determinations to protect them solely on
biological considerations. Industry groups are generally welcoming the
revisions, which the executive branch expects to adopt administratively
later this year after a public comment period; conservation groups warn
the changes will undermine efforts to save many species.
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Hungary takes academy’s funding

SCIENCE PoLicY | Hungary’s budget for
2019, which its Parliament approved on

20 July, transfers two-thirds of the Budapest-
based Hungarian Academy of Sciences’s
(MTA’s) €124 million budget to the Ministry
for Innovation and Technology (ITM). The
government says this will improve efficiency,
but many scientists in Hungary and abroad
see the move as a power grab by an increas-
ingly authoritarian regime that will extend
political influence over science spending and
research agendas. “We accept the outcome,
but we expect to continue negotiating with
[ITM] Minister Laszl6 Palkovics to see what
the exact specifics of this new situation will
be,” says Taméas Simon, an MTA spokes-
person. MTA President Laszl6 Lovasz says
Palkovics has not supported basic, “bottom-
up” research proposals, which Lovasz calls
necessary to produce cutting-edge science.

Viagra study halted over risks

BIOMEDICINE | A Dutch study testing
whether administering sildenafil, better
known as Viagra, to pregnant women
can help poorly growing fetuses was
halted on 19 July after evidence emerged
that the drug may cause a potentially
fatal complication in the newborns. Fetal
growth restriction, which can lead to
stillbirth and neonatal death, is caused
by a lack of blood flow from the placenta
to the fetus. Sildenafil dilates these blood
vessels, which smaller clinical studies
had suggested might benefit the fetus.
But an interim analysis of the new study
at Amsterdam University Medical Center
found that pregnant women who took
the drug had a higher risk of losing their
babies after birth because the newborns
experienced lung hypertension—11 in the
treatment group died of this cause. Similar
studies in three other countries found that
sildenafil had no benefit, but did no harm
either; a study underway in Canada has
been put on hold based on the new data.

Fight brews over census choice

sTATISTICS | If there’s a fight over Steven
Dillingham, whom President Donald Trump
nominated on 18 July to lead the U.S.
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Census Bureau, it’s likely to focus on

the administration’s commitment to an
accurate count in 2020, not his experience
leading two smaller federal statistical agen-
cies or his multiple degrees. Secretary of
Commerce Wilbur Ross has been sued for
adding a citizenship question to the 2020
census, and there’s continuing concern over
whether the agency can pull off the first-
ever head count using internet responses.
“Steve is a tip-top scholar, a progressive
administrator, and a very ethical guy,”
says Geoff Alpert, a professor of criminology
at the University of South Carolina in
Columbia, who worked under Dillingham at
the Bureau of Justice Statistics in the early
1990s. But Representative Carolyn Maloney
(D-NY) wants Dillingham “to reject the
Administration’s attempt to add a citizen-
ship question” before any Senate vote.

The real-life Lorax?

POPULAR CcULTURE | InTheodor “Dr. Seuss”
Geisel’s beloved picture book The Lorax, the
titular character tries to defend his forested
home from an insatiable businessman—a
lasting allegory for environmental pro-
tection. This week, scientists report they
have identified a species of monkey that
may have inspired the Lorax’s implike
features—and in a twist the Lorax himself
might lament, they note that environmen-
tal changes have reduced the monkey’s
range by half since 1991. Scientists report
this week in Nature Ecology & Evolution
that Geisel may have based the Lorax on
the patas monkey (Erythrocebus patas).
Although no evidence directly links the
fictional and real creatures, historical docu-
ments show that Geisel, who published the
book in 1971 and died in 1991, was writing it
while vacationing in Nanyuki, Kenya. There
he could have encountered the animal and
its main food source, the whistling thorn
acacia (Acacia drepanolobium), which may
have inspired the book’s “truffula” trees.

To make a stronger case, the researchers
conducted computer-aided facial analysis

Patas monkey populations in Kenya are at risk.
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PUBLIC HEALTH

Progress lags in HIV/AIDS fight

he world is behind on meeting an ambitious United Nations target of ending AIDS

as a public health threat by 2030. To accomplish this goal, set in 2015 by the Joint

United Nations Programme on HIV/AIDS (UNAIDS) in Geneva, Switzerland, new infec-

tions must drop to 90% of their 2010 levels. In a report titled Miles to Go and released

on the eve of this week’s International AIDS Conference in Amsterdam, UNAIDS
Executive Director Michel Sidibé warns that “complacency” is setting in. To meet the 2030
target, new infections must decline by 75% between 2010 and 2020. But new infections
fell only 18% between 2010 and 2017. Sidibé stresses that “action now can still put us back
on course to reach the 2020 targets,” adding, “This report is a wake-up call.”

New HIV infections worldwide
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of several species of Kenyan monkeys and
found strong similarities between the Lorax
and the patas monkey. Kenyan patas popu-
lations are losing the acacias to drought and
land clearance for agriculture.

Sloppy science more widespread

sTATISTICS | Several studies have shown
that many psychology researchers admit

to questionable practices in analyzing and
reporting data—a phenomenon that helps
explain why so many of the field’s stud-

ies have proved impossible to reproduce.
But ecologists and evolutionary scientists
aren’t behaving much better, according to

a study published on 16 July in PLOS ONE
by Hannah Fraser of the University of
Melbourne in Australia and colleagues.
Among 807 researchers surveyed in those
disciplines, 64% reported they had at least
once failed to report outcomes that were
statistically insignificant; 42% had extended
a study to collect more data and reach sta-
tistical significance, a form of “p-hacking”;
and 51% had reported an unexpected finding
as if it had been hypothesized from the
beginning. The rates resemble those found
in psychology; remedies such as education,
changing the incentive structure in science,
and preregistration of studies could help
bring them down, the authors write.

Published by AAAS

Recent geological age named

NATURAL HISTORY | Scientists last

week announced a new name for the past
4200 years of geologic history: the
Meghalayan age. The declaration by the
International Commission on Stratigraphy
dividesthe Holocene, our current, warm,
human-dominated epoch, into three ages
based on global changes: the Greenlandian,
which started as glaciers retreated

11,700 years ago; the Northgrippian, marked
by a cooling trend 8300 years ago; and

the Meghalayan, which began 4200 years
ago with a mysterious drought and cooling
trend that coincided with the decline

of several civilizations. The Meghalayan’s
marker in the rock record—called the
“golden spike”—comes from oxygen isotopes
found in a stalagmite from the Meghalaya
plateau of northeast India. The newly
defined age names and dates provide stan-
dardized versions of divisions that scholars
had long drawn between an early, middle,
and late Holocene. The commission has not
finished a study of whether the world, by
the 1950s, left the Holocene and entered a
new geological epoch, the Anthropocene,
dominated by human influence.
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SCIENTIFIC COMMUNITY

Report details harassment by famed biologist

Allegations that felled Francisco Ayala divide scientists, university community

By Meredith Wadman

he investigative report that earlier

this month triggered the ouster of

prominent evolutionary geneticist

Francisco Ayala from the Univer-

sity of California (UC), Irvine, con-

cluded he had a pattern of harassing
behavior toward women. The document
concludes that he told a pregnant colleague
“you’re so huge” and repeatedly put his
hands under a female administrator’s jacket,
rubbing them up and down her sides. Ac-
cording to the report, Ayala told a female
professor that she had been so animated
while giving a talk that he thought she
would “have an orgasm.” In another in-
stance, the report states, he invited a junior
professor in a crowded meeting to sit on his
lap, saying he would enjoy the presentation
more that way.

The 97-page report, completed in May
and obtained by Science (currently available
at http://bit.ly/AyalaReport), describes evi-
dence of unwelcome conduct by Ayala that
continued after he was warned to stop. The
internal university investigation, prompted
by complaints submitted by four UC Irvine
women, detailed off-color remarks and re-
peated unsolicited compliments on wom-
en’s physical appearances; these behaviors
often were witnessed by one or more of the

316 27 JULY 2018 « VOL 361 ISSUE 6400

61 people interviewed for the investiga-
tion. The investigators said the complain-
ants felt professionally undermined by his
conduct and they concluded that Ayala, 84,
violated UC Irvine’s sexual harassment and
sex discrimination policies in the cases of
three of the four women who lodged com-
plaints. The university accepted Ayala’s
resignation, effective 1 July, and plans to
strip his name from its science library and
biology building.

In responses included in the report, Ayala
strenuously denies most of the allegations.
He told investigators that the entire com-
plaint of Department of Ecology and Evolu-
tionary Biology (EEB) Professor and Chair
Kathleen Treseder, who reported the “huge”
and orgasm comments, “was a lie.”

“I saw my compliments as courtesies.
And they turned those courtesies into sex-
ual harassment,” Ayala told Science in an
interview last week. “I have never intention-
ally caused sexual harassment to anybody,”
he also wrote in an email to UC Irvine
Chancellor Howard Gillman days after the
probe was launched. “To the extent that my
actions may have caused harm to others ... I
apologize from the deepest of my heart and
of my mind.”

Three of the women who lodged com-
plaints directed questions to their lawyer,
who did not respond to repeated requests

Published by AAAS

for comment. Science was unable to reach
the fourth complainant.

Ayala’s firing has drawn praise from
some scientists and sharp criticism from
others on the UC Irvine campus and in his
native Spain. Critics questioned whether he
received due process and complained that
the university had not detailed the charges
against him. But the report’s contents seem
only to have deepened the division.

“I'm just shocked that this man’s life was
ruined over this collection of reactions to
his behavior,” says Elizabeth Loftus, a UC
Irvine experimental psychologist who has
vocally supported Ayala. After reading the
report, she said the “thin” allegations “are
far, far from the obviously bad behaviors
that we want to be punishing. I feel like:
‘Who’s next?”

But Jane Zelikova, an ecologist at the
University of Wyoming in Laramie and a
founder of the international advocacy group
500 Women Scientists, says: “No form of ha-
rassment is OK. ... He could have corrected
his behavior. He did not. Being fired for do-
ing something that is illegal is justice.”

Ann Olivarius, a senior attorney at McAl-
lister Olivarius in Saratoga Springs, New
York, who specializes in sexual harassment,
reviewed the UC Irvine report at Science’s
request. “Unlike many harassers who have
sex with students or pressure them directly
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In the wake of a harassment report, Francisco Ayala
resigned from the University of California, Irvine.

for sex, Ayala did not cross those bound-
aries,” she notes. “But he clearly made
multiple women feel degraded. ... Senior
university officials warned him to stop act-
ing in these ways, but he continued.”

Robert Cook-Deegan, a historian of sci-
ence with Arizona State University who is
based in Washington, D.C., and also read the
report, concluded that “Norms are changing
really fast and I think this 84-year-old got
caught in a norm shift.”

Ayala, who was elected to the National
Academy of Sciences in 1980, did pioneer-
ing work in evolution and genetics and was
a prominent public defender of evolution.
In 1995, he was president of AAAS, which
publishes Science. Since 2010, he has do-
nated more than $11 million to UC Irvine.

Ayala admitted to making the “sit in my
lap” comment to complainant Jessica Pratt,
an assistant teaching professor, in 2015,
as she prepared to present at a crowded
faculty meeting. Ayala told investigators
it was a one-time lapse showing “a hor-
rendous lack of judgment” (A graduate
student who was interviewed as a witness
described a separate instance in which she
said Ayala invited her, too, to sit in his lap.)

Pratt complained to the
then-EEB department chair,
prompting Ayala to visit
Pratt in her office, accord-

“Dr. Ayala’s very

felt she had to put up with Ayala’s atten-
tions because of his power as a major do-
nor. “I just learned that women don’t like
to be told they’re beautiful, but I know you
don’t mind,” Shipley recalled Ayala saying
in 2016, rubbing her sides while Kkissing her
cheeks in greeting—a behavior that occurred
repeatedly, she said. A male professor noted
this encounter and asked Shipley afterward
whether she was all right, the report says.

Shipley told investigators she was relieved
when Ayala’s attention shifted to Treseder,
to whom she said Ayala was “glued” at a
department social event not long after. Dis-
tressed, Treseder asked a male colleague,
who corroborated her claim to investigators,
to attend such events with her.

In early November 2017, just before
the complaints against Ayala were filed,
Treseder, who had recently been named the
department chair, proposed a code of con-
duct concerning sexual harassment at a fac-
ulty meeting. Ayala pushed back, according
to the report, saying the “ladies” in the dean’s
office wanted him to hug and kiss them.

In the fourth complaint, graduate stu-
dent Michelle Herrera alleged that Ayala
put his hands on her bare shoulders—a
behavior Ayala admitted to—and leaned
his front against her back as she sat at a
picnic table. Ayala vigorously denied lean-
ing against her. Investiga-
tors concluded that the
incident probably occurred
but might not have been

ing to the report. Ayala told public punishment gender-based. They found
investigators that he “apol- . Herrera’s claims that Ayala
ogized profusely” to Pratt, lUlll Senda lOlld repeatedly commented on
telling her he intended signal that times her appearance not cred-
the comment to be play- . 9 ible. Herrera could not be
ful, like he was addressing @I€ Chllllglng oo reached for comment.

a niece or granddaughter.
But when Pratt told Ayala
that the comment was
overheard—something other witnesses cor-
roborated—Ayala called her a liar, accord-
ing to the report. Pratt lodged an informal
complaint with UC Irvine’s Office of Equal
Opportunity and Diversity. She told inves-
tigators that Ayala’s conduct “made her
question whether he respected her work.
... She even began to question her own
merit as a scientist.”

As a result of Pratt’s complaint, Associ-
ate Chancellor Kirsten Quanbeck warned
Ayala in 2015 to watch his language with
women and told him that his conduct was
viewed as unwelcome and was out of line
with university policy. The EEB depart-
ment chair gave him a similar warning, the
report says.

One complainant, Benedicte Shipley,
an assistant dean in UC Irvine’s School of
Biological Sciences, told investigators she

Ann Olivarius,

SCIENCE sciencemag.org

McAllister Olivarius

UC Irvine’s investigators
also assert that Ayala “has
engaged in a campaign with
the highest University officials to influence
the outcome of this investigation.” The re-
port says he wrote to Gillman and to Janet
Napolitano, president of the UC system, re-
minding them of his financial and academic
contributions to UC Irvine. According to the
report, Ayala told the senior investigator as
the probe launched that it “needed to end
quickly and in his favor and [that] he had
lawyers waiting if [it] did not”

Speaking with Science last week, Ayala said
he had wanted to avoid a protracted legal
struggle so he could focus on his science. He
added: “I didn’t say anything about lawyers.”

Olivarius predicts the Ayala case will
have an impact beyond UC Irvine. “Dr.
Ayala’s very public punishment will send a
loud signal that times are changing—that
harassment ... does not mean just extreme
misconduct,” she says.

Published by AAAS

NUCLEAR PHYSICS

Electron-

ion collider
wins key
endorsement

National Academies report
calls for accelerator to look
inside protons and neutrons

By Adrian Cho

he next dream machine for U.S.
nuclear physicists got an important
boost this week in a report from
the National Academies of Sciences,
Engineering, and Medicine. The re-
port committee glowingly approved
of the science that could be done with the
proposed Electron-Ion Collider (EIC), a
billion-dollar accelerator that would probe
the innards of protons and neutrons. The
endorsement should help the Department
of Energy (DOE) justify building the EIC at
one of two national laboratories competing
to host it, although the project probably
won’t get the go-ahead for several years.

“Were basically saying, ‘You’ve really
got to do this,)” says Ani Aprahamian, a
nuclear physicist at the University of Notre
Dame in South Bend, Indiana, and co-chair
of the report committee.

The inner structure of the proton and
the neutron remains mysterious. Crudely, a
proton consists of three subatomic particles
called quarks, bound by the strong nuclear
force. In actuality, a proton is far more com-
plex. Because of the uncertainties inherent
in quantum mechanics, its interior roils
with quark-antiquark pairs popping in and
out of virtual existence. It also teems with
gluons, the quantum particles that convey
the strong force. The mess is so complex
that even basic properties of the proton
remain unexplained. For example, its three
quarks account for less than 5% of its mass,
the rest arising somehow from energy of the
virtual quarks and gluons.

By blasting a beam of electrons into a
beam of protons or ions, the EIC would
help solve this mystery and a parallel one:
how the proton gets its spin. Just as in the
case of mass, the proton’s spin is not simply
the sum of the spins of the three quarks; it
also has unknown contributions from glu-
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ons and from the quarks orbiting around
one another. Finally, the EIC could probe
the gluons’ behavior for so-called emer-
gent properties. For example, some theories
predict that a proton’s gluons crowd into a
single quantum wave a bit like laser light.
The EIC would be better for such studies
than a machine that smashes protons into
protons, such as the Large Hadron Collider
(LHC) near Geneva, Switzerland. That’s
because the electron is an infinitesimally
small particle and produces cleaner, easier
to interpret collisions, Aprahamian says.

The EIC would help maintain U.S. exper-
tise in colliding beams, says Gordon Baym,
a theorist at the University of Illinois in Ur-
bana and co-chair of the report committee.
“It’s the only collider in the U.S. that’s being
considered for the next 50 years or so,” he
says. Now, the United States only has the
Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory in Upton,
New York, which was completed in 1999.
Europe has the newer LHC and Japan runs
the newly upgraded SuperKEKB electron-
positron collider in Tsukuba.

Physicists at two DOE labs propose to
assemble the EIC in different ways. At
Brookhaven, RHIC smashes together heavy
nuclei such as gold to melt them and cre-
ate a soup called a quark-gluon plasma, the
stuff that filled the universe just after the
big bang. Brookhaven physicists eventually
want to add an electron accelerator to con-
vert RHIC into the EIC.

However, the Thomas Jefferson National
Accelerator Facility in Newport News, Vir-
ginia, has recently upgraded its Continu-
ous Electron Beam Accelerator Facility
(CEBAF), which fires electrons into sta-
tionary targets to study protons, neutrons,
and nuclei. Jefferson Lab researchers hope

to add an ion accelerator to it to make the
EIC. Jefferson Lab is a smaller facility that’s
more narrowly focused on nuclear physics
than Brookhaven, and its long-term survival
could depend on landing the EIC.

The report avoids comparing the two
labs’ proposals, but offers DOE officials
a scientific case for the EIC. However, on
top of running RHIC and CEBAF, DOE’s
$684 million office of nuclear physics is also
building the $730 million Facility for Rare
Isotope Beams at Michigan State University
in East Lansing, which upon completion
in 2020 will generate exotic nuclei. Given
the costs of operating those facilities, DOE
probably can’t afford the EIC any time soon,
notes Donald Geesaman, a nuclear physicist
at Argonne National Laboratory in Lemont,
Illinois, and former chair of DOE’s Nuclear
Science Advisory Committee.

More time may be welcomed, anyway, as
the Brookhaven and Jefferson Lab propos-
als cannot yet meet key technical require-
ments. From 1992 to 2007, physicists in
Germany ran the Hadron-Electron Ring
Accelerator (HERA), which also collided
electrons and protons and revealed the
gluon. The EIC will run at lower energy
than HERA did, but to achieve its goals,
it will have to generate collisions at a rate
100 to 1000 times higher with highly polar-
ized electron and proton beams.

For now, Brookhaven and Jefferson Lab
scientists are collaborating on the R&D
rather than competing. “It’s been very excit-
ing to see the community self-assemble,” says
Jefferson Lab Director Stuart Henderson.
Brookhaven Director Doon Gibbs says, “The
immediate objective is to keep walking down
the road together with both labs in lockstep.”
If all goes well, however, the two labs’ ambi-
tions will eventually collide. =

The main accelerator at Brookhaven National Laboratory could be repurposed into an electron-ion collider.
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SCIENTIFIC ETHICS

Study of

‘sea nomads’
under fire

in Indonesia

Critics say study lacked
local ethical approval and
role for Indonesian experts

By Dyna Rochmyaningsih

n April, a paper showing why Indonesia’s
Bajau people are such great divers drew
worldwide attention as a striking exam-
ple of recent human evolution (Science,
20 April, p. 244)). But the study, published
in Cell, has created a different kind of stir
in Indonesia, where some say it is an exam-
ple of “helicopter research” carried out by
scientists from rich countries with little con-
sideration for local regulations and needs.

“Too many mistakes were made here,” says
geneticist Herawati Sudoyo, who heads the
Eijkman Institute for Molecular Biology in
Jakarta. Indonesian officials say the research
team failed to obtain ethical approval from
a local review board and took DNA samples
out of the country without the proper paper-
work. And some Indonesian scientists com-
plain that the only local researcher involved
in the study had no expertise in evolution or
genetics. But Eske Willerslev, director of the
University of Copenhagen’s (KU’s) Centre for
GeoGenetics, says the team he headed had a
permit from the Indonesian government and
worked hard to follow the rules. “I would
never participate in research that I felt was
unethical,” Willerslev says. The government
hasn’t informed him about problems, he
says, but, “If we have made an error that vi-
olates national or international guidelines,
we would like to apologize for that.”

The issue escalated in late May, when
Pradiptajati Kusuma, a geneticist at the
Eijkman Institute who has also studied the
Bajau, suggested in a tweet that the team
could have faced prosecution under strict
new rules on foreign research, proposed by
the Indonesian government and now under
debate. “Jail? Possible,” Kusuma wrote. He
later deleted the tweet, but Melissa Ilardo,
the Cell study’s first author, says she was
so rattled that she canceled a July trip to
Indonesia during which she planned to
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inform the Bajau about her study. “I did
everything I could to conduct this research
ethically and properly, and this is breaking
my heart,” says Ilardo, a Ph.D. student at KU
at the time of the fieldwork and now at the
University of Utah in Salt Lake City.

Sometimes called sea nomads, the Bajau
have lived off the ocean for centuries; men
spend much of the day underwater to spear
fish and harvest sea cucumbers. In 2015,
Ilardo took saliva samples from 59 Bajau in-
dividuals in Central Sulawesi and measured
their spleen size. The team found that, com-
pared with controls, the Bajau have bigger
spleens, which may help prevent hypoxia
during long dives by releasing extra blood
cells. The researchers also identified a gene
variant that may be responsible.

Willerslev’s group received a permit for
the study from Indonesia’s Ministry of Re-
search, Technology and Higher Education,
commonly known as RISTEK, in Jakarta and
ethical clearance from the Danish National
Committee on Health Research Ethics. “We
were told that RISTEK permit included local
ethical approval as well, thus there was no
ethical violation,” Willerslev says.

Sadjuga, secretary of RISTEK’s Foreign
Research Permit Coordinating Team, dis-
putes that account. “We always request ethi-
cal clearance from at least one Indonesian
research ethics commission,” Sadjuga says.
(Like many Indonesians, he uses only one
name.) Triono Soendoro, who heads the Ethi-
cal Commission for National Health Research
and Development at the Indonesian Ministry
of Health in Jakarta, confirms that the team
should have had approval from an ethi-
cal panel in Indonesia; guidelines from the
Council for International Organizations of
Medical Sciences also call for local approval.

The team may also have run afoul of
regulations when it shipped DNA samples
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to Copenhagen for analysis. Ilardo says
she filed a material transfer agreement
(MTA)—a contract governing the shipment
of research samples—with her application
to RISTEK. But for the transfer of human
DNA, she should have sought approval from
the National Institute of Health Research
and Development in Jakarta, says Siswanto,
who chairs that institute. “If this was a
requirement, I would have expected that
RISTEK would have told me if my MTA was
invalid when I submitted it,” Ilardo says.

Some Indonesian scientists, meanwhile,
are miffed that the only Indonesian name on
the paper is that of Suhartini Salingkat, an
education researcher at Tompotika Luwuk
Banggai University, a small private institu-
tion in Central Sulawesi; according to the
paper, she “provided logistical support.” For-
eign teams “should involve Indonesian scien-
tists in all stages of research,” says Mohamad
Belaffif, an Indonesian bioinformatician at
the HudsonAlpha Institute for Biotechnol-
ogy in Huntsville, Alabama.

Ilardo says she did try to collaborate
with scientists at the Eijkman Institute af-
ter RISTEK requested she do so. An email
exchange between Ilardo and Sudoyo,
provided to Science by Willerslev, shows
Sudoyo didn’t respond to several requests
for a meeting in October 2015, before field-
work began, and later effectively declined
a partnership. “As far as I understand, you
have your own partner already in the Ba-
jau project, therefore we are not needed,”
she wrote. (Sudoyo declined to answer
Science’s questions on this matter.) Given
Ilardo’s overtures to the Eijkman Institute,
“I would love to understand what went
wrong and why they suddenly are so an-
gry,” says Rasmus Nielsen of the University
of California, Berkeley, another senior au-
thor on the paper.

Published by AAAS

A controversial study showed that the Bajau are good
divers thanks in part to an enlarged spleen.

Ilardo says she shared her genetic exper-
tise with Tompotika students in an informal
seminar, and made the partnership worth-
while for Salingkat by helping her with a
research paper. In Ilardo’s application to
RISTEK, she also promised to organize a
meeting with the Bajau people to tell them
about the results of the study. But even if
she hadn’t abandoned that plan follow-
ing Kusuma’s tweet, some argue it would
have been too late. “In general, the return
[of research results] should coincide with
or slightly precede publication so that the
participants are not the last to know;” says
Conrad Fernandez, a bioethicist at Dalhou-
sie University in Halifax, Canada.

Berry Juliandi, a biologist at Bogor Agri-
cultural University in Indonesia, says the
country’s “tangled” system of permits can
be hard to navigate for foreign researchers.
“The root of this problem is the weak man-
agement of foreign research permits in Indo-
nesia,” he says. “How could RISTEK approve
Ilardo’s permit proposal [when] she doesn’t
have a valid MTA and ethical clearance from
an Indonesian institution?” Working with a
bigger, more experienced local institution
than Tompotika might have helped the re-
searchers avoid pitfalls, he says.

The case comes at a sensitive time, when
Indonesian and foreign scientists are de-
bating rules, proposed in 2017, that would
strengthen MTA regulations, compel for-
eign researchers to include Indonesian
colleagues as “equal partners” on projects,
and include them as authors on every peer-
reviewed paper about the work. Outside
researchers would also have to submit raw
data to the country’s research ministry;
some violations would carry prison sen-
tences. Some scientists, both in Indonesia
and abroad, say the law is unworkable and
could stifle scientific progress. At the same
time, RISTEK says it wants to promote
research collaborations, and on 5 July, it
launched an online system that makes the
paperwork easier and less time-consuming
for foreign researchers.

Neither RISTEK nor the Ministry of
Health has taken action against the re-
searchers over the Bajau study. A spokes-
person for Cell says the journal is satisfied
by the researchers’ explanation. “The au-
thors sent us documentation indicating that
they received consent from the Indonesian
government to conduct this research,” he
says. “We have no evidence that further in-
vestigation of this matter is warranted.”

Dyna Rochmyaningsih is a science journal-
ist based in Deli Serdang, Indonesia.
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\ Or 1ti'ng raélar instrument finds martian analog
: ools under Antarctic glaciers
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By Daniel Clery

ar beneath the deeply frozen ice cap

at Mars’s south pole lies a lake of lig-

uid water—the first to be found on

the Red Planet. Detected from orbit

using ice-penetrating radar, the lake

is probably frigid and full of salts—an
unlikely habitat for life. But the discovery,
reported online in Science this week, is sure
to intensify the hunt for other buried layers
of water that might be more hospitable. “It’s
a very exciting result: the first indication of
a briny aquifer on Mars,” says geophysicist
David Stillman of Southwest Research In-
stitute in Boulder, Colorado, who was not a
part of the study.

The lake resembles one of the inter-
connected pools that sit under several Kilo-
meters of ice in Greenland and Antarctica,
says Martin Siegert, a geophysicist at Im-
perial College London, who heads a con-
sortium trying to drill into Lake Ellsworth
under West Antarctica. But the processes
that gave rise to a deep lake on Mars are
likely to be different. “It will open up a very
interesting area of science on Mars,” he says.

Water is thought to have flowed across
the surface of Mars billions of years ago,
when its atmosphere was thicker and
warmer, cutting gullies and channels that
are still visible. But today, low atmospheric
pressures mean that any surface water
would boil away. Water survives frozen in
polar ice caps and in subsurface ice depos-
its. Some deposits have been mapped by
the Mars Advanced Radar for Subsurface
and Ionospheric Sounding (MARSIS), an in-
strument on the European Space Agency’s
Mars Express orbiter, which launched in
2003. MARSIS beams down pulses of radio
waves and listens for reflections. Some of
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the waves bounce off the surface, but oth-
ers penetrate up to 3 kilometers and can be
reflected by sharp transitions in the buried
layers, such as going from ice to rock.

Several years into the mission, MARSIS
scientists began to see small, bright echoes
under the south polar ice cap—so bright
that the reflection could indicate not just
rock underlying the ice, but liquid water.
The researchers doubted the signal was
real, however, because it appeared in some
orbital passes but not others.

Later the team realized that the space-
craft’s computer was averaging across pixels
to reduce the size of large data streams—
and in the process, smoothing away the
bright anomalies. “We were not seeing the
thing that was right under our noses,” says
Roberto Orosei, a principal investigator (PI)
for MARSIS at the Italian National Institute
for Astrophysics in Bologna.

To bypass this problem, the team com-
mandeered a memory chip on Mars Express
to store raw data during short passes over
intriguing areas. Between 2012 and 2015,
the spacecraft confirmed the existence of
the bright reflections during 29 passes over
the south polar region. The brightest patch,
offset 9° from the pole, lies 1.5 kilometers
under the ice and spans 20 kilometers,
Orosei and his colleagues report.

The radar brightness alone isn’t enough
to prove that liquid water is responsible.
Another clue comes from the permittiv-
ity of the reflecting material: its ability to
store energy in an electric field. Water has
a higher permittivity than rock and ice. Cal-
culating permittivity requires knowing the
signal power reflected by the bright patch,
something the researchers could only esti-
mate. But they find the permittivity of the
patch to be higher than anywhere else on
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Liquid water lies
unseen under ice
(white) at Mars’s
south pole in an image
from Mars Express.

Mars—and comparable to the subglacial
lakes on Earth. Although the team cannot
measure the thickness of the water layer,
Orosei says it is much more than a thin film.

Not everyone on the MARSIS team is
convinced. “I would say the interpretation
is plausible, but it’s not quite a slam dunk
yet,” says Jeffrey Plaut, the other MARSIS
PI at NASA’s Jet Propulsion Laboratory in
Pasadena, California, who is not an author
on the study.

After all, it isn’t easy to explain the pres-
ence of water at Mars’s south pole. In Earth’s
polar regions, the pressure of the overlying
ice lowers its melting point, and geothermal
heat warms it from below to create the sub-
glacial lakes. But there’s little heat flowing
from the geologically dead interior of Mars,
and under the planet’s weak gravity, the
weight of 1.5 kilometers of ice does not lower
the melting point by much. Orosei suspects
that salts, especially the perchlorates that
have been found in the planet’s soils, could
be lowering the ice’s melting point. “They are
the prime suspects,” he says.

High levels of salt and temperatures
dozens of degrees below zero do not bode
well for any microbes trying to live there,
Stillman says. “If martian life is like Earth
life, this is too cold and too salty.” But he
says researchers will want to look for other
lakes under the ice and find out whether
they are connected—and whether they
point to an even deeper water table.

Lakes might even turn up at lower,
warmer latitudes—a location more suitable
for a martian microbe, says Valérie Ciarletti
of the University of Paris-Saclay, who is de-
veloping a radar instrument for Europe’s
ExoMars rover, due to launch in 2020. “The
big, big finding would be water at depth
outside the polar cap.”
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Chipmabkers look past Moore’s law, and silicon

Novel computer chip materials explored in $1.5 billion U.S. military research program

By Robert F. Service

ilicon computer chips have been on

a roll for half a century, getting ever

more powerful. But the pace of in-

novation is slowing. This week, the

U.S. military’s Defense Advanced Re-

search Projects Agency (DARPA) an-
nounced dozens of new grants totaling $75
million in a program for academic and in-
dustry scientists. The program, called the
Electronics Resurgence Initiative, aims to
spur new chip designs and materials, such
as carbon nanotubes. Over the
next few years, the program
will grow to $300 million per
year, up to a total of $1.5 billion
over 5 years.

“It’'s a critical time to do
this,” says Erica Fuchs, a com-
puter science policy expert at
Carnegie Mellon University in
Pittsburgh, Pennsylvania. “It’s a
good first step.”

In 1965, Intel co-founder
Gordon Moore made the ob-
servation that would become
his eponymous “law”: The
number of transistors on chips
was doubling every 2 years, a
time frame later cut to every
18 months. But the gains from
miniaturizing the chips are
dwindling. Today, chip speeds
are stuck in place, and each
new generation of chips brings
only a 30% improvement in
energy efficiency, says Max
Shulaker, an electrical engineer
at the Massachusetts Institute of Technol-
ogy in Cambridge. Fabricators are ap-
proaching physical limits of silicon, says
Gregory Wright, a wireless communica-
tions expert at Nokia Bell Labs in Holm-
del, New Jersey. Electrons are confined to
patches of silicon just 100 atoms wide, he
says, forcing complex designs that prevent
electrons from leaking out and causing er-
rors. “We’re running out of room.”

Moreover, only a handful of companies
can afford the multibillion-dollar fabrica-
tion plants that make the chips, stifling in-
novation in a field once dominated by small
startups, says Valeria Bertacco, a computer
scientist at the University of Michigan in
Ann Arbor. And some big companies are
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going down separate paths, designing spe-
cialized chips for specific tasks, Fuchs says.
That has reduced the incentive for them
to pay for shared, precompetitive basic re-
search. The number of companies involved
in the Semiconductor Research Corpora-
tion in Durham, North Carolina, which
backs such work, dropped from 80 in 1996
to less than half that in 2013, according to
a study by Fuchs and her colleagues.
DARPA is now trying to fill the gap, with
grants to researchers such as Shulaker.
He is fashioning 3D computer chips with

A wafer contains hundreds of computer chips made from carbon nanotubes, which
switch on and off faster and more efficiently than transistors made from silicon.

transistors made of carbon nanotubes,
which switch on and off faster and more
efficiently than silicon transistors. Com-
panies today already make 3D chips with
silicon as a way to pack logic and memory
functions closer together to speed up pro-
cessing. But the chips are slowed down
by bulky and sparse wiring that carries
information between the chip layers. And
because 2D silicon chip layers must be fab-
ricated separately at more than 1000°C,
there is no way to build up 3D chips in an
integrated fabrication plan without melt-
ing the lower layers.

Carbon nanotube transistors, which can
be made at nearly room temperature, offer
a better path to dense, integrated 3D chips,

Published by AAAS

Shulaker says. Even though his team’s 3D
chips will have features 10 times larger
than state-of-the-art silicon devices, their
speed and energy efficiency is expected to
be 50 times better—a potential boon for
power-hungry data centers.

The DARPA program is also supporting
research into flexible chip architectures.
Daniel Bliss, a wireless communications
expert at Arizona State University in
Tempe, and his colleagues want to improve
wireless communications with chips that
can be reconfigured on the fly to carry out
specialized tasks. Bliss is work-
ing on radio chips that mix and
filter signals using software
rather than hardware—an ad-
vance that would allow a larger
number of devices to transmit
and receive signals without in-
terference. This could improve
mobile and satellite commu-
nications, as well as enable a
rapid growth in the “internet
of things,” where myriad de-
vices communicate with one
another, he says.

Another DARPA grant, for
researchers at Stanford Uni-
versity in Palo Alto, California,
will go to improving computer
tools used in chipmaking. These
tools verify novel chip designs
with a form of artificial intel-
ligence called machine learn-
ing. They would help automate
the largely manual process
of detecting design bugs in

chips made up of billions of tran-
sistors, and could speed up the ability of
companies to design, test, and fabricate
new chip architectures.

If even a fraction of the new projects
succeed, the DARPA project “will com-
pletely revolutionize how we design elec-
tronics,” says Subhasish Mitra, a Stanford
electrical and computer engineer, and a
researcher on the 3D carbon nanotube and
circuit validation projects. He says it will
also encourage engineers to look beyond
silicon, which has dominated research for
decades. “When I was a student, life was
boring,” Mitra says. “It was clear that sili-
con would move forward along a known
path. Now, it’s absolutely clear that’s not
what the future is.”
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THE TRAILBLAZER

Joanna Harper is racing to reveal how a gender
transition alters an athlete’s physiology and performance

By Katherine Korneli, in Portland, Oregon, and Phoenix

PHOTO: BETH NAKAMURA
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Joanna Harper’s
personal journey
and love of running
have shaped her
research interests.

oanna Harper swallowed a few pills
in late August 2004, a day after run-
ning in the Hood to Coast relay race
between Oregon’s highest moun-
tain and the Pacific Ocean. They
delivered a small dose of estrogen
and a testosterone blocker and set
in motion changes that Harper, who
was designated male at birth and
raised as a boy, had imagined since child-
hood. Harper’s timing was deliberate—the
4/7-year-old nationally ranked runner wanted
one more race before disrupting her hor-
mones because she knew she’d never run as
fast again.

The testosterone that courses through a
man’s body after puberty triggers and main-
tains a slew of physical changes: Men, whose
levels of the hormone are usually some 10 to
15 times those of women, typically have larger
muscles, denser bones, and higher frac-
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tions of lean body mass than women. That
hormone-fueled transformation confers cer-
tain athletic advantages, and men on average
run faster, lift more weight, and throw harder
and farther than women. Sporting events are
therefore usually split into male and female
categories to ensure fair competition. But
this division of the sexes, which has existed
for as long as women have competed as ath-
letes, forces an important question: Who, at
least from an athletic standpoint, is female?

Many people believe transgender women
such as Harper have athletic advantages over
non-transgender women—sometimes called
cisgender women—because of their previous
exposure to male levels of testosterone. But
Harper, a medical physicist at a large medi-
cal center in Portland, Oregon, has been chal-
lenging that assumption with data. In 2015,
she published the first study of transgender
athletes’ performances, finding that trans-
gender women who received treatment to
lower their testosterone levels did no better
in a variety of races against female peers than
they had previously done against male run-
ners. Although Harper’s study included only
a few transgender women, Eric Vilain of The
George Washington University in Washing-
ton, D.C., a geneticist who specializes in gen-
der-based biology, calls it “groundbreaking.”

That work helped make Harper an unpaid
adviser for sporting bodies, such as the Inter-
national Olympic Committee (IOC), that are
wrestling with transgender issues and other
matters of gender. Although Harper has just
a master’s degree, she is helping spearhead
several studies documenting how the physio-
logy and performance of transgender athletes
change as they make their transition.

Harper may not have the traditional pedi-
gree of a scientist, Vilain says, but “her ap-
proach is highly respected.” Harper has made
“very important” contributions to under-
standing gender and sports performance, an-
ticipating the debate that now swirls around
transgender and “intersex” athletes, adds
Stéphane Bermon, a sports physician and ex-
ercise physiologist at the Monaco Institute of
Sports Medicine and Surgery.

IN THE 1960s, elite female athletes had to
prove their sex by showing sporting officials
their genitalia. Those unpopular “nude pa-
rades” were soon replaced by chromosomal
tests, which had their own problems. Biology
does not always cleanly divide human beings
into two sexes. Some people, often described
as intersex, have unusual sex chromosome
arrangements or physical attributes such as
ambiguous genitalia. Others have an innate
sense of gender differing from the sex they
were assigned at birth; they often choose to
hormonally and/or surgically transition to
the gender they identify as.

Published by AAAS

Harper, who grew up in Parry Sound, a
small town about 250 kilometers north of
Toronto, Canada, is among the latter. The
oldest child of a high school teacher and a
nurse, Harper wore her mother’s and sister’s
clothing in private from a young age. Leav-
ing elementary school one day, Harper asked
a male friend an earnest question—had he
ever thought, as Harper had, about being
a girl? The boy recoiled. “It was clear from
the way that my friend looked at me that I
was never going to ask anybody that again,”
Harper says.

In high school, Harper threw herself into
sports. She was best known as a star basket-
ball player, averaging 18 points per game as
a guard on the boys’ team her senior year.
But Harper was short for the men’s college
game. Instead, she ran track and cross-
country as an undergraduate at what was
then the University of Western Ontario in
London, Canada, where she majored in phys-
ics. In 1982, Harper earned a master’s degree
in medical physics, training that prepared
her to determine radiation treatment dosages
for cancer patients. The career choice was, in
part, lifestyle-oriented. “It was clear medical
physicists were not putting in huge hours,
and it would allow me time to run,” she says.

Harper moved to Oregon a few years later
to be closer to family in the Canadian prov-
ince of British Columbia and to take a job
in Portland. But her gender dysphoria al-
ways lurked. By 2004, “I was very close to a
mental breakdown,” she says. She started to
see a therapist, who asked her to list what
she’d lose if she transitioned genders. Near
the top of that list was competitive sports—
transgender athletes had no official opportu-
nities to compete at the time.

Barely 3 months later, in May 2004, IOC
announced a landmark ruling: Transgender
athletes could participate in the Olympics.
Strict stipulations were in effect for trans-
gender women competing in women’s
events—they needed sex reassignment sur-
gery, legal recognition of their gender by
“the appropriate official authorities,” and at
least 2 years of verifiable hormone replace-
ment therapy—but it was “a light at the end
of the tunnel” for Harper. She wasn’t an
Olympic-level athlete, but she believed that
change would trickle down to other sports
organizations and she would be able to
compete again.

Harper started hormone replacement
therapy in August 2004. Spironolactone, a
testosterone blocker and diuretic, flushed
the testosterone her body was producing,
and estradiol, a form of estrogen, began to
make her form more typically feminine. In
just a few weeks, Harper noticed changes
such as breast tenderness and a decrease in
body hair. The transition was a “very, very,
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very difficult time,” Harper says. She lost most
of her male friends, and her mother—her
only living immediate family member—was
not supportive. “When it became clear that I
was going to go through with my transition,
my mother said she never wanted to see me
again,” Harper recalls. Barbara Harper, who
died in 2013, eventually relented, in a way.
“When 1 visited, she didn’t tell anyone who
I was” “This is Joanna,” was all her mother
would say.

Today, the 61-year-old with collarbone-
length red hair describes herself as a scien-
tist, an athlete, and a transgender person—in
that order. But being transgender can some-
times overshadow everything else. “We joke
in the transgender world that if Hitler had
been transgender, he would be described as
‘that transgender dictator’ That’s the cat-
egory that everybody wants to put you in.”

IN 1976, RENEE RICHARDS entered a New
Jersey professional tennis tournament.
Richards, who had enrolled at Yale Uni-
versity as Richard Raskind and captained
its men’s tennis team before undergoing
sex reassignment surgery, was met with
open hostility—more than 20 female play-
ers boycotted the competition in protest
of her perceived advantages. Indeed, some
physical attributes such as hand size and
height—like Richards’s tall frame—remain
largely unchanged after hormone therapy,
Harper says.

Many people expect other physical ad-
vantages to linger, too. Men generally have
blood with higher oxygen-carrying capacity
because testosterone stimulates bone mar-
row to produce more red blood cells, says
Siddhartha Angadi, a cardiovascular physio-
logist at Arizona State University in Phoe-
nix. Male bodies are also generally leaner,
and carry less body fat—“an obvious benefit
when it comes to athletic performance,”
Angadi says.

Some people therefore insist that trans-
gender women and many intersex athletes
competing in women’s events will always
have an unfair edge. (Little controversy ex-
ists over transgender men in sports, as many
expect them to be at a disadvantage.) Others
believe athletes should be able to compete
in their self-identified gender without regu-
lations. Harper wants to address the ques-
tion with data. “You have to go to science.”

Before her own transition in 2004,
Harper expected that her 10,000-meter race
time might increase by “a minute or two”
as her testosterone level dropped and she
slowed. But in less than a year, Harper was
running a full 5 minutes slower than her
personal best. “It just blew me away, and it
very much piqued my interest as a scientist.”

In 2005, Harper realized her experience
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wasn’t unique after reading an article in
Runner’s World about another transgender
female runner who had also become signifi-
cantly slower. But when Harper searched
for studies about the physiology of transi-
tioning, she found none. So on nights and
weekends, she began to moonlight on a re-
search project.

Harper searched for transgender female
distance runners willing to share race times
from before and after their transitions. The
transgender population, even now, tends to
be “small and secretive,” Harper says, and it
took 7 years of contacting athletes through

Different, but same

A study of transgender women found their race times
slowed after transitioning, but their age grades, which
compare people to the best runners of the same sex
and age, hardly changed, suggesting they have no
advantage over non-transgender women.

Half-marathon
race times

Male Female

Age grade
difference
+0.9
— +4.8

-0.3
=25

-3.0

+2.0

Yahoo and Facebook groups to collect data
from eight runners. All the women had under-
gone hormone therapy to bring their tes-
tosterone levels in line with typical female
levels. In Harper’s study, titled simply “Race
Times for Transgender Athletes” and pub-
lished in 2015 in the little-known Journal of
Sporting Cultures and Identities, she showed
that all but one person ran substantially
slower after transitioning.

Harper also calculated each subject’s age
grade, a common metric in track and field
and distance running that reflects an ath-
lete’s performance compared with the fast-
est known time by someone of the same age

Published by AAAS

and sex. Harper showed that the athletes’
age grades before and after hormone ther-
apy remained nearly the same. That is, the
women were as competitive with their age-
and sex-matched peers as they had been
when competing against men. They weren’t,
in other words, likely to dominate women’s
races. “No one had previously looked at ac-
tual performance of transgender athletes
pre- and posttransition,” Vilain says.

Harper has since shown similar results
for a transgender rower, a cyclist, and a
sprinter. Together, the findings make a case
that previous exposure to male levels of
testosterone does not confer an enduring
athletic advantage.

In 2015, IOC invited Harper to attend
its Consensus Meeting on Sex Reassign-
ment and Hyperandrogenism held in Lau-
sanne, Switzerland. After 3 days, the panel
of scientists and physicians converged on
revised rules for transgender competitors,
including at least 1 year of hormone re-
placement therapy for female competitors,
rather than the 2 years previously required.
That change was a nod to Harper’s personal
transition experience and to research pub-
lished in 2004 in the European Journal of
Endocrinology showing that the testoster-
one levels—and therefore performance—
of 19 transgender women stabilized after
12 months of hormone therapy. The revised
10C policy also lifted the requirement for
sex reassignment surgery. That decision
was a long time coming, Harper says. “What
your genitals are doesn’t make a difference.”

Less settled, however, is the debate about
the appropriate upper limit of women’s
testosterone levels in elite athletic compe-
tition. The current IOC policy dictates that
transgender women must have a testoster-
one level less than 10 nanomoles per liter,
roughly the low end of typical male values.
But because more than 99% of women have
testosterone levels less than 3 nanomoles
per liter, some researchers have suggested
that limit is too high. Harper is among
them. “If youre competing in the women’s
division, you should do so with women’s
hormone levels,” she says. “I understand
just how much difference they make.”

South African runner Caster Semenya,
who has always competed in women’s races
and won Olympic gold in Rio de Janeiro,
Brazil, in 2016, recently refocused atten-
tion on the testosterone issue. In 20009,
the International Association of Athlet-
ics Federations (IAAF)—the Stockholm-
based, world-governing body for track and
field—controversially required her to take a
sex-verification test after she breezed past
competitors in the 800-meter race at the
IAAF World Championships. The results,
leaked during the competition, allegedly
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revealed that Semenya was intersex and
had three times the testosterone of a typi-
cal woman. Neither she nor IAAF has ever
confirmed that publicly, however.

In April, TAAF issued a policy that many
groups—including Athletics South Africa,
the country’s athletics federation—view
as targeting Semenya. It applies to women
competing in certain track and field events,
including those that Semenya excels at, who
have specific intersex conditions in which
their bodies produce and are sensitive to
higher levels of testosterone. Drawing on
performance and hormone data from an
IAAF-sponsored study of athletes compet-
ing at its recent World Championships,
which was published last year in the British
Journal of Sports Medicine, the policy re-
quires testosterone levels below
5 nanomoles per liter, half the
previous IAAF threshold. The
goal is “leveling the playing field
to ensure fair and meaningful
competition,” IAAF President
Sebastian Coe said in a statement.

In June, Semenya called that
policy discriminatory and said
she would challenge it at the
Court of Arbitration for Sport.
“I just want to run naturally,
the way I was born,” the 27-year-
old told media. “I am a woman
and I am fast.” And earlier this
month, three researchers who
analyzed a subset of data from
the 2017 study claimed to have
found “significant problems
and anomalies” and called for
its retraction. IAAF updated the
paper, but told The New York
Times, which first reported the
flap, that “the conclusions re-
main the same.”

More controversy may be on
the way: Within the next few
months, IAAF is expected to is-
sue updated testosterone-based regulations
for transgender women as well. IOC also
plans to announce new testosterone limits
for athletes in women’s events, which will
be in effect for the 2020 Summer Olympics
in Tokyo.

TO GET A CLEARER PICTURE of how changing
hormone levels affect an athlete’s body,
Harper and others want to collect data from
people during their transitions. “It’s impor-
tant to know more about lean body mass;
hemoglobin concentration; and psycho-
logical, endocrine, and metabolic changes
during transition,” says Bermon, who is also
a scientific consultant for IAAF.

Harper recruited the athletes for the first
such studies. One focuses on a 28-year-old

SCIENCE sciencemag.org

distance runner named Lauren. (The athletes
undergoing testing requested that only their
first names be used in this story.) Roughly
once a month, Lauren makes the 45-minute
drive from her home in Queen Creek, Ari-
zona, to downtown Phoenix to undergo a bat-
tery of tests in Angadi’s lab.

He and his team have been measur-
ing, among other things, the elasticity of
Lauren’s arteries, her bone density and dis-
tribution of fat, and how the myocardial
fibers of her heart twist and untwist with
each beat. After she started estrogen in-
jections last fall, Lauren’s blood pressure
dropped by about 10 points and her body fat
increased, Angadi says. Those changes are
small, he cautions, and more measurements
are needed. Another year of data may reveal

Caster Semenya'’s impressive victories in women'’s races have ignited discussions
on testosterone limits in athletes.

a decline in bone density. “Bone is a really
slow-turnover organ,” he says.

During her visit in April, Lauren pulled
on a bright blue mask that covered her
nose and mouth, and Andrew D’Lugos,
an exercise physiologist, had her start to
run on a treadmill. “Way to go, Lauren!”
“Enjoy the flat!” and “Looking good!” he
and other scientists called out. D’Lugos
cranked the treadmill up to 13, then 14 Kilo-
meters per hour. A large screen displayed
Lauren’s heart rate and oxygen consumption,
new points popping up every 15 seconds.
D’Lugos gradually increased the treadmill’s
incline, effectively forcing Lauren to run up
an ever-steeper hill at her marathon pace.
When at last she could go no farther, she
pushed down on the treadmill’s side railings,
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lifting her thin frame above the spinning
black belt, her head bent in exhaustion.

Within 6 weeks after she started estrogen
injections, Lauren’s peak oxygen consump-
tion rate—a measure of fitness—fell by 17%,
the researchers reported at the American
College of Sports Medicine’s meeting in
Minneapolis, Minnesota, in June. “She lost
a fair bit of performance really quickly,’
Angadi says. But Lauren’s fitness probably
hasn’t stabilized yet, he notes, because she
only recently started to take a testosterone
blocker. Angadi’s team will test Lauren into
2019, when she runs the Boston Marathon.
Charissa, a triathlete living in Colorado who
is taking part in a similar study, lost roughly
15% of her aerobic capacity in 9 months
since beginning hormone therapy, Harper
reported in March at a British
Association of Sport and Exer-
cise Medicine conference held in
Doncaster, UK.

There, Harper announced that
she and Yannis Pitsiladis—an
exercise physiologist at the Uni-
versity of Brighton in the United
Kingdom best known for his so-
far futile efforts to train a man
to run a marathon in less than
2 hours—plan to monitor roughly
20 men and 20 women as they
transition. The largest study of its
kind, it will recruit subjects from
a London-based gender clinic and
enlist the expertise of endocri-
nologists, muscle physiologists,
and mental health professionals,
among others. The undertaking
will be enormous, Harper ad-
mits. “We’re going to need help,”
she told the Doncaster audience.
Pending research funding from
the UK. government, the study
will begin in 2019.

Harper still has her dayjob, and
she’s writing a book about gender
variance in sports. Fortunately, a refuge from
all the demands on her time—and the con-
troversies that come with her research—is
just a block and a half from her front door.
Several times a week, Harper turns left from
her house toward Mount Tabor Park, one of
Portland’s largest. There, she runs 95 Kilo-
meters a week, often with friends, on trails
that weave among 100-year-old cedar, spruce,
and redwood trees. Just like the paths that
sometimes open up to reveal fleeting views
of Mount Hood in the distance, Harper’s life
has had its share of twists and turns. But she
doesn’t regret the decision she made 14 years
ago. “I became a much happier person.”

Katherine Kornei is a science journalist
in Portland, Oregon.
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Reducing uncertainties in climate models

Implementing accurate calculations of radiative forcing can improve climate projections

By Brian J. Soden', William D. Collins>3,
Daniel R. Feldman?

adiative forcing is a fundamental
quantity for understanding both an-
thropogenic and natural changes in
climate. It measures the extent to
which human activities [such as the
emission of carbon dioxide (CO,), see
the image] and natural events (such as volca-
nic eruptions) perturb the flow of energy into
and out of the climate system. This perturba-
tion initiates all other changes of the climate
in response to external forcings. Inconsisten-
cies in the calculation of radiative forcing by
CO, introduce uncertainties in model projec-
tions of climate change, a problem that has
persisted for more than two decades. The

IRosenstiel School of Marine and Atmospheric Science,
University of Miami, Miami, FL 33149, USA. *Earth and
Environmental Sciences Area, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720, USA. *Department of Earth
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explicit calculation of radiative forcing and
a careful vetting of radiative transfer param-
eterizations provide a straightforward means
to substantially reduce these uncertainties
and improve the projections.

CO, is the main forcing agent in both
20th- and 21st-century emission scenarios
(I). Twenty-five years ago, Cess et al. pro-
vided the first comprehensive assessment
of the calculation of radiative forcing by CO,
in global climate models (GCMs) (2). They
found that when CO, was doubled, the radia-
tive forcing differed substantially among 15
different GCMs, ranging from ~3.3 to 4.7 W/
m? (see the graph; see the supplementary ma-
terials for further details). This spread mainly
arose from intermodel differences in the pa-
rameterization of infrared absorption by CO,.
Other sources of differences, such as the pa-
rameterization of overlapping absorption by
water vapor or differences in the cloud distri-
butions, were shown to be small.

Thirteen years later, Collins et al. con-
ducted a more extensive intercomparison of
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radiative forcing, using a newer generation
of more than 20 different GCMs (3). They
found a similar range in radiative forcing at
the top of the atmosphere for a doubling of
CO, (see the graph), which again was largely
due to spread in the infrared component of
CO, absorption. The authors also compared
the radiative forcing computed using line-
by-line (LBL) calculations; the latter solve
the equation of radiative transfer for each
absorption line individually, rather than pa-
rameterizing their absorption over spectrally
integrated bands. The forcing calculations
between several different LBL models were
in much better agreement (see the graph).
The LBL calculations have also been exten-
sively validated by using both laboratory
and field measurements (4), and the spectro-
scopic foundation for this radiative forcing is
quite robust (5). The agreement among LBL
models forms the basis for the narrow un-
certainty range for CO, forcing noted in the
Intergovernmental Panel on Climate Change
(IPCC) reports (I). However, LBL calculations
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As noted by Cess et al., the impact of this
inconsistency in the calculations of radiative
forcing on estimates of climate sensitivity “is
nearly half of the often quoted range of uncer-
tainty of 1.5° to 4.5°C.” Thus, even if we could
make all other aspects of the models per-
fect, the spread in projections of CO,-
induced climate change would only be
reduced by 50% because of the remain-

oughly vetted against LBL calculations would
significantly reduce the spread in model pro-
jections. It would also reduce discrepancies in
the parameterization of other key absorbers,
such as water vapor, that also affect model
calculations of climate sensitivity. Last, it

Reducing the uncertainty

ing differences in radiative forcing.
The contributions of erroneous CO,
forcing to the persistent spread in

Radiative forcing uncertainty in GCMs has remained
high over the past 25 years. LBL calculations show that
this uncertainty can be substantially reduced.

GRAPHIC: ADAPTED BY N. CARY/SCIENCE

A snapshot from a model simulation
of CO, traveling through Earth’s
atmosphere over the course of a year.

are computationally expensive, and param-
eterized models of radiative transfer must be
used in GCMs. Unfortunately, substantial dif-
ferences still exist in these parameterizations.
Chung and Soden found that the spread in
CO, forcing from the most recent generation
of GCMs remains largely unchanged com-
pared with that documented in previous gen-
erations (see the graph) (6).

The precise measure of radiative forcing
differs slightly between these three studies
(7). As a result, their absolute values of ra-
diative forcing are not directly comparable.
However, the relative spread in radiative forc-
ing between models is meaningful and has
shown little change compared with the true
uncertainty in radiative transfer, as repre-
sented by the spread in the LBL calculations.

This lack of progress over the past 25 years
is disconcerting. The spread in model calcu-
lations of CO, forcing does not represent an
uncertainty in radiative transfer theory, but
rather the failure to implement that theory
consistently in radiative transfer parameter-
izations. This introduces unnecessary noise
into the model experiments that is difficult to
remove. Although the users of these models
are largely unaware of this ongoing problem,
the unsatisfactory implementation of CO,
forcing propagates needlessly onto efforts to
reduce uncertainty in projections of future
climate change.

SCIENCE sciencemag.org

climate projections undermines the
utility of these models to answer fun-
damental questions of central societal
importance. These errors add unneces-
sary confusion to the development of
scientifically rigorous targets for atmo-
spheric CO, concentrations—and there-
fore, emissions reductions—that are
required to limit global temperature
change. Constraining global warming
to less than 2°C, as set by the Paris Cli-
mate Agreement, requires a limit to be
set on the maximum globally averaged
CO, concentration compatible with
that constraint. This limit should be
established by a multimodel ensemble,
but the corresponding range of allow-
able CO, concentrations is unnecessar-
ily large because the ensemble does not
consistently incorporate known and
established physics that relate rising CO, con-
centrations to radiative forcing.

Although some efforts are under way to
better document these differences (8), there
are two immediate solutions that could help.
First, it is essential that radiative forcing be
routinely computed and reported for models
that participate in Coupled Model Intercom-
parison Projects (CMIP), a series of coordi-
nated experiments performed in support of
the IPCC assessments. For each experiment,
model simulations are performed by using
matching emission scenarios, with the intent
of imposing identical forcings. However, ra-
diative forcing is rarely reported explicitly by
these models. Requiring models to do so for
all emission scenarios would help to ensure
transparency between the radiative forcing
experienced by the models and the climate re-
sponse that results. Cess et al. made a similar
recommendation 25 years ago (2). The adop-
tion of this recommendation is long overdue.

Second, the diversity of radiative transfer
parameterizations used in GCMs should be
reduced. Maintaining diversity in models is
valuable for areas where there is substan-
tial uncertainty in the underlying physics.
For most aspects of radiative transfer of rel-
evance to climate change, this is not the case.
An effort to consolidate the number of radia-
tive transfer parameterizations used and to
implement only those that have been thor-

2xCO, radiative forcing (W/m2)
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would enable those researchers who focus on
less well-known forcing agents and their radi-
ative interactions to have a readily available,
radiometrically accurate understanding of
the direct radiative influence of the quantities
they are measuring, and the processes they
are studying, on Earth’s climate system.
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NEUROSCIENCE

Neurotechnology to address big questions

Profiling of single neurons in tissue allows structure and function linkage in brain circuits

By Thomas Knopfel

motions, cognition, and conscious-

ness emerge with the processing of

neuronal information provided by

memory readouts and senses. How

this actually works seemed for a long

time to be a question too big to ask.
Advances in neuroscience have always been
driven by methodological inventions, and
current efforts to develop neurotechnolo-
gies are motivated by experimental strate-
gies, including analytical dissection (that is,
inverse engineering), large-scale interroga-
tion, and synthetic reconstruction of the
mammalian cerebral cortex (which is im-
portant for higher cognitive
functions) and connected
brain structures (I, 2). As
part of this neurotechnolog-
ical endeavor, mapping the
transcriptome of neurons
with single-cell resolution
and with known three-di-
mensional tissue localiza-
tion has been a long-sought
enabling technology (3). On
page 380 of this issue, Wang
et al. (4) present the tech-
nology and workflow to ac-
cess transcriptional states of
more than 100 genes from
up to 30,000 cells in a cubic
millimeter of cortical tissue.
This advanced methodology
will facilitate studies that
improve our understand-
ing of the neuronal hard-
ware and, when combined 03
with other emerging neuro-

Mouse visual
cortex

Mouse brain

technologies, will enable big ~ 8 wm—
questions in neuroscience  Dissected
to be addressed. sample

Wang et al. integrated
knowledge of mouse cortex-specific gene ex-
pression, targeted signal amplification, in situ
transcriptomics, and hydrogel-tissue chemis-
try (5) into a workflow for single-cell resolu-
tion spatial transcriptomics, called STARmap
(spatially resolved transcript amplicon read-
out mapping). Targeted signal amplification
was achieved by generating circular comple-
mentary DNAs (cDNAs) after recognition of a
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Tissue collection

In situ DNA sequencing

\f) 2

specific transcript [messenger RNA (mRNA)]
by a probe from a library of gene-specific
primers. These cDNAs were then rolling-cir-
cle-amplified so as to generate a DNA nano-
ball (amplicon) that contains multiple copies
of the cDNA templates (6). Importantly, this
process takes place in structurally conserved
brain tissue. Formation of the circular cDNAs
included a barcode as a distinct identifier,
which was decoded with a newly designed
error-reduced in situ sequencing technology
to identify specific mRNAs (5).

Since the development of techniques that
involve mRNA harvesting from single cells
for sequencing—single-cell reverse transcrip-
tion-polymerase chain reaction (scRT-PCR)—

Profiling brain tissue
Wang et al. provide a method to determine the activity of marker genes within a sample of
brain tissue. This allows identification and mapping, for example, of subtypes of excitatory
or inhibitory neurons in the cortical layers, corpus callosum, and hippocampus.

,,,,,,,,,,,,,,,,,,,,

Spatial distribution of distinct excitatory neurons

Hippocampus (HPC) Corpus callosum (cc) Cortical layers

lar diversity and brain state-dependent tran-
scription. STARmap can provide information
about the transcriptome (up to 10,000 genes)
of up to 30,000 cells in a cortical volume pre-
pared from an individual mouse brain.
Hydrogel-tissue chemistry (5) was needed
to fix the amplicons in the cubic millimeter
tissue samples. Classification of cortical cell
type based on anatomical location, gene ex-
pression pattern, and functional properties
has been performed in the past by accumulat-
ing data across many experiments and many
specimens (7). This knowledge served the
authors to identify a set of 160 target genes,
including 112 putative cell-type marker genes
and 48 genes that are expressed in response
to neuronal activity pat-
terns. It is not known which
of the selected marker genes
are most indicative for spe-
cific cell types and which of
the activity-regulated genes
are recruited in which cell
types and under specific pat-
terns of neuronal activity.
Therefore, Wang et al. used
this set of target genes both to
benchmark their methodol-

V1 cortex
dissection

ogy and workflow but also to
contribute to efforts aimed at
detecting and classifying cell
types and corresponding tis-
sue-organization principles
in the neocortex of adult
mouse brain (see the figure).

HPClcc| L6 | L5 | L4 L2/3 | L A weakness of STARmap
R B is the lack of direct linking
Py L » . .
a . O of transcriptomes with cel-
'] . P NS > R 5 « lular protein expression and
[ L] . .
g o * . function. However, because

transcriptomics has been instrumental to
classify the many functionally distinct cell
types found in the cerebral cortex (7). scRT-
PCR in combination with electrophysiologi-
cal recordings has the advantage to directly
link specific gene expression patterns and
cellular functional characteristics (includ-
ing information on how specific neurons
integrate synaptic information and on their
synaptic connectivity) but is not practical for
more than 100 cells (7). Scaling this approach
is required for a systematic analysis of cellu-
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Spatial distribution of distinct inhibitory neurons

several of the chosen marker
genes encode proteins—in-
cluding ion channels, recep-
tors, and neurotransmitter-
related enzymes that indicate functional
properties—an indirect link between tran-
scriptomics and function is already provided.
In future implementations, a larger number
of genes indicating functional properties may
replace marker genes with low cell type-
specificity to increase the possibilities for
functional inference.

The high data content from a single tissue
specimen provided by STARmap allows for
correlation of gene activation patterns within
an individual’s specific brain state at the time

sciencemag.org SCIENCE

GRAPHIC: C. BICKEL/SCIENCE

8T0Z ‘9z AInC uo /610 Bewaduslos aoualos//:dny woly papeojumod


http://science.sciencemag.org/

GRAPHIC: KELLIE HOLOSKI/SCIENCE

of tissue preparation. As a proof of principle,
the authors compared the transcriptome
from two cohorts of mice: The first was ex-
posed for 1 hour to light after 4 days of hous-
ing in darkness, whereas the second cohort
was housed continuously in darkness before
tissue collection. STARmap analysis con-
firmed and refined our knowledge about the
recruitment of activity-dependent genes and
their enhancer RNAs (which control tran-
scription of their target genes). In the future,
a larger range of physiological brain states as
well as rodent models of brain diseases, and
even human tissue, may be analyzed this way.

The STARmap data are a valuable source
for data mining to identify patterns and
higher-level structural and functional prin-
ciples, many of which are likely still hid-
den behind the complex nature of cortical
circuits and their function. The first appli-
cations of STARmap already revealed an in-
triguing finding: a short-range self-clustering
organization of inhibitory neuron subtypes
(8). These clusters may just be relicts of cell
differentiation and cortical morphogen-
esis with little functional consequences, but
more exciting are the possible functional
implications. Among these is the increased
opportunity of these inhibitory neuron sub-
types to form direct electrical connections
with cell bodies and the proximal processes
of neighboring cells. These gap junctions are
involved in the generation of high-frequency
rhythmic circuit activities (8).

STARmap is well suited for further inter-
facing with other recent technologies that
have been developed to address the big ques-
tions on brain functions. The technology clos-
est in reach for combination with STARmap
is functional in vivo optical imaging with ac-
tivity indicators (9). This combination could
be tremendously helpful for directly linking
gene expression patterns with cell activity
patterns and brain circuit functions. Another
exciting possible application of STARmap
could be the mapping of trans-synaptically
distributed (Z0) and activity-dependent ex-
pressed barcoded optical activity reporters.
This combination of cutting-edge technolo-
gies would allow efficient linking of cellular
activity with connectivity, cell-type classifica-
tion, and proteomic state.
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GENE EXPRESSION

Dynamic condensates
activate transcription

Transcriptional components exhibit
transient phase separation to drive gene activation

By Aaron J. Plys'? and Robert E. Kingston'?

very aspect of human function, from
proper cell differentiation and develop-
ment to normal cellular maintenance,
requires properly timed activation of
the necessary genes. This requires tran-
scription of genomic DNA into messen-
ger RNA (mRNA), accomplished by RNA
polymerase II (RNA Pol II), which initiates
transcription at gene promoters. This highly
regulated process requires hundreds of pro-

tories,” where components are organized and
ready to act on a gene that goes to the cellular
location of the factory (I). On pages 378, 379,
and 412 of this issue, Chong et al. (2), Sabari
et al. (3), and Cho et al. (4), respectively, argue
that special protein domains, which interact
with each other to form fleeting or more per-
sistent interactions, form biomolecular con-
densates that concentrate the transcription
machinery. Some of these condensates might
even form droplets, generating a liquid phase
separated from the rest of the nucleus. Phase

Dynamic transcription machinery clustering during gene activation
Transcription factors (TFs) and coactivators condense into high-concentration clusters in the nucleus.
Condensation is mediated by low-complexity disordered regions (LCDRs) in these proteins. These clusters
can incorporate RNA Pol Il through transient interactions to efficiently activate gene transcription.

Super- Gene
enhancer promoter

TFLCDRor
coactivator LCDR

Super-enhancer clustering of
Mediator or BRD4 and transient
interaction with RNA Pol Il

Sequence-specific transcription
factors can cluster at promoters
and transiently recruit RNA Pol II.

Transcription factors ™
(FUS, EWS, and TAF15)

teins that must go to the promoter in a coor-
dinated manner. Although many of these
proteins are already organized into large and
stable protein complexes, and so travel as a
group, the process still requires coordination
of many individual proteins and preformed
complexes so that they are all in the same
place on genomic DNA at the same time. This
problem has been appreciated for years and
has led to models such as “transcription fac-
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separation is a phenomenon familiar to any-
one who has made a salad dressing: The oil
and vinegar exist as two separated liquids.
Phase separation in cells creates membrane-
less organelles that, in this case, provide the
organization necessary for productive tran-
scription (5).

Several distinct types of proteins are
needed for transcriptional activation. Gene-
specific transcription factors (TFs) bind to
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specific regions of the genome. They then
interact with large complexes needed for the
transcription process, including a key com-
plex called Mediator, which, in turn, interacts
with RNA Pol II to increase transcription
from a promoter (6). Enhancer sequences,
which are physically removed from the pro-
moter in the genome, also increase transcrip-
tion and can be bound by other specialized
proteins (7). Regions of proteins involved in
these processes were analyzed in the three
studies, with the notable finding that several
different transcriptional regulatory com-
ponents each contain protein domains that
form condensates in cells. These condensates
increase the effective concentration of com-
ponents needed for transcriptional activation
and allow organization of those components
via numerous cooperative interactions within
the condensates, thus provid-
ing an attractive mechanism
for combining factors in a

These puncta are formed via interactions
between domains that are called either low-
complexity domains (LCDs) or intrinsically
disordered regions (IDRs). These domains
have limited types of amino acids and are
characterized as disordered according to
their predicted secondary structure (11). To
unify the terminology, we refer to these do-
mains as low-complexity disordered regions
(LCDRs). The current hypothesis is that pro-
teins with these domains form networks,
based, in part, on hydrophobic interactions,
that are individually short lived and that al-
low for dynamic interplay that can create
liquid-like properties (12). All three studies
offer support for this hypothesis by showing
that 1,6-hexanediol, which impairs hydropho-
bic interactions, can disrupt the structures.
They also all used fluorescence recovery af-
ter photobleaching (FRAP)
to show that molecules move
in and out of these puncta

timely fashion to generate “speClal Pr otein rapidly, indicating that the
transcription. domains ... fom components that make up

The visualization of these . the puncta are dynamic and
condensates required the use blomolecular not solid aggregates. Finally,
of imaging technologies to Condensates that Sabari et al. and Cho et al.
characterize the behavior of show, with live-cell movies,
individual protein domains, concentrate that the puncta can merge
which was compared to the the transcription together, just as water drop-
behavior of entire complexes. . 9 lets will form a bigger droplet
The domains were fused to maChlnel‘y. when they interact on a glass

fluorescent proteins to allow

visualization with lattice light-sheet imaging
(8). This allowed sufficient spatial and tem-
poral resolution to see condensates, which
display as puncta of fluorescence, formed by
these domains in living cells and to charac-
terize the dynamics of these condensates (see
the figure). Domains of the TFs, FET [com-
posed of FUS, EWS, and TAF15 (TATA-box
binding protein-associated factor 15)] and
SP1 (specificity protein 1) form puncta. Thus,
these protein domains cluster with each
other instead of freely diffusing separately
from each other. Similarly, the enhancer
binding factors BRD4 (bromodomain-con-
taining protein 4) and MED1 (mediator of
RNA Pol II transcription subunit 1) were seen
in discrete puncta. MED1 is one of more than
20 proteins that comprise the Mediator com-
plex (9), and the entire Mediator complex can
also be seen as puncta. RNA Pol II, itself com-
posed of 12 subunits, also forms clearly delin-
eated puncta. There is evidence for multiple
molecules important for transcription being
incorporated into the same phase-separated
condensates (10). Chong et al. and Cho et al.
found that RNA Pol II colocalized with TFs
or Mediator puncta in live cells, respectively.
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surface. Thus,
have liquid-like characteristics.
The studies explore the role for specific
protein sequences in self-association. In
Chong et al., examination of the LCDRs of
TFs shows that there is specificity in the
interactions. Factors can self-associate (for
example, FET LCDRs), but certain inter-
actions between separate factors (for ex-
ample, FET LCDRs and the SP1 LCDR) do
not occur. This might be due to differences
in the sequences of the LCDRs. Mutational
analysis of the EWS LCDR demonstrated
that 29 tyrosine residues were required for
LCDR interactions. Similarly, Sabari et al.
found that the MED1 LCDR sequence was
dominated by serine residues, which were
required for self-association and liquid
droplet formation in vitro.
The extent to which phase separation is
a necessary element of transcriptional activa-
tion is called into question by Chong et al.,
who found that TF LCDR self-assembly is
transient at physiological concentration, in
the range of seconds, and thus not consistent
with phase separation into isolated droplets.
This raises the question of when phase sepa-
ration is an important part of the mechanism
as opposed to a side effect of more transient
interactions. Transient interactions between
LCDRs might play a critical role in organizing
components without a need for a stably phase-

the puncta
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separated state. One possibility is that some
interactions need only be transient, whereas
others require greater stability. Perhaps the
“potency” of domains to phase-separate (that
is, the concentration needed to achieve phase
separation) varies depending on need. For
example, in Cho et al., Mediator and RNA Pol
IT both have properties consistent with be-
ing phase-separated at normal physiological
concentration. This is presumed to help the
two complexes interact, but the interaction
between the two complexes is transient. Ac-
tivation of transcription by necessity requires
that some interactions be transient: RNA Pol
II must initiate transcription and elongate
the transcript by interacting with different
complexes (13). The ability of the activa-
tion components to move onto the next
round of transcription, and thus switch
contacts to a new RNA Pol II, is likely to be
important for genes that are being rapidly
transcribed. Thus, in transcriptional acti-
vation, there are sound theoretical reasons
to have interactions that not only increase
effective local concentration (as transient
interactions between LCDRs would) but
that also allow those components to be in-
tegrated with, instead of separated from,
other nuclear components.

By contrast, in other regulatory settings,
phase separation might be helpful or even
necessary for appropriate regulatory func-
tions of transcription, for example, interac-
tions involved in stable repression (14, 15) or,
perhaps, long-range enhancer interactions.
The continued development of technologies
and experimental strategies to determine the
importance of phase separation will be an ex-
citing area to follow. Are these condensates
central to most nuclear functions and thus a
general regulatory mechanism with multiple
distinct specificities and temporal charac-
teristics? How much of nuclear function oc-
curs in phase-separated domains? Do long
noncoding RNAs, which are prevalent in the
nucleus, contribute to the potency of phase
separation and/or the organization of phase-
separated domains? When is phase separa-
tion essential to the processes that generate
the regulatory organization needed for life?
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CHEMISTRY

Hydrocarbon synthesis with vinyl cations

Catalytic generation of vinyl cations enables synthesis of functionalized hydrocarbons

By Sean H. Kennedy and
Douglas A. Klumpp

ydrocarbons—substances composed of
carbon and hydrogen—are central to
many industrial processes, including
fuel preparation, polymer manufac-
turing, and the synthesis of feedstock
chemicals (7). Many biosynthetic path-
ways also involve hydrocarbon reactions. For
example, geranyl, farnesyl, or geranylgeranyl
diphosphates are transformed into thousands
of different terpenoid natural products (2).
Hydrocarbons are key components of extra-
terrestrial atmospheres, nebulae, and other
regions of space (3). Reactions of simple
or polycyclic hydrocarbons were probably
among the prebiological conversions that led
to more complex molecular structures and
the emergence of life (4, 5). On page 381 of
this issue, Popov et al. (6) report a method for
catalyzing hydrocarbon reactions that have
been difficult to achieve with other methods.

Over the past century, great strides have
been made in understanding hydrocar-
bon chemistry and using hydrocarbons in
synthetic reactions. Nevertheless, carrying
out useful chemical transformations on
the least-reactive hydrocarbon substrates—
namely, the saturated alkanes and cycloal-
kanes—remains challenging. As a result,
there has been much effort to develop C-H
bond activation chemistry for hydrocar-
bons and hydrocarbon groups (7). These
compounds are relatively inert because of
their strong C-H bonds and the absence
of reactive frontier molecular orbitals. To
develop new methods of synthesis with
saturated hydrocarbons, chemists must
devise techniques for generating activated
reagents that can attack the strong C-C or
C-H bonds of these substrates. Popov et al.
accomplish this in their study of vinyl cat-
ions and their chemistry.

The authors show that use of a vinyl tri-
flate, triethylsilane, and a trityl salt initiator
leads to a catalytic reaction that converts al-
kanes and cycloalkanes into functionalized
products. For example, the vinyl triflate 1
derived from cyclohexanone reacts with cy-
cloheptane to provide the hydrocarbon 6 in
88% yield (see the figure). This remarkable
transformation is accomplished under very

Department of Chemistry, Northern lllinois University, DeKalb,
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mild conditions for a C-H functionaliza-
tion; it is complete in 2 hours at just 30°C.
A key part of the methodology is the use of
carborane, a weakly coordinating anion. As
an inert counter ion, the carborane helps
to stabilize highly electrophilic cationic in-
termediates—the silylium ion 2 and vinyl
cation 3—and enables the cations to exist as
persistent species in the solution. This allows
the authors to use the reactive vinyl cation
in difficult hydrocarbon synthetic reactions.
To demonstrate the synthetic utility of this
method, the authors use it to functionalize
n-alkanes, cycloalkanes, and arenes and to
prepare a steroid derivative.

Like a skilled trapeze artist swinging high
above a circus floor, the chemistry moves
beautifully through high-energy intermedi-
ates (see the figure). The reaction sequence
begins with an initiation step, in which the
trityl cation abstracts hydride from triethyl-
silane. This step produces the first high-en-
ergy intermediate, the silylium ion 2. Since
the first silylium ions were generated in the

1990s, it has become clear that these spe-
cies are very strong Lewis acids (8). As such,
the silylium ion coordinates to the triflate
leaving group, resulting in cleavage of the
C-0 bond. This step provides the second
high-energy intermediate, the vinyl cation
3. This intermediate inserts into the C-H
bond of cycloheptane to provide trivalent
carbocation intermediates 4 and 5. The fi-
nal step involves hydride transfer from tri-
ethylsilane to the carbocation 5, leading to
the hydrocarbon product 6 and regenerat-
ing the high-energy silylium ion 2.

When the authors investigated the key
C-C bond-forming reaction step in a mo-
lecular dynamics simulation, they found
that the C-H functionalization occurs
through a nonclassical ionic structure
(see the figure). Simulation of the reac-
tion of vinyl cation 8 and cyclohexane
suggests that the system proceeds from
an ambimodal transition-state structure
to the transient species 7, with a bridging
C-H-C structure. This is followed by C-C

Transforming saturated hydrocarbons
Use of a silylium catalyst leads to the formation of a reactive vinyl intermediate that facilitates the formation
of new hydrocarbon products. Et, ethyl; OTf, trifluoromethanesulfonate.

Vinyl triflate,
from cycloalkane

Silyliumion-a
powerful Lewis acid

Vinyl cation-a highly reactive
chemical intermediate

J oTf l
(I + [EL,Si]* [HCB,Cl, I
H

(JI[HCBHCIH]

Catalytic
cycle -
o e —Et,SiOTf H e
Cycloheptane—-an inert hydrocarbon *-O
C-H-C bridge C-C-C bridge
formation formation
+ +
(O] | A
@:H - S H
H @ H (8
Nonclassical transient ions in the transformation
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bond formation to give the transient spe-
cies 8, a structure with an unsymmetrical
C-C-C bridge and nonclassical ion char-
acter. Elegantly designed mechanistic ex-
periments with the vinyl triflates provide
support for the nonclassical structures seen
in the molecular dynamics simulations.

Nonclassical carbocation structures are
often characterized by three-atom two-
electron bonding patterns. Because these
types of structures deviate considerably
from the common valance bond model
(with  two-atom-two-electron bonding),
their existence and role in organic chem-
istry has been a matter of considerable
debate during the past 70 years. Strong
evidence for nonclassical carbocations
and related hypercoordinate carbon spe-
cies has been reported—including spectro-
scopic, chemical, and x-ray crystallography
evidence—and these structures are now
universally recognized as a viable part of
hydrocarbon chemistry (9, 10).

The existence of nonclassical carboca-
tions was once questioned by many in the

“Like a skilled trapeze artist
swinging high above a

circus floor, the chemistry
moves beautifully through
high-energy intermediates...”

chemical community, but it is now clear that
these types of structures have broad impor-
tance in the chemistry of hydrocarbons (9).
Nonclassical carbocation chemistry extends
all the way from enzyme active sites in
biosynthetic chemistry (1) to the catalytic
cracking reactors in the petroleum industry
(I). Popov et al’s study demonstrates that
a new generation of synthetic hydrocar-
bon reactions is also possible through the
involvement of vinyl cations and transient
nonclassical carbocation structures.
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TUMORIGENESIS

Inflamed T cells and
stroma drive gut tumors

Loss of a tumor suppressor in T cells and stromal cells
drives gastrointestinal polyp growth

By Pablo E. Hollstein and Reuben J. Shaw

nactivating somatic mutations causing

loss of function in the tumor suppres-

sor gene STKII (serine-threonine kinase

11), which encodes the protein LKB1

(liver kinase B1), frequently occur in

several sporadic cancers, notably lung,
pancreatic, and female reproductive tu-
mors. Additionally, inherited heterozygous
germline mutations in S7TKII cause Peutz-
Jeghers syndrome (PJS), a cancer predis-
position syndrome (7). A hallmark of PJS is
the growth of numerous benign gastroin-
testinal (GI) hamartomatous polyps and an
elevated risk of developing malignancies in
several organs (2). Studies in mouse models
of PJS have pointed to LKBI1 deficiency in
the stroma, not epithelium, as the contrib-
uting factor for the formation of the GI pol-
yps (3). Stroma consists of the fibroblasts,
smooth muscle, extracellular matrix, and
basement membrane that support epithe-
lial tissue. However, how LKBI1 deficiency
in stromal cells could trigger polyp forma-
tion was unclear. Two recent studies now
shed light on the mechanism of PJS polyp
formation. On page 406 of this issue, Pof-
fenberger et al. (4) find that loss of a sin-
gle allele of StkIl in T cells is sufficient to
drive the formation of GI polyps. Similarly,
a study by Ollila et al. (5) demonstrated that
heterozygous loss of StkIl in gastric stro-
mal cells was sufficient to drive GI polyp
formation. Transcriptional profiling in both
studies revealed an up-regulation of inflam-
matory cytokines involved in promoting the
expansion and overgrowth of both stroma
and normal GI epithelium. By finding that
inflammation in the stromal compartment
due to LKBI loss in T cells (4) or stromal
cells (5) drives polyp formation, these stud-
ies highlight how inflammatory signals can
profoundly alter the microenvironment and
fuel tumor formation.

GI polyps in PJS patients contain a mix-
ture of cell types, all of which have inher-
ited a heterozygous mutation in STK11, and
are characterized by a smooth muscle core,
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an expanded stromal compartment, and
hyperplastic epithelia (2). Poffenberger et
al. used mouse models in which one allele
of Stk11 could be conditionally deleted in
different cellular compartments to under-
stand which cells contribute to polyp for-
mation. They observed that heterozygous
deletion of Stk1l in GI epithelial cells did
not promote polyp formation. Unexpect-
edly, they instead found that heterozygous
loss of Stk1l1 in the hematopoietic compart-
ment was sufficient to drive growth of GI
polyps that were histologically indistin-
guishable from those in StkI1 heterozygous
mice, and which also resembled polyps
from PJS patients. Furthermore, they
found that whereas heterozygous loss of
Stk1l in B cells did not contribute to polyp
formation, heterozygous loss of StkII in T
cells was sufficient to promote intestinal
polyposis. Complementing these findings,
Ollila et al. showed that heterozygous loss
of Stk1l in gastric stromal cells was suffi-
cient to induce PJS-like polyps.

How does loss of LKBI1 lead to polyp
formation? LKB1 activity exerts pleiotro-
pic effects on cell polarity, growth, and
metabolism, including responses to cel-
lular energy stress that are mediated by
phosphorylating and hence controlling the
activation of adenosine monophosphate
(AMP)-dependent protein kinase (AMPK)
(I). AMPK negatively regulates the activ-
ity of mammalian target of rapamycin
complex 1 (mTORCI), a central regulator
of cell growth and proliferation (7). Conse-
quently, loss of either LKB1 expression or
AMPK activation results in up-regulation
of mTORCI signaling, which is thought to
contribute to tumor growth in many con-
texts, including PJS polyposis, and in spo-
radic tumors with LKB1 loss (I). Previous
studies found increased mTORCI signaling
in the epithelial compartment of PJS polyps
(6), and remarkably, Poffenberger et al. also
observed this event when LKB1 was only
deleted in T cells. Surprisingly, mice with
T cell-specific ablation of AMPK did not
develop polyps. Moreover, simultaneous
deletion of Stk1l and Mtor in T cells still
resulted in the development of GI polyps.
Together, these results suggest that AMPK

sciencemag.org SCIENCE

8T0Z ‘9z AInC uo /610 Bewaduslos aoualos//:dny woly papeojumod


http://science.sciencemag.org/

GRAPHIC: V. ALTOUNIAN/SCIENCE

and mTORCI1 in T cells are dispensable for
PJS polyp development in these models,
and that alternative LKB1-dependent sig-
naling pathways must be responsible for
polyp growth. Similarly, Ollila et al. report
that inactivation of AMPK in the GI stro-
mal compartment did not induce polyposis.

What signals from LKBIl-deficient T
cells or gastric stromal cells are sufficient
to drive polyp growth? Poffenberger et al.
found that heterozygous loss of StkI1l in T
cells induced the activation of CD4* and
CD8* T cells in mesenteric lymph nodes,
with pronounced infiltration of those T
cells, along with macrophages and neu-
trophils, into the polyp microenviron-
ment. Heterozygous expression of Stkil in
mice, or specifically in T cells (4) or stro-
mal cells (5), resulted in the secretion of
large amounts of inflammatory cytokines,
including interleukin-6 (IL-6) and IL-11,
which have previously been associated
with gastric tumor development (7). This
increased cytokine production was accom-
panied by hyperactivated JAK-STAT (Ja-
nus Kkinase-signal transducer
and activator of transcription)
signaling in the stromal com-
partment, which contributes
to inflammation and cancer
(8). Furthermore, treatment
with AZD1480, an inhibitor of
JAKs, quenched STAT3 activa-
tion in the stroma and signifi-
cantly reduced polyp growth in
Stk1I-heterozygous mice. Simi-
larly, Ollila et al. found that
activated JAK-STAT3 signaling
in stromal cells drives polyp
formation, and the JAK inhibi-
tor ruxolitinib (which is already
clinically approved for mye-
loproliferative diseases) has

Mesenteric
lymph node

that reduced expression of the AMPK fam-
ily members SIK1 (salt-inducible kinase 1),
MARK1 (MAP/microtubule affinity-regu-
lating kinase 1), or MARK4 could induce
production of IL-11 in fibroblasts, raising
the intriguing possibility that one or more
of these AMPK family members may me-
diate production of the proinflammatory
cytokine storm observed in human and
mouse PJS polyps.

The findings of Poffenberger et al. and
Ollila et al. constitute an important ex-
ample of how inflammation can be driven
by haploinsufficiency of tumor suppressor
genes involved in inherited familial cancer
syndromes. Similar to LKB1 deficiency in
PJS, heterozygous loss of other tumor sup-
pressors can drive benign tumor growth
containing mixed cell types, including epi-
thelial, stromal, and immune cell compo-
nents (10). Examples of heterozygous loss in
mixed-lineage tumors include loss of APC
(adenomatous polyposis coli) in familial
adenomatous polyposis, SMAD4 in familial
juvenile polyposis (FJP), PTEN (phospha-

Deregulation of the tumor

microenvironment in polyposis
Heterozygous loss of LKB1 expression in T cells or stromal cells is sufficient to
induce proinflammatory cytokines, including IL-6 and IL-11, which recruit neutrophils
and other inflammatory immune cells. This inflammatory microenvironment

drives JAK-STAT3 signaling in stromal and epithelial cells, concurrent with epithelial
mTORC1 activation, and is sufficient to induce polyp growth.
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tase and tensin homolog) in Cowden’s dis-
ease, TSC1 (tuberous sclerosis complex 1)
and TSC2 in tuberous sclerosis, VHL (von
Hippel-Lindau tumor suppressor) in von
Hippel-Lindau syndrome, and NF1 (neuro-
fibromatosis 1) in neurofibromatosis type
1. The involvement of immune cell compo-
nents in driving benign tumor formation as
demonstrated by Poffenberger et al. echoes
observations in mouse models of disor-
ders such as FJP, in which loss of SMAD4
in T cells up-regulates inflammatory cyto-
kines and results in gastrointestinal polyp
growth (11, 12), and in neurofibromatosis
type 1, in which NfI-heterozygous mast
cells (a type of inflammatory immune cell)
secrete proinflammatory cytokines into the
nerve microenvironment that are required
for and drive neurofibroma growth (13).
It will be very interesting to see whether
the involvement of a proinflammatory, de-
regulated immune system also contributes
to benign tumor growth in other familial
cancer syndromes besides PJS, FJP, and
neurofibromatosis type 1 (4, 5, 11-13) or
in sporadic solid tumors with
LKB1 loss (14, 15).

The findings of Poffenberger
et al. and Ollila et al. also sug-
gest that JAK inhibitors may
be potential new therapeutic
modalities for GI and other tu-
mors arising in PJS patients for
which there are few treatment
options. Future exploration of
the involvement and therapeu-
tic potential of targeting JAK-
STAT3 signaling in sporadic
tumors with LKB1 inactivation
is now also warranted.
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RETROSPECTIVE

Paul D. Boyer (1918-2018)

Pioneer of molecular machines and inspirational leader

By David S. Eisenberg

n 2 June, 2 months before his 100th

birthday, Paul Boyer died peacefully,

surrounded by family, including Lyda,

his wife of nearly 79 years. Paul was

deeply admired by his students, col-

leagues, and friends for his many tal-
ents. He was skilled in mechanics, science,
diplomacy, administration, and athletics. Be-
yond his scientific success, culminating in a
share of the 1997 Nobel Prize in Chemistry,
Paul contributed to the community by serv-
ing as a role model, demonstrating the wisest
path forward in tough situations.

Paul died at his home in Los Angeles, which
he built, serving as his own general contrac-
tor. Recalling Paul’s mechanical skills, his
daughter Gail said that they had never had a
repairman in the house. Earlier, while at the
University of Minnesota, Paul and Lyda had
designed their first home, for which Paul was
the plumber, electrician, and cabinet maker.
Paul was teaching his class at the university
when the inspector arrived at their homesite
to evaluate the plumbing. He lingered in-
tently over each fitting and junction and then
confronted Lyda with the question, “Who did
this work?” Her heart fell as she told him it
had been her husband. “He must have been
trained in the old country;” said the inspector,
“they don’t do fine work like this anymore.”

In fact, Paul was raised in Provo, Utah,
the fourth of seven children, a descendant
of what he called “hardy Mormon pioneer
stock” Although he rejected the religious ten-
ets of his church, he attributed his scientific
career to parental and community devotion
to education. He attended Brigham Young
University, a few blocks from his home, grad-
uating with a degree in chemistry in 1939.
That autumn, he left for graduate school at
the University of Wisconsin-Madison armed
with $150 in cash, a $400-per-year scholar-
ship, and his new bride, Lyda. He soon devel-
oped a second love—for biochemistry. After
earning his Ph.D. in the subject in 1943, he
did war research on blood proteins at Stan-
ford University, joined the faculty at the Uni-
versity of Minnesota, where he introduced
chemical and isotopic methods for the study
of enzyme mechanisms, and then settled
for good at the University of California, Los
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Angeles (UCLA), in 1963. Starting at age 70,
Paul and Lyda enjoyed an active retirement
of tennis, golf, bridge, and travel throughout
the American West, interrupted only by the
award of Paul’s Nobel Prize at age 79.

Paul’s most profound discovery was that
adenosine triphosphate (ATP), the energy
currency of life, is synthesized in living cells by
arotary molecular engine, ATP synthase. The
inference of this unprecedented mechanism
from measurements of chemical rates could
have been made only by a scientist with Paul’s
deep mechanical understanding. He applied
mass spectrometry to monitor oxygen-18
exchange Kkinetics to understand the en-
zymatic mechanism of ATP synthase. His
experiments suggested that the energy of oxi-

dation is coupled to the release of ATP from
the enzyme, rather than to ATP synthesis (his
so-called “binding change mechanism”), and
that the enzymatic reaction of ATP synthesis
must involve more than one catalytic site.
From these insights, he correctly proposed a
rotary molecular engine, later gloriously illu-
minated by the crystal structure of ATP syn-
thase by British chemist John E. Walker. For
this work, he and Walker shared half of the
Nobel Prize in Chemistry in 1997.

Paul had the curiosity and confidence to
grapple with big questions and big projects.
Though he studied some 20 enzymes during
the course of his career, he kept returning
to ATP synthase. As he said in a biographi-
cal memoir, “Although the larger questions
[about oxidative phosphorylation] were not
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likely to be answered, at least I wanted to
try” He knew that “effort is difficult with-
out optimism, and accomplishment is rare
without effort.”

Soon after moving from Minnesota to
UCLA, Paul applied his optimism and effort
to founding the Molecular Biology Institute
(MBI). He immediately set out to recruit fac-
ulty (around 20 over time, including me) and
students (some 400 have completed molecu-
lar biology Ph.D.s as of 2018). With phenom-
enal persistence, he put together a mosaic of
funding sources for construction of the labo-
ratory now known as Boyer Hall. However,
not every project of Paul’s came to fruition. In
1980, he envisioned a set of bicycle freeways
emanating from UCLA that would change
the character of Los Angeles. Clearly, that
idea was before its time, but Paul could once
again say “at least I wanted to try”

Active in the national leadership of the
biochemical community, Paul served as presi-
dent of the society now called the American
Society for Biochemistry and Molecular Biol-
ogy, as well as chair of the Division of Bio-
logical Chemistry of the American Chemical
Society. With Lyda’s assistance, he produced
18 volumes of the review series The Engymes.

Paul’s many achievements were made pos-
sible by his optimism, effort, ambition, and
know-how, but there was something more:
character. In my every encounter with Paul,
from the first in 1967 to my last shortly before
his death 50 years later, I sensed his drive
to get at the truth, his generous judgments
of others and their work, and his modesty.
Together, these traits made him the most
effective leader that many of us have ever
personally known. Under his 18-year direc-
torship of the MBI, faculty meetings were
amicable and short. Paul had discussed the
issues beforehand with each of us and had
forged a consensus prior to the meeting. A
generous author, Paul carefully noted the
advances made by each of his graduate stu-
dents and postdoctoral fellows in his several
scientific autobiographies. In appreciation of
these contributions, Paul donated to UCLA
part of his Nobel Prize stipend for awards to
his current UCLA postdoctoral fellows. Paul
also invariably took care to credit the results
from the labs of other scientists. Even when
he disagreed, the tone was one of respect,
sometimes noting where in hindsight his
own interpretation had been wrong.

In the present era, when science and rea-
son are under attack, facts are considered
optional, lying by leaders is not unexpected,
and bullying and falsely hogging credit are
tolerated, Paul Boyer’s life stands as a model
of the proper path for all of us who have had
the privilege of knowing him.

10.1126/science.aau6601
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BIOMEDICAL RESEARCH

The anticommons at 20:
Concerns for research continue

Emerging trends in exclusionary rights may affect research

By Jorge L. Contreras

ifty years ago, Garrett Hardin fa-
mously predicted that unrestrained
use of a common resource could lead
to its overuse and depletion—the so-
called “tragedy of the commons.”
Thirty years later, Heller and Eisen-
berg introduced the term “anticommons” to
the research-policy lexicon (I), postulating
that unfettered exercise of individual prop-
erty rights could lead to an equally tragic
underutilization of resources. By drawing
on analogies from land-use planning, they
reasoned that if multiple holders of intellec-
tual property (IP) rights, particularly pat-
ents, covering a biomedical technology can
individually block others from conducting
research on that technology, then overall
research progress could be stifled. Though
many observers now agree 20 years later
that empirical evidence of a patent-based
anticommons in biomedical research is in-
conclusive (2), if not wholly refuted (3, 4),
there are emerging areas beyond patent law
in which the proliferation of exclusionary
rights may threaten research in much the
way that Heller and Eisenberg predicted.
Although a common resource such as a
pasture or a river is held by multiple parties
for the benefit and use of all, an anticom-
mons is held not in common, but in sepa-
rate, yet co-dependent, fragments, whereby
any individual owner may block others’ use
of the whole. Heller and Eisenberg were
particularly concerned with privatization
of “upstream” research tools—basic scien-
tific discoveries and techniques that can be
used to develop a range of “downstream”
diagnostics and therapeutics—arguing that
“each upstream patent allows its owner
to set up another tollbooth on the road to
product development, adding to the cost
and slowing the pace of downstream bio-
medical innovation” (I). For example, a
proliferation of patents, sometimes called
a patent thicket, covering specific protein
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receptors or basic DNA sequencing tech-
niques could impede research on a broad
range of applications. Only by limiting the
potential hold that multiple patent holders
may have over basic research tools, they ar-
gued, can the inefficiencies that are likely
to emerge from anticommons be averted
(I). They thus called on governmental ac-
tors such as the U.S. National Institutes of
Health (NIH) to “ensure coherent bound-
aries of upstream patents and to minimize
restrictive licensing practices that interfere
with downstream product development.”

In their conceptualization of the anticom-
mons, Heller and Eisenberg challenged ear-

“In the regime of the
anticommons, it is excessive
privatization of resources
that hinders, rather

than helps, the productive
use of assets.”

lier theoretical work [for example, (5)] that
argued that assets, including inventions and
other intangibles, will be put to their high-
est and best use only if they are effected with
private interests that incentivize their own-
ers to manage and exploit them efficiently—a
property-based solution to Hardin’s tragedy
of the commons. Heller and Eisenberg’s
work signaled a new wave of interest in the
application of commons-based solutions to
intellectual assets, building on the founda-
tion laid by Elinor Ostrom and others in the
area of tangible common pool resources. In
addition to privatization strategies, tragedies
of the commons can also be solved by collec-
tive management of common assets. In the
regime of the anticommons, it is excessive
privatization of resources that hinders, rather
than helps, the productive use of assets.

THE SEARCH FOR ANTICOMMONS
Soon after the Heller and Eisenberg article,
researchers began to seek empirical evidence
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of a developing anticommons in biomedical
research. The proliferation of patents on
individual genes and key sequencing pro-
cesses was of particular concern. One study
reported that U.S. patents covered approxi-
mately 20% of known human genes (6), and
another found that patents had a negative
impact on the use and development of mo-
lecular diagnostic tests (7).

Others worried that patenting human
DNA and other research tools could result
in serious impediments to the develop-
ment of multigene diagnostic panels and
DNA chips that could simultaneously test
for large numbers of genetic variants, as
well as high-throughput genotyping and se-
quencing platforms and animal models (8).
Another study showed that genetic variants
contractually protected by the private firm
Celera Genomics, when compared to pub-
lic data on comparable variants from the
Human Genome Project (HGP), “generated
economically and statistically significant
reductions in subsequent scientific research
and product development” (9).

Findings like these set off alarm bells
throughout the research community and
seemed to validate the anticommons hy-
pothesis. However, outside of genetics, stud-
ies found that the behavior of biomedical
researchers was not substantially affected
by the existence of patents. In many cases,
academic researchers simply appeared to ig-
nore patents in their research (2).

POOLING, AGGREGATION, COMMONS

If we have not seen the emergence of a pro-
nounced patent anticommons in biomedical
research, it is worth asking why. One oft-
raised possibility is that rational private ac-
tors, when faced with the fragmentation and
congestion threatened by an anticommons,
will develop collective and mutually benefi-
cial solutions to enable research to advance
nevertheless. Such “pooling” approaches
have arisen to address rights fragmentation
in industries ranging from music to aircraft
to radio and telecommunications (3).

Heller and Eisenberg recognized that the
gridlock threatened by anticommons could
be remedied through bargaining and the
formation of IP pools. Yet they expressed
reservations about the general viability of
IP-pooling solutions. They identified sev-
eral distinct features of the biotechnology
and pharmaceutical industries that could
make successful bargaining over patent
rights less successful than in fields such
as aviation and music, including transac-
tion costs associated with accumulating
sufficient rights to practice biotechnology
inventions, the heterogeneous interests of
patent holders, and cognitive biases that
cause biotechnology patent holders to

27 JULY 2018 « VOL 361 ISSUE 6400 335

8T0Z ‘9z AInC uo /610 Bewaduslos aoualos//:dny woly papeojumod


http://science.sciencemag.org/

INSIGHTS | POLICY FORUM

overestimate the value of their own techni-
cal contributions (7).

But, despite years of advocacy surround-
ing potential patent pools for HIV/AIDS and
severe acute respiratory syndrome (SARS)
research and the emergence of substantial
pooling activity in other industries, rela-
tively few patent pools—and none of com-
mercial importance—have formed in the
pharmaceutical or biotechnology sectors.
Several factors could explain the absence of
pooling in this arena: the need for at least
some market exclusivity in an environment
with extremely high costs of product de-
velopment, clinical trials, and regulatory
approval; patent holders’ desire to retain
control over their assets; and concerns over
compromising commercial secrecy by col-
laborating with others (4).

Although the formal pooling of frag-
mented property interests in biomedical
research may not have materialized in a
meaningful way, this sector is also char-
acterized by a remarkable, and arguably
unique, outpouring of valuable discoveries
to the public domain. The sum of these con-
tributions may be moving us toward a com-
prehensive medical-information commons
(10)—the very antithesis of the anticom-
mons predicted by Heller and Eisenberg.
The beginning of this trend is often traced
to the 1996 Bermuda accord reached by
leaders of the HGP, which required all HGP
research groups to deposit their sequence
data into public databases 24 hours after
being generated. The ethos of rapid, pub-
lic release of genomic and related data has
now become the norm in many fields of bio-
medical research and has even expanded to
the commercial sector (1I). Voluntary data
sharing by research institutions and corpo-
rations has also emerged in areas such as
testing for mutations in the breast cancer
gene BRCA, largely in response to the pro-
prietary data approaches taken by firms
such as Myriad Genetics (11, 12).

Thus, just as collective action by affected
stakeholders has been shown by Ostrom
and others to avert tragedies of the com-
mons involving scarce shared resources, the
collective action of the biomedical research
community—governments, institutions, and
individual researchers—developed a power-
ful response to the potential fragmentation
and propertization of the research environ-
ment (7I). It is likely that the success of
these public research commons has con-
tributed to the dearth of observed anticom-
mons effects.

There may be other reasons that patent
anticommons did not take hold in the bio-
medical sciences to the degree envisioned by
Heller and Eisenberg. For example, in line
with their recommendation that upstream
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research tools be licensed broadly and non-
exclusively, the NITH adopted a policy in 1999
urging its grant recipients to license patented
research tools on a nonexclusive basis to
promote their greatest utilization, commer-
cialization, and public availability. In 2007, a
group of 11 major U.S. research universities
followed suit and committed, in a set of core
principles known as the “Nine Points,” that
research tools should be made as broadly
available as possible. Today, more than 100
research institutions around the world have
voluntarily subscribed to the Nine Points.

“..it remains the case
that the combination of
extensive propertization
with fragmentation

of ownership can lead to
transactional gridlock
and underutilization of
socially valuable assets.”

Finally, over the past decade, patent
laws in a number of countries have be-
come weaker, not stronger, with respect
to the protection of upstream biomedical
innovations. Beginning in 2010, a series of
U.S. Supreme Court decisions clarified that
“products of nature,” “mental processes,’
and “abstract ideas” are not eligible for pat-
ent protection. As a result, it has become
increasingly difficult to patent basic bio-
medical discoveries in the United States,
so much so that some have begun to ask
whether the lack of patents in certain ar-
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eas (for example, molecular diagnostics and
personalized medicine) will itself impede
future innovation and discovery (13).

ANTICOMMONS ON THE HORIZON?

Despite the absence of a serious patent an-
ticommons in biomedical research today,
Heller and Eisenberg’s warning should not
be ignored. There are several areas beyond
patent law in which the proliferation of ex-
clusionary rights could impede biomedical
research and product development in ways
that are similar to those that Heller and
Eisenberg envisioned.

First, in the vacuum left by limitations
on patenting human DNA, some firms have
increasingly turned to trade-secret law to
protect data that they collect from patients
and test subjects (12). In most countries,
trade-secret law gives an enforceable prop-
erty-like right to the holder of commercially
valuable information that is deemed to be
confidential. And unlike patents, which
expire after 20 years, trade-secret protec-
tion continues in perpetuity, so long as the
relevant information remains secret. Trade
secrecy also challenges research in ways dif-
ferent from patents. For example, a patent
is an official document that publicly dis-
closes the patented invention, thus enabling
others to study and improve on its features
and techniques. Trade secrets, by their na-
ture, need never be disclosed to the world,
thus limiting the opportunity for follow-on
research and improvements.

If more data are treated as secret by re-
searchers, there may be less overall growth
in knowledge and the medical information
commons may not grow as anticipated
(10). In addition, the withholding of data
by individual researchers may give rise
to anticommons effects. In fields that are
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characterized by large bodies of interde-
pendent observations, the withholding of
individual research results may stymie the
development of a full understanding of
the field. This fragmentation effect is par-
ticularly salient in the area of molecular
diagnostic testing, in which different test-
ing labs may each collect genetic variant
data from patients, but the true potential
of these data will only be realized if they
are combined and analyzed together. The
inability of researchers to conduct cross-
cutting analyses could result in less accu-
rate diagnostics and fewer therapeutics.
Thus, although holding data privately does
not have the same exclusionary effects
as obtaining a patent (that is, others are
not precluded from independently gener-
ating the same data), the difficulties that
emerge in consolidating data from differ-
ent sources, coupled with the reduction in
overall welfare arising from a lack of the
full spectrum of results, fall close to Heller
and Eisenberg’s anticommons.

Eisenberg anticipated this issue in 2008,
observing that with “practically exclud-
able” resources such as data and biological
samples (that is, where exclusion is based
not on legal restrictions but instead on the
need for one researcher to provide the re-
source to others), it is up to users to per-
suade owners to permit access (2). As such,
a data-driven anticommons could emerge if
enough researchers keep their data propri-
etary and share them only on condition of
payment or not at all. There are few effec-
tive regulatory solutions to this issue under
current law, but the continued encourage-
ment (or requirement) of data sharing by
research funders, health care payors, and
leading journals could avert the worst ef-
fects of such an anticommons.

SCIENCE sciencemag.org

Second, despite the recent tightening of
legal requirements for patent eligibility, pat-
enting activity continues around the world
with respect to emerging biomedical tech-
nologies such as CRISPR (clustered regu-
larly interspaced short palindromic repeats)
gene editing. The potential exists for sub-
stantial fragmentation of the CRISPR pat-
ent landscape—not through disaggregated
ownership of CRISPR patents themselves
(though that is also possible) but through
parcelization of the CRISPR-patent estate via
narrowly drawn licensing agreements con-
trolled by a handful of private “surrogate”
companies empowered by the academic re-
search institutions that made foundational
CRISPR discoveries (14). These companies
may have incentives to license technology to
others on a limited gene-by-gene, indication-
by-indication basis that does not encourage
the full breadth of potential research and
product development. And although some
CRISPR patent holders have granted favor-
able rights to academic researchers, this so-
lution is neither universal nor binding nor
permanent. As a result, policy-makers should
continue to remind academic research insti-
tutions of their public commitments to work
toward wide dissemination of the fruits of
their research and to discourage the exclu-
sive licensing of broadly applicable research
tools. If such reminders prove to be insuffi-
cient, research-funding agencies could more
definitively require the broad availability of
funded research through licensing.

Finally, a new and potentially important
form of fragmentation has recently emerged
with respect to individual health informa-
tion. A spate of recent legal disputes in the
United States has led to increasing calls for
personal ownership of genetic and other
health information (75). The rationales for
this privatization movement are varied, rang-
ing from concerns over individual autonomy,
privacy, and dignity, to offering a more palat-
able alternative than corporate ownership, to
creating a basis for data-based market trans-
actions, and to dissatisfaction with existing
regulatory and administrative data protec-
tion frameworks in the United States and
the European Union. Yet, despite the good
intentions behind many of these proposals,
granting individuals an enforceable property
interest in information about themselves, in-
cluding the right to receive compensation for
its use, could pose considerable impediments
to data-driven research, particularly in the
coming era of megacohort studies involving
a million or more individuals.

Thus, although Heller and Eisenberg wor-
ried that fragmented interests held by a few
dozen or hundred patent owners could im-
pede biomedical research, the possibility that
millions of individual data subjects could
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demand clearance, oversight, or payment
to use their data in successive studies, or
withdraw their data from existing databases
and ongoing analyses, has far more dramatic
ramifications for research (15). To avert this
version of the anticommons, policy-makers
and courts should continue to resist calls for
individual data ownership and look instead
to meaningful regulatory and legal measures
to protect individuals against invasions of
privacy and abuse by researchers.

BROADER LESSONS

Though the patent-driven biomedical anti-
commons envisioned by Heller and Eisen-
berg does not appear to have emerged widely,
researchers and policy-makers must remain
vigilant as new sources of potential anticom-
mons emerge. Admittedly, the precise param-
eters of exclusivity generated by new forms of
property fragmentation vary, and they do not
all exhibit the same features, or lend them-
selves to the same solutions, as patent-based
anticommons. Nevertheless, it remains the
case that the combination of extensive prop-
ertization with fragmentation of ownership
can lead to transactional gridlock and under-
utilization of socially valuable assets.

Thus, it is worth looking beyond bio-
technology patents to the more general dis-
tinction between fragmented and common
ownership models. Most importantly, no
matter how unobjectionable the legal and
commercial rationales underlying properti-
zation strategies may first appear, attention
should be given to the downstream effects
that potential anticommons could cause.
If serious impediments to socially valuable
activity, including biomedical research, are
likely to result, then policies limiting the
impact of such anticommons should be con-
sidered and weighed in the balance.
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Nature’s riverkeepers

Recognizing their role in maintaining healthy watersheds,
“beaver believers” work to rehab the rodent’s reputation

By Sarah Boon

hy should we care about beavers?

Consider all they do. Beavers

convert vegetation to marsh to

wetland and back again. They

facilitate water storage in ponds

and recharge groundwater. Ponds

and meadows sculpted by beavers concen-

trate nutrients such as nitrogen

and phosphorus. Not only does

this create fertile ground, it

helps filter agricultural runoff.

Beaver-dammed landscapes cre-

ate habitats for other species,

and their complexes can serve
as wildfire breaks.

Researchers have calculated

Bgn

BEAVERS
MATTER

-~

the 1920s and 1930s, but never to their
original numbers. Eager, by Ben Goldfarb,
examines how they’re getting along today.
Beavers still face obstacles when we at-
tempt to reintroduce them into ecosystems
in which they once flourished. Predators can
eat a beaver for lunch, while cattle grazing
removes vegetation and can alter a stream’s
configuration in such a way that it can no lon-
ger support beaver populations.
Even wild ungulates can be a
detriment to beavers. Goldfarb
describes how the reintroduc-
tion of wolves into Yellowstone
National Park led to the recovery
of vegetation and rerouting of
stream channels, which some re-
searchers maintain was the result

that between 15 million and 250 Eager of an increase in the availability
o Ben Goldfarb R .

million beaver ponds once Cov-  chelsea Green, 2018,  Of streamside willows and alder

ered North America. A boom- 302 pp. for beavers. But one of the main

ing 19th-century trade in beaver
pelts, along with a loss of habitat due to
settlement, almost wiped them out. The
landscape they helped to shape was a wa-
tery quagmire—and a classic example of
shifting baselines. Because we didn’t notice
the initial profusion of beavers in the wild,
we think current populations are normal.
Beaver populations recovered through

The reviewer is a freelance science writer and editor
and cofounder of Science Borealis, Canada’s science blog
aggregator. Email: snowhydrol@gmail.com

338 27 JULY 2018 « VOL 361 ISSUE 6400

barriers to beaver reintroduction
is policy, especially in states such as New
Mexico, where legislators fear beaver activity
will harm the cattle industry.

Eager also highlights the problems of
preconceived assumptions about beavers
and beaver management. A common sup-
position among fish ecologists, for example,
is that beavers are bad for salmon because
their dams prevent the fish from swim-
ming upstream. However, Goldfarb cites a
comprehensive review of 108 papers that
showed that beavers benefit fish popula-
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Some researchers believe that beavers were critical
to promoting ecosystem recovery in Yellowstone.

tions more often than they cause negative
consequences. A more egregious error oc-
curred in California in 1937, when ecologist
Joseph Grinnell declared that beavers had
never inhabited large portions of the state.
Although this was untrue, it went unchal-
lenged and affected beaver recovery and
ecosystem management across the state un-
til it was disproven in 2012.

With drought in the southwest United
States, there’s talk of building new dams.
Beavers could do that for us—and create a
fully functioning ecosystem while theyre
at it. Goldfarb visits a property in Nevada,
where a local rancher was able to extend his
water availability by two months by allowing
beavers to colonize one of his watersheds.

Later in the book, Goldfarb suggests that
we could combine the heavy-duty approach
of river restoration (such as use of backhoes
and rip rap) with the work of beavers by
installing beaver dam analogs (BDAs): two
posts hammered into the ground with twigs
woven between them (Science, 8 June, p.
1058). The BDAs, he argues, would speed up
ecological recovery by encouraging beavers
to colonize designated watersheds.

Goldfarb speaks largely with “beaver be-
lievers"—individuals who try to help humans
and beavers coexist by mitigating the impact
of beavers on the built landscape and by rein-
troducing them into stream systems that they
can potentially restore. He lets his interview-
ees tell the majority of the story, recalling, for
example, Councilman Mark Ross’s interac-
tion with a local businessman during a tense
meeting of pro- and anti-beaver groups in
Martinez, California (““This seventy-year-old
guy is about to hit me! ...Do I hit back against
a senior citizen or not?’”) and Yellowstone sci-
entist Dan Kotter’s description of the effects
of bison grazing on riparian vegetation (“like
Jabba the Hutt eating a piece of pizza’”).

Goldfarb ends the book with a trip to the
United Kingdom, where beavers haven’t been
seen since the 17th (Scotland) and late 18th
(England) centuries. Here, reintroduced
beavers are a huge tourist draw, and beaver
dams reduce the impacts of flooding—a big
problem in the UK—although many farmers
aren’t convinced. As Goldfarb writes, “Every-
one shares a goal; no one agrees on strategy.”

One thing Eager was missing was a visit to
Canada. The beaver is the country’s national
animal and graces its nickel. It has acres of
landscape shaped by beavers, and Goldfarb
cites a number of Canadian studies, but
a firsthand experience would surely have
enriched his otherwise excellent story.

10.1126/science.aat7938
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SOCIAL SCIENCE

In vivo we trust

An engaging synthesis highlights the value of
field experiments in the social sciences

By John A. List

ocial scientists once restricted their

research to carefully controlled labo-

ratory experiments. Over the past 25

years, however, they have increas-

ingly made use of field experiments.

Insights gained have spanned nearly
every imaginable segment of our society,
lending tests of theory, advice to policy-
makers, and guidance to nonprofit and for-
profit firms alike.

In his new book, Randomistas, Andrew
Leigh takes stock of a slice of this research
in an even-tempered, scientific, and acces-
sible way. The work reads like a stroll down
memory lane, as Leigh digs into historically
rich areas of research, ranging from the ed-
ucation production function to crime pre-
vention and useful poverty interventions.
Yet perhaps the most exciting aspect of the
book concerns field experiments in politics
and philanthropy.

Politics is interesting in its own right.
Why people vote and how we can enhance
voter participation remain first-order ques-
tions in well-functioning democracies. In
chapter 9, Leigh cleverly illustrates how
Barack Obama made keen use of field ex-
periments to figure out what was working
and why during his first presidential cam-
paign. For instance, in 2007 Obama’s team
used a field experiment to determine the
best image and slogan to use to motivate
web visitors to subscribe to future cam-
paign emails. The version that yielded the
most email addresses—a black and white
photo with the message “Learn More”—sur-
prised even the most seasoned experts, who
expected that a video accompanied by the
message “Sign Up” would be the top per-
former, and served as a scientific basis for a
successful campaign.

Later, Leigh describes how political sci-
entists Alan Gerber and Donald Green
determine the efficacy of get-out-the-vote
interventions. As Leigh, a politician him-
self, points out: “I've met ‘experts’ who are
convinced that partisan letters work best
when paired with doorknocking, that tele-
phone calls work best in the final week of
the campaign, or that posters outside the

The reviewer is at the Department of Economics, University
of Chicago, Chicago, IL 60637, USA. Email: jlist@uchicago.edu
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election booth make a huge difference. But
ask them about their evidence base and it’s
quickly apparent that their war stories lack
a control group.”

In their most effective intervention, Ger-
ber and Green show that a letter revealing
the recipient’s turnout record, as well as
their neighbor’s, increases turnout by 8 per-
centage points. This remarkable effect likely
reflects social-image concerns.

Charitable giving, meanwhile, is much
more important than most people realize.
The number of U.S. nonprofits registered
with the Internal Revenue Service grew by
nearly 60% from 1995 to 2005, and charita-
ble gifts of money have more than doubled
since 1990, now exceeding 2% of GDP.

The market for charitable giving primar-
ily revolves around three major players:
donors, who provide the resources to chari-
ties; charitable organizations, which de-
velop strategies; and the government, which
decides (among other issues) the tax treat-
ment of individual contributions, the level of
government grants given to various charities,
and what public goods to provide itself.

Leigh catalogs interesting details of
recent field experiments, which lend in-
sights into all three actors, but he focuses
most of his efforts on the relationships be-
tween charities and individuals. Here, he
summarizes some of my own field experi-
ments from the 1990s, which showed the
importance of a “lead donor” and match-

Randomistas R
How Radical Researchers

Are Changing Our World -8
Andrew Leigh

Yale University Press, Handomjsms
2018.283 pp.

ing funds in raising charitable giving. (The
mere mention of a lead donor raised giving
by 50 to 100%.)

What is particularly appealing about
Randomistas is that it does not stop at dis-
cussing the overarching literatures associ-
ated with the topics Leigh chooses to focus
on. It also details how to build a better feed-
back loop and how organizations can get
over hurdles that prevent them from run-
ning effective interventions. These include
fairness concerns, replication needs, and
the discomfort associated with admitting
when you do not know something. (The lat-
ter is a challenging one for most managers
I know.)

I do not have any qualms with what was
written in this book, but I do feel that an
important element of the field experiment
equation was omitted. In the past few de-
cades social scientists have done a superb
job of developing methods with which to
generate field data showing how the world
works and detailing intervention effects.
However, how we should use the data for
policy purposes is often neglected. Do the
results scale to a larger setting? What are
the factors that affect that scaling? Without
this information, empirical research can
be quickly undermined in the eyes of the
policy-maker, the broader public, and even
within the scientific community.

10.1126/science.aau2825

PODCAST

The Secret Token

Myth, Obsession, and the Search
for the Lost Colony of Roanoke
Andrew Lawler

Doubleday, 2018. 410 pp.

Delayed for 3 years by an ongoing
war, John White returned to the
American colony of Roanoke on 18
August 1590 but found the settlement
deserted. The only clue was the word
“Croatoan” carved into a fence post.
This week on the Science podcast,
Andrew Lawler recounts the mystery
of the Lost Colony and shares stories
of those who've devoted their lives to
finding it.

Bluffs at Albemarle Sound are rapidly eroding into the ocean,
complicating efforts to find clues about the Lost Colony.
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Brazilian killifishes
risk extinction

The annual Killifishes are a diversified
group of small fish in Africa and South
America (). Annual killifish are unique

in their ability to survive in ephemeral
pools; they have short, seasonal life cycles,
laying eggs that lie dormant in the soil
once the pools have evaporated and then
resume development and hatch when the
water returns (2, 3). In Brazil, these fish
are found in all biomes and have been
recorded in the most variable seasonal
freshwater environments (2). As a result

of habitat loss, restricted distribution, and
low dispersal of most species, annual Kil-
lifishes face strong threats of extinction (4,
5); they are the most endangered group of
fish in Brazil (5, 6). In a 2014 evaluation of
endangered Brazilian fauna, according to
the International Union for Conservation
of Nature (IUCN) criteria (5), 102 spe-

cies of annual killifishes were considered
endangered, representing one-third of all
threatened freshwater fish in Brazil. Some
of these species are no longer found in
nature and possibly extinct (7).

Several factors are responsible for the
high degree of threat to Killifish. The use
of land for urbanization, agriculture, and
hydroelectric dams has led to the loss and
degradation of the pools in which the fish

340 27 JULY 2018 « VOL 361 ISSUE 6400

live (5—7). Many environmental agencies
lack knowledge about the species and
their habitats and sometimes have been
negligent in their efforts to protect them
(8). Because few Killifish species live in
protected areas, many of Brazil’s conserva-
tion efforts have not benefited them (8).
Consequently, annual Killifish populations
have declined rapidly in Brazil (7, 8).

The problem is even greater because
Brazil’s policies hamper biodiversity
conservation (9). The Brazilian Forest Act
reduced the area of permanent preserva-
tion and overlooked ephemeral aquatic
environments (9). Other policies, such as
the New Law on Biodiversity, make access
to biodiversity difficult and bureaucratic,
thereby weakening universities and
research institutions (10). Threats also
include assaults on the environmental
licensing system and disenfranchise-
ment of environmental agencies (11). In
a country where charismatic species are
constantly suffering from population
decline (12) and conservation research is
under attack, there is little energy or atten-
tion left for small fish that inhabit extreme
environments and are unknown to society.

Despite a national conservation action
plan that has led to some small advances
and greater visibility of Killifishes in recent
years (4), there is still much that needs to
be done to mitigate these serious threats
to Brazilian killifish biodiversity. Brazil
must pass laws to protect temporary
wetlands and facilitate public and private

Published by AAAS

Negligence and habitat
loss are among the threats
that have rendered annual

killifishes the most
endangered fish in Brazil.

investments in scientific research and envi-
ronmental education. Most urgently, the
government must act to restore degraded
areas and establish protected areas to save
these species from extinction in Brazil.
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“Deadly mosquito”
or “living freshwater”?

Organizations fighting disease often use
catchy taglines such as “Which animal Kills
most people?,” as the Gates Foundation
did at its 2018 annual campaign against
malaria (7). These questions pique our curi-
osity and anxiety and remind us that we
can prevent disease by protecting ourselves
from mosquitoes. However, casting these
aquatic insects as villains could set back
freshwater and invertebrate conservation.
We, therefore, call for disease-focused
organizations to adopt a message that puts
human health more clearly in its environ-
mental context.

Freshwater is life’s and humankind’s
most critical resource, and shifts in pre-
cipitation and evaporation due to climate
change directly affect aquatic habitats (2).
As a result, it is also the environment with
the highest proportion of threatened species
(3). Invertebrates make up the vast majority
of animal species, and insect populations
are rapidly declining (4). Nonetheless, pro-
tecting this biodiversity is often an uphill
battle, given that insects do not evoke the
appreciation that benefits other ecosystems
and species, such as forests and whales.
Blood-sucking, disease-bearing insects are
understandably unpopular, but exploiting
our fear of them perpetuates the prejudice
against their habitats.

Moreover, vilifying insects may detract
from humans’ own role in promoting
mosquito-borne disease. Just a fraction
of the 3500 known species of mosquitoes
transmit the pathogens truly responsible
for malaria, dengue, chikungunya, and
other human diseases (5). These vectors
have adapted to feed primarily on humans
by developing in human-disturbed habitat
that is often inhospitable to their natural
predators. For example, we litter our yards
with the rainwater-retaining plastic in
which some of the most problematic mos-
quitoes thrive (6).

We encourage disease-focused orga-
nizations to work with ecologists and
conservationists to expand their campaigns
with the many positive messages that a
healthy environment carries. Plastic-free
yards would reduce the need for harmful
pesticides, for instance (6). Wetlands are
also home to attractive emissaries that eat
mosquitoes, such as colorful dragonflies.

SCIENCE sciencemag.org

The ultimate symbol of health, of course, is
clean freshwater itself, undeniably human-
ity’s most precious resource.
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Where there is fire,
there is smoke

In his In Depth News story “Scientists aim
to smoke out wildfire impacts” (1 June,

p. 948), W. Cornwall discusses wildfire-
generated smoke and the associated large
quantities of particulate matter. We agree
that research on smoke demands more
sustained scientific attention, particularly
given its impacts on human communities
[e.g., (I)]. However, not all fires are created
equal in terms of their (natural or deliber-
ate) origins, the amount of biomass they
consume, and the amount of smoke they
generate as a result.

High-intensity wildfires (those exceeding
200,000 kW/m?) in very high biomass for-
ests may consume 9 to 14% of the biomass
(burning green parts of living trees but
often leaving dense wood) or 40 to 58 tons
per hectare (2). This is substantially less
than half of the 140 to 450 tons of biomass
per hectare consumed when logging slash
(i.e., dense waste wood) is burned after
logging operations in these same kinds of
forest (3, 4).

Moreover, such logging burns consume
at least 10 times as much biomass as
hazard reduction burns designed to reduce
wildfire risk (5). The smoke generated from
logging therefore represents a substantial
form of industrial pollution, but it is not
treated as such. Beyond improving efforts
to quantify the chemical composition
of smoke and its long-term impacts on
human health, there is an urgent need to

Published by AAAS

examine the problem in a more holistic
manner. This demands far more careful
consideration of the origins of smoke, the
relative amounts of smoke originating from
different kinds of fires, and the forest and
land use policies that generate smoke (and
might reduce it).
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Comment on “An excess of massive stars
in the local 30 Doradus starburst”

‘Will M. Farr and Ilya Mandel

Schneider et al. (Reports, 5 January 2018, p.
69) used an ad hoc statistical method in their
calculation of the stellar initial mass function.
Adopting an improved approach, we reana-
lyze their data and determine a power-law
exponent of 2.05*31. Alternative assumptions
regarding dataset completeness and the star
formation history model can shift the inferred
exponent to 2.1173% and 2.15:3%, respectively.

Full text: dx.doi.org/10.1126/science.aat6506

Response to Comment on “An excess of mas-
sive stars in the local 30 Doradus starburst”

F. R. N. Schneider, H. Sana, C. J. Evans,

J. M. Bestenlehner, N. Castro, L. Fossati,

G. Grifener, N. Langer, O. H. Ramirez-
Agudelo, C. Sabin-Sanjulian, S. Simén-Diaz,
F. Tramper, P. A. Crowther, A. de Koter, S. E.
de Mink, P. L. Dufton, M. Garcia, M. Gieles,
V. Hénault-Brunet, A. Herrero, R. G. Izzard,
V. Kalari, D. J. Lennon, J. Maiz Apellaniz,
N. Markova, F. Najarro, Ph. Podsiadlowski,
J. Puls, W. D. Taylor, J. Th. van Loon, J. S.
Vink, C. Norman

Farr and Mandel reanalyze our data, finding
initial mass function slopes for high-mass
stars in 30 Doradus that agree with our
results. However, their reanalysis appears

to underpredict the observed number of
massive stars. Their technique results

in more precise slopes than in our work,
strengthening our conclusion that there

is an excess of massive stars (>30 solar
masses) in 30 Doradus.

Full text: dx.doi.org/10.1126/science.aat7032
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Comment on “An excess of
massive stars in the local 30

Doradus starburst”

Will M. Farr"?* and Ilya Mandel“3*

Schneider et al. (Reports, 5 January 2018, p. 69) used an ad hoc statistical method in their
calculation of the stellar initial mass function. Adopting an improved approach, we

0.14

reanalyze their data and determine a power-law exponent of 2.05";3. Alternative
assumptions regarding dataset completeness and the star formation history model can
shift the inferred exponent to 2.11°31 and 2.15°013, respectively.

chneider et al. (I) use spectroscopic ob-

servations of young massive stars in the

30 Doradus region of the Large Magellanic

Cloud to infer a shallower-than-expected

stellar initial mass function (IMF) with a
power-law exponent of o = 1.90337, in con-
trast to the Salpeter exponent of 2.35 (2). They
estimate the ages and masses of individual stars
with the BONNSAI Bayesian code (3), then ob-
tain an overall mass distribution by effectively
adding together the posterior probability den-
sity functions of individual stars. There is no
statistical meaning to a distribution obtained
in this way, which does not represent the pos-
terior probability density function on the mass
distribution.

Hierarchical Bayesian inference provides the
statistically justified solution to this problem (4).
Mandel (5) specifically considered inference on
a mass distribution given a sample of uncertain
measurements, and we use a similar method-
ology here. We interpret the Schneider et al.
inference on individual masses and ages as in-

Fig. 1. The posterior on the IMF
power-law exponent « is inferred 5
from the observations d. See text

for details on the four models. Blue:

Schneider et al. [S+ (1)] stellar 4
lifetimes (I.t.), survey completeness
for M = 15M, and Gaussian star
formation history model; green,

same but with our lifetime fit; orange,
same as green but with completeness
for M = 20Mg,; pink, same as blue
but with a double-exponential

star formation history model. The
Salpeter power-law exponent is

-0 =-2.35(2), indicated by a vertical
black line. The 68.3% range of power-
law exponents derived by Schneider et al.
is shaded in gray.

Farr and Mandel, Science 361, eaat6506 (2018)

dependent Gaussian likelihoods for the logarithm
of the mass and the age, with parameters fixed
by matching the mean parameter to the peak
and the standard deviation parameter to the
68% width of the individual stellar distribu-
tions in the Schneider et al. data.

For our fiducial analysis, we model the star
formation history as a truncated Gaussian dis-
tribution, and generally find a star formation
history similar to that in Schneider et al., with
the star formation rate in 30 Doradus peaking
about 4 million years ago. We impose broad
priors on the power-law exponent and the mean
and standard deviation of the star formation
Gaussian. We use the Hamiltonian Monte Carlo
sampler STAN (6) to efficiently address the high-
dimensional hierarchical problem with free pa-
rameters for each star’s actual mass and age in
addition to the IMF exponent and the mean and
standard deviation of the star formation history.

Figure 1 shows the inferred power-law expo-
nent of the IMF. We use the Schneider et al. fit
to stellar lifetimes and assume that their dataset

S+1.t, 15M 4y, norm SFR
ourl.t, 15Mg, norm SFR
our L.t., 20M 4, norm SFR
S+ I.t.,,15M, exp SFR

V| ‘|

150 1.75
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is complete above 15 solar masses (M); that is,
we select only those stars whose observed mass
is above 15M, (7, 8). We find an exponent of
a = 2.05701% where the quoted value corre-
sponds to the median of the posterior distribution
and the range to the 16th and 84th percentiles
(i.e., the symmetric 68% credible interval). Hier-
archical Bayesian modeling steepens the preferred
IMF slope; our median a value lies about 16 above
the preferred value from Schneider et al. This
analysis narrows the uncertainty interval by more
than a factor of 2.

The analysis above uses the same assump-
tions as Schneider et al. Below, we consider the
impact of three additional assumptions: the
stellar lifetime fit, the choice of the complete-
ness limit, and the model for the star formation
history.

We performed an independent fit to the main-
sequence lifetimes tyg of nonrotating massive
stars of mass M as modeled by Brott et al. (9)
and Kohler et al. (10):

™S (M) - M
In Myr 9.1973 — 3.8955 IHMO +
M 2 M 3

Following Schneider et al., we increased the
“observable” lifetime of a star by 10% beyond its
main-sequence lifetime to account for helium
burning. We find that this alternative fit does
not affect the inferred IMF, yielding the same
power-law exponent o = 2.051 513,

The inferred power-law exponent is somewhat
sensitive to the choice of the cutoff mass for sur-
vey completeness. The data of Schneider et al.
show a relative scarcity of stars between 15M,
and 20M; changing the mass cutoff from 15M,
to 200, further steepens the inferred exponent
to o = 2.117519. However, these fluctuations are
within the expected statistical variation based
on the sample size, as confirmed with pos-
terior predictive checking. In particular, there
is no statistical evidence against the claim of
Schneider et al. that the survey is complete for
M = 15M,

Finally, we considered an alternative star for-
mation history model—a double exponential with
three free parameters: the time of the peak of the
star formation rate, and the (possibly different)
decay constants before and after the peak. This
model allows for a sharper peak and longer tails
than a Gaussian. This star formation rate history
model is consistent with the data, as tested with
posterior predictive checking (see below). How-

. . 0 3
ever, it yields a power-law exponent o = 2.l5f0}3,
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Fig. 2. Posterior predictive checking demonstrates that the observed data are consistent
with being drawn from our model. The observed distribution of (maximum likelihood) masses

M (A) and ages t (B) are shown as black curves; distributions of mass and age from synthetic data
drawn from our fitted model (i.e., the posterior predictive distribution) are shown as blue curves
(median) and shaded blue regions (68% and 95% credible intervals), respectively.

almost 1o steeper than for our fiducial analysis.
This indicates that the inferred IMF is sensitive to
the systematics of the assumed star formation
history model.

We also considered the possibility that the IMF
power law has an additional break at higher
masses, allowing for three free parameters: the
mass at which the break happens, and the ex-
ponents below and above the break. However,
we find that the data do not constrain the pa-
rameters of this more general model, and there
is no statistical preference for a broken power-
law model.

We confirmed the stability of our conclusions
with posterior predictive checking. Figure 2
shows the distribution of observed masses and
ages (i.e., the peak of the likelihood) from the
Schneider et al. data overlain on the range of

Farr and Mandel, Science 361, eaat6506 (2018)

mass and age distributions that would be ob-
served from a large number of datasets drawn
according to our fitted fiducial IMF model. The
data are consistent with being drawn from our
model. We have also confirmed that all of our
models yield predictions for the numbers of
stars heavier than 30M, and 60M, that are
consistent with observations.

We find that we can substantially reduce the
statistical uncertainty in the IMF by applying an
improved statistical analysis to the observations
of young massive stars in 30 Doradus. However,
the systematics from modeling uncertainties,
such as the assumed star formation history
model, can potentially shift the inferred power-
law exponent by more than the statistical un-
certainty. Furthermore, we adopted the mass
and age posteriors for individual stars directly

27 July 2018

from Schneider et al. Imperfect stellar models
or the inclusion of other complicating factors
described by Schneider et al. (rotation, mass
transfer, mergers, etc.) introduce further system-
atic uncertainty that could again shift the inferred
IMF exponent. The combination of these factors
makes it very challenging to infer the precise
shape of the IMF even when a dataset as good
as that obtained by Schneider et al. is available.
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of massive stars in the local 30

Doradus starburst”
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Farr and Mandel reanalyze our data, finding initial mass function slopes for high-mass stars

in 30 Doradus that agree with our results. However, their reanalysis appears to underpredict the
observed number of massive stars. Their technique results in more precise slopes than in

our work, strengthening our conclusion that there is an excess of massive stars (>30 solar

masses) in 30 Doradus.

arr and Mandel (7) reanalyzed the results

of our study (2), in which we investigated

the star formation history (SFH) and stellar

initial mass function (IMF) of the local 30

Doradus (30 Dor) starburst in the Large
Magellanic Cloud and found an overabundance
of stars with initial mass exceeding 30 solar
masses (My). They use an alternative and po-
tentially more powerful statistical framework,
hierarchical Bayesian inference, and infer IMF
power-law indices for massive stars that are in
agreement with our results (compare the IMF
slope distributions in their figure 1 to the 16 range
inferred in our analysis). Their analysis allows
them to infer the IMF slope with higher pre-
cision than was possible in our case, such that
their inferred IMF slope for high-mass stars in
30 Dor is shallower than that of a Salpeter IMF
(3) with an even larger confidence (more than
95.5%, versus 83% in our analysis). Their re-
analysis therefore supports our main findings
and conclusions about the IMF in 30 Dor.

Farr and Mandel’s main criticism of our work
is that “[t]here is no statistical meaning to [age
and mass] distribution[s] obtained” by adding
the posterior probability distributions of the
ages and initial masses inferred for individual
stars. It is true that such distributions are not
posterior probability functions in a Bayesian
framework. However, we caution that the IMF
is historically defined as a histogram of stellar
masses (3-9) and our procedure to add the pos-
terior probability distributions of the initial masses
of individual stars is the equivalent of computing a
histogram for the mass distribution of a sample of
stars, while taking into account the observational
uncertainties of individual mass estimates. Virtu-
ally all IMFs inferred in the literature are
constructed in this way, so Farr and Mandel’s
criticism implicitly applies to those as well. The
VLT-FLAMES Tarantula Survey (VFTS) (10) has
reached a completeness of about 73% with respect
to a more complete census (77) of massive stars in
30 Dor (see figure S2 in our original work). For a

complete stellar sample, the age distribution of
stars obtained with our method would directly
provide the SFH at the youngest ages where even
the most massive stars did not yet end their nu-
clear burning lifetime—so there is also meaning
to age distributions constructed as was done in
our work.

We have tested our statistical analysis with
mock data. To this end, we sampled a stellar
population of 1000 stars more massive than
15M, for a given Salpeter high-mass IMF with
slope y = —2.35 and a continuous SFH (constant
star formation rate). In this way, we have ob-
tained Gaussian distributions of the ages and
masses of individual mock stars with 1o uncer-
tainties of 20% and 15% in age and mass, re-
spectively. These uncertainties are characteristic
of the age and mass uncertainties of stars in our
sample of 30 Dor stars (2). We then used exactly
the same analysis technique as in our original
work to infer the IMF and SFH of the mock
star sample. The results of this test are shown in
Fig. 1 and demonstrate that our analysis method
is able to reproduce the underlying SFH and
IMF of the mock stars. For comparison, we show
the distribution of initial masses for an IMF with
slope y = -1.90 to illustrate that our analysis
technique can distinguish between a Salpeter
IMF slope of y = -2.35 and a shallower slope
of y = -1.90. This test further shows that both
IMFs reproduce the mock data similarly well in
the mass range 15 to 300, and that the high-
mass end (>30M,) of the distribution of mock
masses has the largest power to constrain the
high-mass IMF slope (Fig. 1C).

Our analysis of the VFTS data relies on two
different techniques to infer the high-mass end
of the IMF: (i) by fitting the observed distribu-
tion of stars in the mass range 15 to 2000/, and
(ii) by fitting the number of stars more massive
than 30 and 60M,. Both procedures give results
that are in good agreement (2). From the in-
ferred masses and corresponding uncertainties
of our sample stars, we find 75.9" 5§ stars above
30M,, and 22.21}7 stars above 601/, (2). Con-
trary to what Farr and Mandel write in their
reanalysis, their online data (https://github.com/
farr/30DorIMF, as accessed on 6 May 2018) sug-
gest that their best-fitting SFH and IMF models
underpredict the observed number of massive
stars. They predict on average ~65 stars above
30M, and ~18 stars above 60M . Their ratio of
the number of stars greater than 30M/, to the
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number of stars greater than 60M (~3.6) is
larger than what we have observed in 30 Dor
(~3.4), which appears to be consistent with Farr
and Mandel inferring slightly steeper IMF slopes
than we did in our analysis. Indeed, using our
SFH model and the results of our fitting method
(ii), the numbers of massive stars above 30M,
and 60/, as predicted by Farr and Mandel are
found for an IMF slope of about y = -2.10 [figure
2 in our original work (2)]. This is consistent

Schneider et al., Science 361, eaat7032 (2018)

with their best-fitting IMF slopes of y = -2.05 to
-2.15 for the different SFH models.

The reanalysis of Farr and Mandel gives sys-
tematically steeper IMF slopes than in our work
and consequently seems to underpredict the
observed number of massive stars in 30 Dor. We
do not know the cause of this discrepancy. Our
methodology appears to be robust, and the only
other obvious difference in the two approaches—
besides the statistical framework—is the assump-

27 July 2018

tion on the SFH. We directly infer the SFH from
the data without making assumptions on its func-
tional form. Farr and Mandel assume Gaussian
and exponential SFH models that provide more
degrees of freedom than in our case, and find IMF
slope differences of Ay = 0.1 depending on the
assumed SFH model. This is a systematic un-
certainty that we did not discuss in our original
work, and that makes the inference of the IMF
of composite stellar populations even more
challenging.
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The availability

of computational
resources enables
the simulation of
increasingly intricate
models in many
fields of science.
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~ MARVELOUS

MODELS

By Michael Funk, Colin Norman*, Keith T. Smith,
Jelena Stajic, and Jake Yeston

cientists learn about the world by observing, manipulating,
measuring, and abstracting. To make sure that they truly
understand their system, and to gain insight beyond what
experimental data can provide, many also turn to building
mathematical models. Some models are based directly
on fundamental physical laws, but most rely on approxima-
tions. The computational costs vary widely—from exactly
solvable models to those that require all the computer
power you can get. This power has become increasingly
accessible; throw in the recent forays of artificial intelligence
into scientific computing and the tantalizing promise of quantum
computers, and it’s clear that exciting times are ahead.

In this special issue, we highlight several areas of scientific com-
puting that have seen recent progress. A feature article by Science
reporter Paul Voosen focuses on an ambitious and controversial proj-
ect, backed by high-tech philanthropists, to leverage breakthroughs
in artificial intelligence, satellite imaging, and high-resolution simu-
lations to create a new climate model. Kent and Kotliar reflect on
two complementary approaches to predicting the properties of mate-
rials in which electrons are inextricably correlated with one another.
Bottaro and Lindorff-Larsen report on the simulation of biological
molecules, where recent progress has been driven by advances in the-
ory and methods and tighter integration of experimental constraints.
Sanchez-Lengeling and Aspuru-Guzik review approaches that use
machine learning to design chemical structures that bear a desired
characteristic. Finally, Briigmann describes how to simulate the com-
plex equations that govern four-dimensional spacetime in Einstein’s
theory of general relativity, focusing on the example of gravitational
waves produced by merging black holes.

*Colin Norman 1is a former Science News Editor.
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FRONTIERS IN COMPUTATION
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ometimes it seems the clouds over
climate science just won't lift. Com-
puter models of Earth’s climate
have multiplied in number, com-
plexity, and computational power,
yet they remain unable to answer
more precisely some of the ques-
tions most on the public’s mind:
How high must we build sea walls
to last until 2100? How bad will heat waves
get in the next decade? What will Arctic
shipping routes look like in 2030? Climate
models all agree that global temperatures
will continue to rise in response to human-
ity’s greenhouse gas emissions, but
uncertainties stubbornly persist over
how quickly that will happen and how
high temperatures will go.

Tapio Schneider, a German-born
climate dynamicist at the California
Institute of Technology (Caltech) in
Pasadena, believes climate science
can do better. And he’s not alone.
Later this summer, an academic con-
sortium led by Schneider and backed
by prominent technology philanthro-
pists, including Microsoft co-founder
Paul Allen, will launch an ambitious
project to create a new climate model.
Taking advantage of breakthroughs
in artificial intelligence (AI), satellite
imaging, and high-resolution simula-
tion, that as-yet-unnamed model—the
Earth Machine is one candidate—aims
to change how climate models render
small-scale phenomena such as sea ice
and cloud formation that have long
bedeviled efforts to forecast climate.
A focus will be on the major source
of uncertainty in current models: the
decks of stratocumulus clouds that
form off coastlines and populate the
trade winds. A shift in their extent
by just a few percentage points could
turn the global thermostat up or
down by a couple of degrees or more
within this century—and current
models can’t predict which way they will go.

Within 5 years, the team hopes its Al-
fortified model will drive out that un-
certainty and others by learning on its own
how clouds behave, from both actual obser-
vations and purpose-built cloud simulations.
It’s a lofty goal, Schneider admitted late one
May afternoon in sun-soaked Pasadena, sit-
ting outside with his newly assembled team.
They had just wrapped up a workshop, the
third he had convened in the past year, bring-
ing together leading climate scientists and
engineers to discuss the future of their field.
“Were under no illusions,” Schneider said.
“This is not going to be a cakewalk.”

There are reasons for skepticism. The
United States already has many climate

SCIENCE sciencemag.org

models, and some people question why it
needs another, further dividing resources.
Others question the technology and won-
der whether the philanthropists backing
the project have given it the scrutiny that
an agency such as the National Science
Foundation would provide. The team’s un-
orthodox message and means won’t make
it easy to win people over, says David
Randall, a climatologist at Colorado State
University in Fort Collins. “I think the exist-
ing modeling centers will push back. If Tapio
is getting funding, that in principle could
have gone to someone else.”

Tapio Schneider hopes his planned global climate model will reduce
uncertainties over how high and how fast temperatures will rise.

CLIMATE MODELERS have always followed
two imperatives. First, they’ve folded ever
more features of Earth into their simulations.
Models once contained only the atmosphere
and ocean; now, they have subroutines for
ice sheets, land use, and the biosphere.
Second, they’ve sought higher and higher
resolutions—modeling  interactions on
smaller and smaller scales—riding the wave
of Moore’s law on government-owned super-
computers. By one estimate, the computing
power those models use has increased by a
factor of 100 million since the 1970s. As the
models grew increasingly complex, they more
fully reflected the vagaries of our planet—
unknown unknowns turned to known un-
knowns. Yet the uncertainties remained.

Published by AAAS

At their most basic, all the models work
the same way: They take the globe and
chop it into a mesh, with cells some 25 Kilo-
meters to 50 kilometers on a side, and use a
set of code called a dynamical core to simu-
late the behavior of the atmosphere and
ocean over years and centuries. But much of
what happens on the planet—cloud forma-
tion, for example—arises at scales smaller
than those grids. Therefore, those phe-
nomena have to be described indirectly—
“parameterized” in the jargon of climate
science—with rule-of-thumb equations. The
modelers then adjust those various knobs to
best represent the world as they know
it—a process called tuning. “It’s a mix
of intuition and empiricism and some
physically observed laws,” says Isaac
Held, Schneider’s mentor and a scien-
tist at the Geophysical Fluid Dynam-
ics Laboratory, a prominent modeling
center in Princeton, New Jersey.

Make no mistake: Current models
do an admirable job of re-creating the
world. But their shortcomings drive
scientists bonkers. They struggle to
re-create Arctic temperatures and
melting sea ice. Their distribution of
rainfall is off, biased against the ex-
treme torrents that can cause flood-
ing. “The rain is falling in the wrong
place and at the wrong rate,” says
Paul O’Gorman, an atmospheric sci-
entist at the Massachusetts Institute
of Technology (MIT) in Cambridge,
who formerly worked with Schneider.
And, especially important, the mod-
els often fail to simulate those thick
stratocumulus clouds, which typi-
cally form off the coasts of the western
Americas and help cool the region.

Schneider, 46, has not always been
fixated on clouds. Early in his career at
Caltech, he focused on large-scale atmo-
spheric flows, such as the Hadley cell.
That atmospheric conveyor belt shifts
air from the equator to the subtropics—
the type of pattern that climate models can
simulate using simple laws of physics. But
while on an appointment at ETH Zurich in
Switzerland, he became increasingly con-
vinced that climate models could do a better
job integrating new data on cloud behavior.
He returned to Caltech in 2016 to seek a so-
lution, adding a joint appointment at NASA’s
Jet Propulsion Laboratory (JPL) in Pasadena,
where he had become a close collaborator
with one of JPL’s cloud gurus, Jodo Teixeira.

That was the start of what is now a collabo-
ration of about two dozen people. Al, particu-
larly a variant called machine learning, was
on the upswing, and Schneider and Teixeira
mused that it might help with the cloud prob-
lem. Soon they recruited Andrew Stuart, a
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soft-spoken computational mathematician at
Caltech. The team found additional recruits
at JPL, which has a vast archive of satellite
data on clouds, and across the country at
MIT, where researchers had built an ocean
model infused with every possible satellite
and buoy measurement of the seas.

The MIT group had ambitions to go bigger,
and its members welcomed Schneider’s over-
ture. “Always the idea was to go to an Earth
system model,” says MIT physical oceano-
grapher Raffaele Ferrari. “But the atmo-
spheric community wasn’t particularly
primed to think the same way.”

At first, the nascent collaboration was
not set on creating a new climate model;
the United States already has six prominent

His core, the Non-hydrostatic Unified Model
of the Atmosphere, is designed from the
ground up for modern parallel computing.
The core is also flexible and self-contained.
It can solve equations to various degrees of
accuracy in the same model, which should
allow the Earth Machine to give a low-resolu-
tion overview of the planet while zooming in
on clouds in real time.

CRUCIAL INPUT to the new model will come
from simulations that have recently painted
a much sharper picture of the low clouds and
how they behave. Called large eddy simula-
tions (LESs), those models trade the global
scale and centuries-long time horizons of a
climate model for narrow scope and high

Learning the climate

A new data-driven climate model will use satellite observations and high-resolution simulations
to learn how best to render its clouds. Similar methods will also be applied to other, small-scale phenomena,

such as seaice and ocean eddies.

Global climate
model

models. “It was more a question of how can
we build a better model,” Schneider says.
But they wanted to be certain that a full
climate model would incorporate their in-
novations. They decided the best way would
be to build a new model, albeit one start-
ing with existing code. Doing so meant they
needed a computation whiz who could take
their equations and make them run on a
next-generation supercomputer.

A U.S. Navy expert reported for duty. Frank
Giraldo, an applied mathematician at the Na-
val Postgraduate School in Monterey, Califor-
nia, is behind the Navy’s new dynamical core,
the mathematical engine at the heart of its
next-generation weather and climate models.
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In orbit since 2006, the
Cloud-Aerosol Lidar
and Infrared Pathfinder
Satellite Observation
spacecraft uses lasers
to peer into clouds.

Earth observation

The model will use
artificial intelligence (Al)
to learn from averaged
weather data and,
eventually, direct satellite
observations.

High-resolution cloud models will
run as cells within the climate model,
guiding its global simulation.

Cloud simulations

resolution. The
models re-create several days in

the life of small parcels of the atmosphere,
with cells only 10 meters on a side. At such
resolutions, key aspects of cloud formation—
such as the convection that lofts sun-heated
air upward until the water vapor it carries
condenses into clouds—arise directly from
physical laws. The results sometimes closely
resemble reality, says Chris Bretherton, a
leading cloud scientist at the University of
Washington in Seattle.

Several years back, Bretherton led a proj-
ect that used LESs to study how a 2°C tem-
perature rise affected low ocean clouds. Two
feedbacks emerged, both of which would
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exacerbate warming. First, higher temper-
atures appeared to allow more dry air to
penetrate thin clouds from above, prevent-
ing them from thickening and reflecting
more of the sun’s energy. Second, increased
carbon dioxide (CO,) levels trap heat near
the clouds’ tops, preventing their cooling.
Because such cooling drives the turbulence
that forms clouds, the effect could impede
cloud formation, fueling further warm-
ing. If CO, emissions continue unabated,
Bretherton says, “It’s possible that most of our
low clouds in the tropics would melt away.”

Other evidence, including actual cloud
observations, also suggests “that the low-
cloud feedback is positive and that low
clouds will amplify climate warming,” says
Stephen Klein, an atmospheric scientist at
Lawrence Livermore National Laboratory
in California.

Those breakthroughs have not yet made
their way into global models because no
bridge, or technical way to get them there,
has emerged. But Schneider’s team is build-
ing one: an LES that can simulate cloud
behavior over days within a domain of up
to 100 kilometers on a side—about the size
of one cell in a climate model. Their LES
is based on a Caltech-developed model
called the Python Cloud Large Eddy Simu-
lation (PyCLES) that focuses on low clouds.
“These simulations may not be perfect,”
Schneider says, “but they’re much, much
better than anything else we have.” If all
goes according to plan, Giraldo’s code will
run 1000 PyCLES-type models on the fly as
individual cells inside the Earth Machine.
The machine will also use Al to study the
observed and simulated clouds, extrapolat-
ing what it learns to improve the rules of

thumb it uses to simulate clouds across
the globe. Soon, virtual cloud decks
will sprout off the California coast.

INCORPORATING Al into climate mod-
eling is a work in progress. Several
researchers, including Bretherton’s
group and Michael Pritchard, a cli-
mate modeler at the University of Cali-
fornia, Irvine, trained one form of Al,
neural networks, on high-resolution simu-
lations of the atmosphere. They then used
the AI to replace several classic rules of
thumb, such as how quickly the tempera-
ture and humidity change in rising air. “All
of these are in the feeling-around type of
phase,” Bretherton says.

But neural networks and climate are an
uneasy fit. The algorithms do best on prob-
lems such as classification—for example,
learning from millions of labeled photos
what a dog looks like. The code builds
up an intricate model for what an object
looks like that is often wholly inexplicable
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to human reasoning. The approach works
for dogs—but may break down when it
encounters something outside its training
data—say, a camel. And for climate change,
the future is a camel. For that reason,
Stuart and Schneider are not banking on neu-
ral networks to guide the Earth Machine’s Al
Instead, they seek a compromise, something
between traditional rules of thumb and pure
Al They hope to develop code that can use
hard-won knowledge of clouds and then fill
in gaps with its learned intuition, essentially
replacing the manual tuning typically done
by modelers with a machine.

That learning won’t be driven by indi-
vidual cloud systems, which are imprinted
with the atmospheric chaos that begat them.
Rather, the AI will learn from seasonal or an-
nual statistics on cloud coverage and other
factors, wiping out the noise of weather.
As Stuart and Schneider move each rule of
thumb over to the AI's hands, they’ll wire the
model to calculate probabilities, allowing an
overall reckoning of uncertainty not yet seen
in current climate models. And, partly at
the prompting of their engineering-minded
funders, they’ll develop metrics to gauge
how accurately the model renders the world.
They’re betting on recent insights that, for
some aspects of the climate system, short-
term accuracy in a model indicates decades-
long viability.

Success is far from guaranteed, the team
agreed after the May workshop. “It could
be that what we do ends up not improving
the numbers, just to be completely scien-
tifically honest,” Stuart said. But even so,
he added, the approach should spark new
ideas across climate modeling. “I'd say
that’s the worst-case scenario,” Schneider
quickly interjected. “This is why I say we
can’t fail entirely. But I do hope we will do
more than that.”

AS SCHNEIDER ASSEMBLED his team and de-
veloped a general plan, he still faced a big
question: Who would support their dream?
That the U.S. government would finance
yet another climate model seemed unlikely.
Even before President Donald Trump’s White
House proposed cuts in climate science,
former President Barack Obama’s admin-
istration had explored whether the country
needed to support so many models.
Fortunately for the Caltech team, the
tech philanthropists—particularly Allen,
who has already invested heavily in
oceanography—were looking for something
to make a splash. They sought a risky invest-
ment with a big potential payoff that could
make climate forecasting more concrete.
Schneider already had preliminary support
for the Earth Machine from Charles Trimble,
a Caltech alumnus who miniaturized the
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GPS receiver, and the Heising-Simons Foun-
dation in Los Altos, California. But to reach
their full ambitions, they needed more, some
$5 million annually—a goal that now seems
in sight, though the exact financing was still
being finalized at press time.

The mix of ambition, metrics, and innova-
tion embodied in the Earth Machine was ex-
actly the type of work that Allen wants to fund,
says Chris Emura, a Seattle, Washington-
based computer engineer
leading Allen’s engagement
with Schneider. Over the past
year, Allen’s team has been
enmeshed in the modeling
world, visiting leading centers
to gauge what they can and
can’t do. Schneider’s project,
Emura says, has some audac-
ity to it, with a high degree of
“responsible risk” The team
also has garnered interest
from the Windward Fund, a
conservation charity in Wash-
ington, D.C., that began an
effort last month to support
work that improves near-term
practical climate predictions.
And Schneider’s endeavor
has won praise from Schmidt
Futures in New York City, the
science-focused philanthropy
of former Google CEO Eric
Schmidt and Wendy Schmidt,
president of the Schmidt Fam-
ily Foundation in Palo Alto,
California. “It’s an attractive  ICE
blend of conservative and
bold approaches,” says Stuart
Feldman, the philanthropy’s
chief scientist.

As rumors of the Earth Ma-
chine have spread, the project
has drawn a mix of support,
envy, and skepticism. A new
approach like that is des-
perately needed, says Trude
Storelvmo, an atmospheric
scientist at the University of
Oslo. “This is a very welcome
and innovative idea.” She adds
that it could bolster the case for expanded
observations of clouds—necessary because
NASA’s current cloud satellites have worked
nearly a decade longer than planned.

In contrast, Amy Clement, a cloud scien-
tist at the University of Miami in Florida,
laments the focus on building more com-
plex models. “As a result, in my opinion,
we are losing a lot of our ability to gain
fundamental understanding of the cli-
mate system.” However, she adds, given
Schneider’s acumen as a climate scientist,
the model might lead to such understanding.
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Key uncertainties
Although climate models
provide a fairly faithful
rendering of the world,
computational limits lead
to persistent errors that
have proved difficult to fix.
Low stratocumulus clouds
are a big problem. Some
others include:

A band of thunderstorms
encircles the globe near
the equator, shifting north
or south depending on
the season. Models have
struggled to represent the
intertropical convergence
zone, as it's known,

often producing two
bands, one on each side
of the equator.

Current models vary
widely in their Arctic
temperatures compared
with reality, leading to
large differences in their
simulated sea ice extent.

Models tend to simulate
more light rain than seen in
reality and underestimate
the frequency of severe
downpours and floods.

Bretherton, meanwhile, likes the group’s am-
bitions but questions whether a new model is
needed to realize them. “We already have too
many climate models in the United States,”
he says. “It divides our resources and makes
scientific progress slower.”

Other people think the project is discount-
ing rewards that will come when existing
models are pushed to run globally at higher
resolutions. Much of the climate science com-
munity in Europe, for exam-
ple, is invested in a proposal
called Extreme Earth, which
would push models to a reso-
lution of 1 kilometer per cell.
Although such code would
require a network of super-
computers and wouldn’t run
as long as traditional models,
it would also eliminate many
parameters that Schneider is
seeking to improve with Al
replacing them with physics.
“'m so frustrated with the
idea of parameterizing these
things,” says Bjorn Stevens, a
climate scientist at the Max
Planck Institute for Meteoro-
logy in Hamburg, Germany.
“What I find more exciting
is getting rid of those rules
of thumb.”

There’s also a big assump-
tion baked into the Earth
Machine: that the cloud
problem can even be solved,
adds Joel Norris, a cloud
scientist at the Scripps In-
stitution of Oceanography
in San Diego, California.
Perhaps any sort of param-
eterization, even one tuned
by Al, cannot crack clouds
to a meaningful degree. “It
may be the case you can’t re-
duce the uncertainty,” Norris
says. Some satellite observa-
tions essential to rendering
clouds, such as the exact
location of water vapor in
the lower atmosphere, sim-
ply don’t exist. And Schneider’s team
could be shocked when it sees how appar-
ently unconnected parts of the model go
awry when clouds are tweaked, Held adds.
“There’s just a lot of connections.”

Schneider’s team is aware of all those
concerns and shares many of them. But the
members are ambitious and have grown im-
patient waiting for a breakthrough. They’ve
lived with human-driven climate change,
and its dogged uncertainties, as a reality
for their entire adult lives. It’s time for the
clouds to lift.
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Toward a predictive theory
of correlated materials

Paul R. C. Kent' and Gabriel Kotliar>3*

Correlated electron materials display a rich variety of notable properties ranging from
unconventional superconductivity to metal-insulator transitions. These properties are of
interest from the point of view of applications but are hard to treat theoretically, as

they result from multiple competing energy scales. Although possible in more weakly
correlated materials, theoretical design and spectroscopy of strongly correlated electron
materials have been a difficult challenge for many years. By treating all the relevant energy
scales with sufficient accuracy, complementary advances in Green’s functions and
quantum Monte Carlo methods open a path to first-principles computational property

predictions in this class of materials.

redicting materials properties, starting

from first principles, involves solving the

quantum many-body problem in real ma-

terials. This has been a long-standing goal

in theoretical and computational physics,
chemistry, and materials science. The challenge
was laid out by Paul Dirac in his famous 1929
quotation, “The underlying physical laws neces-
sary for the mathematical theory of ... the whole
of chemistry are thus completely known, and
the difficulty is only that the exact application
of these laws leads to equations much too com-
plicated to be soluble,” which was followed by a
call for methodological developments: “Approx-
imate practical methods of applying quantum
mechanics should be developed, which can lead
to an explanation of the main features of complex
atomic systems without too much computation”

(1), a task which has kept researchers occupied
for almost a century.

Two great advances toward meeting this goal
were recognized by the 1998 Nobel Prize in
Chemistry, awarded to John Pople and Walter
Kohn. The first centered on constructing accu-
rate approximations to the electronic wave func-
tions from which one can construct directly all
the observables of interest. The second focused
on building functionals of electron density, which
when minimized yield the physical density and
the total energy of the ground state (7). Extensions
of these methods have been successful in a large
number of cases, but some long-standing diffi-
culties remain. The wave function-based tech-
niques, such as configuration interaction methods,
have a computational cost that increases rapidly
with system size. This makes it difficult to apply
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Fig. 1. Green’s function diagrammatic schemes. (Left) Hedin's diagram-
matic scheme for the free energy @, the self-energy %, and the polarization
I1. Calculating only the first diagram in the expansion yields the self-
consistent GW (scGW) approximation. Inclusion of the second diagram is
denoted by GWT. Other approximations, such as the quasiparticle self-
consistent GW (QSGW) approximation, which is not fully self-consistent, or
scheme D, which resumes the second-order vertex via the Bethe-Salpeter
equation, work very well because of the cancellation of errors. (Right)
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these methods to solids, which owe their emer-
gent properties to their very large number of
particles. Although density functional theory
(DFT) is formally exact, improving the approx-
imate functionals used in practice is difficult (2).
The long-established and standard implemen-
tations of the density functional methods, such
as the local-density approximation (LDA) or gen-
eralized gradient approximation (GGA), can treat
the energetics of systems in the thermodynamic
limit, but they do not capture the atomic char-
acter of the excitations in the so-called strongly
correlated electron systems. A hallmark of strongly
correlated materials is the presence of partially
filled d or f electronic shells that are energeti-
cally situated to participate strongly in deter-
mining the material’s electronic, magnetic, or
structural properties. The strong and sensitive
relationship between these properties requires
them to be self-consistently determined, poten-
tially amplifying any small errors or approxima-
tions made. Today, the standard approximations
to DFT are not sufficiently robust, necessitating
complementary approaches in these materials.
Substantial progress in methods development
for strongly correlated electron systems has taken
place over the last three decades, owing to the
introduction of new concepts such as quantum
embedding, novel algorithms, and the exponen-
tial increase in computational power. The solu-
tion of the quantum many-body problem has
progressed along two complementary paths:
the quantum Monte Carlo (QMC)- and Green’s
function-based methods. In the former, one fo-
cuses on describing the full wave function or
density matrix of a given material, with the
use of statistical methods to treat the large
number of variables. In the latter, one computes
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Relative deviation of calculated semiconductor gaps from the experimental
band gaps (excluding the electron-phonon renormalization). Different
Green's function—based approximations were employed: QSGW, scGW, GW
T; (scheme B), and scheme D. The experimental data (Exp) and the
experimental data corrected by the effects of electron-phonon interactions
(Exp - E-ph) are shown. These results are based on the approximations
described in reference (12). Adapted with permission from (12), copyright
(2017) by the American Physical Society.
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Green’s function, a function of a smaller
number of variables, from which one can
extract observable information. Despite the
different paths, these methods have now
progressed sufficiently to inform each other.
In this brief review article, we discuss these
approaches critically, together with recent
notable achievements.

Green'’s function approach

The quantum-mechanical Hamiltonian
is an operator that represents the energy
and governs the dynamics of the electrons
in a solid. It can be written down explic-
itly; however, the evaluation of its ground-
state wave function is impractical because
it is a function of a very large number of
coordinates (on the order of 10%® in a
typical-size crystal) that cannot be realisti-
cally stored or computed. The Green’s
function approach shares the spirit of the
DFT, as it formulates the exact solution
of the quantum many-body problem in
terms of a function, G, of a small number
of variables. Furthermore, the approach
works in the thermodynamic limit of a
very large number of electrons. An advan-
tage of this group of methods is that the
form of the functional expressing the free
energy in terms of G and the Coulomb
interaction V7, is known explicitly as a sum
of an infinite set of Feynman diagrams,
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Fig. 2. The multidimensional computational complexity
of Green’s function approaches. Green's function calcula-
tions have to be converged along multiple axes to reach
the full solution of the quantum many-body problem.

The z axis denotes the order of Hedin's systematic PT in the
screened Coulomb interaction W (blue dashed lines). The
first-order PT leads to the GW approximation. The next
perturbation order, GWTI'y, has only recently been computed
(12). Other approaches, such as the those exploiting the
DFT Kohn-Sham Green function or the QSGW methods,
are indicated with dashed green lines. An alternative
approach is to sum all local diagrams to infinite order in
PT, as done within the single-site DMFT. This local approxi-
mation can be improved through cluster extensions, as
indicated schematically on the y axis (labeled by locality),
which parametrizes the level of locality of the diagrams.

an accurate evaluation for use with em-
bedding methods is an open problem and
an active area of research (8-10).

The pioneering work of Hedin (17) out-
lined a systematic perturbation expansion
in G and W, which is sketched in the left
panel of Fig. 1. The lowest-order term for
the self-energy gives rise to the so-called
GW approximation. The full self-consistent
evaluation of the next term has been
achieved only recently (72). In principle,
higher-order corrections are computable
numerically. If for a given material the
series is asymptotic, one can hope to ob-
tain very accurate answers. In spite of the
appeal of a systematic expansion, it turns
out that for certain physical quantities it
is better to avoid the self-consistency or
achieve only partial self-consistency to
obtain better agreement between theory
and experiment (Fig. 1). Better agreement
between the calculated and experimental
band gaps of semiconductors can be ob-
tained by using the DFT Kohn-Sham Green
functions Ggs in the evaluation of the self-
energy and the polarization (the one-shot
or GoW, method) (13) or a quasiparticle
self-consistent Green function defined on
the real (I4) or imaginary (I5) time axis.
It is also sometimes necessary to carry out
partial summations of diagrams to satisfy
conservation laws. Therefore, implement-

which is a visual way to represent the
physical processes of interacting electrons
in a solid. The functional was first written
down by Luttinger and Ward (3) and Baym
and Kadanoff (4); its truncation gives rise
to various approximate solutions to the
quantum many-body problem (5).

Green’s function G(w) is an operator
whose matrix elements (r'|G(o)|r) =
G(7,7', ») are defined as the Fourier trans-
form with respect to time of the quantum-
mechanical amplitude for an electron to
propagate from point 7 to point 7. It is expressed
in terms of another operator, the self-energy X(w).

G(F, 7. )
- 1
T 0+ V24—V — Vs — 2(0)

1

Here, Vy and V. are operators representing
the Hartree and crystalline potentials, respec-
tively, and p represents the chemical potential.
Important concepts in this approach are the
screened interaction in the solid, denoted by
W, which represents the Coulomb interaction
corrected by the effect of the motion of the elec-
trons in the solid through their density-density
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Unlike model Hamiltonian studies, realistic electronic
structure calculations involve numerous discretizations and
many other parameters that need to be converged, such as
the size of the basis set, the number of k points, and the

dimension of the space of correlated orbitals. We represent
the reduction of these discretization errors as increasing

along the x axis. Future advances will involve different
choices of locality and discretization errors at different
orders in the PT. We represent this path as an arrow in the
three-dimensional space. Adapted from (94).

response, W™ = V! — II, where II is the po-
larization. A different concept in this field is the
notion of a partially screened local Coulomb inter-
action, or Hubbard tensor Uy, which is the matrix
element of a partially screened Coulomb inter-
action in a set of atomic centered orbitals X ().

The diagonal part of this tensor is called the
Hubbard parameter U and describes the ener-
getic cost of two electrons residing in the same
atomic orbital, due to their average Coulomb
repulsion. It first appeared in the Hubbard mod-
el, a simplified model that captures the physics
of the competition between the kinetic energy,
which delocalizes the electrons, and the Coulomb
repulsion, which favors their spatial localization.
The remaining parts contain the physics of the
Hund’s rule coupling J, which originates from the
intra-atomic exchange interaction between elec-
trons in different orbitals; J reduces the Coulomb
repulsion energy when one has a configuration of
electrons with parallel spins. Various methods to
estimate the Hubbard tensor have been proposed
(6, 7), but a precise definition that lends itself to

ing this formalism continues to be an art
as well as a science; finding an appropri-
ate path in the space described in Fig. 2 is
important for materials at the edge of the
research frontier, as it is not possible to
check convergence simultaneously along
the three axes of Fig. 2. With an increase
in computational power and improved al-
gorithms, we can envision a future where
this convergence can be routinely checked
systematically.

To understand the success of this per-
turbative approach, it is useful to return to the
Fermi liquid theory, which justifies our think-
ing of the excitations of a solid in terms of
quasiparticles. In many cases, the Kohn-Sham
DFT is a good starting point for computing the
quasiparticle properties in perturbation theory
(PT) in the screened Coulomb interactions, and
the lowest order in perturbation around the Kohn-
Sham DFT is close to the experimental answers.
On the other hand, there are materials where
the effective Coulomb interaction is too large for
this approach to be meaningful, as the excitations
are better described in terms of atomic properties
(such as local magnetic moments). A classic exam-
ple are paramagnetic Mott insulators, which ex-
hibit Curie-Weiss susceptibilities rather than
Pauli paramagnetism. Other examples are mixed-
valence and Kondo physics materials and uncon-
ventional superconductors. In these cases, a
summation to all orders in PT is mandatory
to obtain meaningful results.

A breakthrough in this area was the realiza-
tion that this summation can be formulated and
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carried out nonperturbatively in terms of the so-
lution of a self-consistent quantum impurity mod-
el, provided that one restricts the self-energy to
be local. This defines the dynamical mean-field
theory (DMFT) (16) approach. Originally formu-
lated for simple model Hamiltonians where the
summation becomes exact in the limit of large
lattice coordination (17), DMFT was later incor-
porated into electronic structure methods, starting
with the LDA+DMFT approach (I8, 19).

The LDA+DMFT approach introduces the no-
tion of locality for the self-energy X by defining a
basis of local orbitals y, o (r"), which are centered

at sites defined by R'. One then divides all

orbitals into two sets. For the uncorrelated
orbitals, the self-energy is approximated by the
exchange correlation potential of DFT, whereas
the self-energy of the correlated orbitals is eval-
uated by an impurity model [as Xiyp(0)] in a
self-consistent medium, as illustrated in Fig. 3,

S

where x* indicates the complex correlate of y,
o and B correspond to orbital indexes, and & is
the delta function. E4. accounts for the con-
tribution to the self-energy that is included in
the exchange correlation potential V. (20).
Single-site DMFT is just one example of a
quantum embedding scheme. The central idea
of this approach is a judicious use of two steps,
truncation and embedding. In the truncation
scheme, one selects some orbitals to be treated
at the DMFT level, whereas the rest of the sys-
tem is replaced by a bath that enables fluc-
tuations among different configurations. In the
language of quantum chemistry, rather than
focusing on configurations with a fixed number

(7, r ,0) = 8(r — ") Vie(T) +
7) (Zimp(©) = Eac) i iz () (2)

of electrons, the quantum embedding allows
fluctuations among different configurations.
This was a major step forward relative to more
drastic truncations that describe a solid as a
finite isolated cluster of atoms.
In DMFT one uses the system
and bath to compute a local
self-energy. For this purpose
there have been notable ad-
vances in the capabilities for
solving quantum impurity
models, such as the intro-
duction of continuous-time
QMC methods (21, 22). Further algorithmic
advances will be needed to improve the effi-
ciency of the sampling, to reach lower temper-
atures, and to treat a larger number of correlated
orbitals. Another difficulty is the minus sign
problem, which appears in the solution of the
impurity model with off-diagonal hybridiza-
tion, which occurs in sites with low crystal
symmetry. There is a need for impurity solvers
working on the real axis to avoid carrying ana-
Iytic continuation of numerical data. Tailoring
of Wilson renormalization group methods to
the solution of self-consistent quantum impurity
models has shown promising results (23), but
major extensions are needed for tackling elec-
tronic structure problems. After the truncation
step, the self-energy is embedded in a lattice
Green function or the two-particle irreducible
vertex in a two-particle response to obtain
momentum- and frequency-dependent physical
quantities (Fig. 3).

Other embedding methods exist that treat
solid-state systems. The density matrix embed-
ding theory (DMET), introduced by Knizia and
Chan (24), was inspired by DMFT, but it gives
rise to a simpler impurity model. The Gutzwiller
approximation used in connection with LDA,
called LDA+G (25, 26), is also computationally
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Fig. 3. DMFT as a quantum embedding method. A quantum truncation of a periodic system is an
impurity model, an atom or a cluster of atoms in a bath (reservoir). From the impurity model, one
calculates irreducible quantities such as the self-energy X or the particle hole irreducible vertex ", which are
then embedded in lattice correlation functions. These are used to calculate frequency and momentum
observables, such as the spin susceptibility y or the one-particle Green function G. In realistic LDA+DMFT
treatments of materials, a small subspace is correlated so that £ is a small block, and the correlated
self-energy is embedded in a large Hilbert space; thus, the lines in the equation for G represent the
Kohn-Sham Green function from the DFT. The lines in the equation for y represent the full Green function G.
g, momentum; V,, hybridization between the impurity and the bath of electrons.
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“Green’s functions
and Monte Carlo
methods are largely
complementary.”

less demanding than LDA+DMFT. The slave
particle method is widely used for the study
of model Hamiltonians and has been com-
bined with LDA (27). The rotationally in-
variant slave boson (RISB)
form (28, 29) has been shown
to be quite accurate for the
estimation of total ener-
gies. Recently, simple con-
nections among all these
approaches have been un-
covered (30, 31), with LDA+G
being equivalent to LDA+RISB
and DMET appearing as a limiting case of
RISB. For these simplified methods to reach
first-principles status, a prescription for the
determination of the Hubbard U tensor to be
used is needed.

Single-site DMFT can be extended by taking
as a reference system a cluster of sites, rather
than a single site (moving to the right on the
locality axis of Fig. 2). There are different cluster
extensions of single-site DMFT (5, 32) and many
subtleties: for example, how to maintain causality
(33). In practice, different materials require dif-
ferent types of approximations; hence, many-
body theory of correlated systems requires some
judicious choices, guided by physics and chem-
istry, deciding of the level of approximation for a
given material in Fig. 2. For example, a material
such as VO,, which contains dimers in the unit
cell, requires two-site DMFT (34), whereas in
other systems such as V,0s, single-site DMFT
is sufficient (35).

Representative applications:
Theoretical spectroscopy

The goal of theoretical spectroscopy is to infer
different correlation functions—for example, the
one-electron correlation described in Eq. 1 or
the correlation function between the electronic
spins—with minimum or no input parameters.
To extract this information experimentally, dif-
ferent large-scale facilities with different experi-
mental tools, such as angle-resolved photoemission
spectroscopy or neutron scattering, respectively,
are needed. Theoretical spectroscopy also pro-
vides a framework to interpret the experimental
results and advances the field by falsifying or
verifying theories and indicating which aspects
of the modeling need further attention. LDA
+DMFT is now widely used in this area, with
surprisingly good agreement with experimental
data; for example, it has been used to explore
the variation of the spin fluctuation spectra of
the iron pnictides and chalcogenides (36, 37)
and the heavy fermion systems (38).

We provide a more detailed example of the
power of this method in suggesting the solution
of the mystery of Pu, a distinctive elemental solid.
Pu metal is different from all other elements in
the periodic table because it forms so many vastly
different allotropes in its phase diagram in a
narrow temperature range. Even its simplest face-
centered cubic (fcc) phase has remarkable trans-
port and thermodynamical properties that have
for many years defied qualitative understanding.
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LDA+DMFT provided a comprehensive theory
of this material. The anomalies in its properties
can be traced to a mixed-valence condition,
where the shell of electrons fluctuates between
an f° and f° configuration with a characteristic
mixed-valent scale that had been predicted to
be about 80 meV (39).

The DMFT valence histogram describing the
quantum-mechanical probability for a given f
configuration is shown in Fig. 4. LDA+DMFT
angle-integrated photoemission spectroscopy
identified fingerprints of this mixed-valent state
(Fig. 4, A and B). LDA+DMFT-based neutron
theoretical spectroscopy was used to predict the
powder average neutron scattering spectra of
8-Pu, as shown together with the experimental
results in Fig. 4, D and E.

Wave function methods

To estimate the complete ground-state wave
function in a solid, with its characteristically
large number of electrons and its exponen-
tial scaling in the number of orbitals, seems
at first sight a task that is impossible to carry
out to useful accuracy. Nevertheless, stochastic
algorithms offer a more scalable alternative to
deterministic methods, and a quarter century of
materials applications underscores their practi-
cality. Stochastic algorithms were initially used
for the homogeneous electron gas and then for
weakly correlated solids and molecules (40), but
algorithmic breakthroughs in real-space QMC
(41-43) and the more recent development of
related methods such as auxiliary-field QMC
(AFQMC) (44) and full-configuration interaction
QMC (FCIQMC) (45) have extended the reach
of such methods from light elements to include
solids with d- and f-electron atoms (46). These
methods are complementary: the older and
more established real-space methods scale with
the second to fourth power of system size, de-
pending on the measured quantity. AFQMC has
similar scaling and gives simpler access to prop-
erties other than the energy but is generally
believed to have a much larger cost prefactor.
FCIQMC has exponential scaling, leaving a far
smaller range of systems for which the method
is applicable, but it is already near-exact in its
current formulations. Although materials appli-
cations today may require the use of millions of
supercomputer hours, these QMC methods all
have the potential to treat a wide range of strong-
ly correlated materials and potentially demonstrate
systematic convergence of all errors. Although
methodological improvements are needed, in-
creased computer power is steadily increasing
their range of application.

The central idea of QMC methods is to avoid
explicit numerical integration of the many-body
Schrodinger equation and to recast the problem
statistically via use of Monte Carlo integration
and stochastic projection. This allows the methods
to operate on thousands of electrons, compared
with the tens or low hundreds reached by today’s
most accurate deterministic algorithms, in ex-
change for a statistical uncertainty. Importance
sampling via an input trial wave function can be
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Fig. 4. Using LDA+DMFT to understand plutonium. (A) Experimental (95) and (B) theoretical (96) angle-
integrated photoemission spectroscopy of 8-Pu. (A) was adapted with permission from (95), copyright (2000) by
the American Physical Society. (B) was reproduced from (96). The arrows highlight two surprising features in
addition to the narrow resonance and the broad Hubbard band, assigned to quasiparticle multiplets. For
comparison, the experimental o phase is shown together with a compressed fcc phase. a.u., arbitrary units; DOS,
density of states. (C) DMFT valence histogram of §-Pu, reproduced from (96). The histogram displays the
occupancies of two distinct valences, £ (blue bars) and © (green bars), which are key to understanding the
anomalous properties of Pu. The bars with the same color correspond to distinct values of total spin J of the

Pu atom [for more details, see (96)]. (D) Experimental and (E) theoretical neutron spectroscopy on a powder
sample. Reproduced from (97). F, magnetic form factor; Q, momentum transfer; ug, Bohr magneton; f.u., formula
units; ARCS, angular-range chopper spectrometry; T, temperature; 4, Planck’s constant h divided by 2.
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Fig. 5. Recent applications of QMC to strongly correlated materials.
These applications were enabled by algorithmic advances and increased
computational power. By using the atomic parameters and (A) the structure
of the conventional unit cell of (Sr/Ca),CuQOs3, (B) total energies (shifted by
Eo = 34,705 eV) for a ferromagnetic (FM) and an antiferromagnetic (AFM)
state were evaluated to (C) extract the superexchange (J) by exploiting the
variational principle and using trial wave functions from GGA+U. The best
agreement with experimental data (shown in gold bands) is found at the
lowest Eqmc — Eo energies. Adapted from (49). (D) This method was also

used to improve the statistical efficiency, with
higher efficiencies obtained by physically more
accurate trials. The avoidance or minimization
of numerical integration also allows for the use
of more general wave functions, allowing more
physics to be built in. As the trial wave function
is improved and approaches the exact result,
physical accuracy is increased and the number
of Monte Carlo samples required for a given sta-
tistical accuracy is reduced, motivating develop-
ments of better trial wave functions.

The most fundamental challenge in QMC is the
fermion sign problem: to sample an all-positive
probability distribution derived from the wave
function requires knowledge of where the wave
function changes sign between positive and neg-
ative. To achieve this and determine the exact
wave function formally has an exponential com-
plexity. All the different QMC methods therefore
aim to obtain a sufficiently accurate result by
either introducing controlled approximations
or reducing the prefactor of the exponential
sufficiently that interesting materials and prop-
erties can be studied.

To guide the discussion, we will use a very
general form of the many-body wave function in
the solid as given by

M
w({&}) = ZciDlTDl!eJ({f?})

i=1

(3)

where {ﬁ} is the complete set of electron po-
sitions {7}, D] and D} are Slater determinants
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filled with various single-particle orbitals, and c;
are expansion coefficients, multiplied by an op-
tional Jastrow factor J that correlates electron
positions. M is the number of electrons. The single-
particle orbitals are usually obtained from DFT
or quantum chemistry and the remaining com-
ponents through numerical optimization. The trial
wave function is therefore not exact and inherits
some of the error made by the other methods.
The most accurate and widely applied QMC
method for materials is diffusion Monte Carlo
(DMC). Within this method, a reformulation of
the time-dependent Schrodinger equation is used
to project out the ground-state wave function @,
from an input trial wave function Wrt. The use of a
projection algorithm minimizes dependence on
inputs, but with the complication of computing
the mixed-probability density |®o¥r|. The total
energy is easily computed from this mixed dis-
tribution, but this method is more difficult to
use to compute properties that do not commute
with the Hamiltonian. To ensure that the solu-
tion has the correct symmetries of a fermionic
state in DMC, the nodal surface of the solution
is constrained to that of a trial wave function.
This introduces a variational error in the com-
puted energy, but this variational nature allows
different options to be tested and the lowest-
energy input to be rigorously selected. The chal-
lenge of applying DMC in correlated materials
has therefore been to find a source of trial wave
functions with sufficiently accurate nodal sur-
faces. Ideally these inputs would be obtained

used in reference (50) to estimate phonon frequencies and gaps in isostructural
La,CuQy; a correction of 0.5 eV was applied to the DMC values as the

gap was evaluated at the I' point. The agreement for gaps of correlated electron
systems in fixed-node DMC (FN-DMC) was tested in several oxides, as also
shown in (D). PBE, Perdew-Burke-Ernzerhof functional. (E) The comparison
between calculated values within fixed-node DMC of the superexchange constant
(). gaps (Ag), and phonon frequencies (wgig), with their values obtained by
several other methods and experiment. PBEO, hybrid functional based on PBE.
Reproduced with permission from (41), copyright (2016) by IOP Publishing.

and optimized within QMC for a fully internally
consistent theory, but this has not yet been
realized in the solid state, although it has been
achieved in molecules (42, 43).

Starting in the mid-2000s, the QMC commu-
nity began to realize that modern hybrid den-
sity functionals and simple variants of them
could be a sufficiently accurate source of trial
wave functions for transition metal oxides, with
the variational principle used to select the best
for each application. In these materials, the pre-
dictive power of DFTs is questionable. Accurate
QMC results for materials such as MnO (47) and
FeO (48) eventually spurred calculations for the
challenging parent phases of the copper oxide-
based superconductors (49-51). Here the calcu-
lations that are known to be most accurate
through the variational principle were shown
to predict magnetic exchange interactions and
band gaps in best agreement with experimental
data. Although inexact because of the limited
flexibility in the input trial wave functions, these
methods can now link fully atomistic structural
models either to experimental data or to Hubbard
model calculations, without empirical parame-
ters. Similar techniques have been applied to the
iron pnictide superconductors (52), the volume
collapse in elemental cerium (46), and the phase
transition in vanadium dioxide (53, 54). Promis-
ingly, these results have been obtained by using
simple trial wave functions, leaving open the pos-
sibility of substantial improvements with more
sophisticated and physically motivated choices.
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‘Whereas the above-discussed techniques can
be considered to work in real space, there are
newer alternative approaches. FCIQMC (45) per-
forms a stochastic sampling of the entire wave
function on the basis of determinants. With near-
exact but exponential scaling with increasing
system size, current algorithms enable the study
of simple solids (55), albeit with a very strong
finite basis and finite size effects. AFQMC also
makes use of a trial wave function, as does
DMC, but uses a mathematically transformed
Hamiltonian to enable sampling in terms of
independent particles interacting with auxiliary
fields. In materials, this sampling usually in-
volves single-particle orbitals obtained from DFT.
Compared with DMC, this method has the ad-
vantages of increased simplicity and allowing
substantial reuse of the computational machinery
from mean-field methods, as there is no Jastrow
factor. This also allows easier access to materials
properties. Although there are not yet head-to-
head comparisons in correlated materials, the
performance of AFQMC compared with that of
other QMC methods is high in model systems
(56). As with DMC, improving trial wave functions
is key because they act as an initial constraint.

Although improved treatment of the fermion
sign problem in all of these methods has long
been recognized as an important challenge, they
are also nearly exclusively formulated at zero
temperature. Dynamics are little explored other
than for the lightest elements of hydrogen and
helium because of the high computational cost.
Finite temperature properties of materials cur-
rently have to be accessed via other theories.

Representative applications: Total
energies, magnetic exchange, and
electron-phonon coupling

Accurate calculations of total energies, free en-
ergies, and enthalpies are essential for design-
ing new materials. They enable evaluations of
lattice constants, phonon energies, and forma-
tion energies. Evaluating them with methods
that go beyond the more standard implemen-
tations of DFT has been the focus of multiple
efforts. The accuracy and the relatively weak
dependence on input parameters of QMC methods
makes them an ideal tool for this task, in particular
for light elements, where they have been used as a
benchmark for different van der Waals density
functionals (57-59).

QMC methods can also be used to infer in-
formation about excitations by arranging the
excited-states wave function to be orthogonal to
the ground-state wave function either by fixing
different quantum numbers, such as spin, in the
linear combination of Slater determinants in
Eq. 3 or by enforcing a symmetry different from
the ground state. Calculations for excitations
must be performed individually, and in general
complete spectra over a wide energy range are
inaccessible. We illustrate recent successes of
this method in correlated oxides in Fig. 5.

Though the evaluation of total energies and
free energies has long been a strength of QMC
methods, progress has been made in the use of
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Green’s function methods for these analyses.
Variants of the GW approach (60, 61), LDA+G
(30, 62) and LDA +DMFT (61, 63-66), have been
used. The latter gives access to the effects of
electronic entropies on the structural proper-
ties. This effect can be very important in strongly
correlated materials. The variants of LDA+G,
in turn, have provided zero-temperature phase
diagrams of several actinides (30, 62).

Another important quantity is the electron-
phonon coupling, which can be related to the rate
of change of electronic excitations with changes
in the atomic positions. In the past decade, its
evaluation in linear response theory implemen-
tations of the DFT has been carried out, the results
of which have been successful in numerous com-
pounds. For example, the dc resistivity as a function
of temperature of the full elemental transition
metal series has been explained without adjust-
able parameters (67).

Still, this approach sometimes fails in notable
cases. One example is the high-temperature super-
conductor Ba,K; _ 4
BiO3, for which calcu-

na. This requires accuracies that are out of reach
today. The scheme could also lead to improve-
ments in more practical faster methods (73), thus
opening up correlated materials for materials
design and optimization in the same way that
weakly correlated materials are today. Some of
the challenges, such as simply computing a suf-
ficiently large number of atoms to capture the
required physics, are greatly helped by the rapid
advances in computational power, whereas other
fundamental challenges require improved theories.

Green’s functions and Monte Carlo methods
are largely complementary. Green’s function
methods are ideally suited to describe spectros-
copies, as they target exactly the quantities that
are probed in experiments (Fig. 4), whereas Monte
Carlo methods target total energies, as they have
weak parametric dependence (Fig. 5).

The ranges of application of the different
methods have recently begun to overlap, creating
exciting opportunities. Combinations of methods
advancing along the locality and PT axes of Fig. 2

were suggested very
early on, as in the GIW+

lations gave a value of
A = 0.3, which cannot ac-
count for an observed

“A hallmark of strongly
correlated materials is the

DMFT method (74, 75),
but only recently have
self-consistent imple-

superconducting transi- mentations been carried
tion temperature of 35 K o out, as in the MQSGW
(68). Recently, Yin et al. p resence Of p a’:tlally ﬁ lled (Matsubara quasipar-
(69) have argued thatthe ] QF f electronic shells that  tidesdfconsistent GW)+
long-range Coulomb in- o o o DMEFT (76) method and
teractions are important ---P a"thlP ate str Ongly in the multitier self con-
in some high-temperature N Pt K sistent GW+EDMFT
supe'monductors ?nd that determl{un”g the matenal e (extended dynamical
the induced static corre- [ Opertles. mean-field theory) (77).
lations increase the elec- Locality can be ex-
tronic bandwidth and ploited in higher-order

enhance the electron-phonon coupling. This
correlation-enhanced electron-phonon coupling
provides a natural explanation for the super-
conductivity in this and related systems. Recent
photoemission experiments have confirmed the
main predictions of the theory (70).

The iron pnictides and chalcogenides are Hund’s
metals, a different class of strongly correlated
materials where the correlations derive from
Hund’s coupling rather than the Hubbard
U. LDA+DMFT calculations for FeSe predicted
alarge enhancement (on the order of a factor of
10), relative to its LDA value, of the coupling
between some Fe-3d correlated states and one
phonon mode, which corresponds to the symmet-
ric modulation of the distance of the chalcogenide
atoms from the iron planes (77). This LDA+DMFT
prediction has recently been confirmed experi-
mentally by using a novel technique at the x-ray
free-electron laser (72).

Outlook

Buoyed by advances in concepts, algorithms, and
supercomputing, we can contemplate an accu-
rate fully ab initio approach to compute the
properties of correlated materials with only con-
trolled approximations. If realized, such a scheme
would enable highly robust predictions for
strongly correlated quantum-mechanical phenome-

vertex functions and can be used to generate
one-particle Green functions in methods such as
dual fermions, dI'A (78), and trilex (79). Incor-
porating these ideas into realistic electronic
structure is another direction to advance in the
y — 2 plane of Fig. 2 and is in the very early stages
(80). The successrepresented in Fig. 1 in sys-
tematically improving the estimation of semi-
conductor gaps, together with the early suggestion
of Zein et al. (81) that higher-order graphs are
increasingly local, bodes well for this research
direction. QMC methods have excellent access
to the electron density, potentially allowing the
inputs and outputs of DMFT calculations to be
validated or improved. QMC methods now also
have better access to excited states and are be-
coming capable of diagnosing when GW meth-
ods are best applied (82). Determining more
accurately the effective Hubbard parameters
that enter LDA+DMFT is another outstanding
challenge to which QMC may contribute in the
future (83).

Green’s function methods that exploit locality
are strongly dependent on the orbitals and pro-
jectors that are used to carry out the infinite-
order resummations, as well as on the Hubbard
interaction tensor. Investigations of criteria for
optimizing these orbitals, with the concomitant
determination of the local Hubbard interaction
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matrix, are needed. Although QMC approaches
are less sensitive on parametric choices, there is
also now a common need, within all the QMC
approaches, for improved trial wave functions
to treat stronger correlations and to treat more
complex systems. To be applied near coupled elec-
tronic, magnetic, or structural phase transitions—
all hallmarks of strongly correlated materials—the
methods must become independent of the mean-
field theories and DFTs that are used as the
foundation today. Current methods are expected
to break down in these regimes, and cross-
validation of new methods and new applications
will be necessary (56). Encouragingly, the emer-
gence of methods to generate multideterminant
trial wave functions provides a practical mecha-
nism to achieve this: selected configuration in-
teraction can be used to produce systematically
more accurate trial wave functions for DMC or
AFQMC calculations; analysis of the results may
be used for physical insight and for further tai-
loring of the configuration interaction expansions
for larger systems, while maximizing accuracy.
Although perturbative methods improve the trial
wave functions markedly faster than a naive con-
figuration interaction expansion, physical insight
to improve these methods specifically for the solid
state will be highly beneficial. This will open up
applications in elemental solids through to com-
plex oxides, at ambient conditions through to
conditions of high applied field or pressure.

‘We have not mentioned, among wave func-
tion methods, parallel progress within the field
of quantum chemistry, where there are a range
of complementary methods for treating electronic
correlations in molecular systems [(84) and
references therein]. Although traditionally imple-
mented only for finite or isolated systems, these
methods can be recast in the language of periodic
boundary conditions needed to study materials in
the solid state. This also applies to methods such
as the coupled cluster, which have also recently
been extended to periodic systems (55, 85). These
approaches stand to bring a half century of
theoretical chemistry developments and analy-
sis techniques to correlated materials (86). Con-
versely, ideas from DMFT are beginning to make
their way into the realm of quantum chemistry
(87-90). An important challenge for all of these
methods is the use of frozen atomic core or pseu-
dopotential approaches: Calculations actively
using all electrons are too costly for general
materials, whereas calculations that approxi-
mate the treatment of core electrons risk introduc-
ing significant errors.

The need and potential effects for society of
scientific investment in computational first-
principles approaches for correlated electron ma-
terials can hardly be overestimated. For weakly
correlated electron systems, it took many years
after the development of the DFT to reach the
point where practical implementations of sev-
eral algorithms using this method as an engine
in user-friendly codes guided the discovery of
the highest-temperature superconducting criti-
cal temperature of a material, H;S under high
pressure near 190 K (91, 92). For a historical ac-
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count of the research leading to this break-
through, see reference (93). It is our hope that
some of the developments reviewed in this article
will help bring this new research paradigm of
theory-assisted materials design to the realm
of strongly correlated solids.
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Biophysical experiments
and biomolecular simulations:

A perfect match?

Sandro Bottaro and Kresten Lindorff-Larsen*

A fundamental challenge in biological research is achieving an atomic-level description
and mechanistic understanding of the function of biomolecules. Techniques for
biomolecular simulations have undergone substantial developments, and their accuracy
and scope have expanded considerably. Progress has been made through an increasingly
tight integration of experiments and simulations, with experiments being used to

refine simulations and simulations used to interpret experiments. Here we review the
underpinnings of this progress, including methods for more efficient conformational
sampling, accuracy of the physical models used, and theoretical approaches to integrate
experiments and simulations. These developments are enabling detailed studies of

complex biomolecular assemblies.

n modern biological research, a key goal is

to understand the functional consequences

of structure, dynamics, and interactions of

biological macromolecules. Proteins, lipids,

carbohydrates, and nucleic acids interact, re-
arrange, and modify their shape while effecting
their various functions. Experimentalists face the
daunting task of characterizing thermodynamic
and kinetic properties of macromolecules in a
complex environment. Computational simulation
plays a role in these efforts, as modeling ap-
proaches can aid in understanding experimental
data and designing and predicting the outcome
of future experiments.

Here we review the progress and current
challenges in computational modeling of bio-
molecules, focusing on the topic of atomistic
biomolecular simulations and the relationship
between experiments and simulations. We high-
light recent technological and theoretical advances
in the field and consider whether there is a per-
fect match between experiments and simula-
tions. Disagreement between computation and
experiment provides useful insights to further
our understanding, and their complementary use
yields a clearer picture than either does alone.

Biomolecular simulations across length
and time scales

Experimentalists often collect data that must
then be synthesized into a coherent model
through inverse problem-solving. Computa-
tional modelers deal with the forward problem:
constructing a microscopic molecular model that
can be compared with observed data (Fig. 1). In
the best-case scenario, computational models are
fully predictive and widely applicable. This would
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correspond to a model that correctly predicts the
physical behavior of a system—for example, the
catalytic power and stability of an enzyme as a
function of pH and temperature. Such perfect
models do not exist, so variants are developed
with distinct strengths and areas of application.

Detailed information for reaction mechanisms
and transition states in chemical reactions can
be obtained via quantum mechanical (QM) cal-
culations. These allow for simulation of the
electronic properties of a subset of atoms within
a macromolecule, which can be used to investi-
gate bond cleavage and formation, distribution
of charge and spin, and reaction mechanisms.
Simulation of electronic properties of molecules
requires a great deal of computational power,
and thus the applicability of QM methods is, in
general, limited to small systems or short time
scales (7). Molecular dynamics (MD) simulations
with empirical molecular mechanics force fields
treat atoms as classical particles rather than
considering their electronic structure: This ap-
proximation makes it possible to study the struc-
ture and dynamics of larger systems for longer
periods of time, such as small proteins at the
millisecond time scale. There are many relevant
biological processes, however, that involve much
larger biomolecular assemblies. The computa-
tional complexity of these problems can be de-
creased by grouping atoms together into single
particles called beads. Such coarse-grained (CG)
models range in resolution from one or a few
beads per amino acid to one bead per hundreds
or thousands of DNA bases. Despite their in-
trinsic approximations, such models are essen-
tial for tackling important problems in structural
biology, including understanding complex for-
mation between intrinsically disordered proteins
(2) and rationalizing chromosome conformation-
capture experimental data, thereby gaining in-
sights into the internal chromosome organization
(3). There also exist mixed, hybrid, and inter-
mediate models that bridge together different

resolutions. We focus below on the use of clas-
sical MD simulations to study biomolecules.

Challenges and opportunities for
biomolecular simulations

The successful use of MD simulations hinges on
solving two distinct, yet related, problems: the
“sampling problem” and the “force-field problem”
(Fig. 2). The sampling problem refers to our ability
to sample the relevant biomolecular configura-
tions and to determine their relative populations.
Exhaustive sampling is difficult to achieve, be-
cause it is not possible to know in advance the
required amount of sampling needed to calculate
precise statistical averages. It is even difficult to
assess whether a simulation is converged, because
one may never know whether there are motions
occurring on time scales beyond those sampled
and robust and generally applicable tools to mon-
itor convergence are needed (4, 5). Thus, active
areas of development are theories, algorithms,
and technological improvements to increase the
precision of the simulations.

The force-field problem refers to the construc-
tion of the energy function that describes the
physical interactions between atoms. Improve-
ments in force fields thus increase the accuracy
of simulations by providing a more realistic de-
scription of the molecular interactions. Although
progress on solving these two problems requires
distinct approaches, they are tightly related. Only
after taking into account all relevant conforma-
tions, that is, those that contribute to thermo-
dynamic averages, is it meaningful to calculate
average quantities and compare them to experi-
ments. Hence, our ability to improve force fields is
tightly connected to improvements in sampling.

Challenge 1: Improving physical models

The first fundamental challenge in biomolecular
modeling is the construction of the physical
model itself. Trade-off between computer power
and spatial or temporal resolution requires a
choice of model, ranging from all-atom repre-
sentations to CG (6) and ultra-CG models in
which multiple residues or nucleotides are repre-
sented by a single site (7). A long-standing goal
of the field is to construct hybrid models that
smoothly couple together different components
at different resolutions (8).

In atomistic MD simulations, interactions be-
tween particles are modeled by “physics-based”
terms that take into account chain connectivity,
electrostatic interactions, London dispersion
forces, and so on. Parameterized pairwise inter-
action terms are fitted against QM calculations
and experimental data to generate a force field
that describes interactions between individual
particles. Parameters like the equilibrium dis-
tance between two covalently bonded atoms are
known with high accuracy. Other parameters,
such as partial charges, are difficult to establish,
as they do not correspond to physical observables
that can be directly probed through experiments.

Accurate force-field parameterization for pro-
teins has benefited from benchmarking and direct
optimization of MD simulations with experimental
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nuclear magnetic resonance (NMR) data on par-
tially structured peptides (9, 10). Simulations of
peptides that are 10 to 40 residues long are pos-
sible to converge, yet can capture cooperative
phenomena, such as helix-coil transitions or for-
mation of small hydrophobic cores, which are
difficult to parameterize from smaller molecules.
Solution NMR experiments can provide residue-
level information and are sensitive to the relative
energies of conformations that correspond to local
minima and have sizable populations. By optimiz-
ing the backbone potential to match the experi-
mentally measured helicity of a 15-residue peptide,
as measured by NMR, a small change of about
1kJ mol ™! was found to be sufficient to balance
the secondary-structure populations (10). This
small change in energy leads to a substantial im-

Inverse

5N Chem Shift

'H Chem Shift

Forward ‘

provement in accuracy, as the forces are accumu-
lated over multiple residues and the populations
scale to energies exponentially. Corrections to
force fields obtained from examining short pep-
tides are transferable among different structural
classes of proteins and have improved models
of folding processes for small globular and fast-
folding proteins (11, 12).

Unfolded states and intrinsically disordered
proteins (IDPs) have long appeared to be more
compact and structured when observed in MD
simulations than when observed through experi-
ments. This discrepancy suggests that important
physical effects were not modeled correctly in
the simulations. Proposed solutions include im-
proving the description of water or of protein-
water interactions (73). These modifications have
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Fig. 1. Simulations and experiments are complementary. (A) Solving an inverse problem aims to
describe causal factors that produce a set of observations. Molecular simulations, conversely, can be used
to construct a set of microscopic molecular conformations that can be compared with experimental
observations through the use of a forward model. (B) Computational approaches to studying biomolecules
range from detailed quantum mechanical models to atomistic molecular mechanics to coarse-grained
models, where several atoms are grouped together. The decreased computational complexity granted by
progressive coarse-graining makes it possible to access longer time scales and greater length scales.
(C) Experimental data can be combined with physical models to provide a thermodynamic and kinetic
description of a system. As the model quality improves, it becomes possible to describe more complex
phenomena with less experimental data. SANS, small-angle neutron scattering; EPR, electron
paramagnetic resonance; FRET, fluorescence resonance energy transfer; AG, Gibb's free energy.
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improved the accuracy of simulations of IDPs (14),
which play important roles in biology and disease.
A side effect of increasing protein-water inter-
actions is, however, destabilization of folded
proteins. In practice, one might thus have to
choose between one family of force fields for
simulations of folded proteins and a separate
set for disordered systems, complicating studies
of partially folded systems or of order-disorder
transitions such as folding upon binding. To
tackle this problem, it is necessary to consider
simultaneously proteins that span from fully
ordered to completely disordered and to test
and optimize parameters at the same time on all
of these systems. A comprehensive study of
model systems with diverse properties has re-
cently produced a force field capable of hand-
ling both fully folded proteins and IDPs (15).
In parallel to the development of models to
study the structure and dynamics of proteins, there
has been a growing interest in modeling nucleic
acids, particularly RNA because of its catalytic
and regulatory activities. Although important
improvements have been made, state-of-the-art
RNA force fields remain less accurate that those
for polypeptides (16). Here, too, artifacts of MD
simulations have been uncovered by direct com-
parison against solution NMR data on small
model systems (17). Similar to the case of IDPs,
promising results have been obtained by balanc-
ing water-RNA and RNA-RNA interactions (18).
Systematic benchmarking of force fields against
experiments has revealed a comforting trend:
Force fields are getting better (12, 15, 19). It is
worthwhile to note that these improvements have
been possible even without substantial changes
to the underlying model or mathematical func-
tion used in the force fields. Thus, despite the in-
herent simplicity and lack of, for example, taking
polarization into account, it has been possible
to improve force fields dramatically. Indeed, it
is surprising that it is possible to parameterize
force fields that work well across many different
proteins and problems (20), and eventually, pro-
gress will require models that are more complex.
Improvements of force fields generally rely on
ab initio QM calculations. Machine-learning ap-
proaches, particularly neural networks, make it
possible to train simple potentials with QM-level
accuracy (21). Training is typically done on small
molecules, and encouraging results have been
obtained by transferring these potentials to the
study of larger organic molecules (22). Force fields
that explicitly include polarization effects are also
likely to benefit from automated methods for
integrated parameterization from experiments
and QM calculations and from improvements in
software and algorithms from sampling with these
potentials. Here, Bayesian methods for optimizing
force fields against experimental data and QM
calculations are expected to play an even larger
role, by enabling systematic balancing of differ-
ent sources of information (23-25).

Challenge 2: Accessing long time scales

Atomistic biomolecular MD simulations are in-
herently costly, owing to the need to model forces
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between tens or hundreds of thousands of in-
dividual atoms or more. These forces are eval-
uated every few femtoseconds of simulation
time, requiring about a billion steps to simulate
a molecule for a microsecond. Although the
speed of a simulation depends strongly on the
size of the biomolecular system and the available
computational resources, it is not uncommon
to require weeks or months of computer time
with hundreds or thousands of processors work-
ing simultaneously to obtain microsecond-
length simulations.

Conceptually, the most straightforward means
to increase the speed and throughput of molec-
ular simulations is perhaps “simply” to decrease
the time it takes to perform a single iteration of
the simulation. Widely used software packages
designed for biomolecular simulations, such as
GROMACS (26), NAMD (27), Desmond (28),
AceMD (29), and AMBER (30), use different
levels of parallelization by taking advantage
of multicore processors and high-performance
computing facilities. Speedups can be achieved
by off-loading calculations to graphics processing
units, which provide high performance at rea-
sonable cost. A different route to improve ef-
ficiency is to build hardware specifically adapted
to molecular simulations such as MDGRAPE (31)
and Anton (32). For example, Anton is a massively
parallel supercomputer designed to perform fast
and accurate simulations of biomolecules by
simultaneously considering all parts of the calcu-
lations, including MD-specific integrated circuits
for calculating the costly parts of the force-field
interactions, a specialized communication net-
work tailored to match the periodic boundary
conditions used in simulation, and special par-
allelization algorithms developed for this archi-
tecture. Anton enabled the first millisecond-length
all-atom MD simulation of a globular protein (32).
Its successor, Anton 2, is optimized for larger
biomolecular systems and can perform multi-
microsecond simulations in a single day for sys-
tems such as a small virus or a solvated ribosome
with more than 1 million atoms (33).

Massive parallelization has been exploited
in the folding@home project, which utilizes
hundreds of thousands of “stand-by” machines
all over the globe (34). Such distributed com-
puting studies may now reach multiple milli-
seconds of aggregate simulation time and consist
of hundreds or thousands of simulations ranging
from hundreds of nanoseconds to a few micro-
seconds (35). Because each simulation may be
much shorter than the time scales of interest, a
key problem is how to extract information about
slow, long-time scale processes from a combined
analysis of many short simulations. One possible
solution to this problem is to build a Markov
state model (MSM) (35, 36), which enables one
to construct a “memoryless transition network”
describing the populations and Kkinetics of in-
terconversion between different conformational
states. In recent years, MSMs have gained wide-
spread use, thanks to improved algorithms and
software (37, 38) and several successful applica-
tions to biomolecular processes, including pro-
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Fig. 2. Sampling and accuracy in molecular simulations. An MD simulation samples the temporal
evolution of molecular configurations, but sampling is, in practice, limited to a finite time (t = tqm).
(A) When the simulation time is much longer than the slowest time scales of motions, many
transitions are observed between the relevant conformational states. (B) When such simulations are
performed with an accurate force field, statistical averages are converged and will be close to
experimental values, and the averages approach the infinite time-scale average. (C) By contrast,
when the force field is inaccurate, converged simulations give rise to precise, but inaccurate, results.
(D) When the simulation time is too short compared to the time scales of the system, it is difficult to
calculate precise quantities. (E) In this case, one may get disagreement between experiment and
simulation even when the force field is accurate. (F) The worst situation, when sampling is

insufficient and the force field is inaccurate.

tein folding, ligand binding, and protein-protein
association (35). Path-based methods such as
transition path sampling (39) and milestoning
(40) also use many short simulations to study
kinetics and mechanisms of long-time scale
processes. These and related methods exploit
the fact that many conformational transitions
are “rare events,” for which the time it takes to
cross the barrier is substantially shorter than
the waiting time between such events.
Sampling may also be enhanced by changing
simulation parameters. Increasing the tempera-
ture increases the kinetic energy, making barrier-
crossing events faster (4I). This idea is at the basis
of parallel tempering, perhaps the most widely
used enhanced sampling approach. These al-
terations can be viewed as enhancing simula-
tions along a progress variable, also known as a
reaction coordinate or collective variable (CV),
in this case related to the energy of the system.
For some problems, rapid fluctuations of the
energy, and similar energies in different distinct
conformational states, mean that increased
temperature does not transfer into efficient
sampling. This problem can be exacerbated by
the fact that the available conformational space

at high temperatures is larger, so that increased
rates of sampling are more than offset by the
increased volume of conformational space. Ac-
celerated MD may instead be used to “boost”
the energy along internal degrees of freedom,
such as the backbone dihedral angles, thus en-
hancing the ability to cross local barriers (42).

Enhancing sampling along one or more pre-
specified CVs that describe the process of interest
is another widely used strategy (43). In a protein-
folding simulation, the number of native contacts
formed or the progress along an initial guess
of the folding path might be used to guide the
simulation, even if the path is imperfect, and
thus provide detailed insight into the folding
free-energy landscape. Metadynamics (44) uses
a time-dependent potential to simultaneously
enhance sampling and construct a free-energy
profile along such CVs and is widely used both
because of its applicability to a range of problems
(e.g., biomolecular processes, molecular docking,
chemical reactions, crystal growth, and proton
diffusion) and the availability of efficient and
easy-to-use software (45).

Long unbiased simulations performed with
Anton represent a useful reference to benchmark
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and validate enhanced sampling methods and
kinetic models. In such applications, one may
compare a specific protocol for enhanced sam-
pling or constructing a kinetic model with the
results from an unbiased simulation with the
same force field to focus on benchmarking the
algorithms and avoiding complications from
force-field uncertainty (46, 47).

Approaches based on CVs are very powerful,
but their optimal choice is a critical and non-
trivial step. For complex biomolecular rear-
rangements, it is difficult to identify CVs that
correspond to the relevant, slowly varying de-
grees of freedom. In this respect, deep learning
approaches have recently been used to identify
improved CVs (48). CVs are not only useful to
enhance sampling: They are essential to ratio-
nalize the large amount of complex data gen-
erated in MD simulations. New approaches to
create better low-dimensional representations
of high-dimensional data are also useful to
construct improved MSMs (35), and we expect
the advances in machine-learning methods
[e.g., low-dimensional embedding and cluster-
ing (49, 50)] to play an increasingly important
role in this field.

Challenge 3: Integrating experiments
and simulations

Although simulations and statistical mechanical
theories are important and very powerful in
their own right, direct integration of experimental
data with molecular simulations can provide a
rich description of the structure and dynamics
of biomolecules. This field—also called integrative
structural biology (57)—has benefited from recent
technological advances in cryo-electron micros-
copy (cryo-EM) and is particularly important for
studies of complex, dynamic systems for which
multiple structural techniques provide com-
plementary information. Formally, the problem
consists of determining the three-dimensional
structure or, more generally, an ensemble of
molecular conformations and their associated
weights, which are compatible with a set of ex-
perimental observations.

One strategy is to modify the simulation to
match experimental data (Fig. 3). In this case,
the force field is not considered a fixed, im-
mutable model but instead a fitting function
to be adjusted by experimental data. Indeed,
this “pseudoenergy” approach underlies most
structure-determination algorithms in which
a physical energy function (often a simplified
force field) is combined with an “experimental
energy function” that measures the deviation
between experiment and simulation (52). These
integrative approaches enable accurate protein-
structure determination when using chemical
shifts (53) (Fig. 3A) or when using sparse, un-
certain, and ambiguous experimental data (54).
Similar approaches have been developed with
the aim of providing molecular models of large
molecular complexes constructed by using di-
verse sets of experimental data, including cross-
linking, small-angle x-ray scattering (SAXS), and
cryo-EM images (55, 56). The availability of dif-
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Fig. 3. Experimentally driven simulations.
(A) Probability distribution of the structural sim-
ilarity to the native structure of a protein deter-
mined by using a simplified force field (blue) or
when the same force field is combined with NMR
chemical-shift restraints (green) (53). RMSD, root
mean square deviation. (B) A representative three-
dimensional structure from the restrained
simulation (green) and a reference structure
(black). (C) In a conventional restrained simulation,
the probability distribution of a measured quantity
obtained by sampling using the force field alone
(blue) is modified by adding an additional energy
term that enforces the agreement with experi-
mental data (green). In the resulting ensemble, all
individual molecular conformations are close to the
experimental average. (D) When heterogeneous
conformations give rise to the measured average
value (e.g., scalar couplings for different rotameric
states), adding the experimental restraints to push
individual conformation close to the experimental
value is not correct, as this forces the simulation to
structures that may not represent any of the
relevant states. In maximum-entropy approaches,
the experimental data are satisfied by introducing a
minimal perturbation to the simulation ensemble.
In this simplified example, the solution is a small
shift in the populations of the two states, which
results in a calculated average (red dashed line)
compatible with the experiment.

ferent sources of complementary experimental
data is, in this context, important, as it allows
one to cross-validate results and avoid overfitting.

Structural experiments such as SAXS, NMR,
and x-ray diffraction report on quantities aver-
aged over many molecules and long periods of
time. For rigid molecules, the error may be small
when interpreting ensemble-averaged quantities
for individual structures. However, dynamical
averaging is crucial when studying flexible
molecules, such as IDPs or single-stranded RNA,
because the structural interpretation of exper-
imental data must be addressed by considering
the coexistence of multiple conformational states
(Fig. 3). One theoretical approach for dealing
with the averaging problem is based on the
maximume-entropy principle (52). The basic idea
is to introduce a perturbation to the conforma-
tional ensemble generated by simulations in
order to match a set of experimental data. The
perturbation should be as small as possible:
Mathematically, this is achieved by maximizing
a quantity called relative Shannon entropy, hence
the name maximum entropy. Thus, a minimal
modification to the simulations to match the
experimental data results in the least-biased
combination of the force field and the experimen-
tal measurements. In practice, these approaches
can remove much of the uncertainty associated
with the choice of force fields so that conforma-
tional ensembles derived by combining experi-
ments and simulations are more similar than
ensembles derived solely from simulations (5, 57).

Although the maximum-entropy principle pro-
vides a coherent framework to obtain conforma-
tional ensembles that combine force fields and
experimental data, the basic formalism does not
take sources of error into account. Another im-
portant development has thus been theory that
considers not only experimental measurements
but also the associated uncertainty. When com-
bining data from multiple experimental tech-
niques, uncertainties are essential to set the correct
weights among them. For some sources of ex-
perimental data—for example, chemical shifts
from NMR spectroscopy—the measurement itself
is extremely precise, but our ability to relate the
experimental quantity to molecular structure (i.e.,
the forward model that is used to calculate ex-
perimental quantities from three-dimensional
structures) is associated with substantial uncer-
tainty. Both experimental and modeling uncer-
tainty can be treated by using Bayesian approaches
such as those used in inferential structural deter-
mination protocols, leading to improved precision
and a rigorous approach to integrate multiple
sources of experimental data (58).

Combined Bayesian-maximum entropy inte-
grative methods that consider uncertainty and
averaging offer a promising route to reconstruct
the conformational variability of complex biomo-
lecular systems (59, 60). These methods can be
used with all-atom simulations or with CG mod-
els for larger assemblies. For instance, the struc-
ture and allosteric mechanism of a protein kinase
were revealed by reweighting CG simulations
using SAXS experimental data (61). An alternative
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approach is to construct an MSM that has also
been biased by using experimental data (62).

An important challenge is how the informa-
tion gleaned from these studies may be fed back
into improved force fields—for example, by sys-
tematically analyzing differences between the
experimentally restrained ensembles and those
obtained from the models alone. For instance,
we recently identified a specific dihedral angle
in the RNA backbone whose distribution in MD
simulations was markedly different from that
found when reweighting the same simulations
using a Bayesian-maximum entropy approach
(63). This observation suggested that force-field
errors for this specific term could explain part
of the disagreement between experiment and
simulations, and, indeed, parallel work on im-
proving RNA force fields resulted in distribu-
tions for this dihedral angle that were in much
better agreement with the experimentally derived
results (18, 63).

The discussion above pertains to experimental
data that can be related to equilibrium proper-
ties and that can be represented by population-
weighted averages over individual conformations
in the ensemble. For example, distances probed
via nuclear Overhauser effect (NOE) NMR ex-
periments are typically calculated from the aver-
age of the inverse sixth power of the distances in
each individual structure (58). In reality, NOEs
and many other experimental quantities depend
on kinetic properties that need to be taken into
account for the most accurate calculations. Re-
cent theoretical and practical advances make it
possible to construct conformational ensembles
also based on such information (62, 64-66) and
thus extend applications to new sources of ex-
perimental data.

Conclusions and outlook

The complexity of biological systems often man-
dates the combined use of multiple techniques,
including biomolecular simulations. Clearly, sim-
ulations are not ordinary experiments and often
require a detailed knowledge of algorithms, un-
derlying assumptions, and tricks that can be
difficult to access and understand for non-
specialists. Much progress has been made on
making these tools more user-friendly and ac-
cessible, though analyzing simulations often re-
quires specialist knowledge. With a wide range
of tools available, it is important to balance pre-
cision and accuracy when deciding on a sim-
ulation strategy (sampling method, force field,
and level of resolution): What level of detail is
relevant to the problem at hand, what are the
relevant time scales, and can I address imper-
fections in the model by, for example, experi-
mental restraints?

Substantial improvements in force fields have
been made possible by using data from experi-
mental studies on systems that are large enough
to capture complex behavior yet simple enough
to converge simulations. Future progress requires
that experimentalist and computational chemists
continue to work together to design experiments
that are best suited to optimize force fields and
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to isolate properties that current models fail to
describe (9, 17). By testing and optimizing models
broadly across different classes of problems and
molecules, it will be possible to create force fields
that are more transferable. Eventually, we will
have to go beyond the current simple functional
forms (67, 68), but a surprising observation has
been how much force fields could be improved by
careful parameter optimization on an increasingly
broad set of QM and experimental data. When
reading the simulation literature, one should thus
check whether a carefully validated force field
has been used. Judging this is helped by the in-
creased availability of systematic comparisons
on a broad range of systems (12, 15, 19, 69).

Further, as it remains difficult to sample con-
formational space sufficiently, particularly for
complex systems, one should check whether
convergence has been assessed and whether
quantitative differences are backed up by suf-
ficient sampling. This is inherently difficult
because it is much easier to prove lack of con-
vergence than the opposite (70). Nevertheless,
useful questions to ask include (i) whether the
same events are observed multiple times, (ii)
the simulations are longer than the correlation
times and the statistical analyses take time
correlation into account, and (iii) whether the
observed effects are greater than the statistical
uncertainty.

We must, however, also be pragmatic in the
way simulations are used. Like experiments, sim-
ulations are not perfect, and we will continue to
live with uncertainty in sampling and force fields.
Here the integration between experiment and
simulations can help alleviate problems in
both accuracy and sampling. We envision that
these methods will play an increasingly impor-
tant role in studying the relationship between
structure and dynamics of large biomolecular
assemblies or highly flexible molecules. The link
between molecular simulations and cryo-EM,
inherently a single-molecule technique, might
be particularly fruitful for looking at conforma-
tional dynamics at high spatial resolution (77, 72).
Much can also be gained by carefully choosing
systems that are amenable to both experimental
and computational analysis. Recent examples
include elucidating the molecular details that
underlie the alternating access mechanism in a
minimal sugar transporter (73) and an atomic-
level description of interactions that lead to barrier
roughness in protein folding (74).

The overwhelming growth of sequence data
also presents new opportunities for computa-
tional chemists seeking to understand macro-
molecular structure and function. Evolution is,
after all, governed by the same physical forces
that simulations are constructed to model. One
point of convergence has been the use of evolu-
tionary records to construct statistical models
of amino acid sequences (75, 76). Conversely,
computational biophysics can guide interpreta-
tions of what mutations do to proteins when
analyzing exome sequencing for patient diag-
nosis (76-78). Finally, large-scale deep mutational
scanning experiments can provide comprehen-

sive maps of the mutational effects on protein
stability across entire proteins (79) and enable a
deeper understanding and benchmarking of our
ability to predict the consequences of mutations
(76, 80).

We thus anticipate that simulations will even-
tually be commonplace when studying the effect
of drugs and mutations and will play an essential
role in the future of bioengineering in the same
way that computer modeling is used today in
computational prototyping of cars and buildings.
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Inverse molecular design using
machine learning: Generative models
for matter engineering

Benjamin Sanchez-Lengeling' and Alan Aspuru-Guzik>®**

The discovery of new materials can bring enormous societal and technological progress. In this
context, exploring completely the large space of potential materials is computationally
intractable. Here, we review methods for achieving inverse design, which aims to discover
tailored materials from the starting point of a particular desired functionality. Recent advances
from the rapidly growing field of artificial intelligence, mostly from the subfield of machine
learning, have resulted in a fertile exchange of ideas, where approaches to inverse molecular
design are being proposed and employed at a rapid pace. Among these, deep generative models
have been applied to numerous classes of materials: rational design of prospective drugs,
synthetic routes to organic compounds, and optimization of photovoltaics and redox flow
batteries, as well as a variety of other solid-state materials.

any of the challenges of the 21st century

(I), from personalized health care to

energy production and storage, share a

common theme: materials are part of

the solution (2). In some cases, the solu-
tions to these challenges are fundamentally
limited by the physics and chemistry of a ma-
terial, such as the relationship of a materials
bandgap to the thermodynamic limits for the
generation of solar energy (3).

Several important materials discoveries arose
by chance or through a process of trial and error.
For example, vulcanized rubber was prepared in
the 19th century from random mixtures of com-
pounds, based on the observation that heating
with additives such as sulfur improved the
rubber’s durability. At the molecular level, in-
dividual polymer chains cross-linked, forming
bridges that enhanced the macroscopic mechan-
ical properties (4). Other notable examples in
this vein include Teflon, anesthesia, Vaseline,
Perkin’s mauve, and penicillin. Furthermore,
these materials come from common chemical
compounds found in nature. Potential drugs
either were prepared by synthesis in a chem-
ical laboratory or were isolated from plants,
soil bacteria, or fungus. For example, up until
2014, 49% of small-molecule cancer drugs were
natural products or their derivatives (5).

In the future, disruptive advances in the dis-
covery of matter could instead come from unex-
plored regions of the set of all possible molecular

mapped 166.4 billion molecules that contain at
most 17 heavy atoms. For pharmacologically rele-
vant small molecules, the number of structures is
estimated to be on the order of 10% (9). Adding
consideration of the hierarchy of scale from sub-
nanometer to microscopic and mesoscopic fur-
ther complicates exploration of chemical space
in its entirety (10). Therefore, any global strategy
for covering this space might seem impossible.
Simulation offers one way of probing this
space without experimentation. The physics
and chemistry of these molecules are governed
by quantum mechanics, which can be solved via
the Schrodinger equation to arrive at their ex-

Current paradigm

Material
concept

Molecular
synthesis

Device
construction

Feedback cycle

Organic redox flow batteries

AQDS
molecule

act properties. In practice, approximations are
used to lower computational time at the cost of
accuracy.

Although theory enjoys enormous progress,
now routinely modeling molecules, clusters, and
perfect as well as defect-laden periodic solids, the
size of chemical space is still overwhelming, and
smart navigation is required. For this purpose,
machine learning (ML), deep learning (DL), and
artificial intelligence (AI) have a potential role
to play because their computational strategies
automatically improve through experience (11).
In the context of materials, ML techniques are
often used for property prediction, seeking to
learn a function that maps a molecular material
to the property of choice. Deep generative models
are a special class of DL methods that seek to
model the underlying probability distribution of
both structure and property and relate them in a
nonlinear way. By exploiting patterns in massive
datasets, these models can distill average and
salient features that characterize molecules (12, 13).

Inverse design is a component of a more
complex materials discovery process. The time
scale for deployment of new technologies, from
discovery in a laboratory to a commercial pro-
duct, historically, is 15 to 20 years (14). The pro-
cess (Fig. 1) conventionally involves the following
steps: (i) generate a new or improved material
concept and simulate its potential suitability; (ii)
synthesize the material; (iii) incorporate the ma-
terial into a device or system; and (iv) characterize
and measure the desired properties. This cycle
generates feedback to repeat, improve, and re-
fine future cycles of discovery. Each step can take
up to several years.

In the era of matter engineering, scientists
seek to accelerate these cycles, reducing the

“Closing the loop”
Inverse design

Generative Simulation/
process optimization

—~\
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prototype Robotics
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and solid-state compounds, known as chemical
space (6, 7). One of the largest collections of
molecules, the chemical space project (8), has

;-

Fig. 1. Schematic comparison of material discovery paradigms. The current paradigm is
outlined at left and exemplified in the center with organic redox flow batteries (92). A closed-loop
paradigm is outlined at right. Closing the loop requires incorporating inverse design, smart software
(93), AI/ML, embedded systems, and robotics (87) into an integrated ecosystem.
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time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).

One of the earliest efforts in inverse design
was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.

Although HTVS might seem like an ensemble
version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.

The HTVS methodology has been quite suc-
cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21-24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of
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Functional space Direct

Desired properties (redox
potential, solubility, toxicity)

Experiment or

equation)

Chemical space I
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polymers, dyes)

simulation (Schrodinger

Inverse Inverse

Optimization,
evolutionary strategies,
generative models (VAE,
GAN, RL)

High-throughput virtual
screening (e.g., with 3
filtering stages)

Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from

chemical space to the properties.

chemical fuels from sunlight (31), and battery
electrolytes (32).

Arguably, an optimization approach is pref-
erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).

Within discrete optimization methods, Evolu-
tion Strategies (ES) is a popular choice for global
optimization (33-35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that are more
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-art machine learning approaches (38).

In other cases, inverse design is realized by
incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (I8), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).

Finally, another approach involves generative
models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminative model tries to determine conditional
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probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given & (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(z, v): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule () or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
®@|y)).

As expected, deep generative models are more
challenging to create than direct ML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audio waveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on three main approaches: variational
autoencoders (VAESs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANS) (44).

Before describing how each approach differs,
we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

To model molecular systems accurately, we must
solve the Schrodinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,
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Fig. 3. Different types of molecular representations applied to one
molecule, AQDS, which is used in the construction of organic redox
flow batteries. Clockwise from top: (1) A fingerprint vector that
quantifies presence or absence of molecular environments; (2) SMILES
strings that use simplified text encodings to describe the structure of

a chemical species; (3) potential energy functions that could

model interactions or symmetries; (4) a graph with atom and bond
weights; (5) Coulomb matrix; (6) bag of bonds and bag of fragments;
(7) 3D geometry with associated atomic charges; and (8) the
electronic density.
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ML algorithms benefit from having representa-
tions that expose more easily constraints and
properties of the physics of interest, so a 3D
representation might not be the most efficient.
Having a more direct representation allows the
model to spend fewer computational resources
learning patterns from first principles. A repre-
sentation that can span all of chemical space
should ideally capture all the symmetries of the
SE: permutational, rotational, reflectional, and
translational invariance for particles of the same
type (50). Convolutions, Fourier transforms, and
determinants are some of the mathematical
structures that can preserve these symmetries
and are often incorporated into the representa-
tion or model (51, 52). Molecular representation
is a current open research problem; there are
many representations, and no one representa-
tion seems to work for all properties (53).
Current molecular representations fall into
three broad categories: discrete (e.g., text), con-
tinuous (e.g., vectors and tensors), and weighted
graphs. Although graphs can be represented as
sparse matrices, they differ fundamentally in
how they are processed within a model. Typically
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a representation will have a fixed length size
via padding or the addition of dummy atoms. For
inverse design, a desired property is invertibility—
the capability to map back to a molecule struc-
ture that can then potentially be synthesized
and characterized. Alternatively, if not invertible,
it would be sufficient to have an ideal target
representation and then either scan or evolve a
molecule to match in a fast manner. Among
invertible representations, we find molecular
graphs and Hamiltonians.

Graphs are a natural representation of mol-
ecules. Following empirical principles of bond-
ing, a molecule is interpreted as an undirected
graph where each atom is a node and the bonds
are the edges. To reduce complexity, hydrogen
atoms are treated implicitly because they are
deduced from standard chemistry valence rules.
One standard for molecular graphs is SMILES
strings (54), 1D text encodings that follow a par-
ticular grammar syntax. More advanced repre-
sentations forgo the text encoding and use a
weighted graph representation, with a variety of
vectorized features on edges and nodes such as
bonding type, aromaticity, charge, and distance.
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(55-57). Graphs are normally not uniquely repre-
sented, which can be advantageous for data aug-
mentation (58) or disadvantageous when this
representation degeneracy introduces noise to a
model (563).

Whereas Hamiltonians rely only on the known
physics and atomic constants of a molecule,
the Coulomb matrix representation is based
on Coulombic forces between charges of each
atom (59). When combined via concatenation,
summation, or differences, these base representa-
tions represent reactions (60), molecular en-
sembles, or conformers.

Other representations are better suited to pre-
diction and could be rendered invertible via lookup
tables: bag of bonds (61), amons (62), fingerprints
(63, 64), electronic density (51), symmetry functions
(65), and chemical environments (50). Figure 3
shows several of these representations.

Generative models for exploring
chemical space

Molecular representations are often inputs for
deep neural network (DNN) models. The original
data are transformed across several stages (layers),
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usually by a linear transformation followed by
a nonlinear function. For a given task and as-
sociated loss function, parameters for each layer
(weights) are optimized via the backpropagation
algorithm. When optimized, each intermediate
(hidden) representation will tend to capture high-
or low-level transformed features of the original
data. In this sense, DL is a form of representation
learning (66) because the DNN architecture is op-
timized to transform the original data into another
representation that is more efficient for a given
task such as regression, classification, or generation.

By attaching additional structure to the hidden
representation, either in the form of statistical
priors or probability distributions, we arrive at
the idea of latent variable models. Each observed
datum (molecule) has a corresponding latent
representation, often a vector, within a latent
variable space that encodes the relevant semantic
features of the data.

The goal of a generative model is to model a
data distribution, by training a model on large
amounts of data and attempting to generate data
like it. The loss function encodes the notion of
likeness, measuring the differences between two
distributions, the empirically observed and the
generated.

‘We center most of our discussion on deep gen-
erative models using SMILES as a representation.
Nonetheless, many of these approaches are quite
general and are applicable to other representa-
tions. We expect future work to extend these ar-
chitectures toward other molecular representations.

For the generation of sequences, recurrent
neural networks (RNNs) (46, 67) serve as acommon
starting point, creating sequences incrementally
one step at a time and predicting what comes
next. RNNs can be augmented to take into account
complex time-dependent patterns with long short-
term memory cells (67, 68) (LSTMs), and attention
and memory mechanisms (69). Figure 4 displays
several architectures for generative models.

Variational autoencoders, reinforcement
learning, and adversarial training

Besides generation tasks, for inverse design the
generative process must be controlled or biased
toward desirable qualities. With VAEs, the op-
timization of properties is performed explicitly
over a continuous representation. By comparison,
with GANs and RNNS, the optimization of prop-
erties can be achieved by biasing the generation
process, typically with RL by rewarding or penal-
izing generative behaviors.

VAEs (48) give control over the data gen-
eration via latent variables. An autoencoder (AE)
model includes an encoding and a decoding
network. The encoder maps the molecule to a
vector in a lower-dimensional space known as
the latent space, and the decoder maps the latent
vector back to the original representation. The
encoder acts as a compression and the decoder
as a decompression operation. The AE is trained
to process and reproduce the original datum. In
the act of distilling and expanding information,
the AE is expected to learn some of the essential
features of the data. The AE is sufficient to re-
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produce the training data, but it can easily learn
to memorize the data. To be able to extrapolate
and sample new molecules, we must fill the
uncovered spaces of the latent space. The VAE
achieves better generalizability by constraining
the encoding network to generate latent vectors
following a probability distribution on the latent
space; often the distribution is Gaussian, owing
to its accessible numerical and theoretical prop-
erties. Therefore, a molecule is represented not
as a fixed point but as a probability distribu-
tion over latent space. In practice, this is done as
a sampling procedure; when training, noise is
added to the latent vector, so the VAE must re-
construct the same molecule from a noisy vector.

Arguably, the most interesting part of a VAE is
the latent space. Molecules are represented as
continuous and differentiable vectors residing
on a probabilistic manifold. Latent space encodes
a geometry; for a given molecule, we can sample
nearby to decode similar molecules, and with
increasing distance, we decode increasingly dis-
similar molecules.

Given two molecules, we can trace a path
between their corresponding latent coordinates,
interpolate among the path, and decode inter-
polated molecules. Initially, VAEs were proposed
for encoding characters of SMILES and then
extended to take into account grammar and
syntax features, which improve the generation
of syntactically valid structures (70, 71).

Latent space allows for direct gradient-based
optimization of properties, as latent space is a
continuous vector space. Nevertheless, the man-
ifold of molecules has many local minima. One
approach has been to explore a smoothed ver-
sion of the manifold via Bayesian optimization
(71) or constrained optimization with Gaussian
processes (47).

By jointly training the VAE to reproduce mol-
ecules and properties, in a semi-supervised fash-
ion, the latent molecular space reorganizes itself
so that molecules with similar properties are
close to each other. For a given property, there
will exist preferred dimensions and directions.
By changing the quality of their Gaussian pro-
cesses, Gomez-Bombarelli et al. (47) demonstrated
the capability of local or global optimization
across the generated distribution.

Another way of building a generative model is
with adversarial training under the GAN frame-
work. Here, the generator competes against a
discriminative model; specifically, the generator
tries to generate synthetic data from sampling a
noise space, whereas the discriminator tries to
distinguish data as synthetic or real. Both models
train in alternation, with the goal of the gen-
erator learning to structure noise toward produc-
ing data that the discriminator cannot classify
better than chance. Convergence for GANs is not
straightforward and can suffer from several
issues, including mode collapse and overwhelm-
ing of the generator by the discriminator during
training. Improving training for GANs is a cur-
rent research topic (72), and dealing with dis-
crete data, which suffers from nondifferentiability,
has some workarounds (73, 74).
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To bias the generation process with GANs
and RNNs, a gradient is needed to guide the
optimization of a network toward desired prop-
erties. These properties could be modeled via
neural networks and backpropagated to the
generator, as is the case with GANs where the
optimization metric is that the output looks
like real data. To incorporate properties from
chemoinformatic tools, simulations, or experi-
mental measures, we need to create a gradient
estimator that can backpropagate the generator.

The field of RL provides several approaches
to this problem; among the most prominent are
Q-learning (49) and policy gradients (75). RL
considers the generator as an agent that must
learn how to take actions (add characters) within
an environment or task (SMILES generation) to
maximize some notion of reward (properties).
With SMILES, assigning rewards can only be
done once the sequence is completed. To over-
come this problem, Monte Carlo Tree Search
(MCTS) is often used as it constructs a tree of
probabilities and weights, simulating several
possible completions for sequences, evaluating
their reward, and weighting paths through the
tree based on their success or failure at the given
task. The completion behavior (policy) is learned
as a neural network.

Because of these features, several molecular
applications have adopted RL and MCTS for
generation of drug-like molecules (76-78) and
reaction synthesis planning (79, 80).

The aforementioned approaches are not ex-
clusive; they can be mixed to yield advantages
from each. For instance, druGAN (81) adopts
an adversarial autoencoder network, and
ORGANIC (82, 83) adopts both adversarial
and RL approaches.

It should be noted that most results of gen-
erative models have been used in a pharmaceu-
tical context, optimizing properties relevant to
potential drugs such as solubility in water, melt-
ing temperature, synthesizability, and presence
or absence of certain substructures. For example,
Popova et al. (78) optimized molecules for puta-
tive inhibitors of Janus protein kinase 2 (JAK2),
and Olivecrona et al. (77) optimized molecules ac-
tive against the target dopamine receptor type 2.

Part of the focus on the SMILES representa-
tion has been driven by the adoption of natural
language processing deep learning tools. It
should be noted that SMILES represents only
a subset of possible molecules; for example, a
syntactically invalid SMILES string might still
be a valid molecular structure, but its physics
is not encoded by basic valence rules as used
in SMILES. The introduction of more molec-
ular representations and easy-to-use molecular
property predictors will expand the use of gen-
erative models in other molecular contexts.

Looking ahead, new theoretical developments
in ML are opening the door for generative models
dealing with graphs. The VAE framework has
been extended to molecular graphs (84), and
message passing networks are used to incremen-
tally build graphs (57). Even so, there many
challenges remain; it is not yet clear how one
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can deal practically with approximation methods
for the graph isomorphism problem.

Additionally, improved sequence generation
models are possible with the ability to read and
write to memory (69). These approaches demon-
strate better ability for learning long- and short-
term patterns. More work is needed on Riemannian
optimization methods that exploit the geometry
of latent space. Structured architectures such as
multilevel VAE (85) offer new ways of organizing
latent space and are promising research direc-
tions. New approaches also lie in inverse RL,
geared toward learning a reward or loss function
(86). Research in this direction will allow for the
discovery of reward functions associated with
different materials discovery tasks.

Outlook

Inverse design is an important component of the
complex framework required to design matter at
an accelerated pace. The tools for inverse design,
especially those stemming from the field of ma-
chine learning, have shown rapid progress in
the last several years and have allowed chemical
space to be framed into probabilistic data-driven
models. Generative models produce large numbers
of candidate molecules, and the physical realiza-
tions of these candidates will require automated
high-throughput efforts to validate the genera-
tive approach. The community has yet has to
show more than a few examples of successful
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closed-loop approaches for the design of matter
(87). The blurring of the barriers between theory
and experiment will lead to Al-enabled auto-
mated laboratories (88, 89).

The combination of inverse design tools with
active learning approaches such as Bayesian
optimization (90, 91) can enable a model that
adapts as it explores chemical space, which
allows for expanding a model in regions of
high uncertainty and enabling the discovery
of regions of molecular space with desirable
properties as a function of composition. Active
learning in the space of objective functions could
lead to a better understanding of the best rewards
to seek while carrying out machine learning.

As seen, central to machine learning meth-
odologies is the representation of molecules;
representations that encode the relevant physics
will tend to generalize better. Despite consider-
able progress, much work remains. Graph and
hierarchical representations of molecules are an
area requiring further study.

The integration of machine learning as a new
pillar of knowledge in the curricula of chemical,
biochemical, medicinal, and materials sciences
will allow for a more rapid adoption of the meth-
odologies summarized in this work.
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SPECIAL SECTION

FRONTIERS IN COMPUTATION

REVIEW

Fundamentals of numerical relativity
for gravitational wave sources

Bernd Briigmann*

Einstein’s theory of general relativity affords an enormously successful description
of gravity. The theory encodes the gravitational interaction in the metric, a tensor
field on spacetime that satisfies partial differential equations known as the
Einstein equations. This review introduces some of the fundamental concepts

of numerical relativity—solving the Einstein equations on the computer—in simple
terms. As a primary example, we consider the solution of the general relativistic
two-body problem, which features prominently in the new field of gravitational

wave astronomy.

he basic equations of general relativity are

the Einstein equations, first published in

1915 (I). However, even today there are

large gaps in our understanding of the

physics implied by the Einstein equations.
Stated in general terms, a major goal of research
in general relativity is to solve the Einstein equa-
tions for the physical situations of interest.
Fundamental analytic solutions of the Einstein
equations include the flat Minkowski spacetime
known from special relativity, the Schwarzschild
and Kerr spacetimes describing single black holes,
and the simple Big Bang cosmologies. Also pre-
dicted by general relativity are gravitational waves,
which for weak fields can be obtained as analytic
solutions of the linearized Einstein equations.
However, the few known analytic solutions de-
scribe only very special situations, and approx-
imation methods fail in the regime where the
nonlinear, strong-field effects of relativity play
a crucial role. If we are interested in the truly
relativistic regime, we must turn to computer
simulations to obtain numerical solutions to
the full Einstein equations.

Solving the full Einstein equations on the
computer is the subject of numerical relativity,
which could also be called computational gen-
eral relativity. Computers also play a role in
algebraic computations and in approximation
schemes, and such calculations are important
topics in numerical relativity. But the distinguish-
ing feature of numerical relativity is that, in
principle, the Einstein equations in full generality
can and must be solved numerically.

Numerical relativity spans a large range of dif-
ferent topics including mathematical general
relativity, astrophysics, numerical methods for
partial differential equations, computer prog-
ramming, and simulation science. Current re-
search in numerical relativity is in a transition
from a self-contained topic in theoretical physics
to a physical theory with numerous connec-
tions to observational astronomy (2, 3). Gravita-
tional wave astronomy holds much promise for

Theoretical Physics Institute, University of Jena, 07743 Jena,
Germany.
*Corresponding author. Email: bernd.bruegmann@uni-jena.de

Briigmann, Science 361, 366-371 (2018) 27 July 2018

the future, as recognized by the 2017 Nobel Prize
in Physics, and numerical relativity is provid-
ing key theoretical predictions and analysis
tools for the ongoing gravitational wave ob-
servations (4).

The general relativistic
two-body problem

As a primary application of numerical relativity,
we consider the gravitational two-body problem.
The two-body problem in Newtonian gravita-
tional physics can be formulated for two point
masses moving in their mutual gravitational field.
A particular solution of the Newtonian two-body
problem is a Keplerian elliptical orbit. However,
in Einsteinian gravity, such orbital motion gen-
erates gravitational waves that carry away energy
and momentum. Binary orbits therefore decay,
and the motion of the two bodies follows an
inward spiral that eventually terminates with
the collision and merger of the two objects. In
most astrophysical situations, the energy loss
due to the emission of gravitational waves is so
small that a binary orbit decays only on time
scales of millions or billions of years. However,
for compact objects such as neutron stars or
black holes in very tight binaries, general rel-
ativistic effects such as gravitational wave emis-
sion play a major role (5).

Research in this field seeks to provide a theo-
retical framework for the physics of binary black
holes, neutron stars, and gravitational waves.
Such an endeavor must rely on numerical sim-
ulations in general relativity and general relativ-
istic hydrodynamics. But a reasonably complete
framework still requires substantial progress in
numerical relativity and related fields. Currently
there are serious limitations in our ability to
model the entire range of relevant physics, from
the nuclear physics of neutron star matter to the
large-scale, strong-gravity effects encountered in
binary neutron star mergers (6). The different
dynamical phases of the binary evolution—known
as the inspiral, the merger, and the evolution of
the remnant—are accompanied by characteristic
gravitational wave signatures (Fig. 1). For binaries
involving at least one neutron star, depending on
the specifics of the system, key features include

the disruption of the star(s) before merger, the for-
mation of a hypermassive neutron star, the prompt
or delayed collapse to a black hole, the dynamics
of the accretion torus plus the central merged
object, and the creation of unbound material,
the ejecta. Before discussing simulations of these
systems, we introduce the mathematical founda-
tion of numerical relativity.

Mathematical foundation

Combining space and time into spacetime can
be considered a triumph of human thought, al-
lowing us to perceive the true nature of relativ-
istic and gravitational physics (7). However, this
does not mean that we cannot or need not
consider space and time separately. Somewhat
ironically, after working hard to unify space
and time, the mathematical setup of numerical
relativity starts by splitting spacetime again
into space and time and by making gauge
(coordinate) choices (8) in order to reformulate
the Einstein equations as a well-posed